WO2003100486A1 - Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly - Google Patents

Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly Download PDF

Info

Publication number
WO2003100486A1
WO2003100486A1 PCT/JP2003/006569 JP0306569W WO03100486A1 WO 2003100486 A1 WO2003100486 A1 WO 2003100486A1 JP 0306569 W JP0306569 W JP 0306569W WO 03100486 A1 WO03100486 A1 WO 03100486A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical circuit
layer
circuit
light
optical
Prior art date
Application number
PCT/JP2003/006569
Other languages
French (fr)
Japanese (ja)
Inventor
Tooru Nakashiba
Kouhei Kotera
Tomoaki Matsushima
Yukio Matsushita
Hideo Nakanishi
Shinji Hashimoto
Tomoaki Nemoto
Hiroyuki Yagyu
Yuuki Kasai
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002154809A external-priority patent/JP4224259B2/en
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to AU2003241784A priority Critical patent/AU2003241784A1/en
Priority to KR1020047019244A priority patent/KR100730320B1/en
Priority to EP03733077A priority patent/EP1512996A4/en
Priority to US10/515,175 priority patent/US7330612B2/en
Publication of WO2003100486A1 publication Critical patent/WO2003100486A1/en
Priority to US11/783,796 priority patent/US8073295B2/en
Priority to US11/957,121 priority patent/US20080113168A1/en
Priority to US11/957,072 priority patent/US20080107881A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to a substrate having an optical circuit (a circuit for propagating light) and an electric circuit (or electric wiring) together, that is, a substrate on which an optical circuit and an electric circuit are mixed (hereinafter referred to as “optical circuit—electric circuit mixed mounting”).
  • the present invention also relates to a material for an optical circuit-electric circuit hybrid board that can be used as a material used in the production of a substrate, and a method for manufacturing an optical circuit-electric circuit hybrid board.
  • the optical circuit and the electric circuit may be a part constituting the optical circuit and the electric circuit, and in that sense, the optical circuit and the electric circuit may be an optical line or an optical waveguide and an electric line, respectively. (wiring).
  • the “optical circuit-electrical circuit hybrid board” can also be called * electrical-optical-circuit board II. Background art
  • optical signal transmission has been considered as one of the means to break through the transmission speed limit of electric signals, and various studies have been made to mix optical circuits on a substrate having electric circuits. .
  • the basic idea of the mixed mounting of the electric circuit and the optical circuit is to form an optical circuit in addition to the electric circuit on a conventionally used printed wiring board.
  • an optical circuit-electric circuit hybrid board formed by laminating an optical circuit and an electric circuit in multiple layers the following two types of methods are mainly proposed.
  • a clad layer, a core layer, and a clad layer, which constitute an optical waveguide of an optical circuit are sequentially laminated on a substrate on which an electric circuit is provided, and an electric wiring layer is further stacked thereon by a stick or the like. Formed.
  • a clad layer, a core layer, and a clad layer are sequentially formed on a temporary substrate.
  • An optical waveguide that forms an optical circuit is formed by laminating the optical waveguide, and then the optical waveguide is bonded to a printed wiring board, and then the temporary substrate is peeled off. Further, an electric circuit is formed on the optical waveguide by stacking the optical circuit. How to Regarding this method, for example, JP-A-2001-158889 can be referred to.
  • the present invention has been made in view of the above problems, and provides an optical circuit-electric circuit capable of manufacturing a high-quality optical circuit-electric circuit hybrid board by a simple method using a conventional printed wiring board manufacturing technique.
  • An object of the present invention is to provide a material for a mixed board, and to provide a method for manufacturing an optical circuit-electric circuit mixed board.
  • the material for an optical circuit-electric circuit mixed board is used as a layer that composes it.
  • optical circuit forming layer means a layer in which at least a core portion of a waveguide through which light propagates can be formed.
  • the core portion is a portion through which light propagates, and corresponds to the above-described optical circuit.
  • active energy ray refers to a change in the solvent solubility or the refractive index of the resin constituting the optical circuit forming layer when forming such a waveguide (that is, such a property is changed). Means an electromagnetic wave with sufficient energy to activate it.
  • active energy rays are, for example, ultraviolet light, laser light of various wavelengths, electron beams, X-rays, etc., and thus these various active energy rays are light in a broad sense.
  • the solvent solubility or the refractive index of the optical circuit forming layer changes upon irradiation with the active energy ray, other elements constituting the material for the optical circuit-electric circuit hybrid substrate (for example, the above-described light-transmitting resin).
  • the solvent solubility or the refractive index of the layer does not substantially change, even if it does change, the refractive index of the core portion constituting the optical waveguide after irradiation is smaller than the refractive index of the surrounding portion. large.
  • the present invention provides:
  • An optical circuit forming layer formed of a light-transmitting resin whose refractive index is increased by irradiation with active energy rays and adjacent to the light-transmitting resin layer
  • An optical circuit-an electric circuit mixed board material comprising:
  • the refractive index of the part of the optical circuit forming layer is Higher refractive index of light-transmitting resin layer, material for mixed circuit board with optical circuit and electric circuit
  • This material for an optical circuit-electric circuit mixed board is a composite material in which at least two layers are stacked, that is, a laminate.
  • the material of the first gist comprises a light-transmitting resin layer (or a transparent resin layer) and an optical circuit forming layer adjacent thereto, and the optical circuit forming layer has a refractive index by irradiation with active energy rays. It is formed of an increasing light transmissive resin.
  • the refractive index of the irradiated part increases in the optical circuit wiring layer. As a result, the refractive index becomes higher than that of the non-irradiated portion.
  • the irradiated portion of the active energy ray and the non-irradiated portion are adjacent to each other, the irradiated portion can function as a core portion of the optical waveguide, and both sides (for example, the right side and the left side, and FIG. 4 (b) described later)
  • the non-irradiated portion located at the high refractive index portion 3a and the low refractive index portion 3b) can function as a cladding portion of the optical waveguide.
  • a resin layer having a low refractive index or a layer capable of reflecting light eg, a metal layer
  • these layers can function as a clad and form an optical circuit.
  • Light can propagate within the core of the layer, thus forming an optical circuit. That is, an optical waveguide is formed.
  • the light transmissive resin layer may provide a cladding on one (eg, upper) of such remaining sides of the core. Therefore, it is necessary that the refractive index of the light transmitting resin layer is smaller than the refractive index of the optical circuit forming layer which is increased by irradiating the active energy ray.
  • the refractive index of the light transmitting resin layer may be higher than the refractive index of the optical circuit forming layer. In general, it is preferable that the refractive index of the light transmitting resin layer does not substantially change before and after irradiation and is smaller than the refractive index of the optical circuit forming layer.
  • the core layer of the optical waveguide is formed at the irradiated portion of the optical circuit forming layer.
  • the cladding layer can be formed by the non-irradiated portion of the circuit forming layer and the light-transmitting resin layer, and the electric wiring can be formed by wiring processing (or processing of forming wiring) of the metal layer.
  • Optical wiring and electrical wiring can be mixedly mounted on the same substrate, and a high-quality optical circuit-electrical circuit mounting substrate can be produced by a simple method using conventional printed wiring board manufacturing technology. Is possible.
  • the present invention provides
  • An optical circuit forming layer formed of a light-transmitting resin whose refractive index is reduced by irradiation with an active energy ray and adjacent to the light-transmitting resin layer
  • An optical circuit-an electric circuit mixed board material comprising:
  • the refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer
  • the refractive index of the part of the optical circuit forming layer is Material that is not irradiated with active energy rays, has a lower refractive index than the remaining part of the optical circuit forming layer
  • This optical circuit-electric circuit mixed substrate material is a composite material in which at least two layers are laminated, that is, a laminate, as described above.
  • the material of the second aspect includes a light-transmitting resin layer and an optical circuit forming layer adjacent to the light-transmitting resin layer, and the refractive index of the optical circuit forming layer is originally larger than the refractive index of the light-transmitting resin layer.
  • the optical circuit forming layer is formed of a light transmitting resin whose refractive index is reduced by irradiation with active energy rays. When an active energy ray is irradiated on the material for the optical circuit / electric circuit hybrid substrate so that a part of the optical circuit forming layer is irradiated with the active energy ray, the irradiated part is refracted in the optical circuit wiring layer.
  • the rate decreases and the irradiation
  • the refractive index becomes smaller than that of the part that is not. Since the irradiated portion and the non-irradiated portion of the active energy ray are adjacent to each other, the non-irradiated portion can function as a core portion of the optical waveguide, and both sides thereof (for example, the right and left sides, the high refractive index shown in FIG. 6 (b) described later).
  • the irradiated portion located at the index portion 4a and the low refractive index portion 4b) can function as a cladding portion of the optical waveguide.
  • a resin layer having a small refractive index or a layer capable of reflecting light is formed on the remaining side (for example, upper and lower sides) of the core portion.
  • these layers can function as cladding parts, light can propagate in the core part of the optical circuit forming layer, and an optical circuit is formed.
  • the light-transmitting resin layer has a smaller refractive index than that of the optical circuit forming layer (even after irradiation of active Fe lines), so that such a residual portion of the core portion does not remain.
  • One (eg, upper) cladding can be provided.
  • the core layer of the optical waveguide is formed by irradiating the optical circuit forming layer with active energy rays at the non-irradiated portion of the optical circuit forming layer.
  • the cladding layer can be formed by the irradiated portion of the optical circuit forming layer and the light-transmitting resin layer, and the electric wiring can be formed by the metal wire processing of the metal layer. Wiring can be mixed on the same board, and high-quality optical circuit-electric circuit mixed board can be produced by a simple method using conventional printed wiring board manufacturing technology. .
  • the present invention provides the following optical circuit-electrical circuit board mounting material:
  • the light-transmitting resin layer (also referred to as a “first light-transmitting resin layer”: to be distinguished from a second light-transmitting resin layer described later).
  • first light-transmitting resin layer to be distinguished from a second light-transmitting resin layer described later.
  • second light transmitting resin layer is further provided, and an optical circuit forming layer is located between the first light transmitting resin layer and the second light transmitting resin layer.
  • the refractive index of the part of the optical circuit forming layer is A material for an optical circuit / electrical circuit hybrid board, which is larger than the refractive index of the second light transmitting resin layer.
  • This material for an optical circuit-electric circuit mixed board is a composite material in which at least three layers are laminated. It is a composite material, that is, a laminate.
  • the optical circuit forming layer is sandwiched between the first light transmitting resin layer and the second light transmitting resin layer. After irradiation with active energy rays, the refractive index of the portion of the optical circuit forming layer irradiated with active energy rays is larger than the refractive indices of the two light-transmitting resin layers.
  • a clad portion can be provided in a portion of the optical circuit forming layer serving as the core portion, to which the active energy ray has been irradiated.
  • the refractive index of the second light-transmitting resin layer is increased by irradiating the material for the optical circuit / electric circuit hybrid substrate with the active energy ray to the optical circuit forming layer.
  • this relative refractive index relationship is not essential.
  • the refractive index of the second light transmitting resin layer may be higher than the refractive index of the optical circuit forming layer.
  • the refractive index of the second light-transmitting resin layer does not substantially change before and after irradiation, and is preferably smaller than the refractive index of the optical circuit forming layer.
  • the core layer of the optical waveguide is formed by irradiating the active layer with the active energy ray on the optical circuit forming layer.
  • the cladding layer can be formed by the non-irradiated portion of the circuit forming layer, the light transmitting resin layer and the second light transmitting resin layer, and the electric wiring can be formed by wiring processing of the metal layer.
  • Optical wiring and electrical wiring can be mixedly mounted on the same substrate, and high-quality optical circuit-electrical circuit mounting substrates can be produced by a simple method using conventional printed wiring board manufacturing technology. It becomes possible.
  • the present invention provides the following optical circuit-electric circuit mixed board material:
  • the light transmitting resin layer (also referred to as a “first light transmitting resin layer”: to be distinguished from a second light transmitting resin layer described later).
  • first light transmitting resin layer to be distinguished from a second light transmitting resin layer described later.
  • second light transmitting resin layer is further provided, and an optical circuit forming layer is located between the first light transmitting resin layer and the second light transmitting resin layer.
  • the active energy ray When irradiating an active energy ray to the material for the optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with the active energy ray, the active energy ray is not irradiated with respect to the state after the irradiation.
  • the refractive index of the remaining part of the layer is A material for an optical circuit-electric circuit mixed substrate that is larger than the refractive index of the temporary resin layer.
  • This material for an optical circuit-electric circuit mixed board is a composite material in which at least three layers are laminated, that is, a laminate.
  • the optical circuit forming layer is sandwiched between the first light transmitting resin layer and the second light transmitting resin layer.
  • the refractive index of the portion of the optical circuit forming layer to which the active energy rays have not been irradiated is higher than the refractive indexes of the two light-transmitting resin layers.
  • the clad portion can be provided in a portion of the optical circuit forming layer as a core portion which is not irradiated with the active energy ray.
  • the refractive index of the second light-transmitting resin layer becomes the refractive index of the optical circuit forming layer which is not irradiated when the active energy ray is irradiated onto the material for the optical circuit / electric circuit hybrid substrate. It must be smaller than the refractive index of the irradiated part. Before the irradiation of active energy rays, this relative relationship between the refractive indices is not essential. For example, upon irradiation with active energy rays, the refractive index of the second light-transmitting resin layer may decrease. In general, the refractive index of the second light transmitting resin layer does not substantially change before and after irradiation, and is preferably smaller than the refractive index of the optical circuit forming layer.
  • the core layer of the optical waveguide is formed in a non-irradiated portion of the optical circuit forming layer.
  • a clad layer can be formed by the irradiated portion of the optical circuit forming layer, the light-transmitting resin layer and the second light-transmitting resin layer, and electrical wiring can be formed by wiring processing of the metal layer.
  • Optical and electrical wiring can be mixed on the same board, and high-quality optical circuit-electric circuit mixed boards can be produced by a simple method using conventional printed wiring board manufacturing technology. It becomes possible to do.
  • the present invention provides
  • An optical circuit forming layer formed of a light-transmitting resin whose solubility in a solvent changes when irradiated with active energy rays, and adjacent to the light-transmitting resin layer
  • An optical circuit-an electric circuit mixed board material comprising:
  • the refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer.
  • the remaining portion of the optical circuit forming layer that is not irradiated with the active energy beam remains in a state that can be dissolved and removed by the solvent.
  • the material of the fifth aspect includes a light-transmitting resin layer and an optical circuit forming layer adjacent to the light-transmitting resin layer, and the optical circuit forming layer has a light-transmitting property in which the solubility in a solvent is changed by irradiation with active energy rays. It is formed of resin.
  • an active energy line is applied to the optical circuit-electric circuit mixed substrate material so that a portion of the optical circuit forming layer is irradiated by the active energy beam, the irradiated portion of the optical circuit wiring layer becomes insoluble in a solvent. As a result, the solvent cannot be dissolved and removed, and the remaining part of the part remains in a state where the solvent can be removed.
  • the solubility in a solvent is changed by irradiation with an active energy ray
  • the resin constituting the optical circuit forming layer is exposed to a specific solvent by irradiating the active energy ray. It means changing from a state that can be dissolved to a state that cannot be dissolved. That is, by irradiating a portion of the optical circuit forming layer with active energy, a portion of the layer can be dissolved and removed in a specific solvent, but is not substantially dissolved in the solvent, and as a result cannot be removed. Change to a state (the unirradiated part is in a state that can be dissolved and removed).
  • the refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer at least after the irradiation of the active energy ray, and these layers are adjacent to each other. Therefore, when a part of such an optical circuit forming layer is left as a core part, the light transmitting resin layer can provide a clad part in the core part.
  • a layer having a refractive index lower than that of the core portion is disposed on the other side of the core portion (for example, the right side, the left side, and the lower side, see FIG. 2 (b) described later), a material having such a low refractive index can be obtained.
  • An enclosed optical waveguide can be formed.
  • the relative relationship between the refractive indices of the optical circuit forming layer and the light transmitting resin layer is not essential.
  • the refractive index of the light transmitting resin layer may be larger than the refractive index of the optical circuit forming layer.
  • the refractive indices of the optical circuit forming layer and the light transmitting resin layer do not substantially change before and after irradiation, and the refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer. Is preferred.
  • the present invention provides
  • An optical circuit formation layer formed of a light-transmitting resin whose solubility in a solvent changes when irradiated with active energy rays, and adjacent to the light-transmitting resin layer
  • An optical circuit-an electric circuit mixed board material comprising:
  • the refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer
  • an optical circuit forming layer to which the active energy ray is irradiated with respect to a state after the irradiation When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with the active energy ray, an optical circuit forming layer to which the active energy ray is irradiated with respect to a state after the irradiation.
  • the part of the solvent changes from a state that cannot be dissolved and removed by a solvent to a state that can be removed,
  • the remaining portion of the optical circuit forming layer that is not irradiated with the active energy beam remains in a state that cannot be dissolved and removed by the solvent.
  • the material of the sixth aspect comprises a light-transmitting resin layer and an optical circuit forming layer adjacent to the light-transmitting resin layer, and the optical circuit forming layer has a light-transmitting property in which the solvent solubility changes by irradiation with active energy rays. It is formed of resin.
  • the phrase “the solubility in a solvent is changed by irradiation with an active energy ray” means that the resin constituting the optical circuit forming layer is exposed to a specific solvent by irradiating the active energy ray. It means changing from a state that cannot be dissolved to a state that can be dissolved. That is, by irradiating a part of the optical circuit forming layer with active energy rays, the part cannot be dissolved in a particular solvent, Means that the substance is substantially dissolved and, as a result, is changed to a state where it can be removed (an unirradiated part is dissolved and cannot be removed).
  • the refractive index of the optical circuit forming layer is inherently higher than the refractive index of the light transmitting resin layer, and these layers are adjacent to each other. Therefore, if a part of such an optical circuit forming layer is left as a core without being dissolved and removed by a solvent, the light-transmitting resin layer can provide a clad in the core.
  • a layer on the remaining side of the core for example, the right side, left side, and lower side
  • an optical waveguide surrounded by such a material having a small refractive index can be formed.
  • the optical circuit formation layer is irradiated with active energy rays and developed, so that the core layer of the optical waveguide is formed in the optical circuit formation layer.
  • the optical waveguide cladding layer can be formed with a light-transmitting resin layer, and electrical wiring can be formed by wiring processing of a metal layer. Optical wiring and electrical wiring are mixed on the same substrate. It is possible to produce a high-quality optical circuit-electric circuit mixed board by a simple method using a conventional printed wiring board manufacturing technology.
  • the present invention provides the following optical circuit-electric circuit mixed board material:
  • the material for an optical circuit / electric circuit hybrid board according to any one of the first to sixth aspects, further comprising a metal layer, wherein the light transmitting resin layer is located between the metal layer and the optical circuit forming layer.
  • a metal layer is further present. This metal layer is located on the side opposite to the side of the light-transmitting resin layer adjacent to the optical circuit forming layer (that is, the first light-transmitting resin layer).
  • An electric circuit (including an electronic circuit) or an electric wiring layer can be formed by processing the metal layer so as to leave a predetermined portion by an appropriate processing method.
  • the metal layer may be in any suitable form, such as a foil, film, sheet, or the like.
  • the present invention provides
  • An optical circuit-an electric circuit mixed board material comprising:
  • the refractive index of the part of the optical circuit forming layer is The active energy beam is not irradiated, the refractive index is larger than the refractive index of the rest of the optical circuit forming layer,
  • This material for an optical circuit-electric circuit hybrid board is a composite material in which at least two layers are laminated, that is, a laminate.
  • the material for the optical circuit / electric circuit hybrid board of the eighth aspect is different from the material for the optical circuit / electric circuit hybrid board of the first aspect in that it has a metal layer instead of the light transmitting resin layer.
  • the optical circuit forming layer itself may be the same as the optical circuit forming layer of the optical circuit-electric circuit mixed substrate material of the first aspect.
  • the material according to the eighth aspect includes a light-transmitting resin layer and a metal layer adjacent to the light-transmitting resin layer, and the optical circuit forming layer is formed of a light-transmitting resin whose refractive index increases by irradiation with active energy rays. ing.
  • the active energy ray is irradiated on the material for the optical circuit / electric circuit hybrid substrate so that a part of the optical circuit forming layer is irradiated by the active energy ray, the irradiated part is refracted in the optical circuit wiring layer.
  • the refractive index increases, and the refractive index becomes higher than the unirradiated part.
  • the irradiated portion can function as the core portion of the optical waveguide, as in the case of the optical circuit-electric circuit hybrid board material of the first aspect.
  • the unirradiated portions located on both sides can function as cladding portions of the optical waveguide. Therefore, if a resin layer having a low refractive index or a layer capable of reflecting light (for example, a metal layer) is arranged on the remaining side (for example, the upper and lower sides) of the core portion, these layers can function as a cladding portion or a reflecting portion, Light can propagate in the core portion of the optical circuit formation layer.
  • the metal layer can provide a reflective layer on one such remaining side (eg, the upper side) of the core.
  • the present invention provides:
  • Metal layer and An optical circuit formation layer formed of a light-transmitting resin whose refractive index decreases by irradiation with active energy rays, and adjacent to the metal layer
  • An optical circuit-an electric circuit mixed board material comprising:
  • the refractive index of the part of the optical circuit forming layer is The active energy beam is not irradiated, the refractive index of the remaining portion of the optical circuit forming layer is smaller than
  • This material for an optical circuit-electric circuit hybrid board is a composite material in which at least two layers are laminated, that is, a laminate.
  • the ninth aspect of the material for an optical circuit-electrical circuit hybrid substrate is different from the material of the second aspect of the optical circuit-electrical circuit hybrid substrate in that it has a metal layer instead of a light-transmitting resin layer.
  • the optical circuit forming layer itself may be the same as the optical circuit forming layer of the material for the optical circuit-electric circuit mixed board of the second aspect.
  • the material according to the ninth aspect includes a light-transmitting resin layer and a metal layer adjacent to the light-transmitting resin layer, and the optical circuit forming layer is a light-transmitting resin whose refractive index increases by irradiation with active energy rays. Is formed.
  • the active energy ray is irradiated on the material for the optical circuit / electric circuit hybrid substrate so that a part of the optical circuit forming layer is irradiated by the active energy ray, the irradiated part is refracted in the optical circuit wiring layer.
  • the refractive index decreases, and the refractive index becomes lower than the unirradiated part.
  • the irradiated portion and the non-irradiated portion of the active energy beam are adjacent to each other, the irradiated portion can function as a core portion of the optical waveguide, and both sides (for example, the right and left sides, the high refractive index shown in FIG.
  • the non-irradiated portion located at the index portion 5a and the low refractive index portion 5b) can function as a cladding portion of the optical waveguide.
  • a resin layer having a low refractive index or a layer capable of reflecting light (for example, a metal layer) is arranged on the remaining side (for example, the upper and lower sides) of the core portion, these layers can function as a cladding portion or a reflecting portion, Light can propagate in the core portion of the optical circuit formation layer.
  • a metal layer can provide a reflective layer on one such remaining side (eg, the upper side) of the core.
  • optical circuit-electric circuit mixed board material of the present invention By irradiating the active layer with the active energy ray to the optical circuit forming layer, it is possible to form the core layer of the optical waveguide on one of the irradiated part and the non-irradiated part on the optical circuit forming layer, and the cladding layer on the other, and the metal layer.
  • the electrical wiring can be formed by the wiring processing of the present invention, and the optical wiring and the electrical wiring can be mixedly mounted on the same substrate. The method makes it possible to produce high-quality optical-circuit-electric-circuit-mixed substrates.
  • the present invention provides the following optical circuit-electric circuit mixed board material:
  • the optical circuit-electric circuit hybrid board material according to the eighth aspect, further comprising a light-transmitting resin layer, wherein the optical circuit forming layer is located between the metal layer and the light-transmitting resin layer;
  • the refractive index of the part of the optical circuit formation layer is: An optical circuit / electric circuit mixed board material with a refractive index higher than that of the light transmitting resin layer.
  • the metal layer can provide a reflective layer, as in the optical circuit-electrical circuit board material of the eighth aspect.
  • the layer has a refractive index smaller than that of a part of the layer at least after the irradiation of the active energy ray, preferably before or after the irradiation, and faces the metal layer via the optical circuit forming layer.
  • the light-transmitting resin layer can provide a cladding portion at the portion as the core portion.
  • the core layer of the optical waveguide is irradiated at the irradiated portion of the optical circuit forming layer by irradiating the optical circuit forming layer with active energy rays.
  • the cladding layer can be formed by the irradiated portion of the optical circuit forming layer and the light transmitting resin layer, and the electric wiring can be formed by wiring processing of the metal layer. It can be mounted on the same substrate, and it is possible to produce high-quality optical circuit-electric circuit mixed substrates by a simple method using conventional printed wiring board manufacturing technology.
  • the present invention provides the following optical circuit-electric circuit mixed board material:
  • the metal layer can provide a reflective layer
  • the light transmitting resin layer is It has a refractive index smaller than the refractive index of the remaining portion at least after irradiation of the active energy ray, preferably before and after the irradiation, and faces the metal layer via the optical circuit forming layer.
  • the light-transmitting resin layer can provide a clad portion to the remaining portion as a core portion.
  • the core layer of the optical waveguide is formed by irradiating the active layer with the active energy ray on the optical circuit forming layer.
  • the cladding layer can be formed by the irradiated portion of the optical circuit forming layer and the light transmitting resin layer, and the electric wiring can be formed by processing the wiring of the metal layer.
  • the present invention provides the following optical circuit-electric circuit hybrid board material:
  • the metal layer has an adhesive layer adjacent thereto, and the adhesive layer includes the metal layer and the optical layer.
  • an adhesive layer is interposed when a metal layer is provided on the optical circuit forming layer or the light transmitting resin layer resin layer.
  • the adhesive layer is adjacent to the metal layer on one side and adjacent to the optical circuit forming layer or the light transmitting resin layer on the other side.
  • the present invention provides the following optical circuit-electric circuit hybrid board material:
  • optical circuit-electric circuit mixed substrate material according to any one of the seventh to 12th aspects, further comprising a support, wherein the support is an optical circuit-electric circuit mixed side closer to the metal layer.
  • An optical circuit-electric circuit mixed substrate material that constitutes the exposed surface of the substrate material.
  • close is used to mean that the number of layers existing between the layers in question is small (or large), and the actual distance is used as a reference. Is not something to do.
  • This support is preferably laminated on a metal layer, and imparts mechanical strength to the material for an optical circuit-electrical circuit board, thereby facilitating the handling of the optical circuit-electric circuit board material.
  • the support is preferably subjected to a peeling treatment on the side facing the metal layer (that is, a peelable support). If necessary, the support is peeled off from the material for the optical circuit / electric circuit mixed substrate to form the metal layer. Can be exposed.
  • the support can be any suitable material that provides mechanical strength, for example, a plastic or metal sheet.
  • the metal layer can be reinforced by the support, and the processing when providing a resin layer on the surface of the metal layer is performed. The performance is improved.
  • the present invention provides the following optical circuit-electric circuit mixed board material:
  • the material for an optical circuit and an electric circuit hybrid board according to any one of the seventh to 13th aspects, further comprising a cover film, wherein the cover film is an optical circuit-electric circuit hybrid board far from the metal layer.
  • Material for an optical circuit-electric circuit mixed circuit board which constitutes the surface of the application material.
  • This cover film constitutes at least one of the exposed surfaces of the material for the optical circuit / electrical circuit board, and the exposure of the material for the optical circuit / electric circuit board on the side remote from the metal layer. It is preferred to configure the exit surface. That is, the surface of the support is opposed to the surface of the material for the optical circuit-electric circuit mixed substrate.
  • the cover film may or may not be light transmissive. In the case where the material is light transmissive, the active energy ray can be irradiated to the material for the optical circuit / electric circuit mixed substrate even in the state where the cover film is present.
  • the cover film is preferably formed of a luster material.
  • a transparent film such as a polyester film, a polypropylene film, a polyethylene film, and a polyacetate film can be used.
  • a film having a thickness of 5 to 100 m is preferably used.
  • a cover film which has been subjected to a release treatment may be used.
  • the resin layer can be protected by the cover film, and the handling property when handling the optical circuit-electric circuit mixed board material is improved. improves.
  • the optical circuit forming layer can reduce the amount of light transmitted from the core portion formed there to the outside.
  • the loss can be reduced.
  • the light transmittance of the optical circuit forming layer is preferably 0.1 SdB / cm or less, more preferably 0.1 dB / cm or less. The transmittance is after the irradiation of the active energy ray, but it is preferable that the transmittance be before the irradiation.
  • the light-transmitting resin layer In the above-described material for an optical circuit-electrical circuit board according to the present invention, the light-transmitting resin layer
  • the resin that can be used to form the i.e., the first light-transmitting resin layer
  • the resin that can be used when forming an optical waveguide is known to those skilled in the art that can be used when forming an optical waveguide, and particularly can be used when forming a clad portion of an optical waveguide.
  • Any suitable light transmissive resin (or transparent resin) may be used, and the following suitable resins can be exemplified:
  • ⁇ Light or UV curable resin for example, Optodyne manufactured by Daikin Chemical Industry Co., Ltd.
  • Thermosetting resin for example, epoxy resin, polyimide resin, unsaturated polyester resin, epoxy acrylate resin, etc.
  • Such resins are added-type to impart flame retardancy and absorb active energy rays.
  • a reactive halogen-based, phosphorus-based, silicon-based flame retardant or an ultraviolet absorber may be contained.
  • Such a resin can also be used to form another light-transmitting resin layer such as the second light-transmitting resin layer.
  • Resin whose refractive index changes by irradiating with active energy rays (Since such a resin changes its refractive index by light in a broad sense, it is also referred to as “photosensitive resin” for convenience in this specification) Any suitable resin known to those skilled in the art may be used, and examples include the following suitable resins:
  • a photopolymerizable acrylic monomer composite resin (a film of this resin is formed by dissolving polysilane, such as polymethylphenylsilane, and polycarbonate resin in a solvent. After the irradiation, the acrylic monomer is distilled off in a vacuum).
  • Resins whose solvent solubility changes by irradiating with active energy rays (Since such a resin changes its solvent solubility by light in a broad sense, it is referred to as "photosensitive resin” for convenience in this specification. ) May be any suitable resin known to those skilled in the art, and examples include the following suitable resins:
  • the solvent becomes substantially soluble.
  • Photodegradable resin (naphthoquinone resin, etc.)
  • Photo-curable resin (acrylic resin, epoxy resin, polyimide resin, silicon resin, etc.),
  • Electron beam curable resin (acrylic resin, epoxy resin, polyimide resin, etc.) These resins are selected so that each layer composed of them satisfies the above-mentioned refractive index relationship at least after irradiation with active energy rays. There is a need to.
  • the waveguide to be formed (formed from the core and cladding or reflecting part) Can be selected by those skilled in the art according to the dimensions (length, width, etc.) of the transmitted optical signal, the type of optical signal to be propagated (especially its wavelength, transmission speed), and the like.
  • each of the layers is such that the refractive index of the core is at least about 0.1% greater than the refractive index of the cladding, preferably at least about 0.2%, and more preferably at least 1%.
  • the resin that constitutes is at least about 0.1% greater than the refractive index of the cladding, preferably at least about 0.2%, and more preferably at least 1%.
  • the method of forming each layer from the selected resin may be any suitable method, and may be a method commonly used in the field of manufacturing a wiring board.
  • suitable adhesives that can be used for forming the adhesive layer include epoxy resin-based, polyimide resin-based, and unsaturated polyester resin-based adhesives. And a thermosetting resin-based resin such as epoxy acrylate resin.
  • Such adhesives may include halogen-based, phosphorus-based, and silicon-based flame retardants as flame retardants that impart flame retardancy, and may also include ultraviolet absorbers and the like.
  • a metal that can be used for forming a metal layer is generally used for forming a wiring layer when a wiring board is manufactured.
  • Any metal may be used, for example, a metal such as copper, aluminum, and nickel.
  • a copper foil or the like can be used.
  • the metal layer may be formed by plating, vapor deposition, sputtering, or the like.
  • the active energy ray may be irradiated from either side of the material for the optical circuit and the electric circuit mixed board.
  • the optical circuit-electric circuit mixed substrate material has a metal layer, the metal layer reflects the active energy rays, so that the metal layer is irradiated from the front while being located behind the optical circuit formation layer.
  • the present invention relates to a method of manufacturing an optical circuit-electric circuit mixed board
  • the circuit forming layer is formed from a light-transmissive resin whose refractive index changes or a force that changes the solubility in a solvent by irradiation with active energy rays
  • the force or the refractive index that changes the solubility in a solvent due to irradiation with active energy rays is changed.
  • An optical circuit / electric circuit mixed substrate material having at least an optical circuit forming layer made of a light transmitting resin is used.
  • the optical circuit forming layer made of a light-transmissive resin that changes is as described above with reference to the optical circuit-electric circuit hybrid substrate material of the present invention.
  • an irradiated portion or a non-irradiated portion can be obtained as a core portion according to a material constituting the optical circuit forming layer.
  • the core portion of the waveguide through which light propagates is formed in the optical circuit. Formed in layers.
  • the solvent solubility changes it is necessary to dissolve and remove the portion other than the portion forming the core portion with the solvent after irradiating the active energy ray.
  • the “light deflecting portion” means that at least a part of the light propagating in the core portion is changed in the propagation direction and emitted out of the core portion, and at least the light incident from the outside of the core portion is changed. It is an element that changes the propagation direction of a part so that it propagates in the core, and is usually called a deflector, a coupler, or the like. That is, the deflecting unit is a device that transmits light propagating through the optical waveguide having the core to the outside of the optical waveguide. This is an element that emits light from outside or enters light from outside the optical waveguide into the optical waveguide.
  • the location where the deflection portion is formed may be any suitable location in the core portion, for example, at the end of the core portion (usually elongated), the middle portion, or the like.
  • the deflecting portion may exist over at least a part of a thickness direction (a direction perpendicular to a light propagation direction) of the core portion, and in some cases, the whole of the thickness direction. If necessary, the core may extend out from the thickness direction and the Z or width direction.
  • a metal layer is bonded to the optical circuit-electric circuit mixed substrate material on which the core is formed.
  • This metal layer may be the same as the metal layer described above with reference to the optical circuit-electric circuit mixed substrate material of the present invention.
  • metal foil, metal finolem, metal sheet and the like When bonding the metal layer, the metal layer may be bonded to the optical circuit / electric circuit mixed substrate material via an adhesive layer.
  • an electric circuit is formed by treating the adhered metal layer so as to remain in a predetermined wiring pattern using any appropriate method.
  • This electric circuit may be formed by using an appropriate method for forming a wiring layer from a metal layer, which is commonly used in the field of manufacturing a wiring board, or an appropriate method of displacement. ,.
  • the present invention provides a method of manufacturing the following optical circuit-electric circuit hybrid board:
  • optical circuit-electric circuit mixed substrate material according to any one of the first to sixth aspects is used as the optical circuit-electric circuit mixed substrate material.
  • the optical circuit-electric circuit mixed substrate material of the present invention described above is suitable for use in the manufacturing method according to the fifteenth aspect.
  • the present invention relates to a method for manufacturing an optical circuit-electric circuit mixed board
  • the optical circuit forming layer of the material for the optical circuit-electric circuit hybrid substrate having at least a metal layer and an optical circuit forming layer is irradiated with active energy rays so that the core of the optical waveguide is formed on the optical circuit forming layer.
  • the fifteenth aspect of the invention is that an optical circuit is used as a laminate having at least a circuit forming layer and a metal layer, and that a material for an electric circuit mixed board is used.As a result, a step of bonding the metal layer is unnecessary. Different from manufacturing method. Other features are the same as the method of the 15th summary.
  • the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
  • optical circuit-electric circuit mixed substrate material of the present invention is suitable for use in the manufacturing method according to the seventeenth aspect.
  • any of the manufacturing methods of the 15th to 18th aspects when the clad layer, the core layer, and the clad layer are sequentially stacked on the substrate as in the related art, or when the electric circuit is stacked by plating. It is possible to obtain a high-quality optical circuit / electric circuit hybrid board by a simple method using the conventional printed wiring board manufacturing technology without requiring such man-hours.
  • the present invention provides the following method for manufacturing an optical circuit-electrical circuit hybrid board:
  • the core part, the deflection part, and the electric circuit of the optical waveguide are positioned at predetermined positions with reference to a reference mark formed in advance on the metal layer of the material for the optical circuit-electric circuit mixed board. Manufacturing method.
  • a reference mark is formed on a metal layer when an optical circuit / electric circuit hybrid substrate is manufactured, and a location to be irradiated with active energy is determined based on a positional relationship between the reference mark and the reference mark.
  • active energy based on fiducial marks
  • a mask to be used for the irradiation of the line is positioned.
  • the location where the deflection unit is provided is determined based on the positional relationship with the reference mark.
  • the location where the circuit is to be formed is determined based on the positional relationship with the reference mark.
  • the reference mark may be any suitable mark. For example, a mark having a shape in which two rectangles of 100 ⁇ 500 Aim are cross-shaped at the center thereof can be exemplified.
  • the optical waveguide, the deflecting unit, and the electric circuit are aligned with each other based on the fiducial mark, and the optical waveguide, the deflecting unit, and the electric circuit can be formed with high positional accuracy.
  • the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
  • a fiducial mark is formed on the optical circuit formation layer simultaneously with the irradiation of the active energy ray, and the deflection part and the electric circuit are formed.
  • the irradiation when irradiating an active energy ray in forming a core portion, the irradiation forms a reference mark simultaneously in addition to forming the core portion.
  • a mark has substantially the same refractive index as the core, but differs in that it is not intended to propagate light and is located at a predetermined location.
  • the reference mark can be formed simultaneously with the step of forming the core portion of the optical waveguide, thereby simplifying the step of forming the reference mark and reducing the active energy ray.
  • the core portion of the optical waveguide and the reference mark can be formed on the optical circuit forming layer with high positional accuracy by the exposure for irradiation, and the deflection portion and the reference portion can be formed with high positional accuracy with respect to the core portion of the optical waveguide with reference to the reference mark.
  • An electric circuit can be formed.
  • the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
  • the optical circuit-electric circuit mixed board on the side where the electric circuit is formed A method of bonding a substrate to the surface of an optical circuit / electric circuit mixed substrate material opposite to the surface of the material.
  • the surface on which the core portion is formed is bonded to a substrate, and thereafter, an electric circuit is formed.
  • the substrate may be any suitable substrate, but it is preferable that the substrate imparts mechanical strength to the material for the optical circuit / electric circuit mixed substrate, that is, it imparts rigidity.
  • a substrate for example, a glass epoxy plate, a glass plate, a metal plate, or the like can be used.
  • the electric circuit can be formed in a state where the rigidity is given by bonding the material for the optical circuit and the electric circuit mixed substrate to the substrate, and the work for forming the electric circuit can be performed.
  • the present invention provides the following method of manufacturing an optical circuit-electric circuit hybrid board:
  • the substrate is a wiring board having an electric circuit (referred to as a second electric circuit to distinguish it from an electric circuit formed of a metal layer (a first electric circuit)) on the surface and Z or inside, preferably
  • a manufacturing method which is a printed wiring board, further comprising a step of first electrically connecting the second electric circuit and the formed electric circuit.
  • the wiring board may be any suitable one, for example, a printed wiring board.
  • the wiring board may be a double-sided wiring board or a multilayer wiring board. According to this manufacturing method, it is possible to easily manufacture an optical circuit / electric circuit hybrid board having a multilayer structure.
  • the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
  • the eleventh or the twenty-second aspect further comprising bonding the substrate via an adhesive layer, wherein the adhesive layer has a refractive index lower than the refractive index of the core portion.
  • the adhesive layer is an adhesive used for the optical circuit-electric circuit mixed substrate material of the present invention described above, for example, the refractive index is adjusted to be lower than that of the core part.
  • Epoxy resin type, polyimide resin type, unsaturated polyester resin type Epoxy resin type, polyimide resin type, unsaturated polyester resin type
  • the adhesive layer is formed of a thermosetting resin-based material such as a poxacrylate resin, and can be used as a clad portion of the core portion because of the refractive index.
  • the process for forming the clad portion can be omitted, and the method for manufacturing the optical circuit / electric circuit mixed substrate can be simplified.
  • the present invention provides the following method for manufacturing an optical circuit-electrical circuit hybrid board:
  • the material for an optical circuit-electrical circuit mixed substrate is the optical circuit-electrical circuit mixed substrate on the side opposite to the side where the metal layer of the optical circuit formation layer is present. Further comprising a cover film that constitutes the exposed surface of the material for optical circuit or the exposed surface of the material for optical circuit-electric circuit hybrid board opposite to the side to which the metal layer of the optical circuit-electric circuit hybrid board material is bonded. Consisting of
  • a surface inclined with respect to the optical waveguide direction is formed at least in the core portion with the cover film, and a light reflecting portion is formed on the inclined surface.
  • the deflecting portion can be formed using the cover film as a mask and while protecting the optical circuit forming layer with the cover film.
  • the force bar film may be light transmissive or non-layered, depending on the purpose.
  • a surface inclined with respect to the optical waveguide direction is formed at least in the core portion, and a paste containing metal particles is supplied to the inclined surface to form a light reflecting portion.
  • the inclined surface of the deflecting portion is inclined with respect to the extending direction of the core portion, that is, the optical axis of the waveguide.
  • the angle of inclination may be any suitable angle, for example, 45 ° with respect to the direction in which the core extends.
  • the light propagation direction can be bent 90 °.
  • the light reflecting portion of the deflecting portion may be formed by vapor deposition of a metal on the inclined surface. In this case, a uniform and high-purity light reflecting portion can be easily formed.
  • the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
  • the metal layer facing the deflecting unit (for example, located above the deflecting unit) may be used.
  • the portion of the metal layer located in the direction in which light is extracted from inside the core portion to the outside of the core portion via the deflecting portion is positioned opposite to the deflecting portion.
  • the part of the metal layer to be removed " For example, when light is extracted from the deflecting unit at an angle of 90 ° upward with respect to the extending direction of the core unit, the portion of the metal layer located directly above the deflecting unit is removed. When light is extracted at another angle, for example, a portion of the metal layer located diagonally above is removed. In the case where light enters the core portion from outside the core portion via the deflecting portion, the portion of the metal layer to be removed can be easily determined in the reverse of the above description.
  • the substrate can be covered with a light-transmitting resin, and the light enters the deflection unit or exits from the deflection unit. This prevents scattering of the incident light, thereby preventing a reduction in the efficiency of optical coupling between the optical waveguide and the outside.
  • the light transmitting resin is applied in a convex lens shape.
  • light that enters and exits the deflecting unit can be collected, and the efficiency of optical coupling between the optical waveguide and the outside can be further prevented from lowering.
  • the light-transmitting resin to be applied has a refractive index equivalent to that of the resin exposed by removing the metal layer. In this case, the reflection loss due to the difference between the refractive indices of the two resins can be reduced, and the efficiency of optical coupling between the optical waveguide and the outside can be increased.
  • the light transmitting resin is applied, after removing the metal layer in the region facing the deflection unit, the surface portion and the end face (or the end surface of the metal layer remaining around the removed portion of the metal layer) Water-repellent treatment on the side surface, and then apply a light-transmitting resin. As a result, the influence of the light-transmitting luster on the dripped coating shape due to minute variations in the portion from which the metal has been removed is reduced, and the light-transmitting resin can be formed in a stable shape.
  • Such a water-repellent treatment is a treatment for covering the surface portion and the end surface of the metal layer remaining around the portion where the metal layer is removed with the polymer film 244 having a low surface energy density. Is preferred. In this case, a water-repellent treatment can be easily performed only on a desired area by spraying or the like.
  • the present invention provides the following method of manufacturing an optical circuit-electric circuit hybrid board:
  • any one of the first to twenty-fifth aspects when forming an electric circuit, a portion of the metal layer facing the deflecting portion (for example, located above the deflecting portion) is removed, and then the portion of the metal layer is removed.
  • a method for manufacturing an optical circuit / electric circuit mixed substrate comprising: disposing a lens body at a portion thereof so as to be in contact with a metal layer remaining around the lens body so that an optical axis of the lens body passes through the deflected portion.
  • the portion of the metal layer facing the deflecting portion is the same as the above-described thirty-second aspect. The metal layer in such a portion is removed, and a lens body is disposed in that portion.
  • the lens body to be arranged may be any suitable one capable of collecting light, and for example, a spherical lens, a half lens, etc. may be arranged as the lens body. According to this manufacturing method, the light that enters and exits the deflecting unit can be condensed by the lens body, so that a reduction in the efficiency of optical coupling between the optical waveguide and the outside can be further prevented.
  • the lens body should be positioned so that the optical axis of the lens body passes through the deflecting part when the lens body is placed in contact with the metal layer remaining around the part where the metal layer has been removed. It is preferable to remove a portion of the metal layer. In this case, by fitting the lens body into the metal removing portion, the lens body can be positioned and positioned accurately and easily at an accurate position, and when arranging a plurality of lens bodies. It can be easily arranged with small displacement.
  • the lens body is preferably a spherical lens or a partially flattened spherical lens. More preferably, a commercially available ball lens or half ball lens can be used as it is, and mounting on the metal removing portion can be easily performed.
  • a light transmissive resin between the surface of the portion where the metal layer is removed and the lens body.
  • the reflection loss due to the formation of an air layer between the lens body and the surface of the metal removing portion can be reduced, and the lens body can be firmly fixed with the light transmitting resin.
  • a light-transmitting resin those which can be used for the light-transmitting luster layer of the material for an optical circuit-electric circuit mixed board of the present invention described above can be used.
  • the light-transmitting resin to be filled in this way has a refractive index equivalent to that of the resin exposed by removing the metal layer.
  • the reflection loss due to the difference in the refractive index between the two resins can be reduced, and the efficiency of optical coupling between the optical waveguide and the outside can be increased.
  • the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
  • the core may be formed between the optical circuit forming layer and the metal layer, or formed on the surface of the optical circuit forming layer to which the metal layer is bonded.
  • the light transmitting resin layer and the optical circuit forming layer are adjacent to each other or the light transmitting resin layer and the optical circuit The formation layer is adjacent.
  • This light transmissive resin layer may be the light transmissive resin layer described above with reference to the optical circuit-electric circuit mixed substrate material of the present invention. According to this manufacturing method, it is possible to prevent the core portion from directly contacting the metal layer, and to eliminate the optical waveguide loss factor to obtain a high-quality optical circuit / electric circuit hybrid substrate.
  • the deflecting portion is formed by forming a surface 7 inclined at least in the optical waveguide direction in the optical circuit forming layer, And a step of forming a light reflecting portion.
  • the feature is that the deflecting portion can be easily formed by forming the inclined surface and the light reflecting portion.
  • other processing methods for example, an ultraviolet laser, can be used to form the deflecting portion, particularly its inclined surface.
  • Such cutting is performed by bringing a rotating blade or cutting tool into contact with at least a predetermined position of the optical circuit forming layer, cutting a predetermined length at a predetermined depth, and then separating the rotating blade or cutting tool from the cutting position. Can do it.
  • an inclined surface can be formed on a part of the plurality of core portions, an arbitrary predetermined number of core portions, or all the core portions.
  • the cutting may be performed by a rotating blade or a cutting tool to a predetermined depth at a depth that leaves a part of the thickness of the core formed in the optical circuit forming layer 1. By leaving a part in this way, it is possible to form a branching output deflecting part that divides the light propagating through the core part from the deflecting part and the part that passes the light.
  • the cutting is performed by bringing the rotating blade 241 into contact with at least a predetermined position of the optical circuit forming layer 201, and then performing cutting with abrasive grains smaller than the abrasive grains of the rotating blade 241. This is performed by using the formed second rotating blade 241, and cutting the same portion again.
  • the inclined surface after cutting the inclined surface with a rotating blade with a large abrasive particle diameter, the inclined surface can be finished with a second rotating blade with a small cannon particle size, and the surface cut edge due to insufficient cutting force
  • the inclined surface can be formed with low surface roughness and high smoothness without causing resin pulling, distortion, or curl.
  • the deflecting portion may be formed by providing at least an optical circuit forming layer with a reflector having a reflection surface that is inclined with respect to the light guiding direction or the optical axis in the core portion.
  • the deflection unit can be easily formed simply by providing a reflector having a reflection surface on the optical circuit forming layer. Can be formed.
  • the deflecting portion may be formed by a step of providing a periodic structure at least in the optical circuit forming layer or at the interface between the optical circuit forming layer and a layer adjacent thereto.
  • the periodic structure is a structure in which a structural feature changes periodically along the propagation direction of light, and may have any structure as long as it functions as a grating, for example.
  • the deflection unit can be easily formed by forming the periodic structure.
  • the step of forming the deflection section may be performed before the step of forming the core section of the optical waveguide.
  • the deflection portion can be easily formed before the resin hardens and becomes hard. it can.
  • the metal layer as the wiring of the electric circuit of one of the electric circuits is used as the laser light stop layer and the laser is used as the stop layer.
  • a via hole can be formed. In this case, the reliability of the conductive connection of the electric circuit via the via hole can be obtained with high reliability.
  • the refractive index is increased by irradiating active energy rays as an optical circuit forming layer.
  • the refractive index cannot be increased in the thickness direction of the optical circuit formation layer
  • the clad portion can be formed in a portion where the refractive index cannot be increased in the thickness direction of the optical circuit forming layer, and there is no need to provide a resin layer for the clad portion on this side.
  • FIG. 1 shows an embodiment of a material for an optical circuit-electric circuit mixed board according to the present invention
  • 1 (a) to 1 (e) are schematic sectional views.
  • FIG. 2 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 1 (a), and Figs. 2 (a) to 2 (e) are schematic diagrams.
  • FIG. 2 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 1 (a), and Figs. 2 (a) to 2 (e) are schematic diagrams.
  • FIG. 2 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 1 (a), and Figs. 2 (a) to 2 (e) are schematic diagrams.
  • FIG. 3 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention
  • FIGS. 3 (a) to 3 (e) are schematic cross-sectional views.
  • FIG. 4 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 3 (a), and Figs. 4 (a) to 4 (e) are schematic diagrams, respectively.
  • FIG. 4 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 3 (a), and Figs. 4 (a) to 4 (e) are schematic diagrams, respectively.
  • FIG. 5 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention
  • FIGS. 5 (a) to 5 (e) are schematic sectional views.
  • FIG. 6 shows the process of manufacturing an optical circuit / electric circuit hybrid board from the optical circuit / electric circuit hybrid board material of Fig. 5 (a), and Figs. 6 (a) to 6 (e) are schematic diagrams, respectively.
  • FIG. 6 shows the process of manufacturing an optical circuit / electric circuit hybrid board from the optical circuit / electric circuit hybrid board material of Fig. 5 (a), and Figs. 6 (a) to 6 (e) are schematic diagrams, respectively.
  • FIG. 7 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention
  • FIGS. 7 (a) to 7 (e) are schematic sectional views, respectively.
  • FIG. 8 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 7 (a), and Figs. 8 (a) to 8 (e) are schematic diagrams, respectively.
  • FIG. 8 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 7 (a), and Figs. 8 (a) to 8 (e) are schematic diagrams, respectively.
  • FIG. 9 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention
  • FIGS. 9 (a) to 9 (e) are schematic sectional views, respectively.
  • FIG. 10 shows a process of manufacturing an optical circuit-electric circuit mixed board from the optical circuit-electric circuit mixed board material of FIG. 9 (a), and FIGS. 10 (a) to 10 (d). Are schematic cross-sectional views.
  • FIG. 11 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention
  • FIGS. 11 (a) to 11 (e) are schematic sectional views.
  • FIG. 12 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 11 (a), and Fig. 12 (a) to Fig. 12 (d ) Are schematic cross-sectional views.
  • FIG. 13 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention, and FIGS. 13 (a) to 13 (e) are schematic cross-sectional views.
  • Fig. 14 shows the process of manufacturing the optical circuit-electrical circuit hybrid board from the material for the optical circuit-electric circuit hybrid board of Fig. 13 (a), and Figs. 14 (a) to 14 (d) show the process. It is a typical sectional view, respectively.
  • FIG. 15 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention
  • FIGS. 15 (a) to 15 (e) are schematic sectional views.
  • Fig. 16 shows the process of manufacturing an optical circuit-electrical circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 15 (a), and Fig. 16 (a) to Fig. 16 (d ) Are schematic sectional views.
  • FIG. 17 shows the steps of an example of the embodiment of the method for manufacturing an optical circuit-electric circuit hybrid board according to the present invention
  • FIGS. 17 (a) to 17 (h) are schematic sectional views.
  • FIG. 18 shows an example of an embodiment in which a reflecting portion is formed in a deflecting portion in the method for manufacturing an optical circuit-electrical circuit hybrid board of the present invention
  • FIG. 18 (a) and FIG. FIG. 3 is a partially enlarged schematic cross-sectional view.
  • FIG. 19 shows an example of an embodiment in which a deflecting portion is formed in the method of manufacturing an optical circuit-electrical circuit hybrid board of the present invention
  • FIGS. 19 (a) and 19 (b) show a part of the embodiment.
  • FIG. 4 is an enlarged schematic perspective view.
  • FIG. 20 is a schematic cross-sectional view showing an example of an embodiment in which a deflecting unit is formed in the method of manufacturing an optical circuit-electric circuit mixed board of the present invention.
  • FIG. 21 shows an example of an embodiment in which a deflecting section having a reflector is formed in the method for manufacturing an optical circuit-electric circuit mixed board of the present invention
  • (b) is a partially enlarged schematic cross-sectional view.
  • FIG. 22 shows an example of an embodiment of a method of manufacturing an optical circuit-electric circuit hybrid board according to the present invention
  • FIGS. 22 (a) to 22 (h) are schematic sectional views.
  • FIG. 23 shows the steps of an example of the embodiment of the method for manufacturing an optical circuit-electric circuit hybrid board of the present invention
  • FIGS. 23 (a) to 23 (h) are schematic sectional views.
  • FIG. 24 shows an example of an embodiment in which a deflecting portion is formed in the method of manufacturing an optical circuit-electric circuit mixed board of the present invention.
  • FIGS. 24 (a) and 24 (b) are schematic sectional views.
  • FIG. 24 (a) and 24 (b) are schematic sectional views.
  • FIG. 25 shows an example of an embodiment of the present invention in which a means for efficiently transmitting light to or from the deflecting unit is formed in the method for manufacturing an optical circuit-electric circuit mixed board of the present invention.
  • 25 (a), 25 (b) and 25 (c) are schematic sectional views.
  • FIG. 26 shows a process of an example of an embodiment of a method of manufacturing an optical circuit / electric circuit hybrid substrate according to the present invention
  • FIGS. 26 (a) to 26 (i) are schematic sectional views.
  • FIG. 27 shows a process of an example of an embodiment of a method of manufacturing an optical circuit / electric circuit hybrid substrate according to the present invention
  • FIGS. 27 (a) to 27 (i) are schematic sectional views.
  • FIG. 28 shows a step of an example of an embodiment of a method of manufacturing an optical circuit / electric circuit hybrid substrate according to the present invention
  • FIGS. 28 (a) to 28 (j) are schematic sectional views.
  • FIG. 29 shows the steps of an example of the embodiment of the method for manufacturing an optical circuit-electric circuit hybrid board of the present invention
  • FIGS. 29 (a) to 29 (j) are schematic sectional views.
  • FIG. 30 shows an example of an embodiment of the present invention in which a means for efficiently transmitting light to or from a deflecting unit is formed in the method for manufacturing an optical circuit-electric circuit mixed board of the present invention.
  • 30 (a) and FIG. 30 (b) are enlarged schematic sectional views.
  • FIG. 31 shows a step of arranging a lens body for efficiently transmitting light to or from the deflecting unit in the method of manufacturing an optical circuit-electric circuit mixed substrate according to the present invention.
  • FIG. 31 (c) are enlarged schematic sectional views.
  • FIG. 32 shows a process of an example of an embodiment of a method for manufacturing an optical circuit-electrical circuit hybrid board according to the present invention
  • FIGS. 32 (a) to 32 (k) are schematic sectional views.
  • FIG. 33 shows the steps of an example of the embodiment of the method for manufacturing an optical-circuit / electric-circuit hybrid board according to the present invention
  • FIGS. 33 (a) to 33 (i) are schematic sectional views.
  • FIG. 1A shows an example of an embodiment of an optical circuit-electric circuit mixed substrate material according to the seventh aspect of the present invention, in which an optical circuit forming layer is in direct contact with one surface of a light transmitting resin layer 1. 2 and a metal layer 13 on the surface of the light-transmitting resin layer 1 opposite to the surface on which the optical circuit forming layer 2 is provided.
  • a copper foil is preferable.
  • the thickness of the metal layer 13 is not particularly limited, but is generally about 9 to 70 ⁇ .
  • the light transmitting resin layer 1 is made of a light transmitting resin.
  • the optical circuit forming layer 2 is made of a light-transmitting resin (or a photosensitive resin) whose solubility in a solvent is changed by irradiation with active energy rays. These resins can be selected from the resins exemplified above.
  • the resin forming the optical circuit forming layer 2 is a resin having a higher refractive index than the resin forming the light transmissive resin layer 1 or the active energy when the solvent solubility is reduced by irradiation with active energy rays. It is a resin whose refractive index is higher than that of the resin forming the light-transmitting resin layer 1 upon irradiation with a ray.
  • the optical circuit forming layer 2 is exposed to active energy rays E from the side opposite to the metal layer 13 for exposure. Irradiation with active energy rays is performed in a pattern corresponding to a predetermined pattern in the core portion of the optical circuit. For example, pattern irradiation of active energy can be performed by mask exposure of ultraviolet rays, drawing exposure of laser, or the like.
  • the optical circuit forming layer 2 is developed by causing a solvent to act on the optical circuit forming layer 2, whereby the optical circuit forming layer 2 is partially dissolved and removed by the solvent.
  • the optical circuit forming layer 2 is formed of a resin such as a photocurable resin which changes so that the portion irradiated with the active energy ray in the solvent becomes low, the active energy ray is irradiated.
  • the resin other than the exposed portion is dissolved in the solvent, and the resin in the portion irradiated with the active energy ray remains.
  • the optical wiring forming layer 2 is formed of a resin such as a photo-decomposable resin that changes so that the portion irradiated with the active energy ray becomes higher in the solvent, the active energy ray is
  • the resin in the irradiated part dissolves in the solvent, and the active energy remains in the part other than the part irradiated with the ray.
  • the solvent is appropriately selected according to the resin constituting the optical circuit forming layer. Such selections are routinely made in the field of manufacturing tori-line substrates.
  • the light transmitting resin layer 1 transmits light to the side on which the optical circuit forming layer 2 is provided.
  • the optical circuit pattern 2 is coated with a light-transmitting resin layer 20 as shown in FIG. 2 (c).
  • a light-transmitting resin layer 20 As the light-transmitting resin layer 20, a light-transmitting resin having a lower refractive index than the optical circuit forming layer 2 and, therefore, lower than the optical circuit pattern as the core portion is used.
  • the same resin as that used for the layer 1 can be used.
  • a printed wiring board 22 provided with the electric wiring 21 is prepared in advance, and as shown in FIG. 2 (d), the surface of the printed wiring board 22 is optically transparent using an adhesive 23.
  • the conductive resin layer 20 is laminated on the printed wiring board 22 by bonding.
  • the metal layer 13 on the surface is processed by wiring to form the electric wiring 24 as shown in FIG. 2 (e), and then the laser wiring and plating are performed to form the electric wiring 21 and the electric wiring 24. Are electrically connected.
  • the refractive index of the optical wiring pattern derived from the optical circuit forming layer 2 is different from that of the light transmitting resin layer 1 or the light transmitting resin layer 20 which is in direct contact with the optical circuit forming layer 2. Since the refractive index is larger than the refractive index, an optical waveguide is formed in which the optical circuit forming layer 2 is a core layer 26 as a core, and the light transmitting resin layer 1 and the light transmitting resin layer 20 are a cladding layer 27. An optical circuit is formed by the optical circuit forming layer 2, and is used as an optical circuit-electric circuit mixed board in which the optical circuit formed by the optical circuit forming layer 2, the electric wiring 21 and the electric wiring 24 are laminated. Can be. If the adhesive 23 is light-transmitting and has a lower refractive index than the optical circuit forming layer 2, the light-transmitting resin layer 20 can be omitted.
  • the material for the optical circuit and the electric circuit mixed board having the core portion formed thereon as described above is laminated on the printed wiring board 22. It is also possible to manufacture an optical circuit-electric circuit hybrid board in which the electric wiring 24 obtained by wiring the metal layer 13 of the material for use is formed only on one side, and the printed wiring board 22 Alternatively, by laminating metal foils, an optical circuit / electric circuit hybrid board in which electric wiring 24 is formed on both sides may be manufactured.
  • FIG. 1 (b) shows another embodiment of the optical circuit-electric circuit mixed board material according to the first aspect, in which the flame retardancy between the metal layer 13 and the light transmitting resin layer 1 is reduced.
  • Adhesive layer 14 is provided.
  • a metal foil is used as the metal layer 13
  • an adhesive is coated on one side, or on the mat surface, if present, by the above-described coating method, and when the adhesive contains a solvent, this is coated. After being dried and removed, the adhesive layer 14 can be formed by curing or semi-curing as necessary.
  • a light-transmitting resin layer 1 is coated on the adhesive layer 14 in the same manner as described above, and an optical circuit forming layer 2 is coated on the adhesive layer 14, thereby providing an optical circuit.
  • One electric circuit mixed substrate material can be obtained.
  • FIG. 1 (c) shows an example of an embodiment of a material for an optical circuit-electrical circuit board according to the fourteenth aspect.
  • Film 15 is attached.
  • the cover film 15 may be formed by forming the predetermined resin layers 1 and 2 on the metal layer 13 and then laminating the resin layer 1 and 2 on the metal layer 13, or by applying the resin layer 2 on the cover film 15. May be formed by coating and laminating the metal layer 13 on which the light transmitting resin layer 1 is formed.
  • the cover film 15 When the cover film 15 is stretched on the surface of the resin layer in this manner, the resin layer does not become exposed, so that the handleability when handling the material for an optical circuit-electric circuit mixed board is improved. Exposure can be performed through the cover film 15 as shown in FIG. 2 (a). When developing as shown in FIG. 2 (b), the cover film 15 is peeled off from the resin layer.
  • FIG. 1 (d) shows an example of an embodiment of the material for an optical circuit-electrical circuit board according to the thirteenth aspect, and the metal layer 13 on the side opposite to the side on which the light-transmitting resin layer 1 is provided.
  • the support 16 is releasably attached to the surface and laminated.
  • any material may be used as long as it has rigidity, but a metal plate, a resin plate, a ceramic plate, or the like may be used.
  • a metal foil is used as the metal layer 13, the metal foil can be peelably adhered to the surface of the support 16.
  • the metal layer 13 can also be formed by plating the surface of the support 16.
  • the metal layer 13 is attached to the support 16, and the metal layer 13 is reinforced by the support 16 having high rigidity, and a process of providing a resin layer on the surface of the metal layer 13 is performed.
  • FIG. 1 (e) shows an example in which a metal layer 13 is provided on both sides of a support 16, and a material for an optical circuit / electric circuit hybrid board is formed on both sides of the support 16.
  • FIG. 3 (a) shows an example of an embodiment of the material for an optical circuit-electrical circuit board according to the first aspect, in which the optical circuit forming layer 3 is in direct contact with one surface of the light transmitting resin layer 1.
  • the metal layer 13 is formed by laminating the metal layer 13 on the surface of the light transmitting resin layer 1 opposite to the surface on which the optical circuit forming layer 3 is provided.
  • the light-transmitting resin layer 1 and the metal layer 13 those described above can be used.
  • the refractive index of the optical circuit forming layer 3 is changed by the irradiation of the active energy ray, and the active It is made of a light-transmissive resin whose refractive index increases when irradiated with straight lines.
  • the resin forming the optical circuit forming layer 3 has a higher refractive index in the portion irradiated with the active energy ray than in the portion not irradiated with the active energy ray and the resin forming the light transmitting resin layer 1. Resin.
  • the light-transmitting resin layer 1 is formed on one surface, preferably the mat surface, of the optical circuit-electric circuit mixed substrate material. It can be manufactured by coating a resin to be formed and coating a resin for forming the optical circuit forming layer 3 on the light transmitting resin layer 1.
  • a method for manufacturing an optical circuit / electric circuit hybrid board using the optical circuit / electric circuit hybrid board material thus obtained will be described.
  • the optical circuit forming layer 3 is irradiated with active energy rays E from the side opposite to the metal layer 13. The irradiation of the active energy ray is performed in a pattern corresponding to the wiring pattern of the optical wiring.
  • the pattern irradiation of the active energy line can be performed by mask exposure of ultraviolet rays, laser drawing exposure, or the like.
  • the refractive index of the portion of the optical circuit forming layer 3 that has not been irradiated with the active energy ray does not change, but the portion of the optical circuit forming layer 3 that has been irradiated with the active energy beam has a higher refractive index, and the optical circuit forming layer 3 A high refractive index portion 3a of the irradiated portion and a low refractive index portion 3b of the non-irradiated portion are formed.
  • the refractive index of the high refractive index portion 3 a of the optical circuit forming layer 3 is higher than the refractive index of the light transmitting resin layer 1.
  • the side of the optical circuit forming layer 3 where the light-transmitting resin layer 1 is provided The optical circuit forming layer 3 is coated with the light transmitting resin layer 20 as shown in FIG. 4 (c).
  • the light-transmitting resin layer 20 is formed of a light-transmitting resin having a lower refractive index than the high-refractive-index portion 3a of the optical circuit forming layer 3.
  • the same translucent resin as the light-transmitting resin layer 1 is used. Can be used.
  • a printed wiring board 22 prepared by providing the electric wiring 21 is prepared, and a light-transmitting resin layer 20 is adhered to the surface of the printed wiring board 22 with an adhesive 23 to obtain a printed wiring board 22.
