WO2003100848A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2003100848A1
WO2003100848A1 PCT/JP2003/006454 JP0306454W WO03100848A1 WO 2003100848 A1 WO2003100848 A1 WO 2003100848A1 JP 0306454 W JP0306454 W JP 0306454W WO 03100848 A1 WO03100848 A1 WO 03100848A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
carrier
chamber
substrate processing
holding
Prior art date
Application number
PCT/JP2003/006454
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Nakagawara
Seiichi Igawa
Yoshifumi Unehara
Original Assignee
Anelva Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corporation filed Critical Anelva Corporation
Priority to KR1020047014556A priority Critical patent/KR100951337B1/en
Priority to AU2003242422A priority patent/AU2003242422A1/en
Priority to JP2004508403A priority patent/JP4369866B2/en
Publication of WO2003100848A1 publication Critical patent/WO2003100848A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/07Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers Not used, see H01L21/677
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece

Definitions

  • the present invention relates to a substrate processing apparatus and a processing method for continuously transporting a carrier on which a substrate is mounted to a processing chamber and performing a predetermined process, and particularly relates to a processing chamber attributable to the carrier moving between the processing chamber and the atmosphere.
  • the present invention relates to a substrate processing apparatus and a processing method capable of solving the problem of atmospheric pollution and stably performing high quality thin film formation and etching. Background art
  • FIG. 7 As a conventional example of a substrate processing apparatus, a production vapor deposition apparatus shown in FIG. 7 will be described.
  • the load lock chamber 10 for carrying in the carrier the heating chamber 70, the vapor deposition chamber 30 and the load lock chamber for carrying out the carrier 10 'are gate valves 41 ⁇ .
  • Each room is provided with a transport unit 4 for a carrier 2.
  • the transport unit 4 is preferably configured such that a row of a large number of transport ports is provided, and a carrier mounted on the roller row is moved by rotating the rollers by a drive system.
  • the substrate 3 Used for The substrate 3 is mounted on the carrier 2 in the atmosphere, the carrier 2 is transferred from the load lock chamber 10 to the heating chamber 70, and the substrate is heated to a predetermined temperature, and then sent to the vapor deposition chamber 30 to form a thin film. Thereafter, the carrier 2 is sent out to the load lock chamber 10 'and taken out into the atmosphere. After the processed substrate 3 ′ is recovered, the unprocessed substrate 3 is mounted on the carrier 2 again, and returned to the load lock chamber 10. By repeating these operations, thin films can be continuously formed on many substrates. In this conventional method, the carrier 2 for transporting the substrate is repeatedly transported between the atmosphere and the vacuum.
  • M g O film obtained is to indicate Suyo the X-ray diffraction pattern of FIG. 9 It was found that the (1 1 1) plane had a (2 0 0) plane and a (2 2 0) plane. Since the secondary electron emission coefficient of the MgO film differs depending on the crystal plane, if the crystal planes coexist, brightness unevenness occurs and the display performance of the PDP is greatly reduced. Therefore, to stably obtain a high-performance display performance, should Ru maintaining the partial pressure of water vapor deposition chamber to below 3 X 1 0- 4 P a.
  • Japanese Patent Application Laid-Open No. Hei 9-27-9741 proposes a vapor deposition apparatus which solves the above-mentioned problem of peeling off the adhered film and the problem of taking in moisture and the like into the vapor deposition chamber.
  • a load lock chamber 10 for loading a substrate a deposition chamber 30 and a load lock chamber 10 for unloading a substrate are connected by gate valves 41 and 42.
  • the deposition chamber 30 transports the substrate 3 from the load lock chamber 10 to the carrier (tray) 2.
  • the carrier 2 is configured to circulate between the mounting section, the vapor deposition section, and the collection section, and is not exposed to the atmosphere. That is, the substrate 3 is in the load lock chamber 10 After being carried in, it is mounted on the carrier (tray) 2 of the substrate mounting portion 31 by the transport unit 4 composed of the above-described transport roller row, is sent to the vapor deposition portion 32, and is heated by a heating mechanism (not shown). The MgO film is formed by being heated to a predetermined temperature. Thereafter, the carrier 2 is transported to the substrate collecting section 33, the processed substrate 3 'is removed from the carrier 2, and only the substrate is taken out to the load lock chamber 10'. On the other hand, the carrier 2 is returned to the substrate mounting section 31 along the upper transport path.
  • the carrier is always conveyed in a vacuum, so that the adhered film does not come into contact with the atmosphere, greatly suppressing the generation of particles and suppressing the incorporation of moisture and the like. It was found that a homogeneous MgO film with a crystal plane could be formed, and that it could be used for a high-performance PDP. Disclosure of the invention
  • the film adheres to the carrier and causes the same problem as described above. Conversely, if the mask opening is small, the vapor deposition material wraps around and deposits on the outer peripheral portion of the substrate. Therefore, it was found that there was a problem that the film thickness was thin and the crystal planes were mixed, resulting in uneven brightness.
  • the present invention is directed to a substrate processing apparatus and a processing method capable of suppressing contamination of the atmosphere in a processing chamber through a carrier and continuing stable substrate transfer and high-quality substrate processing. It is an object of the present invention to provide a highly versatile substrate processing apparatus and a processing method that can cope with an ever-larger substrate and that can cope with various substrate dimensions.
  • the substrate processing apparatus of the present invention performs a predetermined process on a substrate, a load lock chamber for loading a carrier with a substrate mounted thereon, a substrate transfer chamber having a transfer mechanism for transferring a substrate between carriers.
  • a substrate processing apparatus comprising: a first carrier that moves between the load port chamber and the substrate transfer chamber; and a substrate that moves between the substrate transfer chamber and the substrate processing chamber.
  • a first carrier and the second carrier, wherein the first carrier and the second carrier are Wherein the substrate is transferred between carriers. Further, the first carrier on which the processed substrate is mounted is carried out to the door lock chamber.
  • the carrier holding the substrate during film formation does not need to be exposed to the air, so that the thin film resulting from moisture or the like adsorbed and occluded on the carrier-adhered film in the air and brought into the deposition chamber is prevented.
  • Nonuniform film quality and film peeling can be greatly reduced, and a high-quality thin film without defects can be continuously produced on many substrates.
  • the transfer mechanism includes a carrier holding mechanism having a plurality of carrier holders and two carrier holding mechanisms that can be interchanged with each other, and the carrier is moved between the holders of the two carrier holding mechanisms. And a mobile mechanism to be operated.
  • the carrier is moved between the two holding mechanisms while holding the substrate from the first and second carriers on the holding table by the holding mechanism, and the substrate is placed on the carrier again in that state. By doing so, the substrate can be transferred.
  • the apparatus area can be significantly reduced as compared with the transfer method using a robot or the like, a large cost reduction can be achieved for the entire substrate processing apparatus.
  • a vacuum suction or electrostatic suction mechanism as the substrate holding mechanism. Since this holding mechanism can hold the substrate from the back side, it can hold not only large-sized substrates but also substrates of various sizes without contaminating or flawing the film deposition surface on the surface. The substrate can be easily and reliably transferred between carriers.
  • the substrate transfer chamber is maintained in a dry gas atmosphere.
  • a dry gas atmosphere For example, N 2 gas is used.
  • the carrier supports four sides of the substrate, so that even if the substrate is enlarged, the radius of the substrate can be suppressed and a uniform thin film can be formed on the entire surface. Further, the present invention is particularly suitably used for forming a film having high hygroscopicity such as a MgO film.
  • the substrate processing method of the present invention comprises: a load lock chamber for carrying in and out a carrier on which a substrate is mounted; a substrate transfer chamber for transferring a substrate between carriers; a substrate processing chamber for performing a predetermined process on the substrate; A first carrier that moves between the load lock chamber and the substrate transfer chamber, and a second carrier that moves between the substrate transfer chamber and the substrate processing chamber.
  • the substrate is transferred between the first carrier and the second carrier, and the second carrier carried into and out of the substrate processing chamber is continuously exposed without being exposed to the atmosphere. It is characterized in that substrate processing is performed.
  • the transfer mechanism includes two carrier holding mechanisms each having a plurality of carrier holding bases and can be interchanged with each other, and a holding base of the two carrier holding mechanisms.
  • FIG. 1 is a schematic diagram illustrating a basic configuration example of a substrate processing apparatus of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of an MgO film deposition apparatus for a PDP.
  • FIG. 3 is a schematic diagram illustrating transfer of a substrate.
  • FIG. 4 is an X-ray diffraction diagram showing the crystal orientation of the MgO film formed according to the present invention.
  • FIG. 5 is a schematic diagram illustrating another configuration example of the vapor deposition apparatus.
  • FIG. 6 is a schematic diagram illustrating another configuration example of the substrate processing apparatus.
  • FIG. 7 is a schematic diagram illustrating the configuration of a conventional vapor deposition apparatus.
  • FIG. 8 is a graph showing the relationship between the number of produced film deposition substrates and the water pressure.
  • FIG. 9 is an X-ray diffraction diagram showing the crystal orientation of the MgO film formed by the conventional apparatus.
  • FIG. 10 is a schematic diagram showing a conventional example of a vapor deposition apparatus in which the influence of moisture in the atmosphere is suppressed.
  • 1, 1 'and 2 indicate carriers, 3 and 3' are substrates, 4 is a transport unit, 5 is a substrate transfer mechanism, 6 is a robot, 10 and 10 'are load lock chambers, 20 is a substrate transfer chamber, 21 and 22 are carrier holding mechanisms, 23 is a substrate holding mechanism, 30 is a processing chamber, 34 is a storage hearth for MgO, 35 is vapor deposition means, 40 46 to 46 indicate a gate valve, 50 indicates a first auxiliary chamber, 60 indicates a second auxiliary chamber, 70 indicates a first heating chamber, and 80 indicates a second heating chamber.
  • FIG. 1 The schematic configuration of the substrate processing apparatus of the present invention is shown in FIG.
  • the substrate processing apparatus has a structure in which a load lock chamber 10, a substrate transfer chamber 20 and a processing chamber 30 are connected via gate valves 41 and 42.
  • the first carrier 1 moves between the lock chamber 10 and the substrate transfer chamber 20 to transfer the substrate
  • the second carrier 1 ′ moves between the substrate transfer chamber 20 and the processing chamber 30.
  • the substrate transfer chamber 20 is N
  • the substrate transfer mechanism 5 is installed in a dry gas atmosphere such as a gas or in a vacuum.
  • the substrate 3 is mounted on the first carrier 1 in the air, loaded into the load lock chamber 10 and evacuated (after the substrate transfer chamber is filled with N 2 gas if the substrate transfer chamber has an N 2 gas atmosphere).
  • the gate valve 41 is opened and sent to the substrate transfer chamber 20.