  • a printed wiring board 22 As shown in FIG. 4 (d), it is laminated on the printed wiring board 22, and thereafter, the metal layer 13 on the surface is processed by wiring to form the electric wiring 24 as shown in FIG. 4 (e). Yes, and laser via processing is applied to make electrical wiring 21 and electrical wiring 24 electrically. Can be connected.
  • the refractive index of the high refractive index portion 3a of the optical circuit forming layer 3 of the optical wiring pattern is determined by the low refractive index portion 3b of the optical circuit forming layer 3 and the optical circuit forming layer 3. Since the refractive index of the optically transparent resin layer 1 and the optically transparent resin layer 20 is larger than the refractive index of the optically transparent resin layer 1 and the optically transparent resin layer 20, the high refractive index portion 3a of the optical circuit forming layer 3 becomes the core layer 26 and the low refractive index of the optical circuit forming layer 3
  • the optical waveguide includes the refractive index portion 3b, the light-transmitting resin layer 1 and the light-transmitting resin layer 20 serving as a cladding layer 27, and an optical circuit is formed by the high refractive index portion 3a of the optical circuit forming layer 3.
  • FIGS. 3 (b), 3 (c), 3 (d), and 3 (e) show another embodiment, and FIG. 3 (b) shows the metal layer 13 and the resin as described above.
  • FIG. 3 (c) shows a transparent cover film 15 on the surface of the resin layer opposite to the metal layer 13 as described above.
  • Fig. 3 (d) shows the support 16 releasably attached to the surface of the metal layer 13 opposite to the side on which the resin layer is provided, as described above.
  • FIG. 3 (b), 3 (c), 3 (d), and 3 (e) show another embodiment, and FIG. 3 (b) shows the metal layer 13 and the resin as described above.
  • FIG. 3 (c) shows a transparent cover film 15 on the surface of the resin layer opposite to the metal layer 13 as described above.
  • Fig. 3 (d) shows the support 16 releasably attached to the surface of the metal layer 13 opposite to the side on which the resin layer is provided, as described above.
  • FIG. 5 (a) shows an example of an embodiment of the optical circuit-electric circuit hybrid board material according to the second aspect of the present invention, in which the optical circuit wiring layer is in direct contact with one surface of the light transmitting resin layer 1. 4 and a metal layer 13 on the surface of the light-transmitting resin layer 1 opposite to the surface on which the optical circuit forming layer 4 is provided.
  • the light-transmitting resin layer 1 and the metal layer 13 those described above can be used.
  • the optical circuit forming layer 4 is made of a light-transmitting resin whose refractive index is changed by irradiation with active energy rays and whose refractive index is reduced by irradiation with active energy rays.
  • the resin forming the optical circuit forming layer 4 has a higher refractive index than the resin forming the light transmissive resin layer 1 in a portion where the active energy rays are not irradiated.
  • the material for the optical circuit-electric circuit mixed board is made of a light-transmitting resin layer on one side, preferably the matte side.
  • the optical circuit is coated on the light-transmitting resin layer 1 It can be produced by coating a resin for forming the formation layer 4.
  • a method for manufacturing an optical circuit-electrical circuit hybrid board using the optical circuit-electric circuit hybrid board material thus obtained will be described.
  • the optical circuit forming layer 4 is irradiated with an active energy ray E from the side opposite to the metal layer 13. The irradiation of the active energy ray is performed in a pattern opposite to the pattern of the core portion of the optical circuit.
  • the pattern irradiation of the active energy line can be performed by, for example, UV mask exposure or laser drawing exposure.
  • the refractive index of the portion of the optical circuit forming layer 4 that has not been irradiated with the active energy ray does not change, but the portion of the optical circuit forming layer 4 that has been irradiated with the active energy line has a lower refractive index, and the optical circuit forming layer 4 has a lower refractive index.
  • a high-refractive-index portion 4a corresponding to the non-irradiated portion and a low-refractive-index portion 4b corresponding to the irradiating portion are formed in the ridge.
  • the refractive index of the high refractive index portion 4 a of the optical circuit forming layer 4 is higher than the refractive index of the light transmitting resin layer 1.
  • a light-transmitting resin having a lower refractive index than the high refractive index portion 4 a of the optical circuit forming layer 4 is used.
  • the same resin as the light-transmitting resin layer 1 is used. Can be used.
  • the electrical wiring 24 is formed by laminating on the printed wiring board 22 as shown in Fig. 6 (e), and then wiring the metal layer 13 on the surface as shown in Fig. 6 (e). Further, the electrical wiring 21 and the electrical wiring 24 can be connected by laser / via processing / plating.
  • the refractive index of the high refractive index portion 4 a of the optical circuit forming layer 4 of the optical wiring pattern is the low refractive index portion 4 b of the optical circuit forming layer 4 and the optical circuit forming layer 4. Since the refractive index is higher than the refractive index of the light transmitting resin layer 1 and the light transmitting resin layer 20 which is in direct contact with the optical circuit forming layer 4, the high refractive index portion 4a of the optical circuit forming layer 4 becomes the core layer 26 and the optical circuit forming layer 4 An optical waveguide in which the low-refractive-index portion 4b, the light-transmitting resin layer 1 and the light-transmitting resin layer 20 are combined with the cladding layer 27 is formed, and the optical wiring is formed by the high-refractive-index portion 4a of the optical circuit forming layer 4.
  • FIGS. 5 (b), 5 (c), 5 (d), and 5 (e) show another embodiment, and FIG. 5 (b) shows the metal layer 13 and the resin as described above.
  • FIG. 5 (c) shows a transparent cover film 15 on the surface of the resin layer opposite to the metal layer 13 as described above.
  • FIG. 5 (d) shows a support 16 attached to the surface of the metal layer 13 opposite to the side on which the resin layer is provided, in the same manner as described above.
  • FIG. 7 (a) shows an example of the embodiment of the present invention according to the eighth or ninth aspect, in which the optical circuit forming layer 5 made of a light-transmitting resin whose refractive index changes by irradiation with active energy rays. It is formed by providing a metal layer 13 on one surface. As the metal layer 13, the one described above can be used.
  • the resin forming the optical circuit forming layer 5 may be any resin whose refractive index is changed by irradiation with active energy rays.
  • the resin whose refractive index is increased by irradiation with active energy rays Any of those whose refractive index is lowered by irradiation with energy rays may be used.
  • the resin for forming the optical circuit forming layer 5 is coated on the matte surface of the optical circuit-electric circuit mixed board material in the same manner as described above. Can be produced.
  • the active energy ray E is irradiated to the optical circuit forming layer 5 from the side opposite to the metal layer 13.
  • the refractive index of the resin forming the optical circuit forming layer 5 is reduced by the irradiation of the active energy ray, the irradiation of the active energy ray is performed in a pattern opposite to the wiring pattern of the optical wiring.
  • Active energy ray pattern irradiation can be performed by mask exposure, laser drawing exposure, and the like.
  • the refractive index of the portion of the optical circuit forming layer 5 that has not been irradiated with the active energy ray does not change, but the portion of the optical circuit forming layer 5 that has been irradiated with the active energy ray has a low refractive index, and the optical circuit forming layer 5 has a low refractive index.
  • 5 has a high refractive index portion 5a of the non-irradiated portion and a low refractive index portion 5b of the irradiated portion.
  • the optical circuit forming layer 5 is opposite to the side on which the metal layer 13 is provided.
  • the light transmitting resin layer 20 is coated on the side surface, and the optical circuit forming layer 5 is covered with the light transmitting resin layer 20 as shown in FIG. 8 (c).
  • a light-transmitting resin having a lower refractive index than the high-refractive-index portion 5a of the optical circuit forming layer 5 is used.
  • the light-transmitting resin layer 1 described above is used.
  • the same resin as described above can be used.
  • a printed wiring board 22 prepared by providing the electric wiring 21 is prepared, and a light-transmitting resin layer 20 is adhered to the surface of the printed wiring board 22 with an adhesive 23 to obtain a diagram. 8 (d), and laminated on the printed wiring board 22, and then, a metal layer 13 on the surface is disposed to form an electric wiring 24 as shown in FIG. 8 (e).
  • the electrical wiring 21 and the electrical wiring 24 can be connected by laser via processing and plating.
  • the metal layer 13 leave a portion corresponding to the high refractive index portion 5a of the optical circuit forming layer 5 (in the illustrated embodiment, a portion located above the light refractive index portion 5a)?
  • the metal layer 13 is used for electrical wiring in the portion corresponding to the high refractive index portion 5a of the optical circuit forming layer 5.
  • the refractive index of the high refractive index portion 5 a of the optical circuit forming layer 5 of the optical wiring pattern is determined by the low refractive index portion 5 b of the optical circuit forming layer 5 and the optical circuit forming layer 5.
  • the high refractive index portion 5a is larger than the refractive index of the light transmissive resin layer 20 which is in direct contact with the metal layer 13 which reflects light, so that the high refractive index portion of the optical circuit forming layer 5 5a is an optical waveguide in which the core layer 26, the low refractive index portion 5b of the optical circuit forming layer 5 and the light transmitting resin layer 20 are the cladding layer 27, and the optical circuit forming layer 5 has a high refractive index.
  • the optical circuit is formed by the high refractive index portion 5a of the optical circuit forming layer 5, and the optical circuit, the electric circuit 21 and the electric circuit 24 are laminated. It can be used as a circuit mixed board.
  • the optical circuit forming layer 5 is formed of a light-transmitting resin whose refractive index increases when irradiated with an active energy ray, the irradiation time of the active energy ray and the energy intensity are adjusted.
  • the high refractive index portion 5a is formed in the optical circuit forming layer 5 at the portion in contact with the light transmitting resin layer 20. It may be formed only.
  • FIGS. 7 (b), 7 (c), 7 (d), and 7 (e) show another embodiment, and FIG. 7 (b) shows the metal layer 13 and the resin as described above.
  • FIG. 7 (c) shows a transparent cover film 1 on the surface of the resin layer opposite to the metal layer 13 as described above.
  • FIG. 7 (d) shows a case in which the support 16 is releasably attached to the surface of the metal layer 13 opposite to the side on which the resin layer is provided, as described above.
  • a metal layer 13 is provided on both sides of the support 16, and a material for an optical circuit / electric circuit mixed board is formed on both sides of the support 16.
  • FIG. 9A shows an example of the embodiment of the present invention according to the third aspect, in which the optical circuit forming layer 6 is laminated directly on one surface of the first light-transmitting resin layer 1 and the optical circuit forming layer 6 is laminated.
  • the second light-transmitting resin layer 7 is laminated directly on the surface of the circuit forming layer 6 on the side opposite to the light-transmitting resin layer 1, and the second light-transmitting resin layer 1 is provided with the optical circuit forming layer 6. It is formed by laminating a metal layer 13 on the opposite surface.
  • the second light-transmitting resin layer 7 is made of a light-transmitting resin, and preferably has a refractive index equivalent to that of the first light-transmitting resin layer 1.
  • a resin similar to the resin forming the above can be used.
  • the optical circuit forming layer 6 is made of a light-transmitting resin whose refractive index is changed by irradiation with active energy rays and whose refractive index is increased by irradiation with active energy rays.
  • the same resin as the above-described optical circuit forming layer 3 can be used.
  • the resin forming the optical circuit forming layer 6 has a portion irradiated with the active energy ray, a portion not irradiated with the active energy ray, a resin forming the light-transmitting resin layer 1, and a second light-transmitting resin.
  • This resin has a higher refractive index than the resin forming the resin layer 7.
  • the material for the optical circuit-electric circuit mixed board is coated with a resin for forming the light-transmitting resin layer 1 on the mat surface in the same manner as described above.
  • the resin forming the optical circuit forming layer 6 is coated on the light transmitting resin layer 1, and the resin forming the second light transmitting resin layer 7 can be further formed on the light transmitting resin layer 1. .
  • a method for manufacturing an optical circuit / electric circuit hybrid board using the optical circuit / electric circuit hybrid board material thus obtained will be described.
  • the active energy ray E is applied to the optical circuit forming layer 6 via the second light transmitting resin layer 7 from the side opposite to the metal layer 13.
  • the irradiation of the active energy ray is performed in a pattern corresponding to the wiring pattern of the optical wiring.
  • the pattern irradiation of the active energy ray can be performed by UV mask exposure, laser drawing exposure, or the like.
  • the refractive index of the portion of the optical circuit forming layer 6 that has not been irradiated with the active energy ray does not change, but the refractive index of the portion of the optical circuit forming layer 6 that has been irradiated with the active energy ray increases.
  • the high-refractive-index portion 6a of the irradiated portion and the low-refractive-index portion 6b of the non-irradiated portion are formed.
  • the refractive index of the high refractive index portion 6 a of the optical circuit forming layer 6 is higher than the refractive indexes of the first light transmitting resin layer 1 and the second light transmitting resin layer 7.
  • the optical circuit forming layer 6 of the second light-transmitting resin layer 7 is provided.
  • the adhesive layer 23 is provided on the surface on the side opposite to the side of the printed wiring board, and is adhered to the surface of the printed wiring board 22 produced by providing the electric wiring 21 with the adhesive 23.
  • the refractive index of the high refractive index portion 6a of the optical circuit forming layer 6 of the optical wiring pattern is determined by the low refractive index portion 6b of the optical circuit forming layer 6 and the optical circuit forming layer 6.
  • the high refractive index portion 6a of the optical circuit forming layer 6 becomes the core layer 26
  • An optical waveguide in which the low-refractive-index portion 6b and the light-transmitting resin layer 1 and the second light-transmitting resin layer 7 serve as the cladding layer 27 is formed, and the high-refractive-index portion 6a of the optical circuit forming layer 6 is formed.
  • the optical circuit is formed by the high refractive index portion 6 a of the optical circuit forming layer 6, and the optical circuit, the electric circuit 21 and the electric circuit 24 are laminated and used as an optical circuit-electric circuit mixed substrate. In monkey.
  • FIGS. 9 (b), 9 (c), 9 (d), and 9 (e) show other embodiments
  • FIG. 9 (b) shows the metal layer 13 and the resin Adhesive with flame retardancy between layers
  • FIG. 9 (c) shows a structure in which a transparent cover film 15 is provided on the surface opposite to the metal layer 13 of the resin layer
  • FIG. 9 (e) shows the support 16.
  • a metal layer 13 is provided on both sides, and an optical circuit / electric circuit mixed substrate material is formed on both sides of the support 16.
  • FIG. 11 (a) shows an example of an embodiment of the optical circuit-electric circuit mixed substrate material according to the fourth aspect of the present invention, in which light is directly in contact with one surface of the first light-transmitting resin layer 1.
  • the circuit-forming layer 8 is laminated, and the second light-transmitting resin layer 9 is laminated in direct contact with the surface of the optical circuit-forming layer 8 opposite to the first light-transmitting resin layer 1, and the first light-transmitting layer is further laminated. It is formed by laminating a metal layer 13 on the surface of the resin layer 1 opposite to the side on which the optical circuit forming layer 8 is provided.
  • the second light-transmitting resin layer 9 is made of a light-transmitting resin, and preferably has a refractive index equivalent to that of the first light-transmitting resin layer 1, and forms the first light-transmitting resin layer 1.
  • the same resin as the resin to be used can be used.
  • the optical circuit forming layer 8 is made of a light-transmitting resin whose refractive index is changed by irradiation with active energy rays and whose refractive index is reduced by irradiation with active energy rays.
  • the same resin as the optical circuit forming layer 4 can be used as the resin whose refractive index is lowered by irradiation with such active energy rays.
  • the resin that forms the optical circuit forming layer 8 has a portion that is not irradiated with the active energy ray, and the resin that forms the first light transmissive resin layer 1 and the resin that forms the second light transmissive resin layer 9 It is a resin with a high refractive index.
  • the material for the optical circuit-electric circuit mixed board is coated with a resin for forming the light-transmitting resin layer 1 on the mat surface in the same manner as described above.
  • the light transmitting resin layer 1 is coated with a resin layer forming the optical circuit forming layer 8, and the resin forming the second light transmitting resin layer 9 is coated thereon. Can be.
  • the optical circuit forming layer 8 is passed through the second light transmitting resin layer 9 from the side opposite to the metal layer 13. Irradiate with active energy rays E.
  • the irradiation of the active energy ray is performed in a pattern opposite to the wiring pattern of the optical wiring.
  • the pattern irradiation of the active energy ray can be performed by mask exposure with ultraviolet light, drawing exposure with a laser, or the like.
  • the refractive index of the portion of the optical circuit forming layer 8 not irradiated with the active energy ray does not change, but the refractive index of the portion irradiated with the active energy ray decreases, and A high-refractive-index portion 8a of a non-irradiated portion and a low-refractive-index portion 8 of an irradiated portion are formed in the substrate.
  • the refractive index of the high refractive index portion 8 a of the optical circuit forming layer 8 is higher than the refractive indexes of the light transmitting resin layer 1 and the second light transmitting resin layer 9.
  • the optical circuit forming layer 8 of the second light-transmitting resin layer 9 is removed.
  • the adhesive layer 23 is provided on the surface on the side opposite to the provided side, and is adhered to the surface of the printed wiring board 22 produced by providing the electric wiring 21 with the adhesive 23.
  • the metal layer 13 on the surface is wired to form an electrical wire 24 as shown in FIG. 12 (d), and further, laser via processing and plating are performed to form the electrical wire 21 and the electrical wire 24. Can be connected.
  • the refractive index of the high refractive index portion 8a of the optical circuit forming layer 8 of the optical wiring pattern is determined by the low refractive index portion 8b of the optical circuit forming layer 8 and the optical circuit forming layer. Since the refractive index of the light-transmitting resin layer 1 or the second light-transmitting resin layer 9 which is in direct contact with the layer 8 is larger than that of the light-transmitting resin layer 9, the high-refractive-index portion 8 a of the optical circuit forming layer 8 becomes the core layer 26 and the optical circuit An optical waveguide in which the low refractive index portion 8 b of the forming layer 8, the light-transmitting resin layer 1 and the second light-transmitting resin layer 9 become the cladding layer 27, and the high refractive index portion 8 of the optical circuit forming layer 8 is formed.
  • the optical wiring is formed by a, and can be used as an optical circuit-electric circuit mixed board in which the optical wiring and the electric wiring 21 and 24 are laminated by the high refractive index
  • FIG. 11 (b), FIG. 11 (c), FIG. 11 (d), and FIG. 11 (e) show another embodiment, and FIG. 11 (b) shows a metal A flame retardant adhesive layer 14 is provided between the layer 13 and the resin layer, and FIG. 11 (c) shows the resin layer on the opposite side to the metal layer 13 as described above. A transparent cover film 15 is stretched on the surface.
  • Fig. 11 (d) shows the support 16 peelable on the surface opposite to the side where the resin layer of the metal layer 13 is provided, as described above.
  • Fig. 11 (e) shows a structure in which a metal layer 13 is provided on both sides of a support 16 and a material for an optical circuit / electric circuit mixed board is formed on both sides of the support 16 It is like that.
  • FIG. 13 (a) shows an example of the embodiment of the present invention according to the tenth aspect, in which a light-transmitting resin layer 11 is laminated in direct contact with one surface of an optical circuit forming layer 10 and It is formed by laminating a metal layer 13 on the surface of the optical circuit forming layer 10 opposite to the side on which the light transmitting resin layer 11 is provided.
  • the light-transmitting resin layer 11 is made of a light-transmitting resin, and the same resin as that forming the light-transmitting resin layer 1 can be used.
  • the optical circuit forming layer 10 is made of a light-transmitting resin whose refractive index changes by irradiation with active energy rays and whose refractive index increases when irradiated with active energy rays.
  • the same resin as the optical circuit forming layer 3 described above can be used as the resin whose refractive index is increased by irradiation with such active energy rays.
  • the resin forming the optical circuit forming layer 10 has a refractive index that is higher in a portion irradiated with the active energy line than in a portion not irradiated with the active energy beam and the resin forming the light transmissive resin layer 11. It is a high resin.
  • the material for the optical circuit-electric circuit mixed board is coated with a resin for forming the optical circuit forming layer 10 on the mat surface in the same manner as described above.
  • the optical circuit forming layer 10 can be manufactured by coating a resin for forming the light transmitting resin layer 11 on the optical circuit forming layer 10.
  • the active energy ray E is irradiated on the optical circuit forming layer 10 through the light transmitting resin layer 11 from the side opposite to the metal layer 13.
  • the irradiation of the active energy ray is performed in a pattern corresponding to the wiring pattern of the optical wiring.
  • the pattern irradiation of the active energy ray can be performed by UV mask exposure, laser exposure for drawing, or the like.
  • the refractive index of the portion of the optical circuit forming layer 10 that has not been irradiated with the active energy ray does not change, but the refractive index of the portion of the optical circuit forming layer 10 that has been irradiated with the active energy ray increases.
  • 0 is the high refractive index part of the irradiated part 10 a and the low refractive index of the non-irradiated part A part 10b is formed.
  • the refractive index of the high refractive index portion 10 a of the optical circuit forming layer 10 is higher than the refractive index of the light transmitting resin layer 11.
  • the high refractive index portion 10a can be formed in the optical circuit forming layer 1 ° in the form of an optical wiring pattern.
  • the high refractive index portion 10a in the optical circuit forming layer 10 is formed only on the portion in contact with the light transmitting resin layer 11.
  • the metal layer 13 is not formed up to the portion in contact with the metal layer 13. That is, a high refractive index portion is formed up to a halfway point in the thickness direction of the optical circuit forming layer, and the high refractive index portion does not reach the metal layer.
  • an adhesive is applied to the surface of the light transmitting resin layer 11 opposite to the side on which the optical circuit forming layer 10 is provided.
  • the layer 23 is provided, and the printed circuit board 22 is provided with the electric wiring 21.
  • the printed circuit board 22 is adhered to the surface of the printed circuit board 22 with an adhesive 23 to be laminated on the printed circuit board 22 as shown in FIG. 14 (c). I do.
  • wiring is performed on the metal layer 13 on the surface to form the electric wiring 24 as shown in FIG. 14 (d), and further, laser via processing and plating are performed to connect the electric wiring 21 and the electric wiring 24. Can be.
  • the refractive index of the high refractive index portion 10a of the optical circuit forming layer 10 of the optical wiring pattern is the low refractive index portion 10b of the optical circuit forming layer 10 and the optical circuit. Since the refractive index of the light-transmitting resin layer 11 that is in direct contact with the forming layer 10 is larger than that of the optical circuit forming layer 10, the high refractive index portion 10 a of the optical circuit forming layer 10 becomes the core layer 26 and the low refractive index of the optical circuit forming layer 10.
  • FIGS. 13 (b), 13 (c), 13 (d) and 13 (e) show another embodiment, and FIG. 13 (b) shows a metal A flame-retardant adhesive layer 14 is provided between the layer 13 and the resin layer.
  • Fig. 13 (c) shows the resin layer on the opposite side to the metal layer 13 as described above.
  • a transparent cover film 15 is applied to the surface, and
  • Fig. 13 (d) shows a support 16 on the opposite side of the metal layer 13 from the side where the luster layer is provided, as described above.
  • Fig. 13 (e) shows metal layers 13 on both sides of support 16
  • the optical circuit-electric circuit mixed board material is formed on both sides of the support 16.
  • FIG. 15 (a) shows an example of the embodiment of the present invention according to the eleventh aspect, in which a light-transmitting resin layer 11 is laminated while directly contacting one surface of an optical circuit forming layer 12. It is formed by laminating a metal layer 13 on the surface of the optical circuit forming layer 12 opposite to the side on which the light transmitting resin layer 11 is provided.
  • the optical circuit forming layer 12 is made of a light-transmitting resin whose refractive index is changed by irradiation with active energy rays and whose refractive index is reduced by irradiation with active energy rays.
  • the same resin as the optical circuit forming layer 4 can be used as the resin whose refractive index is lowered by the irradiation of the active energy ray.
  • the portion not irradiated with the active energy ray is the portion irradiated with the active energy ray and the resin forming the light-transmitting resin layer 11. Higher refractive index.
  • the material for the optical circuit-electric circuit mixed board is coated with a resin for forming the optical circuit forming layer 12 on the mat surface in the same manner as described above.
  • the optical circuit forming layer 12 can be manufactured by coating a resin for forming the light transmitting resin layer 11 on the optical circuit forming layer 12.
  • the active energy ray E is irradiated on the optical circuit forming layer 12 through the light transmitting resin layer 11 from the side opposite to the metal layer 13.
  • the irradiation of the active energy ray is performed in a pattern opposite to the wiring pattern of the optical wiring.
  • the pattern irradiation of the active energy ray can be performed by mask exposure with ultraviolet light, drawing exposure with a laser, or the like.
  • the refractive index of the portion of the optical circuit forming layer 12 that has not been irradiated with active energy rays does not change, but the portion of the optical circuit forming layer 12 that has been irradiated with active energy rays has a lower refractive index, and the optical circuit forming layer has a lower refractive index.
  • a high refractive index portion 12 a of the non-irradiated portion and a low refractive index portion 12 b of the irradiated portion are formed.
  • the optical circuit pattern After forming the high-refractive-index portion 12 a with the adhesive layer 23 on the surface of the light-transmitting resin layer 11 opposite to the side on which the optical circuit forming layer 12 is provided, By bonding with an adhesive 23 to the surface of the printed wiring board 22 manufactured by providing the above, the printed wiring board 22 is laminated on the printed wiring board 22 as shown in FIG. 16 (c). After that, wiring is performed on the metal layer 13 on the surface to form the electric wiring 24 as shown in FIG. 16 (d), and further, laser via processing and plating are performed to connect the electric wiring 21 and the electric wiring 24. be able to.
  • the metal layer 13 corresponds to the force to leave the portion corresponding to the high refractive index portion 12 a of the optical circuit forming layer 12, and corresponds to the high refractive index portion 12 a of the optical circuit forming layer 12. It is a good idea to form the electrical wiring 24 with the metal layer 13 at the part to be formed.
  • the refractive index of the high refractive index portion 12a of the optical circuit forming layer 12 of the optical wiring pattern is the low refractive index portion 12b of the optical circuit forming layer 12. Since the refractive index of the light-transmitting resin layer 11 that is in direct contact with the optical circuit forming layer 12 is higher than the refractive index of the light-transmitting resin layer 11 and the high refractive index portion 12 a is in contact with the metal layer 13 that reflects light, the optical circuit forming layer An optical waveguide is formed in which the high-refractive-index portion 12 of 1 2 forms the core layer 26 and the low-refractive-index portion 12 b of the optical circuit forming layer 12 and the cladding layer 27 form the light-transmitting resin layer 11.
  • the S-line is formed by the high refractive index portion 12 a of the optical circuit forming layer 12, and the optical wiring, the electrical wiring 21, and the electrical wiring are formed by the high refractive index portion 12 a of the optical circuit forming layer 12. It can be used as an optical circuit-electric circuit mixed board on which 24 are stacked.
  • FIG. 15 (b), FIG. 15 (c), FIG. 15 (d), and FIG. 15 (e) show other embodiments, and FIG. A flame-retardant adhesive layer 14 is provided between the layer 13 and the resin layer.
  • Fig. 15 (c) shows the surface of the resin layer opposite to the metal layer 13 as described above.
  • Fig. 15 (d) shows the support 16 peelable on the side opposite to the side where the resin layer of the metal layer 13 is provided, as in the above description.
  • a metal layer 13 is provided on both sides of a support 16 to form a material for an optical circuit-electric circuit mixed board on both sides of a support 16. It was done.
  • the material for the optical circuit / electric circuit mixed board has a metal layer.
  • a laminate with one or more various resin layers formed on a temporary substrate By forming the composite and then peeling the temporary substrate from the laminate, a material for an optical circuit-electric circuit mixed substrate having no metal layer can be manufactured.
  • a temporary substrate may be any suitable one, and may be a metal or plastic plate, sheet, or the like in which the side on which the resin layer is to be laminated is peeled off.
  • the material for an optical circuit / electric circuit hybrid board without a metal layer obtained in this way is obtained by bonding and laminating the metal layer described above to the material for an optical circuit / electric circuit hybrid board.
  • a material for an optical circuit-electrical circuit hybrid board having a metal layer of the type described above, which is used for manufacturing an optical circuit-electric circuit hybrid board as described above and as described later. can do.
  • the bonding of the metal layer can be performed after or after various processing of the material for the optical circuit / electric circuit mixed board without the metal layer.
  • FIG. 17 shows an example of an embodiment of a method for manufacturing an optical circuit-electric circuit hybrid board according to the present invention.
  • the material for the optical circuit-electric circuit mixed substrate used in this manufacturing method includes a metal layer 202, an optical circuit forming layer 201, a light transmitting resin layer 212 and A laminate 3 having a cover film 215.
  • the metal layer 202 is for forming the electric circuit 206
  • the optical circuit forming layer 201 is for forming the core 204a of the optical waveguide 204.
  • the light-transmitting resin layer 211 is for bonding the metal layer 202 and the optical circuit forming layer 201
  • the cover film 215 is for bonding the optical circuit forming layer 201. It is for covering the surface.
  • the photosensitive resin forming the optical circuit forming layer 201 a resin whose solubility in a solvent is changed by irradiation with active energy rays such as ultraviolet rays is used. Those having high heat resistance are preferred. Specifically, those exemplified above in connection with the material for an optical circuit-electric circuit mixed board of the present invention can be used.
  • the light-transmitting resin forming the light-transmitting resin layer 2 17 has a refractive index of at least the refractive index of the optical circuit forming layer 201 (at least the exposed portion 201 a of the optical circuit forming layer 201 described later). It is preferable to use a material having a lower flame retardancy, having a high flame retardancy, and absorbing an active energy ray irradiated to the optical circuit forming layer 201. If it is difficult to satisfy such conditions with a single light-transmitting resin layer 2 17, use a low-refractive-index optical circuit forming layer. It can also be formed in a two-layer structure of a layer on the side of 201 and a layer adhered to the metal layer 202.
  • this resin may contain an additive or reaction type halogen-based, phosphorus-based, silicon-based flame retardant or an ultraviolet absorber for imparting flame retardancy or absorbing active energy rays.
  • metal layer 202 those exemplified in connection with the material for an optical circuit-electric circuit mixed substrate of the present invention can be used.
  • a metal foil can be used.
  • a copper foil having a thickness of about 9 to 70 ⁇ m can be suitably used.
  • the present invention is not limited to this, and may be aluminum foil, nickel foil, or the like, and the thickness is not limited to the above range.
  • a rigid support can be provided with an adhesive or the like so as to be detachable, so that the handleability of the metal layer 202 can be enhanced. .
  • a metal plate, a resin plate, a ceramic plate, or the like can be used, and the surface on which the metal layer 202 is laminated is a mirror surface, which is preferable from the viewpoint of peeling force. Further, a metal layer 202 can be provided on the surface of the support by plating.
  • the cover film 215 the force which can use those exemplified in connection with the optical circuit-electric circuit mixed substrate material of the present invention is not limited thereto.
  • the thickness of the cover film 215 is not particularly limited, but a thickness of 5 to 100 / Xm is preferably used. Further, a film obtained by subjecting the surface of the cover film 215 to a release treatment can also be used.
  • the cover film 215 is not essential, and a laminate 203 without the cover film 215 can be used.
  • a light-transmitting resin is coated on the mat surface with a comma coater, curtain coater, die coater, screen printing, and offset printing.
  • the light-transmitting resin layer 217 may be in a semi-cured state, and the curing method and curing conditions are appropriately selected according to the type of the resin.
  • the surface of the cover film 215 is coated with a photosensitive resin to form an optical circuit forming layer 201, and By laminating and bonding the transparent resin layer 2 17 and the optical circuit forming layer 201, a laminate 203 as shown in FIG. 17A can be obtained.
  • the optical circuit forming layer 201 is formed on the light transmitting resin layer 2 17 by coating. Thereafter, the cover film 215 may be laminated on the optical circuit forming layer 201.
  • an active energy ray E such as ultraviolet rays was applied from the side opposite to the metal layer 202 to the optical circuit forming layer through the cover film 210. Irradiate 201.
  • the irradiation of the active energy ray E is performed through a photomask (not shown) on which the same pattern as the optical circuit is formed.
  • a reference mark (not shown) is formed in the metal layer 202 in advance by patterning, and the photomask is positioned and exposed with reference to the reference mark, whereby the reference mark is determined.
  • the position at which the exposure section 201a is formed can be determined.
  • drawing exposure using a laser or an electron beam may be used depending on the characteristics of the photosensitive resin.
  • the deflection part 205 is formed. That is, first, as shown in FIG. 17 (c), the portion where the exposed portion 201a of the optical circuit forming layer 201 was formed together with the cover film 215 from the top of the force bar film 215 was V-shaped.
  • the V-groove 221 can be formed, for example, by cutting using a rotating blade or a cutting tool provided with a cutting blade having a vertical angle of 90 ° or a single-sided inclination of 45 °.
  • Fig. 17 (c) shows an example of cutting using a rotating blade or cutting tool having a cutting blade with a vertex of 90 °.
  • the V-grooves 221 allow the exposed portion 201 a to be the core portion 204 a of the optical waveguide 204 in the longitudinal direction, that is, at an angle of 45 ° with respect to the optical waveguide direction.
  • An inclined surface 207 that is inclined can be formed. It should be noted that the formation of the inclined surface 207 may be performed by a laser abrasion, a V-shaped pressing die (a concave portion complementary to a convex portion of the die by being pressed), in addition to the cutting process using such a blade and a cutting tool. Type, a type of male type). Can also be.
  • Fig. 19 shows the cutting of the V-groove 221, while rotating the rotating blade 241, which is formed by providing a cutting blade 240 with an apex angle of 90 ° on the outer circumference, by the rotating shaft 242.
  • a rotating blade 2 41 is used as a cutting blade 2 4 0 on a laminate 2 3 at a position where an inclined surface 2 7 is formed on an exposed portion 2 0 1 a of an optical circuit forming layer 2 1.
  • the rotating blade 2441 is separated from the cutting portion, thereby performing cutting.
  • the rotating blade 2 41 is brought into contact with the laminate 203 as indicated by the arrow A, and the outer peripheral cutting blade 240 cuts the V groove 21 to a predetermined depth.
  • the rotating blade 24 1 is separated from the laminate 203 as shown by the arrow B as it is.
  • the V-groove 221 can be formed with a short length, and the V-groove 221 is machined only on one (or a small number) of the exposed portions 2 O la to form the inclined surface 207. Can be formed.
  • the rotating blade 2 41 is brought into contact with the laminate 203 as shown by the arrow A, and then scanned along the surface of the laminate 203 as shown by the arrow B.
  • the rotating blade 241 After cutting the V-groove 221 at a predetermined depth and a predetermined length with the outer peripheral cutting blade 240, the rotating blade 241 is separated from the laminate 203 as indicated by the arrow C. I have. In this case, it is possible to form a long V-groove 2 21 with a length to be scanned by the rotating blade 2 41, and to simultaneously process the V-groove 2 2 1 in a plurality of exposure portions 201 a, An inclined surface 207 can be formed in the exposed portion 201a.
  • the V-groove 221 normally has the entire thickness direction of the exposed portion 1a which will be the core portion 204a of the optical waveguide 204 described later, like the V-groove 221a shown in FIG.
  • the core portion 204a is completely shut off by the deflecting portion 205 formed on the inclined surface 207 of the V-groove 221a as described later. All of the light propagating through the core portion 204a can be deflected by the deflection portion 205 and extracted.
  • the exposed portion 2 which becomes the core portion 204 a of the optical waveguide 204 as shown in the V-groove 222 b shown in FIG.
  • the core portion 204a is not completely shut off by the deflecting portion 205 formed on the inclined surface 207 of the V groove 222b, so that the core portion 204 4 While a part of the light propagating through a is deflected by the deflecting unit 205 and extracted, the other 05, and the deflection unit 205 can be formed as a branch emission mirror.
  • the cutting blade 240 of the rotating blade 2 41 is formed by fixing abrasive grains to the surface, so that The surface roughness of the inclined surface 207 which is the cutting surface of the V-groove 221 becomes a problem.
  • the rotating blade 241 which has a large abrasive grain count (that is, the abrasive grain is fine)
  • the surface roughness of the cutting surface of the V-groove 221 can be reduced, but the cutting force
  • the V blade 2 41 is machined by pushing the cutting blade 2 40 of the rotating blade 2 41 into the laminate 230, the surface of the rotating blade 2 41 may be pulled or distorted.
  • an optical circuit is formed by using a rotating blade 241, which has a small abrasive grain number (that is, a coarse abrasive particle diameter), and bringing the cutting edge 240 of the rotating blade 241 into contact with the laminate 203.
  • the abrasive grain number is the second largest (that is, the abrasive particle diameter is small).
  • the light reflecting portion 209 is provided on the inclined surface 207 as shown in Fig. 18 (a). Thereby, the deflection part 205 can be formed.
  • the light reflecting portion 208 can be formed by applying a paste containing metal particles such as a silver paste to the inclined surface 207 by a printing method.
  • the metal particles not only silver but also a high-reflectance metal such as gold may be used. Further, in order to improve the flatness of the reflecting surface of the light reflecting portion 208 and obtain high reflection efficiency, it is desirable that the metal particles have a particle size of 0.2 or less.
  • the particle size of the metal particles is preferably as small as possible, and fine particles up to about several nm can be used.
  • the light reflecting portion 208 may be formed not only by printing the metal particle-containing paste as described above but also by selectively depositing metal on the inclined surface 207 by vapor deposition or sputtering. Can be. As shown in Fig. 18 (b), the force The bar film 2 15 is removed to complete the deflection section 205.
  • the V-grooves 2 21 are processed from above the cover film 2 15, but a laminate 203 without the cover film 2 15 is used.
  • the V-groove 221 is directly processed in the optical circuit forming layer 201.
  • the V-groove is formed. Paste and the like can be prevented from adhering to the optical circuit forming layer 201 other than at the portion of the optical circuit forming layer 201, so that the cover film 215 is adhered to the surface of the optical circuit forming layer 201. Processing is preferably performed.
  • the reflector 209 whose surface inclined at 45 ° becomes the reflecting surface 209 is formed. 0 is used as a pressing mold, and as shown in Fig. 21 (a), by leaving the reflector 210 in the V-groove 221 as it is, the inclined surface 207 of the V-groove 221 is formed.
  • the deflection surface 205 can be formed by the reflection surface 9. In this case, the deflection portion 205 can be formed simultaneously with the processing of the V-groove 221, and the number of steps can be reduced.
  • the formation position of the deflecting portion 205 can be determined with reference to a reference mark formed in advance on the metal layer 202.
  • the cover film 215 is removed.
  • the optical circuit forming layer 201 is irradiated with an active energy ray to form an exposed portion 201 a to be the core portion 204 a of the optical waveguide 204.
  • the processing for forming the deflection section 205 is performed, but the processing for forming the deflection section 205 is performed first, and thereafter, the core section 204 a of the optical waveguide 204 is formed.
  • a process for forming the exposed portion 201a may be performed.
  • a V-groove 221 is formed in the optical circuit forming layer 201 before being cured by irradiation with active energy rays.
  • the formation of the V-shaped groove 222 is facilitated.
  • the pressing die is pressed to form the V-groove 221 or the reflector 210 is used to form the V-groove 221, before the optical circuit forming layer 201 is cured.
  • the V-shaped groove 222 can be formed more easily in a soft state, and the deflection portion 205 can be formed with high precision.
  • the cover film 215 is peeled off, By developing with an agent, portions other than the exposed portion 1a of the optical circuit forming layer 201 are dissolved and removed as shown in FIG. 17 (d).
  • an insulating substrate 211 provided with the electric circuit 211 is prepared in advance.
  • a printed wiring board having the electric circuit 212 formed on the surface thereof with a metal such as copper can be used.
  • the laminate 203 is adhered to the surface of the substrate 211 on the side of the optical circuit forming layer 201 via an adhesive 214.
  • the adhesive 2 14 is formed of a light-transmitting resin having a lower refractive index than the exposed portion 1 a of the optical circuit forming layer 201, and forms the light-transmitting resin layer 2 17.
  • the same resin as the resin can be used.
  • the laminate 203 may be bonded to 2111.
  • the refractive index of the adhesive 214 is no longer limited as described above.
  • a simple plate having no electric circuit 212 may be used as the substrate 211. In this case, the processing of the via hole described later becomes unnecessary. Further, the laminate 203 may be bonded to both surfaces of the substrate 211.
  • the light-transmitting resin layer 2 is removed from the metal layer 202 as shown in FIG. Via holes 2 13 are formed through 17 and the adhesive 2 14.
  • the formation of the viahornole 2 13 can be performed by laser processing.
  • the inner periphery of the via hole 2 13 is plated to form an electrically conductive portion 22.
  • the metal layer 202 is subjected to photolithography pattern jung and etching.
  • photolithography patterning is performed with reference to a reference mark formed in advance on the metal layer 202, thereby forming the electric circuit 206 with reference to the reference mark. The forming position can be determined.
  • the exposed portion 1a of the optical circuit forming layer 201 has a core portion 204a having a high refractive index, a light transmitting resin layer 211 and an adhesive 211. Becomes a clad portion 204b having a low refractive index, and an optical waveguide 204 is formed in the exposed portion 1a.
  • the optical circuit using the optical waveguide 204, the electric circuit 206, and the electric circuit 212 are mixedly mounted.
  • the metal layer 202 in the portion directly above the deflection portion 205 formed at the end of the optical waveguide 204 has been removed, and the light propagated through the optical waveguide 204 is deflected.
  • the light is reflected by the part 205, and the traveling direction of the light is deflected by 90 ° in the thickness direction of the optical circuit-electric circuit mixed substrate, and is emitted to the outside through the light transmitting resin layer 217. . Further, light incident from the outside through the light-transmitting resin layer 217 is reflected by the deflecting portion 205, the traveling direction is deflected by 90 °, and enters the optical waveguide 204. I have.
  • the electrical circuit 2 0 6 and the electric circuit 2 1 2 are electrically connected by the electrically conductive portion 2 2 2 Biahonore 2 1 3.
  • the via hole 2 13 is processed by irradiating a laser beam at a position directly above the electric circuit 2 1 2 provided on the substrate 2 1 1.
  • the laser light is reflected by a metal such as copper forming the electric circuit 2 12, and the metal of the electric circuit 2 Light does not penetrate deeper than this, and a via hole 2 13 can be formed with the electric circuit 2 12 as the bottom surface.
  • the electric circuit 211 is reliably exposed to the bottom of the via hole 213, and the reliability of the conductive connection between the electric circuit 212 and the electric circuit 206 via the via hole 213 is improved. be able to.
  • the formation of the exposed portion 201 a to be the core portion 204 a of the optical waveguide 204, the formation of the deflecting portion 205, and the formation of the electric circuit 206 are all performed on the metal layer 202 in advance. Since the optical waveguide 204, the deflecting unit 205, and the electric circuit 206 are aligned with each other based on the fiducial mark, the optical waveguide 204, the deflecting part 205, and the electric circuit 206 are aligned with each other. Thus, the optical waveguide 204, the deflecting section 205, and the electric circuit 206 can be formed with high positional accuracy.
  • FIG. 22 shows another embodiment of the present invention.
  • a metal layer 202 for forming an electric circuit 206 and a core portion 2 of an optical waveguide 204 are provided.
  • the cover film 210 covers the surface of the optical circuit forming layer 201, which forms the optical circuit forming layer 204 and the cladding portion 204b, on the opposite side of the metal layer 202 of the optical circuit forming layer 201.
  • the laminated structure 203 is used.
  • active energy used in which the refractive index of the irradiation area changes by the irradiation.
  • a resin capable of inducing a change in the refractive index by irradiation with ultraviolet light a composite resin containing a photopolymerizable monomer in an acrylic resin or a polycarbonate resin, a polysilane resin, or the like can be used.
  • the metal layer 202 and the cover film 215, those described above can be used.
  • a photosensitive resin is applied to the mat surface by a comma coater, curtain coater, die coater, screen printing, or offset printing. This can be performed by forming an optical circuit forming layer 201 by coating with a cover film and laminating a cover film 215 on the surface of the optical circuit forming layer 201.
  • an active energy ray E such as ultraviolet rays is applied from the side opposite to the metal layer 202 to the optical circuit forming layer 202 through the cover film 210.
  • Irradiate 1 Irradiation with the active energy ray E is performed through a photomask as in the case of FIG. 17, and the exposure is performed by positioning the photomask with reference to a reference mark formed in advance on the metal layer 202.
  • the refractive index of the exposed portion 1a of the optical circuit forming layer 201 is changed so as to increase, and
  • the exposed portion 201a has a higher refractive index than the other non-exposed portions 201b of the optical circuit forming layer 201.
  • the active energy ray E is irradiated from the interface opposite to the metal layer 202 of the optical circuit forming layer 201, so that the photoreaction caused by the irradiation of the active energy ray E is generated in the optical circuit forming layer 201. It proceeds in the thickness direction from the interface opposite to the metal layer 202 toward the inside.
  • the non-exposed portion 201 b is left in the portion of the photosensitive resin 1 on the side of the metal layer 202 in the thickness direction, and the metal layer 2 is removed.
  • the exposed portion 201a can be formed only in the portion opposite to the portion 02.
  • drawing exposure using a laser or an electron beam may be used according to the characteristics of the photosensitive resin.
  • the V-shaped groove 222 is machined to form the deflection part 205.
  • the formation of the deflecting portion 205 can be performed in the same manner as in the case of FIG. 17 (c).
  • the cover film 215 is peeled off as shown in FIG. here,
  • the exposed portion 201a of the optical circuit forming layer 201 has a higher refractive index than the non-exposed portion 1b, and the exposed portion 201a has a core portion 204a of the optical waveguide 204. Since the clad portion 204b is formed by the non-exposed portion 201b, the developing step as in the case of FIG. 17 is unnecessary. Also in the embodiment shown in FIG.
  • the processing for forming the deflecting portion 205 is performed first, and thereafter, the exposure for forming the core portion 204 a of the optical waveguide 204 on the optical circuit forming layer 201 is performed. Processing for forming the part 201a may be performed.
  • a laminate 203 is applied to the surface of the substrate 211 on which the electric circuit 211 is provided, such as a printed wiring board, with an adhesive on the optical circuit forming layer 201 side.
  • the adhesive 2 14 is formed of a light-transmitting resin having a lower refractive index than the exposed portion 1 a of the optical circuit forming layer 201, and is formed of a non-exposed portion 1 b of the optical circuit forming layer 201.
  • Those having the same refractive index as described above are preferred.
  • the same resin as that forming the light-transmitting resin layer 211 can be used.
  • the laminate 203 may be bonded to the substrate 211.
  • the adhesive may be used.
  • the refractive index of 2 14 is no longer limited as described above.
  • the substrate 211 may be a simple plate having no electric circuit 212, and the laminated body 203 may be bonded to both surfaces of the substrate 211.
  • a via hole 211 is formed as shown in FIG.
  • the metal layer 202 is processed to form an electrical circuit 206.
  • Optical circuit such as) —Electric circuit mixed board can be obtained.
  • the formation of the via hole 2 13, the formation of the electrically conductive portion 222, and the formation of the electric circuit 206 can be performed in the same manner as in the case of FIG.
  • the exposed portion 1a of the optical circuit forming layer 201 has a core portion 204a having a high refractive index
  • the non-exposed portion 201 of the optical circuit forming layer 201 has a high refractive index
  • b and the adhesive 2 14 form a clad portion 204 b having a low refractive index
  • an optical waveguide 204 is formed in the exposed portion 201 a.
  • Circuit and electric circuit 206 and electric circuit 212 are mixed.
  • Also formed at the end of the optical waveguide 204 The light propagating through the optical waveguide 204 can be deflected by the deflecting unit 205, and can be emitted to the outside. Light from the outside is deflected by the deflecting unit 205, and the optical waveguide 2 0 4 can be incident.
  • FIG. 23 shows another embodiment of the present invention.
  • a metal layer 202 for forming an electric circuit 206 and a core 2 of an optical waveguide 204 are provided.
  • a cover film covering the surface of the second light-transmitting resin layer 223 provided on the surface of the optical circuit forming layer 201 opposite to the metal layer 202, and the surface of the second light-transmitting resin layer 223 A laminate 203 composed of 215 is used.
  • the photosensitive resin forming the optical circuit forming layer 201 a resin whose refractive index in an irradiated area is changed by irradiation with active energy is used. Examples can be given.
  • the light-transmitting resin forming the light-transmitting resin layer 217 includes an optical circuit forming layer.
  • a resin having a refractive index smaller than that of a core portion 204 a described later of 201 is used, and has a refractive index similar to that of the cladding portion 204 b of the optical circuit forming layer 201. Is preferred. Further, those having high flame retardancy and absorbing the active energy irradiated to the optical circuit forming layer 201 are preferable. If it is difficult to satisfy such conditions with a single layer of the light-transmitting resin layer 217, it is bonded to the layer on the side of the optical circuit forming layer 201 having a low refractive index and the metal layer 202. It can also be formed in a two-layer structure with a layer.
  • thermosetting resin such as the above-mentioned light-curable resin, epoxy resin, polyimide resin, unsaturated polyester resin, epoxy acrylate resin, or the like is used. be able to.
  • this resin may contain an additive-type or reaction-type halogen-based, phosphorus-based, or silicon-based flame retardant or an ultraviolet absorber for imparting flame retardancy or absorbing active energy rays.
  • the light-transmitting resin forming the second light-transmitting resin layer 223 a resin having a smaller refractive index than a core portion 204a of the optical circuit forming layer 201 described later is used, About the same as the cladding part 204 b of the optical circuit forming layer 201 and the above-mentioned light transmitting resin layer 211 Those having a refractive index of the order of magnitude are preferred. Further, it is necessary that the optical circuit forming layer 201 has a property of transmitting almost all of the active energy irradiated to the optical circuit forming layer 201. Further, it is preferable to have flame retardancy. In order to impart flame retardancy, an additive or reaction type halogen-based, phosphorus-based, silicon-based flame retardant or an ultraviolet absorber may be contained.
  • a light-transmitting resin is coated on the mat surface with a comma coater, curtain coater, die coater, screen printing, and offset printing. Then, if a solvent is contained, it is dried and removed, and then, if necessary, cured to form a light-transmitting resin layer 217.
  • the light-transmitting resin layer 217 may be in a semi-cured state, and a curing method and curing conditions are appropriately selected according to the type of the resin.
  • the surface of the cover film 215 is similarly coated with a light-transmitting resin to form a second light-transmitting resin layer 223, and then a photosensitive resin is coated thereon to form an optical circuit.
  • Layer 201 is formed in advance. Then, by laminating and bonding the light-transmitting resin layer 2 17 and the optical circuit forming layer 201, a laminate 203 as shown in FIG. 23 (a) can be obtained. After forming the light transmitting resin layer 2 17 on the metal layer 202 as described above, the optical circuit forming layer 201 is coated thereon, and the second light transmitting layer is formed on the cover film 2 15. It is also possible to form the resin layer 223 and laminate them by laminating them.
  • the optical circuit forming layer 201 is coated on the light-transmitting resin layer 217 to form. Further, a second light-transmitting resin layer 223 may be formed thereon by coating, and thereafter, a cover film 215 may be laminated on the optical circuit forming layer 201. ,. These may be performed in a continuous process.
  • an active energy ray E such as ultraviolet rays is applied from the side opposite to the metal layer 202 to the cover film 211 and the second light transmission.
  • the optical circuit formation layer 201 is irradiated through the conductive resin layer 222. Irradiation with the active energy ray E is performed through a photomask as in the case of FIG. 17, and the photomask is positioned and exposed based on a reference mark formed in advance on the metal layer 202.
  • the active energy ray E is irradiated to the optical circuit forming layer 201. Exposure allows the refractive index of the exposed portion 201a to be changed.
  • a photoreaction occurs in the entire thickness of the optical circuit forming layer 201 in the thickness direction, and the exposed portion 201a is formed in the entire thickness of the optical circuit forming layer 201 in the thickness direction. Is formed.
  • the core portion 210 of the optical waveguide 204 is required.
  • a mask capable of irradiating only the same pattern area as 4a is used.
  • the exposed portion 201a of the optical circuit forming layer 201 changes so as to have a higher refractive index, and the exposed portion 201a The refractive index can be made higher than the unexposed portion 201b.
  • the core portion 204 of the optical waveguide 204 is formed.
  • a mask capable of irradiating only the pattern area opposite to a is used.
  • the exposed portion 201 a of the optical circuit forming layer 201 is changed so that the refractive index of the exposed portion 201 a becomes low, and the non-exposed portion 20
  • the refractive index of lb can be higher than that of the exposed part 201a.
  • the V-shaped groove 222 is machined to form the deflection part 205.
  • the formation of the deflecting portion 205 can be performed in the same manner as in the case of FIG. 17 (c).
  • the cover film 215 is peeled off as shown in FIG.
  • the processing for forming the deflection part 205 is performed first, and thereafter, the core part 204 a of the optical waveguide 204 or the optical circuit formation layer 201 is formed. Processing for forming the exposed portion 201a to be the clad portion 204b may be performed.
  • the laminate 230 is placed on the side of the second light-transmitting resin layer 22 3 on the surface of the substrate 21 provided with the electric circuit 21 such as a printed wiring board. Glue through the adhesive 2 1 4 with.
  • the refractive index of the adhesive 214 is not limited, and any adhesive can be used.
  • the substrate 2 1 1 has an electric circuit 2 1 2 It may be a simple plate that is not used, and the laminated body 203 may be bonded to both surfaces of the substrate 211.
  • a via hole 211 is formed as shown in FIG.
  • the metal layer 202 is processed to form an electric circuit 206, and as a result, as shown in FIG.
  • Optical circuit such as) —Electric circuit mixed board can be obtained.
  • the formation of the viahorne 2 13, the formation of the electrical conduction section 222, and the formation of the electrical circuit 206 can be performed in the same manner as in the case of FIG.
  • the optical circuit forming layer 201 when the photosensitive resin of the optical circuit forming layer 201 has a property of being changed so that the refractive index is reduced by irradiation with active energy rays, the optical circuit forming layer
  • the non-exposed part 201 of the core 201 has a high refractive index core part 204a, the exposed part 201 of the optical circuit forming layer 201, the light-transmitting resin layer 210, and the second light.
  • the transparent resin layer 222 forms a clad portion 204b having a low refractive index, and the optical waveguide 204 is formed in the non-exposed portion 201b.
  • An optical circuit, an electric circuit 206 and an electric circuit 212 are mixedly mounted.
  • the light propagated through the optical waveguide 204 can be deflected and emitted to the outside by the deflecting portion 205 formed at the end of the optical waveguide 204, and the external light can be deflected.
  • the light can be deflected at 205 and made incident on the optical waveguide 204.
  • the exposed portion 201 a of the optical circuit forming layer 201 Is the core part 204 a having a high refractive index
  • the non-exposed part 201 b of the optical circuit forming layer 201, the light-transmitting resin layer 217, and the second light-transmitting resin layer 223 are refractive indexes
  • the optical waveguide 204 is formed in the exposed portion 201a as a clad portion 204b having a low thickness.
  • FIG. 24 (a) shows another embodiment of a method of forming a deflecting section 205 in the core section 204a of the optical waveguide 204.
  • the V-groove 222 is not processed.
  • the core portion 204 a of the optical waveguide 204 is formed, and the cover film is formed.
  • press with a large number of small protrusions 2 5 The microprojections 2 25 are pressed against the surface of the optical circuit forming layer 201 on which the core portion 204 a is formed by using a mold 222, thereby forming a fine row of periodic lattice-like grooves 27. Is formed on the surface of the exposed portion 201a of the optical circuit forming layer 201 to be the core portion 204a.
  • a grating is formed by the minute rows 2 27 of the periodic structure, and the optical path of light propagating through the core portion 204 a of the optical waveguide 204 can be deflected by the minute rows 2 27. it can. Therefore, it is not necessary to machine and form the inclined surface 207 as in each of the above embodiments, and the deflecting unit 205 can be formed by the minute rows 227 of the periodic structure.
  • the stamping die 226, a die manufactured by transferring a fine groove formed on a silicon wafer by a semiconductor manufacturing process into a master die and transferring the nickel die with nickel electrode can be suitably used.
  • the core of the optical circuit forming layer 201 with the press mold 226 may be used. It is preferable to heat the portion where the core portion 204a is formed and soften the portion where the core portion 204a of the optical circuit forming layer 201 is formed to enhance the transferability. In the case where the optical circuit forming layer 201 is made of a resin that is cured by exposure, the transfer 1 ′′ may be enhanced by pressing the pressing mold 226 before curing. After providing the micro-rows 27 of the periodic structure on the surface of the portion where the core portion 204 a of the optical circuit forming layer 201 is formed as shown in FIG. By imprinting and filling a transparent material having a refractive index greatly different from a, it is possible to form the deflecting portion 205 with a large refractive index difference and high deflection efficiency.
  • FIG. 24 (b) shows another embodiment of the method of forming the deflection part 205 in the core part 204a of the optical waveguide 204, in which the metal layer 202 and the light-transmitting resin layer are formed.
  • the laminate 203 prepared by laminating the optical circuit forming layer 201 with the optical circuit forming layer 201 and stretching the cover film 215, for example, in the same manner as in FIGS. 23 (a) to 23 (b)
  • the core portion 204 a of the optical waveguide 204 is formed by providing the exposed portion 1 a in the optical circuit forming layer 201
  • the core of the optical circuit forming layer 201 is passed through the cover film 205.
  • the laser beam L is condensed and radiated in the portion where the portion 204a is formed.
  • the refractive index of the optical circuit forming layer 201 in the converged and irradiated portion can be changed, and the portion in which the refractive index is changed is periodically changed.
  • Lattice It is formed as a micro-row 2 28. It is preferable to use a pulse laser having a high peak intensity for the laser light L. The power intensity is increased at the focal point, and the resin of the optical circuit formation layer 201 is modified and refracted only in this high power region. The rate can be varied.
  • the grating is formed by the minute rows 228 of the periodic structure having the changed refractive index, and the optical path of the light propagated through the core portion 204 a of the optical waveguide 204 is formed. It can be deflected by the small rows 2 28. Therefore, the deflection portion 205 can be formed by the minute rows 228 of the periodic structure without the need to machine and provide the inclined surface 207 as in each of the above embodiments.
  • a minute row 228 of the periodic structure may be formed by forming an air gap.
  • the period of the minute rows 2 27 and 2 28 causes the wavelength of the guided light to be refracted by the core portion 204 a. It is set to the direct pitch divided by the rate. For example, if the wavelength of the guided light is 850 nm and the refractive index of the core section 204a is 1.5, the pitch of the micro rows 2 27 and 2 28 will be about 0.57 ⁇ m. Is set. In forming the minute rows 2 27 and 2 28 that constitute the periodic structure, positioning is performed with reference to a reference mark formed in advance on the metal layer 202.
  • FIGS. 25 (a) to 25 (c) show another embodiment of the optical circuit / electric circuit mixed board.
  • the optical circuit-electrical circuit hybrid board a portion of the metal layer 202 facing directly above the deflecting portion 205 provided in the optical waveguide 204 is used when forming the electric circuit 206 for pattern jungling.
  • An opening 231 has been formed which has been removed by etching and allows light to enter and exit from the deflecting section 205.
  • the surface of the resin layer (light-transmitting resin layer 217 or optical circuit forming layer 201) exposed in the opening 231 formed by partially removing the metal layer 202 is The light entering and exiting the deflecting section 205 is scattered by this roughened surface, and the light entering / exiting efficiency, that is, the coupling efficiency between the optical waveguide 204 and light is extremely reduced. . Therefore, in the embodiment of FIG. 25 (a), the light transmitting resin 2 16 is applied to the opening 2 31 formed by partially removing the metal layer 202, and is cured. The rough surface of the unevenness is filled with the light transmitting resin 216 and the surface of the light transmitting resin 216 is made a smooth surface.
  • the light entering and exiting the deflecting unit 205 is not scattered by the rough surface, and the efficiency of entering and exiting the light into and out of the deflecting unit 205 can be greatly improved, and the coupling efficiency of light can be increased.
  • the light-transmitting resin 216 a resin having a refractive index equal to or approximately equal to that of the underlying resin layer (the light-transmitting resin layer 217 or the optical circuit forming layer 201) is preferable.
  • the surface rises when the light transmitting resin 2 16 is applied to the opening 2 31 formed by partially removing the metal layer 202.
  • the light transmissive resin 2 16 is formed in a convex lens shape.
  • the convex shape of the lens is determined by the viscosity of the light-transmitting resin 216, wettability with the underlying resin layer and surrounding metal layers, and the exposed diameter of the underlying resin layer. can do.
  • the metal layer 202 remaining around the opening 231 is formed.
  • the surface or the end surface is subjected to a water-repellent treatment.
  • the light-transmissive resin 2 16 is applied by dripping and applying droplets of the light-transmissive resin 2 16. It is formed in the shape of a convex lens.
  • This water-repellent treatment can be performed by coating a polymer film 244 having a low surface energy density and having water-repellency on the surface and the end surface of the metal layer 202 around the opening 231.
  • the polymer film 244 can be coated by, for example, dropping or spraying a fluorine-based polymer diluted penis with a dispenser or the like.
  • the polymer film 244 preferably has a refractive index equal to or about the same as that of the underlying resin layer (light-transmitting resin layer 217 or optical circuit forming layer 201).
  • the underlying resin layer light-transmitting resin layer 217 or optical circuit forming layer 201.
  • water-repellent treatment in this way, the liquid of the light-transmitting resin 210
  • the liquid is repelled at the time of application by dripping, and even if the removal of the metal layer 202 is uneven due to burrs or the like, the distortion of the shape of the droplet can be reduced, and the convex shape is formed. It can increase the rise and can increase the refraction of the convex lens of the light-transmitting resin 216 without using a resin material with a large refractive index. Can be.
  • FIG. 26 shows another embodiment of the present invention, in which a metal layer 202, a light-transmitting resin layer 217, an optical circuit forming layer 201, and a cover film 215 are laminated in this order. Except for using 203, an optical circuit / electric circuit hybrid substrate is manufactured by a method according to the embodiment of FIG. However, in the embodiment of FIG. 26, as shown in FIG. 26 (e), a pre-reader 23 is used as an adhesive 2 14 for bonding the laminate 203 to the substrate 211. As shown in FIG. 26 (i), a light transmitting resin 216 having a convex lens shape is provided immediately above the deflecting portion 205 of the optical waveguide 204. FIG.
  • FIG. 27 shows another embodiment of the present invention, in which a metal layer 202 is removably attached to one side of a support body 23 3 with a double-sided adhesive tape 2 34, and then the metal layer 202 is attached to the metal layer 202.
  • a laminate 203 in which a light-transmitting resin layer 211, an optical circuit forming layer 201, and a cover film 215 are laminated in this order is used.
  • an optical circuit-electrical circuit hybrid board is manufactured by a method according to the embodiment of FIG.
  • the deflection portion 205 is formed by the method of FIG. 24 (a) using the pressing die 2 26, and As shown in FIG.
  • an adhesive 214 is applied to the optical circuit forming layer 201 via the second light transmitting resin layer 235. Further, as shown in FIG. 27 (i), a light-transmitting resin 216 is provided immediately above the deflection portion 205 of the optical waveguide 204.
  • FIG. 28 shows another embodiment of the present invention, in which a metal layer 202, a light-transmitting resin layer 217, an optical circuit forming layer 201, and a cover film 215 are laminated in this order. Except for using 203, an optical circuit / electric circuit hybrid substrate is manufactured by a method according to the embodiment of FIG. However, in the embodiment shown in FIG. 28, the V-shaped groove 222 is formed using the pressing die 2 36 as shown in FIG. 28 (c), and the light is formed as shown in FIG. The adhesive 214 is applied to the circuit forming layer 201 via the second light transmitting resin layer 235. Furthermore, as shown in Fig. 28 (j), the optical waveguide 20 A light transmissive resin 216 is provided immediately above the deflecting portion 205 of FIG.
  • FIG. 29 shows another embodiment of the present invention, in which a metal layer 202, a light-transmitting resin layer 217, an optical circuit forming layer 201, and a cover film 215 are laminated in this order. Except that the object 203 is used, an optical circuit-electric circuit hybrid board is manufactured by a method according to the embodiment of FIG. However, in the embodiment of FIG. 29, as shown in FIG. 29 (e), the adhesive 2 14 is applied to the optical circuit forming layer 201 via the second light transmitting resin layer 2 35. Further, as shown in FIG. 209 (j), a light-transmitting resin 216 is provided at a position immediately above the deflection portion 205 of the optical waveguide 204.
  • FIGS. 30 (a) and (b) show another embodiment of an optical circuit-electrical circuit hybrid board, similar to the embodiment of FIG. 25, in which the core portion 204 a of the optical waveguide 204 is provided.
  • Deflection unit 2 provided
  • the opening 2 3 1 force S is formed by etching away the metal layer 2 0 2 at the portion directly above the 0 5 and the opening 2 3 1 has a resin layer (light-transmitting resin layer 2 17 or light The circuit layer (201) is exposed.
  • a lens body 246 for optically coupling the light emitting / receiving unit and the deflecting unit 205 is disposed and attached to the opening 231.
  • the opening 2 3 1 is formed simultaneously with the etching at the time of the pattern jung forming the electric circuit 2 06 from the metal layer 2 0 2, and as described above, the metal layer 2
  • the opening 231 can be formed at a position determined with reference to the formed reference mark.
  • the position and shape of the opening 2 31 are set such that the lens body 2 46 is fitted so that the outer periphery of the lens body 2 46 is in contact with the metal layer 202 remaining around the opening 2 31.
  • the optical axis A of the lens body 24 6 passes through the deflecting section 205 when it is arranged and mounted, the aperture formed by removing the metal layer 202 is formed.
  • the lens body 246 can be easily and accurately mounted simply by fitting and mounting the lens body 246 in accordance with the position of the part 231.
  • a spherical lens (ball lens) as the lens body 246.
  • the spherical lens in addition to a completely spherical lens as shown in Fig. 30 (a), the distance from the surface of the light emitting / receiving element (and the module equipped with these) mounted directly above, From the viewpoint of the accuracy of the opening shape of the opening 231, for example, a half-ball lens having a part of the outer periphery flattened, for example, a hemispherical half-ball lens as shown in FIG. 30 (b) can be used.
  • FIG. 30 (b) a half-ball lens having a part of the outer periphery flattened
  • the resin layer (light-transmitting resin layer 21 or optical circuit forming layer 201) of the underlayer exposed to the lens body 246 and the opening 231 is formed. It is preferable to fill the transparent resin 247 so as to fill the gap between the surface and the surface. By filling the light transmissive resin 247 in this way, it is possible to avoid reflection loss due to the formation of an air layer between the lens body 246 and the underlying resin layer.
  • the lens body 246 can be firmly fixed by the adhesive action of the transparent resin 247.
  • As the light-transmitting resin 247 a resin having a refractive index equal to or approximately equal to that of the underlying resin layer (the light-transmitting resin layer 217 or the optical circuit forming layer 201) is preferable.
  • a material that is cured by irradiating light such as ultraviolet light can be used as the light-transmitting resin 247.
  • an optical circuit-electric circuit hybrid board is manufactured in the same manner as in FIG. 29 described above, and provided on the core portion 204a of the optical waveguide 204.
  • the metal layer 202 in a portion directly above each of the deflecting sections 205 is etched away to form openings 231 at a plurality of locations, and a photocurable light is applied to each of the openings 231.
  • the lens bodies 246 are respectively placed on the liquid of the light permeable resin 247 as shown in FIG. As shown in c), by irradiating the light L such as ultraviolet rays at a time, the light-transmitting resin 247 in each opening 231 is light-cured, so that all the plurality of lens bodies 246 are simultaneously fixed. It can be done.
  • a reference mark is provided in advance on the metal layer 202, and the core section 204a, the deflection section 205, and the electrical section of the optical waveguide 204 are provided with reference to the reference mark.
  • the circuit 206 was formed, and the opening 231 formed at the same time as the electric circuit 206 was formed.However, a photomask for exposing the core 204a was used.
  • the reference mark is simultaneously formed in the optical circuit forming layer 201.
  • the deflecting section 205 and the electric circuit 206 are formed at positions determined with reference to the reference mark. Can be performed. Like this In this case, it is not necessary to put a reference mark in the metal layer 202 in advance, and the positional relationship between the core portion 204a of the optical waveguide 204 formed in the optical circuit forming layer 201 and the reference mark is already accurate on the photomask. Therefore, the positional accuracy between the two is high. Therefore, by using this fiducial mark as a reference, the positional accuracy between the core portion 204a of the optical waveguide 204, the deflection portion 205, the electric circuit 206, and the like can be improved. You can get higher. In this case, when forming the electric circuit 206 on the metal layer 202, it is necessary to locally remove the metal layer 202 at an approximate position to make the reference mark of the optical circuit formation layer 201 appear. . Example
  • a copper foil with a thickness of 35 / xm (“MPGT” manufactured by Furukawa Electric Co., Ltd.) is used as the metal layer 13.
  • the material was cured by irradiation with a high-pressure mercury lamp having a power of 5 j / cm 2 to form a light-transmissive luster layer 1.
  • a varnish of the photosensitive resin A is applied to a thickness of 8 O / im and dried by heating to form an optical circuit forming layer 2 having a thickness of 40 ⁇ 5 ⁇ .
  • a material for an electric circuit mixed board was prepared.
  • the varnish of photosensitive resin A is manufactured by Daicel Chemical Industries, Ltd.
  • the varnish was dried to remove the solvent, cured by irradiating a high-pressure mercury lamp with a power of 10 J / cm 2 , and cured at 150 ° C for 1 hour. It is 53.
  • the material for the optical circuit-electric circuit mixed board prepared as described above is urged to a 6 cm square
  • Optical circuit formation layer 2 through a mask made to allow light to pass through a 40 ⁇ m wide line
  • the wafer was exposed to a high-pressure mercury lamp having a power of 10 J / cm 2 and exposed to heat at 120 ° C. for 30 minutes (see FIG. 2 (a)).
  • toluene and clean-through Karlin
  • the non-irradiated parts were removed by developing with a water-based cleaning agent (a substitute for Freon manufactured by Co., Ltd.), washed with water, and dried (see Fig. 2 (b)). Thereafter, a light-transmitting resin A is applied to a thickness of 80 ⁇ m so as to cover the linear optical circuit forming layer 2, and is cured by irradiating a high-pressure mercury lamp with a power of 2.5 J / cm 2. Then, a light-transmitting resin layer 20 is formed (see FIG. 2 (c)), and a varnish of an adhesive A is applied thereon to a thickness of 40 m, and dried at 150 ° C to obtain an adhesive. Layer 23 was formed.
  • a water-based cleaning agent a substitute for Freon manufactured by Co., Ltd.
  • the varnish of the adhesive A is 90 parts by mass of “YDB 500” (brominated epoxy resin) manufactured by Toto Kasei Co., Ltd., and “YDCN_1 211” (cresol novolak type) manufactured by Toto Kasei Co., Ltd. Epoxy resin) 10 parts by mass, dicyandiamide 3 parts by mass, Shikoku Chemicals "2E4MZ” (2ethyl 4-methylimidazole) 0.1 part by mass, methylethyl ketone 30 parts by mass, dimethylformamide 8 A varnish consisting of parts by mass was used.
  • YDB 500 brominated epoxy resin
  • YDCN_1 211 cresol novolak type
  • the optical circuit-electric circuit mixed substrate obtained as described above is polished on both end surfaces orthogonal to the linear (or columnar) optical circuit forming layer 2 (that is, the core portion 26), and is polished.
  • the end surface of the optical circuit forming layer 2 (the surface of the core portion 26 seen in FIG. 2) forming the core portion of the core portion is exposed, and near-infrared light having a wavelength of 850; 0; Injected through an xm multimode optical fiber, and the light emitted from the end face on the opposite side of the core was observed with a CCD camera. Light was observed to be guided, and the optical circuit functioned. It was confirmed that.
  • the peel strength of the copper foil forming the metal layer 13 was measured and found to be 6.9 N / cm (0.7 kg / cm).
  • Example 1 after forming the optical circuit forming layer 2, a cover film 15 made of a transparent PET film having a thickness of 25 / im was pressed against the surface of the optical circuit forming layer 2 with a roll. As shown in Fig. 1 (c), a material for an optical circuit-electric circuit mixed board was fabricated. In this case, the optical circuit forming layer 2 was not exposed, so that the node ring was excellent.
  • Example 1 except that the cover film 15 was peeled off and then developed after being exposed from the top of the cover film 15, the same processing as in Example 1 was performed on the material for the optical circuit-electric circuit mixed board, thereby performing An optical circuit-electric circuit mixed board was obtained. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning.
  • the peel strength of the copper foil forming the metal layer 13 was measured, it was 6.9 N / cm (0.7 kg / cm).
  • a copper foil was used as the metal layer 13 in the same manner as in Example 1, an adhesive varnish A was applied to the metal layer 13 to a thickness of 40 ⁇ , and dried at 150 ° C to form the adhesive layer 14.
  • the light-transmitting resin layer 1 and the optical circuit forming layer 2 are formed on the adhesive layer 14 in the same manner as in Example 1 so that the optical circuit shown in FIG. Circuit Materials for circuit board were prepared.
  • Example 2 The same processing as in Example 1 was performed on the material for an optical circuit / electric circuit hybrid board to obtain an optical circuit / electric circuit hybrid board. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning.
  • the peel strength of the copper foil forming the metal layer 13 was measured, it was 9.8 / cm (1.0 kg / cm), and the adhesive strength of the metal layer 13 was improved by the adhesive layer 14. was confirmed.
  • the metal layer 13 was attached to the support 16 by bonding the shiny surface of the copper foil to the surface of the stainless steel plate with a double-sided adhesive tape.
  • a light-transmitting resin layer 1 and an optical circuit forming layer 2 on the surface of the metal layer 13 in the same manner as in Example 1, an optical circuit-electric circuit mixed substrate as shown in FIG. Material was prepared.
  • a thin metal layer 13 is a rigid support 16 Because it was reinforced, it had excellent handling properties.
  • Example 2 the same processing as in Example 1 was performed on the material for an optical circuit / electric circuit hybrid board, and finally the support 16 was peeled off to obtain an optical circuit / electric circuit hybrid board.
  • the same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning.
  • the peel strength of the copper foil forming the metal layer 13 was measured, it was 6.9 N / cm (0.7 kg / cm).
  • Example 2 Using the same copper foil as in Example 1 as the metal layer 13, a varnish of the photosensitive resin B was applied to the metal layer 13 by a roll transfer method to a thickness of 100 m, and dried by heating to obtain an optical circuit having a thickness of 50 ⁇ 5 ⁇ m. By forming the formation layer 5, an optical circuit-electric circuit mixed substrate material as shown in FIG. 7A was produced.
  • the photosensitive resin B “GRACIA PS_SR103” manufactured by Nippon Paint Co., Ltd. was used. This is a polysilane resin. At a thickness of 50 / im, the refractive index after curing (irradiation with ultraviolet light) is 1.64, and the refractive index after exposure to ultraviolet light of 10 jZcm 2 is 1.58 to 1 Changes to 62.
  • FIG. 8 (c) A was applied to a thickness of 40 m and dried at 150 ° C to form an adhesive layer 23. Then, it is superposed on the FR-5 type printed wiring board 22 with an adhesive layer 23 interposed therebetween, and is vacuum-pressed at 170 ° C. so that the optical circuit forming layer 5 has a linear high-refractive-index portion 5a and an optical wiring. Thus, an optical circuit-electric circuit hybrid board on which the core portion 26 was formed was obtained (see FIGS. 8 (d) and (e)).
  • the light transmitting resin B 100 parts by mass of “BPAF-DGEJ (fluorinated bisphenol A type epoxy resin, epoxy equivalent: 242)” manufactured by Toto Kasei Co., Ltd., “B 650 manufactured by Dainippon Ink Industries, Ltd.” (Thermosetting epoxy resin consisting of 66 parts by mass of methylhexahydrophthalanic anhydride, acid anhydride equivalent 168) and 2 parts by mass of "SA-102” (Otatyl salt of diazabisic mouth pendene) manufactured by Sanpro Corporation I used the moonlight.
  • BPAF-DGEJ fluorinated bisphenol A type epoxy resin, epoxy equivalent: 242
  • SA-102 Teatyl salt of diazabisic mouth pendene
  • the optical circuit-electric circuit mixed board obtained as described above was evaluated in the same manner as in Example 1, and it was confirmed that light was guided, and that the optical wiring was functioning. Was. Further, the peel strength of the copper foil forming the metal layer 13 was measured and found to be 4. ⁇ / ⁇ (0.5 kg / cm).
  • Example 5 after the optical circuit forming layer 5 was formed, a cover film 15 made of a transparent PET film having a thickness of 25 // m was pressed against a surface of the optical circuit forming layer 5 with a roll and stuck. Then, a material for an optical circuit-electric circuit hybrid board as shown in Fig. 7 (c) was fabricated. In this case, the optical circuit forming layer 5 was not exposed, so that the nodeability was excellent.
  • Example 5 the same processing as in Example 5 was performed on the material for the optical circuit-electric circuit hybrid board, except that the cover film 15 was peeled off after being exposed from above the cover film 15 to form the light-transmitting resin layer 20. As a result, an optical circuit-electric circuit mixed board was obtained. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning. When the peel strength of the copper foil forming the metal layer 13 was measured, it was 4.9 N / cm (0.5 kg / cm).
  • an adhesive varnish A was applied to the metal layer 13 to a thickness of 40 / m, and dried at 150 ° C to form the adhesive layer 14. Then, by forming an optical circuit forming layer 5 on the adhesive layer 14 in the same manner as in Example 5, the material for an optical circuit-electric circuit mixed substrate as shown in FIG. Made.
  • Example 5 The same processing as in Example 5 was performed on this material for an optical circuit / electric circuit hybrid board to obtain an optical circuit / electric circuit hybrid board.
  • the same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning.
  • the peel strength of the copper foil forming the metal layer 13 was measured, it was 8.8 N / cm (0.9 kg / cm), and the adhesive strength of the metal layer 13 was improved by the adhesive layer 14. It was confirmed that there was.
  • a metal layer 13 was attached to the support 16 by bonding a shy surface of copper foil to the surface of the stainless steel plate with a double-sided adhesive tape. Then, an optical circuit forming layer 5 was formed on the surface of the metal layer 13 in the same manner as in Example 5, whereby an optical circuit-electric circuit mixed substrate material as shown in FIG. In this case, since the thin metal layer 13 was reinforced by the rigid support 16, the handleability was excellent.
  • Example 2 the same processing as in Example 1 was performed on the material for an optical circuit / electric circuit hybrid board, and finally the support 16 was peeled off to obtain an optical circuit / electric circuit hybrid board.
  • the same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning. Further, when the Peinole strength of the copper foil forming the metal layer 13 was measured, it was 4.9 N / cm (0.5 kg / cm).
  • a varnish of the photosensitive resin B was applied to the metal layer 13 to a thickness of 100 m by a mouth transfer method, and heated and dried to 50 ⁇ 5 /
  • An optical circuit forming layer 12 of mtf is formed, and a light-transmissive resin B is applied thereon to a thickness of 50 ⁇ m by a pallet transfer method, and then at 100 ° C. for 1 hour and further at 150 ° C. After heating for 1 hour and curing, a light-transmitting resin layer 11 is formed, and the light as shown in Fig. 15 (a) is formed.
  • a material for a circuit-electric circuit mixed board was prepared.
  • the optical circuit produced as described above is applied to the optical circuit forming layer 12 through a mask prepared so that light passes through a 40 / m-width line by applying a force of 6 cm square to the electric circuit mixed substrate material. Exposure is performed by irradiating a high-pressure mercury lamp with a power of 10 jZcm 2 (see Fig. 16 (a)) to lower the refractive index of the exposed part and to reduce the exposed part to a low refractive index part 12b. The exposed portion was formed as a high refractive index portion 12a. (See Figure 16 (b)).
  • step a an optical circuit-electric circuit hybrid board on which the optical wiring core 26 was formed was obtained (see FIGS. 16 (c) and 16 (d)).
  • the optical circuit-electric circuit mixed board obtained as described above was evaluated in the same manner as in Example 1. It was observed that light was guided, and it was confirmed that the optical wiring was functioning. .
  • the peel strength of the copper foil forming the metal layer 13 was measured and found to be 4.9 N / cm (0.5 kg / cm).
  • Example 9 after forming the optical circuit forming layer 12 and the light transmitting resin layer 11, the cover film 15 made of a transparent PET film having a thickness of 25 / m was rolled on the surface of the light transmitting resin layer 11. By pressing and sticking with, a material for an optical circuit-electric circuit mixed board as shown in Fig. 15 (c) was produced. In this case, the handling ⁇ fe was excellent because the resin layer was not exposed.
  • Example 9 the same processing as in Example 9 was performed on the material for the optical circuit / electric circuit hybrid board, except that the cover film 15 was peeled off after being exposed from above the cover film 15 to form the adhesive layer 23. As a result, an optical circuit-electric circuit mixed board was obtained. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring functioned. When the peel strength of the copper foil forming the metal layer 13 was measured, it was found to be 4.9 N / cm (0.5 kg cm). there were.
  • a stainless steel plate was used as the support 16, and the metal layer 13 was attached to the support 16 by bonding the shiny surface of the copper foil to the surface of the stainless plate with a double-sided adhesive tape. Then, an optical circuit forming layer 12 and a light-transmitting resin layer 11 are formed on the surface of the metal layer 13 in the same manner as in Example 9, whereby an optical circuit-electrical layer as shown in FIG. A material for a circuit-mixed board was manufactured. In this case, since the thin metal layer 13 was reinforced by the rigid support 16, the handleability was excellent.
  • Example 2 the same processing as in Example 1 was performed on the material for an optical circuit / electric circuit hybrid board, and finally the support 16 was peeled off to obtain an optical circuit / electric circuit hybrid board.
  • the same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning.
  • the peel strength of the copper foil forming the metal layer 13 was measured, it was 4.9 N / cm (0.5 kg / cm).
  • the same copper foil as in Example 1 was used as the metal layer 13.
  • Light-transmissive resin A was applied to the metal layer 13 by a roll transfer method to a thickness of 50 / xm, and high-pressure mercury with a power of 2.5 jZcm 2 was used.
  • the first light-transmitting resin layer 1 was formed by irradiating and curing the lamp.
  • a varnish of photosensitive resin B is applied to a thickness of 80 / xm, and dried by heating to form an optical circuit forming layer 8 having a thickness of 40 ⁇ 5 m, and a varnish of light-transmitting resin B is further formed thereon. Apply to a thickness of 50 // m by the roll transfer method, and add 100.
  • the second light-transmitting resin layer 9 is formed, and as shown in Fig. 11 (a), for an optical circuit-electric circuit mixed board Materials were made.
  • the material for the optical circuit-electric circuit mixed board prepared as described above is urged to a 6 cm square
  • the optical circuit forming layer 8 is exposed to a high-pressure mercury lamp with a power of 10 JZ cm 2 through a mask made so that light passes in a line with an AO ⁇ m width (see Fig. 12 (a)).
  • the unexposed portion was formed as a high-refractive-index portion 8a by lowering the refractive index of the exposed portion and making the exposed portion a low-refractive-index portion 8b (see FIG. 12 (b)).
  • a varnish of adhesive A was applied to the surface of the second light transmitting resin layer 9 to a thickness of 40 ⁇ m, and dried at 150 ° C. to form an adhesive layer 23.
  • the light-transmitting resin layer 1 was formed by heating and curing for 1 hour.
  • the second light-transmitting resin layer 9 was formed by heating and curing.
  • photosensitive resin C 35 parts by mass of “Iupilon Z” (polycarbonate resin, refractive index 1.59) manufactured by Mitsubishi Gas Chemical Co., Ltd., 20 parts by mass of methyl acrylate, benzoin ethyl ether A varnish prepared by dissolving 1 part by mass of hydroquinone and 0.44 parts by mass of hydroquinone in tetrahydrofuran was used.
  • the refractive index of the cured resin having a thickness of 40 ⁇ m of the photosensitive resin C is 1.53. After irradiating this with a high-pressure mercury lamp of 3 J / cm 2 , the refractive index after exposure to vacuum at 95 ° C for 12 hours is 1.55 to 1.58 in the exposed part and in the non-exposed part. 1. 585 to 1.59.
  • the material for the optical circuit-electric circuit mixed board prepared as described above was pressed into a 6 cm square, A mask made to allow light to pass through in a 40 / m wide line was contacted to the surface of the cover film 15 and the optical circuit forming layer 8 was irradiated with a high-pressure mercury lamp of 3 jZcm 2 through the mask. (See Figure 12 (a)). After standing for 1 hour, the mixture was heated at 95 in a vacuum of 267 Pa (2 Torr) for 12 hours. By performing the exposure and heat treatment in this manner, the exposed portion has a lower refractive index than the unexposed portion, and the unexposed portion is formed as a high refractive index portion 8a and the exposed portion is formed as a low refractive index portion 8b. (See Figure 12 (b)).
  • an adhesive varnish A was applied to the surface of the second light-transmitting resin layer 9 to a thickness of 40 ⁇ , and dried at 150 ° C. to form an adhesive layer 23. .
  • the printed circuit board 22 of the FR-5 type is laminated with an adhesive layer 23 interposed therebetween, and is vacuum-pressed at 170 ° C. to form a light on the optical circuit forming layer 8 with a linear high refractive index portion 8a.
  • An optical circuit-electric circuit hybrid board on which the wiring core 26 was formed was obtained (see FIGS. 12 (c) and 12 (d)).
  • a copper foil with a thickness of 3 5 // m (“MPGT” manufactured by Furukawa Electric Co., Ltd.) is used as the metal layer 202, and the light transmitting resin B is applied to the metal layer 202 by a roll transfer method to a coating thickness of 50 ⁇ m.
  • the light-transmissive resin layer 217 was formed by applying and curing by heating at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour.
  • a varnish of the photosensitive resin A is applied to a thickness of 80 / m on the light-transmitting resin layer 2 17 and dried by heating to form an optical circuit forming layer 201 having a thickness of 40 ⁇ 5 / xm.
  • a cover film 215 made of a transparent PET film having a thickness of 25 ⁇ was pressed on this with a roll and attached to obtain a laminate 203 (see FIG. 17 (a)).
  • the laminate 203 obtained as described above was cut into 6 cm squares, and 20 linear slits of 40 m width were formed in parallel at intervals of 250 / zm.
  • a photomask was used. Then, after aligning the photomask with reference to the fiducial mark (a cross shape having a line width of 100 ⁇ and a size of 500 zm) formed on the metal layer 202, a photomask is formed on the surface of the cover film 215 of the laminate 203. They were contacted and exposed through a photomask with high-pressure mercury at a power of 10 Jcm2 (see Fig. 17 (b)).
  • a V-shaped groove 221 was machined using a rotating blade 241 having a vertical angle of 90 ° of the cutting blade 40 with reference to a reference mark of the metal layer 202 (see FIG. 17C).
  • a # 5000 blade from Disco (model number "B1E863SD5000L100MT38J") is used as the rotating blade 241.
  • the rotating blade 241 is lowered from the side of the cover fin rem 215 at a rotation speed of 3000 rpm at a speed of 0.03 mmZs.
  • the rotating blade 241 was detached from the laminate 203 (see FIG. 19B).
  • the surface roughness of the V-groove 221 formed in was 1 "111 3 favorable and 60 1 1 m in view.
  • a silver paste in which silver particles having a particle size of 10 nm or less are dispersed is dropped into the V-groove 221 and heated at 120 ° C. for 1 hour to remove the solvent and to heat the V paste.
  • a light reflecting portion 208 was provided on the inclined surface 207 of the groove 221 to form a deflecting portion 205 (see FIG. 18A).
  • cover film 215 was peeled off and removed, and developed with toluene and clean-through (aqueous cleaning agent instead of Freon manufactured by Kao Corporation) to remove the non-exposed areas, washed with water and dried. (See Fig. 17 (d)).
  • the light-transmitting resin B is applied to a thickness of 50 ⁇ on the optical circuit forming layer 201 side of the laminate 203, and is cured by heating at 100 ° C for 1 hour, and subsequently at 150 ° C for 1 hour.
  • a second light-transmitting resin layer was formed, and a varnish of the adhesive A was applied thereon to a thickness of 40 ⁇ m, and dried at 150 ° C. to form a layer of the adhesive 214.
  • the printed circuit board 211 of the FR-5 type provided with the electric circuit 212 was used.
  • the laminate 203 was overlaid on the board 211, and vacuum-pressed at 170 ° C. to bond the two together (FIG. 17 (e Reference: illustration of the second light-transmitting resin layer is omitted).
  • a conformal mask hole having a size of 100 ⁇ and a reference guide are formed at a portion of the metal layer 202 where the via hole 213 is to be formed, and a via hole 213 having an opening diameter of 100 ⁇ m is formed by irradiating an excimer laser (Next, the surface is treated with desmear permanganate and soft-etched with a sulfuric acid-hydrogen peroxide system, and then panel plating is performed to form the electrical conduction portion 22 in the via hole 213 (see FIG. 17 (g)). Then, the electric circuit 206 was formed by patterning the metal layer 202 to obtain an optical circuit-electric circuit mixed board (see FIG. 17 (h)).
  • the light-transmitting resin A which is the same resin as the light-transmitting resin layer 217 (that is, the same refractive index), is dropped on the surface of the light-transmitting resin layer 217 immediately above the deflection section 205. Then, by heating and curing at 100 ° C. for 1 hour, and then at 150 ° C. for 1 hour, a layer of the light-transmitting resin 216 was formed (see FIG. 25 (a)).
  • the opening 231 provided with the deflecting section 205 and the light-transmitting resin 216 immediately above the deflecting section 205 was formed by a 40 ⁇ pattern patterned by a photomask.
  • a pair of optical waveguides 204 is formed at both ends of the optical waveguide 204, and a bare surface emitting laser chip (wavelength 850 nm, radiation spread angle 10 °, radiation intensity 0 d Bm ) And the bare PIN photodiode chip (light receiving area 38 // in) were flip-chip mounted by ball soldering. Then, it was confirmed that light emitted from the surface emitting laser chip could be received at ⁇ 6.8 dBm by the PIN photodiode chip through the pair of deflection portions 205 and the optical waveguide 204.
  • a copper foil with a thickness of 35 / m (“MPGT” manufactured by Furukawa Electric Co., Ltd.) as the metal layer 202
  • the light-transmitting resin layer 217 was formed by heating and curing at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour.
  • a varnish of photosensitive resin B is applied to a thickness of 100 / im on the light-transmitting resin layer 217, and dried by heating to form an optical circuit forming layer 201 having a thickness of 50 ⁇ 5 / xm.
  • a laminate 203 was obtained (see FIG. 26 (a)).
  • the laminate 203 obtained as described above was cut into 6 cm squares for use, and 20 linear light-blocking areas with a width of 40 m were arranged in parallel at intervals of 250 ⁇ m.
  • the photomask formed was used. Then, after aligning the photomask with reference to the fiducial mark previously formed on the metal layer 202, the photomask is brought into contact with the surface of the cover film 215 of the laminate 203, and the photomask is passed through the photomask. It was exposed to a high pressure of mercury at a rate of / cm 2 (see Figure 26 (b)). By performing such exposure, the exposed portion 201a had a lower refractive index than the unexposed portion 201b.
  • a V-shaped groove 2 21 was machined using a rotating blade 2 41 having a 90 ° apex angle of the cutting blade 40 and a fiducial mark of the metal layer 202 (see FIG. 26 (c ))).
  • the machining of the V-groove 221 was performed by first cutting with the first rotating blade 241 and then cutting the same portion again with the second rotating blade 241.
  • a Disco # 400 blade (model number "B1E863SM000L100 MT38”) was used, and the rotation speed was 30000 rpm and the cover film 2 15 was used.
  • the first rotating blade 2 41 is brought into contact with the laminated body 203 at a descending speed of 0 3 mmZ s and cut into a depth of 90 m, and while maintaining this cutting depth, 20
  • the first rotating blade 241 is moved from the laminate 203 to the first rotating blade 241.
  • the first rotating blade 241 is used for cutting, and then, as the second rotating blade 241, a Disco # 600 blade (model number “B1E863SD6000L100MT38”) is used under the same conditions. Then, cutting was performed by the second rotating blade 241 by running the same place.
  • the formed V-groove 2 21 does not show the tensile strain on the cut surface due to insufficient cutting force specific to the small abrasive grain blade, and the surface roughness of the V-groove 2 21 is 50 in rms. nm, which was good.
  • the above-mentioned prepredder is “DER-51” manufactured by Dow Chemical Co., Ltd.
  • a bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the thus obtained optical circuit-electrical circuit hybrid board in the same manner as in Embodiment 14, and the surface emitting laser chip It was confirmed that the emitted light could be received at 14.5 dBm with a PIN photodiode chip through a pair of deflection sections 205 and an optical waveguide 204. Also, by forming the light transmitting resin 216 in a convex lens shape, The coupling efficiency between the optical waveguide 204 and light was improved by 1 to 2 dB. (Example 16)
  • a double-sided adhesive tape 34 (“4591 HL”, double-sided tape for one-sided weak adhesive) manufactured by Sumitomo 3LEM Co., Ltd. is applied to a support 33 made of a stainless steel plate with a thickness of 100 ⁇ , and the strong adhesive layer faces the support 33 side. And a 35 / m thick copper foil (Furukawa Electric
  • the metal layer 202 “MPGT” manufactured by KK Corporation was used as the metal layer 202, and this metal layer 202 was adhered to the support with a double-sided adhesive tape. Then, the light-transmitting resin B is applied to the metal layer 202 by a roll transfer method to a coating thickness of 50 ⁇ m, and is heated and cured at 100 ° C for 1 hour, and then at 150 ° C for 1 hour, thereby obtaining a light-transmitting resin. The resin layer 217 was formed. Next, a varnish of photosensitive resin B was applied on the light transmitting resin layer 217 to a thickness of 100 Atm, and dried by heating to form an optical circuit forming layer 201 having a thickness of 50 ⁇ 5/1 m.
  • a light-transmissive resin B was applied to this to a coating thickness of 50 ⁇ m by a mouth transfer method, and was cured by heating at 100 for 1 hour and subsequently at 150 for 1 hour to cure.
  • a light transmitting resin layer 223 was formed.
  • a laminate 203 was obtained by pressing a power bar film 215 made of a transparent PET film having a thickness of 25 / m with a roll on the laminate, and obtaining a laminate 203 (see FIG. 23 (a): the support is not shown). ).
  • a photomask formed by cutting the laminate 203 obtained as described above into 6 cm squares and using 20 40 ⁇ m wide linear light blocking areas arranged in parallel at 250 ⁇ m intervals was used. Then, after aligning the photomask with reference to the reference mark formed in advance on the metal layer 202, the photomask is brought into contact with the surface of the cover finolem 215 of the laminate 203, and the power of l O j / cm 2 is passed through the photomask. Exposure with high-pressure mercury (see Figure 23 (b)). By such exposure, the exposed portion 1a had a lower refractive index than the unexposed portion 1b.
  • a minute row 28 of the periodic structure is provided in the non-exposed part 201b which becomes the core part 204a of the optical waveguide 204.
  • a laser beam with a wavelength of 800 nm, a pulse width of 150 fs, a pulse energy of 50 nJ, and a pulse repetition rate of 1 kHz was used.
  • the light was condensed and irradiated into the non-exposed portion 201 b of the optical circuit forming layer 201 through the bar film 215.
  • the laser beam is linearly scanned at a stroke of 40 im and a moving speed of 400 m / s, and 200 lines are drawn at a pitch of 0.57 ⁇ .
  • a minute array 28 of periodic structures to be a grating coupler is provided. 205 was formed (see FIG. 24 (b)).
  • a bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the thus obtained optical circuit-electrical circuit hybrid board in the same manner as in Embodiment 14, and the surface emitting laser chip It was confirmed that the emitted light could be received at 15 dBm with a PIN photodiode chip through a pair of deflection sections 205 and an optical waveguide 204.
  • Double-sided adhesive tape 34 (“4591HL”, double-sided tape for one-sided low-adhesion) manufactured by Sumitomo 3LEM Co., Ltd. is applied to a support 33 made of a stainless steel plate with a thickness of 100 / m, with the strong adhesive layer facing the support 33 side. Further, a 35 / im-thick copper foil (“MPGT” manufactured by Furukawa Electric Co., Ltd.) was used as the metal layer 202, and the metal layer 202 was bonded to the support 33 with a double-sided adhesive tape 34. Then, the light-transmissive resin B is applied to the metal layer 202 to a coating thickness of 50 ⁇ m by a pallet transfer method, and is cured by heating at 100 ° C.
  • a light transmitting resin layer .217 was formed.
  • a cover film 215 made of a transparent PET film having a thickness of 25 ⁇ was pressed on the roll with the roll and stuck to obtain a laminate 203 (see FIG. 27 (a)).
  • a photomask formed by cutting the laminate 203 obtained as described above into a 6 cm square and using 20 light-shielding regions each having a width of 40 m and arranged in parallel at intervals of 250 / m was used. Using. Then, after aligning the photomask with reference to the reference mark formed in advance on the metal layer 202, the photomask is brought into contact with the surface of the cover film 215 of the laminate 203, and the photomask is passed through the photomask in a nitrogen atmosphere. Exposure was performed with high-pressure mercury having a power of cm 2 , and after further leaving for 1 hour, it was heated at 95 ° C. for 12 hours in a vacuum of 267 Pa (2 Torr) (see FIG. 27 (b)).
  • the cover film 215 was peeled off and removed (see FIG. 27 (c)).
  • the pitch was 0.57 // m
  • the asperity ratio was 50%
  • the dent depth was 1.5 ⁇ m
  • the number of convex lines was made by surface release treatment using a Ni master electrode with a silicon master mold and fluororesin coating.
  • a stamping die 26 having 200 micro-projections 25 with periodic fine protrusions 25 with a convex line width of 40 / m. With the stamping die 26 heated to 170 ° C, with reference to the reference mark of the metal layer 202.
  • the pressing mold 26 is pressed against the non-exposed portion 1 b serving as the core portion 204 a of the optical waveguide 204, and is gradually cooled in this state, and then released, and the micro array 27 of the grating periodic structure is transferred to the deflection portion. 205 was formed (see FIG. 27 (d)).
  • a light-transmissive resin B is applied to a thickness of 50 ⁇ m on the side of the optical circuit forming layer 201 of the laminate 203, and is cured by heating at 100 for 1 hour and then at 150 at 1 hour.
  • To form a third light-transmitting resin layer 35 apply a 40 ⁇ m thick adhesive A on top of this, and dry at 150 ° C to form a layer of adhesive 214. Formed.
  • the laminate 203 was placed on the FR-5 type printed circuit board 211 provided with the electric circuit 211, and vacuum-pressed at 170 ° C to bond the two together (Fig. 27 (e) See). Thereafter, an optical circuit / electric circuit mixed board was obtained in the same manner as in Example 14 (see FIGS. 27 (f) to 27 (i)). Also, 1 g of the light-transmitting resin A, which is the same resin as the light-transmitting resin layer 217 (that is, the same refractive index), is dropped on the surface immediately above the deflecting portion 205, and then, for one hour at 100 °, By heating and curing at 150 ° C for 1 hour, a layer of light-transmitting resin 216 was formed (see Fig. 25 (a)).
  • a bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the thus obtained optical circuit-electrical circuit hybrid board in the same manner as in Embodiment 14, and the surface emitting laser chip It was confirmed that the emitted light could be received by the PIN photodiode chip at 21 dBm through a pair of deflection sections 205 and the optical waveguide 204.
  • a 35 / m-thick copper foil (“MPGT” manufactured by Furukawa Electric Co., Ltd.) as the metal layer 202
  • MPGT 35 / m-thick copper foil
  • the light-transmitting resin B was applied to the metal layer 202 by a roll transfer method to a coating thickness of 50 m, and apply 100 ° C
  • the resultant was heated and cured at 150 ° C. for 1 hour to form a light-transmitting resin layer 217.
  • a varnish of photosensitive resin A is applied to a thickness of 80 ⁇ on the light-transmitting resin layer 217 and dried by heating to form an optical circuit forming layer 201 having a thickness of 40 ⁇ 5 / im.
  • a laminate 203 was obtained by pressing and covering a cover film 215 made of a 20 / xrn transparent polypropylene film with a roll (see FIG. 17 (a)). Then, this laminate 203 was used with a force of 6 cm square.
  • a silver paste in which silver particles having a particle size of 100 nm or less are dispersed is molded to form a reflector 210 (rectangular square) with a shape of 1 OO / xm square, a height of 50 / xm, and a vertex angle of 90 °.
  • a sideways triangular prism shape with equilateral triangles on both sides, with the right-angled part as the top ridge) is prepared in advance, and the reflector 203 is attached to the laminate 203 based on the reference mark of the metal layer 202.
  • cover film 215 is peeled off and removed, and developed with toluene and clean-through (aqueous cleaning agent instead of Freon manufactured by Kao Corporation) to remove the non-exposed areas, rinse with water, and dry. (See Fig. 17 (d)).
  • an optical circuit-electric circuit mixed board was obtained in the same manner as in Example 14 (see FIGS. 17 (e) to 17 (h)). Further, a layer of a light-transmitting resin 216 having the same resin as the light-transmitting resin layer 217 (that is, the same refractive index) was formed on the surface immediately above the deflection section 205 (see FIG. 25A). A bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the optical circuit-electric circuit mixed board thus obtained in the same manner as in Embodiment 14, and light emission from the surface emitting laser chip is performed. It was confirmed that light could be received at 17.0 dBm with a PIN photodiode chip through a pair of deflection sections 205 and an optical waveguide 204.
  • 35 / im thick copper foil (“MPGT” manufactured by Furukawa Electric Co., Ltd.) is used as the metal layer 202.
  • Light transmitting resin B is applied to the metal layer 202 by the mouth transfer method to a thickness of 50 / m. Then, the resultant was heated and cured at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour to form a light-transmitting resin layer 217.
  • a photosensitive resin C was applied on the light transmitting resin layer 217 to a thickness of 40 ⁇ , and dried at room temperature in a nitrogen atmosphere to form an optical circuit forming layer 201.
  • a laminate 203 was obtained by pressing a roll bar film 215 made of a transparent PET film having a thickness of 25 / xm with a roll on the roll and attaching it (see FIG. 28 (a)).
  • a photomask formed by cutting the laminate 203 obtained as described above into a 6 cm square and using 20 linear light-shielding regions with a width of 4 ⁇ m arranged in parallel at 250 / m intervals was used. Using. Then, after aligning the photomask with reference to the fiducial marks formed in advance on the metal layer 202, the cover film 215 of the laminate 203 is formed. After a photomask in contact with the surface, in a nitrogen atmosphere, exposed with high pressure mercury 3 J / cm 2 of power through a photomask, was left for a further 1 hour, 267 P a
  • the mixture was heated at 95 ° C for 12 hours in a vacuum of (2 Torr) (see FIG. 28 (b)).
  • the exposure increases the refractive index in the light-passing area (exposed area la) of the photomask, but the subsequent heating causes the methylmethacrylate monomer in the non-exposed area 1b to diffuse out, and As a result, the refractive index of the unexposed portion 1b was higher than that of the exposed portion 1a.
  • the metal layer 20 was used by using a roof-type press-type 36 with a 90 ° apex at the tip (100 ⁇ m square, 50 / xm height, 90 ° vertex).
  • the V-shaped groove 221 was formed by pressing the pressing die 36 against the laminate 203 from the apex side with reference to the reference mark 2 (FIG. 28 (c)).
  • the pressing die 36 was heated to 170 ° C., and the releasing was performed after the cooling.
  • the surface of the pressing die 36 was subjected to a surface release treatment with a fluororesin coating in order to ensure releasability.
  • a silver paste in which silver particles having a particle size of 10 nm or less are dispersed is dropped by a dispenser into the V-groove 221, and heated at 120 ° C for 1 hour to remove the solvent and By curing, a light reflecting portion 208 was provided on the inclined surface 207 of the V groove 221 to form a deflecting portion 205 (see FIG. 18 (a)).
  • the cover film 215 was peeled off and removed (see FIG. 28 (d)).
  • the light-transmitting resin B is applied to the side of the optical circuit forming layer 201 of the laminate 203.
  • a third light-transmitting resin layer 35 is formed by applying the composition to 50 mm, and then curing by heating at 100 at 1 hour and then at 150 ° C. for 1 hour to form a third light-transmitting resin layer 35.
  • the varnish was applied to a thickness of 40 / xm and dried at 150 ° C to form a layer of adhesive 214 (see Figure 28 (e)).
  • the laminate 203 was superimposed on the FR-5 type printed wiring board 2 11 provided with the electric circuit 2 12, and vacuum-pressed at 170 ° C. to bond the two together (see FIG. 28 (f)). ).
  • an optical-circuit / electric-circuit-mixed substrate was obtained in the same manner as in Example 14 (see FIGS. 28 (g) to 28 (i)).
  • 1 ⁇ g of light-transmitting resin A having the same luster as the light-transmitting resin layer 217 (that is, the same refractive index) as the light-transmitting resin layer 217 was dropped on the surface immediately above the deflecting section 205, By heating at 00 for 1 hour and then at 150 ° C. for 1 hour to cure, a layer of the light transmitting resin 216 was formed (see FIG. 28 (j)).
  • a bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the optical circuit-electric circuit mixed board thus obtained, as in Embodiment 14, and the It was confirmed that the emitted light could be received at 17.1 dBm with a PIN photodiode chip through a pair of deflection sections 205 and an optical waveguide 204.
  • the resultant was heated and cured at 150 ° C. for 1 hour and then at 150 ° C. for 1 hour to form a light-transmitting resin layer 217.
  • the photosensitive resin C was applied to a thickness of 40 / m on the light transmitting resin layer 217, and dried at room temperature in a nitrogen atmosphere to form the optical circuit forming layer 201.
  • a laminate bar 203 was obtained by pressing a force bar film 215 made of a transparent PET film having a thickness of 25 / zm with a lancer and sticking thereon (see FIG. 29 (a)).
  • a photomask formed by cutting the laminate 203 obtained as above into a 6 cm square and using 20 light-shielding regions with a width of 4 O / im arranged in parallel at intervals of 250 ⁇ m. was used. And after Araimento a photomask based on the reference mark previously formed on the metal layer 202, and contacts the photomask to the surface of the cover film 215 of the laminate 203 in a nitrogen atmosphere, 3 through a photomask J / cm 2 After exposure to high-pressure mercury with a power of, and left for 1 hour, it was heated at 95 ° C for 12 hours in a vacuum of 267 Pa (2 Torr) (see Fig. 29 (b)).
  • This exposure increases the refractive index of the light-passing area (exposed area 201a) of the photomask, but the subsequent heating causes the methyl methacrylate monomer in the non-exposed area 1b to diffuse out, and As a result, the refractive index of the unexposed portion 201b was higher than that of the exposed portion 201a.
  • a rotating blade 241 having an apex angle of 90 ° was used in the same manner as in Example 14 to form a metal layer.
  • the V-groove 221 was machined with reference to 202 fiducial marks (see Fig. 29 (c)). Thereafter, gold was vapor-deposited at a rate of 8 / sec to a thickness of 2,000 A on the V-groove 221 by electron beam evaporation.
  • the deflection section 205 was formed by providing the above (see FIG. 18 (a)).
  • the cover film 215 was peeled off and removed (see FIG. 29 (d)).
  • the light-transmitting resin A is applied to a thickness of 50 ⁇ m on the side of the optical circuit forming layer 201 of the laminate 203, and heated at 100 ° C for 1 hour, and then heated at 150 ° C for 1 hour.
  • a third light-transmissive resin layer 35 Apply a 40 ⁇ m-thick layer of adhesive C on top of this, and dry at 150 ° C.
  • a layer of 2 14 was formed (see Fig. 29 (e)).
  • the laminate 203 was placed on the FR_5 type printed wiring board 211 provided with the electric circuit 211, and the two were bonded by vacuum pressing at 170 ° C (Fig. 29 (f)). See).
  • an optical circuit-electric circuit mixed board was obtained in the same manner as in Example 14 (see FIGS. 29 (g) to 29 (i)). Also, 1 ⁇ g of the light-transmitting resin A, which is the same resin as the light-transmitting resin layer 217 (that is, the same refractive index), is dropped on the surface immediately above the deflecting portion 205, and the temperature is set at 100 ° C. for 1 hour. Then, by heating and curing at 150 ° C. for 1 hour, a layer of the light-transmitting resin 216 was formed (see FIG. 29 (j)).
  • a bare surface emitting laser chip and a bare PIN photodiode chip are mounted in the same manner as in Example 14, and the surface emitting laser chip It was confirmed that the light emitted by the PIN photodiode chip could be received at 16.5 dBm through a pair of deflection sections 205 and the optical waveguide 204.
  • a varnish of photosensitive resin A was applied to a thickness of 100 ⁇ on a cover film 215 made of a transparent PET film having a thickness of 25 ⁇ , and dried by heating to form an optical circuit forming layer 201 having a thickness of 50 ⁇ m and a thickness of 5 ⁇ . Then, the light-transmitting resin layer 2 17 and the optical circuit forming layer 201 were overlapped and laminated to obtain a laminate 203 (see FIG. 17A).
  • the laminate 203 obtained as described above was cut into 6 cm squares and used, and a photomask formed by arranging 20 40 m wide linear light passing slits in parallel at 250 ⁇ intervals was used.
  • a photomask formed by arranging 20 40 m wide linear light passing slits in parallel at 250 ⁇ intervals was used.
  • the cover film 211 of the laminate 203 is formed. contacts the photomasks on the surface, exposed with high pressure mercury 1 0 cm 2 of power through a photomask (see FIG. 1 7 (b)).
  • Example 14 a V-groove 221 was machined using a blade having a vertical angle of 90 ° with reference to the reference mark of the metal layer 202 (see FIG. 17 (c)). Thereafter, gold is vapor-deposited at a rate of 8 A / sec to a thickness of 2000 A by electron beam vapor deposition on the V-groove 221 portion, and a light reflecting portion 208 is provided on the inclined surface 207 of the V-groove 221 to form a deflecting portion 205. Formed (see Fig. 18 (a)). Next, the cover film 215 was peeled off and removed (see FIG. 17 (d)).
  • Example 14 Thereafter, an optical circuit-electric circuit mixed board was obtained in the same manner as in Example 14 (see FIGS. 17 (e) to 17 (h)).
  • water-repellent treatment was performed on the surface immediately above the deflection unit 205 in the same manner as in Example 2, 3 g of “ALONIX UV-3100” (photo-curable acrylic resin) manufactured by Toa Gosei Co., Ltd. was used.
  • a layer of a light-transmitting resin 2 16 having a convex lens shape was formed (see FIG. 25 (b)).
  • a bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the thus obtained optical circuit-electric circuit mixed mounting board in the same manner as in Embodiment 14, and light emission from the surface emitting laser chip is performed. It was confirmed that the PIN photodiode chip could receive light at 14.2 dBm through a pair of deflection sections 205 and the optical waveguide 204.
  • Example 22 A copper foil having a thickness of 35 ⁇ (“MPGT” manufactured by Furukawa Electric Co., Ltd.) was used as the metal layer 202, and the light-transmissive resin B was applied to the metal layer 202 to a coating thickness of 50 / im by the Lohnolet transfer method.
  • the light-transmitting resin layer 217 was formed by heating and curing at a temperature of 150 ° C. for 1 hour and then at a temperature of 150 ° C. for 1 hour.
  • a varnish of the photosensitive resin A is applied to a thickness of 80 / m on the light-transmitting resin layer 2 17 and heated and dried to form an optical circuit forming layer 201 having a thickness of 40 ⁇ 5 / xm.
  • a cover film 215 made of a transparent PET finolem having a thickness of 25 jum was pressed on this with a roll and stuck to obtain a laminate 203 (see FIG. 32 (a)).
  • the laminate 203 obtained as described above was cut into 6 cm squares, and a photomask formed by arranging 20 parallel 40 ⁇ m wide linear light passing slits at 250 ⁇ intervals in parallel was used. Using. Then, after aligning the photomask with reference to the fiducial mark (cross shape having a line width of 100 m, size: 500 / XmX500 ⁇ m) formed in advance on the metal layer 202, the cover film 2 of the laminate 203 is formed. 1 to 5 of the surface of a photomask should contact, exposed with high pressure mercury 1 0 J / cm 2 of power through a photomask (see FIG. 32 (b)).
  • the V-groove 21 was machined using the rotating blade 241 having a vertical angle of 90 ° of the cutting blade 40 with reference to the reference mark of the metal layer 202 (see FIG. 32 (c)).
  • the rotating blade 241 Disco's # 5000 blade (Model No.
  • the rotating blade 241 is lowered from the side of the cover film 215 at a rotation speed of 30000 rpm at a descent speed of 0.03 mm / s.
  • a silver paste in which silver particles having a particle size of 10 nm or less are dispersed is dropped into the V groove 221 and heated at 120 ° C. for 1 hour to remove the solvent and heat.
  • a light reflecting portion 208 was provided on the inclined surface 207 of the V-shaped groove 221 to form a deflecting portion 205 (see FIG. 18 (a)).
  • the V groove 221 is a part of the exposed portion 1a in the thickness direction.
  • An exit mirror was formed.
  • cover film 215 is peeled off and removed, and developed with toluene and clean-through (aqueous cleaning agent instead of Freon manufactured by Kao Corporation) to remove the non-exposed areas and wash with water. It was dried (see Figure 32 (d)).
  • the light-transmitting resin B is applied to a thickness of 50 ⁇ m on the side of the optical circuit forming layer 201 of the laminate 203, and is applied at 100 ° C for 1 hour, and then at 150 ° C for 1 hour.
  • a third light transmissive resin layer is formed by heating and curing, and a varnish of adhesive A is applied thereon to a thickness of 40 ⁇ m and dried at 150 ° C. Four layers were formed.
  • a conformal mask hole having a size of 100 Aim ⁇ and a reference guide are formed at a position where the via hole 2 13 of the metal layer 202 is to be formed, and then a via hole 2 having an opening diameter of 100 m is irradiated by excimer laser. 13 is formed (see Fig. 32 (f)), and then subjected to surface treatment with desmear permanganate and soft etching with a sulfuric acid / hydrogen peroxide system. (See FIG. 32 (g)), and by further patterning the metal layer 202 to form an electric circuit 206, an optical circuit-electric circuit hybrid board was obtained (see FIG. 32 (h)). See).
  • a surface emitting laser chip (provided in a package with a lens) and a bare PIN photodiode chip are mounted as in Example 14. Then, the light emitted from the surface emitting laser chip can be branched and received by the PIN photodiode chip at one 7.2 dBm through the pair of deflecting parts 205 having the lens body 246 and the optical waveguide 204. I was convinced.
  • a copper foil with a thickness of 35 / m (“MPGT” manufactured by Furukawa Electric Co., Ltd.) is used as the metal layer 202.
  • the light-transmissive resin B is applied to the metal layer 202 by a roll transfer method to a thickness of 50 ⁇ m.
  • the light-transmitting resin layer 217 was formed by heating and curing at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour.
  • a varnish of the photosensitive resin A is applied on the light-transmitting resin layer 217 to a thickness of 80 / xm and dried by heating to form an optical circuit forming layer 201 having a thickness of 40 ⁇ 5 ⁇ m.
  • a laminate 203 was obtained by pressing a cover film 215 made of a transparent PET film having a thickness of 25 // m with a roll and applying it (see FIG. 17 (a)).
  • the refractive index of the cured resin of photosensitive resin A is 1.53 as described above.
  • the laminate 203 obtained as described above was cut into a 6 cm square, and 20 linear slits for light transmission with a width of 4 O / im were arranged in parallel at intervals of 250 ⁇ m, and the line width was A photomask having a + -shaped reference mark forming light-passing area of 100 ⁇ m and size of 500 m square was used. Then, after adjusting the position of the photomask so that the light-passing slit and the reference mark-forming light-passing area in the photomask are all within the area of the laminate 203, the cover film 215 of the laminate 203 is adjusted. should contact the photomask to the surface, exposed with high pressure mercury 10 JZC m 2 of power through a photomask (see FIG.
  • the layer is brought into contact with the layered product 203 and cut to a depth of 80 ⁇ m. While maintaining this cutting depth, all the 20 exposed parts 1a cross at right angles.
  • the rotating blade 241 was run at a speed of l mm / s, the rotating blade 241 was detached from the laminate 203 (see FIG. 19 (b)).
  • the surface roughness of the formed step 221 was as good as 60 nm in rms display.
  • a silver paste in which silver particles having a particle size of 10 nm or less are dispersed is dropped into the V-groove 222, and the mixture is heated at 120 ° C. for 1 hour to remove the solvent and heat.
  • a light reflecting portion 208 was provided on the inclined surface 207 of the V-shaped groove 221 to form a deflecting portion 205 (see FIG. 18 (a)).
  • cover film 215 is peeled off and removed, and developed with toluene and clean-through (aqueous cleaning agent instead of Freon manufactured by Kao Corporation) to remove the non-exposed areas and wash with water. It was dried (see Figure 17 (d)).
  • the light-transmitting resin B is applied on the side of the optical circuit forming layer 201 of the laminate 203.
  • a second light-transmitting resin layer is formed by heating at 150 ° C for 1 hour and then at 150 ° C for 1 hour to cure, and a varnish of Adhesive A is applied to this to a thickness of 40 ⁇ m. And dried at 150 ° C. to form a layer of adhesive 214.
  • the metal layer 202 is selectively etched at a position near the reference mark formed on the optical circuit forming layer 201 to provide an opening of ⁇ 1.0 mm in the metal layer 202,
  • the reference mark was recognized and recognized from the side of the metal layer 202, and all the subsequent steps were performed with reference to this reference mark. That is, first, a conformal mask hole having a size of 100 ⁇ and a reference guide are formed at a position where a via hole 2 13 of the metal layer 202 is formed, and then a via hole 2 1 3 having an opening diameter of 100 ⁇ m is irradiated by excimer laser.
  • the electrical conduction portion 22 is formed in the via hole 213 by lumming (see FIG. 17 (g)), and the metal layer 202 is further patterned to form the electrical circuit 206.
  • 1 g of light-transmitting resin A which is the same resin as the light-transmitting resin layer 217 (that is, the same refractive index), is dropped on the surface of the light-transmitting resin layer 217 directly above the deflection section 205. Then, the layer was cured by heating at 100 ° C for 1 hour and then at 150 ° C for 1 hour to form a layer of light-transmitting dendrite 216 (see Fig. 25 (a)).
  • the opening 231 provided with the deflecting portion 205 and the light-transmitting resin 216 immediately above the deflecting portion 205 was patterned by a photomask. It is formed as a pair at both ends of an optical waveguide 204 having a width of xm, and an electric circuit 206 includes a bare surface emitting laser chip (wavelength 850 nm, radiation spread angle ⁇ 10 °, radiation intensity O dBm), A bare PIN photodiode chip (light receiving area: 38 ⁇ ) was flip-chip mounted by ball soldering. Then, it was confirmed that the light emitted from the surface emitting laser chip could be received at 16.8 dBm by the PI ⁇ photodiode chip through the pair of deflection portions 205 and the optical waveguide 204.
  • a light-transmissive resin B is applied to a support 233 formed of a 100-jum-thick stainless steel plate subjected to a mold release treatment by a mouth transfer method so as to have a coating thickness of 50 ⁇ m.
  • the light-transmitting resin layer 217 was formed by heating and curing at 150 ° C. for 1 hour.
  • a varnish of photosensitive resin B was applied on the light transmitting resin layer 217 to a thickness of 100 / im, and dried by heating to form an optical circuit forming layer 201 having a thickness of 50 ⁇ 5 ⁇ .
  • a light-transmissive resin ⁇ was applied thereon by a roll transfer method to a coating thickness of 50 ⁇ m, and was cured by heating at 100 ° C.
  • a cover film 215 made of a transparent PET film having a thickness of 25 / m was pressed against this with a roll and stuck thereon to obtain a laminate 203 (see FIG. 33 (a)).
  • the laminate 203 obtained as described above was cut into 6 cm squares and used. Twenty ⁇ m wide linear light transmission slits are arranged in parallel at 250 ⁇ m intervals, and have a cross-shaped light passage area with a line width of 100 / X m and a size of 500 ⁇ m square. A photomask having a reference mark shape was used. After aligning the photomask with reference to the mark, and adjusting the position of the photomask so that all the light transmission slits and the reference mark in the photomask are included in the laminate 203, the laminate is formed. You should contact a photomask 203 cover film 2 1 5 of the surface of exposed with high pressure mercury 1 0 J Bruno cm 2 of power through full Otomasuku (Fig 3
  • a core portion 204a of the optical waveguide 204 and a reference mark (not shown) were formed in the optical circuit forming layer 201.
  • a V-groove 221 was machined using a blade having an apex angle of 90 ° with reference to a reference mark formed in the optical circuit forming layer 201 (see FIG. 33 (c)).
  • the blade is a # 5000 blade from Disco (model number B1E863SD5000L100MT38), the rotation speed is 3 000 rpm, the descent speed from the cover film 2 15 side is 0.03 mm / s, and the depth is 10 O / im.
  • the blade was cut with a blade, and after running at a speed of 0.1 mm / s so as to traverse all the 20 waveguides perpendicularly to the waveguide while maintaining the depth, the blade was detached.
  • the surface roughness of the formed V-shaped groove 221 was as good as 60 nm in rms display. Thereafter, by electron beam evaporation to a V groove 2 2 1 part, gold thickness 2 000 A deposited at a rate of 8 A / / sec, V? A light reflecting portion 208 was provided on the inclined surface 7 of the ridge 2 21 to form a deflecting portion 205 (see FIG. 18 (a)). Next, the cover film 215 was peeled off and removed (see FIG. 33 (d)).
  • a varnish of the adhesive A is applied to the side of the second light-transmitting resin layer 22 3 of the laminate 20 3 in a thickness of 40 Xm, dried at 150 ° C., and dried.
  • the laminate 20 3 is superimposed on the FR-5 type printed wiring board 2 11 provided with the electric circuit 2 12 and vacuum-pressed at 170 ° C., and the two are adhered.
  • the support 233 was peeled off (see FIG. 33 (e)).
  • a copper foil material 290 with a resin layer (functioning as an adhesive layer) 295 (ARCC R—0888 manufactured by Matsushita Electric Works) 0) was vacuum-pressed at 170 ° C for 1 hour (see Fig. 33 (f)).
  • a conformal mask hole with a size of 100 ⁇ and a reference guide are formed at the place where the via-horne 213 of the copper foil with resin (291) material 290 is to be formed. 213 is formed (see Fig. 33 (g)), and then subjected to surface treatment with desmear permanganate and soft etching with a sulfuric acid / hydrogen peroxide system. (See Fig.
  • the opening 231 provided with the deflecting part 205 and the light-transmitting resin 216 immediately above the deflecting part 205 has a 40 ⁇ width patterned by a photomask.
  • a pair of bare surface-emitting laser chips and a bare PI ⁇ photo diode chip are mounted in the same manner as in Embodiment 14, and both ends of the optical waveguide 204 are formed. It was confirmed that the emitted light could be received at 16.5 dBm with a PI II photodiode chip through a pair of deflection sections 205 and an optical waveguide 204.
  • This application is based on Japanese Patent Application No. 2002-154809 (2002

Abstract

A material for substrate mounting optical circuit-electric circuit mixedly comprising a light transmitting resin layer, and an optical circuit forming layer being, contiguously to the light transmitting resin layer and formed of a light transmitting resin having a refractive index increasing (or decreasing) through irradiation with an active energy beam, wherein a part of the optical circuit forming layer exhibits a refractive index higher (or lower) than that of the light transmitting resin layer when that part is irradiated with an active energy beam by irradiating the material for substrate mounting optical circuit-electric circuit mixedly with an active energy beam.

Description

明 細 書 光回路一電気回路混載基板用材料および光回路一電気回路混載基板 技術分野  Description Material for optical circuit-electrical circuit hybrid board and optical circuit-electric circuit hybrid board
本発明は、 光回路 (光を伝播する回路) と電気回路 (または電気配線) とを一 緒に有する基板、 即ち、 光回路および電気回路を混載する基板 (以下、 「光回路 —電気回路混載基板」 とも呼ぶ) を製造する場合に使用する素材として用いるこ とができる光回路一電気回路混載基板用材料、 および光回路—電気回路混載基板 の製造方法に関する。 本発明において、 光回路および電気回路は、 それを構成す る一部分であってもよく、 その意味では、 光回路および電気回路は、 それぞれ光 配線 (optical line) または光導波路 (waveguide) および電気配線 (wiring) であってよい。 尚、 「光回路一電気回路混載基板」 は、 electrical- optical- circuit board〃とも呼は *れる。 背景技術  The present invention relates to a substrate having an optical circuit (a circuit for propagating light) and an electric circuit (or electric wiring) together, that is, a substrate on which an optical circuit and an electric circuit are mixed (hereinafter referred to as “optical circuit—electric circuit mixed mounting”). The present invention also relates to a material for an optical circuit-electric circuit hybrid board that can be used as a material used in the production of a substrate, and a method for manufacturing an optical circuit-electric circuit hybrid board. In the present invention, the optical circuit and the electric circuit may be a part constituting the optical circuit and the electric circuit, and in that sense, the optical circuit and the electric circuit may be an optical line or an optical waveguide and an electric line, respectively. (wiring). The “optical circuit-electrical circuit hybrid board” can also be called * electrical-optical-circuit board II. Background art
近年、 通信インフラの急速な広帯域化、 コンピュータ等の情報処理能力の飛躍 的な増大等に伴なつて、 非常に高速な情報伝送路を有する情報処理回路への二一 ズが高まっている。 このような背景のもと、 電気信号の伝送速度限界を突破する 一つの手段として、 光信号による伝送が考えられており、 電気回路を有する基板 に光回路を混載することが種々検討されている。  In recent years, along with the rapid increase in the bandwidth of communication infrastructure and the dramatic increase in information processing capabilities of computers and the like, the demand for information processing circuits having an extremely high-speed information transmission path is increasing. Against this background, optical signal transmission has been considered as one of the means to break through the transmission speed limit of electric signals, and various studies have been made to mix optical circuits on a substrate having electric circuits. .
この電気回路と光回路の混載の基本となる考え方は、 従来から用いられている プリント配線板において、 電気回路の他に光回路を混載して形成することである。 そして光回路と電気回路とを多層に積層して形成される光回路一電気回路混載基 板を製造するにあたって、 主として次の二種類の方法が提案されている。  The basic idea of the mixed mounting of the electric circuit and the optical circuit is to form an optical circuit in addition to the electric circuit on a conventionally used printed wiring board. In manufacturing an optical circuit-electric circuit hybrid board formed by laminating an optical circuit and an electric circuit in multiple layers, the following two types of methods are mainly proposed.
1つの方法では、 電気回路を施した基板の上に、 光回路の光導波路を構成する クラッド層とコア層とクラッド層を順次積層し、 さらにこの上に電気配線層をメ ッキなどで積み上げて形成する。  In one method, a clad layer, a core layer, and a clad layer, which constitute an optical waveguide of an optical circuit, are sequentially laminated on a substrate on which an electric circuit is provided, and an electric wiring layer is further stacked thereon by a stick or the like. Formed.
また他の一つの方法は、 仮基板の上にクラッド層とコア層とクラッド層を順次 積層して光回路を構成する光導波路を形成し、 次にプリント配線板にこの光導波 路を接着した後に仮基板を剥離し、 さらにこの光導波路の上に電気回路をメツキ などで積み上げて形成する方法である。 この方法に関しては、 例えば特開 2 0 0 1 - 1 5 8 8 9号公報を参照できる。 In another method, a clad layer, a core layer, and a clad layer are sequentially formed on a temporary substrate. An optical waveguide that forms an optical circuit is formed by laminating the optical waveguide, and then the optical waveguide is bonded to a printed wiring board, and then the temporary substrate is peeled off. Further, an electric circuit is formed on the optical waveguide by stacking the optical circuit. How to Regarding this method, for example, JP-A-2001-158889 can be referred to.
上記の方法では、 光回路と電気回路を順次形成して積み上げていくために、 ェ 程数が多くなり、 また、 電気回路はメツキで形成されることが多いが、 その場合、 配線の精度が悪く、 高品質な光回路一電気回路混載基板を安定して工業的に生産 することは難しいという問題がある。 発明の開示  In the above method, since the optical circuit and the electric circuit are sequentially formed and stacked, the number of steps increases, and the electric circuit is often formed by plating. In this case, the accuracy of the wiring is reduced. There is a problem that it is difficult to stably and industrially produce a high-quality optical circuit-electric circuit mixed board. Disclosure of the invention
本発明は、 上記問題に鑑みて、 従来からのプリント配線板製造技術を用いて、 簡易な方法で高品質な光回路一電気回路混載基板を製造することを可能にする、 光回路—電気回路混載基板用材料を提供し、 また、 光回路一電気回路混載基板の 製造方法を提供することを目的とする。  The present invention has been made in view of the above problems, and provides an optical circuit-electric circuit capable of manufacturing a high-quality optical circuit-electric circuit hybrid board by a simple method using a conventional printed wiring board manufacturing technique. An object of the present invention is to provide a material for a mixed board, and to provide a method for manufacturing an optical circuit-electric circuit mixed board.
本明細書では、 光回路一電気回路混載基板用材料は、 それを構成する層として In this specification, the material for an optical circuit-electric circuit mixed board is used as a layer that composes it.
「光回路形成層」 を有する。 この 「光回路形成層」 とは、 その層の中に、 光が伝 播する導波路の少なくともコア部を形成できる層を意味する。 コア部とは、 光が その中を伝播する部分であり、 上述の光回路に相当する。 It has an “optical circuit forming layer”. The “optical circuit forming layer” means a layer in which at least a core portion of a waveguide through which light propagates can be formed. The core portion is a portion through which light propagates, and corresponds to the above-described optical circuit.
また、 「活性エネルギー線」 とは、 そのような導波路を形成するに際して、 光 回路形成層を構成する樹脂の溶剤溶解性または屈折率を変化させる (即ち、 その ように性質が変化するように活性化させる) のに十分なエネルギーを有する電磁 波を意味する。 そのような活性エネルギー線は、 例えば紫外線、 種々の波長のレ 一ザ一光、 電子線、 X線等であり、 従って、 これらの種々の活性エネルギー線は 広い意味での光である。  In addition, the term “active energy ray” refers to a change in the solvent solubility or the refractive index of the resin constituting the optical circuit forming layer when forming such a waveguide (that is, such a property is changed). Means an electromagnetic wave with sufficient energy to activate it. Such active energy rays are, for example, ultraviolet light, laser light of various wavelengths, electron beams, X-rays, etc., and thus these various active energy rays are light in a broad sense.