  • the substrate transfer chamber 20 the substrate 3 is transferred from the first carrier 1 to the second carrier 1 'by the substrate transfer mechanism 5, and the second carrier 1' on which the substrate 3 is mounted is processed. After being sent to the chamber 30 and subjected to predetermined processing, it is returned to the substrate transfer chamber 20.
  • the processed substrate 3 ′ is transferred from the second carrier 1 ′ to the first carrier 1, and the first carrier 1, is taken out to the atmosphere via the load lock chamber 10 and processed.
  • the finished substrate 3 ′ and the unprocessed substrate 3 are exchanged and returned to the load lock chamber 10 again.
  • the second carrier entering the processing chamber 30 does not come into contact with the atmosphere, and the substrates 3 and 3 'are always transported by the carrier. Processing can be repeated and continued.
  • FIG. 2 is a schematic configuration diagram of a vapor deposition apparatus in which the method of manufacturing an MgO film according to the present invention is performed
  • FIG. 3 is a schematic diagram illustrating an example of a method of transferring a substrate in a substrate transfer chamber.
  • the load lock chamber 10 the first auxiliary chamber 50, the substrate transfer chamber 20, the second auxiliary chamber 60, the first heating chamber 70, the vapor deposition chamber 30, and the carrier transfer direction It is composed of a second heating chamber 80 that converts and also heats the substrate.
  • Gate valves 41 to 46 are provided between the chambers.
  • Each of the first and second heating chambers is provided with a heating mechanism (not shown) for heating the substrate to a predetermined temperature.
  • the load lock chamber 10, the first auxiliary chamber 50, the second auxiliary chamber 60, the first heating chamber 70, and the vapor deposition chamber 30 have an upper part for transporting carriers in the right direction in the drawing.
  • a transport unit and a lower transport unit for transporting leftward are arranged respectively.
  • Each transport unit 4 includes, for example, two rows of transport rollers described in Japanese Patent Application Laid-Open No. Hei 9-2793941, and is mounted on the opening by rotating the rollers by a drive system.
  • a structure in which the transported carrier is transported is preferably used.
  • one transfer unit is attached to the second heating chamber 80 so as to be vertically movable, so that the carrier can be moved from the upper transfer path to the lower transfer path.
  • the mechanism described in Japanese Patent Application Laid-Open No. Hei 9-2797341 is preferably used as the mechanism for moving the transfer unit up and down, and the transfer unit is moved up and down by a cylinder, for example, through a bellows. A structure is used.
  • the above-described transport unit 4 serving as a carrier holding shelf is stacked in two stages, and two sets of carrier holding mechanisms 21 and 22 having a structure of moving up and down are arranged on the left and right.
  • the carrier 1, 1 ' can be moved between the transport units of the two carrier holding mechanisms.
  • the up-down movement mechanism for example, the mechanism described in the above-mentioned Japanese Patent Application Laid-Open No. Hei 9-279349 is used.
  • a substrate holding mechanism 23 including a known suction mechanism for vacuum-sucking the substrate is provided on the top wall of the substrate transfer chamber 20 .
  • An opening is formed in the bottom wall of the vapor deposition chamber 30, and a hearth 34 for accommodating the vapor deposition means (for example, a plasma source manufactured by Chugai Furnace Co., Ltd.) 35 and 1 ⁇ 10 is formed below the opening. Equipped.
  • An oxygen gas introduction mechanism will be installed near the opening to control the film quality.
  • a glass substrate (for example, for a 42-inch television) is placed on a carrier in a horizontal position, and is transported horizontally by a transport system.
  • the transport method is explained below. I will tell.
  • the substrate is held on four sides, and a film is formed on one side (the lower side in this embodiment) of the substrate.
  • the first carrier 1 circulates in the atmosphere between the load lock chamber 10 and the substrate transfer chamber 20, and the second carrier 1 ′ circulates between the substrate transfer chamber 20 and the second heating chamber 80. Circulate.
  • the glass substrate 3 is mounted on the first carrier 1 and carried into the load lock chamber 10.
  • the load lock chamber 1 0 is evacuated to a predetermined pressure (1 0- 5 P a table).
  • the gate valve 41 is opened, and the first carrier 1 is transferred to the first auxiliary chamber 50.
  • the first carrier 1 carried into the first auxiliary chamber 50 is heated to about 150 ° C. by a heating mechanism (not shown) to perform a degassing process. Heating was discontinued and the 1 0- 4 P a stand to reach after drying N 2 gas is introduced to atmospheric pressure.
  • the second carrier 1 ′ on which the processed substrate 3 ′ is mounted is on standby on the lower transfer unit of the second auxiliary chamber 60, and N 2 gas is introduced into the room.
  • the substrate transfer chamber is filled with N 2 gas atmosphere pressure.
  • the gate valve 42 is opened, and the first carrier 1 is transferred to the upper shelf of the first carrier holding mechanism 21 of the substrate transfer chamber 20.
  • the gate valve 43 is opened, and the second carrier 1 ′ on which the substrate 3 on which the film has been formed is mounted is transferred from the second auxiliary chamber 60 to the lower shelf of the second carrier holding mechanism 22 ( b).
  • the vacuum suction mechanism 23 is pushed down by a cylinder (not shown) via a bellows, and comes into contact with each substrate to be sucked in vacuum and then pushed up.
  • the first and second carrier holding mechanisms 2 1 , 22 are moved to the same height, the transport rollers are rotated, and the first and second carriers are moved to the opposite units of the carrier holding mechanism, respectively (c).
  • the vacuum suction means 23 is pushed down again, and the processed substrate 3 'force S is mounted on the first carrier 1 and the unprocessed substrate 3 is mounted on the second carrier 1' (d).
  • the first and second carriers move to the opposite units, respectively (e).
  • the first and second carrier holding mechanisms move up and down, the gate valves 42 and 43 are opened, and the first carrier 1 is transferred to the lower transport unit of the first auxiliary chamber 50 and the second carrier 1 'is sent to the upper transfer unit of the second auxiliary chamber 60 (f).
  • a gate valve 44 is opened, the second carrier is conveyed into the first heating chamber 7 0.
  • heating is performed up to 300 ° C. by a heating mechanism (not shown).
  • the gate valve 45 is opened, and the second carrier is sent to the second heating chamber 80 through the vapor deposition chamber 30 and is heated for a predetermined time.
  • the transport unit 4 on which the carrier is placed is lowered by, for example, a vertical movement mechanism disclosed in Japanese Patent Application Laid-Open No. 9-979341, and the gate valve 46 is opened again, and The carrier No. 2 moves in the opposite direction to the loading direction and is loaded into the vapor deposition chamber 30.
  • the heating of the substrate is not limited to the above embodiment, and may be performed in the load lock chamber 10 or the second auxiliary chamber.
  • a MgO film is deposited on the substrate 3 mounted on the second carrier 1 'under predetermined film forming conditions. That is, 80 sccm of oxygen gas is introduced into the vapor deposition chamber, and Ar gas is further introduced to a pressure of 0.1 Pa, and the plasma vapor deposition source is driven to deposit an MgO film on the substrate.
  • the second carrier 1 ′ moves the first heating chamber 70 and the second auxiliary chamber 60.
  • the substrate is transferred to the substrate transfer chamber 20 through which the substrate is transferred between the first and second carriers as described above.
  • the processed substrate 3 ′ mounted on the first carrier 1 is transferred to the load lock chamber 10 via the first auxiliary chamber 50. After the introduction into the atmosphere, the first carrier is taken out into the atmosphere, the processed substrate 3 ′ is collected, and the unprocessed substrate 3 is mounted on the first carrier 1 again.
  • the MgO film is continuously deposited on the substrate.
  • the second carrier 1 ′ does not come into contact with the air, so that a MgO film having no defect and having no defect can be stably formed.
  • the X-ray diffraction pattern of the obtained MgO film has a (111) crystal plane as shown in FIG. It has become possible to continuously produce high-performance PDPs.
  • B, A, and C show diffraction patterns at a position 3 cm away from the center of the substrate and the edge of the substrate.
  • FIG. 1 has a configuration in which the carrier is loaded and unloaded in one load lock chamber
  • a configuration in which two load lock chambers are provided and loaded from one side and unloaded from the other may be used.
  • FIG. 5 substrate transfer chambers 20 and 20 and load lock chambers 10 and 10 ′ are arranged on both sides of the processing chamber 30, and the first substrate transfer chamber 20 and the first load lock are provided.
  • Two sets of the first carrier 1 that move between the chamber 10 and the atmosphere, and between the second substrate transfer chamber 20 and the second load lock chamber 10 and the atmosphere, and the first substrate transfer chamber 20
  • a second carrier 1 ′ moving between the processing chamber 30 and the second substrate transfer chamber 20 ′ is arranged.
  • the number and arrangement of the processing chambers and auxiliary chambers of the substrate processing apparatus, and the number of carriers circulating in the substrate processing apparatus at the same time depend on, for example, the tact time in each chamber. What is necessary is just to select suitably.
  • a vacuum suction means is used as a substrate holding mechanism of the substrate transfer chamber, but a known electrostatic suction means is disclosed in Japanese Unexamined Patent Publication No. Heisei 9-2793941. May be used.
  • the substrate transfer mechanism is not limited to the above. For example, two substrate holding mechanisms are mounted around a rotation axis, and after holding the substrates of the first and second carriers, the substrate is rotated 180 °.
  • the configuration may be such that the shaft is rotated and the substrate is placed on the carrier in that state, or the substrate may be transferred by a robot. Further, the case where the substrate is transported and transferred while the substrate is horizontal has been described above. However, the present invention is not limited to this, and a configuration in which the substrate is transported, transferred and processed while the substrate is vertical may be adopted.
  • the in-line type vapor deposition apparatus has been described.
  • the present invention is also applied to, for example, a cluster type vapor deposition apparatus as shown in FIG.
  • the first carrier 1 moves between the load lock chamber 10 and the substrate transfer chamber 20 and the second carrier 1 ′ moves between the substrate transfer chamber 20 and the processing chamber 30 (30). , 30 ").
  • the first and second carrier substrates are transferred by, for example, the robot 6 having two hands.
  • the present invention is not limited to a vapor deposition apparatus, and may be suitably used for an apparatus for producing a Cr oxide film as an exposure blank by a sputtering method, for example, and may be various processing such as etching. It can be applied to equipment.
  • the present invention it is possible to reduce the problem of contamination which has conventionally occurred during the transfer of a substrate, and to form a film of excellent quality with good stability. It is possible to provide an apparatus for producing a hygroscopic dielectric film such as magnesium at a high speed.

Abstract

A substrate processing device and a substrate processing method for general purpose capable of suppressing the contamination of atmosphere in a processing chamber through carriers, continuously performing a stable conveyance and a high quality substrate processing, and coping with further upsizing substrates and various substrate dimensions, the device comprising a load lock chamber allowing the carriers having the substrate mounted thereon to be carried therein, a substrate transfer chamber having a transfer mechanism for transferring the substrate between the carriers, and a substrate processing chamber for applying a specified processing to the substrate, characterized in that the first carrier moves between the load lock chamber and the substrate transfer chamber and the second carrier moves between the substrate transfer chamber and the substrate processing chamber, and the substrate is transferred between the first carrier and the second carrier by the transfer mechanism.

Description

明細書 基板処理装置及ぴ処理方法 技術分野  Description Substrate processing equipment and processing method Technical field
本発明は、 基板を搭載したキヤリァを処理室に連続して搬送し所定の 処理を行う基板処理装置及び処理方法に係り、 特にキヤリァが処理室と 大気間を移動することに帰因する処理室雰囲気汚染の問題を解消し、 品 質の優れた薄膜形成及びエッチング等の処理を安定して行うことが可能 な基板処理装置及び処理方法に関する。 背景技術  The present invention relates to a substrate processing apparatus and a processing method for continuously transporting a carrier on which a substrate is mounted to a processing chamber and performing a predetermined process, and particularly relates to a processing chamber attributable to the carrier moving between the processing chamber and the atmosphere. The present invention relates to a substrate processing apparatus and a processing method capable of solving the problem of atmospheric pollution and stably performing high quality thin film formation and etching. Background art
基板処理装置の従来例として、 図 7に示した生産用の蒸着装置につい て説明する。 従来の蒸着装置は、 図 7に示したように、 キャリア搬入用 ロードロック室 1 0、 加熱室 7 0、 蒸着室 3 0、 キヤリァ搬出用ロード ロ ック室 1 0 ' がゲートバルブ 4 1〜4 3を介して連結され、 各室には キャリア 2の搬送ュニッ ト 4が設置されている。 搬送ュニッ ト 4として は、 通常、 多数の搬送コ口の列が 2列設けられ、 駆動系によりコロを回 転させることにより、 コロ列上に載置されるキヤリアを移動させる構成 のものが好適に用いられる。 基板 3は大気中でキャリア 2に搭載され、 キャリア 2をロードロック室 1 0から加熱室 7 0に搬送し、 基板を所定 温度に加熱した後、 蒸着室 3 0に送って薄膜を形成する。 その後、 キヤ リア 2はロードロック室 1 0 ' に送り出され、 大気中に取り出される。 処理済み基板 3 ' が回収された後、 キャリア 2には再び未処理基板 3が 搭載され、 ロードロック室 1 0に戻される。 これらの操作を繰り返し行 うことにより、 多数の基板上に薄膜を連続して形成することができる。 この従来方式では、 基板搬送用のキヤリァ 2は大気中と真空中との間 を繰り返し搬送される。 そのため、 キャリアに付着した膜に大気中の水 分等の汚染物が吸着し、 さらにこの上に膜が付着すると、 密着性が低下 して膜は剥離し易くなる。 膜剥離により発生したパーティクルは膜内に 取り込まれて膜の欠陥となるため、 歩留まり低下の原因となっていた。 また、 図 7の蒸着装置をプラズマディスプレイ (P D P ) の M g O膜 の形成に適用すると、 表示性能上大きな問題となることが明らかになつ た。 基板への膜形成を繰り返し行う と、 図 8に示すように、 蒸着室内の 水分圧は上昇し、 これに伴い M g Oの膜質が変化することが分かった。 即ち、 2 5 0回程度の膜形成を繰り返すと蒸着室の水分圧は 3 X 1 0一 4 P a程度となり、 得られる M g O膜は、 図 9の X線回折パターンに示 すように、 ( 1 1 1 ) 面に (2 0 0 ) 面及び (2 2 0 ) 面が混在した形 態の膜となることが分かった。 M g O膜の二次電子放出係数は結晶面に より異なるため、 結晶面が混在すると輝度むらが生じて P D Pの表示性 能は大きく低下することになる。 従って、 高性能の表示性能を安定して 得るには、 蒸着室の水分圧を 3 X 1 0— 4 P a以下に維持する必要があ る。 As a conventional example of a substrate processing apparatus, a production vapor deposition apparatus shown in FIG. 7 will be described. As shown in Fig. 7, in the conventional vapor deposition apparatus, the load lock chamber 10 for carrying in the carrier, the heating chamber 70, the vapor deposition chamber 30 and the load lock chamber for carrying out the carrier 10 'are gate valves 41 ~. Each room is provided with a transport unit 4 for a carrier 2. Usually, the transport unit 4 is preferably configured such that a row of a large number of transport ports is provided, and a carrier mounted on the roller row is moved by rotating the rollers by a drive system. Used for The substrate 3 is mounted on the carrier 2 in the atmosphere, the carrier 2 is transferred from the load lock chamber 10 to the heating chamber 70, and the substrate is heated to a predetermined temperature, and then sent to the vapor deposition chamber 30 to form a thin film. Thereafter, the carrier 2 is sent out to the load lock chamber 10 'and taken out into the atmosphere. After the processed substrate 3 ′ is recovered, the unprocessed substrate 3 is mounted on the carrier 2 again, and returned to the load lock chamber 10. By repeating these operations, thin films can be continuously formed on many substrates. In this conventional method, the carrier 2 for transporting the substrate is repeatedly transported between the atmosphere and the vacuum. Therefore, contaminants such as water in the air are adsorbed on the film attached to the carrier, and if the film adheres on the film, the adhesion is reduced and the film is easily peeled off. Particles generated by the peeling of the film are taken into the film and become a defect of the film, thereby causing a decrease in yield. It was also clarified that applying the vapor deposition device of Fig. 7 to the formation of an MgO film for a plasma display (PDP) poses a major problem in display performance. As shown in Fig. 8, it was found that when the film was repeatedly formed on the substrate, the water pressure in the deposition chamber increased, and the film quality of MgO changed accordingly. That is, 2 5 0 times about the water pressure in the deposition chamber and repeating the film formation becomes 3 X 1 0 one 4 P a degree, M g O film obtained is to indicate Suyo the X-ray diffraction pattern of FIG. 9 It was found that the (1 1 1) plane had a (2 0 0) plane and a (2 2 0) plane. Since the secondary electron emission coefficient of the MgO film differs depending on the crystal plane, if the crystal planes coexist, brightness unevenness occurs and the display performance of the PDP is greatly reduced. Therefore, to stably obtain a high-performance display performance, should Ru maintaining the partial pressure of water vapor deposition chamber to below 3 X 1 0- 4 P a.
以上の付着膜の剥離の問題及び水分等の蒸着室への取り込みの問題を 解決する蒸着装置が特開平 9一 2 7 9 3 4 1公報に提案されている。 こ の蒸着装置は、 図 1 0に示すように、 基板搬入用ロードロック室 1 0、 蒸着室 3 0、 及び基板搬出用ロードロック室 1 0, とがゲートバルブ 4 1 , 4 2で連結され、 蒸着室 3 0はロードロック室 1 0から搬送される 基板 3をキャリア (トレイ) 2に搭載する基板搭載部 3 1、 蒸着部 3 2 及び処理済み基板をロードロック室 1 0 ' に送り出す基板回収部 3 3と からなり、 キャリア 2は搭載部、 蒸着部及び回収部間を循環して、 大気 に曝されない構成となっている。 即ち、 基板 3はロードロック室 1 0に 搬入された後、 上述の搬送コロ列からなる搬送ュニッ ト 4により基板搭 載部 3 1のキャリア (トレイ) 2上に搭載され、 蒸着部 3 2に送られ、, 加熱機構 (不図示) により所定の温度に加熱されて M g O膜が形成され る。 その後、 キャリア 2は基板回収部 3 3に搬送され、 キャリア 2から 処理済み基板 3 ' を取り外し、 基板のみロードロック室 1 0 ' に取り出 される。 一方、 キャリア 2は、 上部の搬送路に沿って基板搭載部 3 1に 戻される。 このようにしてキャリアは、 常に真空中を搬送されるため、 付着膜は大気に接触することはなくパーティクル発生が大きく抑制され るとともに、 水分等の持ち込みが抑制される結果、 基板全面を通して同 じ結晶面を有する均質な M g O膜を形成することができ、 高性能 P D P に対応できることが分かった。 発明の開示 Japanese Patent Application Laid-Open No. Hei 9-27-9741 proposes a vapor deposition apparatus which solves the above-mentioned problem of peeling off the adhered film and the problem of taking in moisture and the like into the vapor deposition chamber. In this deposition apparatus, as shown in FIG. 10, a load lock chamber 10 for loading a substrate, a deposition chamber 30 and a load lock chamber 10 for unloading a substrate are connected by gate valves 41 and 42. The deposition chamber 30 transports the substrate 3 from the load lock chamber 10 to the carrier (tray) 2. The substrate mounting section 31 that deposits the substrate 3, the vapor deposition section 32, and the substrate that sends the processed substrate to the load lock chamber 10 '. The carrier 2 is configured to circulate between the mounting section, the vapor deposition section, and the collection section, and is not exposed to the atmosphere. That is, the substrate 3 is in the load lock chamber 10 After being carried in, it is mounted on the carrier (tray) 2 of the substrate mounting portion 31 by the transport unit 4 composed of the above-described transport roller row, is sent to the vapor deposition portion 32, and is heated by a heating mechanism (not shown). The MgO film is formed by being heated to a predetermined temperature. Thereafter, the carrier 2 is transported to the substrate collecting section 33, the processed substrate 3 'is removed from the carrier 2, and only the substrate is taken out to the load lock chamber 10'. On the other hand, the carrier 2 is returned to the substrate mounting section 31 along the upper transport path. In this way, the carrier is always conveyed in a vacuum, so that the adhered film does not come into contact with the atmosphere, greatly suppressing the generation of particles and suppressing the incorporation of moisture and the like. It was found that a homogeneous MgO film with a crystal plane could be formed, and that it could be used for a high-performance PDP. Disclosure of the invention
しかしながら、 図 1 0に示した蒸着装置では、 基板の大型化等に対応 することは実際上非常に困難であることが分かった。 即ち、 基板単体を 搬送する搬送方法では基板の両端を搬送コ口の上に載せて搬送するため 、 基板が大型化すると基板の橈みが大きくなる。 その結果として、 搬送 が不安定となり、 最悪の場合には基板が割れ、 高精細 ·高性能 P D Pの 安定した生産が困難になるという問題が生じた。 この問題は、 タク ト向 上のために基板短手方向に基板を搬送しよう とするとより一層顕在化す る。 さらに、 基板の大きさにより搬送コロ列間の間隔等の種々の煩雑な 設定が必要となるため、 多品種の基板に対応するのは実際上不可能とな り、 汎用性が低いという欠点があった。  However, it has been found that it is actually very difficult for the vapor deposition apparatus shown in FIG. 10 to cope with an increase in the size of the substrate. That is, in the transport method for transporting a single substrate, both ends of the substrate are transported while being placed on the transport port, so that when the substrate is enlarged, the radius of the substrate is increased. As a result, the transportation became unstable, and in the worst case, the substrate was broken, and the stable production of high-definition and high-performance PDP became difficult. This problem becomes more apparent when the substrate is transported in the lateral direction of the substrate to improve the tact time. Furthermore, since various complicated settings such as the interval between the roller rows are required depending on the size of the substrate, it is practically impossible to deal with various types of substrates, and the versatility is low. there were.
このように、 基板の大型化、 多様化に対応するには、 基板搬入時から 基板を所定の大きさのキヤリァに搭載しておく装置構成とするのが不可 欠であることが分かり、 この装置構成でさらに膜剥離及び膜質維持の検 討を行った。 この中で、 成膜時にキャ リアをマスクで覆ってキャリアへ の膜付着を抑制し、 マスクは外部に取り出さず真空室内にとどめる構成 の蒸着装置を開発したが (特開平 1 1— 1 3 1 2 3 2号公報) 、 図 7の 装置構成と比べて改善されるものの、 高精細 · 高性能の大型 P D Pに対 応するには十分でないことが分かった。 例えば、 マスク開口部がキヤリ ァ開口部よりも大きいとキヤリァに膜が付着し上述したのと同様の問題 が起こり、 逆にマスク開口部が小さいと基板外周部に蒸着材料が回り込 んで堆積するため、 膜厚が薄くまた結晶面が混在する形態となり輝度む らが生じるという問題があることが分かった。 In this way, in order to cope with the enlargement and diversification of substrates, it is indispensable to use a device configuration in which the substrates are mounted on a carrier of a predetermined size from the time of carrying in the substrates. Further inspection of film separation and film quality maintenance 讨 was carried out. Among these, a vapor deposition system was developed in which the carrier was covered with a mask during film formation to suppress film deposition on the carrier and the mask was kept in a vacuum chamber without being taken out (Japanese Patent Laid-Open No. 11-131). No. 232), it was found that, although improved compared to the device configuration in Fig. 7, it was not enough to support a high-definition, high-performance large PDP. For example, if the mask opening is larger than the carrier opening, the film adheres to the carrier and causes the same problem as described above. Conversely, if the mask opening is small, the vapor deposition material wraps around and deposits on the outer peripheral portion of the substrate. Therefore, it was found that there was a problem that the film thickness was thin and the crystal planes were mixed, resulting in uneven brightness.