尚、 活性エネルギー線の照射に際して、 光回路形成層の溶剤溶解性または屈折 率が変化する場合、 光回路一電気回路混載基板用材料を構成するの他の要素 (例 えば上述の光透過性樹脂層) の溶剤溶解性または屈折率は実質的に変化しないの が好ましいが、 たとえ、 変化するとしても、 照射後における光導波路を構成する コア部の屈折率は、 その周囲の部分の屈折率より大きい。 第 1の要旨において、 本発明は、 If the solvent solubility or the refractive index of the optical circuit forming layer changes upon irradiation with the active energy ray, other elements constituting the material for the optical circuit-electric circuit hybrid substrate (for example, the above-described light-transmitting resin). Although it is preferable that the solvent solubility or the refractive index of the layer does not substantially change, even if it does change, the refractive index of the core portion constituting the optical waveguide after irradiation is smaller than the refractive index of the surrounding portion. large. In the first gist, the present invention provides:
光透過性樹脂層、 および  A light-transmitting resin layer, and
活性エネルギー線の照射によつて屈折率が増加する光透過性樹脂で形成され、 光透過性樹脂層に隣接する光回路形成層  An optical circuit forming layer formed of a light-transmitting resin whose refractive index is increased by irradiation with active energy rays and adjacent to the light-transmitting resin layer
を有して成る、 光回路一電気回路混載基板用材料であって、 An optical circuit-an electric circuit mixed board material, comprising:
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 照射の後の状態に関して、 光回路 形成層の該一部分の屈折率は、 光透過性樹脂層の屈折率より大きい、 光回路ー電 気回路混載基板用材料  When irradiating a part of an optical circuit forming layer with an active energy ray by irradiating an active circuit with a material for an optical circuit-electrical circuit hybrid substrate, regarding the state after the irradiation, the refractive index of the part of the optical circuit forming layer is Higher refractive index of light-transmitting resin layer, material for mixed circuit board with optical circuit and electric circuit
を提供する。 この光回路—電気回路混載基板用材料は、 少なくとも 2つの層が積 層された複合材料、 即ち、 積層体である。 I will provide a. This material for an optical circuit-electric circuit mixed board is a composite material in which at least two layers are stacked, that is, a laminate.
第 1の要旨の材料は、 光透過性樹脂層 (または透明樹脂層) およびそれに隣接 する光回路形成層を有して成り、 光回路形成層は、 活性エネルギー線の照射によ つて屈折率が増加する光透過性樹脂で形成されている。 光回路形成層の一部分が 活性エネルギー線によって照射されるように、 光回路—電気回路混載基板用材料 に活性エネルギー線を照射すると、 光回路配線層において、 照射された該一部分 の屈折率が上昇して、 照射されない部分より屈折率が大きくなる。 活性エネルギ 一線の照射部分と非照射部分とは隣接関係にあるので、 照射部分は光導波路のコ ァ部として機能し得、 その両側 (例えば右側おょぴ左側、 後述する図 4 ( b ) の 高屈折率部 3 aおよび低屈折率部 3 b参照) に位置する非照射部分は光導波路の クラッド部として機能し得る。  The material of the first gist comprises a light-transmitting resin layer (or a transparent resin layer) and an optical circuit forming layer adjacent thereto, and the optical circuit forming layer has a refractive index by irradiation with active energy rays. It is formed of an increasing light transmissive resin. When an active energy ray is applied to the optical circuit / electric circuit mixed substrate material so that a part of the optical circuit forming layer is irradiated with the active energy ray, the refractive index of the irradiated part increases in the optical circuit wiring layer. As a result, the refractive index becomes higher than that of the non-irradiated portion. Since the irradiated portion of the active energy ray and the non-irradiated portion are adjacent to each other, the irradiated portion can function as a core portion of the optical waveguide, and both sides (for example, the right side and the left side, and FIG. 4 (b) described later) The non-irradiated portion located at the high refractive index portion 3a and the low refractive index portion 3b) can function as a cladding portion of the optical waveguide.
従って、 コア部の残りの側 (例えば上側および下側) に屈折率の小さい樹脂層 または光を反射できる層 (例えば金属層) を配置すると、 これらの層はクラッド 部として機能でき、 光回路形成層のコア部内で光が伝播でき、 従って、 光回路が 形成される。 即ち、 光導波路が形成される。 第 1の要旨において、 光透過 樹脂 層は、 コア部のそのような残りの側の一方 (例えば上側) のクラッド部を提供で きる。 従って、 光透過性樹脂層の屈折率は、 活性エネルギー線を照射することに よつて増加した光回路形成層の屈折率より小さくなつている必要がある。 活性ェ ネルギ一線の照射前については、 この屈折率の相対的な関係は必須ではない。 例 えば、 照射前においては、 光透過性樹脂層の屈折率が光回路形成層の屈折率より 大きくてもよい。 一般的に、 光透過性樹脂層の屈折率は、 照射の前後で実質的に 変化せず、 光回路形成層の屈折率より小さいのが好ましい。 Therefore, if a resin layer having a low refractive index or a layer capable of reflecting light (eg, a metal layer) is arranged on the remaining side (eg, upper and lower sides) of the core, these layers can function as a clad and form an optical circuit. Light can propagate within the core of the layer, thus forming an optical circuit. That is, an optical waveguide is formed. In a first aspect, the light transmissive resin layer may provide a cladding on one (eg, upper) of such remaining sides of the core. Therefore, it is necessary that the refractive index of the light transmitting resin layer is smaller than the refractive index of the optical circuit forming layer which is increased by irradiating the active energy ray. Before the irradiation of the active energy, this relative refractive index relationship is not essential. An example For example, before the irradiation, the refractive index of the light transmitting resin layer may be higher than the refractive index of the optical circuit forming layer. In general, it is preferable that the refractive index of the light transmitting resin layer does not substantially change before and after irradiation and is smaller than the refractive index of the optical circuit forming layer.
第 1の要旨に係る本発明の光回路一電気回路混載基板用材料では、 光回路形成 層に活性エネルギー線を照射することによって、 光回路形成層の照射部分で光導 波路のコア層を、 光回路形成層の非照射部分及び光透過性樹脂層でクラッド層を 形成することができると共に、 金属層の配線加工 (または配線を形成する処理) で電気配線を形成することができるものであり、 光配線と電気配線を同一基板に 混載することができるものであって、 従来からのプリント配線板製造技術を用 ヽ て、 簡便な方法で高品質な光回路一電気回路混載基板を生産することが可能にな る。  In the optical circuit-electric circuit mixed substrate material according to the first aspect of the present invention, by irradiating the active layer with the active energy ray to the optical circuit forming layer, the core layer of the optical waveguide is formed at the irradiated portion of the optical circuit forming layer. The cladding layer can be formed by the non-irradiated portion of the circuit forming layer and the light-transmitting resin layer, and the electric wiring can be formed by wiring processing (or processing of forming wiring) of the metal layer. Optical wiring and electrical wiring can be mixedly mounted on the same substrate, and a high-quality optical circuit-electrical circuit mounting substrate can be produced by a simple method using conventional printed wiring board manufacturing technology. Is possible.
第 2の要旨において、 本発明は、  In a second aspect, the present invention provides
光透過性樹脂層、 および  A light-transmitting resin layer, and
活性エネルギー線の照射によつて屈折率が減少する光透過性樹脂で形成され、 光透過性樹脂層に隣接する光回路形成層  An optical circuit forming layer formed of a light-transmitting resin whose refractive index is reduced by irradiation with an active energy ray and adjacent to the light-transmitting resin layer
を有して成る、 光回路一電気回路混載基板用材料であって、 An optical circuit-an electric circuit mixed board material, comprising:
光回路形成層の屈折率は、 光透過性樹脂層の屈折率より大きく、  The refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer,
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 照射の後の状態に関して、 光回路 形成層の該一部分の屈折率は、 活性エネルギー線が照射されない、 光回路形成層 の残りの部分の屈折率より小さい、 光回路—電気回路混載基板用材料  When irradiating a part of an optical circuit forming layer with an active energy ray by irradiating an active circuit with a material for an optical circuit-electrical circuit hybrid substrate, regarding the state after the irradiation, the refractive index of the part of the optical circuit forming layer is Material that is not irradiated with active energy rays, has a lower refractive index than the remaining part of the optical circuit forming layer,
を提供する。 この光回路一電気回路混載基板用材料は、 先と同様に、 少なくとも 2つの層が積層された複合材料、 即ち、 積層体である。 I will provide a. This optical circuit-electric circuit mixed substrate material is a composite material in which at least two layers are laminated, that is, a laminate, as described above.
第 2の要旨の材料は、 光透過性樹脂層およびそれに隣接する光回路形成層を有 して成り、 光回路形成層の屈折率は、 本来的に光透過性樹脂層の屈折率より大き く、 光回路形成層は、 活性エネルギー線の照射によって屈折率が減少する光透過 性樹脂で形成されている。 光回路形成層の一部分が活性エネルギー線によって照 射されるように、 光回路一電気回路混載基板用材料に活性エネルギー線を照射す ると、 光回路配線層において、 照射された該一部分の屈折率が低下して、 照射さ れない部分より屈折率が小さくなる。 活性エネルギー線の照射部分と非照射部分 とは隣接関係にあるので、 非照射部分は光導波路のコア部として機能し得、 その 両側 (例えば右側および左側、 後述する図 6 ( b ) の高屈折率部 4 aおよび低屈 折率部 4 b参照) に位置する照射部分は光導波路のクラッド部として機能できる。 従って、 第 1の要旨の光回路—電気回路混載基板用材料と同様に、 コア部の残 りの側 (例えば上側および下側) に屈折率の小さい樹脂層または光を反射できる 層 (例えば金属層) を配置すると、 これらの層はクラッド部として機能でき、 光 回路形成層のコア部内で光が伝播でき、 光回路が形成される。 第 2の要旨におい て、 光透過性樹脂層は、 その屈折率が光回路形成層の屈折率より小さい (活 ^feェ ネルギ一線の照射後にいても同様) ので、 コア部のそのような残りの側 (例えば 上側) の一方のクラッド部を提供できる。 The material of the second aspect includes a light-transmitting resin layer and an optical circuit forming layer adjacent to the light-transmitting resin layer, and the refractive index of the optical circuit forming layer is originally larger than the refractive index of the light-transmitting resin layer. The optical circuit forming layer is formed of a light transmitting resin whose refractive index is reduced by irradiation with active energy rays. When an active energy ray is irradiated on the material for the optical circuit / electric circuit hybrid substrate so that a part of the optical circuit forming layer is irradiated with the active energy ray, the irradiated part is refracted in the optical circuit wiring layer. The rate decreases and the irradiation The refractive index becomes smaller than that of the part that is not. Since the irradiated portion and the non-irradiated portion of the active energy ray are adjacent to each other, the non-irradiated portion can function as a core portion of the optical waveguide, and both sides thereof (for example, the right and left sides, the high refractive index shown in FIG. 6 (b) described later). The irradiated portion located at the index portion 4a and the low refractive index portion 4b) can function as a cladding portion of the optical waveguide. Therefore, similarly to the optical circuit-electric circuit board substrate material of the first aspect, a resin layer having a small refractive index or a layer capable of reflecting light (for example, metal) is formed on the remaining side (for example, upper and lower sides) of the core portion. When these layers are arranged, these layers can function as cladding parts, light can propagate in the core part of the optical circuit forming layer, and an optical circuit is formed. In the second aspect, the light-transmitting resin layer has a smaller refractive index than that of the optical circuit forming layer (even after irradiation of active Fe lines), so that such a residual portion of the core portion does not remain. One (eg, upper) cladding can be provided.
第 2の要旨に係る本発明の光回路一電気回路混載基板用材料では、 光回路形成 層に活性エネルギー線を照射することによって、 光回路形成層の非照射部分で光 導波路のコア層を、 光回路形成層の照射部分及び光透過性樹脂層でクラッド層を 形成することができると共に、 金属層の酉己線加工で電気配線を形成することがで きるものであり、 光配線と電気配線を同一基板に混載することができるものであ つて、 従来からのプリント配線板製造技術を用いて、 簡便な方法で高品質な光回 路ー電気回路混載基板を生産することが可能になる。  In the optical circuit-electric circuit mixed substrate material according to the second aspect of the present invention, the core layer of the optical waveguide is formed by irradiating the optical circuit forming layer with active energy rays at the non-irradiated portion of the optical circuit forming layer. In addition, the cladding layer can be formed by the irradiated portion of the optical circuit forming layer and the light-transmitting resin layer, and the electric wiring can be formed by the metal wire processing of the metal layer. Wiring can be mixed on the same board, and high-quality optical circuit-electric circuit mixed board can be produced by a simple method using conventional printed wiring board manufacturing technology. .
第 3の要旨において、 本発明は、 本発明は、 次の光回路一電気回路混載基板用 材料を提供する :  In a third aspect, the present invention provides the following optical circuit-electrical circuit board mounting material:
上記第 1の要旨の光回路—電気回路混載基板用材料において、 該光透過性樹脂 層 ( 「第 1光透過性樹脂層」 とも呼ぶ:後述の第 2光透過性樹脂層と区別するた めに 「第 1」 を付加) に加えて、 第 2光透過性樹脂層を更に有して成り、 第 1光 透過樹脂層と第 2光透過樹脂層との間に光回路形成層が位置し、  In the material for an optical circuit-electric circuit hybrid board according to the first aspect, the light-transmitting resin layer (also referred to as a “first light-transmitting resin layer”: to be distinguished from a second light-transmitting resin layer described later). In addition to the above, “1” is added), and further, a second light transmitting resin layer is further provided, and an optical circuit forming layer is located between the first light transmitting resin layer and the second light transmitting resin layer. ,
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 照射の後の状態に関して、 光回路 形成層の該一部分の屈折率は、 第 2光透過性樹脂層の屈折率より大きい、 光回路 一電気回路混載基板用材料。  When irradiating a part of an optical circuit forming layer with an active energy ray by irradiating an active circuit with a material for an optical circuit-electrical circuit hybrid substrate, regarding the state after the irradiation, the refractive index of the part of the optical circuit forming layer is A material for an optical circuit / electrical circuit hybrid board, which is larger than the refractive index of the second light transmitting resin layer.
この光回路一電気回路混載基板用材料は、 少なくとも 3つの層が積層された複 合材料、 即ち、 積層体である。 This material for an optical circuit-electric circuit mixed board is a composite material in which at least three layers are laminated. It is a composite material, that is, a laminate.
第 3の要旨の材料は、 光回路形成層が第 1光透過性樹脂層および第 2光透過樹 脂層によって挟まれている。 活性エネルギー線の照射後において、 光回路形成層 の活性エネルギー線が照射された部分の屈折率は、 そのような 2つの光透過性樹 脂層の屈折率より大きいので、 これらの榭脂層は、 コア部としての光回路形成層 の活性エネルギー線が照射された部分にクラッド部を提供できる。  In the material of the third aspect, the optical circuit forming layer is sandwiched between the first light transmitting resin layer and the second light transmitting resin layer. After irradiation with active energy rays, the refractive index of the portion of the optical circuit forming layer irradiated with active energy rays is larger than the refractive indices of the two light-transmitting resin layers. A clad portion can be provided in a portion of the optical circuit forming layer serving as the core portion, to which the active energy ray has been irradiated.
上述のように、 活性エネルギーン線の照射後、 第 2光透過性樹脂層の屈折率は、 光回路一電気回路混載基板用材料に活性エネルギー線を照射することによって増 加した光回路形成層の照射部分の屈折率より小さくなっている必要がある。 活个生 エネルギー線の照射前については、 この屈折率の相対的な関係は必須ではない。 例えば、 照射前においては、 第 2光透過性樹脂層の屈折率が光回路形成層の屈折 率より大きくてもよい。 一般的に、 第 2光透過性樹脂層の屈折率は、 照射の前後 で実質的に変化せず、 光回路形成層の屈折率より小さいのが好ましい。  As described above, after the irradiation with the active energy ray, the refractive index of the second light-transmitting resin layer is increased by irradiating the material for the optical circuit / electric circuit hybrid substrate with the active energy ray to the optical circuit forming layer. Must be smaller than the refractive index of the irradiated part. Before the irradiation of active individual energy beams, this relative refractive index relationship is not essential. For example, before irradiation, the refractive index of the second light transmitting resin layer may be higher than the refractive index of the optical circuit forming layer. In general, the refractive index of the second light-transmitting resin layer does not substantially change before and after irradiation, and is preferably smaller than the refractive index of the optical circuit forming layer.
第 3の要旨に係る本発明の光回路—電気回路混載基板用材料では、 光回路形成 層に活性エネルギー線を照射することによって、 光回路形成層の照射部分で光導 波路のコア層を、 光回路形成層の非照射部分及び光透過性樹脂層及び第 2光透過 性樹脂層でクラッド層を形成することができると共に、 金属層の配線加工で電気 配線を形成することができるものであり、 光配線と電気配線を同一基板に混載す ることができるものであって、 従来からのプリント配線板製造技術を用いて、 簡 便な方法で高品質な光回路一電気回路混載基板を生産することが可能になる。 第 4の要旨において、 本発明は、 次の光回路—電気回路混載基板用材料を提供 する :  In the optical circuit-electric circuit hybrid substrate material according to the third aspect of the present invention, the core layer of the optical waveguide is formed by irradiating the active layer with the active energy ray on the optical circuit forming layer. The cladding layer can be formed by the non-irradiated portion of the circuit forming layer, the light transmitting resin layer and the second light transmitting resin layer, and the electric wiring can be formed by wiring processing of the metal layer. Optical wiring and electrical wiring can be mixedly mounted on the same substrate, and high-quality optical circuit-electrical circuit mounting substrates can be produced by a simple method using conventional printed wiring board manufacturing technology. It becomes possible. In a fourth aspect, the present invention provides the following optical circuit-electric circuit mixed board material:
上記第 2の要旨の光回路一電気回路混載基板用材料において、 該光透過性樹脂 層 ( 「第 1光透過性樹脂層」 とも呼ぶ:後述の第 2光透過性樹脂層と区別するた めに 「第 1」 を付加) に加えて、 第 2光透過性樹脂層を更に有して成り、 第 1光 透過樹脂層と第 2光透過樹脂層との間に光回路形成層が位置し、  In the optical circuit-electric circuit mixed board material according to the second aspect, the light transmitting resin layer (also referred to as a “first light transmitting resin layer”: to be distinguished from a second light transmitting resin layer described later). In addition to the above, “1” is added), and further, a second light transmitting resin layer is further provided, and an optical circuit forming layer is located between the first light transmitting resin layer and the second light transmitting resin layer. ,
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 照射の後の状態に関して、 活性ェ ネルギ一線が照射されない、 光回路形成層の該残りの部分の屈折率は、 第 2光透 過性樹脂層の屈折率より大きい、 光回路一電気回路混載基板用材料。 When irradiating an active energy ray to the material for the optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with the active energy ray, the active energy ray is not irradiated with respect to the state after the irradiation. The refractive index of the remaining part of the layer is A material for an optical circuit-electric circuit mixed substrate that is larger than the refractive index of the temporary resin layer.
この光回路一電気回路混載基板用材料は、 少なくとも 3つの層が積層された複 合材料、 即ち、 積層体である。  This material for an optical circuit-electric circuit mixed board is a composite material in which at least three layers are laminated, that is, a laminate.
第 4の要旨の材料は、 光回路形成層が第 1光透過性樹脂層および第 2光透過樹 脂層によって挟まれている。 活性エネルギー線の照射後において、 光回路形成層 の活性エネルギー線が照射されていない部分の屈折率は、 そのような 2つの光透 過性樹脂層の屈折率より大きいので、 これらの樹脂層は、 コア部としての光回路 形成層の活性エネルギー線が照射されていない部分にクラッド部を提供できる。 上述のように、 活性エネルギー線の照射後、 第 2光透過性樹脂層の屈折率は、 光回路一電気回路混載基板用材料に活性エネルギー線を照射するに際して照射さ れない光回路形成層の照射部分の屈折率より小さくなっている必要がある。 活性 エネルギー線の照射前については、 この屈折率の相対的な関係は必須ではない。 例えば、 活性エネルギー線の照射に際して、 第 2光透過性樹脂層の屈折率が減少 してもよい。 一般的に、 第 2光透過性樹脂層の屈折率は、 照射の前後で実質的に 変化せず、 光回路形成層の屈折率より小さいのが好ましい。  In the material of the fourth aspect, the optical circuit forming layer is sandwiched between the first light transmitting resin layer and the second light transmitting resin layer. After the irradiation with the active energy rays, the refractive index of the portion of the optical circuit forming layer to which the active energy rays have not been irradiated is higher than the refractive indexes of the two light-transmitting resin layers. The clad portion can be provided in a portion of the optical circuit forming layer as a core portion which is not irradiated with the active energy ray. As described above, after the irradiation with the active energy ray, the refractive index of the second light-transmitting resin layer becomes the refractive index of the optical circuit forming layer which is not irradiated when the active energy ray is irradiated onto the material for the optical circuit / electric circuit hybrid substrate. It must be smaller than the refractive index of the irradiated part. Before the irradiation of active energy rays, this relative relationship between the refractive indices is not essential. For example, upon irradiation with active energy rays, the refractive index of the second light-transmitting resin layer may decrease. In general, the refractive index of the second light transmitting resin layer does not substantially change before and after irradiation, and is preferably smaller than the refractive index of the optical circuit forming layer.
第 4の要旨に係る本発明の光回路一電気回路混載基板用材料では、 光回路形成 層に活性エネルギー線を照射することによって、 光回路形成層の非照射部分で光 導波路のコァ層を、 光回路形成層の照射部分及び光透過性樹脂層及び第 2光透過 性樹脂層でクラッド層を形成することができると共に、 金属層の配線加工で電気 配線を形成することができるものであり、 光配線と電気配線を同一基板に混載す ることができるものであって、 従来からのプリント配線板製造技術を用いて、 簡 便な方法で高品質な光回路一電気回路混載基板を生産することが可能になる。 第 5の要旨において、 本発明は、  In the material for an optical circuit-electric circuit hybrid substrate according to the fourth aspect of the present invention, by irradiating an active energy ray to the optical circuit forming layer, the core layer of the optical waveguide is formed in a non-irradiated portion of the optical circuit forming layer. In addition, a clad layer can be formed by the irradiated portion of the optical circuit forming layer, the light-transmitting resin layer and the second light-transmitting resin layer, and electrical wiring can be formed by wiring processing of the metal layer. Optical and electrical wiring can be mixed on the same board, and high-quality optical circuit-electric circuit mixed boards can be produced by a simple method using conventional printed wiring board manufacturing technology. It becomes possible to do. In a fifth aspect, the present invention provides
光透過性樹脂層、 および  A light-transmitting resin layer, and
活性エネルギー線の照射によって溶剤への溶解性が変化する光透過性樹脂で形 成され、 光透過性樹脂層に隣接する光回路形成層  An optical circuit forming layer formed of a light-transmitting resin whose solubility in a solvent changes when irradiated with active energy rays, and adjacent to the light-transmitting resin layer
を有して成る、 光回路一電気回路混載基板用材料であって、  An optical circuit-an electric circuit mixed board material, comprising:
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 照射の後の状態に関して、 光回路形成層の屈折率は光透過性樹脂層の屈折率より大きく、 活性エネルギー線が照射される光回路形成層の該一部分は、 溶剤によって溶解 除去可能な状態から不可能な状態に変化し、 そして When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with an active energy ray, regarding a state after the irradiation, The refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer. , And
活性エネルギー線が照射されない、 光回路形成層の残りの部分は、 溶剤によつ て溶解除去可能な状態のままである、  The remaining portion of the optical circuit forming layer that is not irradiated with the active energy beam remains in a state that can be dissolved and removed by the solvent.
光回路一電気回路混載基板用材料を提供する。 Provided is a material for an optical circuit-electric circuit mixed board.
第 5の要旨の材料は、 光透過性樹脂層およびそれに隣接する光回路形成層を有 して成り、 光回路形成層は活性エネルギー線の照射によって溶剤への溶解性が変 化する光透過性樹脂で形成されている。 光回路形成層の一部分が活性エネルギー 線によって照射されるように、 光回路一電気回路混載基板用材料に活性エネルギ 一線を照射すると、 光回路配線層において、 照射された部分は溶剤非溶解性とな つて溶解除去不可能な状態となり、 該一部分の残りの部分が溶剤除去可能な状態 のままである。  The material of the fifth aspect includes a light-transmitting resin layer and an optical circuit forming layer adjacent to the light-transmitting resin layer, and the optical circuit forming layer has a light-transmitting property in which the solubility in a solvent is changed by irradiation with active energy rays. It is formed of resin. When an active energy line is applied to the optical circuit-electric circuit mixed substrate material so that a portion of the optical circuit forming layer is irradiated by the active energy beam, the irradiated portion of the optical circuit wiring layer becomes insoluble in a solvent. As a result, the solvent cannot be dissolved and removed, and the remaining part of the part remains in a state where the solvent can be removed.
尚、 第 5の要旨において、 「活性エネルギー線の照射によって溶剤への溶解性 が変化する」 とは、 活性エネルギー線を照射することによって、 光回路形成層を 構成する樹脂がある特定の溶剤に溶解できる状態から溶解できない状態に変化す ることを意味する。 即ち、 光回路形成層の一部分に活性エネ ギ一線を照射する ことによって、 その一部分をある特定の溶剤に溶解させて除去できる状態から、 その溶剤に実質的に溶解せず、 その結果、 除去できない状態に変える (照射され ていない部分は溶解して除去できる状態にある) ことを意味する。  In the fifth summary, "the solubility in a solvent is changed by irradiation with an active energy ray" means that the resin constituting the optical circuit forming layer is exposed to a specific solvent by irradiating the active energy ray. It means changing from a state that can be dissolved to a state that cannot be dissolved. That is, by irradiating a portion of the optical circuit forming layer with active energy, a portion of the layer can be dissolved and removed in a specific solvent, but is not substantially dissolved in the solvent, and as a result cannot be removed. Change to a state (the unirradiated part is in a state that can be dissolved and removed).
第 5の要旨において、 光回路形成層の屈折率は、 活性エネルギー線の照射の少 なくとも後、 光透過性樹脂層の屈折率より大きく、 これらの層は隣接関係にある。 従って、 そのような光回路形成層の一部分をコア部として残すと、 光透過性樹脂 層は、 そのコア部にクラッド部を提供できる。 そして、 コア部の残りの側 (例え ば右側、 左側および下側、 後述する図 2 ( b ) 参照) にコア部の屈折率より小さ い層を配置すると、 そのような小さい屈折率の材料に包囲された光導波路を形成 できる。  In the fifth aspect, the refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer at least after the irradiation of the active energy ray, and these layers are adjacent to each other. Therefore, when a part of such an optical circuit forming layer is left as a core part, the light transmitting resin layer can provide a clad part in the core part. When a layer having a refractive index lower than that of the core portion is disposed on the other side of the core portion (for example, the right side, the left side, and the lower side, see FIG. 2 (b) described later), a material having such a low refractive index can be obtained. An enclosed optical waveguide can be formed.
第 5の要旨において、 活性エネルギー線の照射前については、 光回路形成層と 光透過性樹脂層の屈折率の相対的な関係は必須ではない。 例えば、 照射前におい ては、 光透過性樹脂層の屈折率が光回路形成層の屈折率より大きくてもよい。 一 般的に、 光回路形成層および光透過性樹脂層の屈折率は、 照射の前後で実質的に 変化せず、 光回路形成層の屈折率が光透過性樹脂層の屈折率より大きいのが好ま しい。 In the fifth aspect, before the irradiation with the active energy ray, the relative relationship between the refractive indices of the optical circuit forming layer and the light transmitting resin layer is not essential. For example, before irradiation In this case, the refractive index of the light transmitting resin layer may be larger than the refractive index of the optical circuit forming layer. In general, the refractive indices of the optical circuit forming layer and the light transmitting resin layer do not substantially change before and after irradiation, and the refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer. Is preferred.
第 6の要旨において、 本発明は、  In a sixth aspect, the present invention provides
光透過性樹脂層、,および  A light-transmitting resin layer, and
活性エネルギー線の照射によつて溶剤への溶解性が変化する光透過性樹脂で形 成され、 光透過性樹脂層に隣接する光回路形成層  An optical circuit formation layer formed of a light-transmitting resin whose solubility in a solvent changes when irradiated with active energy rays, and adjacent to the light-transmitting resin layer
を有して成る、 光回路一電気回路混載基板用材料であって、 An optical circuit-an electric circuit mixed board material, comprising:
光回路形成層の屈折率は光透過性樹脂層の屈折率より大きく、  The refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer,
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 照射の後の状態に関して、 活性エネルギー線が照射される光回路形成層の該一部分は、 溶剤によって溶解 除去不可能な状態から可能な状態に変化し、  When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with the active energy ray, an optical circuit forming layer to which the active energy ray is irradiated with respect to a state after the irradiation. The part of the solvent changes from a state that cannot be dissolved and removed by a solvent to a state that can be removed,
活性エネルギー線が照射されない、 光回路形成層の残りの部分は、 溶剤によつ て溶解除去不可能な状態のままである、  The remaining portion of the optical circuit forming layer that is not irradiated with the active energy beam remains in a state that cannot be dissolved and removed by the solvent.
光回路—電気回路混載基板用材料を提供する。 Provided is a material for an optical circuit-electric circuit mixed board.
第 6の要旨の材料は、 光透過性樹脂層およびそれに隣接する光回路形成層を有 して成り、 光回路形成層は、 活性エネルギー線の照射によつて溶剤溶解性が変化 する光透過性樹脂で形成されている。 光回路形成層の一部分が活性エネルギー線 によって照射されるように、 光回路—電気回路混載基板用材料に活性エネルギー 線を照射すると、 光回路配線層において、 照射された部分は溶剤溶解性となって 溶解除去可能な状態となり、 該一部分の残りの部分が溶剤除去不可能な状態のま まである。  The material of the sixth aspect comprises a light-transmitting resin layer and an optical circuit forming layer adjacent to the light-transmitting resin layer, and the optical circuit forming layer has a light-transmitting property in which the solvent solubility changes by irradiation with active energy rays. It is formed of resin. When an active energy ray is irradiated on the material for an optical circuit / electric circuit mixed substrate so that a part of the optical circuit forming layer is irradiated with the active energy ray, the irradiated part in the optical circuit wiring layer becomes solvent-soluble. Thus, the solvent can be dissolved and removed, and the remaining part of the part remains in a state in which the solvent cannot be removed.
尚、 第 6の要旨において、 「活性エネルギー線の照射によって溶剤への溶解性 が変化する」 とは、 活性エネルギー線を照射することによって、 光回路形成層を 構成する樹脂がある特定の溶剤に溶解できない状態から溶解できる状態に変化す ることを意味する。 即ち、 光回路形成層の一部分に活性エネルギー線を照射する ことによって、 その一部分をある特定の溶剤に溶解できない状態から、 その溶剤 に実質的に溶解して、 その結果、 除去できる状態に変える (照射されていない部 分は溶解して除去できない状態にある) ことを意味する。 In the sixth gist, the phrase “the solubility in a solvent is changed by irradiation with an active energy ray” means that the resin constituting the optical circuit forming layer is exposed to a specific solvent by irradiating the active energy ray. It means changing from a state that cannot be dissolved to a state that can be dissolved. That is, by irradiating a part of the optical circuit forming layer with active energy rays, the part cannot be dissolved in a particular solvent, Means that the substance is substantially dissolved and, as a result, is changed to a state where it can be removed (an unirradiated part is dissolved and cannot be removed).
第 6の要旨において、 光回路形成層の屈折率は、 光透過性樹脂層の屈折率より 本来的に大きく、 これらの層は隣接関係にある。 従って、 そのような光回路形成 層の一部分を溶剤によって溶解 '除去しないでコア部として残すと、 光透過性樹 脂層は、 そのコア部にクラッド部を提供できる。 そして、 コア部の残りの側 (例 えば右側、 左側および下側) にコァ部の屈折率より小さレ、層を配置すると、 その ような小さい屈折率の材料に包囲された光導波路を形成できる。  In the sixth aspect, the refractive index of the optical circuit forming layer is inherently higher than the refractive index of the light transmitting resin layer, and these layers are adjacent to each other. Therefore, if a part of such an optical circuit forming layer is left as a core without being dissolved and removed by a solvent, the light-transmitting resin layer can provide a clad in the core. By arranging a layer on the remaining side of the core (for example, the right side, left side, and lower side) with a refractive index smaller than that of the core, an optical waveguide surrounded by such a material having a small refractive index can be formed. .
第 5および第 6の要旨に係る本発明の光回路一電気回路混載基板用材料では、 光回路形成層に活性エネルギー線を照射して現像することによって、 光回路形成 層で光導波路のコア層を、 光透過性樹脂層で光導波路のクラッド層を形成するこ とができると共に、 金属層の配線加工で電気配線を形成することができるもので あり、 光配線と電気配線を同一基板に混載することができるものであって、 従来 からのプリント配線板製造技術を用いて、 簡便な方法で高品質な光回路一電気回 路混載基板を生産することが可能になる。  In the material for an optical circuit-electric circuit mixed substrate according to the fifth and sixth aspects of the present invention, the optical circuit formation layer is irradiated with active energy rays and developed, so that the core layer of the optical waveguide is formed in the optical circuit formation layer. In addition, the optical waveguide cladding layer can be formed with a light-transmitting resin layer, and electrical wiring can be formed by wiring processing of a metal layer. Optical wiring and electrical wiring are mixed on the same substrate. It is possible to produce a high-quality optical circuit-electric circuit mixed board by a simple method using a conventional printed wiring board manufacturing technology.
第 7の要旨において、 本発明は、 次の光回路一電気回路混載基板用材料を提供 する :  In a seventh aspect, the present invention provides the following optical circuit-electric circuit mixed board material:
上記第 1〜 6のいずれかの要旨の光回路—電気回路混載基板用材料において、 金属層を更に有して成り、 金属層と光回路形成層との間に光透過性樹脂層が位置 する。  The material for an optical circuit / electric circuit hybrid board according to any one of the first to sixth aspects, further comprising a metal layer, wherein the light transmitting resin layer is located between the metal layer and the optical circuit forming layer. .
第 7の要旨の光回路一電気回路混載基板用材料では、 金属層が更に存在する。 この金属層は、 光回路形成層が隣接する光透過性樹脂層 (即ち、 第 1光透過性樹 脂層) の側と反対側に位置する。 金属層は、 適当な加工方法で所定の部分を残す ように処理することにより電気回路 (電子回路を含む) または電気配線層を構成 できる。 金属層は、 いずれの適当な形態であってよく、 例えば箔、 フィルム、 シ 一ト状等であってよい。  In the seventh aspect of the material for an optical circuit-electric circuit mixed board, a metal layer is further present. This metal layer is located on the side opposite to the side of the light-transmitting resin layer adjacent to the optical circuit forming layer (that is, the first light-transmitting resin layer). An electric circuit (including an electronic circuit) or an electric wiring layer can be formed by processing the metal layer so as to leave a predetermined portion by an appropriate processing method. The metal layer may be in any suitable form, such as a foil, film, sheet, or the like.
第 8の要旨において、 本発明は、  In an eighth aspect, the present invention provides
金属層、 および  Metal layer, and
活性エネルギー線の照射によって屈折率が増加する光透過性樹脂で形成され、 金属層に隣接する光回路形成層 It is formed of a light-transmitting resin whose refractive index increases by irradiation with active energy rays, Optical circuit formation layer adjacent to metal layer
を有して成る、 光回路一電気回路混載基板用材料であって、 An optical circuit-an electric circuit mixed board material, comprising:
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 照射の後の状態に関して、 光回路 形成層の該一部分の屈折率は、 活性エネルギー線が照射されない、 光回路形成層 の残りの部分の屈折率より大きい、  When irradiating a part of an optical circuit forming layer with an active energy ray by irradiating an active circuit with a material for an optical circuit-electrical circuit hybrid substrate, regarding the state after the irradiation, the refractive index of the part of the optical circuit forming layer is The active energy beam is not irradiated, the refractive index is larger than the refractive index of the rest of the optical circuit forming layer,
光回路一電気回路混載基板用材料を提供する。 Provided is a material for an optical circuit-electric circuit mixed board.
この光回路一電気回路混載基板用材料は、 少なくとも 2つの層が積層された複 合材料、 即ち、 積層体である。  This material for an optical circuit-electric circuit hybrid board is a composite material in which at least two layers are laminated, that is, a laminate.
第 8の要旨の光回路一電気回路混載基板用材料は、 第 1の要旨の光回路一電気 回路混載基板用材料と比較して、 光透過性樹脂層に代えて、 金属層を有する点で 相違する。 光回路形成層自体は、 第 1の要旨の光回路一電気回路混載基板用材料 の光回路形成層と同じであってよい。  The material for the optical circuit / electric circuit hybrid board of the eighth aspect is different from the material for the optical circuit / electric circuit hybrid board of the first aspect in that it has a metal layer instead of the light transmitting resin layer. Different. The optical circuit forming layer itself may be the same as the optical circuit forming layer of the optical circuit-electric circuit mixed substrate material of the first aspect.
第 8の要旨の材料は、 光透過性樹脂層およびそれに隣接する金属層を有して成 り、 光回路形成層は、 活性エネルギー線の照射によって屈折率が増加する光透過 性樹脂で形成されている。 光回路形成層の一部分が活性エネルギー線によって照 射されるように、 光回路一電気回路混載基板用材料に活性エネルギー線を照射す ると、 光回路配線層において、 照射された該一部分の屈折率が上昇して、 照射さ れない部分より屈折率が大きくなる。 活性エネルギー線の照射部分と非照射部分 とは隣接関係にあるので、 第 1の要旨の光回路一電気回路混載基板用材料の場合 と同様に、 照射部分は光導波路のコア部として機能し得、 その両側 (例えば右側 および左側) に位置する非照射部分は光導波路のクラッド部として機能し得る。 従って、 コア部の残りの側 (例えば上側および下側) に屈折率の小さい樹脂層 または光を反射できる層 (例えば金属層) を配置すると、 これらの層はクラッド 部または反射部として機能でき、 光回路形成層のコア部内で光が伝播できる。 第 8の要旨において、 金属層は、 コア部のそのような残りの側の一方 (例えば上 側) の反射層を提供できる。  The material according to the eighth aspect includes a light-transmitting resin layer and a metal layer adjacent to the light-transmitting resin layer, and the optical circuit forming layer is formed of a light-transmitting resin whose refractive index increases by irradiation with active energy rays. ing. When the active energy ray is irradiated on the material for the optical circuit / electric circuit hybrid substrate so that a part of the optical circuit forming layer is irradiated by the active energy ray, the irradiated part is refracted in the optical circuit wiring layer. The refractive index increases, and the refractive index becomes higher than the unirradiated part. Since the irradiated portion and the non-irradiated portion of the active energy beam are adjacent to each other, the irradiated portion can function as the core portion of the optical waveguide, as in the case of the optical circuit-electric circuit hybrid board material of the first aspect. The unirradiated portions located on both sides (for example, right and left sides) can function as cladding portions of the optical waveguide. Therefore, if a resin layer having a low refractive index or a layer capable of reflecting light (for example, a metal layer) is arranged on the remaining side (for example, the upper and lower sides) of the core portion, these layers can function as a cladding portion or a reflecting portion, Light can propagate in the core portion of the optical circuit formation layer. In an eighth aspect, the metal layer can provide a reflective layer on one such remaining side (eg, the upper side) of the core.
第 9の要旨において、 本発明は、  In a ninth aspect, the present invention provides:
金属層、 および 活性エネルギー線の照射によって屈折率が減少する光透過性樹脂で形成され、 金属層に隣接する光回路形成層 Metal layer, and An optical circuit formation layer formed of a light-transmitting resin whose refractive index decreases by irradiation with active energy rays, and adjacent to the metal layer
を有して成る、 光回路一電気回路混載基板用材料であって、 An optical circuit-an electric circuit mixed board material, comprising:
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 照射の後の状態に関して、 光回路 形成層の該一部分の屈折率は、 活性エネルギー線が照射されない、 光回路形成層 の残りの部分の屈折率より小さい、  When irradiating a part of an optical circuit forming layer with an active energy ray by irradiating an active circuit with a material for an optical circuit-electrical circuit hybrid substrate, regarding the state after the irradiation, the refractive index of the part of the optical circuit forming layer is The active energy beam is not irradiated, the refractive index of the remaining portion of the optical circuit forming layer is smaller than
光回路一電気回路混載基板用材料を提供する。 Provided is a material for an optical circuit-electric circuit mixed board.
この光回路一電気回路混載基板用材料は、 少なくとも 2つの層が積層された複 合材料、 即ち、 積層体である。  This material for an optical circuit-electric circuit hybrid board is a composite material in which at least two layers are laminated, that is, a laminate.
第 9の要旨の光回路—電気回路混載基板用材料は、 第 2の要旨の光回路一電気 回路混載基板用材料と比較して、 光透過性樹脂層に代えて、 金属層を有する点で 相違する。 光回路形成層自体は、 第 2の要旨の光回路一電気回路混載基板用材料 の光回路形成層と同じであってよい。  The ninth aspect of the material for an optical circuit-electrical circuit hybrid substrate is different from the material of the second aspect of the optical circuit-electrical circuit hybrid substrate in that it has a metal layer instead of a light-transmitting resin layer. Different. The optical circuit forming layer itself may be the same as the optical circuit forming layer of the material for the optical circuit-electric circuit mixed board of the second aspect.
第 9の要旨の材料は、 光透過性樹脂層おょぴそれに隣接する金属層を有して成 り、 光回路形成層は、 活性エネルギー線の照射によって屈折率が増加する光透過 性樹脂で形成されている。 光回路形成層の一部分が活性エネルギー線によって照 射されるように、 光回路一電気回路混載基板用材料に活性エネルギー線を照射す ると、 光回路配線層において、 照射された該一部分の屈折率が低下して、 照射さ れない部分より屈折率が小さくなる。 活性エネルギー線の照射部分と非照射部分 とは隣接関係にあるので、 照射部分は光導波路のコア部として機能し得、 その両 側 (例えば右側および左側、 後述する図 8 ( b ) の高屈折率部 5 aおよび低屈折 率部 5 b参照) に位置する非照射部分は光導波路のクラッド部として機能し得る。 従って、 コア部の残りの側 (例えば上側および下側) に屈折率の小さい樹脂層 または光を反射できる層 (例えば金属層) を配置すると、 これらの層はクラッド 部または反射部として機能でき、 光回路形成層のコア部内で光が伝播できる。 第 9の要旨において、 金属層は、 コア部のそのような残りの側の一方 (例えば上 側) の反射層を提供できる。  The material according to the ninth aspect includes a light-transmitting resin layer and a metal layer adjacent to the light-transmitting resin layer, and the optical circuit forming layer is a light-transmitting resin whose refractive index increases by irradiation with active energy rays. Is formed. When the active energy ray is irradiated on the material for the optical circuit / electric circuit hybrid substrate so that a part of the optical circuit forming layer is irradiated by the active energy ray, the irradiated part is refracted in the optical circuit wiring layer. The refractive index decreases, and the refractive index becomes lower than the unirradiated part. Since the irradiated portion and the non-irradiated portion of the active energy beam are adjacent to each other, the irradiated portion can function as a core portion of the optical waveguide, and both sides (for example, the right and left sides, the high refractive index shown in FIG. The non-irradiated portion located at the index portion 5a and the low refractive index portion 5b) can function as a cladding portion of the optical waveguide. Therefore, if a resin layer having a low refractive index or a layer capable of reflecting light (for example, a metal layer) is arranged on the remaining side (for example, the upper and lower sides) of the core portion, these layers can function as a cladding portion or a reflecting portion, Light can propagate in the core portion of the optical circuit formation layer. In a ninth aspect, a metal layer can provide a reflective layer on one such remaining side (eg, the upper side) of the core.
第 8および第 9の要旨に係る本発明の光回路一電気回路混載基板用材料では、 光回路形成層に活性エネルギー線を照射することによって、 光回路形成層に照射 部分と非照射部分の一方で光導波路のコァ層を、 他方でクラッド層を形成するこ とができると共に、 金属層の配線加工で電気配線を形成することができるもので あり、 光配線と電気配線を同一基板に混載することができるものであって、 従来 力 らのプリント配線板製造技術を用いて、 簡便な方法で高品質な光回路一電気回 路混载基板を生産することが可能になる。 In the optical circuit-electric circuit mixed board material of the present invention according to the eighth and ninth aspects, By irradiating the active layer with the active energy ray to the optical circuit forming layer, it is possible to form the core layer of the optical waveguide on one of the irradiated part and the non-irradiated part on the optical circuit forming layer, and the cladding layer on the other, and the metal layer. The electrical wiring can be formed by the wiring processing of the present invention, and the optical wiring and the electrical wiring can be mixedly mounted on the same substrate. The method makes it possible to produce high-quality optical-circuit-electric-circuit-mixed substrates.
第 1 0の要旨において、 本発明は、 次の光回路一電気回路混載基板用材料を提 供する :  In a tenth aspect, the present invention provides the following optical circuit-electric circuit mixed board material:
上記第 8の要旨の光回路一電気回路混載基板用材料において、 光透過性樹脂層 を更に有して成り、 光回路形成層は金属層と光透過性樹脂層との間に位置し、 光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 照射の後の状態に関して、 光回路 形成層の該一部分の屈折率は、 光透過性樹脂層の屈折率より大きい、 光回路ー電 気回路混載基板用材料。  The optical circuit-electric circuit hybrid board material according to the eighth aspect, further comprising a light-transmitting resin layer, wherein the optical circuit forming layer is located between the metal layer and the light-transmitting resin layer; When irradiating a part of the optical circuit formation layer with active energy rays by irradiating the circuit-electric circuit mixed substrate material with active energy rays, regarding the state after the irradiation, the refractive index of the part of the optical circuit formation layer is: An optical circuit / electric circuit mixed board material with a refractive index higher than that of the light transmitting resin layer.
第 1 0の要旨の光回路—電気回路混載基板用材料では、 第 8の要旨の光回路一 電気回路混載基板用材料と同様に、 金属層は反射層を提供でき、 また、 光透過性 樹脂層は、 少なくとも活性エネルギー線の照射後、 好ましくは照射の前後を問わ ず、 該一部分の屈折率より小さい屈折率を有し、 光回路形成層を介して金属層に 対向している。 その結果、 光透過性樹脂層は、 コア部としての該一部分にクラッ ド部を提供できる。  In the optical circuit-electrical circuit board material of the tenth aspect, the metal layer can provide a reflective layer, as in the optical circuit-electrical circuit board material of the eighth aspect. The layer has a refractive index smaller than that of a part of the layer at least after the irradiation of the active energy ray, preferably before or after the irradiation, and faces the metal layer via the optical circuit forming layer. As a result, the light-transmitting resin layer can provide a cladding portion at the portion as the core portion.
第 1 0の要旨に係る本発明の光回路一電気回路混載基板用材料では、 光回路形 成層に活性エネルギー線を照射することによって、 光回路形成層の照射部分で光 導波路のコア層を、 光回路形成層の照射部分及び光透過性樹脂層でクラッド層を 形成することができると共に、 金属層の配線加工で電気配線を形成することがで きるものであり、 光配線と電気配線を同一基板に混載することができるものであ つて、 従来からのプリント配線板製造技術を用いて、 簡便な方法で高品質な光回 路一電気回路混載基板を生産することが可能になる。  In the material for an optical circuit-electric circuit mixed substrate according to the tenth aspect of the present invention, the core layer of the optical waveguide is irradiated at the irradiated portion of the optical circuit forming layer by irradiating the optical circuit forming layer with active energy rays. In addition, the cladding layer can be formed by the irradiated portion of the optical circuit forming layer and the light transmitting resin layer, and the electric wiring can be formed by wiring processing of the metal layer. It can be mounted on the same substrate, and it is possible to produce high-quality optical circuit-electric circuit mixed substrates by a simple method using conventional printed wiring board manufacturing technology.
第 1 1の要旨において、 本発明は、 次の光回路一電気回路混載基板用材料を提 供する : 上記第 9の要旨の光回路一電気回路混載基板用材料において、 光透過性樹脂層 を更に有して成り、 光回路形成層は金属層と光透過性樹脂層との間に位置し、 光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 照射の後の状態に関して、 活性ェ ネルギ一線が照射されない、 光回路形成層の該残りの部分の屈折率は、 光透過性 樹脂層の屈折率より大きい、 光回路一電気回路混載基板用材料。 In the eleventh aspect, the present invention provides the following optical circuit-electric circuit mixed board material: The material for an optical circuit-electric circuit hybrid board according to the ninth aspect, further comprising a light transmitting resin layer, wherein the optical circuit forming layer is located between the metal layer and the light transmitting resin layer, Circuit-When irradiating a part of the optical circuit forming layer with active energy rays by irradiating the material for the circuit board with electric circuit with active energy rays, the optical circuit forming layer is not irradiated with the active energy line with respect to the state after irradiation. Wherein the refractive index of the remaining portion is larger than the refractive index of the light-transmitting resin layer.
第 1 1の要旨の光回路一電気回路混載基板用材料では、 第 9の要旨の光回路一 電気回路混載基板用材料と同様に、 金属層は反射層を提供でき、 光透過性樹脂層 は、 少なくとも活性エネルギー線の照射後、 好ましくは照射の前後を問わず、 該 残りの部分の屈折率より小さい屈折率を有し、 光回路形成層を介して金属層に対 向している。 その結果、 光透過性樹脂層は、 コア部としての該残りの部分にクラ ッド部を提供できる。  In the material for the optical circuit-electrical circuit hybrid board of the eleventh aspect, similarly to the optical circuit-electric circuit hybrid board material of the ninth aspect, the metal layer can provide a reflective layer, and the light transmitting resin layer is It has a refractive index smaller than the refractive index of the remaining portion at least after irradiation of the active energy ray, preferably before and after the irradiation, and faces the metal layer via the optical circuit forming layer. As a result, the light-transmitting resin layer can provide a clad portion to the remaining portion as a core portion.
第 1 1の要旨に係る本発明の光回路一電気回路混載基板用材料では、 光回路形 成層に活性エネルギー線を照射することによって、 光回路形成層の非照射部分で 光導波路のコア層を、 光回路形成層の照射部分及び光透過性樹脂層でクラッド層 を形成することができると共に、 金属層の配線加工で電気配線を形成することが できるものであり、 光配線と電気酉己線を同一基板に混載することができるもので あって、 従来からのプリント配線板製造技術を用いて、 簡便な方法で高品質な光 回路一電気回路混載基板を生産することが可能になる。  In the material for an optical circuit-electrical circuit hybrid board of the present invention according to the eleventh aspect, the core layer of the optical waveguide is formed by irradiating the active layer with the active energy ray on the optical circuit forming layer. The cladding layer can be formed by the irradiated portion of the optical circuit forming layer and the light transmitting resin layer, and the electric wiring can be formed by processing the wiring of the metal layer. Can be mixedly mounted on the same substrate, and it is possible to produce a high-quality optical circuit-electric circuit mixed substrate by a simple method using a conventional printed wiring board manufacturing technology.
第 1 2の要旨において、 本発明は、 次の光回路一電気回路混載基板用材料を提 供する :  In a first or second aspect, the present invention provides the following optical circuit-electric circuit hybrid board material:
上記第 7〜第 1 1の要旨のいずれかの光回路一電気回路混載基板用材料におい て、 金属層はそれに隣接して接着剤層を有して成り、 接着剤層は、 金属層と光回 路形成層との間に位置する光回路一電気回路混載基板用材料。  In the optical circuit-electric circuit mixed substrate material according to any one of the seventh to eleventh aspects, the metal layer has an adhesive layer adjacent thereto, and the adhesive layer includes the metal layer and the optical layer. A material for an optical circuit-electric circuit mixed board located between the circuit forming layer and the circuit forming layer.
この要旨の光回路一電気回路混載基板用材料では、 光回路形成層または光透過 性樹脂層樹脂層上に金属層を設けるに際して接着剤層を介在させている。 それに よって、 金属層と光回路形成層または光透過性樹脂層との結合状態 (または密着 性) が向上する。 接着剤層は、 その片側では金属層に隣接し、 他方の側では光回 路形成層または光透過性樹脂層と隣接する。 第 1 2の要旨に係る本発明の光回路一電気回路混載基板用材料では、 接着剤層 によって形成される電気配線の密着強度を高めることができ、 電気配線の信頼性 を高めることができる。 In the optical circuit-electric circuit mixed board material of this gist, an adhesive layer is interposed when a metal layer is provided on the optical circuit forming layer or the light transmitting resin layer resin layer. Thereby, the bonding state (or adhesion) between the metal layer and the optical circuit forming layer or the light transmitting resin layer is improved. The adhesive layer is adjacent to the metal layer on one side and adjacent to the optical circuit forming layer or the light transmitting resin layer on the other side. In the material for an optical circuit-electric circuit mixed board of the present invention according to the twelfth aspect, the adhesive strength of the electric wiring formed by the adhesive layer can be increased, and the reliability of the electric wiring can be improved.
第 1 3の要旨において、 本発明は、 次の光回路一電気回路混載基板用材料を提 供する :  In a thirteenth aspect, the present invention provides the following optical circuit-electric circuit hybrid board material:
上記第 7〜第 1 2の要旨のいずれかの光回路一電気回路混載基板用材料におい て、 支持体を更に有して成り、 支持体は、 金属層から近い側の光回路一電気回路 混載基板用材料の露出表面を構成する、 光回路一電気回路混載基板用材料。  The optical circuit-electric circuit mixed substrate material according to any one of the seventh to 12th aspects, further comprising a support, wherein the support is an optical circuit-electric circuit mixed side closer to the metal layer. An optical circuit-electric circuit mixed substrate material that constitutes the exposed surface of the substrate material.
本明細書において、 「近い (または遠い) 」 なる表現は、 問題としている層と 層との間に存在する層の数が少ない (または多い) という意味で使用しており、 実際の距離を基準にするものではない。  In this specification, the expression “close (or far)” is used to mean that the number of layers existing between the layers in question is small (or large), and the actual distance is used as a reference. Is not something to do.
この支持体は、 金属層に積層されているのが好ましく、 光回路一電気回路混載 基板用材料に機械的強度を付与し、 光回路一電気回路混載基板用材料の取り扱い が容易になる。 支持体は、 金属層に面する側が剥離処理がされている (即ち、 剥 離性支持体である) のが好ましく、 必要に応じて光回路一電気回路混載基板用材 料から剥離して金属層を露出させることができる。 支持体は、 機械的強度を提供 するのであればいずれの適当なものであってよく、 例えば、 プラスチックまたは 金属シートであってよい  This support is preferably laminated on a metal layer, and imparts mechanical strength to the material for an optical circuit-electrical circuit board, thereby facilitating the handling of the optical circuit-electric circuit board material. The support is preferably subjected to a peeling treatment on the side facing the metal layer (that is, a peelable support). If necessary, the support is peeled off from the material for the optical circuit / electric circuit mixed substrate to form the metal layer. Can be exposed. The support can be any suitable material that provides mechanical strength, for example, a plastic or metal sheet.
第 1 3の要旨に係る本発明の光回路一電気回路混載基板用材料では、 金属層を 支持体で補強することができ、 金属層の表面に樹脂層を設ける加工を行なったり する際の取り扱い性が向上する。  In the material for an optical circuit-electric circuit hybrid board according to the thirteenth aspect of the present invention, the metal layer can be reinforced by the support, and the processing when providing a resin layer on the surface of the metal layer is performed. The performance is improved.
第 1 4の要旨において、 本発明は、 次の光回路—電気回路混載基板用材料を提 供する :  In a fourteenth aspect, the present invention provides the following optical circuit-electric circuit mixed board material:
上記第 7〜 1 3のいずれかの要旨の光回路一電気回路混載基板用材料において、 カバーフィルムを更に有して成り、 カバーフィルムは、 金属層から遠い側の光回 路ー電気回路混載基板用材料の表面を構成する、 光回路一電気回路混載基板用材 料。  The material for an optical circuit and an electric circuit hybrid board according to any one of the seventh to 13th aspects, further comprising a cover film, wherein the cover film is an optical circuit-electric circuit hybrid board far from the metal layer. Material for an optical circuit-electric circuit mixed circuit board, which constitutes the surface of the application material.
このカバーフィルムは、 光回路一電気回路混載基板用材料の露出表面の少なく とも一方を構成し、 金属層から離れた側の光回路一電気回路混載基板用材料の露 出表面を構成するのが好ましい。 即ち、 支持体が構成する、 光回路一電気回路混 載基板用材料の表面に対向する表面を構成する。 カバーフィルムは光透過性であ つても、 あるいはそうでなくてもよレ、。 光透過性である場合、 カバーフィルムが 存在した状態でも、 光回路一電気回路混載基板用材料に活性エネルギー線を照射 することができる。 カバーフィルムは、 樹月旨材料から形成されているのが好まし く、 例えば、 ポリエステルフィルム、 ポリプロピレンフィルム、 ポリエチレンフ イルム、 ポリアセテートフィルムなどの透明フィルムを用いることができる。 力 バーフィルムの厚みは特に制限されるものではないが、 5〜1 0 0 mのものが 好適に用いられる。 また、 カバーフィルムの表面に離型処理を施したものを用い ることもできる。 This cover film constitutes at least one of the exposed surfaces of the material for the optical circuit / electrical circuit board, and the exposure of the material for the optical circuit / electric circuit board on the side remote from the metal layer. It is preferred to configure the exit surface. That is, the surface of the support is opposed to the surface of the material for the optical circuit-electric circuit mixed substrate. The cover film may or may not be light transmissive. In the case where the material is light transmissive, the active energy ray can be irradiated to the material for the optical circuit / electric circuit mixed substrate even in the state where the cover film is present. The cover film is preferably formed of a luster material. For example, a transparent film such as a polyester film, a polypropylene film, a polyethylene film, and a polyacetate film can be used. Although the thickness of the force bar film is not particularly limited, a film having a thickness of 5 to 100 m is preferably used. In addition, a cover film which has been subjected to a release treatment may be used.
第 1 4の要旨に係る本発明の光回路—電気回路混載基板用材料では、 カバーフ ィルムで樹脂層を保護することができ、 光回路一電気回路混載基板用材料を取り 扱う際のハンドリング性が向上する。  In the optical circuit-electric circuit mixed board material of the present invention according to the 14th aspect, the resin layer can be protected by the cover film, and the handling property when handling the optical circuit-electric circuit mixed board material is improved. improves.
尚、 上述のいずれの要旨の光回路一電気回路混載基板用材料においても、 光回 路形成層は、 そこに形成するコア部からその外側へ透過する光の量を少なくでき る、 即ち、 光損失を小さくできるのが好ましい。 そのためには、 光回路形成層の 光透過率が好ましくは 0 . S d B / c m以下、 より好ましくは 0 . l d B / c m 以下である。 この透過率は、 活性エネルギー線の照射後であるが、 照射前におい ても、 そのような透過率を有するのが好ましい。  In the optical circuit-electric circuit mixed substrate material of any of the above-mentioned aspects, the optical circuit forming layer can reduce the amount of light transmitted from the core portion formed there to the outside. Preferably, the loss can be reduced. For that purpose, the light transmittance of the optical circuit forming layer is preferably 0.1 SdB / cm or less, more preferably 0.1 dB / cm or less. The transmittance is after the irradiation of the active energy ray, but it is preferable that the transmittance be before the irradiation.
上述の本発明の光回路一電気回路混載基板用材料において、 光透過性樹脂層 In the above-described material for an optical circuit-electrical circuit board according to the present invention, the light-transmitting resin layer
(即ち、 第 1光透過性樹脂層) を構成するために使用できる樹脂は、 光導波路を 形成する場合に使用できる、 特に、 光導波路のクラッド部を形成する場合に使用 できる、 当業者に既知のいずれの適当な光透過性樹脂 (または透明樹脂) を使用 してもよく、 次のような好適な樹脂を例示できる : The resin that can be used to form the (i.e., the first light-transmitting resin layer) is known to those skilled in the art that can be used when forming an optical waveguide, and particularly can be used when forming a clad portion of an optical waveguide. Any suitable light transmissive resin (or transparent resin) may be used, and the following suitable resins can be exemplified:
·光または U V硬化性樹脂 (例えばダイキン化学工業 (株) 製のォプトダイン · Light or UV curable resin (for example, Optodyne manufactured by Daikin Chemical Industry Co., Ltd.)
U V - 3 1 0 0等) U V-3 1 0 0 etc.)
-熱硬化性樹脂 (例えばエポキシ樹脂、 ポリイミド樹脂、 不飽和ポリエステル 樹脂、 エポキシァクリレート樹脂等)  -Thermosetting resin (for example, epoxy resin, polyimide resin, unsaturated polyester resin, epoxy acrylate resin, etc.)
このような樹脂には、 難燃性付与や、 活性エネルギー線吸収のため、 添加型あ るいは反応型のハロゲン系、 燐系、 シリコン系等の難燃剤や紫外線吸収剤を含有 させてもよい。 このような樹脂は、 第 2光透過性樹脂層のような他の光透過性樹 脂層を構成するためにも使用できる。 Such resins are added-type to impart flame retardancy and absorb active energy rays. Alternatively, a reactive halogen-based, phosphorus-based, silicon-based flame retardant or an ultraviolet absorber may be contained. Such a resin can also be used to form another light-transmitting resin layer such as the second light-transmitting resin layer.
活性エネルギー線を照射することによって屈折率が変化する樹脂 (このような 樹脂は、 広い意味での光によってその屈折率が変わるので、 本明細書において、 便宜的に 「感光性樹脂」 とも呼ぶ) は、 当業者に既知のいずれの適当な樹脂を使 用してもよく、 次のような好適な樹脂を例示できる :  Resin whose refractive index changes by irradiating with active energy rays (Since such a resin changes its refractive index by light in a broad sense, it is also referred to as “photosensitive resin” for convenience in this specification) Any suitable resin known to those skilled in the art may be used, and examples include the following suitable resins:
•活性エネルギー線を照射することによって、 屈折率が増加する樹脂: デュポン社製 「ポリガイド (Polyguide) 」 、 アクリル樹脂中に光重合性モノ マーを含有させたもの等。  • Resin whose refractive index is increased by irradiating active energy rays: “Polyguide” manufactured by DuPont, acrylic resin containing photopolymerizable monomer, etc.
•活性エネルギー線を照射することによって、 屈折率が減少する樹脂: ポリメチルフエ二ルシラン等のポリシラン、 ポリカーボネート樹脂を溶剤に溶 解させた中に光重合性のアクリル系モノマー複合樹脂 (この樹脂をフィルム化し、 照射後にアクリル系モノマーを真空留去する) 等。  • Resin whose refractive index is reduced by irradiating with active energy rays: A photopolymerizable acrylic monomer composite resin (a film of this resin is formed by dissolving polysilane, such as polymethylphenylsilane, and polycarbonate resin in a solvent. After the irradiation, the acrylic monomer is distilled off in a vacuum).
活性エネルギー線を照射することによって溶剤溶解性が変化する樹脂 (このよ うな樹脂は、 広い意味での光によってその溶剤溶解性が変わるので、 本明細書に おいて、 便宜的に 「感光性樹脂」 とも呼ぶ) は、 当業者に既知のいずれの適当な 樹脂を使用してもよく、 次のような好適な樹脂を例示できる :  Resins whose solvent solubility changes by irradiating with active energy rays (Since such a resin changes its solvent solubility by light in a broad sense, it is referred to as "photosensitive resin" for convenience in this specification. ) May be any suitable resin known to those skilled in the art, and examples include the following suitable resins:
-活性エネルギー線を照射することによって、 実質的に溶剤溶解可能となる榭 脂:  -By irradiating with active energy rays, the solvent becomes substantially soluble.
光分解性樹脂 (ナフトキノン系樹脂等)  Photodegradable resin (naphthoquinone resin, etc.)
•活性エネルギー線を照射することによって、 実質的に溶剤溶解不可能となる 樹脂:  • Irradiation with active energy rays makes the solvent virtually insoluble. Resin:
光硬化性樹脂 (アクリル樹脂、 エポキシ樹脂、 ポリイミ ド樹脂、 珪素系樹脂 等) 、  Photo-curable resin (acrylic resin, epoxy resin, polyimide resin, silicon resin, etc.),
電子線硬化性樹脂 (アクリル樹脂、 エポキシ樹脂、 ポリイミ ド樹脂等) これらの樹脂は、 それによつて構成される各層が、 少なくとも活性エネルギー 線の照射後、 上述の屈折率の関係を満たすように選択する必要がある。 その選択 に際しては、 形成すべき導波路 (コア部およびクラッド部または反射部から形成 される) の寸法 (長さ、 幅等) 、 伝播する光信号の種類 (特にその波長、 伝送速 度) 等に応じて当業者が選択できる。 例えば、 屈折率に関しては、 コア部の屈折 率がクラッド部の屈折率より少なくとも約 0 . 1 %大きく、 好ましくは少なくと も約 0 . 2 %大きく、 より好ましくは少なくとも 1 %大きくなるように各層を構 成する樹脂を選択する。 Electron beam curable resin (acrylic resin, epoxy resin, polyimide resin, etc.) These resins are selected so that each layer composed of them satisfies the above-mentioned refractive index relationship at least after irradiation with active energy rays. There is a need to. When selecting the waveguide, the waveguide to be formed (formed from the core and cladding or reflecting part) Can be selected by those skilled in the art according to the dimensions (length, width, etc.) of the transmitted optical signal, the type of optical signal to be propagated (especially its wavelength, transmission speed), and the like. For example, with respect to the refractive index, each of the layers is such that the refractive index of the core is at least about 0.1% greater than the refractive index of the cladding, preferably at least about 0.2%, and more preferably at least 1%. Select the resin that constitutes.
選択した樹脂から各層を形成する方法は、 いずれの適当な方法であってもよく、 配線基板を製造する分野において常套的に使用されている方法を用いることがで さる。  The method of forming each layer from the selected resin may be any suitable method, and may be a method commonly used in the field of manufacturing a wiring board.
上述の本宪明の光回路一電気回路混載基板用材料において、 接着剤層を形成を 構成するために使用できる好適な接着剤は、 エポキシ樹脂系、 ポリイミ ド榭脂系、 不飽和ポリエステル樹脂系、 ェポシキアクリレート樹脂系などの熱硬化性樹脂系 のものを例示することができる。 このような接着剤は、 難燃性を付与する難燃剤 としてはハロゲン系、 燐系、 シリコン系等の難燃剤を含んでよく、 また、 紫外線 吸収剤等を含んでよい。  In the optical circuit-electric circuit hybrid board material of the present invention described above, suitable adhesives that can be used for forming the adhesive layer include epoxy resin-based, polyimide resin-based, and unsaturated polyester resin-based adhesives. And a thermosetting resin-based resin such as epoxy acrylate resin. Such adhesives may include halogen-based, phosphorus-based, and silicon-based flame retardants as flame retardants that impart flame retardancy, and may also include ultraviolet absorbers and the like.