以上述べてきた問題は、 M g Oの蒸着装置に限らず、 種々の薄膜形成 に用いるスパッタゃ C V D等の成膜装置やエッチング等の処理装置につ いても同様に起こる問題であり、 真空基板処理の分野においては、 膜質 、 処理性能に影響を与えず継続して安定した処理を可能とする基板搬送 方法が求められていた。  The problems described above are not limited to the MgO vapor deposition apparatus, but also occur in film forming apparatuses such as sputtering and CVD used for forming various thin films and processing apparatuses such as etching. In the field of processing, there has been a demand for a substrate transfer method that enables stable and continuous processing without affecting film quality and processing performance.
このような状況の下で、 本発明は、 キャリアを介した処理室雰囲気の 汚染を抑制し、 安定した基板搬送及び高品質の基板処理を継続できる基 板処理装置及び処理方法であって、 今後ますます大型化する基板に対応 でき、 また種々の基板寸法に対応できる汎用性の高い基板処理装置及び 処理方法を提供することを目的とする。 本発明の基板処理装置は、 基板を搭載したキヤリァを搬入するロード ロ ック室と、 キヤリァ間で基板の移載を行う移載機構を有する基板移載 室と、 基板に所定の処理を行う基板処理室と、 を有する基板処理装置で あって、 前記ロード口ック室及び前記基板移載室間を移動する第 1のキ ャリアと、 前記基板移載室及び前記基板処理室間を移動する第 2のキヤ リアとを有し、 前記移載機構により、 前記第 1のキャリア及び前記第 2 のキャリア間で基板を移載する構成としたことを特徴とする。 また、 前 記口一ドロック室へ処理済み基板を搭載した前記第 1のキヤリァが搬出 されることを特徴とする。 Under such circumstances, the present invention is directed to a substrate processing apparatus and a processing method capable of suppressing contamination of the atmosphere in a processing chamber through a carrier and continuing stable substrate transfer and high-quality substrate processing. It is an object of the present invention to provide a highly versatile substrate processing apparatus and a processing method that can cope with an ever-larger substrate and that can cope with various substrate dimensions. The substrate processing apparatus of the present invention performs a predetermined process on a substrate, a load lock chamber for loading a carrier with a substrate mounted thereon, a substrate transfer chamber having a transfer mechanism for transferring a substrate between carriers. A substrate processing apparatus comprising: a first carrier that moves between the load port chamber and the substrate transfer chamber; and a substrate that moves between the substrate transfer chamber and the substrate processing chamber. A first carrier and the second carrier, wherein the first carrier and the second carrier are Wherein the substrate is transferred between carriers. Further, the first carrier on which the processed substrate is mounted is carried out to the door lock chamber.
これらにより、 例えば、 成膜時に基板を保持するキャリアは大気に曝 されずにすむため、 大気中でキャ リア付着膜に吸着、 吸蔵し蒸着室に持 ち込まれる水分等に帰因する薄膜の膜質不均質化や膜剥離を大きく低減 でき、 欠陥がなく均質な高品質薄膜を多数の基板上に連続して作製する ことが可能となる。  With these, for example, the carrier holding the substrate during film formation does not need to be exposed to the air, so that the thin film resulting from moisture or the like adsorbed and occluded on the carrier-adhered film in the air and brought into the deposition chamber is prevented. Nonuniform film quality and film peeling can be greatly reduced, and a high-quality thin film without defects can be continuously produced on many substrates.
本発明において、 前記移載機構は、 複数のキャリア保持台を有し互い に入れ替え可能なキヤリァ保持機構と基板保持機構とをそれぞれ 2つと 、 該 2つのキヤリァ保持機構の保持台間でキヤリアを移動させる移動機 構と、 により構成されることを特徴とする。  In the present invention, the transfer mechanism includes a carrier holding mechanism having a plurality of carrier holders and two carrier holding mechanisms that can be interchanged with each other, and the carrier is moved between the holders of the two carrier holding mechanisms. And a mobile mechanism to be operated.
これにより、 前記保持台上の前記第 1及び第 2のキヤリアから基板を 前記保持機構により保持した状態で、 キヤリアを前記 2つの保持機構間 で移動させ、 その状態で再びキャリアに基板を載置させてることにより 、 基板を移載させることができる。 この構成は、 大型基板であっても、 スループッ トの高い移載を確実に行うことができるため、 生産性の高い 基板処理装置を実現できる。 しかも、 ロボッ ト等による移載方法と比べ て装置面積を大幅に削減できることから基板処理装置全体で大幅なコス トダウンを達成することができる。  With this, the carrier is moved between the two holding mechanisms while holding the substrate from the first and second carriers on the holding table by the holding mechanism, and the substrate is placed on the carrier again in that state. By doing so, the substrate can be transferred. With this configuration, even with a large substrate, transfer with high throughput can be reliably performed, so that a substrate processing apparatus with high productivity can be realized. Moreover, since the apparatus area can be significantly reduced as compared with the transfer method using a robot or the like, a large cost reduction can be achieved for the entire substrate processing apparatus.
また、 前記基板保持機構としては、 真空吸着又は静電吸着機構を用い るのが好ましい。 この保持機構は、 基板を裏面から保持できるので、 大 型基板のみならず種々の大きさの基板を表面の膜堆積面を汚したり疵を つけることなく確実に保持し、 大気側キヤリアと真空側キヤリァ間で基 板移載を容易且つ確実に行うことができる。  Further, it is preferable to use a vacuum suction or electrostatic suction mechanism as the substrate holding mechanism. Since this holding mechanism can hold the substrate from the back side, it can hold not only large-sized substrates but also substrates of various sizes without contaminating or flawing the film deposition surface on the surface. The substrate can be easily and reliably transferred between carriers.
さらに、 前記基板移載室は乾燥気体雰囲気に保持することを特徴とし 、 例えば N 2ガスが用いられる。 これにより、 基板移載機構及び処理装 置構成を簡素化することができる。 Further, the substrate transfer chamber is maintained in a dry gas atmosphere. For example, N 2 gas is used. Thereby, the substrate transfer mechanism and the processing device configuration can be simplified.
また、 前記キャリアは、 基板の 4辺を支持するのが好ましく、 基板が 大型化しても基板の橈みを抑え全面に均質な薄膜を形成することができ る。 さらに、 本発明は、 M g O膜等、 吸湿性の高い膜の形成に特に好適 に用いられる。  It is preferable that the carrier supports four sides of the substrate, so that even if the substrate is enlarged, the radius of the substrate can be suppressed and a uniform thin film can be formed on the entire surface. Further, the present invention is particularly suitably used for forming a film having high hygroscopicity such as a MgO film.
本発明の基板処理方法は、 基板を搭載したキヤリァを搬出入するロー ドロック室と、 キャリア間で基板の移載を行う基板移載室と、 基板に所 定の処理を行う基板処理室と、 を連結配置し、 前記ロードロック室及び 前記基板移載室間を移動する第 1のキヤリアと前記基板移載室及び前記 基板処理室間を移動する第 2のキヤリアとを配置し、 前記基板移載室に おいて、 第 1のキヤリァ及び前記第 2のキヤリァ間で基板の移載を行い 、 前記基板処理室に搬出入される前記第 2のキャリアを大気にさらすこ となく、 連続して基板処理を行うことを特徴とする。  The substrate processing method of the present invention comprises: a load lock chamber for carrying in and out a carrier on which a substrate is mounted; a substrate transfer chamber for transferring a substrate between carriers; a substrate processing chamber for performing a predetermined process on the substrate; A first carrier that moves between the load lock chamber and the substrate transfer chamber, and a second carrier that moves between the substrate transfer chamber and the substrate processing chamber. In the loading chamber, the substrate is transferred between the first carrier and the second carrier, and the second carrier carried into and out of the substrate processing chamber is continuously exposed without being exposed to the atmosphere. It is characterized in that substrate processing is performed.
ここで、 上述したように、 前記移載機構は、 複数のキャリア保持台を 有し互いに入れ替え可能なキヤリァ保持機構と基板保持機構とをそれぞ れ 2つと、 該 2つのキヤリァ保持機構の保持台間でキヤリアを移動させ る移動機構とで構成し、 前記保持台上の前記第 1及び第 2のキヤリァか ら基板を前記基板保持機構により保持した状態で、 キヤリアを前記 2つ の保持機構間で移動させ、 その状態で再びキヤリアに基板を載置させる ことにより基板の移載を行うのが好ましい。 図面の簡単な説明  Here, as described above, the transfer mechanism includes two carrier holding mechanisms each having a plurality of carrier holding bases and can be interchanged with each other, and a holding base of the two carrier holding mechanisms. A moving mechanism for moving the carrier between the two holding mechanisms, wherein the substrate is held by the substrate holding mechanism from the first and second carriers on the holding table, and the carrier is held between the two holding mechanisms. It is preferable that the substrate is transferred by placing the substrate on the carrier again in that state. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の基板処理装置の基本的な構成例を示す模式図である 図 2は、 P D Pの M g O膜の蒸着装置の構成を説明する概略図である 図 3は、 基板の移載を説明する概略図である。 FIG. 1 is a schematic diagram illustrating a basic configuration example of a substrate processing apparatus of the present invention. FIG. 2 is a schematic diagram illustrating a configuration of an MgO film deposition apparatus for a PDP. FIG. 3 is a schematic diagram illustrating transfer of a substrate.
図 4は、 本発明により成膜した M g O膜の結晶配向性を示す X線回折 図である。  FIG. 4 is an X-ray diffraction diagram showing the crystal orientation of the MgO film formed according to the present invention.
図 5は、 蒸着装置の他の構成例を示す概略図である。  FIG. 5 is a schematic diagram illustrating another configuration example of the vapor deposition apparatus.
図 6は、 基板処理装置の他の構成例を示す概略図である。  FIG. 6 is a schematic diagram illustrating another configuration example of the substrate processing apparatus.
図 7は、 従来の蒸着装置の構成を説明する概略図である。  FIG. 7 is a schematic diagram illustrating the configuration of a conventional vapor deposition apparatus.
図 8は、 膜堆積基板の生産枚数と水分圧の関係を表すグラフである。 図 9は、 従来装置により成膜した M g O膜の結晶配向性を示す X線回 折図である。  FIG. 8 is a graph showing the relationship between the number of produced film deposition substrates and the water pressure. FIG. 9 is an X-ray diffraction diagram showing the crystal orientation of the MgO film formed by the conventional apparatus.
図 1 0は、 大気中の水分の影響を抑制した蒸着装置の従来例を示す 概略図である。  FIG. 10 is a schematic diagram showing a conventional example of a vapor deposition apparatus in which the influence of moisture in the atmosphere is suppressed.