上述の本発明の光回路一電気回路混載基板用材料において、 金属層を構成する ために使用できる金属は、 配線基板を製造する場合に配線層を形成するために一 般的に使用されている金属であればよく、 例えば、 銅、 アルミ、 ニッケルのよう な金属であってよい。 例えば銅箔等を使用できる。 金属層は、 メツキ、 蒸着、 ス パッタリング等によって形成してもよい。  In the above-mentioned material for an optical circuit-electric circuit mixed board of the present invention, a metal that can be used for forming a metal layer is generally used for forming a wiring layer when a wiring board is manufactured. Any metal may be used, for example, a metal such as copper, aluminum, and nickel. For example, a copper foil or the like can be used. The metal layer may be formed by plating, vapor deposition, sputtering, or the like.
上述の本発明の光回路—電気回路混載基板用材料に活性エネルギー線を照射す る場合、 光回路形成層に活性エネルギー線を照射することができ、 上述の屈折率 の関係を満足することができる限り、 光回路一電気回路混載基板用材料のいずれ の側から活性エネルギー線を照射してもよレ、。 光回路—電気回路混載基板用材料 が金属層を有する場合には、 金属層が活性エネルギー線を反射するので、 金属層 が光回路形成層の背後に位置する状態で前方から照射する。  When irradiating the above-mentioned material for an optical circuit-electric circuit mixed substrate of the present invention with active energy rays, it is possible to irradiate the active circuit with the active energy rays on the optical circuit forming layer, and it is possible to satisfy the above-mentioned relationship of refractive index. As far as possible, the active energy ray may be irradiated from either side of the material for the optical circuit and the electric circuit mixed board. When the optical circuit-electric circuit mixed substrate material has a metal layer, the metal layer reflects the active energy rays, so that the metal layer is irradiated from the front while being located behind the optical circuit formation layer.
第 1 5の要旨において、 本発明は、 光回路一電気回路混載基板を製造する方法 であって、  In a fifteenth aspect, the present invention relates to a method of manufacturing an optical circuit-electric circuit mixed board,
( 1 ) 少なくとも光回路形成層を有して成る光回路一電気回路混載基板用材料 に活性エネルギー線を照射して光回路形成層に光導波路のコア部を形成する工程 であって、 回路形成層は、 活性エネルギー線の照射によって溶剤への溶解性が変 化する力、 あるいは屈折率が変化する光透過性樹脂から形成されている工程、(1) A step of irradiating an active circuit with an active energy ray to a material for an optical circuit-electric circuit hybrid substrate having at least an optical circuit formation layer to form a core portion of an optical waveguide in the optical circuit formation layer Wherein the circuit forming layer is formed from a light-transmissive resin whose refractive index changes or a force that changes the solubility in a solvent by irradiation with active energy rays,
( 2 ) 光の偏向部をコア部に形成する工程、 (2) a step of forming a light deflection portion in the core portion,
( 3 ) 金属層を該光回路一電気回路混載基板用材料に接着する工程、 および ( 4 ) 金属層を加工して電気回路を形成する工程  (3) a step of bonding the metal layer to the optical circuit-electric circuit mixed substrate material; and (4) a step of processing the metal layer to form an electric circuit.
を含んで成る製造方法 Manufacturing method comprising
を提供する。 I will provide a.
第 1 5の要旨において、 本発明の光回路一電気回路混載基板の製造方法では、 工程 (1 ) において、 活性エネルギー線の照射によって溶剤への溶解性が変化す る力、 あるいは屈折率が変化する光透過性樹脂よりなる光回路形成層を少なくと も有して成る光回路—電気回路混載基板用材料を用いる。 この光回路一電気回路 混載基板用材料において、 活性エネルギー線の照射によって溶剤への溶解性が変 化する光透過性樹脂より成る光回路形成層、 および活性エネルギー線の照射によ つて屈折率が変化する光透過性樹脂より成る光回路形成層は、 本発明の光回路— 電気回路混載基板用材料を参照して先に説明したものであり、 活性エネルギー線 を光回路一電気回路混載基板用材料に照射することによって、 光回路形成層を照 射すると、 光回路形成層を構成する材料に応じて、 照射した部分または照射され なかった部分をコア部として得ることができる。  According to the fifteenth aspect, in the method for manufacturing an optical circuit-electric circuit hybrid substrate of the present invention, in the step (1), the force or the refractive index that changes the solubility in a solvent due to irradiation with active energy rays is changed. An optical circuit / electric circuit mixed substrate material having at least an optical circuit forming layer made of a light transmitting resin is used. In this optical circuit-electric circuit hybrid board material, an optical circuit forming layer made of a light-transmitting resin whose solubility in a solvent is changed by irradiation with active energy rays, and a refractive index by irradiation with active energy rays. The optical circuit forming layer made of a light-transmissive resin that changes is as described above with reference to the optical circuit-electric circuit hybrid substrate material of the present invention. By irradiating the optical circuit forming layer by irradiating the material, an irradiated portion or a non-irradiated portion can be obtained as a core portion according to a material constituting the optical circuit forming layer.
従って、 光回路形成層の所定の部分にコア部を形成するように、 光回路形成層 の所定の部分を活性エネルギー線を照射することによって、 光が伝播する導波路 のコア部を光回路形成層に形成する。 尚、 溶剤溶解性が変化する光回路形成層の 場合、 活性エネルギー線を照射した後、 溶剤によってコア部を形成する部分以外 の部分を溶解して除去する必要がある。  Therefore, by irradiating a predetermined portion of the optical circuit forming layer with an active energy ray so as to form a core portion in a predetermined portion of the optical circuit forming layer, the core portion of the waveguide through which light propagates is formed in the optical circuit. Formed in layers. In the case of the optical circuit forming layer in which the solvent solubility changes, it is necessary to dissolve and remove the portion other than the portion forming the core portion with the solvent after irradiating the active energy ray.
次に、 工程 (2 ) において、 形成したコア部に光の偏向部を形成する。 ここで、 「光の偏向部」 とは、 コア部内を伝播する光の少なくとも一部分の伝播方向を変 えてコア部外へ出射させるように、 およびノまたはコア部外から入射してくる光 の少なくとも一部分の伝播方向を変えてコア部内を伝播するようにする要素であ り、 通常、 デフレクタ一 (deflector) 、 カプラー (coupler) 等と呼ばれるもの である。 即ち、 偏向部とは、 コア部を有する光導波路を伝播する光を光導波路外 に出射させ、 あるいは光導波路外からの光を光導波路に入射させる要素である。 偏向部を形成する箇所は、 コア部内のいずれの適当な箇所であってもよく、 例え ば、 コア部 (通常、 細長い) の端部、 中間部等に形成する。 偏向部は、 コア部の 厚さ方向 (光の伝播方向に対して垂直な方向) の少なくとも一部分にわたって、 場合によっては厚さ方向の全体にわたって存在してもよい。 必要に応じて、 コア 部の厚さ方向および Zまたは幅方向から外に延在してもよレ、。 Next, in the step (2), a light deflecting portion is formed in the formed core portion. Here, the “light deflecting portion” means that at least a part of the light propagating in the core portion is changed in the propagation direction and emitted out of the core portion, and at least the light incident from the outside of the core portion is changed. It is an element that changes the propagation direction of a part so that it propagates in the core, and is usually called a deflector, a coupler, or the like. That is, the deflecting unit is a device that transmits light propagating through the optical waveguide having the core to the outside of the optical waveguide. This is an element that emits light from outside or enters light from outside the optical waveguide into the optical waveguide. The location where the deflection portion is formed may be any suitable location in the core portion, for example, at the end of the core portion (usually elongated), the middle portion, or the like. The deflecting portion may exist over at least a part of a thickness direction (a direction perpendicular to a light propagation direction) of the core portion, and in some cases, the whole of the thickness direction. If necessary, the core may extend out from the thickness direction and the Z or width direction.
その後、 工程 (3 ) において、 コア部を形成した光回路一電気回路混載基板用 材料に金属層を接着する。 この金属層は、 本発明の光回路一電気回路混載基板用 材料を参照して先に説明した金属層と同じものであってよい。 例えば、 金属箔、 金属フイノレム、 金属シート等である。 この金属層の接着に際しては、 接着剤層を 介在させて光回路—電気回路混載基板用材料に金属層を接着してよい。  Then, in step (3), a metal layer is bonded to the optical circuit-electric circuit mixed substrate material on which the core is formed. This metal layer may be the same as the metal layer described above with reference to the optical circuit-electric circuit mixed substrate material of the present invention. For example, metal foil, metal finolem, metal sheet and the like. When bonding the metal layer, the metal layer may be bonded to the optical circuit / electric circuit mixed substrate material via an adhesive layer.
そして、 工程 (4 ) において、 接着した金属層をいずれかの適当な方法を用い て、 所定の配線パターンで残るように処理して電気回路を形成する。 この電気回 路の形成は、 配線基板の製造の分野で常套的に用いられている、 金属層から配線 層を形成する場合に使用されるレ、ずれの適当な方法を使用してもよレ、。  Then, in the step (4), an electric circuit is formed by treating the adhered metal layer so as to remain in a predetermined wiring pattern using any appropriate method. This electric circuit may be formed by using an appropriate method for forming a wiring layer from a metal layer, which is commonly used in the field of manufacturing a wiring board, or an appropriate method of displacement. ,.
第 1 6の要旨において、 本発明は、 次の光回路一電気回路混載基板を製造する 方法を提供する :  In a sixteenth aspect, the present invention provides a method of manufacturing the following optical circuit-electric circuit hybrid board:
上記第 1 5の要旨において、 光回路一電気回路混載基板用材料として上記第 1 〜 6のいずれかの要旨の光回路—電気回路混載基板用材料を使用する製造方法。 先に説明した本発明の光回路—電気回路混載基板用材料は、 第 1 5の要旨の製 造方法に使用するのに好適である。  The manufacturing method according to the fifteenth aspect, wherein the optical circuit-electric circuit mixed substrate material according to any one of the first to sixth aspects is used as the optical circuit-electric circuit mixed substrate material. The optical circuit-electric circuit mixed substrate material of the present invention described above is suitable for use in the manufacturing method according to the fifteenth aspect.
第 1 7の要旨において、 本発明は、 光回路一電気回路混載基板を製造する方法 であって、  In a seventeenth aspect, the present invention relates to a method for manufacturing an optical circuit-electric circuit mixed board,
( 1 ) 少なくとも金属層および光回路形成層を有して成る光回路一電気回路混 載基板用材料の光回路形成層に活性エネルギー線を照射して光回路形成層に光導 波路のコア部を形成する工程であって、 回路形成層は、 活性エネルギー線の照射 によつて溶剤への溶解性が変化する力 \ あるいは屈折率が変化する光透過性樹脂 力 ら形成されている工程、  (1) The optical circuit forming layer of the material for the optical circuit-electric circuit hybrid substrate having at least a metal layer and an optical circuit forming layer is irradiated with active energy rays so that the core of the optical waveguide is formed on the optical circuit forming layer. Forming the circuit forming layer from a force that changes the solubility in a solvent or a light-transmitting resin that changes the refractive index by irradiating the active energy ray;
( 2 ) 光の偏向部を形成する工程、 および ( 3 ) 金属層を加工して電気回路を形成する工程 (2) forming a light deflection part, and (3) Process of forming electric circuit by processing metal layer
を含んで成る製造方法 Manufacturing method comprising
を提供する。 I will provide a.
第 1 7の要旨において、 本発明の光回路一電気回路混載基板の製造方法では、 活性エネルギー線の照射によって溶剤への溶解性が変化するカ あるいは屈折率 が変化する光透過性樹脂よりなる光回路形成層と金属層とを少なくとも備えた積 層物としての光回路一電気回路混載基板用材料を用いる点、 その結果、 金属層を 接着する工程が不要となる点において第 1 5の要旨の製造方法と異なる。 それ以 外の特徴については、 第 1 5の要旨の方法と同じである。  In the seventeenth aspect, in the method for manufacturing an optical circuit-electrical circuit hybrid substrate according to the present invention, the method for producing a substrate made of a light-transmissive resin whose solubility in a solvent changes by irradiation with active energy rays or a light-transmissive resin whose refractive index changes. The fifteenth aspect of the invention is that an optical circuit is used as a laminate having at least a circuit forming layer and a metal layer, and that a material for an electric circuit mixed board is used.As a result, a step of bonding the metal layer is unnecessary. Different from manufacturing method. Other features are the same as the method of the 15th summary.
第 1 8の要旨において、 本発明は、 次の光回路—電気回路混載基板を製造する 方法を提供する :  In the eighteenth aspect, the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
上記第 1 7の要旨において、 光回路—電気回路混載基板用材料として上記第 7 〜第 1 3の要旨のいずれかの光回路—電気回路混載基板用材料を使用する製造方 法。  The manufacturing method according to the seventeenth aspect, wherein the material for an optical circuit-electric circuit mixed substrate according to any one of the seventh to thirteenth aspects is used as the material for an optical circuit-electric circuit mixed substrate.
先に説明した本発明の光回路—電気回路混載基板用材料は、 第 1 7の要旨の製 造方法に使用するのに好適である。  The optical circuit-electric circuit mixed substrate material of the present invention described above is suitable for use in the manufacturing method according to the seventeenth aspect.
第 1 5〜第 1 8の要旨のいずれかの製造方法では、 従来のように基板の上にク ラッド層、 コア層、 クラッド層を順次積み上げたり、 電気回路をメツキで積み上 げたりする場合のような工数を要することなく、 従来からのプリント配線板製造 技術を用いて、 簡易な方法で高品質な光回路一電気回路混載基板を得ることがで さる。  In any of the manufacturing methods of the 15th to 18th aspects, when the clad layer, the core layer, and the clad layer are sequentially stacked on the substrate as in the related art, or when the electric circuit is stacked by plating. It is possible to obtain a high-quality optical circuit / electric circuit hybrid board by a simple method using the conventional printed wiring board manufacturing technology without requiring such man-hours.
第 1 9の要旨において、 本発明は、 次の光回路一電気回路混載基板基板の製造 方法を提供する :  In the nineteenth aspect, the present invention provides the following method for manufacturing an optical circuit-electrical circuit hybrid board:
上記第 1 7または第 1 8の要旨において、 光回路一電気回路混載基板用材料の 金属層に予め形成された基準マークを基準として、 光導波路のコア部、 偏向部、 電気回路を所定の位置に形成する製造方法。  In the gist of the seventeenth or eighteenth aspect, the core part, the deflection part, and the electric circuit of the optical waveguide are positioned at predetermined positions with reference to a reference mark formed in advance on the metal layer of the material for the optical circuit-electric circuit mixed board. Manufacturing method.
この製造方法では、 光回路一電気回路混載基板を製造するに際して、 金属層に 基準マークを形成しておき、 その基準マークをとの位置関係に基づいて、 活性ェ ネルギ一線を照射する箇所を決める。 例えば、 基準マークに基づいて活性エネル ギ一線の照射に際して用いるマスクを位置めする。 また、 基準マークとの位置関 係に基づいて、 偏向部を設ける箇所を決める。 電気回路の形成に際しても、 基準 マークをとの位置関係に基づいて、 回路を形成する箇所を決める。 このように金 属層に形成した同じマークを基準として、 コア部、 偏向部、 電気回路を形成する ので、 これらの間の位置関係も所定のようになる。 基準マークはいずれの適当な ものであってもよく、 例えば 2つの 1 0 0 μ πι Χ 5 0 0 Ai mの長方形がその中 央で十字状にクロスした形状のマークを例示できる。 In this manufacturing method, a reference mark is formed on a metal layer when an optical circuit / electric circuit hybrid substrate is manufactured, and a location to be irradiated with active energy is determined based on a positional relationship between the reference mark and the reference mark. . For example, active energy based on fiducial marks A mask to be used for the irradiation of the line is positioned. In addition, the location where the deflection unit is provided is determined based on the positional relationship with the reference mark. When forming an electrical circuit, the location where the circuit is to be formed is determined based on the positional relationship with the reference mark. Since the core portion, the deflection portion, and the electric circuit are formed based on the same mark formed on the metal layer as described above, the positional relationship between them is also predetermined. The reference mark may be any suitable mark. For example, a mark having a shape in which two rectangles of 100 μπιΧ500 Aim are cross-shaped at the center thereof can be exemplified.
第 1 9の要旨の製造方法では、 光導波路と偏向部と電気回路は基準マークを基 準として相互に位置合わせされており、 光導波路と偏向部と電気回路を位置精度 高く形成することができる。  In the manufacturing method according to the nineteenth aspect, the optical waveguide, the deflecting unit, and the electric circuit are aligned with each other based on the fiducial mark, and the optical waveguide, the deflecting unit, and the electric circuit can be formed with high positional accuracy. .
第 2 0の要旨において、 本発明は、 次の光回路一電気回路混載基板の製造方法 を提供する :  In a twenty-third aspect, the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
上記第 1 5〜第 1 8の要旨のいずれかにおいて、 コア部を形成する工程 (1 ) において、 活性エネルギー線の照射と同時に光回路形成層に基準マークを形成し、 偏向部および電気回路をこの基準マークを基準として所定の位置に形成すること を特徴とする請求項に記載の光回路一電気回路混載基板の製造方法。  In any one of the above fifteenth to eighteenth aspects, in the step (1) of forming the core part, a fiducial mark is formed on the optical circuit formation layer simultaneously with the irradiation of the active energy ray, and the deflection part and the electric circuit are formed. The method for manufacturing an optical-circuit / electric-circuit-mixed board according to claim 1, wherein the reference mark is formed at a predetermined position with reference to the reference mark.
この製造方法では、 コア部を形成するに際して活性エネルギー線を照射する時、 その照射によって、 コア部を形成することに加えて、 基準マークを同時に形成す る。 そのようなマークは、 コア部と実質的に同じ屈折率を有するが、 光を伝播さ せることを目的とせず、 所定の箇所に位置する点で異なる。  In this manufacturing method, when irradiating an active energy ray in forming a core portion, the irradiation forms a reference mark simultaneously in addition to forming the core portion. Such a mark has substantially the same refractive index as the core, but differs in that it is not intended to propagate light and is located at a predetermined location.
第 2 0の要旨の製造方法では、 基準マークの形成を光導波路のコア部を形成す る工程で同時に行なえ、 基準マークの形成の工程を簡略化することができると共 に、 活性エネルギー線を照射する露光で光導波路のコア部と基準マークを光回路 形成層に位置関係精度高く形成することができ、 基準マークを基準にして光導波 路のコア部に対して高い位置精度で偏向部や電気回路を形成することができる。 第 2 1の要旨において、 本発明は、 次の光回路—電気回路混載基板の製造方法 を提供する :  In the manufacturing method of the 20th aspect, the reference mark can be formed simultaneously with the step of forming the core portion of the optical waveguide, thereby simplifying the step of forming the reference mark and reducing the active energy ray. The core portion of the optical waveguide and the reference mark can be formed on the optical circuit forming layer with high positional accuracy by the exposure for irradiation, and the deflection portion and the reference portion can be formed with high positional accuracy with respect to the core portion of the optical waveguide with reference to the reference mark. An electric circuit can be formed. In the twenty-first aspect, the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
上記第 1 5〜第 2 0の要旨のいずれかにおいて、 電気回路を形成する工程 ( 4 ) または (3 ) の前に、 電気回路を形成する側の光回路—電気回路混載基板 用材料の表面と反対側の光回路一電気回路混載基板用材料の表面に基板を接着す る製造方法。 In any one of the fifteenth to twenty-fifth aspects, before the step (4) or (3) of forming an electric circuit, the optical circuit-electric circuit mixed board on the side where the electric circuit is formed A method of bonding a substrate to the surface of an optical circuit / electric circuit mixed substrate material opposite to the surface of the material.
この製造方法では、 光導波路のコア部を形成する工程 (1 ) 及び偏向部を形成 する工程 ( 2 ) を行なった後、 コア部を形成した面を基板に接着し、 この後に電 気回路を形成する。 基板は、 いずれの適当なものであってよいが、 光回路一電気 回路混載基板用材料に機械的強度を付与する、 即ち、 剛性を付与するものが好ま しい。 このような基板としては、 例えばガラス 'エポキシ板、 ガラス板、 金属板 等を使用できる。  In this manufacturing method, after performing a step (1) of forming a core portion of an optical waveguide and a step (2) of forming a deflection portion, the surface on which the core portion is formed is bonded to a substrate, and thereafter, an electric circuit is formed. Form. The substrate may be any suitable substrate, but it is preferable that the substrate imparts mechanical strength to the material for the optical circuit / electric circuit mixed substrate, that is, it imparts rigidity. As such a substrate, for example, a glass epoxy plate, a glass plate, a metal plate, or the like can be used.
第 2 1の要旨の製造方法では、 光回路一電気回路混載基板用材料を基板に接着 して剛性を与えた状態で電気回路の形成を行なうことができ、 電気回路を形成す る際の作業性が高まる  According to the manufacturing method of the twenty-first aspect, the electric circuit can be formed in a state where the rigidity is given by bonding the material for the optical circuit and the electric circuit mixed substrate to the substrate, and the work for forming the electric circuit can be performed. Improve
第 2 2の要旨において、 本発明は、 次の光回路一電気回路混載基板の製造方法 を提供する :  In a twenty-second aspect, the present invention provides the following method of manufacturing an optical circuit-electric circuit hybrid board:
上記 2 1の要旨において、 基板が表面および Zまたは内部に電気回路 (金属層 から形成する電気回路 (第 1電気回路) と区別するために第 2電気回路と呼ぶ) を有する配線基板、 好ましくはプリント配線板であり、 第 2電気回路と、 形成し た電気回路とを第 1電気的に接続する工程を更に含む製造方法。  In the gist of the above item 21, the substrate is a wiring board having an electric circuit (referred to as a second electric circuit to distinguish it from an electric circuit formed of a metal layer (a first electric circuit)) on the surface and Z or inside, preferably A manufacturing method, which is a printed wiring board, further comprising a step of first electrically connecting the second electric circuit and the formed electric circuit.
この製造方法では、 配線基板はいずれの適当なものであってもよく、 例えばプ リント配線板であってよい。 配線基板は、 両面配線基板であっても、 多層配線基 板であってもよい。 この製造方法では、 多層構成の光回路一電気回路混載基板を 容易に製造することができる。 第 2 3の要旨において、 本発明は、 次の光回路一電気回路混載基板の製造方法 を提供する :  In this manufacturing method, the wiring board may be any suitable one, for example, a printed wiring board. The wiring board may be a double-sided wiring board or a multilayer wiring board. According to this manufacturing method, it is possible to easily manufacture an optical circuit / electric circuit hybrid board having a multilayer structure. In a twenty-third aspect, the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
上記第 2 1または第 2 2の要旨において、 基板を接着剤層を介して接着するこ とを含み、 接着剤層は、 コア部の屈折率よりも低い屈折率を有する、 光回路ー電 気回路混載基板の製造方法。  The eleventh or the twenty-second aspect, further comprising bonding the substrate via an adhesive layer, wherein the adhesive layer has a refractive index lower than the refractive index of the core portion. A method for manufacturing a circuit mixed board.
この製造方法では、 接着剤層は、 先に説明した本発明の光回路一電気回路混載 基板用材料に使用する接着剤、 例えば、 その屈折率がコア部のそれよりも低く調 整された、 エポキシ樹脂系、 ポリイミ ド樹脂系、 不飽和ポリエステル樹脂系、 ェ ポキシァクリレート樹脂系などの熱硬化性樹脂系の材料で形成され、 屈折率の関 係からこの接着剤層はコア部のクラッド部として利用することができる。 その結 果、 クラッド部を形成するための工程を省略して光回路一電気回路混載基板の製 造方法を簡素化することができる。 第 2 4の要旨において、 本発明は、 次の光回路一電気回路混載基板の製造方法 を提供する: In this manufacturing method, the adhesive layer is an adhesive used for the optical circuit-electric circuit mixed substrate material of the present invention described above, for example, the refractive index is adjusted to be lower than that of the core part. Epoxy resin type, polyimide resin type, unsaturated polyester resin type, The adhesive layer is formed of a thermosetting resin-based material such as a poxacrylate resin, and can be used as a clad portion of the core portion because of the refractive index. As a result, the process for forming the clad portion can be omitted, and the method for manufacturing the optical circuit / electric circuit mixed substrate can be simplified. In a twenty-fourth aspect, the present invention provides the following method for manufacturing an optical circuit-electrical circuit hybrid board:
上記第 1 5〜第 2 3の要旨のいずれかにおいて、 光回路一電気回路混载基板用 材料は、 光回路形成層の金属層が存在する側と反対側の光回路一電気回路混載基 板用材料の露出表面、 または光回路一電気回路混載基板用材料の金属層を接着す る側と反対側の光回路一電気回路混載基板用材料の露出表面を構成するカバーフ イルムを更に有して成り、  In any one of the fifteenth to twenty-third aspects, the material for an optical circuit-electrical circuit mixed substrate is the optical circuit-electrical circuit mixed substrate on the side opposite to the side where the metal layer of the optical circuit formation layer is present. Further comprising a cover film that constitutes the exposed surface of the material for optical circuit or the exposed surface of the material for optical circuit-electric circuit hybrid board opposite to the side to which the metal layer of the optical circuit-electric circuit hybrid board material is bonded. Consisting of
偏向部を形成する工程 (2 ) は、 カバーフィルムを有した状態で、 光導波方向 に対して傾斜する面を少なくともコア部に形成し、 この傾斜する面に光反射部を 形成し、 その後、 カバーフィルムを剥離することによって実施する、 光回路—電 気回路混載基板の製造方法。  In the step (2) of forming the deflecting portion, a surface inclined with respect to the optical waveguide direction is formed at least in the core portion with the cover film, and a light reflecting portion is formed on the inclined surface. A method for manufacturing an optical circuit / electric circuit mixed substrate, which is performed by peeling a cover film.
この製造方法では、 カバーフィルムをマスクとして利用して、 また、 カバーフ イルムで光回路形成層を保護しながら、 偏向部の形成を行なうことができる。 力 バーフィルムは、 その目的に応じて、 光透過性であっても、 あるいは層でなくて もよい。 第 2 5の要旨において、 本発明は、 次の光回路一電気回路混載基板の製造方法 を提供する:  In this manufacturing method, the deflecting portion can be formed using the cover film as a mask and while protecting the optical circuit forming layer with the cover film. The force bar film may be light transmissive or non-layered, depending on the purpose. In a twenty-fifth aspect, the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
上記第 1 5〜第 2 4の要旨のいずれかにおいて、 光導波方向に対して傾斜する 面を少なくともコア部に形成し、 この傾斜する面に金属粒子を含むペーストを供 給して光反射部を形成することによって偏光部を形成する、 光回路一電気回路混 載基板の製造方法。  In any one of the fifteenth to twenty-fourth aspects, a surface inclined with respect to the optical waveguide direction is formed at least in the core portion, and a paste containing metal particles is supplied to the inclined surface to form a light reflecting portion. A method for manufacturing an optical circuit-electric circuit mixed substrate, wherein a polarizing portion is formed by forming a substrate.
この製造方法では、 偏向部の傾斜する面は、 コア部の延在方向、 即ち、 導波路 の光軸に対して傾斜している。 傾斜の角度はいずれの適当な角度であってよく、 例えばコア部の延在方向に対して 4 5 ° である。 この場合、 光の伝搬方向を 9 0 ° 折り曲げることができる。 このようにペーストを用いて偏向部に光反射部 を形成する場合、 金属蒸着の場合のような大掛かりな真空装置を用いる必要なく、 光反射部や反射面を有する反射体を形成することができる。 In this manufacturing method, the inclined surface of the deflecting portion is inclined with respect to the extending direction of the core portion, that is, the optical axis of the waveguide. The angle of inclination may be any suitable angle, for example, 45 ° with respect to the direction in which the core extends. In this case, the light propagation direction can be bent 90 °. In this way, using the paste, the light reflecting part Is formed, a reflector having a light reflecting portion and a reflecting surface can be formed without using a large-scale vacuum device as in the case of metal deposition.
偏向部の光反射部の形成は、 傾斜面への金属蒸着によって実施してもよく、 こ の場合、 均一で高純度の光反射部を容易に形成することができる。 第 2 6の要旨において、 本発明は、 次の光回路一電気回路混載基板の製造方法 を提供する :  The light reflecting portion of the deflecting portion may be formed by vapor deposition of a metal on the inclined surface. In this case, a uniform and high-purity light reflecting portion can be easily formed. In the twenty-sixth aspect, the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
上記第 1 5〜第 2 5の要旨のいずれかにおいて、 電気回路の形成工程 (4 ) ま たは (3 ) にて、 偏向部に対向する (例えば偏向部の上方に位置する) 金属層の 部分を除去し、 その後、 この部分に光透過性樹脂を塗布する、 光回路—電気回路 混載基板の製造方法。  In any one of the fifteenth to twenty-fifth aspects, in the electric circuit forming step (4) or (3), the metal layer facing the deflecting unit (for example, located above the deflecting unit) may be used. A method of manufacturing an optical circuit-electric circuit mixed board, in which a portion is removed, and then a light transmitting resin is applied to the portion.
この製造方法では、 コア部内から偏向部を経てコア部外へ光を取り出す方向に 位置する (即ち、 光の伝搬方向または光軸上に位置する) 金属層の部分を、 「偏 向部に対向する金属層の部分」 と呼び、 これを除去する。 例えばコア部の延在方 向に対して 9 0 ° 上方向の角度で、 偏向部から光を取り出す場合には、 偏向部 の真上に位置する金属層の部分を除去する。 他の角度で光を取り出す場合には、 例えば斜め上に位置する金属層の部分を除去する。 コア部の外から偏向部を経て コア部内に光を入れる場合については、 上述の説明と逆に考えて、 除去する金属 層の部分を容易に決定できる。  In this manufacturing method, the portion of the metal layer located in the direction in which light is extracted from inside the core portion to the outside of the core portion via the deflecting portion (that is, located in the light propagation direction or on the optical axis) is positioned opposite to the deflecting portion. The part of the metal layer to be removed " For example, when light is extracted from the deflecting unit at an angle of 90 ° upward with respect to the extending direction of the core unit, the portion of the metal layer located directly above the deflecting unit is removed. When light is extracted at another angle, for example, a portion of the metal layer located diagonally above is removed. In the case where light enters the core portion from outside the core portion via the deflecting portion, the portion of the metal layer to be removed can be easily determined in the reverse of the above description.
この光回路一電気回路混載基板の製造方法では、 金属層を除去した下地が粗面 であっても、 光透過性樹脂で被覆することができ、 偏向部に入射する光または偏 向部から出射する光が散乱することを防止して、 光導波路と外部との光結合効率 の低下を防ぐことができる。  In this method of manufacturing an optical circuit-electric circuit mixed substrate, even if the base layer from which the metal layer is removed is a rough surface, the substrate can be covered with a light-transmitting resin, and the light enters the deflection unit or exits from the deflection unit. This prevents scattering of the incident light, thereby preventing a reduction in the efficiency of optical coupling between the optical waveguide and the outside.
好ましい 1つの態様では、 光透過性樹脂を凸レンズ形状で塗布する。 この場合、 偏向部に入出射する光を集光することができ、 光導波路と外部との光結合効率の 低下を一層防ぐことができる。  In a preferred embodiment, the light transmitting resin is applied in a convex lens shape. In this case, light that enters and exits the deflecting unit can be collected, and the efficiency of optical coupling between the optical waveguide and the outside can be further prevented from lowering.
塗布する光透過性樹脂が、 金属層を除去することによって露出する樹脂と同等 の屈折率を有するものであるのが好ましい。 この場合、 両樹脂の屈折率の差によ る反射ロスを低減することができ、 光導波路と外部との光結合効率を高めること ができる。 光透過性樹脂を塗布する場合、 偏向部に対向する領域の金属層の部分の除去を 行なった後、 金属層の該部分を除去した部分の周囲に残存する金属層の表面部分 及び端面 (または側面) に撥水処理を行ない、 この後に光透過性樹脂の塗布を行 なう。 これによつて、 金属を除去した部分の微細なばらつきによる光透過性樹月旨 の滴下塗布形状への影響が小さくなり、 安定した形状に光透過性樹脂を形成する ことができる。 It is preferable that the light-transmitting resin to be applied has a refractive index equivalent to that of the resin exposed by removing the metal layer. In this case, the reflection loss due to the difference between the refractive indices of the two resins can be reduced, and the efficiency of optical coupling between the optical waveguide and the outside can be increased. When the light transmitting resin is applied, after removing the metal layer in the region facing the deflection unit, the surface portion and the end face (or the end surface of the metal layer remaining around the removed portion of the metal layer) Water-repellent treatment on the side surface, and then apply a light-transmitting resin. As a result, the influence of the light-transmitting luster on the dripped coating shape due to minute variations in the portion from which the metal has been removed is reduced, and the light-transmitting resin can be formed in a stable shape.
このような撥水処理は、 低表面エネルギー密度の高分子膜 2 4 4で、 金属層の 該部分を除去した部分の周囲に残存する金属層の表面部分及び端面を、 被覆する 処理であるのが好ましい。 この場合、 スプレー等で所望の領域のみに簡便に撥水 処理を施すことができる。 第 2 7の要旨において、 本発明は、 次の光回路一電気回路混載基板の製造方法 を提供する :  Such a water-repellent treatment is a treatment for covering the surface portion and the end surface of the metal layer remaining around the portion where the metal layer is removed with the polymer film 244 having a low surface energy density. Is preferred. In this case, a water-repellent treatment can be easily performed only on a desired area by spraying or the like. In a twenty-seventh aspect, the present invention provides the following method of manufacturing an optical circuit-electric circuit hybrid board:
上記第 1 5〜第 2 5の要旨のいずれかにおいて、 電気回路の形成時、 偏向部に 対向する (例えば偏向部の上方に位置する) 金属層の部分を除去し、 その後、 そ の部分の周囲に残存する金属層と接するようにその部分に、 レンズ体の光軸が偏 向部を通るようにレンズ体を配置する、 光回路—電気回路混載基板の製造方法。 この方法において、 偏向部に対向する金属層の部分については、 上述の第 3 2 の要旨と同じである。 そのような部分の金属層を除去して、 その部分にレンズ体 を配置する。 配置するレンズ体は、 光を集めることができるいずれの適当なもの であってもよく、 例えば、 球状レンズ、 ハーフレンズ等をレンズ体として配置で きる。 この製造方法では、 偏向部に入出射する光をレンズ体で集光することがで き、 光導波路と外部との光結合効率の低下を一層防ぐことができる。  In any one of the first to twenty-fifth aspects, when forming an electric circuit, a portion of the metal layer facing the deflecting portion (for example, located above the deflecting portion) is removed, and then the portion of the metal layer is removed. A method for manufacturing an optical circuit / electric circuit mixed substrate, comprising: disposing a lens body at a portion thereof so as to be in contact with a metal layer remaining around the lens body so that an optical axis of the lens body passes through the deflected portion. In this method, the portion of the metal layer facing the deflecting portion is the same as the above-described thirty-second aspect. The metal layer in such a portion is removed, and a lens body is disposed in that portion. The lens body to be arranged may be any suitable one capable of collecting light, and for example, a spherical lens, a half lens, etc. may be arranged as the lens body. According to this manufacturing method, the light that enters and exits the deflecting unit can be condensed by the lens body, so that a reduction in the efficiency of optical coupling between the optical waveguide and the outside can be further prevented.
レンズ体の配置は、 金属層を除去した部分の周囲に残存する金属層の部分と接 するようにレンズ体を配置したときに、 レンズ体の光軸が偏向部を通る位置にな るよう、 金属層の部分の除去を行なうのが好ましい。 この場合、 金属除去部にレ ンズ体をはめ込むことによって、 レンズ体を正確な位置に高精度に且つ簡便に位 置決めして配置することができると共に、 複数のレンズ体を配置する際にも位置 ずれ小さく容易に配置することができる。  The lens body should be positioned so that the optical axis of the lens body passes through the deflecting part when the lens body is placed in contact with the metal layer remaining around the part where the metal layer has been removed. It is preferable to remove a portion of the metal layer. In this case, by fitting the lens body into the metal removing portion, the lens body can be positioned and positioned accurately and easily at an accurate position, and when arranging a plurality of lens bodies. It can be easily arranged with small displacement.
レンズ体は、 球状レンズあるいは一部が平坦化された球状レンズであるのが好 ましく、 市販のボールレンズやハーフボールレンズをそのまま使用することがで きると共に、 金属除去部への搭載を容易に行なうことができる。 The lens body is preferably a spherical lens or a partially flattened spherical lens. More preferably, a commercially available ball lens or half ball lens can be used as it is, and mounting on the metal removing portion can be easily performed.
レンズ体を配置する場合、 金属層を除去した部分の表面とレンズ体との間に光 透過性樹脂を充填するのが好ましい。 この場合、 レンズ体と金属除去部の表面と の間に空気層ができることによる反射ロスを低減することができると共に、 光透 過性樹脂でレンズ体を強固に固定することができる。 このような光透過性樹脂と しては、 先に説明した本発明の光回路一電気回路混載基板用材料の光透過性樹月旨 層に使用できるものを用いることができる。  When disposing the lens body, it is preferable to fill a light transmissive resin between the surface of the portion where the metal layer is removed and the lens body. In this case, the reflection loss due to the formation of an air layer between the lens body and the surface of the metal removing portion can be reduced, and the lens body can be firmly fixed with the light transmitting resin. As such a light-transmitting resin, those which can be used for the light-transmitting luster layer of the material for an optical circuit-electric circuit mixed board of the present invention described above can be used.
このように充填する光透過性樹脂は、 金属層を除去することによって露出する 樹脂と同等の屈折率を有するものであるのが好ましい。 その結果、 両樹脂の屈折 率の差による反射ロスを低減することができ、 光導波路と外部との光結合効率を 高めることができる。 第 2 8の要旨において、 本発明は、 次の光回路一電気回路混載基板の製造方法 を提供する :  It is preferable that the light-transmitting resin to be filled in this way has a refractive index equivalent to that of the resin exposed by removing the metal layer. As a result, the reflection loss due to the difference in the refractive index between the two resins can be reduced, and the efficiency of optical coupling between the optical waveguide and the outside can be increased. In the twenty-eighth aspect, the present invention provides the following method for manufacturing an optical circuit-electric circuit hybrid board:
上記第 1 5〜第 2 7の要旨のいずれかにおいて、 光回路形成層と金属層との間 に形成される、 または金属層を接着する側の光回路形成層の表面に形成される、 コア部より屈折率が低い光透過性樹脂層を有する光回路—電気回路混載基板用材 料を使用する、 製造方法。  In any one of the fifteenth to twenty-seventh aspects, the core may be formed between the optical circuit forming layer and the metal layer, or formed on the surface of the optical circuit forming layer to which the metal layer is bonded. A production method using an optical circuit-electric circuit mixed board material having a light transmissive resin layer having a lower refractive index than a portion.
この光回路—電気回路混載基板の製造方法では、 光回路一電気回路混載基板用 材料において、 光透過性樹脂層と光回路形成層とが隣接しているか、 あるいは光 透過性樹脂層と光回路形成層とが隣接している。  In this method for manufacturing an optical circuit-electric circuit mixed board, in the optical circuit-electric circuit mixed board material, the light transmitting resin layer and the optical circuit forming layer are adjacent to each other or the light transmitting resin layer and the optical circuit The formation layer is adjacent.
この光透過性樹脂層は、 本発明の光回路一電気回路混載基板用材料を参照して 先に説明した光透過性樹脂層であってよい。 この製造方法では、 コア部が直接金 属層に接触することを回避することができ、 光導波損失要因を排除して高品質の 光回路一電気回路混載基板を得ることができる。 本発明の光回路一電気回路混載基板の製造方法では、 偏向部の形成は、 少なく とも光回路形成層において光導波方向に対して傾斜する面 7を形成する工程と、 この傾斜面の表面に光反射部を形成する工程とを含む工程によって実施してよい。 この場合、 傾斜面と光反射部の形成によつて偏向部を容易に形成することができ ることを特徴とする。 This light transmissive resin layer may be the light transmissive resin layer described above with reference to the optical circuit-electric circuit mixed substrate material of the present invention. According to this manufacturing method, it is possible to prevent the core portion from directly contacting the metal layer, and to eliminate the optical waveguide loss factor to obtain a high-quality optical circuit / electric circuit hybrid substrate. In the method for manufacturing an optical circuit / electric circuit hybrid substrate according to the present invention, the deflecting portion is formed by forming a surface 7 inclined at least in the optical waveguide direction in the optical circuit forming layer, And a step of forming a light reflecting portion. In this case, the feature is that the deflecting portion can be easily formed by forming the inclined surface and the light reflecting portion.
光導波方向に対して傾斜する面を、 少なくとも光回路形成層に形成する場合、 切削刃の頂角が略 9 0 ° 、 または少なくとも片側の頂角が略 4 5 ° の回転ブレ —ド、 あるいはバイトを用いた切削加工によって形成するのが好ましい。 この場 合、 略 9 0 ° の偏向角度で光り信号の出し入れが可能になる略 4 5 ° の角度の 傾斜面の形成を、 切削加工によって、 角度精度良く、 且つ加工再現性良く行なう ことができる。 上述のようにブレードを使用する以外に、 他の加工方法、 例えば 紫外線レーザーを使用して偏向部、 特にその傾斜面を形成することができる。 そのような切削加工は、 回転ブレードもしくはバイトを少なくとも光回路形成 層の所定位置に接触させて、 所定深さで所定長さ切削した後、 回転ブレードもし くはバイトを切削箇所から離間させることによって行なうことができる。 この場 合、 切削長さの調整によって、 複数本形成されたコア部のうち一部のコア部、 任 意の所定本数のコア部、 または全部のコア部に傾斜面を形成することができる。 切削加工は、 回転ブレードもしくはバイトによる所定深さの切削加工が、 光回 路形成層 1に形成されるコァ部の厚みの一部を残す深さで行なってもよレ、。 この ように一部を残すと、 コア部を伝播する光を偏向部から取り出す部分と、 通過さ せる部分とに分割する、 分岐出力用の偏向部を形成することができる。  When a surface inclined with respect to the optical waveguide direction is formed at least in the optical circuit forming layer, a rotating blade having a vertex angle of the cutting blade of about 90 °, or at least one side having a vertex angle of about 45 °, or It is preferable to form by cutting using a cutting tool. In this case, it is possible to form an inclined surface at an angle of about 45 °, which enables light signals to be taken in and out at a deflection angle of about 90 °, by cutting, with good angular accuracy and with good processing reproducibility. . In addition to using a blade as described above, other processing methods, for example, an ultraviolet laser, can be used to form the deflecting portion, particularly its inclined surface. Such cutting is performed by bringing a rotating blade or cutting tool into contact with at least a predetermined position of the optical circuit forming layer, cutting a predetermined length at a predetermined depth, and then separating the rotating blade or cutting tool from the cutting position. Can do it. In this case, by adjusting the cutting length, an inclined surface can be formed on a part of the plurality of core portions, an arbitrary predetermined number of core portions, or all the core portions. The cutting may be performed by a rotating blade or a cutting tool to a predetermined depth at a depth that leaves a part of the thickness of the core formed in the optical circuit forming layer 1. By leaving a part in this way, it is possible to form a branching output deflecting part that divides the light propagating through the core part from the deflecting part and the part that passes the light.
好ましい 1つの態様では、 切削加工が、 回転ブレード 2 4 1を少なくとも光回 路形成層 2 0 1の所定位置に接触させて切削した後、 この回転ブレード 2 4 1の 砥粒より小さい砥粒で形成した第二の回転ブレード 2 4 1を用レ、、 同じ箇所を再 度切削することによって行なわれる。 この場合、 砥粒径が大きい回転ブレードで 傾斜面を切削した後に、 次に砲粒径が小さい第二の回転ブレードで傾斜面を仕上 げ加工することができ、 切削力不足による表面切り込み端での樹脂引っ張り込み や歪み、 まくれなどが生じるようなことなく、 傾斜面を低面粗度で平滑性高く形 成することができる。  In a preferred embodiment, the cutting is performed by bringing the rotating blade 241 into contact with at least a predetermined position of the optical circuit forming layer 201, and then performing cutting with abrasive grains smaller than the abrasive grains of the rotating blade 241. This is performed by using the formed second rotating blade 241, and cutting the same portion again. In this case, after cutting the inclined surface with a rotating blade with a large abrasive particle diameter, the inclined surface can be finished with a second rotating blade with a small cannon particle size, and the surface cut edge due to insufficient cutting force The inclined surface can be formed with low surface roughness and high smoothness without causing resin pulling, distortion, or curl.
偏向部の形成は、 コア部における光の導波方向または光軸に対して傾斜する反 射面を有する反射体を少なくとも光回路形成層に設けることにより実施してよい。 この場合、 反射面を有する反射体を光回路形成層に設けるだけで偏向部を容易に 形成することができる。 The deflecting portion may be formed by providing at least an optical circuit forming layer with a reflector having a reflection surface that is inclined with respect to the light guiding direction or the optical axis in the core portion. In this case, the deflection unit can be easily formed simply by providing a reflector having a reflection surface on the optical circuit forming layer. Can be formed.
また、 別の態様では、 偏向部の形成は、 少なくとも光回路形成層内あるいは光 回路形成層とそれに隣接する層との間の界面に周期構造体を設ける工程によって 実施してよい。 周期構造体とは、 光の伝播方向に沿って構造的特徴が周期的に変 化するものであり、 例えばグレーティングとして機能するものであれば、 いずれ の構造を有してもよい。 この場合、 周期構造体の形成によって偏向部を容易に形 成することができる。  In another aspect, the deflecting portion may be formed by a step of providing a periodic structure at least in the optical circuit forming layer or at the interface between the optical circuit forming layer and a layer adjacent thereto. The periodic structure is a structure in which a structural feature changes periodically along the propagation direction of light, and may have any structure as long as it functions as a grating, for example. In this case, the deflection unit can be easily formed by forming the periodic structure.
尚、 偏向部を形成する工程は、 光導波路のコア部を形成する工程の前に実施し てよい。 この方法では、 例えば光回路形成層の樹脂が光導波路のコア部を形成す る際に硬化するものであっても、 硬化して硬度が高くなる前に偏向部を容易に形 成することができる。  Note that the step of forming the deflection section may be performed before the step of forming the core section of the optical waveguide. In this method, for example, even if the resin of the optical circuit forming layer is cured when forming the core portion of the optical waveguide, the deflection portion can be easily formed before the resin hardens and becomes hard. it can.
光回路一電気回路混載基板の厚さ方向の位置が異なる 2つの電気回路の電気的 接続をビアホールで行なう場合、 一方の電気回路の電気回路の配線としての金属 層をレーザ光のストップ層としてレーザ加工を行なうことによって、 ビアホール の形成を行なうことができる。 この場合、 ビアホールを介した電気回路の導通接 続の信頼性を高く得ることができる。  When the electrical connection between two optical circuits in the thickness direction of the optical circuit-electrical circuit mixed board is different by a via hole, the metal layer as the wiring of the electric circuit of one of the electric circuits is used as the laser light stop layer and the laser is used as the stop layer. By processing, a via hole can be formed. In this case, the reliability of the conductive connection of the electric circuit via the via hole can be obtained with high reliability.
本発明の光回路一電気回路混載基板の製造方法において、 別の態様では、 光導 波路のコア部を形成する工程 (1 ) において、 光回路形成層として活性エネルギ 一線の照射によって屈折率が高くなるように変化するものを有する光回路一電気 回路混載基板用材料を用い、 光回路形成層への活性エネルギー線の照射強度を制 御して光回路形成層の厚み方向で屈折率が高められない部分を残して活性エネル ギ一線を照射する側の部分だけ屈折率を高めることによって、 屈折率が高められ た部分をコア部として得ることができる。 この場合、 光回路形成層の厚み方向で 屈折率が高められない部分でクラッド部を形成することができ、 この側にクラッ ド部のための樹脂層を設ける必要がなくなって、 積層の層構成を簡略化すること ができると共に、 光回路一電気回路混載基板の製造が容易になる。 図面の簡単な説明  In another embodiment of the method of manufacturing an optical circuit-electric circuit hybrid substrate of the present invention, in the step (1) of forming the core portion of the optical waveguide, the refractive index is increased by irradiating active energy rays as an optical circuit forming layer. Optical material with electric circuit-electric circuit mixed substrate material, and controlling the irradiation intensity of active energy rays to the optical circuit formation layer, the refractive index cannot be increased in the thickness direction of the optical circuit formation layer By increasing the refractive index only on the part on the side irradiated with the active energy while leaving the part, the part with the increased refractive index can be obtained as the core part. In this case, the clad portion can be formed in a portion where the refractive index cannot be increased in the thickness direction of the optical circuit forming layer, and there is no need to provide a resin layer for the clad portion on this side. Can be simplified, and the manufacture of an optical-circuit / electric-circuit-mixed substrate is facilitated. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る光回路一電気回路混載基板用材料の実施の形態を示し、 図 1 (a) 〜図 1 (e) はそれぞれ模式的断面図である。 FIG. 1 shows an embodiment of a material for an optical circuit-electric circuit mixed board according to the present invention, 1 (a) to 1 (e) are schematic sectional views.
図 2は、 図 1 (a) の光回路一電気回路混載基板用材料から光回路一電気回路 混載基板を製造する際の工程を示し、 図 2 (a) 〜図 2 (e) はそれぞれ模式的 断面図である。  Fig. 2 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 1 (a), and Figs. 2 (a) to 2 (e) are schematic diagrams. FIG.
図 3は、 本発明に係る光回路一電気回路混載基板用材料の他の実施の形態を示 し、 図 3 (a) 〜図 3 (e) はそれぞれ模式的断面図である。  FIG. 3 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention, and FIGS. 3 (a) to 3 (e) are schematic cross-sectional views.
図 4は、 図 3 (a) の光回路一電気回路混載基板用材料から光回路一電気回路 混載基板を製造する際の工程を示し、 図 4 (a) 〜図 4 (e) はそれぞれ模式的 断面図である。  Fig. 4 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 3 (a), and Figs. 4 (a) to 4 (e) are schematic diagrams, respectively. FIG.
図 5は、 本発明に係る光回路一電気回路混載基板用材料の他の実施の形態を示 し、 図 5 (a) 〜図 5 (e) はそれぞれ模式的断面図である。  FIG. 5 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention, and FIGS. 5 (a) to 5 (e) are schematic sectional views.
図 6は、 図 5 (a) の光回路一電気回路混載基板用材料から光回路一電気回路 混載基板を製造する際の工程を示し、 図 6 (a) 〜図 6 (e) はそれぞれ模式的 断面図である。  Fig. 6 shows the process of manufacturing an optical circuit / electric circuit hybrid board from the optical circuit / electric circuit hybrid board material of Fig. 5 (a), and Figs. 6 (a) to 6 (e) are schematic diagrams, respectively. FIG.
図 7は、 本発明に係る光回路一電気回路混載基板用材料の他の実施の形態を示 し、 図 7 (a) 〜図 7 (e) はそれぞれ模式的断面図である。  FIG. 7 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention, and FIGS. 7 (a) to 7 (e) are schematic sectional views, respectively.
図 8は、 図 7 (a) の光回路一電気回路混載基板用材料から光回路一電気回路 混載基板を製造する際の工程を示し、 図 8 (a) 〜図 8 (e) はそれぞれ模式的 断面図である。  Fig. 8 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 7 (a), and Figs. 8 (a) to 8 (e) are schematic diagrams, respectively. FIG.
図 9は、 本発明に係る光回路一電気回路混載基板用材料の他の実施の形態を示 し、 図 9 (a) 〜図 9 (e) はそれぞれ模式的断面図である。  FIG. 9 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention, and FIGS. 9 (a) to 9 (e) are schematic sectional views, respectively.
図 10は、 図 9 (a) の光回路一電気回路混載基板用材料から光回路—電気回 路混載基板を製造する際の工程を示し、 図 1 0 (a) 〜図 1 0 (d) はそれぞれ 模式的断面図である。  FIG. 10 shows a process of manufacturing an optical circuit-electric circuit mixed board from the optical circuit-electric circuit mixed board material of FIG. 9 (a), and FIGS. 10 (a) to 10 (d). Are schematic cross-sectional views.
図 1 1は、 発明に係る光回路一電気回路混載基板用材料の他の実施の形態を示 し、 図 1 1 (a) 〜図 1 1 (e) はそれぞれ模式的断面図である。  FIG. 11 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention, and FIGS. 11 (a) to 11 (e) are schematic sectional views.
図 1 2は、 図 1 1 (a) の光回路一電気回路混載基板用材料から光回路一電気 回路混載基板を製造する際の工程を示し、 図 1 2 (a) 〜図 1 2 (d) はそれぞ れ模式的断面図である。 図 1 3は、 本発明に係る光回路一電気回路混載基板用材料の他の実施の形態を 示し、 図 1 3 (a) 〜図 1 3 (e) はそれぞれ模式的断面図である。 Fig. 12 shows the process of manufacturing an optical circuit-electric circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 11 (a), and Fig. 12 (a) to Fig. 12 (d ) Are schematic cross-sectional views. FIG. 13 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention, and FIGS. 13 (a) to 13 (e) are schematic cross-sectional views.
図 14は、 図 1 3 (a) の光回路一電気回路混載基板用材料から光回路一電気 回路混載基板を製造する際の工程を示し、 図 14 (a) 〜図 14 (d) はそれぞ れ模式的断面図である。  Fig. 14 shows the process of manufacturing the optical circuit-electrical circuit hybrid board from the material for the optical circuit-electric circuit hybrid board of Fig. 13 (a), and Figs. 14 (a) to 14 (d) show the process. It is a typical sectional view, respectively.
図 1 5は、 本発明に係る光回路一電気回路混載基板用材料の他の実施の形態を 示し、 図 1 5 (a) 〜図 1 5 (e) はそれぞれ模式的断面図である。  FIG. 15 shows another embodiment of the material for an optical circuit-electric circuit hybrid board according to the present invention, and FIGS. 15 (a) to 15 (e) are schematic sectional views.
図 1 6は、 図 1 5 (a) の光回路一電気回路混載基板用材料から光回路一電気 回路混載基板を製造する際の工程を示し、 図 1 6 (a) 〜図 1 6 (d) はそれぞ れ模式的断面図である。  Fig. 16 shows the process of manufacturing an optical circuit-electrical circuit hybrid board from the optical circuit-electric circuit hybrid board material of Fig. 15 (a), and Fig. 16 (a) to Fig. 16 (d ) Are schematic sectional views.
図 1 7は、 本発明の光回路一電気回路混載基板の製造方法の実施の形態の一例 の工程を示し、 図 1 7 (a) 〜図 1 7 (h) は模式的断面図である。  FIG. 17 shows the steps of an example of the embodiment of the method for manufacturing an optical circuit-electric circuit hybrid board according to the present invention, and FIGS. 17 (a) to 17 (h) are schematic sectional views.
図 18は、 本発明の光回路一電気回路混載基板の製造方法において、 偏向部に は反射部を形成する実施の形態の一例を示し、 図 1 8 (a) および図 1 8 (b) は一部の拡大した模式的断面図である。  FIG. 18 shows an example of an embodiment in which a reflecting portion is formed in a deflecting portion in the method for manufacturing an optical circuit-electrical circuit hybrid board of the present invention, and FIG. 18 (a) and FIG. FIG. 3 is a partially enlarged schematic cross-sectional view.
図 1 9は、 本発明の光回路一電気回路混載基板の製造方法において、 偏向部を 形成する実施の形態の一例を示し、 図 1 9 (a) および図 1 9 (b) は一部の拡 大した模式的斜視図である。  FIG. 19 shows an example of an embodiment in which a deflecting portion is formed in the method of manufacturing an optical circuit-electrical circuit hybrid board of the present invention, and FIGS. 19 (a) and 19 (b) show a part of the embodiment. FIG. 4 is an enlarged schematic perspective view.
図 20は、 本宪明の光回路一電気回路混載基板の製造方法において、 偏向部を 形成する実施の形態の一例を示す模式的断面図である。  FIG. 20 is a schematic cross-sectional view showing an example of an embodiment in which a deflecting unit is formed in the method of manufacturing an optical circuit-electric circuit mixed board of the present invention.
図 2 1は、 本発明の光回路一電気回路混載基板の製造方法において、 反射体を 有する偏向部を形成する実施の形態の一例を示し、 図 2 1 (a) および図 2 1 FIG. 21 shows an example of an embodiment in which a deflecting section having a reflector is formed in the method for manufacturing an optical circuit-electric circuit mixed board of the present invention, and FIG. 21 (a) and FIG.
(b) は一部の拡大した模式的断面図である。 (b) is a partially enlarged schematic cross-sectional view.
図 22は、 本発明の光回路一電気回路混載基板の製造方法の実施の形態の一例 の工程を示し、 図 22 (a) 〜図 22 (h) は模式的断面図である。  FIG. 22 shows an example of an embodiment of a method of manufacturing an optical circuit-electric circuit hybrid board according to the present invention, and FIGS. 22 (a) to 22 (h) are schematic sectional views.
図 23は、 本発明の光回路一電気回路混載基板の製造方法の実施の形態の一例 の工程を示し、 図 23 (a) 〜図 23 (h) は模式的断面図である。  FIG. 23 shows the steps of an example of the embodiment of the method for manufacturing an optical circuit-electric circuit hybrid board of the present invention, and FIGS. 23 (a) to 23 (h) are schematic sectional views.
図 24は、 本発明の光回路一電気回路混載基板の製造方法において、 偏向部を 形成する実施の形態の一例を示し、 図 24 (a) および図 24 (b) は模式的断 面図である。 FIG. 24 shows an example of an embodiment in which a deflecting portion is formed in the method of manufacturing an optical circuit-electric circuit mixed board of the present invention. FIGS. 24 (a) and 24 (b) are schematic sectional views. FIG.
図 25は、 本発明の光回路一電気回路混載基板の製造方法において、 偏向部へ または偏向部から光を効率的に伝達する手段を形成する本発明の実施の形態の一 例を示し、 図 25 (a) , 図 25 (b) および図 25 (c) は模式的断面図であ る。  FIG. 25 shows an example of an embodiment of the present invention in which a means for efficiently transmitting light to or from the deflecting unit is formed in the method for manufacturing an optical circuit-electric circuit mixed board of the present invention. 25 (a), 25 (b) and 25 (c) are schematic sectional views.
図 26は、 本発明の光回路—電気回路混載基板の製造方法の実施の形態の一例 の工程を示し、 図 26 (a) 〜図 26 (i) は模式的断面図である。  FIG. 26 shows a process of an example of an embodiment of a method of manufacturing an optical circuit / electric circuit hybrid substrate according to the present invention, and FIGS. 26 (a) to 26 (i) are schematic sectional views.
図 27は、 本発明の光回路—電気回路混載基板の製造方法の実施の形態の一例 の工程を示し、 図 27 (a) 〜図 27 (i) は模式的断面図である。  FIG. 27 shows a process of an example of an embodiment of a method of manufacturing an optical circuit / electric circuit hybrid substrate according to the present invention, and FIGS. 27 (a) to 27 (i) are schematic sectional views.
図 28は、 本発明の光回路—電気回路混載基板の製造方法の実施の形態の一例 の工程を示し、 図 28 (a) 〜図 28 ( j ) は模式的断面図である。  FIG. 28 shows a step of an example of an embodiment of a method of manufacturing an optical circuit / electric circuit hybrid substrate according to the present invention, and FIGS. 28 (a) to 28 (j) are schematic sectional views.
図 29は、 本発明の光回路—電気回路混載基板の製造方法の実施の形態の一例 の工程を示し、 図 29 (a) 〜図 29 ( j) は模式的断面図である。  FIG. 29 shows the steps of an example of the embodiment of the method for manufacturing an optical circuit-electric circuit hybrid board of the present invention, and FIGS. 29 (a) to 29 (j) are schematic sectional views.
図 30は、 本発明の光回路一電気回路混載基板の製造方法において、 偏向部へ または偏向部から光を効率的に伝達する手段を形成する本発明の実施の形態の一 例を示し、 図 30 (a) および図 30 (b) は拡大した模式的断面図である。 図 31は、 本発明の光回路—電気回路混載基板の製造方法において、 偏向部へ または偏向部から光を効率的に伝達するレンズ体を配置する工程を示し、 図 31 (a) , 図 31 (b) および図 31 (c) は拡大した模式的断面図である。 図 32は、 本発明の光回路一電気回路混載基板の製造方法の実施の形態の一例 の工程を示し、 図 32 (a) 〜図 32 (k) は模式的断面図である  FIG. 30 shows an example of an embodiment of the present invention in which a means for efficiently transmitting light to or from a deflecting unit is formed in the method for manufacturing an optical circuit-electric circuit mixed board of the present invention. 30 (a) and FIG. 30 (b) are enlarged schematic sectional views. FIG. 31 shows a step of arranging a lens body for efficiently transmitting light to or from the deflecting unit in the method of manufacturing an optical circuit-electric circuit mixed substrate according to the present invention. (b) and FIG. 31 (c) are enlarged schematic sectional views. FIG. 32 shows a process of an example of an embodiment of a method for manufacturing an optical circuit-electrical circuit hybrid board according to the present invention, and FIGS. 32 (a) to 32 (k) are schematic sectional views.
図 33は、 本発明の光回路一電気回路混載基板の製造方法の実施の形態の一例 の工程を示し、 図 33 (a) 〜図 33 (i) は模式的断面図である。  FIG. 33 shows the steps of an example of the embodiment of the method for manufacturing an optical-circuit / electric-circuit hybrid board according to the present invention, and FIGS. 33 (a) to 33 (i) are schematic sectional views.
符号の説明  Explanation of reference numerals
1…光透過性樹脂層、 2…光回路形成層、 3, 4, 5, 6…光回路形成層、 7…第 2光透過性樹脂層、 8…光回路形成層、 9…第 2光透過性樹脂層、 10…光回路形成層、 11…光透過性樹脂層、 12…光回路形成層、  1 ... light transmitting resin layer, 2 ... optical circuit forming layer, 3, 4, 5, 6 ... optical circuit forming layer, 7 ... second light transmitting resin layer, 8 ... optical circuit forming layer, 9 ... second light Transparent resin layer, 10… Optical circuit forming layer, 11… Light transmitting resin layer, 12… Optical circuit forming layer,
13…金属層、 14…接着剤層、 15…カバ一フィルム、 16…支持体、 201…光回路形成層、 202…金属層、 203…積層物、 204…光導波路、 2 0 4 a…コア部、 2 0 4 b…クラッド部、 2 0 5…偏向部、 2 0 6…電気回路、 2 0 7…傾斜面、 2 0 8…光反射部、 2 0 9…反射面、 2 1 0…反射体、 13 ... metal layer, 14 ... adhesive layer, 15 ... cover film, 16 ... support, 201 ... optical circuit forming layer, 202 ... metal layer, 203 ... laminate, 204 ... optical waveguide, 204 a ... core part, 204 b ... clad part, 205 ... deflection part, 206 ... electric circuit, 207 ... inclined surface, 208 ... light reflection part, 209 ... reflection Surface, 210 ... reflector,
2 1 1…基板、 2 1 2…電気回路、 2 1 3…ビアホール、 2 1 4…接着斉リ、 2 1 5…カバーフィルム、 2 1 6…光透過性樹脂、 2 1 7…光透過性樹脂層、 2 4 0…切削刃、 2 4 1…回転ブレード、 2 4 4…高分子膜、 2 4 6…レンズ体、2 1 1 ... substrate, 2 1 2 ... electric circuit, 2 1 3 ... via hole, 2 1 4 ... adhesive, 2 15 ... cover film, 2 16 ... light-transmitting resin, 2 1 7 ... light-transmitting Resin layer, 240: cutting blade, 2 41: rotating blade, 2 44: polymer film, 2 4: lens body,
2 4 7…光透過性樹脂。 発明を実施するための形態 2 4 7… Light transmitting resin. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described.
図 1 ( a ) は第 7の要旨に係る本発明の光回路一電気回路混載基板用材料の実 施の形態の一例を示し、 光透過性樹脂層 1の片面に直接接して光回路形成層 2を 積層すると共に、 光透過性樹脂層 1の光回路形成層 2を設けた面と反対側の面に 金属層 1 3を積層することによって形成してある。 この金属層 1 3としては、 銅 箔が好ましい。 金属層 1 3の厚みは特に制限されるものではないが、 通常 9〜7 0 μ πι程度のものが一般的である。  FIG. 1A shows an example of an embodiment of an optical circuit-electric circuit mixed substrate material according to the seventh aspect of the present invention, in which an optical circuit forming layer is in direct contact with one surface of a light transmitting resin layer 1. 2 and a metal layer 13 on the surface of the light-transmitting resin layer 1 opposite to the surface on which the optical circuit forming layer 2 is provided. As the metal layer 13, a copper foil is preferable. The thickness of the metal layer 13 is not particularly limited, but is generally about 9 to 70 μπι.
光透過性樹脂層 1は、 光透過性樹脂よりなるものである。 光回路形成層 2は、 活性エネルギー線の照射によつて溶剤への溶解性が変化する光透過性樹脂 (また は感光性樹脂) よりなるものである。 これらの樹脂は、 上述の例示の樹脂から選 択できる。 この光回路形成層 2を形成する樹脂は、 光透過性樹脂層 1を形成する 樹脂より屈折率が高い樹脂であるか、 あるいは活性エネルギー線の照射によって 溶剤溶解度が小さくなる場合には、 活性エネルギー線の照射によって光透過性樹 脂層 1を形成する樹脂より屈折率が高くなる樹脂である。  The light transmitting resin layer 1 is made of a light transmitting resin. The optical circuit forming layer 2 is made of a light-transmitting resin (or a photosensitive resin) whose solubility in a solvent is changed by irradiation with active energy rays. These resins can be selected from the resins exemplified above. The resin forming the optical circuit forming layer 2 is a resin having a higher refractive index than the resin forming the light transmissive resin layer 1 or the active energy when the solvent solubility is reduced by irradiation with active energy rays. It is a resin whose refractive index is higher than that of the resin forming the light-transmitting resin layer 1 upon irradiation with a ray.
この光回路一電気回路混載基板用材料を製造する方法の一例を説明する。 金属 層 1 3として金属箔を用いる場合には、 その片面、 好ましくはそのマット面に光 透過性樹脂層 1を形成する樹脂をコーティングする。 コーティングの方法は、 コ ンマコーター、 カーテンコーター、 ダイコーター、 スクリーン印 J¾IJ、 オフセット 印刷などを例示することができる。 次に、 この光透過性樹脂層 1の上に光回路形 成層 2を形成する樹脂を同様のコーティング方法でコーティングすることによつ て、 図 1 ( a ) のような光回路一電気回路混載基板用材料を得ることができる。 次に、 このようにして得た光回路一電気回路混載基板用材料を用いて光回路— 電気回路混載基板を製造する方法について説明する。 まず、 図 2 ( a ) に示すよ うに、 光回路形成層 2に金属層 1 3と反対側から活性エネルギー線 Eを照射して 露光する。 活性エネルギー線の照射は光回路のコア部の所定パターンに応じたパ ターンで行なう。 例えば、 紫外線のマスク露光、 レーザーの描画露光等で活性ェ ネルギ一線のパタ一ン照射を行なうことができる。 An example of a method for producing this optical circuit-electric circuit mixed substrate material will be described. When a metal foil is used as the metal layer 13, one surface, preferably the mat surface, is coated with a resin forming the light-transmitting resin layer 1. Examples of the coating method include a comma coater, a curtain coater, a die coater, a screen mark JIJ, and offset printing. Next, by coating the resin for forming the optical circuit forming layer 2 on the light transmitting resin layer 1 by the same coating method, the optical circuit-electric circuit hybrid as shown in FIG. A material for a substrate can be obtained. Next, a method of manufacturing an optical circuit / electric circuit mixed substrate using the optical circuit / electric circuit mixed substrate material thus obtained will be described. First, as shown in FIG. 2A, the optical circuit forming layer 2 is exposed to active energy rays E from the side opposite to the metal layer 13 for exposure. Irradiation with active energy rays is performed in a pattern corresponding to a predetermined pattern in the core portion of the optical circuit. For example, pattern irradiation of active energy can be performed by mask exposure of ultraviolet rays, drawing exposure of laser, or the like.
次に、 光回路形成層 2に溶剤を作用させて現像することによって、 光回路形成 層 2を溶剤によって部分的に溶解して除去する。 このとき、 光回路形成層 2が、 光硬化性樹脂等の、 活性エネルギー線が照射された部分の溶剤への溶解度が低く なるように変化する樹脂で形成されているときには、 活性エネルギー線が照射さ れた部分以外の樹脂が溶剤に溶解して活性エネルギー線が照射された部分の樹脂 が残る。 また、 光配線形成層 2が、 光分解性樹脂等の活性エネルギー線が照射さ れた部分の溶剤への溶解度が高くなるように変化する樹脂で形成されているとき には、 活性エネルギー線が照射された部分の樹脂が溶剤に溶解し、 活性エネルギ 一線が照射された部分以外の樹脂が残る。 尚、 溶剤は、 光回路形成層を構成する 樹脂に応じて適当に選択する。 このような選択は、 酉己線基板を製造する分野にお いて常套的に実施されている。  Next, the optical circuit forming layer 2 is developed by causing a solvent to act on the optical circuit forming layer 2, whereby the optical circuit forming layer 2 is partially dissolved and removed by the solvent. At this time, when the optical circuit forming layer 2 is formed of a resin such as a photocurable resin which changes so that the portion irradiated with the active energy ray in the solvent becomes low, the active energy ray is irradiated. The resin other than the exposed portion is dissolved in the solvent, and the resin in the portion irradiated with the active energy ray remains. When the optical wiring forming layer 2 is formed of a resin such as a photo-decomposable resin that changes so that the portion irradiated with the active energy ray becomes higher in the solvent, the active energy ray is The resin in the irradiated part dissolves in the solvent, and the active energy remains in the part other than the part irradiated with the ray. The solvent is appropriately selected according to the resin constituting the optical circuit forming layer. Such selections are routinely made in the field of manufacturing tori-line substrates.
このようにして、 図 2 ( b ) のように光回路形成層 2を所定の光回路パターン に形成した後、 光透過性樹脂層 1の光回路形成層 2を設けた側の面に光透過性樹 脂 2 0をコーティングして設け、 図 2 ( c ) に示すように光回路パターン 2を光 透過性樹脂層 2 0で被覆する。 この光透過性樹脂層 2 0としては、 光回路形成層 2より、 従って、 コア部としての光回路パターンより、 屈折率が低い光透過†生樹 脂を用いるものであり、 例えば光透過性樹脂層 1に用いる樹脂と同じ樹脂を用い ることができる。  In this way, after the optical circuit forming layer 2 is formed in a predetermined optical circuit pattern as shown in FIG. 2 (b), the light transmitting resin layer 1 transmits light to the side on which the optical circuit forming layer 2 is provided. The optical circuit pattern 2 is coated with a light-transmitting resin layer 20 as shown in FIG. 2 (c). As the light-transmitting resin layer 20, a light-transmitting resin having a lower refractive index than the optical circuit forming layer 2 and, therefore, lower than the optical circuit pattern as the core portion is used. The same resin as that used for the layer 1 can be used.
そして、 電気配線 2 1を設けて作製されたプリント配線板 2 2を予め準備し、 図 2 ( d ) のように、 接着剤 2 3を用いてこのプリント配線板 2 2の表面に光透 過性樹脂層 2 0を接着することによって、 プリント配線板 2 2の上に積層する。 この後、 表面の金属層 1 3を配線加工して図 2 ( e ) のように電気配線 2 4を形 成し、 さらにレーザービア加工ゃメッキ加工して電気配線 2 1と電気配線 2 4と を電気的に接続する。 Then, a printed wiring board 22 provided with the electric wiring 21 is prepared in advance, and as shown in FIG. 2 (d), the surface of the printed wiring board 22 is optically transparent using an adhesive 23. The conductive resin layer 20 is laminated on the printed wiring board 22 by bonding. After that, the metal layer 13 on the surface is processed by wiring to form the electric wiring 24 as shown in FIG. 2 (e), and then the laser wiring and plating are performed to form the electric wiring 21 and the electric wiring 24. Are electrically connected.
図 2 ( e ) のものにあって、 光回路形成層 2に由来する光配線パターンの屈折 率は、 光回路形成層 2と直接接する光透過性樹脂層 1や光透過性樹脂層 2 0の屈 折率よりも大きいので、 光回路形成層 2がコア部としてのコア層 2 6、 光透過性 樹脂層 1や光透過性樹脂層 2 0がクラッド層 2 7となつた光導波路が構成され、 光回路形成層 2によって光回路が形成されるものであり、 光回路形成層 2による 光回路と電気配線 2 1と電気配線 2 4とが積層された光回路一電気回路混載基板 として用いることができる。 尚、 接着剤 2 3が光透過性であり、 かつ光回路形成 層 2より屈折率が低いものであれば、 光透過性樹脂層 2 0を省略できる。  In FIG. 2 (e), the refractive index of the optical wiring pattern derived from the optical circuit forming layer 2 is different from that of the light transmitting resin layer 1 or the light transmitting resin layer 20 which is in direct contact with the optical circuit forming layer 2. Since the refractive index is larger than the refractive index, an optical waveguide is formed in which the optical circuit forming layer 2 is a core layer 26 as a core, and the light transmitting resin layer 1 and the light transmitting resin layer 20 are a cladding layer 27. An optical circuit is formed by the optical circuit forming layer 2, and is used as an optical circuit-electric circuit mixed board in which the optical circuit formed by the optical circuit forming layer 2, the electric wiring 21 and the electric wiring 24 are laminated. Can be. If the adhesive 23 is light-transmitting and has a lower refractive index than the optical circuit forming layer 2, the light-transmitting resin layer 20 can be omitted.
ここで、 本発明に係る材料において、 上述のようにコア部を形成した光回路一 電気回路混載基板用材料をプリント配線板 2 2に積層することは必須ではなく、 光回路—電気回路混載基板用材料の金属層 1 3を配線加工して得られる電気配線 2 4を一方の側のみに形成した光回路一電気回路混載基板を製造するようにして もよく、 また、 プリント配線板 2 2に代えて金属箔を積層することによって、 両 側に電気配線 2 4を形成した光回路一電気回路混載基板を製造するようにしても よい。  Here, in the material according to the present invention, it is not essential that the material for the optical circuit and the electric circuit mixed board having the core portion formed thereon as described above is laminated on the printed wiring board 22. It is also possible to manufacture an optical circuit-electric circuit hybrid board in which the electric wiring 24 obtained by wiring the metal layer 13 of the material for use is formed only on one side, and the printed wiring board 22 Alternatively, by laminating metal foils, an optical circuit / electric circuit hybrid board in which electric wiring 24 is formed on both sides may be manufactured.
図 1 ( b ) は、 第 1 2の要旨の光回路—電気回路混載基板用材料の他の実施の 形態を示し、 金属層 1 3と光透過性樹脂層 1との間に難燃性を有する接着剤層 1 4が設けてある。 金属層 1 3として金属箔を用いる場合には、 その片面に、 存在 する場合にはそのマット面に、 接着剤を既述のコーティング法でコーティングし、 接着剤が溶剤を含む場合にはこれを乾燥除去した後、 必要に応じて硬化あるいは 半硬化させることによって、 接着剤層 1 4を形成することができる。 あとは、 こ の接着剤層 1 4の上に上記と同様にして光透過性樹脂層 1をコーティングして設 けると共に、 この上に光回路形成層 2をコーティングして設けることによって、 光回路一電気回路混載基板用材料を得ることができる。  FIG. 1 (b) shows another embodiment of the optical circuit-electric circuit mixed board material according to the first aspect, in which the flame retardancy between the metal layer 13 and the light transmitting resin layer 1 is reduced. Adhesive layer 14 is provided. When a metal foil is used as the metal layer 13, an adhesive is coated on one side, or on the mat surface, if present, by the above-described coating method, and when the adhesive contains a solvent, this is coated. After being dried and removed, the adhesive layer 14 can be formed by curing or semi-curing as necessary. After that, a light-transmitting resin layer 1 is coated on the adhesive layer 14 in the same manner as described above, and an optical circuit forming layer 2 is coated on the adhesive layer 14, thereby providing an optical circuit. One electric circuit mixed substrate material can be obtained.
このように金属層 1 3と樹脂層との間に接着剤層 1 4を設けることによって、 接着剤層 1 4で金属層 1 3の樹脂層に対する密着強度を高めることができる。 ま た、 接着剤層 1 4には難燃剤が含有されているので、 難燃性を付与することもで さる。 図 1 ( c ) は、 第 1 4の要旨の光回路—電気回路混載基板用材料の実施の形態 の一例を示し、 光回路形成層 2の金属層 1 3と反対側の面に透明なカバーフィル ム 1 5が貼ってある。 カバーフィルム 1 5は、 金属層 1 3上に所定の樹脂層 1お よび 2を形成した後に、 その上にラミネートすることによって貼っても、 あるい はカバーフィルム 1 5に所定の榭脂層 2をコ一ティングし、 光透過性樹脂層 1を 形成した金属層 1 3に積層することによつて形成してよい。 By thus providing the adhesive layer 14 between the metal layer 13 and the resin layer, the adhesive strength of the metal layer 13 to the resin layer can be increased by the adhesive layer 14. Further, since the adhesive layer 14 contains a flame retardant, it is also possible to impart flame retardancy. FIG. 1 (c) shows an example of an embodiment of a material for an optical circuit-electrical circuit board according to the fourteenth aspect. Film 15 is attached. The cover film 15 may be formed by forming the predetermined resin layers 1 and 2 on the metal layer 13 and then laminating the resin layer 1 and 2 on the metal layer 13, or by applying the resin layer 2 on the cover film 15. May be formed by coating and laminating the metal layer 13 on which the light transmitting resin layer 1 is formed.
このように樹脂層の表面にカバーフィルム 1 5を張ると、 樹脂層が剥き出しに ならないので、 光回路一電気回路混載基板用材料を取り扱う際のハンドリング性 が向上する。 カバーフィルム 1 5を通して図 2 ( a ) のように露光することがで きるものであり、 図 2 ( b ) のように現像を行なう際には、 カバーフィルム 1 5 を樹脂層から剥がし取る。  When the cover film 15 is stretched on the surface of the resin layer in this manner, the resin layer does not become exposed, so that the handleability when handling the material for an optical circuit-electric circuit mixed board is improved. Exposure can be performed through the cover film 15 as shown in FIG. 2 (a). When developing as shown in FIG. 2 (b), the cover film 15 is peeled off from the resin layer.
図 1 ( d ) は、 第 1 3の要旨の光回路一電気回路混載基板用材料の実施の形態 の一例を示し、 金属層 1 3の光透過性樹脂層 1を設けた側と反対側の面に支持体 1 6を剥離可能に貼り付けて積層してある。 支持体 1 6としては、 剛性を有する ものであれば^ Γでもよいが、 金属板、 樹脂板、 セラミックス板などを用いること ができる。 金属層 1 3として金属箔を用いる場合は、 支持体 1 6の表面に金属箔 を剥離可能に接着して貼り付けることができる。 また支持体 1 6の表面にメツキ することによって金属層 1 3を形成することもできる。 このように、 支持体 1 6 に金属層 1 3を貼って、 金属層 1 3を剛性の高い支持体 1 6で補強した状態で、 金属層 1 3の表面に樹脂層を設ける加工を行なったり、 図 2のような加工を行な つたりすることができるものであり、 加工の際の取り扱い性が向上する。  FIG. 1 (d) shows an example of an embodiment of the material for an optical circuit-electrical circuit board according to the thirteenth aspect, and the metal layer 13 on the side opposite to the side on which the light-transmitting resin layer 1 is provided. The support 16 is releasably attached to the surface and laminated. As the support 16, any material may be used as long as it has rigidity, but a metal plate, a resin plate, a ceramic plate, or the like may be used. When a metal foil is used as the metal layer 13, the metal foil can be peelably adhered to the surface of the support 16. The metal layer 13 can also be formed by plating the surface of the support 16. As described above, the metal layer 13 is attached to the support 16, and the metal layer 13 is reinforced by the support 16 having high rigidity, and a process of providing a resin layer on the surface of the metal layer 13 is performed. In addition, it is possible to perform the processing shown in Fig. 2 and the handling during processing is improved.
図 1 ( e ) は、 支持体 1 6の両面に金属層 1 3を張って、 支持体 1 6の両側に 光回路一電気回路混載基板用材料を形成するようにした例を示す。  FIG. 1 (e) shows an example in which a metal layer 13 is provided on both sides of a support 16, and a material for an optical circuit / electric circuit hybrid board is formed on both sides of the support 16.
図 3 ( a ) は、 第 1の要旨に係る光回路一電気回路混載基板用材料の実施の形 態の一例を示し、 光透過性樹脂層 1の片面に直接接して光回路形成層 3を積層す ると共に、 光透過性樹脂層 1の光回路形成層 3を設けた面と反対側の面に金属層 1 3を積層することによって形成してある。 光透過性樹脂層 1や金属層 1 3とし ては既述のものを用いることができる。  FIG. 3 (a) shows an example of an embodiment of the material for an optical circuit-electrical circuit board according to the first aspect, in which the optical circuit forming layer 3 is in direct contact with one surface of the light transmitting resin layer 1. The metal layer 13 is formed by laminating the metal layer 13 on the surface of the light transmitting resin layer 1 opposite to the surface on which the optical circuit forming layer 3 is provided. As the light-transmitting resin layer 1 and the metal layer 13, those described above can be used.
光回路形成層 3は活性エネルギー線の照射によって屈折率が変化し、 活'|~生エネ ルギ一線が照射されることによって屈折率が高くなる光透過性樹脂よりなるもの である。 そして、 この光回路形成層 3を形成する樹脂は、 活性エネルギー線の照 射された部分が、 活性エネルギー線の照射されていない部分及び光透過性樹脂層 1を形成する樹脂より屈折率が高くなる樹脂である。 The refractive index of the optical circuit forming layer 3 is changed by the irradiation of the active energy ray, and the active It is made of a light-transmissive resin whose refractive index increases when irradiated with straight lines. The resin forming the optical circuit forming layer 3 has a higher refractive index in the portion irradiated with the active energy ray than in the portion not irradiated with the active energy ray and the resin forming the light transmitting resin layer 1. Resin.
この光回路一電気回路混載基板用材料は既述のものと同様にして、 金属層 1 3 として金属箔を用いる場合には、 その片面、 好ましくはそのマツト面に光透過性 樹脂層 1を形成する樹脂をコーティングし、 この光透過性樹脂層 1の上に光回路 形成層 3を形成する樹脂をコーテイングすることによつて作製することができる。 次に、 このようにして得た光回路一電気回路混載基板用材料を用いて光回路一 電気回路混載基板を製造する方法について説明する。 まず、 図 4 ( a ) に示すよ うに、 光回路形成層 3に金属層 1 3と反対側から活性エネルギー線 Eを照射する。 活性エネルギー線の照射は光配線の配線パターンに応じたパターンで行なわれる ものであり、 例えば紫外線のマスク露光、 レーザーの描画露光などで活性エネル ギ一線のパターン照射を行なうことができる。 このとき、 光回路形成層 3のうち、 活性エネルギー線が照射されていない部分の屈折率は変化しないが、 活性エネル ギ一線が照射された部分は屈折率が高くなり、 光回路形成層 3には照射部分の高 屈折率部 3 aと非照射部分の低屈折率部 3 bが形成される。 光回路形成層 3の高 屈折率部 3 aの屈折率は光透過性樹脂層 1の屈折率よりも高くなつている。  When a metal foil is used as the metal layer 13 in the same manner as described above, the light-transmitting resin layer 1 is formed on one surface, preferably the mat surface, of the optical circuit-electric circuit mixed substrate material. It can be manufactured by coating a resin to be formed and coating a resin for forming the optical circuit forming layer 3 on the light transmitting resin layer 1. Next, a method for manufacturing an optical circuit / electric circuit hybrid board using the optical circuit / electric circuit hybrid board material thus obtained will be described. First, as shown in FIG. 4A, the optical circuit forming layer 3 is irradiated with active energy rays E from the side opposite to the metal layer 13. The irradiation of the active energy ray is performed in a pattern corresponding to the wiring pattern of the optical wiring. For example, the pattern irradiation of the active energy line can be performed by mask exposure of ultraviolet rays, laser drawing exposure, or the like. At this time, the refractive index of the portion of the optical circuit forming layer 3 that has not been irradiated with the active energy ray does not change, but the portion of the optical circuit forming layer 3 that has been irradiated with the active energy beam has a higher refractive index, and the optical circuit forming layer 3 A high refractive index portion 3a of the irradiated portion and a low refractive index portion 3b of the non-irradiated portion are formed. The refractive index of the high refractive index portion 3 a of the optical circuit forming layer 3 is higher than the refractive index of the light transmitting resin layer 1.
このようにして図 4 ( b ) のように光回路形成層 3に光配線パターン形状で高 屈折率部 3 aを形成した後、 光回路形成層 3の光透過性樹脂層 1を設けた側と反 対側の面に光透過性樹脂 2 0をコーティングして設け、 図 4 ( c ) に示すように 光回路形成層 3を光透過性樹脂層 2 0で被覆する。 この光透過性樹脂層 2 0とし ては光回路形成層 3の高屈折率部 3 aより屈折率が低い透光性樹脂を用いるもの であり、 例えば光透過性樹脂層 1と同じ樹月旨を用いることができる。 そして、 電 気配線 2 1を設けて作製されたプリント配線板 2 2を準備し、 このプリント配線 板 2 2の表面に光透過性樹脂層 2 0を、 接着剤 2 3で接着することによって、 図 4 ( d ) のようにプリント配線板 2 2の上に積層し、 この後、 表面の金属層 1 3 を配線加工して図 4 ( e ) のように電気配線 2 4を形成するものであり、 さらに レーザービア加工ゃメツキ加工して電気配線 2 1および電気配線 2 4を電気的に 接続することができる。 After forming the high-refractive-index portion 3a in the form of an optical wiring pattern on the optical circuit forming layer 3 as shown in FIG. 4 (b), the side of the optical circuit forming layer 3 where the light-transmitting resin layer 1 is provided The optical circuit forming layer 3 is coated with the light transmitting resin layer 20 as shown in FIG. 4 (c). The light-transmitting resin layer 20 is formed of a light-transmitting resin having a lower refractive index than the high-refractive-index portion 3a of the optical circuit forming layer 3. For example, the same translucent resin as the light-transmitting resin layer 1 is used. Can be used. Then, a printed wiring board 22 prepared by providing the electric wiring 21 is prepared, and a light-transmitting resin layer 20 is adhered to the surface of the printed wiring board 22 with an adhesive 23 to obtain a printed wiring board 22. As shown in FIG. 4 (d), it is laminated on the printed wiring board 22, and thereafter, the metal layer 13 on the surface is processed by wiring to form the electric wiring 24 as shown in FIG. 4 (e). Yes, and laser via processing is applied to make electrical wiring 21 and electrical wiring 24 electrically. Can be connected.
図 4 (e) のものにあって、 光配線パターンの光回路形成層 3の高屈折率部 3 aの屈折率は、 光回路形成層 3の低屈折率部 3 b、 光回路形成層 3と直接接する 光透過性樹脂層 1および光透過性樹脂層 20の屈折率よりも大きいので、 光回路 形成層 3の高屈折率部 3 aがコア層 26となり、 光回路形成層 3の低屈折率部 3 b、 光透過性樹脂層 1および光透過性樹脂層 20がクラッド層 27となった光導 波路が構成され、 光回路形成層 3の高屈折率部 3 aによって光回路が形成される ものであり、 光回路形成層 3の高屈折率部 3 aによる光回路と電気配線 22と電 気配線 24とが積層された光回路一電気回路混載基板として用いることができる。 図 3 (b) 、 図 3 (c) 、 図 3 (d) 、 図 3 (e) は他の実施の形態を示し、 図 3 (b) は既述と同様に、 金属層 1 3と樹脂層との間に難燃性を有する接着剤 層 14を設けたもの、 図 3 (c) は既述と同様に、 樹脂層の金属層 1 3と反対側 の面に透明なカバーフィルム 1 5を張ったもの、 図 3 (d) は既述と同様に、 金 属層 1 3の樹脂層を設けた側と反対側の面に支持体 1 6を剥離可能に張り付けた ものであり、 図 3 (e) は、 支持体 1 6の両面に金属層 1 3を張って、 支持体 1 6の両側に光回路一電気回路混載基板用材料を形成するようにしたものである。 図 5 (a) は、 第 2の要旨に係る本発明の光回路一電気回路混載基板用材料の 実施の形態の一例を示し、 光透過性樹脂層 1の片面に直接接して光回路配線層 4 を積層すると共に、 光透過性樹脂層 1の光回路形成層 4を設けた面と反対側の面 に金属層 1 3を積層することによって形成してある。 光透過性樹脂層 1や金属層 1 3としては既述のものを用いることができる。  In FIG. 4 (e), the refractive index of the high refractive index portion 3a of the optical circuit forming layer 3 of the optical wiring pattern is determined by the low refractive index portion 3b of the optical circuit forming layer 3 and the optical circuit forming layer 3. Since the refractive index of the optically transparent resin layer 1 and the optically transparent resin layer 20 is larger than the refractive index of the optically transparent resin layer 1 and the optically transparent resin layer 20, the high refractive index portion 3a of the optical circuit forming layer 3 becomes the core layer 26 and the low refractive index of the optical circuit forming layer 3 The optical waveguide includes the refractive index portion 3b, the light-transmitting resin layer 1 and the light-transmitting resin layer 20 serving as a cladding layer 27, and an optical circuit is formed by the high refractive index portion 3a of the optical circuit forming layer 3. It can be used as an optical circuit-electric circuit hybrid board in which the optical circuit formed by the high refractive index portion 3a of the optical circuit forming layer 3, the electric wiring 22, and the electric wiring 24 are laminated. FIGS. 3 (b), 3 (c), 3 (d), and 3 (e) show another embodiment, and FIG. 3 (b) shows the metal layer 13 and the resin as described above. FIG. 3 (c) shows a transparent cover film 15 on the surface of the resin layer opposite to the metal layer 13 as described above. Fig. 3 (d) shows the support 16 releasably attached to the surface of the metal layer 13 opposite to the side on which the resin layer is provided, as described above. In FIG. 3 (e), a metal layer 13 is provided on both sides of the support 16 so that a material for an optical circuit / electric circuit mixed board is formed on both sides of the support 16. FIG. 5 (a) shows an example of an embodiment of the optical circuit-electric circuit hybrid board material according to the second aspect of the present invention, in which the optical circuit wiring layer is in direct contact with one surface of the light transmitting resin layer 1. 4 and a metal layer 13 on the surface of the light-transmitting resin layer 1 opposite to the surface on which the optical circuit forming layer 4 is provided. As the light-transmitting resin layer 1 and the metal layer 13, those described above can be used.
光回路形成層 4は活性エネルギー線の照射によって屈折率が変化し、 活性エネ ルギ一線が照射されることによって屈折率が低くなる光透過性樹脂よりなるもの である。 そして、 この光回路形成層 4を形成する樹脂は、 活性エネルギー線の照 射されていない部分が光透過性樹脂層 1を形成する樹脂より屈折率が高い樹脂で ある。  The optical circuit forming layer 4 is made of a light-transmitting resin whose refractive index is changed by irradiation with active energy rays and whose refractive index is reduced by irradiation with active energy rays. The resin forming the optical circuit forming layer 4 has a higher refractive index than the resin forming the light transmissive resin layer 1 in a portion where the active energy rays are not irradiated.
この光回路一電気回路混載基板用材料は既述のものと同様にして、 金属層 1 3 として金属箔を用いる場合には、 その片面、 好ましくはそのマット面に光透過性 樹月旨層 1を形成する樹脂をコーティングし、 この光透過性樹脂層 1の上に光回路 形成層 4を形成する樹脂をコーティングすることによって作製することができる。 次に、 このようにして得た光回路—電気回路混載基板用材料を用いて光回路一 電気回路混載基板を製造する方法について説明する。 まず図 6 ( a ) に示すよう に、 光回路形成層 4に金属層 1 3と反対側から活性エネルギー線 Eを照射する。 活性エネルギー線の照射は光回路のコァ部のパターンと逆のパターンで行なわれ るものであり、 例えば紫外線のマスク露光、 レーザーの描画露光などで活性エネ ルギ一線のパターン照射を行なうことができる。 このとき、 光回路形成層 4のう ち、 活性エネルギー線が照射されていない部分の屈折率は変化しないが、 活性ェ ネルギ一線が照射された部分は屈折率が低くなり、 光回路形成層 4には非照射部 分の高屈折率部 4 aと照射部分の低屈折率部 4 bが形成される。 光回路形成層 4 の高屈折率部 4 aの屈折率は光透過性樹脂層 1の屈折率よりも高くなつている。 このようにして図 6 ( b ) のように光回路形成層 4に光配線パターン形状で高 屈折率部 4 aを形成した後、 光回路形成層 4の光透過性樹脂層 1を設けた側と反 対側の面に光透過性樹脂層 2 0をコ一ティングして設け、 図 6 ( c ) に示すよう に光回路形成層 4を光透過性樹脂層 2 0で被覆する。 この光透過性樹脂層 2 0と しては光回路形成層 4の高屈折率部 4 aより屈折率が低い透光 ½樹脂を用いるも のであり、 例えば光透過性樹脂層 1と同じ樹脂を用いることができる。 そして、 電気配線 2 1を設けて作製されたプリント配線板 2 2を用い、 このプリント配線 板 2 2の表面に光透過性樹脂層 2 0を接着剤 2 3で接着することによって、 図 6 ( d ) のようにプリント配線板 2 2の上に積層し、 この後、 表面の金属層 1 3を 配線カ卩ェして図 6 ( e ) のように電気配線 2 4を形成するものであり、 さらにレ 一ザ一ビア加工ゃメッキ加工して電気配線 2 1と電気配線 2 4とを接続すること ができる。 In the case where a metal foil is used as the metal layer 13 in the same manner as described above, the material for the optical circuit-electric circuit mixed board is made of a light-transmitting resin layer on one side, preferably the matte side. The optical circuit is coated on the light-transmitting resin layer 1 It can be produced by coating a resin for forming the formation layer 4. Next, a method for manufacturing an optical circuit-electrical circuit hybrid board using the optical circuit-electric circuit hybrid board material thus obtained will be described. First, as shown in FIG. 6A, the optical circuit forming layer 4 is irradiated with an active energy ray E from the side opposite to the metal layer 13. The irradiation of the active energy ray is performed in a pattern opposite to the pattern of the core portion of the optical circuit. For example, the pattern irradiation of the active energy line can be performed by, for example, UV mask exposure or laser drawing exposure. At this time, the refractive index of the portion of the optical circuit forming layer 4 that has not been irradiated with the active energy ray does not change, but the portion of the optical circuit forming layer 4 that has been irradiated with the active energy line has a lower refractive index, and the optical circuit forming layer 4 has a lower refractive index. A high-refractive-index portion 4a corresponding to the non-irradiated portion and a low-refractive-index portion 4b corresponding to the irradiating portion are formed in the ridge. The refractive index of the high refractive index portion 4 a of the optical circuit forming layer 4 is higher than the refractive index of the light transmitting resin layer 1. After forming the high-refractive-index portion 4a in the form of an optical wiring pattern on the optical circuit forming layer 4 as shown in FIG. 6 (b), the side of the optical circuit forming layer 4 where the light-transmitting resin layer 1 is provided A light-transmitting resin layer 20 is provided on the opposite side by coating, and the optical circuit forming layer 4 is covered with the light-transmitting resin layer 20 as shown in FIG. 6 (c). As the light-transmitting resin layer 20, a light-transmitting resin having a lower refractive index than the high refractive index portion 4 a of the optical circuit forming layer 4 is used. For example, the same resin as the light-transmitting resin layer 1 is used. Can be used. Then, by using a printed wiring board 22 provided with the electric wiring 21 and bonding a light-transmitting resin layer 20 to the surface of the printed wiring board 22 with an adhesive 23, FIG. As shown in Fig. 6 (e), the electrical wiring 24 is formed by laminating on the printed wiring board 22 as shown in Fig. 6 (e), and then wiring the metal layer 13 on the surface as shown in Fig. 6 (e). Further, the electrical wiring 21 and the electrical wiring 24 can be connected by laser / via processing / plating.
図 6 ( e ) のものにあって、 光配線パターンの光回路形成層 4の高屈折率部 4 aの屈折率は、 光回路形成層 4の低屈折率部 4 b、 光回路形成層 4と直接接する 光透過性樹脂層 1および光透過性樹脂層 2 0の屈折率よりも大きいので、 光回路 形成層 4の高屈折率部 4 aがコア層 2 6となり、 光回路形成層 4の低屈折率部 4 b、 光透過性樹脂層 1および光透過性樹脂層 2 0がクラッド層 2 7となつた光導 波路が構成され、 光回路形成層 4の高屈折率部 4 aによって光配線が形成される ものであり、 光回路形成層 4の高屈折率部 4 aによる光配線と電気配線 2 1と電 気配線 2 4とが積層された光回路一電気回路混載基板として用いることができる。 図 5 ( b ) 、 図 5 ( c ) 、 図 5 ( d ) 、 図 5 ( e ) は他の実施の形態を示し、 図 5 ( b ) は既述と同様に、 金属層 1 3と樹脂層との間に難燃 を有する接着剤 層 1 4を設けたもの、 図 5 ( c ) は既述と同様に、 樹脂層の金属層 1 3と反対側 の面に透明なカバーフィルム 1 5を張ったもの、 図 5 ( d ) は既述と同様に、 金 属層 1 3の樹脂層を設けた側と反対側の面に支持体 1 6を剥離可能に張り付けた ものであり、 図 5 ( e ) は、 支持体 1 6の両面に金属層 1 3を張って、 支持体 1 6の両側に光回路一電気回路混載基板用材料を形成するようにしたものである。 図 7 ( a ) は、 第 8または第 9の要旨に係る本発明の実施の形態の一例を示し、 活性エネルギー線の照射によって屈折率が変化する光透過性樹脂よりなる光回路 形成層 5の片側の面に金属層 1 3を設けて形成してある。 金属層 1 3としては既 述のものを用いることができる。 また、 光回路形成層 5を形成する樹脂としては、 活性エネルギー線の照射によって屈折率が変化するものであればよく、 既述の、 活性エネルギー線の照射によって屈折率が高くなるもの、 および活性エネルギー 線の照射によって屈折率が低くなるもののいずれでもよい。 この光回路一電気回 路混載基板用材料は既述のものと同様にして、 金属層 1 3として金属箔を用いる 場合にはそのマツト面に光回路形成層 5を形成する樹脂をコーティングすること によって作製することができる。 In FIG. 6 (e), the refractive index of the high refractive index portion 4 a of the optical circuit forming layer 4 of the optical wiring pattern is the low refractive index portion 4 b of the optical circuit forming layer 4 and the optical circuit forming layer 4. Since the refractive index is higher than the refractive index of the light transmitting resin layer 1 and the light transmitting resin layer 20 which is in direct contact with the optical circuit forming layer 4, the high refractive index portion 4a of the optical circuit forming layer 4 becomes the core layer 26 and the optical circuit forming layer 4 An optical waveguide in which the low-refractive-index portion 4b, the light-transmitting resin layer 1 and the light-transmitting resin layer 20 are combined with the cladding layer 27 is formed, and the optical wiring is formed by the high-refractive-index portion 4a of the optical circuit forming layer 4. Is formed It can be used as an optical circuit / electric circuit hybrid board in which optical wiring, electric wiring 21 and electric wiring 24 by the high refractive index portion 4a of the optical circuit forming layer 4 are laminated. FIGS. 5 (b), 5 (c), 5 (d), and 5 (e) show another embodiment, and FIG. 5 (b) shows the metal layer 13 and the resin as described above. FIG. 5 (c) shows a transparent cover film 15 on the surface of the resin layer opposite to the metal layer 13 as described above. FIG. 5 (d) shows a support 16 attached to the surface of the metal layer 13 opposite to the side on which the resin layer is provided, in the same manner as described above. 5 (e) shows a structure in which a metal layer 13 is provided on both sides of the support 16, and a material for an optical circuit / electric circuit mixed board is formed on both sides of the support 16. FIG. 7 (a) shows an example of the embodiment of the present invention according to the eighth or ninth aspect, in which the optical circuit forming layer 5 made of a light-transmitting resin whose refractive index changes by irradiation with active energy rays. It is formed by providing a metal layer 13 on one surface. As the metal layer 13, the one described above can be used. The resin forming the optical circuit forming layer 5 may be any resin whose refractive index is changed by irradiation with active energy rays. The resin whose refractive index is increased by irradiation with active energy rays, Any of those whose refractive index is lowered by irradiation with energy rays may be used. When a metal foil is used as the metal layer 13, the resin for forming the optical circuit forming layer 5 is coated on the matte surface of the optical circuit-electric circuit mixed board material in the same manner as described above. Can be produced.
次に、 このようにして得た光回路一電気回路混載基板用材料を用いて光回路— 電気回路混載基板を製造する方法について説明する。 まず図 8 ( a ) に示すよう に、 光回路形成層 5に金属層 1 3と反対側から活性エネルギー線 Eを照射する。 光回路形成層 5を形成する樹脂が活性エネルギー線の照射によって屈折率が低く なる場合には、 活性エネルギー線の照射は光配線の配線パターンと逆のパターン で行なわれるものであり、 例えば紫外線のマスク露光、 レーザーの描画露光など で活性エネルギー線のパターン照射を行なうことができる。 図示した態様では、 光回路形成層 5のうち、 活性エネルギー線が照射されていない部分の屈折率は変 化しないが、 活性エネルギー線が照射された部分は屈折率が低くなり、 光回路形 成層 5には非照射部分の高屈折率部 5 aと照射部分の低屈折率部 5 bが形成され る。 Next, a method of manufacturing an optical circuit / electric circuit mixed substrate using the optical circuit / electric circuit mixed substrate material thus obtained will be described. First, as shown in FIG. 8 (a), the active energy ray E is irradiated to the optical circuit forming layer 5 from the side opposite to the metal layer 13. When the refractive index of the resin forming the optical circuit forming layer 5 is reduced by the irradiation of the active energy ray, the irradiation of the active energy ray is performed in a pattern opposite to the wiring pattern of the optical wiring. Active energy ray pattern irradiation can be performed by mask exposure, laser drawing exposure, and the like. In the illustrated embodiment, the refractive index of the portion of the optical circuit forming layer 5 that has not been irradiated with the active energy ray does not change, but the portion of the optical circuit forming layer 5 that has been irradiated with the active energy ray has a low refractive index, and the optical circuit forming layer 5 has a low refractive index. 5 has a high refractive index portion 5a of the non-irradiated portion and a low refractive index portion 5b of the irradiated portion. You.
このようにして図 8 ( b ) のように光回路形成層 5に光配線パターン形状で高 屈折率部 5 aを形成した後、 光回路形成層 5の金属層 1 3を設けた側と反対側の 面に光透過性樹脂層 2 0をコーティングして設け、 図 8 ( c ) に示すように光回 路形成層 5を光透過性樹脂層 2 0で被覆する。 この光透過性樹脂層 2 0としては 光回路形成層 5の高屈折率部 5 aより屈折率が低い透光^樹脂を用いるものであ り、 例えば既述の光透過性樹月旨層 1と同じ樹脂を用いることができる。 そして、 電気配線 2 1を設けて作製されたプリント配線板 2 2を準備し、 このプリント配 線板 2 2の表面に光透過性樹脂層 2 0を接着剤 2 3で接着することによって、 図 8 ( d ) のようにプリント配線板 2 2の上に積層し、 この後、 表面の金属層 1 3 を配^]卩ェして図 8 ( e ) のように電気配線 2 4を形成するものであり、 さらに レーザービア加工ゃメツキ加工して電気配線 2 1および電気配線 2 4を接続する ことができる。 ここで、 金属層 1 3は光回路形成層 5の高屈折率部 5 aに対応す る部分 (図示した態様では、 光屈折率部 5 aの上方に位置する部分) を残してお くか、 光回路形成層 5の高屈折率部 5 aに対応する部分に金属層 1 3で電気配線 After forming the high-refractive-index portion 5a in the form of an optical wiring pattern on the optical circuit forming layer 5 as shown in FIG. 8 (b) in this manner, the optical circuit forming layer 5 is opposite to the side on which the metal layer 13 is provided. The light transmitting resin layer 20 is coated on the side surface, and the optical circuit forming layer 5 is covered with the light transmitting resin layer 20 as shown in FIG. 8 (c). As the light-transmitting resin layer 20, a light-transmitting resin having a lower refractive index than the high-refractive-index portion 5a of the optical circuit forming layer 5 is used. For example, the light-transmitting resin layer 1 described above is used. The same resin as described above can be used. Then, a printed wiring board 22 prepared by providing the electric wiring 21 is prepared, and a light-transmitting resin layer 20 is adhered to the surface of the printed wiring board 22 with an adhesive 23 to obtain a diagram. 8 (d), and laminated on the printed wiring board 22, and then, a metal layer 13 on the surface is disposed to form an electric wiring 24 as shown in FIG. 8 (e). The electrical wiring 21 and the electrical wiring 24 can be connected by laser via processing and plating. Here, should the metal layer 13 leave a portion corresponding to the high refractive index portion 5a of the optical circuit forming layer 5 (in the illustrated embodiment, a portion located above the light refractive index portion 5a)? The metal layer 13 is used for electrical wiring in the portion corresponding to the high refractive index portion 5a of the optical circuit forming layer 5.
2 4を形成するのがよい。 It is better to form 24.
図 8 ( e ) のものにあって、 光配線パターンの光回路形成層 5の高屈折率部 5 aの屈折率は、 光回路形成層 5の低屈折率部 5 bおよび光回路形成層 5と直接接 する光透過性樹脂層 2 0の屈折率よりも大きく、 また高屈折率部 5 aは光を反射 する金属層 1 3と接しているので、 光回路形成層 5の高屈折率部 5 aがコア層 2 6、 光回路形成層 5の低屈折率部 5 bおよび光透過性樹脂層 2 0がクラッド層 2 7となった光導波路が構成され、 光回路形成層 5の高屈折率部 5 aによって光配 線が形成されるものであり、 光回路形成層 5の高屈折率部 5 aによる光回路と電 気回路 2 1と電気回路 2 4が積層された光回路一電気回路混載基板として用いる ことができる。  In FIG. 8 (e), the refractive index of the high refractive index portion 5 a of the optical circuit forming layer 5 of the optical wiring pattern is determined by the low refractive index portion 5 b of the optical circuit forming layer 5 and the optical circuit forming layer 5. The high refractive index portion 5a is larger than the refractive index of the light transmissive resin layer 20 which is in direct contact with the metal layer 13 which reflects light, so that the high refractive index portion of the optical circuit forming layer 5 5a is an optical waveguide in which the core layer 26, the low refractive index portion 5b of the optical circuit forming layer 5 and the light transmitting resin layer 20 are the cladding layer 27, and the optical circuit forming layer 5 has a high refractive index. The optical circuit is formed by the high refractive index portion 5a of the optical circuit forming layer 5, and the optical circuit, the electric circuit 21 and the electric circuit 24 are laminated. It can be used as a circuit mixed board.
尚、 光回路形成層 5を活性エネルギー線が照射されることによって屈折率が高 くなる光透過性樹脂から形成した場合には、 活性エネルギー線の照射時間やエネ ルギー強度を調整することによって、 後述の図 1 4 ( b ) の場合と同様に、 光回 路形成層 5内において高屈折率部 5 aを光透過性樹脂層 2 0と接する側の部分に のみ形成するようにしてもよレ、。 When the optical circuit forming layer 5 is formed of a light-transmitting resin whose refractive index increases when irradiated with an active energy ray, the irradiation time of the active energy ray and the energy intensity are adjusted. As in the case of FIG. 14 (b) described later, the high refractive index portion 5a is formed in the optical circuit forming layer 5 at the portion in contact with the light transmitting resin layer 20. It may be formed only.
図 7 ( b ) 、 図 7 ( c ) 、 図 7 ( d ) 、 図 7 ( e ) は他の実施の形態を示し、 図 7 ( b ) は既述と同様に、 金属層 1 3と樹脂層との間に難燃性を有する接着剤 層 1 4を設けたもの、 図 7 ( c ) は既述と同様に、 樹脂層の金属層 1 3と反対側 の面に透明なカバーフィ ム 1 5を張ったもの、 図 7 ( d ) は既述と同様に、 金 厲層 1 3の樹脂層を設けた側と反対側の面に支持体 1 6を剥離可能に張り付けた ものであり、 図 7 ( e ) は、 支持体 1 6の両面に金属層 1 3を張って、 支持体 1 6の両側に光回路一電気回路混載基板用材料を形成するようにしたものである。 図 9 ( a ) は、 第 3の要旨に係る本発明の実施の形態の一例を示し、 第 1光透 過性樹脂層 1の片面に直接接して光回路形成層 6を積層すると共に、 光回路形成 層 6の光透過性樹脂層 1と反対側の面に直接接して第 2光透過性樹脂層 7を積層 し、 さらに光透過性樹脂層 1の光回路形成層 6を設けた側と反対側の面に金属層 1 3を積層することによって形成してある。  FIGS. 7 (b), 7 (c), 7 (d), and 7 (e) show another embodiment, and FIG. 7 (b) shows the metal layer 13 and the resin as described above. FIG. 7 (c) shows a transparent cover film 1 on the surface of the resin layer opposite to the metal layer 13 as described above. FIG. 7 (d) shows a case in which the support 16 is releasably attached to the surface of the metal layer 13 opposite to the side on which the resin layer is provided, as described above. In FIG. 7 (e), a metal layer 13 is provided on both sides of the support 16, and a material for an optical circuit / electric circuit mixed board is formed on both sides of the support 16. FIG. 9A shows an example of the embodiment of the present invention according to the third aspect, in which the optical circuit forming layer 6 is laminated directly on one surface of the first light-transmitting resin layer 1 and the optical circuit forming layer 6 is laminated. The second light-transmitting resin layer 7 is laminated directly on the surface of the circuit forming layer 6 on the side opposite to the light-transmitting resin layer 1, and the second light-transmitting resin layer 1 is provided with the optical circuit forming layer 6. It is formed by laminating a metal layer 13 on the opposite surface.
光透過性樹脂層 1や金属層 1 3としては既述のものを用いることができる。 ま た第 2光透過性樹脂層 7は光透過性樹脂よりなるものであり、 第 1光透過性樹月旨 層 1と同等の屈折率を有するものが望ましく、 第 1光透過性樹脂層 1を形成する 樹脂と同様のものを用いることができる。 さらに光回路形成層 6は活性エネルギ 一線の照射によって屈折率が変化し、 活性エネルギー線が照射されることによつ て屈折率が高くなる光透過性樹脂よりなるものである。 このような活性エネルギ 一線の照射によって屈折率が高くなる樹脂としては、 上述の光回路形成層 3と同 じものを用いることができる。 そしてこの光回路形成層 6を形成する樹脂は、 活 性エネルギー線の照射された部分が、 活性エネルギー線の照射されていない部分 及び光透過性樹脂層 1を形成する樹脂及び第 2光透過性樹脂層 7を形成する樹脂 より屈折率が高くなる樹脂である。  As the light-transmitting resin layer 1 and the metal layer 13, those described above can be used. The second light-transmitting resin layer 7 is made of a light-transmitting resin, and preferably has a refractive index equivalent to that of the first light-transmitting resin layer 1. A resin similar to the resin forming the above can be used. Further, the optical circuit forming layer 6 is made of a light-transmitting resin whose refractive index is changed by irradiation with active energy rays and whose refractive index is increased by irradiation with active energy rays. As the resin whose refractive index is increased by irradiation with one line of the active energy, the same resin as the above-described optical circuit forming layer 3 can be used. The resin forming the optical circuit forming layer 6 has a portion irradiated with the active energy ray, a portion not irradiated with the active energy ray, a resin forming the light-transmitting resin layer 1, and a second light-transmitting resin. This resin has a higher refractive index than the resin forming the resin layer 7.
この光回路一電気回路混載基板用材料は既述のものと同様にして、 金属層 1 3 として金属箔を用いる場合にはそのマツト面に光透過性樹脂層 1を形成する樹脂 をコーティングし、 この光透過性樹脂層 1の上に光回路形成層 6を形成する樹脂 をコーティングし、 さらにこの上に第 2光透過性樹脂層 7を形成する樹脂をコ一 二とによって作製することができる。 次に、 このようにして得た光回路一電気回路混載基板用材料を用いて光回路一 電気回路混載基板を製造する方法について説明する。 まず図 1 0 (a) に示すよ うに、 金属層 1 3と反 対側から第 2光透過性樹脂層 7を介して光回路形成層 6 に活性エネルギー線 Eを照射する。 活性エネルギー線の照射は光配線の配線バタ —ンに応じたパターンで行なわれるものであり、 例えば紫外線のマスク露光、 レ 一ザ一の描画露光などで活性エネルギー線のパターン照射を行なうことができる。 このとき、 光回路形成層 6のうち、 活性エネルギー線が照射されていない部分の 屈折率は変化しないが、 活性エネルギー線が照射された部分は屈折率が高くなり、 光回路形成層 6には照射部分の高屈折率部 6 aと非照射部分の低屈折率部 6 bが 形成される。 光回路形成層 6の高屈折率部 6 aの屈折率は第 1光透過性樹脂層 1 や第 2光透過性樹脂層 7の屈折率よりも高くなつている。 In the case of using a metal foil as the metal layer 13, the material for the optical circuit-electric circuit mixed board is coated with a resin for forming the light-transmitting resin layer 1 on the mat surface in the same manner as described above. The resin forming the optical circuit forming layer 6 is coated on the light transmitting resin layer 1, and the resin forming the second light transmitting resin layer 7 can be further formed on the light transmitting resin layer 1. . Next, a method for manufacturing an optical circuit / electric circuit hybrid board using the optical circuit / electric circuit hybrid board material thus obtained will be described. First, as shown in FIG. 10A, the active energy ray E is applied to the optical circuit forming layer 6 via the second light transmitting resin layer 7 from the side opposite to the metal layer 13. The irradiation of the active energy ray is performed in a pattern corresponding to the wiring pattern of the optical wiring. For example, the pattern irradiation of the active energy ray can be performed by UV mask exposure, laser drawing exposure, or the like. . At this time, the refractive index of the portion of the optical circuit forming layer 6 that has not been irradiated with the active energy ray does not change, but the refractive index of the portion of the optical circuit forming layer 6 that has been irradiated with the active energy ray increases. The high-refractive-index portion 6a of the irradiated portion and the low-refractive-index portion 6b of the non-irradiated portion are formed. The refractive index of the high refractive index portion 6 a of the optical circuit forming layer 6 is higher than the refractive indexes of the first light transmitting resin layer 1 and the second light transmitting resin layer 7.
このようにして図 10 (b) のように光回路形成層 6に光配線パターン形状で 高屈折率部 6 aを形成した後、 第 2光透過性樹脂層 7の光回路形成層 6を設けた 側と反対側の面に接着剤層 23を設け、 そして、 電気配線 2 1を設けて作製され たプリント配線板 22の表面に接着剤 23で接着することによって、 図 1 0  After forming the high-refractive-index portion 6 a in the optical circuit pattern shape on the optical circuit forming layer 6 as shown in FIG. 10B in this way, the optical circuit forming layer 6 of the second light-transmitting resin layer 7 is provided. The adhesive layer 23 is provided on the surface on the side opposite to the side of the printed wiring board, and is adhered to the surface of the printed wiring board 22 produced by providing the electric wiring 21 with the adhesive 23.
(c) のようにプリント配線板 2 2の上に積層する。 この後、 表面の金属層 1 3 を配線加工して図 10 (d) のように電気配線 24を形成し、 さらにレーザービ ァ加工ゃメッキ加工して電気配線 2 1と電気配線 24を接続することができる。 図 10 (d) のものにあって、 光配線パターンの光回路形成層 6の高屈折率部 6 aの屈折率は、 光回路形成層 6の低屈折率部 6 b、 光回路形成層 6と直接接す る光透過性樹脂層 1および第 2光透過性樹脂層 7の屈折率よりも大きいので、 光 回路形成層 6の高屈折率部 6 aがコア層 26となり、 光回路形成層 6の低屈折率 部 6 bや光透過性樹脂層 1および第 2光透過性樹脂層 7がクラッド層 2 7となつ た光導波路が構成され、 光回路形成層 6の高屈折率部 6 aによって光配線が形成 されるものであり、 光回路形成層 6の高屈折率部 6 aによる光回路と電気回路 2 1と電気回路 24が積層された光回路一電気回路混載基板として用いることがで さる。  It is laminated on the printed wiring board 22 as shown in (c). Thereafter, wiring is performed on the metal layer 13 on the surface to form the electric wiring 24 as shown in FIG. 10 (d), and then the laser wiring and plating are performed to connect the electric wiring 21 and the electric wiring 24. Can be. In FIG. 10 (d), the refractive index of the high refractive index portion 6a of the optical circuit forming layer 6 of the optical wiring pattern is determined by the low refractive index portion 6b of the optical circuit forming layer 6 and the optical circuit forming layer 6. Since the refractive index of the light transmitting resin layer 1 and the second light transmitting resin layer 7 which are in direct contact with the optical circuit forming layer 6 are higher than that of the light transmitting resin layer 1 and the second light transmitting resin layer 7, the high refractive index portion 6a of the optical circuit forming layer 6 becomes the core layer 26, An optical waveguide in which the low-refractive-index portion 6b and the light-transmitting resin layer 1 and the second light-transmitting resin layer 7 serve as the cladding layer 27 is formed, and the high-refractive-index portion 6a of the optical circuit forming layer 6 is formed. The optical circuit is formed by the high refractive index portion 6 a of the optical circuit forming layer 6, and the optical circuit, the electric circuit 21 and the electric circuit 24 are laminated and used as an optical circuit-electric circuit mixed substrate. In monkey.
図 9 (b) 、 図 9 (c) 、 図 9 (d) 、 図 9 (e) は他の実施の形態を示し、 図 9 (b) は既述と同様に、 金属層 1 3と樹脂層との間に難燃性を有する接着剤 層 1 4を設けたもの、 図 9 ( c ) は既述と同様に、 樹脂層の金属層 1 3と反対側 の面に透明なカバーフィルム 1 5を張ったもの、 図 9 ( d ) は既述と同様に、 金 属層 1 3の樹脂層を設けた側と反対側の面に支持体 1 6を剥離可能に張り付けた ものであり、 図 9 ( e ) は、 支持体 1 6の両面に金属層 1 3を張って、 支持体 1 6の両側に光回路一電気回路混載基板用材料を形成するようにしたものである。 図 1 1 ( a ) は、 第 4の要旨に係る本発明の光回路一電気回路混載基板用材料 の実施の形態の一例を示し、 第 1光透過性樹脂層 1の片面に直接接して光回路形 成層 8を積層すると共に、 光回路形成層 8の第 1光透過性樹脂層 1と反対側の面 に直接接して第 2光透過性樹脂層 9を積層し、 さらに第 1光透過性樹脂層 1の光 回路形成層 8を設けた側と反対側の面に金属層 1 3を積層することによって形成 してある。 FIGS. 9 (b), 9 (c), 9 (d), and 9 (e) show other embodiments, and FIG. 9 (b) shows the metal layer 13 and the resin Adhesive with flame retardancy between layers FIG. 9 (c) shows a structure in which a transparent cover film 15 is provided on the surface opposite to the metal layer 13 of the resin layer, and FIG. As described above, the support 16 is releasably attached to the surface of the metal layer 13 opposite to the side on which the resin layer is provided, and FIG. 9 (e) shows the support 16. A metal layer 13 is provided on both sides, and an optical circuit / electric circuit mixed substrate material is formed on both sides of the support 16. FIG. 11 (a) shows an example of an embodiment of the optical circuit-electric circuit mixed substrate material according to the fourth aspect of the present invention, in which light is directly in contact with one surface of the first light-transmitting resin layer 1. The circuit-forming layer 8 is laminated, and the second light-transmitting resin layer 9 is laminated in direct contact with the surface of the optical circuit-forming layer 8 opposite to the first light-transmitting resin layer 1, and the first light-transmitting layer is further laminated. It is formed by laminating a metal layer 13 on the surface of the resin layer 1 opposite to the side on which the optical circuit forming layer 8 is provided.
第 1光透過性樹脂層 1および金属層 1 3としては既述のものを用いることがで きる。 また第 2光透過性樹脂層 9は光透過性樹脂よりなるものであり、 第 1光透 過性樹脂層 1と同等の屈折率を有するものが望ましく、 第 1光透過性樹脂層 1を 形成する樹脂と同様のものを用いることができる。 さらに光回路形成層 8は活性 エネルギー線の照射によって屈折率が変化し、 活性エネルギー線が照射されるこ とによって屈折率が低くなる光透過性樹脂よりなるものである。 このような活性 エネルギー線の照射によって屈折率が低くなる樹脂としては、 光回路形成層 4と 同じものを用いることができる。 そしてこの光回路形成層 8を形成する樹脂は、 活性エネルギー線の照射されていない部分が、 第 1光透過性樹脂層 1を形成する 樹脂及び第 2光透過性樹脂層 9を形成する樹脂より屈折率が高くなる樹脂である。 この光回路一電気回路混載基板用材料は既述のものと同様にして、 金属層 1 3 として金属箔を用いる場合にはそのマツト面に光透過性樹脂層 1を形成する樹脂 をコーティングし、 この光透過性樹脂層 1の上に光回路形成層 8を形成する樹月旨 をコーティングし、 さらにこの上に第 2光透過性樹脂層 9を形成する樹脂をコー ティングすることによって作製することができる。  As the first light-transmitting resin layer 1 and the metal layer 13, those described above can be used. The second light-transmitting resin layer 9 is made of a light-transmitting resin, and preferably has a refractive index equivalent to that of the first light-transmitting resin layer 1, and forms the first light-transmitting resin layer 1. The same resin as the resin to be used can be used. Further, the optical circuit forming layer 8 is made of a light-transmitting resin whose refractive index is changed by irradiation with active energy rays and whose refractive index is reduced by irradiation with active energy rays. The same resin as the optical circuit forming layer 4 can be used as the resin whose refractive index is lowered by irradiation with such active energy rays. The resin that forms the optical circuit forming layer 8 has a portion that is not irradiated with the active energy ray, and the resin that forms the first light transmissive resin layer 1 and the resin that forms the second light transmissive resin layer 9 It is a resin with a high refractive index. In the case of using a metal foil as the metal layer 13, the material for the optical circuit-electric circuit mixed board is coated with a resin for forming the light-transmitting resin layer 1 on the mat surface in the same manner as described above. The light transmitting resin layer 1 is coated with a resin layer forming the optical circuit forming layer 8, and the resin forming the second light transmitting resin layer 9 is coated thereon. Can be.
次に、 このようにして得た光回路一電気回路混載基板用材料を用いて光回路一 電気回路混載基板を製造する方法について説明する。 まず図 1 2 ( a ) に示すよ うに、 金属層 1 3と反対側から第 2光透過性樹脂層 9を通して光回路形成層 8に 活性エネルギー線 Eを照射する。 活性エネルギー線の照射は光配線の配線パター ンと逆のパターンで行なわれるものであり、 例えば紫外線のマスク露光、 レーザ 一の描画露光などで活性エネルギー線のパターン照射を行なうことができる。 こ のとき、 光回路形成層 8のうち、 活性エネルギー線が照射されていない部分の屈 折率は変化しないが、 活性エネルギー線が照射された部分は屈折率が低くなり、 光回路形成層 8には非照射部分の高屈折率部 8 aと照射部分の低屈折率部 8 が 形成される。 光回路形成層 8の高屈折率部 8 aの屈折率は光透過性樹脂層 1およ び第 2光透過性樹脂層 9の屈折率よりも高くなつている。 Next, a method for manufacturing an optical circuit / electric circuit hybrid board using the optical circuit / electric circuit hybrid board material thus obtained will be described. First, as shown in FIG. 12 (a), the optical circuit forming layer 8 is passed through the second light transmitting resin layer 9 from the side opposite to the metal layer 13. Irradiate with active energy rays E. The irradiation of the active energy ray is performed in a pattern opposite to the wiring pattern of the optical wiring. For example, the pattern irradiation of the active energy ray can be performed by mask exposure with ultraviolet light, drawing exposure with a laser, or the like. At this time, the refractive index of the portion of the optical circuit forming layer 8 not irradiated with the active energy ray does not change, but the refractive index of the portion irradiated with the active energy ray decreases, and A high-refractive-index portion 8a of a non-irradiated portion and a low-refractive-index portion 8 of an irradiated portion are formed in the substrate. The refractive index of the high refractive index portion 8 a of the optical circuit forming layer 8 is higher than the refractive indexes of the light transmitting resin layer 1 and the second light transmitting resin layer 9.
このようにして図 1 2 (b) のように光回路形成層 8に光配線パターン形状で 高屈折率部 8 aを形成した後、 第 2光透過性樹脂層 9の光回路形成層 8を設けた 側と反対側の面に接着剤層 23を設け、 そして、 電気配線 2 1を設けて作製され たプリント配線板 22の表面に接着剤 23で接着することによって、 図 1 2 After forming the high-refractive-index portion 8a in the form of an optical wiring pattern on the optical circuit forming layer 8 as shown in FIG. 12B in this way, the optical circuit forming layer 8 of the second light-transmitting resin layer 9 is removed. The adhesive layer 23 is provided on the surface on the side opposite to the provided side, and is adhered to the surface of the printed wiring board 22 produced by providing the electric wiring 21 with the adhesive 23.
(c) のようにプリント配線板 22の上に積層する。 この後、 表面の金属層 1 3 を配線カ卩ェして図 1 2 (d) のように電気配線 24を形成し、 さらにレーザービ ァ加工ゃメツキ加工して電気配線 2 1および電気配線 24を接続することができ る。 It is laminated on the printed wiring board 22 as shown in FIG. Thereafter, the metal layer 13 on the surface is wired to form an electrical wire 24 as shown in FIG. 12 (d), and further, laser via processing and plating are performed to form the electrical wire 21 and the electrical wire 24. Can be connected.
図 1 2 (d) のものにあって、 光配線パターンの光回路形成層 8の高屈折率部 8 aの屈折率は、 光回路形成層 8の低屈折率部 8 bや、 光回路形成層 8と直接接 する光透過性樹脂層 1や第 2光透過性樹脂層 9の屈折率よりも大きいので、 光回 路形成層 8の高屈折率部 8 aがコア層 26となり、 光回路形成層 8の低屈折率部 8 b、 光透過性樹脂層 1および第 2光透過性樹脂層 9がクラッド層 27となった 光導波路が構成され、 光回路形成層 8の高屈折率部 8 aによって光配線が形成さ れるものであり、 光回路形成層 8の高屈折率部 8 aによる光配線と電気配線 2 1, 24が積層された光回路一電気回路混載基板として用いることができる。  In FIG. 12 (d), the refractive index of the high refractive index portion 8a of the optical circuit forming layer 8 of the optical wiring pattern is determined by the low refractive index portion 8b of the optical circuit forming layer 8 and the optical circuit forming layer. Since the refractive index of the light-transmitting resin layer 1 or the second light-transmitting resin layer 9 which is in direct contact with the layer 8 is larger than that of the light-transmitting resin layer 9, the high-refractive-index portion 8 a of the optical circuit forming layer 8 becomes the core layer 26 and the optical circuit An optical waveguide in which the low refractive index portion 8 b of the forming layer 8, the light-transmitting resin layer 1 and the second light-transmitting resin layer 9 become the cladding layer 27, and the high refractive index portion 8 of the optical circuit forming layer 8 is formed. The optical wiring is formed by a, and can be used as an optical circuit-electric circuit mixed board in which the optical wiring and the electric wiring 21 and 24 are laminated by the high refractive index portion 8a of the optical circuit forming layer 8. .
図 1 1 (b) 、 図 1 1 (c) 、 図 1 1 (d) 、 図 1 1 (e) は他の実施の形態 を示し、 図 1 1 (b) は既述と同様に、 金属層 1 3と樹脂層との間に難燃性を有 する接着剤層 1 4を設けたもの、 図 1 1 (c) は既述と同様に、 樹脂層の金属層 1 3と反対側の面に透明なカバーフィルム 1 5を張ったもの、 図 1 1 (d) は既 述と同様に、 金属層 1 3の樹脂層を設けた側と反対側の面に支持体 1 6を剥離可 能に張り付けたものであり、 図 1 1 ( e ) は、 支持体 1 6の両面に金属層 1 3を 張って、 支持体 1 6の両側に光回路一電気回路混載基板用材料を形成するように したものである。 FIG. 11 (b), FIG. 11 (c), FIG. 11 (d), and FIG. 11 (e) show another embodiment, and FIG. 11 (b) shows a metal A flame retardant adhesive layer 14 is provided between the layer 13 and the resin layer, and FIG. 11 (c) shows the resin layer on the opposite side to the metal layer 13 as described above. A transparent cover film 15 is stretched on the surface.Fig. 11 (d) shows the support 16 peelable on the surface opposite to the side where the resin layer of the metal layer 13 is provided, as described above. Fig. 11 (e) shows a structure in which a metal layer 13 is provided on both sides of a support 16 and a material for an optical circuit / electric circuit mixed board is formed on both sides of the support 16 It is like that.
図 1 3 ( a ) は、 第 1 0の要旨に係る本発明の実施の形態の一例を示し、 光回 路形成層 1 0の片面に直接接して光透過性樹脂層 1 1を積層すると共に、 光回路 形成層 1 0の光透過性樹脂層 1 1を設けた側と反対側の面に金属層 1 3を積層す ることによって形成してある。  FIG. 13 (a) shows an example of the embodiment of the present invention according to the tenth aspect, in which a light-transmitting resin layer 11 is laminated in direct contact with one surface of an optical circuit forming layer 10 and It is formed by laminating a metal layer 13 on the surface of the optical circuit forming layer 10 opposite to the side on which the light transmitting resin layer 11 is provided.
金属層 1 3としては既述のものを用いることができる。 また光透過性樹脂層 1 1は光透過性樹脂よりなるものであり、 光透過性樹脂層 1を形成する樹脂と同様 のものを用いることができる。 さらに光回路形成層 1 0は活性エネルギー線の照 射によって屈折率が変化し、 活性エネルギー線が照射されることによって屈折率 が高くなる光透過性樹脂よりなるものである。 このような活性エネルギー線の照 射によって屈折率が高くなる樹脂としては、 上述の光回路形成層 3と同じものを 用いることができる。 そしてこの光回路形成層 1 0を形成する樹脂は、 活性エネ ルギ一線の照射された部分が、 活性エネルギー線の照射されていない部分及び光 透過性樹脂層 1 1を形成する樹脂より屈折率が高くなる樹脂である。  As the metal layer 13, those already described can be used. The light-transmitting resin layer 11 is made of a light-transmitting resin, and the same resin as that forming the light-transmitting resin layer 1 can be used. Further, the optical circuit forming layer 10 is made of a light-transmitting resin whose refractive index changes by irradiation with active energy rays and whose refractive index increases when irradiated with active energy rays. The same resin as the optical circuit forming layer 3 described above can be used as the resin whose refractive index is increased by irradiation with such active energy rays. The resin forming the optical circuit forming layer 10 has a refractive index that is higher in a portion irradiated with the active energy line than in a portion not irradiated with the active energy beam and the resin forming the light transmissive resin layer 11. It is a high resin.