図において、 1、 1 ' 、 2はキャリアを示し、 3、 3 ' は基板、 4は 搬送ユニッ ト、 5は基板移載機構、 6はロボッ ト、 1 0、 1 0 ' はロー ドロック室、 2 0は基板移載室、 2 1, 2 2はキャリア保持機構、 2 3 は基板保持機構、 3 0は処理室、 3 4は M g Oを収納ハース、 3 5は蒸 着手段、 4 0〜 4 6はゲートバルブ、 5 0は第 1補助室、 6 0は第 2補 助室、 7 0は第 1加熱室、 8 0は第 2加熱室を示す。 発明を実施するための最良の形態  In the figure, 1, 1 'and 2 indicate carriers, 3 and 3' are substrates, 4 is a transport unit, 5 is a substrate transfer mechanism, 6 is a robot, 10 and 10 'are load lock chambers, 20 is a substrate transfer chamber, 21 and 22 are carrier holding mechanisms, 23 is a substrate holding mechanism, 30 is a processing chamber, 34 is a storage hearth for MgO, 35 is vapor deposition means, 40 46 to 46 indicate a gate valve, 50 indicates a first auxiliary chamber, 60 indicates a second auxiliary chamber, 70 indicates a first heating chamber, and 80 indicates a second heating chamber. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の基板処理装置の基本構成を図 1の模式図に示す。  The schematic configuration of the substrate processing apparatus of the present invention is shown in FIG.
図 1に示すように、 基板処理装置は、 ロードロック室 1 0、 基板移載 室 2 0及び処理室 3 0がゲートバルブ 4 1 , 4 2を介して連結された構 造を有し、 ロードロック室 1 0及び基板移載室 2 0間で第 1のキャリア 1が移動して基板を搬送し、 基板移載室 2 0及び処理室 3 0間で第 2の キャリア 1 ' が移動して基板を搬送する。 ここで、 基板移載室 2 0は N 2ガス等の乾燥ガス雰囲気又は真空に保たれ、 基板移載機構 5が取り付 けられている。 As shown in FIG. 1, the substrate processing apparatus has a structure in which a load lock chamber 10, a substrate transfer chamber 20 and a processing chamber 30 are connected via gate valves 41 and 42. The first carrier 1 moves between the lock chamber 10 and the substrate transfer chamber 20 to transfer the substrate, and the second carrier 1 ′ moves between the substrate transfer chamber 20 and the processing chamber 30. Convey the substrate. Here, the substrate transfer chamber 20 is N The substrate transfer mechanism 5 is installed in a dry gas atmosphere such as a gas or in a vacuum.
大気中で第 1のキャリア 1に基板 3が搭載され、 ロードロック室 1 0 に搬入され、 真空にした後 (基板移載室が N 2ガス雰囲気の場合はさら に N 2ガスを充填した後) 、 ゲートバルブ 4 1が開けられ、 基板移載室 2 0に送られる。 基板移載室 2 0で、 基板移載機構 5により、 第 1のキ ャリア 1から第 2のキャリア 1 ' に基板 3が移載され、 基板 3を搭載し た第 2のキャリア 1 ' が処理室 3 0に送られ、 所定の処理が行われた後 基板移載室 2 0に戻される。 基板移載室では処理済み基板 3 ' が第 2の キャリア 1 ' から第 1のキャリア 1に移載され、 第 1のキャリア 1, は ロードロック室 1 0を介して大気中に取り出され、 処理済み基板 3 ' と 未処理基板 3が交換され、 再びロードロック室 1 0に戻される。 このよ うにして、 処理室 3 0に入る第 2のキヤリァは大気に触れることはなく 、 しかも基板 3 , 3 ' は常にキャリアによって搬送する構成としたため 、 大型基板であっても安定した搬送及び処理を繰り返し継続することが 可能となる。 The substrate 3 is mounted on the first carrier 1 in the air, loaded into the load lock chamber 10 and evacuated (after the substrate transfer chamber is filled with N 2 gas if the substrate transfer chamber has an N 2 gas atmosphere). The gate valve 41 is opened and sent to the substrate transfer chamber 20. In the substrate transfer chamber 20, the substrate 3 is transferred from the first carrier 1 to the second carrier 1 'by the substrate transfer mechanism 5, and the second carrier 1' on which the substrate 3 is mounted is processed. After being sent to the chamber 30 and subjected to predetermined processing, it is returned to the substrate transfer chamber 20. In the substrate transfer chamber, the processed substrate 3 ′ is transferred from the second carrier 1 ′ to the first carrier 1, and the first carrier 1, is taken out to the atmosphere via the load lock chamber 10 and processed. The finished substrate 3 ′ and the unprocessed substrate 3 are exchanged and returned to the load lock chamber 10 again. In this manner, the second carrier entering the processing chamber 30 does not come into contact with the atmosphere, and the substrates 3 and 3 'are always transported by the carrier. Processing can be repeated and continued.
以下に、 本発明の好適な実施形態を P D Pの M g O膜蒸着装置につい て添付図面に基づいてより詳細に説明する。 図 2は本発明に係る M g O 膜の作製方法が実施される蒸着装置の概略構成図、 図 3は基板移載室に おける基板の移載方法の一例を説明する概略図である。 本実施形態では 、 ロードロック室 1 0、 第 1補助室 5 0、 基板移載室 2 0、 第 2補助室 6 0、 第 1加熱室 7 0、 蒸着室 3 0、 及びキャリアの搬送方向を変換し 、 かつ基板加熱も行なう第 2加熱室 8 0から構成されている。 各室の間 にはゲートバルブ 4 1〜4 6が配設されている。 第 1及び第 2加熱室に はそれぞれ基板を所定温度に加熱するための加熱機構 (不図示) が設け られている。 本実施形態では、 ロードロック室 1 0、 第 1補助室 5 0、 第 2補助室 6 0、 第 1加熱室 7 0及び蒸着室 3 0には、 図の右方向にキャリアを搬 送する上部搬送ュニッ トと左方向に搬送する下部搬送ュニッ 卜とがそれ ぞれ配置されている。 各搬送ユニッ ト 4は、 例えば、 特開平 9一 2 7 9 3 4 1公報に記載された 2列の搬送コロ列からなり、 コロを駆動系によ り回転させることにより、 コ口上に載置されたキヤリァが搬送される構 成のものが好適に用いられる。 また、 第 2加熱室 8 0には、 1つの搬送 ュニッ トが上下移動可能に取り付けられ、 これによりキヤリァを上部搬 送路から下部搬送路へ移動させることができる。 この搬送ュニッ トの上 下移動機構も特開平 9一 2 7 9 3 4 1公報に記載されたものが好適に用 いられ、 搬送ュニッ トをベロ一ズを介して例えばシリンダで上下移動さ せる構造のものが用いられる。 Hereinafter, a preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 2 is a schematic configuration diagram of a vapor deposition apparatus in which the method of manufacturing an MgO film according to the present invention is performed, and FIG. 3 is a schematic diagram illustrating an example of a method of transferring a substrate in a substrate transfer chamber. In the present embodiment, the load lock chamber 10, the first auxiliary chamber 50, the substrate transfer chamber 20, the second auxiliary chamber 60, the first heating chamber 70, the vapor deposition chamber 30, and the carrier transfer direction It is composed of a second heating chamber 80 that converts and also heats the substrate. Gate valves 41 to 46 are provided between the chambers. Each of the first and second heating chambers is provided with a heating mechanism (not shown) for heating the substrate to a predetermined temperature. In the present embodiment, the load lock chamber 10, the first auxiliary chamber 50, the second auxiliary chamber 60, the first heating chamber 70, and the vapor deposition chamber 30 have an upper part for transporting carriers in the right direction in the drawing. A transport unit and a lower transport unit for transporting leftward are arranged respectively. Each transport unit 4 includes, for example, two rows of transport rollers described in Japanese Patent Application Laid-Open No. Hei 9-2793941, and is mounted on the opening by rotating the rollers by a drive system. A structure in which the transported carrier is transported is preferably used. In addition, one transfer unit is attached to the second heating chamber 80 so as to be vertically movable, so that the carrier can be moved from the upper transfer path to the lower transfer path. The mechanism described in Japanese Patent Application Laid-Open No. Hei 9-2797341 is preferably used as the mechanism for moving the transfer unit up and down, and the transfer unit is moved up and down by a cylinder, for example, through a bellows. A structure is used.
また、 基板移載室 2 0には、 キャリア保持棚となる上述の搬送ュニッ ト 4が 2段に重ねられ、 上下に移動する構造のキャリア保持機構 2 1, 2 2が左右に 2組配置されており、 2つのキャリア保持機構の搬送ュニ ッ ト間でキャリア 1, 1 ' の移動が可能な構成としてある。 なお、 上下 移動機構としては、 例えば上述した特開平 9一 2 7 9 3 4 1公報に記載 されたものが用いられる。 さらに、 基板移載室 2 0の天壁には、 基板を 真空吸着する公知の吸着機構からなる基板保持機構 2 3が設けられてい る。  Further, in the substrate transfer chamber 20, the above-described transport unit 4 serving as a carrier holding shelf is stacked in two stages, and two sets of carrier holding mechanisms 21 and 22 having a structure of moving up and down are arranged on the left and right. The carrier 1, 1 'can be moved between the transport units of the two carrier holding mechanisms. As the up-down movement mechanism, for example, the mechanism described in the above-mentioned Japanese Patent Application Laid-Open No. Hei 9-279349 is used. Further, on the top wall of the substrate transfer chamber 20, a substrate holding mechanism 23 including a known suction mechanism for vacuum-sucking the substrate is provided.
蒸着室 3 0の底壁部には開口部が形成されており、 その下部に蒸着手 段 (例えば中外炉工業株式会社製プラズマ源) 3 5及び1^1 0を収納す るハース 3 4が装備されている。 なお、 膜質調節のために開口部近郊に 酸素ガス導入機構が配設される。  An opening is formed in the bottom wall of the vapor deposition chamber 30, and a hearth 34 for accommodating the vapor deposition means (for example, a plasma source manufactured by Chugai Furnace Co., Ltd.) 35 and 1 ^ 10 is formed below the opening. Equipped. An oxygen gas introduction mechanism will be installed near the opening to control the film quality.
ガラス基板 (例えば、 4 2インチテレビ用) は、 水平姿勢のキャリア に載せられ、 搬送系により水平搬送される。 以下に、 その搬送方法を説 明する。 なお、 基板を 4辺で保持され、 基板の片面(本実施形態では下 側)に膜が形成される。 A glass substrate (for example, for a 42-inch television) is placed on a carrier in a horizontal position, and is transported horizontally by a transport system. The transport method is explained below. I will tell. The substrate is held on four sides, and a film is formed on one side (the lower side in this embodiment) of the substrate.
第 1のキャリア 1は、 大気中、 ロードロック室 1 0及び基板移載室 2 0間を循環し、 第 2のキャリア 1 ' は基板移載室 2 0と第 2加熱室 8 0 の間を循環する。  The first carrier 1 circulates in the atmosphere between the load lock chamber 10 and the substrate transfer chamber 20, and the second carrier 1 ′ circulates between the substrate transfer chamber 20 and the second heating chamber 80. Circulate.
まず、 ガラス基板 3は第 1のキャリア 1に搭載され、 ロードロック室 1 0に搬入される。 ロードロック室 1 0は所定の圧力 ( 1 0—5 P a台) まで排気される。 その後、 ゲートバルブ 4 1を開け、 第 1のキャリア 1 は第 1補助室 5 0に搬送される。 第 1補助室 5 0に搬入された第 1のキ ャリア 1は、 加熱機構 (不図示) により 1 5 0 °C程度まで加熱して脱ガ ス処理を行う。 加熱を停止し、 1 0— 4 P a台に到達後乾燥 N 2ガスを大 気圧まで導入する。 First, the glass substrate 3 is mounted on the first carrier 1 and carried into the load lock chamber 10. The load lock chamber 1 0 is evacuated to a predetermined pressure (1 0- 5 P a table). Thereafter, the gate valve 41 is opened, and the first carrier 1 is transferred to the first auxiliary chamber 50. The first carrier 1 carried into the first auxiliary chamber 50 is heated to about 150 ° C. by a heating mechanism (not shown) to perform a degassing process. Heating was discontinued and the 1 0- 4 P a stand to reach after drying N 2 gas is introduced to atmospheric pressure.
このとき、 第 2補助室 6 0の下部搬送ユニッ ト上には、 処理済み基板 3 ' を搭載した第 2のキャリア 1 ' が待機しており、 室内には N 2ガス が導入されている。 At this time, the second carrier 1 ′ on which the processed substrate 3 ′ is mounted is on standby on the lower transfer unit of the second auxiliary chamber 60, and N 2 gas is introduced into the room.
なお、 基板移載室は、 大気圧力の N 2ガスにより満たされている。 The substrate transfer chamber is filled with N 2 gas atmosphere pressure.
この状態から基板移載室 2 0における基板移載動作を図 3を参照して 説明する。  The substrate transfer operation in the substrate transfer chamber 20 from this state will be described with reference to FIG.
図 3 ( a ) の状態から、 ゲートバルブ 4 2を開け、 第 1のキャリア 1 は基板移載室 2 0の第 1キヤリァ保持機構 2 1の上段棚に搬送される。 一方、 ゲートバルブ 4 3が開けられ、 成膜済みの基板 3, を搭載した第 2のキャリア 1 ' が第 2補助室 6 0から第 2キヤリァ保持機構 2 2の下 段棚に搬送される (b ) 。  From the state of FIG. 3A, the gate valve 42 is opened, and the first carrier 1 is transferred to the upper shelf of the first carrier holding mechanism 21 of the substrate transfer chamber 20. On the other hand, the gate valve 43 is opened, and the second carrier 1 ′ on which the substrate 3 on which the film has been formed is mounted is transferred from the second auxiliary chamber 60 to the lower shelf of the second carrier holding mechanism 22 ( b).