この光回路一電気回路混載基板用材料は既述のものと同様にして、 金属層 1 3 として金属箔を用いる場合にはそのマツト面に光回路形成層 1 0を形成する樹脂 をコーティングし、 この光回路形成層 1 0の上に光透過性樹脂層 1 1を形成する 樹脂をコーティングすることによって作製することができる。  When using a metal foil as the metal layer 13, the material for the optical circuit-electric circuit mixed board is coated with a resin for forming the optical circuit forming layer 10 on the mat surface in the same manner as described above. The optical circuit forming layer 10 can be manufactured by coating a resin for forming the light transmitting resin layer 11 on the optical circuit forming layer 10.
次に、 このようにして得た光回路一電気回路混載基板用材料を用いて光回路— 電気回路混載基板を製造する方法について説明する。 まず図 1 4 ( a ) に示すよ うに、 金属層 1 3と反対側から光透過性樹脂層 1 1を透して光回路形成層 1 0に 活性エネルギー線 Eを照射する。 活性エネルギー線の照射は光配線の配線パター ンに応じたパターンで行なわれるものであり、 例えば紫外線のマスク露光、 レー ザ一の描画露光などで活性エネルギー線のパターン照射を行なうことができる。 このとき、 光回路形成層 1 0のうち、 活性エネルギー線が照射されていない部分 の屈折率は変化しないが、 活性エネルギー線が照射された部分は屈折率が高くな り、 光回路形成層 1 0には照射部分の高屈折率部 1 0 aと非照射部分の低屈折率 部 1 0 bが形成される。 光回路形成層 10の高屈折率部 1 0 aの屈折率は光透過 性樹脂層 1 1の屈折率よりも高くなつている。 Next, a method of manufacturing an optical circuit / electric circuit mixed substrate using the optical circuit / electric circuit mixed substrate material thus obtained will be described. First, as shown in FIG. 14 (a), the active energy ray E is irradiated on the optical circuit forming layer 10 through the light transmitting resin layer 11 from the side opposite to the metal layer 13. The irradiation of the active energy ray is performed in a pattern corresponding to the wiring pattern of the optical wiring. For example, the pattern irradiation of the active energy ray can be performed by UV mask exposure, laser exposure for drawing, or the like. At this time, the refractive index of the portion of the optical circuit forming layer 10 that has not been irradiated with the active energy ray does not change, but the refractive index of the portion of the optical circuit forming layer 10 that has been irradiated with the active energy ray increases. 0 is the high refractive index part of the irradiated part 10 a and the low refractive index of the non-irradiated part A part 10b is formed. The refractive index of the high refractive index portion 10 a of the optical circuit forming layer 10 is higher than the refractive index of the light transmitting resin layer 11.
このようにして図 1 4 (b) のように光回路形成層 1◦に光配線パターン形状 で高屈折率部 1 0 aを形成することができる。 ここで、 活性エネルギー線の照射 時間やエネルギー強度を調整することによって、 光回路形成層 1 0内において高 屈折率部 1 0 aは光透過性樹脂層 1 1と接する側の部分にのみ形成され、 金属層 1 3と接する部分にまで形成されないようにするのがよい。 即ち、 光回路形成層 の厚さ方向の途中までが高屈折率部となり、 この高屈折率部は金属層に達してい ない。 このように光回路形成層 10に光配線パターン形状で高屈折率部 10 aを 形成した後、 光透過性樹脂層 1 1の光回路形成層 10を設けた側と反対側の面に 接着剤層 23を設け、 そして、 電気配線 2 1を設けて作製されたプリント配線板 22の表面に接着剤 23で接着することによって、 図 14 (c) のようにプリン ト配線板 22の上に積層する。 この後、 表面の金属層 1 3を配線加工して図 14 (d) のように電気配線 24を形成し、 さらにレーザービア加工ゃメツキ加工し て電気配線 2 1と電気配線 24を接続することができる。  Thus, as shown in FIG. 14 (b), the high refractive index portion 10a can be formed in the optical circuit forming layer 1 ° in the form of an optical wiring pattern. Here, by adjusting the irradiation time and energy intensity of the active energy ray, the high refractive index portion 10a in the optical circuit forming layer 10 is formed only on the portion in contact with the light transmitting resin layer 11. However, it is preferable that the metal layer 13 is not formed up to the portion in contact with the metal layer 13. That is, a high refractive index portion is formed up to a halfway point in the thickness direction of the optical circuit forming layer, and the high refractive index portion does not reach the metal layer. After forming the high-refractive-index portion 10a in the optical circuit pattern shape on the optical circuit forming layer 10 in this manner, an adhesive is applied to the surface of the light transmitting resin layer 11 opposite to the side on which the optical circuit forming layer 10 is provided. The layer 23 is provided, and the printed circuit board 22 is provided with the electric wiring 21. The printed circuit board 22 is adhered to the surface of the printed circuit board 22 with an adhesive 23 to be laminated on the printed circuit board 22 as shown in FIG. 14 (c). I do. Thereafter, wiring is performed on the metal layer 13 on the surface to form the electric wiring 24 as shown in FIG. 14 (d), and further, laser via processing and plating are performed to connect the electric wiring 21 and the electric wiring 24. Can be.
図 14 (d) のものにあって、 光配線パターンの光回路形成層 10の高屈折率 部 1 0 aの屈折率は、 光回路形成層 1 0の低屈折率部 1 0 bおよび光回路形成層 10と直接接する光透過性樹脂層 1 1の屈折率よりも大きいので、 光回路形成層 1 0の高屈折率部 1 0 aがコア層 26となり、 光回路形成層 10の低屈折率部 1 0 bや光透過性樹脂層 1 1がクラッド層 27となった光導波路が構成され、 光透 過性樹脂層 1 1の高屈折率部 1 1 aによって光配線が形成されるものであり、 光 回路形成層 1 0の高屈折率部 1 0 aによる光配線と電気配線 2 1と電気配線 24 が積層された光回路一電気回路混載基板として用いることができる。  In FIG. 14 (d), the refractive index of the high refractive index portion 10a of the optical circuit forming layer 10 of the optical wiring pattern is the low refractive index portion 10b of the optical circuit forming layer 10 and the optical circuit. Since the refractive index of the light-transmitting resin layer 11 that is in direct contact with the forming layer 10 is larger than that of the optical circuit forming layer 10, the high refractive index portion 10 a of the optical circuit forming layer 10 becomes the core layer 26 and the low refractive index of the optical circuit forming layer 10. The optical waveguide in which the portion 10b and the light-transmitting resin layer 11 constitute the cladding layer 27 is formed, and the high-refractive-index portion 11a of the light-transmitting resin layer 11 forms an optical wiring. Yes, it can be used as an optical circuit / electric circuit hybrid board in which optical wiring, electric wiring 21 and electric wiring 24 by the high refractive index portion 10a of the optical circuit forming layer 10 are laminated.
図 1 3 (b) 、 図 1 3 (c) 、 図 1 3 (d) 、 図 1 3 (e) は他の実施の形態 を示し、 図 1 3 (b) は既述と同様に、 金属層 1 3と樹脂層との間に難燃性を有 する接着剤層 1 4を設けたもの、 図 1 3 (c) は既述と同様に、 樹脂層の金属層 1 3と反対側の面に透明なカバーフィルム 1 5を張ったもの、 図 1 3 (d) は既 述と同様に、 金属層 1 3の樹月旨層を設けた側と反対側の面に支持体 1 6を剥離可 能に張り付けたものであり、 図 1 3 (e) は、 支持体 1 6の両面に金属層 1 3を 張って、 支持体 1 6の両側に光回路—電気回路混載基板用材料を形成するように したものである。 FIGS. 13 (b), 13 (c), 13 (d) and 13 (e) show another embodiment, and FIG. 13 (b) shows a metal A flame-retardant adhesive layer 14 is provided between the layer 13 and the resin layer. Fig. 13 (c) shows the resin layer on the opposite side to the metal layer 13 as described above. A transparent cover film 15 is applied to the surface, and Fig. 13 (d) shows a support 16 on the opposite side of the metal layer 13 from the side where the luster layer is provided, as described above. Fig. 13 (e) shows metal layers 13 on both sides of support 16 The optical circuit-electric circuit mixed board material is formed on both sides of the support 16.
図 1 5 ( a ) は、 第 1 1の要旨に係る本発明の実施の形態の一例を示し、 光回 路形成層 1 2の片面に直接接して光透過性樹脂層 1 1を積層すると共に、 光回路 形成層 1 2の光透過性樹脂層 1 1を設けた側と反対側の面に金属層 1 3を積層す ることによって形成してある。  FIG. 15 (a) shows an example of the embodiment of the present invention according to the eleventh aspect, in which a light-transmitting resin layer 11 is laminated while directly contacting one surface of an optical circuit forming layer 12. It is formed by laminating a metal layer 13 on the surface of the optical circuit forming layer 12 opposite to the side on which the light transmitting resin layer 11 is provided.
光透過性榭脂層 1 1及び金属層 1 3としては既述のものを用いることができる。 また光回路形成層 1 2は活性エネルギー線の照射によって屈折率が変化し、 活性 エネルギー線が照射されることによって屈折率が低くなる光透過性樹脂よりなる ものである。 このような活性エネルギー線の照射によつて屈折率が低くなる樹脂 としては、 光回路形成層 4と同じものを用いることができる。 そしてこの光回路 形成層 1 2を形成する樹脂に関しては、 照射後、 活性エネルギー線の照射されて いない部分が、 活性エネルギー線の照射された部分及び光透過性樹脂層 1 1を形 成する樹脂より屈折率が高い。  As the light-transmitting resin layer 11 and the metal layer 13, those described above can be used. The optical circuit forming layer 12 is made of a light-transmitting resin whose refractive index is changed by irradiation with active energy rays and whose refractive index is reduced by irradiation with active energy rays. The same resin as the optical circuit forming layer 4 can be used as the resin whose refractive index is lowered by the irradiation of the active energy ray. Regarding the resin forming the optical circuit forming layer 12, after irradiation, the portion not irradiated with the active energy ray is the portion irradiated with the active energy ray and the resin forming the light-transmitting resin layer 11. Higher refractive index.
この光回路一電気回路混載基板用材料は既述のものと同様にして、 金属層 1 3 として金属箔を用いる場合にはそのマツト面に光回路形成層 1 2を形成する樹脂 をコーティングし、 この光回路形成層 1 2の上に光透過性樹脂層 1 1を形成する 樹脂をコーティングすることによって作製することができる。  When using a metal foil as the metal layer 13, the material for the optical circuit-electric circuit mixed board is coated with a resin for forming the optical circuit forming layer 12 on the mat surface in the same manner as described above. The optical circuit forming layer 12 can be manufactured by coating a resin for forming the light transmitting resin layer 11 on the optical circuit forming layer 12.
次に、 このようにして得た光回路一電気回路混載基板用材料を用いて光回路一 電気回路混載基板を製造する方法について説明する。 まず図 1 6 ( a ) に示すよ うに、 金属層 1 3と反対側から光透過性樹脂層 1 1を透して光回路形成層 1 2に 活性エネルギー線 Eを照射する。 活性エネルギー線の照射は光配線の配線パター ンと逆のパターンで行なわれるものであり、 例えば紫外線のマスク露光、 レーザ 一の描画露光などで活性エネルギー線のパターン照射を行なうことができる。 こ のとき、 光回路形成層 1 2のうち、 活 14エネルギー線が照射されていない部分の 屈折率は変化しないが、 活性エネルギー線が照射された部分は屈折率が低くなり、 光回路形成層 1 2には非照射部分の高屈折率部 1 2 aと照射部分の低屈折率部 1 2 bが形成される。  Next, a method for manufacturing an optical circuit / electric circuit hybrid board using the optical circuit / electric circuit hybrid board material thus obtained will be described. First, as shown in FIG. 16A, the active energy ray E is irradiated on the optical circuit forming layer 12 through the light transmitting resin layer 11 from the side opposite to the metal layer 13. The irradiation of the active energy ray is performed in a pattern opposite to the wiring pattern of the optical wiring. For example, the pattern irradiation of the active energy ray can be performed by mask exposure with ultraviolet light, drawing exposure with a laser, or the like. At this time, the refractive index of the portion of the optical circuit forming layer 12 that has not been irradiated with active energy rays does not change, but the portion of the optical circuit forming layer 12 that has been irradiated with active energy rays has a lower refractive index, and the optical circuit forming layer has a lower refractive index. In 12, a high refractive index portion 12 a of the non-irradiated portion and a low refractive index portion 12 b of the irradiated portion are formed.
このようにして図 1 6 ( b ) のように光回路形成層 1 2に光配線パターン形状 で高屈折率部 1 2 aを形成した後、 光透過性樹脂層 1 1の光回路形成層 1 2を設 けた側と反対側の面に接着剤層 23を設け、 そして、 電気配線 2 1を設けて作製 されたプリント配線板 22の表面に接着剤 2 3で接着することによって、 図 1 6 (c) のようにプリント配線板 22の上に積層する。 この後、 表面の金属層 1 3 を配線加工して図 1 6 (d) のように電気配線 24を形成し、 さらにレーザービ ァ加工ゃメツキ加工して電気配線 2 1と電気配線 24を接続することができる。 ここで、 金属層 1 3は光回路形成層 1 2の高屈折率部 1 2 aに対応する部分を残 しておく力、、 光回路形成層 1 2の高屈折率部 1 2 aに対応する部分に金属層 1 3 で電気配線 24を形成するのがよレ、。 In this way, as shown in FIG. 16 (b), the optical circuit pattern After forming the high-refractive-index portion 12 a with the adhesive layer 23 on the surface of the light-transmitting resin layer 11 opposite to the side on which the optical circuit forming layer 12 is provided, By bonding with an adhesive 23 to the surface of the printed wiring board 22 manufactured by providing the above, the printed wiring board 22 is laminated on the printed wiring board 22 as shown in FIG. 16 (c). After that, wiring is performed on the metal layer 13 on the surface to form the electric wiring 24 as shown in FIG. 16 (d), and further, laser via processing and plating are performed to connect the electric wiring 21 and the electric wiring 24. be able to. Here, the metal layer 13 corresponds to the force to leave the portion corresponding to the high refractive index portion 12 a of the optical circuit forming layer 12, and corresponds to the high refractive index portion 12 a of the optical circuit forming layer 12. It is a good idea to form the electrical wiring 24 with the metal layer 13 at the part to be formed.
図 1 6 (d) のものにあって、 光配線パターンの光回路形成層 1 2の高屈折率 部 1 2 aの屈折率は、 光回路形成層 1 2の低屈折率部 1 2 bおよび光回路形成層 1 2と直接接する光透過性樹脂層 1 1の屈折率よりも大きく、 また高屈折率部 1 2 aは光を反射する金属層 1 3と接しているので、 光回路形成層 1 2の高屈折率 部 1 2 aがコア層 26となり、 光回路形成層 1 2の低屈折率部 1 2 bおよび光透 過性樹脂層 1 1がクラッド層 27となつた光導波路が構成され、 光回路形成層 1 2の高屈折率部 1 2 aによって光酉 S線が形成され、 光回路形成層 1 2の高屈折率 部 1 2 aによる光配線と電気配線 2 1と電気配線 24が積層された光回路一電気 回路混載基板として用いることができる。  In FIG. 16 (d), the refractive index of the high refractive index portion 12a of the optical circuit forming layer 12 of the optical wiring pattern is the low refractive index portion 12b of the optical circuit forming layer 12. Since the refractive index of the light-transmitting resin layer 11 that is in direct contact with the optical circuit forming layer 12 is higher than the refractive index of the light-transmitting resin layer 11 and the high refractive index portion 12 a is in contact with the metal layer 13 that reflects light, the optical circuit forming layer An optical waveguide is formed in which the high-refractive-index portion 12 of 1 2 forms the core layer 26 and the low-refractive-index portion 12 b of the optical circuit forming layer 12 and the cladding layer 27 form the light-transmitting resin layer 11. The S-line is formed by the high refractive index portion 12 a of the optical circuit forming layer 12, and the optical wiring, the electrical wiring 21, and the electrical wiring are formed by the high refractive index portion 12 a of the optical circuit forming layer 12. It can be used as an optical circuit-electric circuit mixed board on which 24 are stacked.
図 1 5 (b) 、 図 1 5 (c) 、 図 1 5 (d) 、 図 1 5 (e) は他の実施の形態 を示し、 図 1 5 (b) は既述と同様に、 金属層 1 3と樹脂層との間に難燃性を有 する接着剤層 14を設けたもの、 図 1 5 (c) は既述と同様に、 樹脂層の金属層 1 3と反対側の面に透明なカバーフィルム 1 5を張ったもの、 図 1 5 (d) は既 述と同様に、 金属層 1 3の樹脂層を設けた側と反対側の面に支持体 1 6を剥離可 能に張り付けたものであり、 図 1 5 (e) は、 支持体 1 6の両面に金属層 1 3を 張って、 支持体 16の両側に光回路一電気回路混載基板用材料を形成するように したものである。  FIG. 15 (b), FIG. 15 (c), FIG. 15 (d), and FIG. 15 (e) show other embodiments, and FIG. A flame-retardant adhesive layer 14 is provided between the layer 13 and the resin layer. Fig. 15 (c) shows the surface of the resin layer opposite to the metal layer 13 as described above. Fig. 15 (d) shows the support 16 peelable on the side opposite to the side where the resin layer of the metal layer 13 is provided, as in the above description. In FIG. 15 (e), a metal layer 13 is provided on both sides of a support 16 to form a material for an optical circuit-electric circuit mixed board on both sides of a support 16. It was done.
尚、 上述の図面を参照した説明では、 光回路一電気回路混載基板用材料は金属 層を有するが、 この金属層の代わりに仮基板 (仮支持体) を用いて、 上述と同様 にして、 仮基板の上に 1またはそれ以上の種々の樹脂層を形成した積層体として の複合体を形成し、 その後、 積層体から仮基板を剥離することによって、 金属層 を有さない光回路一電気回路混載基板用材料を製造することができる。 そのよう な仮基板はいずれの適当なものであってよく、 樹脂層を積層する側を剥離処理し た金属またはプラスチックのプレート、 シート等であってよい。 In the description with reference to the above-described drawings, the material for the optical circuit / electric circuit mixed board has a metal layer. As a laminate with one or more various resin layers formed on a temporary substrate By forming the composite and then peeling the temporary substrate from the laminate, a material for an optical circuit-electric circuit mixed substrate having no metal layer can be manufactured. Such a temporary substrate may be any suitable one, and may be a metal or plastic plate, sheet, or the like in which the side on which the resin layer is to be laminated is peeled off.
そのようにして得られる、 金属層を有さない光回路一電気回路混載基板用材料 は、 先に説明した金属層を光回路一電気回路混載基板用材料に接着して積層する ことによって、 上述の金属層を有する光回路一電気回路混載基板用材料とするこ とができ、 先に説明したように、 また、 後で説明するように、 光回路一電気回路 混載基板を製造するために使用することができる。 また、 金属層の接着は、 金属 層を有さない状態で光回路一電気回路混載基板用材料を種々加工した後で、 ある いはその途中で実施することも可能である。  The material for an optical circuit / electric circuit hybrid board without a metal layer obtained in this way is obtained by bonding and laminating the metal layer described above to the material for an optical circuit / electric circuit hybrid board. And a material for an optical circuit-electrical circuit hybrid board having a metal layer of the type described above, which is used for manufacturing an optical circuit-electric circuit hybrid board as described above and as described later. can do. In addition, the bonding of the metal layer can be performed after or after various processing of the material for the optical circuit / electric circuit mixed board without the metal layer.
図 1 7は本発明の光回路一電気回路混載基板の製造方法の実施の形態の一例を 示す。 この製造方法において用いる光回路一電気回路混載基板用材料は、 図 1 7 ( a ) のように、 金属層 2 0 2、 光回路形成層 2 0 1、 光透過性樹脂層 2 1 7お よびカバーフィルム 2 1 5を有して成る積層物 3である。 金属層 2 0 2は電気回 路 2 0 6を形成するためのものであり、 光回路形成層 2 0 1は、 光導波路 2 0 4 のコア部 2 0 4 aを形成するためのものであり、 光透過性樹脂層 2 1 7は、 金属 層 2 0 2と光回路形成層 2 0 1を接着するためのものであり、 また、 カバーフィ ルム 2 1 5は、 光回路形成層 2 0 1の表面を覆うためのものである。  FIG. 17 shows an example of an embodiment of a method for manufacturing an optical circuit-electric circuit hybrid board according to the present invention. As shown in Fig. 17 (a), the material for the optical circuit-electric circuit mixed substrate used in this manufacturing method includes a metal layer 202, an optical circuit forming layer 201, a light transmitting resin layer 212 and A laminate 3 having a cover film 215. The metal layer 202 is for forming the electric circuit 206, and the optical circuit forming layer 201 is for forming the core 204a of the optical waveguide 204. The light-transmitting resin layer 211 is for bonding the metal layer 202 and the optical circuit forming layer 201, and the cover film 215 is for bonding the optical circuit forming layer 201. It is for covering the surface.
ここで、 光回路形成層 2 0 1を形成する感光性樹脂としては、 紫外線等の活性 エネルギー線の照射によって、 溶剤に対する溶解性が変化するものを用いるもの であり、 なかでも透明性が高く、 耐熱性の高いものが好ましい。 具体的には、 先 に本発明の光回路一電気回路混載基板用材料に関連して例示したものを使用でき る。  Here, as the photosensitive resin forming the optical circuit forming layer 201, a resin whose solubility in a solvent is changed by irradiation with active energy rays such as ultraviolet rays is used. Those having high heat resistance are preferred. Specifically, those exemplified above in connection with the material for an optical circuit-electric circuit mixed board of the present invention can be used.
また光透過性樹脂層 2 1 7を形成する光透過性樹脂としては、 屈折率が光回路 形成層 2 0 1 (少なくとも光回路形成層 2 0 1の後述の露光部 2 0 1 a ) の屈折 率よりも低いものを用いるものであり、 難燃性が高く、 光回路形成層 2 0 1に照 射される活性エネルギー線を吸収するものが好ましい。 単一層の光透過性樹脂層 2 1 7でこのような条件を満たすことが難しい場合は、 低屈折率の光回路形成層 2 0 1の側の層と、 金属層 2 0 2に接着される層との二層構成に形成することも できる。 この光透過性樹脂層 2 1 7を形成する光透過性樹脂としては、 具体的に は、 先に本発明の光回路一電気回路混載基板用材料に関連して例示したものを使 用できる。 またこの樹脂には、 難燃性付与や、 活性エネルギー線吸収のため、 添 加型あるいは反応型のハロゲン系、 燐系、 シリコン系等の難燃剤や紫外線吸収剤 を含有させてもよい。 The light-transmitting resin forming the light-transmitting resin layer 2 17 has a refractive index of at least the refractive index of the optical circuit forming layer 201 (at least the exposed portion 201 a of the optical circuit forming layer 201 described later). It is preferable to use a material having a lower flame retardancy, having a high flame retardancy, and absorbing an active energy ray irradiated to the optical circuit forming layer 201. If it is difficult to satisfy such conditions with a single light-transmitting resin layer 2 17, use a low-refractive-index optical circuit forming layer. It can also be formed in a two-layer structure of a layer on the side of 201 and a layer adhered to the metal layer 202. As the light-transmitting resin for forming the light-transmitting resin layer 217, specifically, those exemplified in relation to the material for an optical circuit-electric circuit hybrid board of the present invention can be used. In addition, this resin may contain an additive or reaction type halogen-based, phosphorus-based, silicon-based flame retardant or an ultraviolet absorber for imparting flame retardancy or absorbing active energy rays.
また金属層 2 0 2としては、 先に本発明の光回路一電気回路混載基板用材料に 関連して例示したものを使用できる。 例えば、 金属箔を用いることができるもの であり、 例えば厚み 9〜 7 0 μ m程度の銅箔を好適に使用することができる。 勿 論これに限定されるものではなく、 アルミニウム箔、 ニッケル箔等であってもよ く、 厚みも上記の範囲に限られるものではない。 この金属層 2 0 2の樹脂層を設 ける側と反対側の面には剛体の支持体を粘着剤などで剥離自在に設け、 金属層 2 0 2の取り扱い性を高めるようにすることもできる。 支持体としては金属板ゃ樹 脂板、 セラミック板などを用いることができ、 金属層 2 0 2を積層する側の面は 鏡面であること力 剥離性のうえで好ましい。 また支持体の表面にメツキによつ て金属層 2 0 2を設けることもできる。  As the metal layer 202, those exemplified in connection with the material for an optical circuit-electric circuit mixed substrate of the present invention can be used. For example, a metal foil can be used. For example, a copper foil having a thickness of about 9 to 70 μm can be suitably used. Of course, the present invention is not limited to this, and may be aluminum foil, nickel foil, or the like, and the thickness is not limited to the above range. On the surface of the metal layer 202 opposite to the side on which the resin layer is provided, a rigid support can be provided with an adhesive or the like so as to be detachable, so that the handleability of the metal layer 202 can be enhanced. . As the support, a metal plate, a resin plate, a ceramic plate, or the like can be used, and the surface on which the metal layer 202 is laminated is a mirror surface, which is preferable from the viewpoint of peeling force. Further, a metal layer 202 can be provided on the surface of the support by plating.
さらにカバーフィルム 2 1 5としては、 先に本発明の光回路一電気回路混載基 板用材料に関連して例示したものを使用できる力 それらに限定されるものでは ない。 カバーフィルム 2 1 5の厚みは特に制限されるものではないが、 5〜1 0 0 /X mのものが好適に用いられる。 またカバーフィルム 2 1 5の表面に離型処理 を施したものを用いることもできる。 このカバーフィルム 2 1 5は必須のもので はなく、 カバーフィルム 2 1 5を具備しない積層物 2 0 3を用いることもできる。 積層物 2 0 3を作製するにあたっては、 まず金属層 2 0 2として金属箔を用い る場合にはそのマット面に光透過性樹脂をコンマコータ、 カーテンコータ、 ダイ コータ、 スクリーン印刷、 オフセット印刷の手法でコーティングし、 溶剤を含む 場合にはこれを乾燥除去した後、 必要に応じて硬化させ、 光透過性樹脂層 2 1 7 を形成する。 光透過性樹脂層 2 1 7は半硬化の状態にすることもあり、 硬化方法 や硬化条件は樹脂の種類に応じて適宜選択される。 また、 カバーフィルム 2 1 5 の表面に感光性樹脂をコーティングして光回路形成層 2 0 1を形成しておき、 光 透過性樹脂層 2 1 7と光回路形成層 2 0 1とを貼り合わせてラミネートすること によって、 図 1 7 ( a ) のような積層物 2 0 3を得ることができる。 尚、 上記の ように金属層 2 0 2に光透過性樹脂層 2 1 7を形成した後、 光透過性樹脂層 2 1 7の上に光回路形成層 2 0 1をコーティングして形成し、 この後に光回路形成層 2 0 1の上にカバーフィルム 2 1 5をラミネ一トするようにしてもよい。 Further, as the cover film 215, the force which can use those exemplified in connection with the optical circuit-electric circuit mixed substrate material of the present invention is not limited thereto. The thickness of the cover film 215 is not particularly limited, but a thickness of 5 to 100 / Xm is preferably used. Further, a film obtained by subjecting the surface of the cover film 215 to a release treatment can also be used. The cover film 215 is not essential, and a laminate 203 without the cover film 215 can be used. When fabricating the laminate 203, first, when metal foil is used as the metal layer 202, a light-transmitting resin is coated on the mat surface with a comma coater, curtain coater, die coater, screen printing, and offset printing. Then, if a solvent is contained, it is dried and removed, and then, if necessary, cured to form a light-transmitting resin layer 217. The light-transmitting resin layer 217 may be in a semi-cured state, and the curing method and curing conditions are appropriately selected according to the type of the resin. Also, the surface of the cover film 215 is coated with a photosensitive resin to form an optical circuit forming layer 201, and By laminating and bonding the transparent resin layer 2 17 and the optical circuit forming layer 201, a laminate 203 as shown in FIG. 17A can be obtained. After forming the light transmitting resin layer 2 17 on the metal layer 202 as described above, the optical circuit forming layer 201 is formed on the light transmitting resin layer 2 17 by coating. Thereafter, the cover film 215 may be laminated on the optical circuit forming layer 201.
そして、 この積層物 2 0 3を用い、 図 1 7 ( b ) に示すように紫外線などの活 性エネルギー線 Eを金属層 2 0 2と反対側から、 カバーフィルム 2 1 5を通して 光回路形成層 2 0 1に照射する。 活性エネルギー線 Eの照射は、 光回路と同バタ ーンが形成されたフォトマスク (図示省略) を通して行なわれる。 このように光 回路形成層 2 0 1に活性エネルギー線 Eを照射して露光することによって、 例え ば光回路形成層 2 0 1のうち露光部 2 0 1 aの硬化度を高めて溶剤に対する溶解 度を低下させることができる。 ここで、 金属層 2 0 2には予め基準マーク (図示 省略) がパターニングして形成してあり、 この基準マークを基準にしてフォトマ スクを位置決めして露光することによって、 基準マークを基準にして露光部 2 0 1 aの形成位置を位置決めすることができるものである。 尚、 上記のような紫外 線によるマスク露光の他に、 感光性樹脂の特性に応じてレーザあるいは電子線に よる描画露光などを用いることもできる。  Then, using this laminate 203, as shown in FIG. 17 (b), an active energy ray E such as ultraviolet rays was applied from the side opposite to the metal layer 202 to the optical circuit forming layer through the cover film 210. Irradiate 201. The irradiation of the active energy ray E is performed through a photomask (not shown) on which the same pattern as the optical circuit is formed. By irradiating the optical circuit forming layer 201 with the active energy rays E in this manner, for example, the degree of curing of the exposed portion 201a of the optical circuit forming layer 201 is increased to dissolve in the solvent. The degree can be reduced. Here, a reference mark (not shown) is formed in the metal layer 202 in advance by patterning, and the photomask is positioned and exposed with reference to the reference mark, whereby the reference mark is determined. The position at which the exposure section 201a is formed can be determined. In addition to the above-described mask exposure using an ultraviolet ray, drawing exposure using a laser or an electron beam may be used depending on the characteristics of the photosensitive resin.
次に、 偏向部 2 0 5の形成を行なう。 すなわち、 まず図 1 7 ( c ) のように力 バーフィルム 2 1 5の上から、 カバーフィルム 2 1 5と共に光回路形成層 2 0 1 の露光部 2 0 1 aを形成した箇所を V字型に切削して V溝 2 2 1を形成する。 V 溝 2 2 1の形成は、 例えば頂角が 9 0 ° あるいは片面傾斜 4 5 ° の切削刃を設 けた回転ブレード又はバイトを用いて切削加工することによって行なうことがで きる。 図 1 7 ( c ) は頂角が 9 0 ° の切削刃を有する回転ブレード又はバイト を用いて切削加工した例を示す。 この V溝 2 2 1によって、 後述のように光導波 路 2 0 4のコア部 2 0 4 aとなる露光部 2 0 1 aの長手方向、 つまり光導波方向 に対して 4 5 ° の角度で傾斜する傾斜面 2 0 7を形成することができる。 尚、 この傾斜面 2 0 7の形成は、 このようなブレードゃバイトによる切削加工の他に、 レーザアブレーシヨン、 V型の押し当て型 (押し込むことによって型の凸部に相 補的な凹部を形成する型、 一種の雄型) を押し当てる手法などを用いて行なうこ ともできる。 Next, the deflection part 205 is formed. That is, first, as shown in FIG. 17 (c), the portion where the exposed portion 201a of the optical circuit forming layer 201 was formed together with the cover film 215 from the top of the force bar film 215 was V-shaped. Into V-grooves 2 2 1 The V-groove 221 can be formed, for example, by cutting using a rotating blade or a cutting tool provided with a cutting blade having a vertical angle of 90 ° or a single-sided inclination of 45 °. Fig. 17 (c) shows an example of cutting using a rotating blade or cutting tool having a cutting blade with a vertex of 90 °. As described later, the V-grooves 221 allow the exposed portion 201 a to be the core portion 204 a of the optical waveguide 204 in the longitudinal direction, that is, at an angle of 45 ° with respect to the optical waveguide direction. An inclined surface 207 that is inclined can be formed. It should be noted that the formation of the inclined surface 207 may be performed by a laser abrasion, a V-shaped pressing die (a concave portion complementary to a convex portion of the die by being pressed), in addition to the cutting process using such a blade and a cutting tool. Type, a type of male type). Can also be.
図 1 9は外周に頂角が 9 0 ° の切削刃 2 4 0を設けて形成される回転ブレー ド 2 4 1を回転軸 2 4 2によって回転駆動しながら、 V溝 2 2 1の切削加工を行 なう例を示し、 光回路形成層 2 0 1の露光部 2 0 1 aに傾斜面 2 0 7を形成する 位置において積層物 2 0 3に回転ブレード 2 4 1の切削刃 2 4 0を接触させた後、 回転ブレード 2 4 1を切削箇所から離間させることによって、 切削加工を行なう ことができる。 ここで図 1 9 ( a ) の例では、 回転ブレード 2 4 1を A矢印のよ うに積層物 2 0 3に接触させ、 外周の切削刃 2 4 0で所定深さに V溝 2 1を切削 した後、 そのまま回転ブレード 2 4 1を B矢印のように積層物 2 0 3から離間さ せるようにしている。 この場合には、 V溝 2 2 1を短い長さで形成することがで き、 一つ (あるいは少数) の露光部 2 O l aにのみ V溝 2 2 1を加工して傾斜面 2 0 7を形成することができる。 また図 1 9 ( b ) の例では、 回転ブレード 2 4 1を A矢印のように積層物 2 0 3に接触させ、 次いで B矢印のように積層物 2 0 3の表面に沿って走査させながら、 外周の切削刃 2 4 0で所定深さに所定長さで V溝 2 2 1を切削した後、 回転ブレード 2 4 1を C矢印のように積層物 2 0 3か ら離間させるようにしている。 この場合には、 回転ブレード 2 4 1を走査させる 長さで長い V溝 2 2 1を形成することができ、 複数の露光部 2 0 1 aに同時に V 溝 2 2 1を加工して、 各露光部 2 0 1 aに傾斜面 2 0 7を形成できる。  Fig. 19 shows the cutting of the V-groove 221, while rotating the rotating blade 241, which is formed by providing a cutting blade 240 with an apex angle of 90 ° on the outer circumference, by the rotating shaft 242. In this example, a rotating blade 2 41 is used as a cutting blade 2 4 0 on a laminate 2 3 at a position where an inclined surface 2 7 is formed on an exposed portion 2 0 1 a of an optical circuit forming layer 2 1. After the contact, the rotating blade 2441 is separated from the cutting portion, thereby performing cutting. Here, in the example of Fig. 19 (a), the rotating blade 2 41 is brought into contact with the laminate 203 as indicated by the arrow A, and the outer peripheral cutting blade 240 cuts the V groove 21 to a predetermined depth. After that, the rotating blade 24 1 is separated from the laminate 203 as shown by the arrow B as it is. In this case, the V-groove 221 can be formed with a short length, and the V-groove 221 is machined only on one (or a small number) of the exposed portions 2 O la to form the inclined surface 207. Can be formed. Also, in the example of FIG. 19 (b), the rotating blade 2 41 is brought into contact with the laminate 203 as shown by the arrow A, and then scanned along the surface of the laminate 203 as shown by the arrow B. After cutting the V-groove 221 at a predetermined depth and a predetermined length with the outer peripheral cutting blade 240, the rotating blade 241 is separated from the laminate 203 as indicated by the arrow C. I have. In this case, it is possible to form a long V-groove 2 21 with a length to be scanned by the rotating blade 2 41, and to simultaneously process the V-groove 2 2 1 in a plurality of exposure portions 201 a, An inclined surface 207 can be formed in the exposed portion 201a.
また、 V溝 2 2 1は、 通常は図 2 0に示す V溝 2 2 1 aのように、 後述の光導 波路 2 0 4のコア部 2 0 4 aとなる露光部 1 aの全厚み方向で形成されるもので あり、 この場合には、 この V溝 2 2 1 aの傾斜面 2 0 7に後述のように形成され る偏向部 2 0 5によってコア部 2 0 4 aを完全に遮断することができ、 コア部 2 0 4 aを伝播する光の総てを偏向部 2 0 5で偏向させて取り出すことができるよ うになつている。 一方、 回転ブレードやバイ トによる切削深さを調整することに よって、 図 2 0に示す V溝 2 2 1 bのように、 光導波路 2 0 4のコア部 2 0 4 a となる露光部 2 0 1 aの厚み方向の一部を残す深さで形成することもできる。 こ の場合には、 この V溝 2 2 1 bの傾斜面 2 0 7に形成される偏向部 2 0 5によつ てコア部 2 0 4 aは完全には遮断されないので、 コア部 2 0 4 aを伝播する光の 一部を偏向部 2 0 5で偏向させて取り出すと共に、 他の一部の伝播光は偏向部 2 0 5を通過させることができるものであり、 偏向部 2 0 5を分岐出射ミラーとし て形成することができる。 In addition, the V-groove 221 normally has the entire thickness direction of the exposed portion 1a which will be the core portion 204a of the optical waveguide 204 described later, like the V-groove 221a shown in FIG. In this case, the core portion 204a is completely shut off by the deflecting portion 205 formed on the inclined surface 207 of the V-groove 221a as described later. All of the light propagating through the core portion 204a can be deflected by the deflection portion 205 and extracted. On the other hand, by adjusting the cutting depth by the rotating blade or the byte, the exposed portion 2 which becomes the core portion 204 a of the optical waveguide 204 as shown in the V-groove 222 b shown in FIG. It can also be formed to a depth that leaves a part in the thickness direction of 01a. In this case, the core portion 204a is not completely shut off by the deflecting portion 205 formed on the inclined surface 207 of the V groove 222b, so that the core portion 204 4 While a part of the light propagating through a is deflected by the deflecting unit 205 and extracted, the other 05, and the deflection unit 205 can be formed as a branch emission mirror.
また、 回転ブレード 2 4 1を用いて V溝 2 2 1を切削加工するにあたって、 回 転ブレード 2 4 1の切削刃 2 4 0は表面に研磨砥粒を固着して形成されているの で、 V溝 2 2 1の切削表面である傾斜面 2 0 7の面粗度が問題になる。 砥粒番手 の大きい (すなわち砥粒径が細かい) 回転ブレード 2 4 1を用いて切削加工を行 なうと、 V溝 2 2 1の切削表面の面粗度を小さくすることができるが、 切削力が 不足するので、 回転ブレード 2 4 1の切削刃 2 4 0を積層物 2 0 3に押し込んで V溝 2 2 1の加工を行なう際に、 回転ブレード 2 4 1の表面に引っ張りやゆがみ などの不具合が生じる問題があり、 更には、 加工に要する時間が長くなつて加工 効率にも問題が生じる。 そこで、 まず砥粒番手の小さい (すなわち砥粒径が粗 レ、) 回転ブレード 2 4 1を用い、 この回転ブレード 2 4 1の刃先 2 4 0を積層物 2 0 3に接触させて光回路形成層 2 0 1の所定位置に、 所定深さ、 所定長さで大 まかに V溝 2 2 1を切削した後、 次に砥粒番手の大きい (すなわち砥粒径が細か レ、) 第二の回転ブレード 2 4 1を用い、 この第二の回転ブレード 2 4 1で同じ箇 所を再度切削し、 所定深さに V溝 2 2 1を仕上げ加工するようにするのが好まし レ、。 このようにすれば、 切削力の不足による加工形状の引っ張り、 歪みのない、 低面粗度の面が安定に形成できる。  Also, when cutting the V-groove 2 221 using the rotating blade 2 41, the cutting blade 240 of the rotating blade 2 41 is formed by fixing abrasive grains to the surface, so that The surface roughness of the inclined surface 207 which is the cutting surface of the V-groove 221 becomes a problem. When cutting is performed using the rotating blade 241, which has a large abrasive grain count (that is, the abrasive grain is fine), the surface roughness of the cutting surface of the V-groove 221 can be reduced, but the cutting force When the V blade 2 41 is machined by pushing the cutting blade 2 40 of the rotating blade 2 41 into the laminate 230, the surface of the rotating blade 2 41 may be pulled or distorted. There is a problem that defects occur, and furthermore, the processing time becomes longer, which causes a problem in processing efficiency. Therefore, first, an optical circuit is formed by using a rotating blade 241, which has a small abrasive grain number (that is, a coarse abrasive particle diameter), and bringing the cutting edge 240 of the rotating blade 241 into contact with the laminate 203. After roughly cutting the V-groove 221 at a predetermined position and a predetermined length in the layer 201 at the predetermined position, the abrasive grain number is the second largest (that is, the abrasive particle diameter is small). It is preferable to use the rotary blade 241, and then cut the same portion again with the second rotary blade 241, so as to finish-process the V-groove 221, to a predetermined depth. In this way, a surface with a low roughness can be stably formed without pulling or distortion of the processed shape due to insufficient cutting force.
上記のようにして V溝 2 2 1を加工して傾斜面 2 0 7を形成した後、 図 1 8 ( a ) に示すようにこの傾斜面 2 0 7に光反射部 2 0 8を設けることによって、 偏向部 2 0 5を形成することができる。 光反射部 2 0 8の形成は、 銀ペーストな ど金属粒子を含有するペーストを印刷法で傾斜面 2 0 7に塗布することによって 行なうことができる。 金属粒子としては銀のみならず、 金などの高反射率金属を 用いてもよい。 また光反射部 2 0 8の反射面の平坦度を向上して反射効率を高く 得るために、 金属粒子は粒径が 0 . 2 以下であることが望ましい。 金属粒子 の粒径は小さレ、程好ましく、 数 n m程度まで細かいものを用いることができる。 また、 光反射部 2 0 8の形成は、 上記のように金属粒子含有ペーストを印刷する 方法の他に、 蒸着やスパッタリングによって傾斜面 2 0 7に選択的に金属を堆積 させる方法によっても行なうことができる。 尚、 図 1 8 ( b ) に示すように、 力 バーフィルム 2 1 5を除去して偏向部 2 0 5が完成する。 After machining the V-groove 222 as described above to form the inclined surface 207, the light reflecting portion 209 is provided on the inclined surface 207 as shown in Fig. 18 (a). Thereby, the deflection part 205 can be formed. The light reflecting portion 208 can be formed by applying a paste containing metal particles such as a silver paste to the inclined surface 207 by a printing method. As the metal particles, not only silver but also a high-reflectance metal such as gold may be used. Further, in order to improve the flatness of the reflecting surface of the light reflecting portion 208 and obtain high reflection efficiency, it is desirable that the metal particles have a particle size of 0.2 or less. The particle size of the metal particles is preferably as small as possible, and fine particles up to about several nm can be used. The light reflecting portion 208 may be formed not only by printing the metal particle-containing paste as described above but also by selectively depositing metal on the inclined surface 207 by vapor deposition or sputtering. Can be. As shown in Fig. 18 (b), the force The bar film 2 15 is removed to complete the deflection section 205.
ここで、 図 1 7の実施の形態では、 カバーフィルム 2 1 5の上から V溝 2 2 1 の加工を行なうようにしているが、 カバーフィルム 2 1 5を具備しない積層物 2 0 3を用いる場合には、 光回路形成層 2 0 1に直接 V溝 2 2 1の加工を行なうの はいうまでもなレ、。 但し、 上記のように金属粒子含有ペーストの印刷などで光反 射部 2 0 8を形成するにあたって、 光回路形成層 2 0 1の表面がカバーフィルム 2 1 5で覆われていると、 V溝 2 2 1以外の箇所の光回路形成層 2 0 1にペース トなどが付着することを防止することができるので、 光回路形成層 2 0 1の表面 にカバーフィルム 2 1 5を貼った状態で加工を行なうのが好ましい。  Here, in the embodiment of FIG. 17, the V-grooves 2 21 are processed from above the cover film 2 15, but a laminate 203 without the cover film 2 15 is used. In this case, it goes without saying that the V-groove 221 is directly processed in the optical circuit forming layer 201. However, when forming the light reflecting portion 208 by printing the paste containing metal particles as described above, if the surface of the optical circuit forming layer 201 is covered with the cover film 215, the V-groove is formed. Paste and the like can be prevented from adhering to the optical circuit forming layer 201 other than at the portion of the optical circuit forming layer 201, so that the cover film 215 is adhered to the surface of the optical circuit forming layer 201. Processing is preferably performed.
また、 V型の押し当て型を光回路形成層 2 0 1に押し当てて V溝 2 2 1を形成 する場合、 4 5 ° に傾斜する表面が反射面 2 0 9となった反射体 2 1 0を押し 当て型として用い、 図 2 1 ( a ) に示すように V溝 2 2 1内に反射体 2 1 0をそ のまま残すことによって、 V溝 2 2 1の傾斜面 2 0 7と反射面 9によって偏向部 2 0 5を形成することができる。 この場合には、 V溝 2 2 1の加工と同時に偏向 部 2 0 5の形成をすることができるものであり、 工数を削減することができる。 ここで、 上記のように偏向部 2 0 5を形成するにあたって、 金属層 2 0 2に予め 形成した基準マークを基準にして、 偏向部 2 0 5の形成位置を位置決めすること ができる。 尚、 図 2 1 ( b ) に示すように、 カバーフィルム 2 1 5を除去する。 また図 1 7の実施の形態では、 光回路形成層 2 0 1に活性エネルギー線を照射 して光導波路 2 0 4のコア部 2 0 4 aとなる露光部 2 0 1 aを形成する加工を行 なった後、 偏向部 2 0 5を形成する加工を行なっているが、 偏向部 2 0 5を形成 する加工を先に行ない、 この後に光導波路 2 0 4のコア部 2 0 4 aとなる露光部 2 0 1 aを形成する加工を行なうようにしてもよく、 この場合には活性エネルギ 一線の照射で硬化する前の光回路形成層 2 0 1に V溝 2 2 1を形成することがで き、 V溝 2 2 1の形成が容易になる。 特に、 押し当て型を押し当てて V溝 2 2 1 を形成したり、 反射体 2 1 0で V溝 2 2 1を形成したりする場合には、 光回路形 成層 2 0 1が硬化する前の柔らかい状態で、 V溝 2 2 1をより容易に形成するこ とができ、 高精度に偏向部 2 0 5を形成することが可能になる。  When a V-shaped pressing die is pressed against the optical circuit forming layer 201 to form the V-groove 221, the reflector 209 whose surface inclined at 45 ° becomes the reflecting surface 209 is formed. 0 is used as a pressing mold, and as shown in Fig. 21 (a), by leaving the reflector 210 in the V-groove 221 as it is, the inclined surface 207 of the V-groove 221 is formed. The deflection surface 205 can be formed by the reflection surface 9. In this case, the deflection portion 205 can be formed simultaneously with the processing of the V-groove 221, and the number of steps can be reduced. Here, in forming the deflecting portion 205 as described above, the formation position of the deflecting portion 205 can be determined with reference to a reference mark formed in advance on the metal layer 202. In addition, as shown in FIG. 21 (b), the cover film 215 is removed. In the embodiment of FIG. 17, the optical circuit forming layer 201 is irradiated with an active energy ray to form an exposed portion 201 a to be the core portion 204 a of the optical waveguide 204. After that, the processing for forming the deflection section 205 is performed, but the processing for forming the deflection section 205 is performed first, and thereafter, the core section 204 a of the optical waveguide 204 is formed. A process for forming the exposed portion 201a may be performed. In this case, a V-groove 221 is formed in the optical circuit forming layer 201 before being cured by irradiation with active energy rays. As a result, the formation of the V-shaped groove 222 is facilitated. In particular, when the pressing die is pressed to form the V-groove 221 or the reflector 210 is used to form the V-groove 221, before the optical circuit forming layer 201 is cured. The V-shaped groove 222 can be formed more easily in a soft state, and the deflection portion 205 can be formed with high precision.
上記のように偏向部 2 0 5を形成した後、 カバーフィルム 2 1 5を剥離し、 溶 剤で現像することによって、 図 1 7 ( d ) のように光回路形成層 2 0 1の露光部 1 a以外の部分を溶解除去する。 After forming the deflection part 205 as described above, the cover film 215 is peeled off, By developing with an agent, portions other than the exposed portion 1a of the optical circuit forming layer 201 are dissolved and removed as shown in FIG. 17 (d).
一方、 電気回路 2 1 2を設けた絶縁基板 2 1 1を予め用意しておく。 この電気 回路 2 1 2を設けた基板 2 1 1としては、 表面に銅などの金属で電気回路 2 1 2 を形成したプリント配線板を用いることができる。 そして図 1 7 ( e ) に示すよ うに、 基板 2 1 1の表面に積層物 2 0 3を光回路形成層 2 0 1の側で接着剤 2 1 4を介して接着する。 この接着剤 2 1 4は光回路形成層 2 0 1の露光部 1 aより も屈折率が小さい光透過性樹脂で形成されるものであり、 前記の光透過性樹脂層 2 1 7を形成する樹脂と同じものなどを用いることができる。 尚、 光回路形成層 2 0 1の表面に屈折率が小さいクラッド用の光透過性樹脂層を設けた後に、 基板 On the other hand, an insulating substrate 211 provided with the electric circuit 211 is prepared in advance. As the substrate 211 provided with the electric circuit 212, a printed wiring board having the electric circuit 212 formed on the surface thereof with a metal such as copper can be used. Then, as shown in FIG. 17 (e), the laminate 203 is adhered to the surface of the substrate 211 on the side of the optical circuit forming layer 201 via an adhesive 214. The adhesive 2 14 is formed of a light-transmitting resin having a lower refractive index than the exposed portion 1 a of the optical circuit forming layer 201, and forms the light-transmitting resin layer 2 17. The same resin as the resin can be used. After providing a light-transmitting resin layer for cladding having a small refractive index on the surface of the optical circuit forming layer 201, the substrate
2 1 1に積層物 2 0 3を接着するようにしてもよレ、。 この場合には接着剤 2 1 4 の屈折率は上記のような制限を受けなくなる。 また基板 2 1 1としては電気回路 2 1 2を有しない単なる板であっても構わない。 この場合には後述するビアホー ルの加工が不要になる。 さらに基板 2 1 1の両面に積層物 2 0 3を接着するよう にすることもできる。 Alternatively, the laminate 203 may be bonded to 2111. In this case, the refractive index of the adhesive 214 is no longer limited as described above. Further, as the substrate 211, a simple plate having no electric circuit 212 may be used. In this case, the processing of the via hole described later becomes unnecessary. Further, the laminate 203 may be bonded to both surfaces of the substrate 211.
このように電気回路 2 1 2を設けた基板 2 1 1に積層物 2 0 3を接着して積層 した後、 図 1 7 ( f ) のように金属層 2 0 2から光透過性樹脂層 2 1 7と接着剤 2 1 4を通してビアホール 2 1 3を形成する。 ビアホーノレ 2 1 3の形成はレーザ 加工によって行なうことができる。 次に図 1 7 ( g ) のようにビアホール 2 1 3 の内周にメツキを施して電気導通部 2 2を形成した後、 金属層 2 0 2にフォトリ ソグラフィパターンユング及びエッチング加工を行なって電気回路 2 0 6を形成 することによって、 図 1 7 ( h ) のような光回路一電気回路混載基板を得ること ができる。 ここで、 電気回路 2 0 6を形成するにあたって、 金属層 2 0 2に予め 形成した基準マークを基準にして、 フォトリソグラフィパターンニングを行なう ことによって、 基準マークを基準にして電気回路 2 0 6の形成位置を位置決めす ることができる。  After the laminate 203 is bonded and laminated to the substrate 211 on which the electric circuit 211 is provided as described above, the light-transmitting resin layer 2 is removed from the metal layer 202 as shown in FIG. Via holes 2 13 are formed through 17 and the adhesive 2 14. The formation of the viahornole 2 13 can be performed by laser processing. Next, as shown in FIG. 17 (g), the inner periphery of the via hole 2 13 is plated to form an electrically conductive portion 22. Then, the metal layer 202 is subjected to photolithography pattern jung and etching. By forming the electric circuit 206, it is possible to obtain an optical circuit-electric circuit hybrid board as shown in FIG. 17 (h). Here, in forming the electric circuit 206, photolithography patterning is performed with reference to a reference mark formed in advance on the metal layer 202, thereby forming the electric circuit 206 with reference to the reference mark. The forming position can be determined.
この光回路—電気回路混載基板にあって、 光回路形成層 2 0 1の露光部 1 aが 屈折率の高いコア部 2 0 4 a , 光透過性樹脂層 2 1 7と接着剤 2 1 4が屈折率の 低いクラッド部 2 0 4 bとなって、 露光部 1 aに光導波路 2 0 4が形成されるも のであり、 この光導波路 2 0 4による光回路と電気回路 2 0 6と電気回路 2 1 2 が混載されている。 また光導波路 2 0 4の端部に形成されている偏向部 2 0 5の 直上に対向する部分の金属層 2 0 2は除去されており、 光導波路 2 0 4を伝播さ れた光は偏向部 2 0 5で反射され、 光の進行方向は光回路一電気回路混載基板の 厚み方向へと 9 0 ° 偏向され、 光透過性樹脂層 2 1 7を通して外部に出射され るようになっている。 また外部から光透過性樹脂層 2 1 7を通して入射された光 は、 偏向部 2 0 5で反射され、 進行方向が 9 0 ° 偏向されて光導波路 2 0 4内 に入射されるようになっている。 In this optical circuit-electric circuit hybrid board, the exposed portion 1a of the optical circuit forming layer 201 has a core portion 204a having a high refractive index, a light transmitting resin layer 211 and an adhesive 211. Becomes a clad portion 204b having a low refractive index, and an optical waveguide 204 is formed in the exposed portion 1a. The optical circuit using the optical waveguide 204, the electric circuit 206, and the electric circuit 212 are mixedly mounted. In addition, the metal layer 202 in the portion directly above the deflection portion 205 formed at the end of the optical waveguide 204 has been removed, and the light propagated through the optical waveguide 204 is deflected. The light is reflected by the part 205, and the traveling direction of the light is deflected by 90 ° in the thickness direction of the optical circuit-electric circuit mixed substrate, and is emitted to the outside through the light transmitting resin layer 217. . Further, light incident from the outside through the light-transmitting resin layer 217 is reflected by the deflecting portion 205, the traveling direction is deflected by 90 °, and enters the optical waveguide 204. I have.
また、 電気回路 2 0 6と電気回路 2 1 2はビアホーノレ 2 1 3の電気導通部2 2 2で電気的に接続されている。 ここで、 ビアホール 2 1 3をレーザ加工で形成す るにあたって、 基板 2 1 1に設けた電気回路 2 1 2の直上位置においてレーザ光 を照射してビアホール 2 1 3の加工を行なうと、 ビアホール 2 1 3の形成が電気 回路 2 1 2にまで達したときに、 レーザ光は電気回路 2 1 2を形成する銅などの 金属で反射され、 電気回路 2 1 2の金属がストップ層となってレーザ光はこれ以 上深く入り込まず、 電気回路 2 1 2を底面としてビアホール 2 1 3を形成するこ とができる。 従って、 電気回路 2 1 2をビアホーノレ 2 1 3の底面に確実に露出さ せて、 ビアホール 2 1 3を介した電気回路 2 1 2と電気回路 2 0 6との導通接続 の信頼性を高く得ることができる。 また光導波路 2 0 4のコア部 2 0 4 aとなる 露光部 2 0 1 aの形成、 偏向部 2 0 5の形成、 電気回路 2 0 6の形成は、 いずれ も金属層 2 0 2にあらかじめ形成された基準マークを基準として位置決めした位 置に形成するようにしているので、 光導波路 2 0 4と偏向部 2 0 5と電気回路 2 0 6は基準マークを基準として相互に位置合わせされており、 光導波路 2 0 4と 偏向部 2 0 5と電気回路 2 0 6を位置精度高く形成することができる。 The electrical circuit 2 0 6 and the electric circuit 2 1 2 are electrically connected by the electrically conductive portion 2 2 2 Biahonore 2 1 3. Here, when forming the via hole 2 13 by laser processing, the via hole 2 13 is processed by irradiating a laser beam at a position directly above the electric circuit 2 1 2 provided on the substrate 2 1 1. When the formation of 13 reaches the electric circuit 2 12, the laser light is reflected by a metal such as copper forming the electric circuit 2 12, and the metal of the electric circuit 2 Light does not penetrate deeper than this, and a via hole 2 13 can be formed with the electric circuit 2 12 as the bottom surface. Therefore, the electric circuit 211 is reliably exposed to the bottom of the via hole 213, and the reliability of the conductive connection between the electric circuit 212 and the electric circuit 206 via the via hole 213 is improved. be able to. In addition, the formation of the exposed portion 201 a to be the core portion 204 a of the optical waveguide 204, the formation of the deflecting portion 205, and the formation of the electric circuit 206 are all performed on the metal layer 202 in advance. Since the optical waveguide 204, the deflecting unit 205, and the electric circuit 206 are aligned with each other based on the fiducial mark, the optical waveguide 204, the deflecting part 205, and the electric circuit 206 are aligned with each other. Thus, the optical waveguide 204, the deflecting section 205, and the electric circuit 206 can be formed with high positional accuracy.
図 2 2は本発明の他の実施の形態を示し、 図 2 2 ( a ) のように、 電気回路 2 0 6を形成するための金属層 2 0 2、 光導波路 2 0 4のコア部 2 0 4 aとクラッ ド部 2 0 4 bを形成するための光回路形成層 2 0 1、 光回路形成層 2 0 1の金属 層 2 0 2と反対側の表面を覆うカバーフィルム 2 1 5からなる積層物 2 0 3を用 いるようにしてある。  FIG. 22 shows another embodiment of the present invention. As shown in FIG. 22 (a), a metal layer 202 for forming an electric circuit 206 and a core portion 2 of an optical waveguide 204 are provided. The cover film 210 covers the surface of the optical circuit forming layer 201, which forms the optical circuit forming layer 204 and the cladding portion 204b, on the opposite side of the metal layer 202 of the optical circuit forming layer 201. The laminated structure 203 is used.
上記の光回路形成層 2 0 1を形成する感光性樹脂としては、 活性ヱネルギ一線 の照射によって照射領域の屈折率が変化するものを用いるようにしてある。 例え ば紫外線の照射によって屈折率変化を誘起することができる樹脂として、 ァクリ ノレ樹脂やポリカーボネート樹脂中に光重合性モノマーを含有する複合樹脂や、 ポ リシラン系樹脂などを用いることができる。 金属層 2 0 2やカバーフィルム 2 1 5としては既述のものを用いることができる。 As the photosensitive resin for forming the optical circuit forming layer 201, active energy Is used in which the refractive index of the irradiation area changes by the irradiation. For example, as a resin capable of inducing a change in the refractive index by irradiation with ultraviolet light, a composite resin containing a photopolymerizable monomer in an acrylic resin or a polycarbonate resin, a polysilane resin, or the like can be used. As the metal layer 202 and the cover film 215, those described above can be used.
積層物 2 0 3を作製するにあたっては、 まず金属層 2 0 2として金属箔を用い る場合にはそのマット面に感光性樹脂をコンマコータ、 カーテンコータ、 ダイコ ータ、 スクリーン印刷、 オフセット印刷の手法でコーティングして光回路形成層 2 0 1を形成し、 この光回路形成層 2 0 1の表面にカバーフィルム 2 1 5をラミ ネートすることによって、 行なうことができる。  When fabricating the laminate 203, first, if a metal foil is used as the metal layer 202, a photosensitive resin is applied to the mat surface by a comma coater, curtain coater, die coater, screen printing, or offset printing. This can be performed by forming an optical circuit forming layer 201 by coating with a cover film and laminating a cover film 215 on the surface of the optical circuit forming layer 201.
そしてこの積層物 2 0 3を用い、 図 2 2 ( b ) に示すように紫外線などの活性 エネルギー線 Eを金属層 2 0 2と反対側から、 カバーフィルム 2 1 5を通して光 回路形成層 2 0 1に照射する。 活性エネルギー線 Eの照射は図 1 7の場合と同様 にフォトマスクを通して行なわれるものであり、 また金属層 2 0 2に予め形成し た基準マークを基準にしてフォトマスクを位置決めして露光する。 このように光 回路形成層 2 0 1に活性エネルギー線 Eを照射して露光することによって、 例え ば光回路形成層 2 0 1のうち露光部 1 aの屈折率が高くなるように変化し、 露光 部 2 0 1 aは光回路形成層 2 0 1の他の非露光部 2 0 1 bよりも屈折率が高くな る。 ここで、 活性エネルギー線 Eは光回路形成層 2 0 1の金属層 2 0 2と反対側 の界面から照射されるので、 活性エネルギー線 Eの照射による光反応は光回路形 成層 2 0 1の金属層 2 0 2と反対側の界面から内部へ厚み方向に進行する。 この ため、 活性エネルギー線 Eの照射強度を制御することによって、 感光性樹脂 1の うちその厚み方向で金属層 2 0 2の側の部分に非露光部 2 0 1 bを残して、 金属 層 2 0 2と反対側の部分だけに露光部 2 0 1 aを形成するようにすることができ る。 尚、 上記のような紫外線によるマスク露光の他に、 感光性樹脂の特性に応じ てレーザあるいは電子線による描画露光などを用いることもできる。  Then, using this laminate 203, as shown in FIG. 22 (b), an active energy ray E such as ultraviolet rays is applied from the side opposite to the metal layer 202 to the optical circuit forming layer 202 through the cover film 210. Irradiate 1 Irradiation with the active energy ray E is performed through a photomask as in the case of FIG. 17, and the exposure is performed by positioning the photomask with reference to a reference mark formed in advance on the metal layer 202. By irradiating the optical circuit forming layer 201 with the active energy rays E in this manner, for example, the refractive index of the exposed portion 1a of the optical circuit forming layer 201 is changed so as to increase, and The exposed portion 201a has a higher refractive index than the other non-exposed portions 201b of the optical circuit forming layer 201. Here, the active energy ray E is irradiated from the interface opposite to the metal layer 202 of the optical circuit forming layer 201, so that the photoreaction caused by the irradiation of the active energy ray E is generated in the optical circuit forming layer 201. It proceeds in the thickness direction from the interface opposite to the metal layer 202 toward the inside. For this reason, by controlling the irradiation intensity of the active energy ray E, the non-exposed portion 201 b is left in the portion of the photosensitive resin 1 on the side of the metal layer 202 in the thickness direction, and the metal layer 2 is removed. The exposed portion 201a can be formed only in the portion opposite to the portion 02. In addition, in addition to the above-described mask exposure using ultraviolet rays, drawing exposure using a laser or an electron beam may be used according to the characteristics of the photosensitive resin.
次に、 図 2 2 ( c ) のように V溝 2 2 1を加工して偏向部 2 0 5を形成する。 この偏向部 2 0 5の形成は、 図 1 7 ( c ) の場合と同様にして行なうことができ る。 この後、 図 2 2 ( d ) のようにカバーフィルム 2 1 5を剥離する。 ここで、 光回路形成層 2 0 1の露光部 2 0 1 aは非露光部 1 bよりも屈折率が高くなつて おり、 露光部 2 0 1 aで光導波路 2 0 4のコア部 2 0 4 a力 非露光部 2 0 1 b でクラッド部 2 0 4 bが形成されるので、 図 1 7の場合のような現像の工程は不 要となる。 また図 2 2の実施の形態においても、 偏向部 2 0 5を形成する加工を 先に行ない、 この後に光回路形成層 2 0 1に光導波路 2 0 4のコア部 2 0 4 aと なる露光部 2 0 1 aを形成する加工を行なうようにしてもよい。 Next, as shown in FIG. 22 (c), the V-shaped groove 222 is machined to form the deflection part 205. The formation of the deflecting portion 205 can be performed in the same manner as in the case of FIG. 17 (c). Thereafter, the cover film 215 is peeled off as shown in FIG. here, The exposed portion 201a of the optical circuit forming layer 201 has a higher refractive index than the non-exposed portion 1b, and the exposed portion 201a has a core portion 204a of the optical waveguide 204. Since the clad portion 204b is formed by the non-exposed portion 201b, the developing step as in the case of FIG. 17 is unnecessary. Also in the embodiment shown in FIG. 22, the processing for forming the deflecting portion 205 is performed first, and thereafter, the exposure for forming the core portion 204 a of the optical waveguide 204 on the optical circuit forming layer 201 is performed. Processing for forming the part 201a may be performed.
この後、 図 2 2 ( e ) のように、 プリント配線板など電気回路 2 1 2を設けた 基板 2 1 1の表面に積層物 2 0 3を光回路形成層 2 0 1の側で接着剤 2 1 4を介 して接着する。 この接着剤 2 1 4は光回路形成層 2 0 1の露光部 1 aよりも屈折 率が小さい光透過性樹脂で形成されるものであり、 光回路形成層 2 0 1の非露光 部 1 bと同程度の屈折率を有するものが好ましい。 例えば前記の光透過性樹脂層 2 1 7を形成する樹脂と同じものを用いることができる。 尚、 光回路形成層 2 0 1の表面に屈折率が小さいクラッド用樹脂層を設けた後に、 基板 2 1 1に積層物 2 0 3を接着するようにしてもよく、 この場合には接着剤 2 1 4の屈折率は上記 のような制限を受けなくなる。 また基板 2 1 1としては電気回路 2 1 2を有しな い単なる板であってもよく、 さらに基板 2 1 1の両面に積層物 2 0 3を接着する ようにすることもできる。  Then, as shown in Fig. 22 (e), a laminate 203 is applied to the surface of the substrate 211 on which the electric circuit 211 is provided, such as a printed wiring board, with an adhesive on the optical circuit forming layer 201 side. Glue through 2 14. The adhesive 2 14 is formed of a light-transmitting resin having a lower refractive index than the exposed portion 1 a of the optical circuit forming layer 201, and is formed of a non-exposed portion 1 b of the optical circuit forming layer 201. Those having the same refractive index as described above are preferred. For example, the same resin as that forming the light-transmitting resin layer 211 can be used. After providing the cladding resin layer having a small refractive index on the surface of the optical circuit forming layer 201, the laminate 203 may be bonded to the substrate 211. In this case, the adhesive may be used. The refractive index of 2 14 is no longer limited as described above. Further, the substrate 211 may be a simple plate having no electric circuit 212, and the laminated body 203 may be bonded to both surfaces of the substrate 211.