基板移載室の天壁から、 真空吸着機構 2 3が不図示のシリンダにより ベローズを介して押し下げられ、 それぞれの基板と接触して真空吸着し .た後、 押し上げられる。 ここで、 第 1及び第 2のキャリア保持機構 2 1 , 2 2が同じ高さに移動した後、 搬送コロを回転させ、 第 1及び第 2キ ャリァがそれぞれ反対のキヤリァ保持機構のュニッ トに移動する ( c ) 。 続いて、 真空吸着手段 2 3が再び押し下げられ、 第 1のキャリア 1に 処理済み基板 3 ' 力 S、 第 2のキャリア 1 ' に未処理基板 3が搭載される (d) 。 次に、 第 1及び第 2のキャリアがそれぞれ反対側のユニッ トに 移動する (e ) 。 続いて、 第 1及び第 2のキャリア保持機構が上下移動 し、 ゲートバルブ 4 2, 4 3が開いて第 1のキャリア 1は第 1補助室 5 0の下部搬送ユニッ トへ、 第 2のキャリア 1 ' は第 2補助室 6 0の上部 搬送ュニッ トに送られる ( f ) 。 From the top wall of the substrate transfer chamber, the vacuum suction mechanism 23 is pushed down by a cylinder (not shown) via a bellows, and comes into contact with each substrate to be sucked in vacuum and then pushed up. Here, the first and second carrier holding mechanisms 2 1 , 22 are moved to the same height, the transport rollers are rotated, and the first and second carriers are moved to the opposite units of the carrier holding mechanism, respectively (c). Subsequently, the vacuum suction means 23 is pushed down again, and the processed substrate 3 'force S is mounted on the first carrier 1 and the unprocessed substrate 3 is mounted on the second carrier 1' (d). Next, the first and second carriers move to the opposite units, respectively (e). Subsequently, the first and second carrier holding mechanisms move up and down, the gate valves 42 and 43 are opened, and the first carrier 1 is transferred to the lower transport unit of the first auxiliary chamber 50 and the second carrier 1 'is sent to the upper transfer unit of the second auxiliary chamber 60 (f).
次に、 第 2補助室 6 0では、 所定の圧力 1 0—5 P a台まで排気された 後、 ゲートバルブ 44が開けられ、 第 2のキャリアは第 1加熱室 7 0に 搬送される。 第 1加熱室 7 0では、 加熱機構 (不図示) により 3 00°C まで加熱する。 その圧力が 1 0—3P a台に到達するまで脱ガスを行なう 。 その後、 ゲートバルブ 4 5を開け、 第 2のキャリアは蒸着室 3 0を通 つて第 2加熱室 8 0に送られ、 所定時間加熱される。 第 2加熱室 80で は、 キヤリァを載置した搬送ュニッ ト 4が例えば特開平 9 - 9 7 9 34 1公報に開示されている上下移動機構により下降され、 ゲートバルブ 4 6が再び開き、 第 2のキャリアは搬入方向と反対に移動し、 蒸着室 3 0 に搬入される。 Next, in the second auxiliary chamber 6 0, after being evacuated to a predetermined pressure 1 0- 5 P a stand, a gate valve 44 is opened, the second carrier is conveyed into the first heating chamber 7 0. In the first heating chamber 70, heating is performed up to 300 ° C. by a heating mechanism (not shown). The pressure to perform degassing to reach the 1 0- 3 P a stand. Thereafter, the gate valve 45 is opened, and the second carrier is sent to the second heating chamber 80 through the vapor deposition chamber 30 and is heated for a predetermined time. In the second heating chamber 80, the transport unit 4 on which the carrier is placed is lowered by, for example, a vertical movement mechanism disclosed in Japanese Patent Application Laid-Open No. 9-979341, and the gate valve 46 is opened again, and The carrier No. 2 moves in the opposite direction to the loading direction and is loaded into the vapor deposition chamber 30.
なお、 基板加熱は、 以上の実施形態に限らず、 ロードロック室 1 0や 第 2補助室で行ってもよい。  The heating of the substrate is not limited to the above embodiment, and may be performed in the load lock chamber 10 or the second auxiliary chamber.
蒸着室 3 0において、 第 2のキャリア 1 ' に搭載された基板 3上に、 所定の成膜条件で Mg O膜が堆積される。 すなわち、 蒸着室には酸素ガ スが 8 0 s c c mを導入され、 さらに圧力 0. 1 P aまで A rガスを導 入して, プラズマ蒸着源を駆動し基板上に Mg O膜を堆積する。  In the vapor deposition chamber 30, a MgO film is deposited on the substrate 3 mounted on the second carrier 1 'under predetermined film forming conditions. That is, 80 sccm of oxygen gas is introduced into the vapor deposition chamber, and Ar gas is further introduced to a pressure of 0.1 Pa, and the plasma vapor deposition source is driven to deposit an MgO film on the substrate.
この後、 第 2のキャリア 1 ' は、 第 1加熱室 7 0, 第 2補助室 6 0を 通って基板移載室 2 0に送られ、 前述したように、 第 1及び第 2のキヤ リァ間で基板の移載が行われる。 Thereafter, the second carrier 1 ′ moves the first heating chamber 70 and the second auxiliary chamber 60. The substrate is transferred to the substrate transfer chamber 20 through which the substrate is transferred between the first and second carriers as described above.
第 1のキャリア 1に搭載された処理済み基板 3 ' は、 第 1補助室 5 0 を経てロードロック室 1 0に搬送される。 大気導入後、 第 1のキャリア は大気中に取り出され、処理済み基板 3 ' が回収され、 未処理基板 3が 第 1のキャリア 1に再び搭載される。  The processed substrate 3 ′ mounted on the first carrier 1 is transferred to the load lock chamber 10 via the first auxiliary chamber 50. After the introduction into the atmosphere, the first carrier is taken out into the atmosphere, the processed substrate 3 ′ is collected, and the unprocessed substrate 3 is mounted on the first carrier 1 again.
以上のようにして、 連続的に基板上に M g O膜が堆積される。 この間 、 第 2のキャリア 1 ' は大気と接触することはないため、 膜剥離は起こ り難く欠陥のない M g O膜を安定して形成することができる。 また、 得 られた M g O膜の X線回折パターンは 3 0 0 0回成膜を繰り返しても図 4に示すように主に ( 1 1 1 ) 結晶面をもつものとなり、 輝度むらのな い高性能 P D Pを継続して作製することが可能となった。 なお、 B、 A 及び Cは基板中心及び基板端から 3 c m離れた位置での回折パターンを 示す。  As described above, the MgO film is continuously deposited on the substrate. During this time, the second carrier 1 ′ does not come into contact with the air, so that a MgO film having no defect and having no defect can be stably formed. In addition, the X-ray diffraction pattern of the obtained MgO film has a (111) crystal plane as shown in FIG. It has become possible to continuously produce high-performance PDPs. B, A, and C show diffraction patterns at a position 3 cm away from the center of the substrate and the edge of the substrate.
図 1の装置構成は、 ひとつのロードロック室でキャリアを搬入、 搬出 する構成としたが、 ロードロック室を 2つ設け、 一方から搬入し他方か ら搬出する構成としてもよい。 この一例を図 5に示す。 図 5の装置では 、 処理室 3 0の両側に基板移載室 2 0 , 2 0, 及びロードロック室 1 0 , 1 0 ' が配置され、 第 1基板移載室 2 0と第 1 ロードロック室 1 0及 び大気間、 並び第 2基板移載室 2 0と第 2ロードロック室 1 0及ぴ大気 間を移動する第 1のキャリア 1が 2組と、 第 1基板移載室 2 0、 処理室 3 0及び第 2基板移載室 2 0 ' 間を移動する第 2のキャリア 1 ' とが配 置される。  Although the apparatus configuration in FIG. 1 has a configuration in which the carrier is loaded and unloaded in one load lock chamber, a configuration in which two load lock chambers are provided and loaded from one side and unloaded from the other may be used. An example of this is shown in FIG. In the apparatus shown in FIG. 5, substrate transfer chambers 20 and 20 and load lock chambers 10 and 10 ′ are arranged on both sides of the processing chamber 30, and the first substrate transfer chamber 20 and the first load lock are provided. Two sets of the first carrier 1 that move between the chamber 10 and the atmosphere, and between the second substrate transfer chamber 20 and the second load lock chamber 10 and the atmosphere, and the first substrate transfer chamber 20 A second carrier 1 ′ moving between the processing chamber 30 and the second substrate transfer chamber 20 ′ is arranged.
なお、 本発明において、 基板処理装置の処理室、 補助室等の数及び配 置等、 並びに基板処理装置内を同時に循環するキャリアの数等は、 例え ば各室でのタク トタイム等に応じて適宜選択すればよい。 また、 本実施形態では、 基板移載室の基板保持機構として真空吸着手 段を用いたが、 公知の静電吸着手段ゃ特開平 9一 2 7 9 3 4 1公報に開 示されている基板の端部を保持する機械的保持機構を用いてもよい。 ま た、 基板移載機構としては、 以上に限らず、 例えば、 回転軸の周りに 2 つの基板保持機構を取り付け、 第 1及び第 2のキャリアの基板を保持し た後、 1 8 0 ° 回転軸を回転させ、 その状態で基板をキャリア上に載置 する構成としてもよいし、 また、 ロボッ トにより基板を移載させる構成 としてもよい。 さらに、 以上は基板を水平にして搬送、 移載等する場合 について述べてきたが、 これに限らず、 基板を垂直にして搬送、 移載、 処理等する構成としても良い。 In the present invention, the number and arrangement of the processing chambers and auxiliary chambers of the substrate processing apparatus, and the number of carriers circulating in the substrate processing apparatus at the same time depend on, for example, the tact time in each chamber. What is necessary is just to select suitably. Further, in this embodiment, a vacuum suction means is used as a substrate holding mechanism of the substrate transfer chamber, but a known electrostatic suction means is disclosed in Japanese Unexamined Patent Publication No. Heisei 9-2793941. May be used. Further, the substrate transfer mechanism is not limited to the above. For example, two substrate holding mechanisms are mounted around a rotation axis, and after holding the substrates of the first and second carriers, the substrate is rotated 180 °. The configuration may be such that the shaft is rotated and the substrate is placed on the carrier in that state, or the substrate may be transferred by a robot. Further, the case where the substrate is transported and transferred while the substrate is horizontal has been described above. However, the present invention is not limited to this, and a configuration in which the substrate is transported, transferred and processed while the substrate is vertical may be adopted.
以上の実施形態ではインライン方式の蒸着装置について説明してきた 力 本発明は、 例えば、 図 6に示すようにクラスター方式等の蒸着装置 にも適用される。 この場合、 第 1のキャリア 1は、 ロードロック室 1 0 と基板移載室 2 0との間を移動し、 第 2のキャリア 1 ' は基板移載室 2 0と処理室 3 0 ( 3 0 ' 、 3 0 " ) との間を移動する。 移載室では、 例 えば 2つのハンドを有するロボッ ト 6により第 1及び第 2キヤリァの基 板を移載する。  In the above embodiment, the in-line type vapor deposition apparatus has been described. The present invention is also applied to, for example, a cluster type vapor deposition apparatus as shown in FIG. In this case, the first carrier 1 moves between the load lock chamber 10 and the substrate transfer chamber 20 and the second carrier 1 ′ moves between the substrate transfer chamber 20 and the processing chamber 30 (30). , 30 "). In the transfer room, the first and second carrier substrates are transferred by, for example, the robot 6 having two hands.
さらに、 上述したように、 本発明は、 蒸着装置に限られることはなく 、 例えばスパッタリング方法により露光用ブランクスとして C r酸化膜 を作製する装置に好適に用いられる他、 エッチング処理等の種々の処理 装置に応用することができる。  Further, as described above, the present invention is not limited to a vapor deposition apparatus, and may be suitably used for an apparatus for producing a Cr oxide film as an exposure blank by a sputtering method, for example, and may be various processing such as etching. It can be applied to equipment.
産業上の利用可能性 Industrial applicability
以上の説明で明らかなように、 本発明によれば、 従来基板搬送の際に 発生していた汚染の問題を低減し、 品質の優れた膜を安定性良く形成す ることができ、 特に酸化マグネシウムのような吸湿性の誘電体膜を高速 で作製する装置を提供することができる。  As is clear from the above description, according to the present invention, it is possible to reduce the problem of contamination which has conventionally occurred during the transfer of a substrate, and to form a film of excellent quality with good stability. It is possible to provide an apparatus for producing a hygroscopic dielectric film such as magnesium at a high speed.

Claims

請求の範囲 The scope of the claims
1 . 基板を搭載したキャリアを搬入するロードロ ック室と、 キャリア 間で基板の移載を行う移載機構を有する基板移載室と、 基板に所定の処 理を行う基板処理室と、 を有する基板処理装置であって、 1. A load lock chamber for loading a carrier loaded with a substrate, a substrate transfer chamber having a transfer mechanism for transferring a substrate between carriers, and a substrate processing chamber for performing a predetermined process on a substrate. A substrate processing apparatus having
前記ロードロック室及び前記基板移載室間を移動する第 1のキヤリァ と、 前記基板移載室及び前記基板処理室間を移動する第 2のキヤリアと を有し、 前記移載機構により、 前記第 1のキャ リア及び前記第 2のキヤ リァ間で基板を移載する構成としたことを特徴とする基板処理装置。  A first carrier that moves between the load lock chamber and the substrate transfer chamber; and a second carrier that moves between the substrate transfer chamber and the substrate processing chamber. A substrate processing apparatus, wherein a substrate is transferred between a first carrier and the second carrier.
2 . 処理済み基板を搭載した前記第 1のキャ リアを前記ロードロ ック 室へ搬出することを特徴とする請求の範囲第 1項に記載の基板処理装置 2. The substrate processing apparatus according to claim 1, wherein the first carrier on which the processed substrate is mounted is carried out to the load lock chamber.
3 . 前記移載機構は、 複数のキャリア保持台を有し互いに入れ替え可 能なキヤリァ保持機構と基板保持機構とをそれぞれ 2つと、 該 2つのキ ャリア保持機構の保持台間でキャリアを移動させる移動機構と、 により 構成されることを特徴とする請求の範囲第 1項又は第 2項に記載の基板 処理装置。 3. The transfer mechanism has two carrier holding mechanisms and two substrate holding mechanisms, each having a plurality of carrier holding tables, which can be exchanged with each other, and moves the carrier between the holding tables of the two carrier holding mechanisms. 3. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus includes: a moving mechanism.
4 . 前記基板保持機構は、 真空吸着又は静電吸着機構であることを特 徴とする請求の範囲第 1項〜第 3項のいずれかに記載の基板処理装置。  4. The substrate processing apparatus according to any one of claims 1 to 3, wherein the substrate holding mechanism is a vacuum suction or an electrostatic suction mechanism.
5 . 前記基板移載室は乾燥気体雰囲気に保持することを特徴とする請 求の範囲第 1項〜第 3のいずれかに記載の基板処理装置。 5. The substrate processing apparatus according to any one of claims 1 to 3, wherein the substrate transfer chamber is maintained in a dry gas atmosphere.
6 . 前記キャリアは、 基板の 4辺を支持することを特徴とする請求の 範囲第 1項〜第 5項のいずれかに記載の基板処理装置。 6. The substrate processing apparatus according to any one of claims 1 to 5, wherein the carrier supports four sides of the substrate.
7 . 前記薄膜は、 M g O膜であることを特徴とする請求の範囲第 1項 〜第 6項のいずれかに記載の基板処理装置。 7. The substrate processing apparatus according to any one of claims 1 to 6, wherein the thin film is a MgO film.
8 . 基板を搭載したキャリアを搬出入するロードロック室と、 キヤリ ァ間で基板の移載を行う基板移載室と、 基板に所定の処理を行う基板処 理室と、 を連結配置し、 前記ロードロック室及び前記基板移載室間を移 動する第 1のキヤリァと前記基板移載室及び前記基板処理室間を移動す る第 2のキャリアとを配置し、 前記基板移載室において、 前記第 1のキ ャリァ及ぴ前記第 2のキヤリア間で基板の移載を行い、 前記基板処理室 に搬出入される前記第 2のキヤリァを大気にさらすことなく、 連続して 基板処理を行うことを特徴とする基板処理方法。 8. Load lock chamber for loading / unloading carriers with substrates A substrate transfer chamber for transferring a substrate between the substrate transfer chamber and a substrate processing chamber for performing a predetermined process on the substrate, wherein a first substrate is transferred between the load lock chamber and the substrate transfer chamber. A carrier and a second carrier that moves between the substrate transfer chamber and the substrate processing chamber, wherein the substrate is transferred between the first carrier and the second carrier in the substrate transfer chamber. A substrate processing method, wherein the substrate is continuously transferred without exposing the second carrier carried into and out of the substrate processing chamber to the atmosphere.
9 . 前記移載機構は、 複数のキャリア保持台を有し互いに入れ替え可 能なキヤリァ保持機構と基板保持機構とをそれぞれ 2つと、 該 2つのキ ャリァ保持機構の保持台間でキャリアを移動させる移動機構とで構成し 、 前記保持台上の前記第 1及び第 2のキヤリァから基板を前記基板保持 機構により保持した状態で、 キャリアを前記 2つの保持機構間で移動さ せ、 その状態で再びキヤリァに基板を載置させることにより基板の移載 を行うことを特徴とする請求の範囲第 8項に記載の基板処理方法。  9. The transfer mechanism has two carrier holding mechanisms and a substrate holding mechanism which have a plurality of carrier holding tables and can be interchanged with each other, and moves the carrier between the holding stands of the two carrier holding mechanisms. A carrier is moved between the two holding mechanisms while the substrate is held by the substrate holding mechanism from the first and second carriers on the holding table, and again in that state. 9. The substrate processing method according to claim 8, wherein the substrate is transferred by placing the substrate on a carrier.
PCT/JP2003/006454 2002-05-23 2003-05-23 Substrate processing device and substrate processing method WO2003100848A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020047014556A KR100951337B1 (en) 2002-05-23 2003-05-23 Substrate processing device and substrate processing method
AU2003242422A AU2003242422A1 (en) 2002-05-23 2003-05-23 Substrate processing device and substrate processing method
JP2004508403A JP4369866B2 (en) 2002-05-23 2003-05-23 Substrate processing apparatus and processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002148690 2002-05-23
JP2002-148690 2002-05-23

Publications (1)

Publication Number Publication Date
WO2003100848A1 true WO2003100848A1 (en) 2003-12-04

Family

ID=29561191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006454 WO2003100848A1 (en) 2002-05-23 2003-05-23 Substrate processing device and substrate processing method

Country Status (6)

Country Link
JP (1) JP4369866B2 (en)
KR (1) KR100951337B1 (en)
CN (1) CN1293621C (en)
AU (1) AU2003242422A1 (en)
TW (1) TWI232242B (en)
WO (1) WO2003100848A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096498A (en) * 2004-09-29 2006-04-13 Shimadzu Corp Substrate conveying device and vacuum processing device with the same
WO2009130790A1 (en) * 2008-04-25 2009-10-29 キヤノンアネルバ株式会社 Tray transfer type inline film forming apparatus
JP4535408B1 (en) * 2010-05-10 2010-09-01 智雄 松下 Substrate transport mechanism and substrate transport method
WO2013118003A1 (en) * 2012-02-06 2013-08-15 Roth & Rau Ag Substrate treatment system
JP2020502778A (en) * 2016-12-14 2020-01-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Deposition system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970828B (en) * 2005-11-26 2010-05-26 鸿富锦精密工业(深圳)有限公司 Method for forming multilayer coating on die
JP5036290B2 (en) * 2006-12-12 2012-09-26 東京エレクトロン株式会社 Substrate processing apparatus, substrate transfer method, and computer program
KR101359401B1 (en) * 2007-06-21 2014-02-10 주성엔지니어링(주) High efficiency thin film solar cell and manufacturing method and apparatus thereof
US8465592B2 (en) 2008-08-25 2013-06-18 Tokyo Electron Limited Film deposition apparatus
US20090324826A1 (en) * 2008-06-27 2009-12-31 Hitoshi Kato Film Deposition Apparatus, Film Deposition Method, and Computer Readable Storage Medium
US8465591B2 (en) 2008-06-27 2013-06-18 Tokyo Electron Limited Film deposition apparatus
TWI424784B (en) * 2008-09-04 2014-01-21 Hitachi High Tech Corp Organic electroluminescent device manufacturing apparatus, manufacturing method thereof, film forming apparatus and film forming method
JP5721132B2 (en) * 2009-12-10 2015-05-20 オルボテック エルティ ソラー,エルエルシー Shower head assembly for vacuum processing apparatus and method for fastening shower head assembly for vacuum processing apparatus to vacuum processing chamber
LU91685B1 (en) 2010-05-07 2011-11-08 Cppe Carbon Process & Plant Engineering S A Process for the catalytic removal of carbon dioxide and sulfur dioxide from exhaust gases
TWI451521B (en) * 2010-06-21 2014-09-01 Semes Co Ltd Substrate treating apparatus and substrate treating method
JP5741834B2 (en) * 2011-05-13 2015-07-01 株式会社ニコン Object carry-out method, object exchange method, object holding apparatus, exposure apparatus, flat panel display manufacturing method, and device manufacturing method
WO2012157231A1 (en) * 2011-05-13 2012-11-22 株式会社ニコン Substrate-replacement device
US8459276B2 (en) 2011-05-24 2013-06-11 Orbotech LT Solar, LLC. Broken wafer recovery system
KR20160058917A (en) 2013-09-20 2016-05-25 어플라이드 머티어리얼스, 인코포레이티드 Substrate carrier with integrated electrostatic chuck
JP6088964B2 (en) * 2013-12-13 2017-03-01 株式会社東芝 Semiconductor manufacturing equipment
JP6640759B2 (en) * 2017-01-11 2020-02-05 株式会社アルバック Vacuum processing equipment
CN108588667B (en) * 2017-12-27 2020-10-02 深圳市华星光电技术有限公司 Air charging device and air charging method for vacuum atmosphere conversion cavity and vacuum sputtering equipment
CN108396294B (en) * 2018-01-26 2021-12-10 中国科学院物理研究所 Film deposition system and control method
KR20210071334A (en) * 2019-12-06 2021-06-16 주식회사 아바코 Sputtering System
JP2022155711A (en) * 2021-03-31 2022-10-14 芝浦メカトロニクス株式会社 Film deposition apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283288A (en) * 1994-04-07 1995-10-27 Tokyo Electron Ltd Processing device
US5788448A (en) * 1994-12-08 1998-08-04 Tokyo Electron Limited Processing apparatus
JPH11131232A (en) * 1997-10-31 1999-05-18 Anelva Corp Tray-carrying type film forming device
JP2002222846A (en) * 2001-01-26 2002-08-09 Shin Meiwa Ind Co Ltd Vacuum transport device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283288A (en) * 1994-04-07 1995-10-27 Tokyo Electron Ltd Processing device
US5788448A (en) * 1994-12-08 1998-08-04 Tokyo Electron Limited Processing apparatus
JPH11131232A (en) * 1997-10-31 1999-05-18 Anelva Corp Tray-carrying type film forming device
JP2002222846A (en) * 2001-01-26 2002-08-09 Shin Meiwa Ind Co Ltd Vacuum transport device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096498A (en) * 2004-09-29 2006-04-13 Shimadzu Corp Substrate conveying device and vacuum processing device with the same
JP4581602B2 (en) * 2004-09-29 2010-11-17 株式会社島津製作所 Vacuum processing equipment
WO2009130790A1 (en) * 2008-04-25 2009-10-29 キヤノンアネルバ株式会社 Tray transfer type inline film forming apparatus
JP4535408B1 (en) * 2010-05-10 2010-09-01 智雄 松下 Substrate transport mechanism and substrate transport method
JP2010258460A (en) * 2010-05-10 2010-11-11 Tomoo Matsushita Substrate transfer mechanism and substrate transfer method
WO2013118003A1 (en) * 2012-02-06 2013-08-15 Roth & Rau Ag Substrate treatment system
JP2015512152A (en) * 2012-02-06 2015-04-23 ロート ウント ラウ アーゲー Substrate processing equipment
US10199250B2 (en) 2012-02-06 2019-02-05 Meyer Burger (Germany) Gmbh Substrate processing device
EP3916764A1 (en) * 2012-02-06 2021-12-01 Meyer Burger (Germany) GmbH Substrate treatment system
JP2020502778A (en) * 2016-12-14 2020-01-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Deposition system

Also Published As

Publication number Publication date
JPWO2003100848A1 (en) 2005-09-29
CN1293621C (en) 2007-01-03
CN1650416A (en) 2005-08-03
AU2003242422A1 (en) 2003-12-12
KR20050002862A (en) 2005-01-10
JP4369866B2 (en) 2009-11-25
KR100951337B1 (en) 2010-04-08
TW200403351A (en) 2004-03-01
TWI232242B (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP4369866B2 (en) Substrate processing apparatus and processing method
US6382895B1 (en) Substrate processing apparatus
KR100310249B1 (en) Substrate Processing Equipment
EP0136562B1 (en) Continuous sputtering apparatus
JP3700793B2 (en) Vacuum processing apparatus, method for processing substrate in vacuum processing apparatus, and lock for vacuum processing apparatus
US20060245852A1 (en) Load lock apparatus, load lock section, substrate processing system and substrate processing method
JP2001135704A (en) Substrate treatment apparatus and transfer control method for substrate transfer tray
JP2003077974A (en) Substrate processing device and manufacturing method of semiconductor device
JPH11131232A (en) Tray-carrying type film forming device
JP3629371B2 (en) Film forming apparatus and film forming method
JPH09104982A (en) Substrate treating device
US20090266410A1 (en) Vacuum processing apparatus, vacuum processing method, electronic device, and electronic device manufacturing method
JP5596853B2 (en) Deposition equipment
TW201230233A (en) Vacuum processing apparatus
WO2009130790A1 (en) Tray transfer type inline film forming apparatus
JPS62996B2 (en)
TW201910545A (en) Apparatus for processing a substrate, processing system for processing a substrate and method for servicing an apparatus for processing a substrate
JPH09104983A (en) Substrate treating device
JPH0542507B2 (en)
JP2001185598A (en) Substrate processor
WO2010013333A1 (en) Vacuum device and vacuum treatment method
JP2002075882A (en) Substrate treatment device, load lock chamber for the same, and cleaning method of load lock chamber in substrate treatment device
JPS60249329A (en) Spatter etching mechanism in vacuum treatment unit
JPH08260149A (en) Reduced pressure surface treating device and apparatus for producing solar battery
JP2009224799A (en) Substrate treatment device and substrate treatment method using same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047014556

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004508403

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038099241

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047014556

Country of ref document: KR

122 Ep: pct application non-entry in european phase