このように電気回路 2 1 2を設けた基板 2 1 1に積層物 2 0 3を接着して積層 した後、 図 2 2 ( f ) のようにビアホール 2 1 3を形成し、 次に図 2 2 ( g ) の ようにビアホール 2 1 3の内周に電気導通部 2 2を形成した後、 金属層 2 0 2を 加工して電気回路 2 0 6を形成することによって、 図 2 2 ( h ) のような光回路 —電気回路混載基板を得ることができる。 ビアホール 2 1 3の形成、 電気導通部 2 2 2の形成、 電気回路 2 0 6の形成は図 1 7の場合と同様にして行なうこと力 S できる。  After bonding and laminating the laminate 203 on the substrate 211 on which the electric circuit 211 is provided as described above, a via hole 211 is formed as shown in FIG. As shown in FIG. 2 (g), after forming an electrical conduction portion 22 on the inner periphery of the via hole 2 13 as shown in FIG. 2 (g), the metal layer 202 is processed to form an electrical circuit 206. Optical circuit such as) —Electric circuit mixed board can be obtained. The formation of the via hole 2 13, the formation of the electrically conductive portion 222, and the formation of the electric circuit 206 can be performed in the same manner as in the case of FIG.
この光回路一電気回路混載基板にあって、 光回路形成層 2 0 1の露光部 1 aが 屈折率の高いコア部 2 0 4 a、 光回路形成層 2 0 1の非露光部 2 0 1 bと接着剤 2 1 4が屈折率の低いクラッド部 2 0 4 bとなって、 露光部 2 0 1 aに光導波路 2 0 4が形成されるものであり、 この光導波路 2 0 4による光回路と電気回路 2 0 6および電気回路 2 1 2が混載されている。 また光導波路 2 0 4の端部に形成 されている偏向部 2 0 5によって、 光導波路 2 0 4を伝播された光を偏向させて 外部に出射させることができ、 外部からの光を偏向部 2 0 5で偏向させて光導波 路 2 0 4内に入射させることができる。 In this optical circuit-electric circuit hybrid substrate, the exposed portion 1a of the optical circuit forming layer 201 has a core portion 204a having a high refractive index, and the non-exposed portion 201 of the optical circuit forming layer 201 has a high refractive index. b and the adhesive 2 14 form a clad portion 204 b having a low refractive index, and an optical waveguide 204 is formed in the exposed portion 201 a. Circuit and electric circuit 206 and electric circuit 212 are mixed. Also formed at the end of the optical waveguide 204 The light propagating through the optical waveguide 204 can be deflected by the deflecting unit 205, and can be emitted to the outside. Light from the outside is deflected by the deflecting unit 205, and the optical waveguide 2 0 4 can be incident.
図 2 3は本発明の他の実施の形態を示し、 図 2 3 ( a ) のように、 電気回路 2 0 6を形成するための金属層 2 0 2、 光導波路 2 0 4のコア部 2 0 4 aとクラッ ド部 2 0 4 bを形成するための光回路形成層 2 0 1、 金属層 2 0 2と光回路形成 層 2 0 1を接着するための光透過性樹脂層 2 1 7、 光回路形成層 2 0 1の金属層 2 0 2と反対側の表面に設けられる第 2光透過性樹脂層 2 2 3、 第 2光透過性樹 脂層 2 2 3の表面を覆うカバーフィルム 2 1 5からなる積層物 2 0 3を用いるよ うにしてある。  FIG. 23 shows another embodiment of the present invention. As shown in FIG. 23 (a), a metal layer 202 for forming an electric circuit 206 and a core 2 of an optical waveguide 204 are provided. Optical circuit forming layer 201 for forming 0.4 a and cladding part 204 b, light transmitting resin layer 217 for bonding metal layer 202 and optical circuit forming layer 201 A cover film covering the surface of the second light-transmitting resin layer 223 provided on the surface of the optical circuit forming layer 201 opposite to the metal layer 202, and the surface of the second light-transmitting resin layer 223 A laminate 203 composed of 215 is used.
ここで、 上記の光回路形成層 2 0 1を形成する感光性樹脂としては、 活性エネ ルギ一線の照射によって照射領域の屈折率が変化するものを用いるようにしてあ り、 既述のものを例示することができる。 金属層 2 0 2やカバーフィルム 2 1 5 としては既述のものを用いることができる。  Here, as the photosensitive resin forming the optical circuit forming layer 201, a resin whose refractive index in an irradiated area is changed by irradiation with active energy is used. Examples can be given. As the metal layer 202 and the cover film 215, those described above can be used.
また、 光透過性樹脂層 2 1 7を形成する光透過性樹脂としては、 光回路形成層 The light-transmitting resin forming the light-transmitting resin layer 217 includes an optical circuit forming layer.
2 0 1の後述のコア部 2 0 4 aよりも屈折率が小さい樹脂が用いられるものであ り、 光回路形成層 2 0 1のクラッド部 2 0 4 bと同程度の屈折率を有するものが 好ましい。 さらには難燃性が高く、 光回路形成層 2 0 1に照射される活性エネル ギ一線を吸収するものが好ましい。 単一層の光透過性樹脂層 2 1 7でこのような 条件を満たすことが難しい場合は、 低屈折率の光回路形成層 2 0 1の側の層と、 金属層 2 0 2に接着される層との二層構成に形成することもできる。 この光透過 性樹脂層 2 1 7を形成する光透過性樹脂としては、 前記の光硬化性樹脂、 ェポキ シ樹脂、 ポリイミド樹脂、 不飽和ポリエステル樹脂、 エポキシアタリレート樹脂 等の熱硬化性樹脂を用いることができる。 またこの樹脂には、 難燃性付与や、 活 性エネルギー線吸収のため、 添加型あるいは反応型のハロゲン系、 燐系、 シリコ ン系等の難燃剤や紫外線吸収剤を含有させてもよい。 A resin having a refractive index smaller than that of a core portion 204 a described later of 201 is used, and has a refractive index similar to that of the cladding portion 204 b of the optical circuit forming layer 201. Is preferred. Further, those having high flame retardancy and absorbing the active energy irradiated to the optical circuit forming layer 201 are preferable. If it is difficult to satisfy such conditions with a single layer of the light-transmitting resin layer 217, it is bonded to the layer on the side of the optical circuit forming layer 201 having a low refractive index and the metal layer 202. It can also be formed in a two-layer structure with a layer. As the light-transmitting resin forming the light-transmitting resin layer 217, a thermosetting resin such as the above-mentioned light-curable resin, epoxy resin, polyimide resin, unsaturated polyester resin, epoxy acrylate resin, or the like is used. be able to. In addition, this resin may contain an additive-type or reaction-type halogen-based, phosphorus-based, or silicon-based flame retardant or an ultraviolet absorber for imparting flame retardancy or absorbing active energy rays.
第 2光透過性樹脂層 2 2 3を形成する光透過性樹脂としては、 光回路形成層 2 0 1の後述のコア部 2 0 4 aよりも屈折率が小さい樹脂が用いられるものであり、 光回路形成層 2 0 1のクラッド部 2 0 4 bや上記の光透過性樹脂層 2 1 7と同程 度の屈折率を有するものが好ましい。 また光回路形成層 2 0 1に照射する活'性ェ ネルギ一線を殆ど透過する特性を有するものであることが必要である。 さらに難 燃性を有するものであることが好ましく、 難燃性付与のため、 添加型あるいは反 応型のハロゲン系、 燐系、 シリコン系等の難燃剤や紫外線吸収剤を含有させても よい。 As the light-transmitting resin forming the second light-transmitting resin layer 223, a resin having a smaller refractive index than a core portion 204a of the optical circuit forming layer 201 described later is used, About the same as the cladding part 204 b of the optical circuit forming layer 201 and the above-mentioned light transmitting resin layer 211 Those having a refractive index of the order of magnitude are preferred. Further, it is necessary that the optical circuit forming layer 201 has a property of transmitting almost all of the active energy irradiated to the optical circuit forming layer 201. Further, it is preferable to have flame retardancy. In order to impart flame retardancy, an additive or reaction type halogen-based, phosphorus-based, silicon-based flame retardant or an ultraviolet absorber may be contained.
積層物 2 0 3を作製するにあたっては、 まず金属層 2 0 2として金属箔を用い る場合にはそのマット面に光透過性樹脂をコンマコータ、 カーテンコータ、 ダイ コータ、 スクリーン印刷、 オフセット印刷の手法でコーティングし、 溶剤を含む 場合にはこれを乾燥除去した後、 必要に応じて硬化させ、 光透過性樹脂層 2 1 7 を形成する。 光透過性樹脂層 2 1 7は半硬化の状態にすることもあり、 硬化方法 や硬化条件は樹脂の種類に応じて適宜選択される。 また、 カバーフィルム 2 1 5 の表面に光透過性樹脂を同様にコーティングして第 2光透過性樹脂層 2 2 3を形 成し、 続いてその上に感光性樹脂をコーティングして光回路形成層 2 0 1を形成 しておく。 そして光透過性樹脂層 2 1 7と光回路形成層 2 0 1とを貼り合わせて ラミネートすることによって、 図 2 3 ( a ) のような積層物 2 0 3を得ることが できる。 尚、 上記のように金属層 2 0 2に光透過性樹脂層 2 1 7を形成した後に この上に光回路形成層 2 0 1をコーティングし、 またカバーフィルム 2 1 5に第 2光透過性樹脂層 2 2 3を形成し、 これらを貼り合わせてラミネートするように してもよレ、。 また、 上記のように金属層 2 0 2に光透過性樹脂層 2 1 7を形成し た後、 光透過性樹脂層 2 1 7の上に光回路形成層 2 0 1をコーティングして形成 し、 さらにこの上に第 2光透過性樹脂層 2 2 3をコーティングして形成し、 この 後に光回路形成層 2 0 1の上にカバーフィルム 2 1 5をラミネ一トするようにし てもよレ、。 これらは連続工程で行なうようにしてもよい。  When fabricating the laminate 203, first, when metal foil is used as the metal layer 202, a light-transmitting resin is coated on the mat surface with a comma coater, curtain coater, die coater, screen printing, and offset printing. Then, if a solvent is contained, it is dried and removed, and then, if necessary, cured to form a light-transmitting resin layer 217. The light-transmitting resin layer 217 may be in a semi-cured state, and a curing method and curing conditions are appropriately selected according to the type of the resin. Also, the surface of the cover film 215 is similarly coated with a light-transmitting resin to form a second light-transmitting resin layer 223, and then a photosensitive resin is coated thereon to form an optical circuit. Layer 201 is formed in advance. Then, by laminating and bonding the light-transmitting resin layer 2 17 and the optical circuit forming layer 201, a laminate 203 as shown in FIG. 23 (a) can be obtained. After forming the light transmitting resin layer 2 17 on the metal layer 202 as described above, the optical circuit forming layer 201 is coated thereon, and the second light transmitting layer is formed on the cover film 2 15. It is also possible to form the resin layer 223 and laminate them by laminating them. Further, after forming the light-transmitting resin layer 217 on the metal layer 202 as described above, the optical circuit forming layer 201 is coated on the light-transmitting resin layer 217 to form. Further, a second light-transmitting resin layer 223 may be formed thereon by coating, and thereafter, a cover film 215 may be laminated on the optical circuit forming layer 201. ,. These may be performed in a continuous process.
そしてこの積層物 2 0 3を用レ、、 図 2 3 ( b ) に示すように紫外線などの活性 エネルギー線 Eを金属層 2 0 2と反対側から、 カバーフィルム 2 1 5及び第 2光 透過性樹脂層 2 2 3を通して光回路形成層 2 0 1に照射する。 活性エネルギー線 Eの照射は図 1 7の場合と同様にフォトマスクを通して行なわれるものであり、 また金属層 2 0 2に予め形成した基準マークを基準にしてフォトマスクを位置決 めして露光する。 このように光回路形成層 2 0 1に活性エネルギー線 Eを照射し て露光することによって、 露光部 2 0 1 aの屈折率を変化させることができる。 図 2 3 ( b ) の実施の形態では、 光回路形成層 2 0 1の厚み方向の全体で光反応 を生じさせ、 光回路形成層 2 0 1の厚み方向の全体に露光部 2 0 1 aを形成する ようにしてある。 Then, using this laminate 203, as shown in FIG. 23 (b), an active energy ray E such as ultraviolet rays is applied from the side opposite to the metal layer 202 to the cover film 211 and the second light transmission. The optical circuit formation layer 201 is irradiated through the conductive resin layer 222. Irradiation with the active energy ray E is performed through a photomask as in the case of FIG. 17, and the photomask is positioned and exposed based on a reference mark formed in advance on the metal layer 202. Thus, the active energy ray E is irradiated to the optical circuit forming layer 201. Exposure allows the refractive index of the exposed portion 201a to be changed. In the embodiment of FIG. 23 (b), a photoreaction occurs in the entire thickness of the optical circuit forming layer 201 in the thickness direction, and the exposed portion 201a is formed in the entire thickness of the optical circuit forming layer 201 in the thickness direction. Is formed.
ここで、 光回路形成層 2 0 1の感光性樹脂が紫外線などの活性エネルギー線の 照射によって屈折率が高くなるように変化する性質を有する場合には、 光導波路 2 0 4のコア部 2 0 4 aと同じパターン領域のみを照射できるマスクを用いるも のであり、 光回路形成層 2 0 1のうち露光部 2 0 1 aは屈折率が高くなるように 変化し、 露光部 2 0 1 aの屈折率を非露光部 2 0 1 bよりも高くすることができ る。 また光回路形成層 2 0 1の感光性樹脂が紫外線などの活性エネルギー線の照 射によって屈折率が低くなるように変化する性質を有する場合には、 光導波路 2 0 4のコア部 2 0 4 aと逆のパターン領域のみを照射できるマスクを用いるもの であり、 光回路形成層 2 0 1のうち露光部 2 0 1 aの屈折率が低くなるように変 ィ匕し、 非露光部 2 0 l bの屈折率が露光部 2 0 1 aよりも高くなるようにするこ とができる。 尚、 上記のような紫外線によるマスク露光の他に、 感光性樹脂の特 性に応じてレーザあるいは電子線による描画露光などを用いることもできる。 次に、 図 2 3 ( c ) のように V溝 2 2 1を加工して偏向部 2 0 5を形成する。 この偏向部 2 0 5の形成は、 図 1 7 ( c ) の場合と同様にして行なうことができ る。 この後、 図 2 3 ( d ) のようにカバーフィルム 2 1 5を剥離する。 ここで、 光回路形成層 2 0 1の露光部 2 0 1 aと非露光部 2 0 1 bの一方で光導波路 2 0 4のコア部 2 0 4 a力、 他方でクラッド部 2 0 4 bが形成されるので、 図 1 7の 場合のような現像の工程は不要となる。 また図 2 3の実施の形態においても、 偏 向部 2 0 5を形成する加工を先に行ない、 この後に光回路形成層 2 0 1に光導波 路 2 0 4のコア部 2 0 4 aあるいはクラッド部 2 0 4 bとなる露光部 2 0 1 aを 形成する加工を行なうようにしてもよい。  Here, in the case where the photosensitive resin of the optical circuit forming layer 201 has a property of changing so as to increase the refractive index by irradiation with active energy rays such as ultraviolet rays, the core portion 210 of the optical waveguide 204 is required. A mask capable of irradiating only the same pattern area as 4a is used.The exposed portion 201a of the optical circuit forming layer 201 changes so as to have a higher refractive index, and the exposed portion 201a The refractive index can be made higher than the unexposed portion 201b. When the photosensitive resin of the optical circuit forming layer 201 has such a property that the refractive index changes so as to be lowered by irradiation of active energy rays such as ultraviolet rays, the core portion 204 of the optical waveguide 204 is formed. A mask capable of irradiating only the pattern area opposite to a is used. The exposed portion 201 a of the optical circuit forming layer 201 is changed so that the refractive index of the exposed portion 201 a becomes low, and the non-exposed portion 20 The refractive index of lb can be higher than that of the exposed part 201a. In addition, in addition to the above-described mask exposure using ultraviolet rays, drawing exposure using a laser or an electron beam can be used depending on the characteristics of the photosensitive resin. Next, as shown in FIG. 23 (c), the V-shaped groove 222 is machined to form the deflection part 205. The formation of the deflecting portion 205 can be performed in the same manner as in the case of FIG. 17 (c). Thereafter, the cover film 215 is peeled off as shown in FIG. Here, the core portion 204 a of the optical waveguide 204 on one of the exposed portion 201 a and the unexposed portion 201 b of the optical circuit forming layer 201, and the cladding portion 204 b on the other. Is formed, so that the development step as in the case of FIG. 17 is not required. Also in the embodiment of FIG. 23, the processing for forming the deflection part 205 is performed first, and thereafter, the core part 204 a of the optical waveguide 204 or the optical circuit formation layer 201 is formed. Processing for forming the exposed portion 201a to be the clad portion 204b may be performed.
この後、 図 2 3 ( e ) のように、 プリント配線板など電気回路 2 1 2を設けた 基板 2 1 1の表面に積層物 2 0 3を第 2光透過性樹脂層 2 2 3の側で接着剤 2 1 4を介して接着する。 この接着剤 2 1 4の屈折率は制限を受けないものであり、 任意のものを用いることができる。 また基板 2 1 1としては電気回路 2 1 2を有 しない単なる板であってもよく、 さらに基板 2 1 1の両面に積層物 2 0 3を接着 するようにすることもできる。 Thereafter, as shown in FIG. 23 (e), the laminate 230 is placed on the side of the second light-transmitting resin layer 22 3 on the surface of the substrate 21 provided with the electric circuit 21 such as a printed wiring board. Glue through the adhesive 2 1 4 with. The refractive index of the adhesive 214 is not limited, and any adhesive can be used. In addition, the substrate 2 1 1 has an electric circuit 2 1 2 It may be a simple plate that is not used, and the laminated body 203 may be bonded to both surfaces of the substrate 211.
このように電気回路 2 1 2を設けた基板 2 1 1に積層物 2 0 3を接着して積層 した後、 図 2 3 ( f ) のようにビアホール 2 1 3を形成し、 次に図 2 3 ( g ) の ようにビアホール 2 1 3の内周に電気導通部 2 2を形成した後、 金属層 2 0 2を 加工して電気回路 2 0 6を形成することによって、 図 2 3 ( h ) のような光回路 —電気回路混載基板を得ることができる。 ビアホーノレ 2 1 3の形成、 電気導通部 2 2 2の形成、 電気回路 2 0 6の形成は図 1 7の場合と同様にして行なうことが できる。  After bonding and laminating the laminate 203 on the substrate 211 on which the electric circuit 211 is provided as described above, a via hole 211 is formed as shown in FIG. After forming an electrically conductive portion 22 on the inner periphery of the via hole 2 13 as shown in FIG. 3 (g), the metal layer 202 is processed to form an electric circuit 206, and as a result, as shown in FIG. Optical circuit such as) —Electric circuit mixed board can be obtained. The formation of the viahorne 2 13, the formation of the electrical conduction section 222, and the formation of the electrical circuit 206 can be performed in the same manner as in the case of FIG.
この光回路一電気回路混載基板にあって、 光回路形成層 2 0 1の感光性樹脂が 活性エネルギー線の照射によって屈折率が低くなるように変化する性質を有する 場合には、 光回路形成層 2 0 1の非露光部 2 0 1 bが屈折率の高いコア部 2 0 4 a、 光回路形成層 2 0 1の露光部 2 0 1 aと光透過性樹脂層 2 1 7と第 2光透過 性樹脂層 2 2 3が屈折率の低いクラッド部 2 0 4 bとなって、 非露光部 2 0 1 b に光導波路 2 0 4が形成されるものであり、 この光導波路 2 0 4による光回路と 電気回路 2 0 6と電気回路 2 1 2が混載されている。 また光導波路 2 0 4の端部 に形成されている偏向部 2 0 5によって、 光導波路 2 0 4を伝播された光を偏向 させて外部に出射させることができ、 外部からの光を偏向部 2 0 5で偏向させて 光導波路 2 0 4内に入射させることができる。 勿論、 光回路形成層 2 0 1の感光 性樹脂が活性エネルギー線の照射によって屈折率が高くなるように変化する性質 を有する場合には、 光回路形成層 2 0 1の露光部 2 0 1 aが屈折率の高いコア部 2 0 4 a、 光回路形成層 2 0 1の非露光部 2 0 1 bと光透過性樹脂層 2 1 7と第 2光透過性樹脂層 2 2 3が屈折率の低いクラッド部 2 0 4 bとなって、 露光部 2 0 1 aに光導波路 2 0 4が形成されるのはいうまでもない。  In the case of the optical circuit-electric circuit mixed substrate, when the photosensitive resin of the optical circuit forming layer 201 has a property of being changed so that the refractive index is reduced by irradiation with active energy rays, the optical circuit forming layer The non-exposed part 201 of the core 201 has a high refractive index core part 204a, the exposed part 201 of the optical circuit forming layer 201, the light-transmitting resin layer 210, and the second light. The transparent resin layer 222 forms a clad portion 204b having a low refractive index, and the optical waveguide 204 is formed in the non-exposed portion 201b. An optical circuit, an electric circuit 206 and an electric circuit 212 are mixedly mounted. Also, the light propagated through the optical waveguide 204 can be deflected and emitted to the outside by the deflecting portion 205 formed at the end of the optical waveguide 204, and the external light can be deflected. The light can be deflected at 205 and made incident on the optical waveguide 204. Of course, when the photosensitive resin of the optical circuit forming layer 201 has a property of changing so as to increase the refractive index by irradiation with active energy rays, the exposed portion 201 a of the optical circuit forming layer 201 Is the core part 204 a having a high refractive index, the non-exposed part 201 b of the optical circuit forming layer 201, the light-transmitting resin layer 217, and the second light-transmitting resin layer 223 are refractive indexes It is needless to say that the optical waveguide 204 is formed in the exposed portion 201a as a clad portion 204b having a low thickness.
図 2 4 ( a ) は光導波路 2 0 4のコア部 2 0 4 aに偏向部 2 0 5を形成する方 法の他の実施の形態を示し、 例えば図 1 7 ( a ) 〜図 1 7 ( d ) と同様にして FIG. 24 (a) shows another embodiment of a method of forming a deflecting section 205 in the core section 204a of the optical waveguide 204. For example, FIG. 17 (a) to FIG. as in (d)
(V溝 2 2 1等の加工はしない) 、 光回路形成層 2 0 1に露光部 2 0 1 aを設け ることによって光導波路 2 0 4のコア部 2 0 4 aを形成し、 カバーフィルム 2 1 5を剥離した後、 周期的パターンで格子状の多数の微小突起 2 2 5を設けた押し 型 2 2 6を用い、 この微小突起 2 2 5をコア部 2 0 4 aが形成される光回路形成 層 2 0 1の表面に押し当てることよって、 周期的な格子状溝の微小列 2 7をコア 部 2 0 4 aとなる光回路形成層 2 0 1の露光部 2 0 1 aの表面に形成するように してある。 この周期構造体の微小列 2 2 7によってグレーティングが形成される ものであり、 光導波路 2 0 4のコア部 2 0 4 aを伝播される光の光路を微小列 2 2 7で偏向させることができる。 従って、 上記の各実施の形態のような傾斜面 2 0 7を加工して設ける必要なく、 周期構造体の微小列 2 2 7で偏向部 2 0 5を形 成することができる。 押し型 2 2 6としては、 シリコンウェハ上に半導体製造プ 口セスで形成した微小溝をマスター型とし、 これからニッケルの電踌によって転 写して作製したものが、 好適に用いることができる。 (The V-groove 222 is not processed.) By providing the exposed portion 201 a in the optical circuit forming layer 201, the core portion 204 a of the optical waveguide 204 is formed, and the cover film is formed. After peeling off 2 15, press with a large number of small protrusions 2 5 The microprojections 2 25 are pressed against the surface of the optical circuit forming layer 201 on which the core portion 204 a is formed by using a mold 222, thereby forming a fine row of periodic lattice-like grooves 27. Is formed on the surface of the exposed portion 201a of the optical circuit forming layer 201 to be the core portion 204a. A grating is formed by the minute rows 2 27 of the periodic structure, and the optical path of light propagating through the core portion 204 a of the optical waveguide 204 can be deflected by the minute rows 2 27. it can. Therefore, it is not necessary to machine and form the inclined surface 207 as in each of the above embodiments, and the deflecting unit 205 can be formed by the minute rows 227 of the periodic structure. As the stamping die 226, a die manufactured by transferring a fine groove formed on a silicon wafer by a semiconductor manufacturing process into a master die and transferring the nickel die with nickel electrode can be suitably used.
上記のように押し型 2 2 6で光回路形成層 2 0 1の表面に微小列 2 2 7を設け るにあたって、 押し型 2 2 6と可能であれば光回路形成層 2 0 1の少なくともコ ァ部 2 0 4 aを形成する部分を加熱し、 光回路形成層 2 0 1のコア部 2 0 4 aを 形成する部分を軟化させて、 転写性を高めるのが好ましい。 また光回路形成層 2 0 1が露光によって硬化する樹脂からなる場合には、 硬化前に押し型 2 2 6を押 し当てることによって、 転写 1"生を高めるようにしてもよい。 また、 上記のように 光回路形成層 2 0 1のコア部 2 0 4 aを形成する部分の表面に周期構造体の微小 列 2 7を設けた後、 光回路形成層 2 0 1のコア部 2 0 4 aと屈折率が大きく異な る透明材料を刷り込んで充填することによって、 屈折率差を大きくして偏向効率 を高めた偏向部 2 0 5を形成することができる。  As described above, when providing the micro-rows 227 on the surface of the optical circuit forming layer 201 with the press mold 226, at least the core of the optical circuit forming layer 201 with the press mold 226 may be used. It is preferable to heat the portion where the core portion 204a is formed and soften the portion where the core portion 204a of the optical circuit forming layer 201 is formed to enhance the transferability. In the case where the optical circuit forming layer 201 is made of a resin that is cured by exposure, the transfer 1 ″ may be enhanced by pressing the pressing mold 226 before curing. After providing the micro-rows 27 of the periodic structure on the surface of the portion where the core portion 204 a of the optical circuit forming layer 201 is formed as shown in FIG. By imprinting and filling a transparent material having a refractive index greatly different from a, it is possible to form the deflecting portion 205 with a large refractive index difference and high deflection efficiency.
図 2 4 ( b ) は光導波路 2 0 4のコア部 2 0 4 aに偏向部 2 0 5を形成する方 法の他の実施の形態を示し、 金属層 2 0 2と光透過性樹脂層 2 1 7と光回路形成 層 2 0 1を積層すると共にカバーフィルム 2 1 5を張って作製した積層物 2 0 3 を用い、 例えば図 2 3 ( a ) 〜図 2 3 ( b ) と同様にして、 光回路形成層 2 0 1 に露光部 1 aを設けることによって光導波路 2 0 4のコア部 2 0 4 aを形成した 後、 カバーフィルム 2 1 5を通して光回路形成層 2 0 1のコア部 2 0 4 aを形成 する部分内にレーザ光 Lを集光照射するようにしてある。 このようにレーザ光 L を集光照射することによって、 集光照射した部分の光回路形成層 2 0 1の屈折率 を変化させることができるものであり、 屈折率を変化させた部分を周期的な格子 状の微小列 2 2 8として形成してある。 レーザ光 Lには尖頭強度が高いパルスレ —ザを用いるのが好ましく、 集光点においてパワー強度を高め、 この高パワー領 域でのみ光回路形成層 2 0 1の樹脂を改質して屈折率を変化させることができる。 このように屈折率を変化させた周期構造体の微小列 2 2 8によってグレーティン グが形成されるものであり、 光導波路 2 0 4のコア部 2 0 4 aを伝播される光の 光路を微小列 2 2 8で偏向させることができる。 従って、 上記の各実施の形態の ような傾斜面 2 0 7を加工して設ける必要なく、 周期構造体の微小列 2 2 8で偏 向部 2 0 5を形成することができる。 FIG. 24 (b) shows another embodiment of the method of forming the deflection part 205 in the core part 204a of the optical waveguide 204, in which the metal layer 202 and the light-transmitting resin layer are formed. Using the laminate 203 prepared by laminating the optical circuit forming layer 201 with the optical circuit forming layer 201 and stretching the cover film 215, for example, in the same manner as in FIGS. 23 (a) to 23 (b) After the core portion 204 a of the optical waveguide 204 is formed by providing the exposed portion 1 a in the optical circuit forming layer 201, the core of the optical circuit forming layer 201 is passed through the cover film 205. The laser beam L is condensed and radiated in the portion where the portion 204a is formed. By condensing and irradiating the laser light L in this way, the refractive index of the optical circuit forming layer 201 in the converged and irradiated portion can be changed, and the portion in which the refractive index is changed is periodically changed. Lattice It is formed as a micro-row 2 28. It is preferable to use a pulse laser having a high peak intensity for the laser light L. The power intensity is increased at the focal point, and the resin of the optical circuit formation layer 201 is modified and refracted only in this high power region. The rate can be varied. The grating is formed by the minute rows 228 of the periodic structure having the changed refractive index, and the optical path of the light propagated through the core portion 204 a of the optical waveguide 204 is formed. It can be deflected by the small rows 2 28. Therefore, the deflection portion 205 can be formed by the minute rows 228 of the periodic structure without the need to machine and provide the inclined surface 207 as in each of the above embodiments.
尚、 レーザ光 Lの集光照射によって屈折率を変化させる他に、 空隙を形成する ことによって周期構造体の微小列 2 2 8を形成するようにしてもよい。 周期構造 体の微小列 2 2 8をレーザ光 Lの集光照射によって描画するには、 非常に高い開 口数のレンズ 2 2 9を用いて集光する必要があり、 油浸対物レンズなどを用いる のが好ましい。  Note that, other than changing the refractive index by condensing irradiation of the laser beam L, a minute row 228 of the periodic structure may be formed by forming an air gap. In order to draw a small array of periodic structures 228 by condensing irradiation of laser light L, it is necessary to condense using a very high aperture lens 229, and use an oil immersion objective lens etc. Is preferred.
図 2 4 ( a ) および図 2 4 ( b ) のいずれの周期構造体においても、 微小列 2 2 7 , 2 2 8の周期は導波される光の波長をコア部 2 0 4 aの屈折率で割ったィ直 のピッチに設定される。 例えば導波光の波長が 8 5 0 n mで、 コア部 2 0 4 aの 屈折率が 1 . 5の場合、 微小列 2 2 7, 2 2 8の列のピツチは約 0 . 5 7 μ mに 設定される。 また周期構造体を構成する微小列 2 2 7 , 2 2 8を形成するにあた つては、 金属層 2 0 2に予め形成した基準マークを基準にして位置決めをするよ うにしてある。  In each of the periodic structures shown in FIGS. 24 (a) and 24 (b), the period of the minute rows 2 27 and 2 28 causes the wavelength of the guided light to be refracted by the core portion 204 a. It is set to the direct pitch divided by the rate. For example, if the wavelength of the guided light is 850 nm and the refractive index of the core section 204a is 1.5, the pitch of the micro rows 2 27 and 2 28 will be about 0.57 μm. Is set. In forming the minute rows 2 27 and 2 28 that constitute the periodic structure, positioning is performed with reference to a reference mark formed in advance on the metal layer 202.
図 2 5 ( a ) 〜図 2 5 ( c ) は光回路—電気回路混載基板の他の実施の形態を 示す。 光回路一電気回路混載基板においては、 光導波路 2 0 4に設けた偏向部 2 0 5の直上に対向する部分の金属層 2 0 2は、 電気回路 2 0 6を形成するパター ユングの際にエッチング除去されており、 偏向部 2 0 5から入出射される光を通 過させるための開口部 2 3 1が形成されている。 この金属層 2 0 2を部分的に除 去して形成される開口部 2 3 1に露出する樹脂層 (光透過性樹脂層 2 1 7あるい は光回路形成層 2 0 1 ) の表面は凹凸の激しい粗面となっており、 偏向部 2 0 5 に入出射する光はこの粗面で散乱され、 光の入出射効率、 つまり光導波路 2 0 4 と光の結合効率が極端に低下する。 そこで、 図 2 5 ( a ) の実施の形態では、 金属層 2 0 2を部分的に除去して形 成される開口部 2 3 1に光透過性樹脂 2 1 6を塗布して硬化させ、 凹凸の粗面を 光透過性樹脂 2 1 6で埋めると共に光透過性樹脂 2 1 6の表面を平滑面にしてあ る。 従って、 偏向部 2 0 5に入出射する光は粗面で散乱されることがなくなり、 偏向部 2 0 5への光の入出射効率を大幅に改善して光の結合効率を高めることが できる。 この光透過性樹脂 2 1 6としては、 下地の樹脂層 (光透過性樹脂層 2 1 7あるいは光回路形成層 2 0 1 ) と同等もしくは同等程度の屈折率を有するもの が好ましい。 FIGS. 25 (a) to 25 (c) show another embodiment of the optical circuit / electric circuit mixed board. In the optical circuit-electrical circuit hybrid board, a portion of the metal layer 202 facing directly above the deflecting portion 205 provided in the optical waveguide 204 is used when forming the electric circuit 206 for pattern jungling. An opening 231 has been formed which has been removed by etching and allows light to enter and exit from the deflecting section 205. The surface of the resin layer (light-transmitting resin layer 217 or optical circuit forming layer 201) exposed in the opening 231 formed by partially removing the metal layer 202 is The light entering and exiting the deflecting section 205 is scattered by this roughened surface, and the light entering / exiting efficiency, that is, the coupling efficiency between the optical waveguide 204 and light is extremely reduced. . Therefore, in the embodiment of FIG. 25 (a), the light transmitting resin 2 16 is applied to the opening 2 31 formed by partially removing the metal layer 202, and is cured. The rough surface of the unevenness is filled with the light transmitting resin 216 and the surface of the light transmitting resin 216 is made a smooth surface. Therefore, the light entering and exiting the deflecting unit 205 is not scattered by the rough surface, and the efficiency of entering and exiting the light into and out of the deflecting unit 205 can be greatly improved, and the coupling efficiency of light can be increased. . As the light-transmitting resin 216, a resin having a refractive index equal to or approximately equal to that of the underlying resin layer (the light-transmitting resin layer 217 or the optical circuit forming layer 201) is preferable.
また図 2 5 ( b ) の実施の形態では、 金属層 2 0 2を部分的に除去して形成さ れる開口部 2 3 1に光透過性樹脂 2 1 6を塗布する際に、 表面が盛り上がるよう な形状にすることによって、 光透過性樹脂 2 1 6を凸レンズ形状に形成するよう にしてある。 光透過性樹脂 2 1 6をこのように凸レンズ形状に形成することによ つて、 偏向部 2 0 5に入出射する光を集光することができ、 偏向部 2 0 5への光 の入出射効率をさらに改善して光の結合効率を一層高めることができる。 レンズ の凸形状は光透過性樹脂 2 1 6の粘度、 下地の樹脂層及び周囲の金属層との濡れ 性、 下地の樹脂層の露出径などによって決まるので、 形状ばらつきの小さい凸レ ンズに形成することができる。  In the embodiment of FIG. 25 (b), the surface rises when the light transmitting resin 2 16 is applied to the opening 2 31 formed by partially removing the metal layer 202. With such a shape, the light transmissive resin 2 16 is formed in a convex lens shape. By forming the light-transmitting resin 216 in the shape of a convex lens in this manner, light entering and exiting the deflecting section 205 can be collected, and light entering and exiting the deflecting section 205 can be collected. The efficiency can be further improved to further increase the light coupling efficiency. The convex shape of the lens is determined by the viscosity of the light-transmitting resin 216, wettability with the underlying resin layer and surrounding metal layers, and the exposed diameter of the underlying resin layer. can do.
図 2 5 ( c ) の実施の形態では、 金属層 2 0 2を部分的に除去して開口部 2 3 1を形成した後、 開口部 2 3 1の周囲に残存する金属層 2 0 2の表面や端面に撥 水処理を行なうようにしてあり、 この撥水処理をおこなった後に、 光透過性樹脂 2 1 6の液滴を滴下して塗布することによって、 光透過性樹脂 2 1 6を凸レンズ 状に形成するようにしてある。 この撥水処理は、 低表面エネルギー密度を呈して 撥水性を有する高分子膜 2 4 4を開口部 2 3 1の周囲の金属層 2 0 2の表面や端 面に被覆することによって行なうことができ、 例えばフッ素系高分子の希釈ヮニ スをディスペンサー等で滴下したり、 スプレーしたりすることによって高分子膜 2 4 4を被覆することができる。 この高分子膜 2 4 4は下地の樹脂層 (光透過性 樹脂層 2 1 7あるいは光回路形成層 2 0 1 ) と同等もしくは同等程度の屈折率を 有するものが好ましい。 このように開口部 2 3 1の周囲の金属層 2 0 2の表面や 端面を撥水処理しておくことによって、 開口部 2 3 1に光透過十生樹脂 2 1 6の液 を滴下して塗布する際に液がはじかれ、 金属層 2 0 2の除去が、 ばり等で不均一 であっても、 液滴の形状の歪みを小さくすることができると共に、 凸形状の盛り 上がりを大きくすることができ、 屈折率の大きな樹脂材料を用いなくとも光透過 性樹脂 2 1 6の凸レンズの屈折を大きくすることができるものであり、 集光能に 優れた凸レンズに形成することができる。 In the embodiment shown in FIG. 25 (c), after the metal layer 202 is partially removed to form the opening 231, the metal layer 202 remaining around the opening 231 is formed. The surface or the end surface is subjected to a water-repellent treatment. After the water-repellent treatment is performed, the light-transmissive resin 2 16 is applied by dripping and applying droplets of the light-transmissive resin 2 16. It is formed in the shape of a convex lens. This water-repellent treatment can be performed by coating a polymer film 244 having a low surface energy density and having water-repellency on the surface and the end surface of the metal layer 202 around the opening 231. For example, the polymer film 244 can be coated by, for example, dropping or spraying a fluorine-based polymer diluted penis with a dispenser or the like. The polymer film 244 preferably has a refractive index equal to or about the same as that of the underlying resin layer (light-transmitting resin layer 217 or optical circuit forming layer 201). By treating the surface and the end surface of the metal layer 202 around the opening 231, water-repellent treatment in this way, the liquid of the light-transmitting resin 210 The liquid is repelled at the time of application by dripping, and even if the removal of the metal layer 202 is uneven due to burrs or the like, the distortion of the shape of the droplet can be reduced, and the convex shape is formed. It can increase the rise and can increase the refraction of the convex lens of the light-transmitting resin 216 without using a resin material with a large refractive index. Can be.
図 2 6は本発明の他の実施の形態を示し、 金属層 2 0 2、 光透過性樹脂層 2 1 7、 光回路形成層 2 0 1、 カバーフィルム 2 1 5をこの順に積層した積層物 2 0 3を用いるようにした他は、 図 2 3の実施の形態に準じた方法で光回路—電気回 路混載基板を製造するようにしてある。 ただ、 図 2 6の実施の形態では、 図 2 6 ( e ) のように、 積層物 2 0 3と基板 2 1 1とを接着する接着剤 2 1 4としてプ リプレダ 2 3 2を用いるようにしてあり、 図 2 6 ( i ) のように光導波路 2 0 4 の偏向部 2 0 5の直上位置に凸レンズ形状の光透過性樹脂 2 1 6が設けてある。 図 2 7は本発明の他の実施の形態を示し、 支持体 2 3 3の片面に両面粘着テー プ 2 3 4で金属層 2 0 2を剥離自在に貼り付け、 そして金属層 2 0 2に光透過性 樹脂層 2 1 7、 光回路形成層 2 0 1、 カバーフィルム 2 1 5をこの順に積層した 積層物 2 0 3を用いるようにしてある。 そして図 2 3の実施の形態に準じた方法 で光回路一電気回路混載基板を製造するようにしてある。 ただ、 図 2 7の実施の 形態では、 図 2 7 ( d ) のように偏向部 2 0 5の形成を押し型 2 2 6を用いた図 2 4 ( a ) の方法で行なうようにし、 また図 2 7 ( e ) のように光回路形成層 2 0 1に第 2光透過性樹脂層 2 3 5を介して接着剤 2 1 4を塗布するようにしてあ る。 さらに図 2 7 ( i ) のように光導波路 2 0 4の偏向部 2 0 5の直上位置に光 透過性樹脂 2 1 6が設けてある。  FIG. 26 shows another embodiment of the present invention, in which a metal layer 202, a light-transmitting resin layer 217, an optical circuit forming layer 201, and a cover film 215 are laminated in this order. Except for using 203, an optical circuit / electric circuit hybrid substrate is manufactured by a method according to the embodiment of FIG. However, in the embodiment of FIG. 26, as shown in FIG. 26 (e), a pre-reader 23 is used as an adhesive 2 14 for bonding the laminate 203 to the substrate 211. As shown in FIG. 26 (i), a light transmitting resin 216 having a convex lens shape is provided immediately above the deflecting portion 205 of the optical waveguide 204. FIG. 27 shows another embodiment of the present invention, in which a metal layer 202 is removably attached to one side of a support body 23 3 with a double-sided adhesive tape 2 34, and then the metal layer 202 is attached to the metal layer 202. A laminate 203 in which a light-transmitting resin layer 211, an optical circuit forming layer 201, and a cover film 215 are laminated in this order is used. Then, an optical circuit-electrical circuit hybrid board is manufactured by a method according to the embodiment of FIG. However, in the embodiment of FIG. 27, as shown in FIG. 27 (d), the deflection portion 205 is formed by the method of FIG. 24 (a) using the pressing die 2 26, and As shown in FIG. 27 (e), an adhesive 214 is applied to the optical circuit forming layer 201 via the second light transmitting resin layer 235. Further, as shown in FIG. 27 (i), a light-transmitting resin 216 is provided immediately above the deflection portion 205 of the optical waveguide 204.
図 2 8は本発明の他の実施の形態を示し、 金属層 2 0 2、 光透過性樹脂層 2 1 7、 光回路形成層 2 0 1、 カバーフィルム 2 1 5をこの順に積層した積層物 2 0 3を用いるようにした他は、 図 2 3の実施の形態に準じた方法で光回路—電気回 路混載基板を製造するようにしてある。 ただ、 図 2 8の実施の形態では、 図 2 8 ( c ) のように押し当て型 2 3 6を用いて V溝 2 2 1の形成を行ない、 また図 2 8 ( e ) のように光回路形成層 2 0 1に第 2光透過性樹脂層 2 3 5を介して接着 剤 2 1 4を塗布するようにしてある。 さらに図 2 8 ( j ) のように光導波路 2 0 4の偏向部 2 0 5の直上位置に光透過性樹脂 2 1 6が設けてある。 FIG. 28 shows another embodiment of the present invention, in which a metal layer 202, a light-transmitting resin layer 217, an optical circuit forming layer 201, and a cover film 215 are laminated in this order. Except for using 203, an optical circuit / electric circuit hybrid substrate is manufactured by a method according to the embodiment of FIG. However, in the embodiment shown in FIG. 28, the V-shaped groove 222 is formed using the pressing die 2 36 as shown in FIG. 28 (c), and the light is formed as shown in FIG. The adhesive 214 is applied to the circuit forming layer 201 via the second light transmitting resin layer 235. Furthermore, as shown in Fig. 28 (j), the optical waveguide 20 A light transmissive resin 216 is provided immediately above the deflecting portion 205 of FIG.
図 2 9は本発明の他の実施の形態を示し、 金属層 2 0 2、 光透過性樹脂層 2 1 7、 光回路形成層 2 0 1、 カバ一フィルム 2 1 5をこの順に積層した積層物 2 0 3を用いるようにした他は、 図 2 3の実施の形態に準じた方法で光回路—電気回 路混載基板を製造するようにしてある。 ただ、 図 2 9の実施の形態では、 図 2 9 ( e ) のように光回路形成層 2 0 1に第 2光透過性樹脂層 2 3 5を介して接着剤 2 1 4を塗布するようにしてあり、 また図 2 9 ( j ) のように光導波路 2 0 4の 偏向部 2 0 5の直上位置に光透過性樹脂 2 1 6が設けてある。  FIG. 29 shows another embodiment of the present invention, in which a metal layer 202, a light-transmitting resin layer 217, an optical circuit forming layer 201, and a cover film 215 are laminated in this order. Except that the object 203 is used, an optical circuit-electric circuit hybrid board is manufactured by a method according to the embodiment of FIG. However, in the embodiment of FIG. 29, as shown in FIG. 29 (e), the adhesive 2 14 is applied to the optical circuit forming layer 201 via the second light transmitting resin layer 2 35. Further, as shown in FIG. 209 (j), a light-transmitting resin 216 is provided at a position immediately above the deflection portion 205 of the optical waveguide 204.
図 3 0 ( a ) ( b ) は光回路一電気回路混載基板の他の実施の形態を示し、 図 2 5の実施の形態と同様に、 光導波路 2 0 4のコア部 2 0 4 aに設けた偏向部 2 FIGS. 30 (a) and (b) show another embodiment of an optical circuit-electrical circuit hybrid board, similar to the embodiment of FIG. 25, in which the core portion 204 a of the optical waveguide 204 is provided. Deflection unit 2 provided
0 5の直上に対向する部分の金属層 2 0 2をエッチング除去して開口部 2 3 1力 S 形成してあり、 開口部 2 3 1に樹脂層 (光透過性樹脂層 2 1 7あるいは光回路形 成層 2 0 1 ) が露出させてある。 そしてこの開口部 2 3 1に受発光部と偏向部 2 0 5とを光結合するためのレンズ体 2 4 6を配置して取り付けてある。 開口部 2 3 1は金属層 2 0 2から電気回路 2 0 6を形成するパターユングの際のエツチン グで同時に形成されるものであり、 既述のように金属層 2 0 2にあら力 じめ形成 された基準マークを基準として位置決めした位置に開口部 2 3 1を形成すること ができる。 従って、 開口部 2 3 1の位置及び形状 '寸法を、 開口部 2 3 1の周囲 に残存する金属層 2 0 2にレンズ体 2 4 6の外周が接するようにレンズ体 2 4 6 をはめ込んで配置して搭載したときに、 レンズ体 2 4 6の光軸 Aが偏向部 2 0 5 を通ることになるように設定しておくことによって、 金属層 2 0 2を除去して形 成した開口部 2 3 1の位置に合わせてレンズ体 2 4 6をはめ込んで搭載するだけ で、 簡易に且つ高精度にレンズ体 2 4 6の取り付けを行なうことができる。 The opening 2 3 1 force S is formed by etching away the metal layer 2 0 2 at the portion directly above the 0 5 and the opening 2 3 1 has a resin layer (light-transmitting resin layer 2 17 or light The circuit layer (201) is exposed. A lens body 246 for optically coupling the light emitting / receiving unit and the deflecting unit 205 is disposed and attached to the opening 231. The opening 2 3 1 is formed simultaneously with the etching at the time of the pattern jung forming the electric circuit 2 06 from the metal layer 2 0 2, and as described above, the metal layer 2 The opening 231 can be formed at a position determined with reference to the formed reference mark. Therefore, the position and shape of the opening 2 31 are set such that the lens body 2 46 is fitted so that the outer periphery of the lens body 2 46 is in contact with the metal layer 202 remaining around the opening 2 31. By setting so that the optical axis A of the lens body 24 6 passes through the deflecting section 205 when it is arranged and mounted, the aperture formed by removing the metal layer 202 is formed. The lens body 246 can be easily and accurately mounted simply by fitting and mounting the lens body 246 in accordance with the position of the part 231.
このレンズ体 2 4 6としては、 球形レンズ (ボールレンズ) を用いるのが搭載 するのに好適である。 ここで球形レンズとしては、 図 3 0 ( a ) のように完全に 球形のものの他に、 直上位置に実装される受発光素子 (及びこれらを搭載したモ ジュール等) の表面との距離や、 開口部 2 3 1の開口形状の精度などの観点から、 外周の一部が平坦ィ匕されたもの、 例えば図 3 0 ( b ) のような半球形のハーフボ ールレンズを用いることもできる。 また、 図 3 0 ( a ) に示すように、 レンズ体 2 4 6と開口部 2 3 1に露出する 下地の樹脂層 (光透過性樹脂層 2 1 7あるいは光回路形成層 2 0 1 ) の表面との 間の隙間を埋めるように、 光透過性樹脂 2 4 7を充填するのが好ましい。 このよ うに光透過性樹脂 2 4 7を充填することによって、 レンズ体 2 4 6と下地の樹脂 層との間に空気層ができることによる反射ロスを回避することができるものであ り、 しかも光透過性樹脂 2 4 7の接着作用でレンズ体 2 4 6を強固に固着するこ とができる。 この光透過性樹脂 2 4 7としては、 下地の樹脂層 (光透過性樹脂層 2 1 7あるいは光回路形成層 2 0 1 ) と同等もしくは同等程度の屈折率を有する ものが好ましい。 It is preferable to use a spherical lens (ball lens) as the lens body 246. Here, as the spherical lens, in addition to a completely spherical lens as shown in Fig. 30 (a), the distance from the surface of the light emitting / receiving element (and the module equipped with these) mounted directly above, From the viewpoint of the accuracy of the opening shape of the opening 231, for example, a half-ball lens having a part of the outer periphery flattened, for example, a hemispherical half-ball lens as shown in FIG. 30 (b) can be used. In addition, as shown in FIG. 30 (a), the resin layer (light-transmitting resin layer 21 or optical circuit forming layer 201) of the underlayer exposed to the lens body 246 and the opening 231 is formed. It is preferable to fill the transparent resin 247 so as to fill the gap between the surface and the surface. By filling the light transmissive resin 247 in this way, it is possible to avoid reflection loss due to the formation of an air layer between the lens body 246 and the underlying resin layer. The lens body 246 can be firmly fixed by the adhesive action of the transparent resin 247. As the light-transmitting resin 247, a resin having a refractive index equal to or approximately equal to that of the underlying resin layer (the light-transmitting resin layer 217 or the optical circuit forming layer 201) is preferable.
このように光透過性樹脂 2 4 7でレンズ体 2 4 6を固着するにあたって、 光透 過性樹脂 2 4 7として紫外線等の光を照射することによって硬化するものを用い ることができる。 この場合、 図 3 1 ( a ) のように、 既述の図 2 9等と同様にし て光回路—電気回路混載基板を製造すると共に、 光導波路 2 0 4のコア部 2 0 4 aに設けた各偏向部 2 0 5の直上に対向する部分の金属層 2 0 2をエッチング除 去して複数箇所に開口部 2 3 1を形成し、 そして各開口部 2 3 1に光硬化性の光 透過性樹脂 2 4 7の液を塗布した後、 図 3 1 ( b ) のようにこの光透過性樹脂 2 4 7の液の上にそれぞれレンズ体 2 4 6を載せ、 この後に図 3 1 ( c ) のように 紫外線等の光 Lを一括照射して、 各開口部 2 3 1の光透過性樹脂 2 4 7を光硬化 させることによって、 複数の総てのレンズ体 2 4 6を同時に固着させることがで さる。  In fixing the lens body 246 with the light-transmitting resin 247 as described above, a material that is cured by irradiating light such as ultraviolet light can be used as the light-transmitting resin 247. In this case, as shown in FIG. 31 (a), an optical circuit-electric circuit hybrid board is manufactured in the same manner as in FIG. 29 described above, and provided on the core portion 204a of the optical waveguide 204. The metal layer 202 in a portion directly above each of the deflecting sections 205 is etched away to form openings 231 at a plurality of locations, and a photocurable light is applied to each of the openings 231. After applying the liquid of the transparent resin 247, the lens bodies 246 are respectively placed on the liquid of the light permeable resin 247 as shown in FIG. As shown in c), by irradiating the light L such as ultraviolet rays at a time, the light-transmitting resin 247 in each opening 231 is light-cured, so that all the plurality of lens bodies 246 are simultaneously fixed. It can be done.
上記の各実施の形態では、 金属層 2 0 2に基準マークを予め設けておき、 この 基準マークを基準として、 光導波路 2 0 4のコア部 2 0 4 a、 偏向部 2 0 5、 電 気回路 2 0 6を形成するようにし、 また電気回路 2 0 6と同時形成される開口部 2 3 1等を形成するようにしたが、 コア部 2 0 4 aなどを露光するためのフォト マスクに予め基準マーク露光用パターンを設けておくことによって、 光回路形成 層 2 0 1に光導波路 2 0 4のコア部 2 0 4 aを形成する工程で、 同時に光回路形 成層 2 0 1に基準マークを形成し、 そして後工程で偏向部 2 0 5や電気回路 2 0 6等を形成する際に、 この基準マークを基準として位置決めした位置に偏向部 2 0 5や電気回路 2 0 6等の形成を行なうようにすることもできる。 このようにす れば、 予め金属層 202に基準マークを入れておく必要がなく、 また光回路形成 層 201に形成される光導波路 204のコア部 204 aと基準マークの位置関係 は既にフォトマスク上で精確に決められているため、 両者の位置関係精度は高い ものであり、 従ってこの基準マークを基準にすることによって、 光導波路 204 のコア部 204 aと偏向部 205や電気回路 206等との位置精度を高く得るこ とができる。 尚、 この場合、 金属層 202に電気回路 206を形成する際に、 光 回路形成層 201の基準マークを出現させるためにおおよその位置の金属層 20 2を局所的に除去しておく必要がある。 実施例 In each of the above embodiments, a reference mark is provided in advance on the metal layer 202, and the core section 204a, the deflection section 205, and the electrical section of the optical waveguide 204 are provided with reference to the reference mark. The circuit 206 was formed, and the opening 231 formed at the same time as the electric circuit 206 was formed.However, a photomask for exposing the core 204a was used. By providing a reference mark exposure pattern in advance, in the process of forming the core portion 204a of the optical waveguide 204 in the optical circuit forming layer 201, the reference mark is simultaneously formed in the optical circuit forming layer 201. When the deflecting section 205 and the electric circuit 206 are formed in a later step, the deflecting section 205 and the electric circuit 206 are formed at positions determined with reference to the reference mark. Can be performed. Like this In this case, it is not necessary to put a reference mark in the metal layer 202 in advance, and the positional relationship between the core portion 204a of the optical waveguide 204 formed in the optical circuit forming layer 201 and the reference mark is already accurate on the photomask. Therefore, the positional accuracy between the two is high. Therefore, by using this fiducial mark as a reference, the positional accuracy between the core portion 204a of the optical waveguide 204, the deflection portion 205, the electric circuit 206, and the like can be improved. You can get higher. In this case, when forming the electric circuit 206 on the metal layer 202, it is necessary to locally remove the metal layer 202 at an approximate position to make the reference mark of the optical circuit formation layer 201 appear. . Example
次に、 本発明を実施例によって具体的に説明する。  Next, the present invention will be described specifically with reference to examples.
(実施例 1 )  (Example 1)
厚み 35 /xmの銅箔 (古河電工 (株) 製 「MPGT」 ) を金属層 13として用 い、 金属層 13に光透過性樹脂 Aをロール転写法で塗布厚み 50 μ mに塗布し、 2. 5 j/cm2のパワーの高圧水銀ランプを照射して硬化させ、 光透過性樹月旨 層 1を形成した。 次に、 感光性樹脂 Aのワニスを 8 O/im厚に塗布し、 加熱乾燥 することによって厚み 40±5 μπιの光回路形成層 2を形成し、 図 1 (a) の ような光回路一電気回路混載基板用材料を作製した。 A copper foil with a thickness of 35 / xm (“MPGT” manufactured by Furukawa Electric Co., Ltd.) is used as the metal layer 13. The material was cured by irradiation with a high-pressure mercury lamp having a power of 5 j / cm 2 to form a light-transmissive luster layer 1. Next, a varnish of the photosensitive resin A is applied to a thickness of 8 O / im and dried by heating to form an optical circuit forming layer 2 having a thickness of 40 ± 5 μπι. A material for an electric circuit mixed board was prepared.
ここで、 光透過性樹脂 Aとしては、 ダイキン化学工業 (株) 製 「ォブトダイン UV— 3100」 を用いた。 このものは UV硬化エポキシ樹脂であり、 硬化後の 屈折率は 1. 49である。  Here, "Obutdyne UV-3100" manufactured by Daikin Chemical Industry Co., Ltd. was used as the light transmitting resin A. This is a UV-curable epoxy resin with a refractive index of 1.49 after curing.
また感光性樹脂 Aのワニスとしては、 ダイセル化学工業 (株) 製 ΓΕΗΡΕ— The varnish of photosensitive resin A is manufactured by Daicel Chemical Industries, Ltd.
3150」 100質量部、 メチルェチルケトン 70質量部、 トルエン 30質量部、 ローディア ·ジャパン (株) 製 「ロードシル · フォトイニシエータ 2074」 2 質量部からなるワニスを用いた。 このワニスを乾燥して溶剤を除去し、 10 J/ cm2のパワーの高圧水銀ランプを照射して硬化させた後、 150°Cで 1時間の アフターキュア一をした硬化樹脂の屈折率は 1. 53である。 A varnish consisting of 100 parts by mass of 3150 ", 70 parts by mass of methyl ethyl ketone, 30 parts by mass of toluene, and 2 parts by mass of" Roadsil Photo Initiator 2074 "manufactured by Rhodia Japan Ltd. was used. The varnish was dried to remove the solvent, cured by irradiating a high-pressure mercury lamp with a power of 10 J / cm 2 , and cured at 150 ° C for 1 hour. It is 53.
上記のように作製した光回路一電気回路混載基板用材料を 6 c m角に力ットし、 The material for the optical circuit-electric circuit mixed board prepared as described above is urged to a 6 cm square,
40 μ m幅の線状に光が通過するように作製したマスクを通して光回路形成層 2 に 1 0 J /cm2のパワーの高圧水銀ランプを照射して露光し、 1 20°Cで 30 分加熱処理した (図 2 (a) 参照) 。 次に、 トルエンとクリーンスルー (花王Optical circuit formation layer 2 through a mask made to allow light to pass through a 40 μm wide line The wafer was exposed to a high-pressure mercury lamp having a power of 10 J / cm 2 and exposed to heat at 120 ° C. for 30 minutes (see FIG. 2 (a)). Next, toluene and clean-through (Kao
(株) 製のフレオン代替の水系洗浄剤) で現像することによって、 非照射部分を 除去し、 水で洗浄後乾燥した (図 2 (b) 参照) 。 この後、 線状の光回路形成層 2を被覆するように光透過性樹脂 Aを塗布厚み 80 μ mで塗布し、 2. 5 J/c m 2のパワーの高圧水銀ランプを照射して硬化させることによつて光透過性樹脂 層 20を形成し (図 2 (c) 参照) 、 さらにこの上に接着剤 Aのワニスを 40 m厚に塗布し、 1 50 °Cで乾燥して接着剤層 23を形成した。 そして F R— 5タ ィプのプリント配線板 2 2に接着剤層 23を介して重ね、 1 70°Cで真空プレス 成形することによって、 線状の光回路形成層 2で光導波路のコア部 26が形成さ れた光回路—電気回路混載基板を得た (図 2 (d) (e) 参照) 。 The non-irradiated parts were removed by developing with a water-based cleaning agent (a substitute for Freon manufactured by Co., Ltd.), washed with water, and dried (see Fig. 2 (b)). Thereafter, a light-transmitting resin A is applied to a thickness of 80 μm so as to cover the linear optical circuit forming layer 2, and is cured by irradiating a high-pressure mercury lamp with a power of 2.5 J / cm 2. Then, a light-transmitting resin layer 20 is formed (see FIG. 2 (c)), and a varnish of an adhesive A is applied thereon to a thickness of 40 m, and dried at 150 ° C to obtain an adhesive. Layer 23 was formed. Then, it is laminated on the FR-5 type printed wiring board 22 with an adhesive layer 23 interposed therebetween, and is vacuum-pressed at 170 ° C., thereby forming the core portion of the optical waveguide in the linear optical circuit forming layer 2. An optical circuit-electrical circuit board on which was formed was obtained (see Fig. 2 (d) (e)).
ここで、 接着剤 Aのワニスとしては、 東都化成 (株) 製 「YDB 500」 (臭 素化エポキシ樹脂) 90質量部、 東都化成 (株) 製 「YDCN_ 1 2 1 1」 (ク レゾールノボラック型エポキシ樹脂) 1 0質量部、 ジシアンジアミド 3質量部、 四国化成 (株) 製 「2 E 4MZ」 (2ェチル 4メチルイミダゾール) 0. 1質量 部、 メチルェチルケトン 30質量部、 ジメチルホルムアミ ド 8質量部からなるヮ ニスを用いた。  Here, the varnish of the adhesive A is 90 parts by mass of “YDB 500” (brominated epoxy resin) manufactured by Toto Kasei Co., Ltd., and “YDCN_1 211” (cresol novolak type) manufactured by Toto Kasei Co., Ltd. Epoxy resin) 10 parts by mass, dicyandiamide 3 parts by mass, Shikoku Chemicals "2E4MZ" (2ethyl 4-methylimidazole) 0.1 part by mass, methylethyl ketone 30 parts by mass, dimethylformamide 8 A varnish consisting of parts by mass was used.
上記のようにして得た光回路一電気回路混载基板について、 線状 (または柱 状) の光回路形成層 2 (即ち、 コア部 26) と直交する両端面を研磨して、 光配 線のコア部を形成する光回路形成層 2の端面 (図 2で見えているコア部 26の 面) を露出させ、 コア部の片方の端面から波長 850 ;xmの近赤外光をコア径 5 0 ;xmのマルチモード光ファイバ一を通して入射させ、 コア部の反対側の端面か らの出射光を CCDカメラで観察したところ、 光が導波していることが観測され、 光回路が機能していることが確認された。 また、 金属層 1 3を形成する銅箔のピ —ル強度を測定したところ、 6. 9N/cm (0. 7 k g/cm) であった。  The optical circuit-electric circuit mixed substrate obtained as described above is polished on both end surfaces orthogonal to the linear (or columnar) optical circuit forming layer 2 (that is, the core portion 26), and is polished. The end surface of the optical circuit forming layer 2 (the surface of the core portion 26 seen in FIG. 2) forming the core portion of the core portion is exposed, and near-infrared light having a wavelength of 850; 0; Injected through an xm multimode optical fiber, and the light emitted from the end face on the opposite side of the core was observed with a CCD camera. Light was observed to be guided, and the optical circuit functioned. It was confirmed that. The peel strength of the copper foil forming the metal layer 13 was measured and found to be 6.9 N / cm (0.7 kg / cm).
(実施例 2) (Example 2)
実施例 1において、 光回路形成層 2を形成した後、 光回路形成層 2の表面に厚 み 25 /imの透明 PETフィルムからなるカバーフィルム 1 5をロールで押し当 てて張り付けることによって、 図 1 (c) のような光回路一電気回路混載基板用 材料を作製した。 このものでは、 光回路形成層 2が剥き出しにならないので、 ノヽ ンドリング性が優れるものであった。 In Example 1, after forming the optical circuit forming layer 2, a cover film 15 made of a transparent PET film having a thickness of 25 / im was pressed against the surface of the optical circuit forming layer 2 with a roll. As shown in Fig. 1 (c), a material for an optical circuit-electric circuit mixed board was fabricated. In this case, the optical circuit forming layer 2 was not exposed, so that the node ring was excellent.
そしてカバーフィルム 1 5の上から露光した後にカバーフィルム 1 5を剥ぎ取 つて現像を行なうようにした他は、 光回路一電気回路混載基板用材料に実施例 1 と同様な加工を行なうことによって、 光回路一電気回路混載基板を得た。 この光 回路一電気回路混載基板について、 実施例 1と同様な評価を行なったところ、 光 配線が機能していることが確認された。 また金属層 1 3を形成する銅箔のピール 強度を測定したところ、 6. 9N/cm (0. 7 k g/cm) であった。  Then, except that the cover film 15 was peeled off and then developed after being exposed from the top of the cover film 15, the same processing as in Example 1 was performed on the material for the optical circuit-electric circuit mixed board, thereby performing An optical circuit-electric circuit mixed board was obtained. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning. When the peel strength of the copper foil forming the metal layer 13 was measured, it was 6.9 N / cm (0.7 kg / cm).
(実施例 3) (Example 3)
実施例 1と同様に銅箔を金属層 1 3として用レ、、 金属層 1 3に接着剤ワニス A を 40 μπι厚に塗布し、 1 50°Cで乾燥することによって、 接着剤層 14を形成 した、 あとはこの接着剤層 14の上に実施例 1と同様にして光透過性樹脂層 1、 光回路形成層 2を形成することによって、 図 1 (b) のような光回路一電気回路 混載基板用材料を作製した。  A copper foil was used as the metal layer 13 in the same manner as in Example 1, an adhesive varnish A was applied to the metal layer 13 to a thickness of 40 μπι, and dried at 150 ° C to form the adhesive layer 14. The light-transmitting resin layer 1 and the optical circuit forming layer 2 are formed on the adhesive layer 14 in the same manner as in Example 1 so that the optical circuit shown in FIG. Circuit Materials for circuit board were prepared.
そしてこの光回路一電気回路混載基板用材料に実施例 1と同様な加工を行なう ことによって、 光回路一電気回路混載基板を得た。 この光回路一電気回路混載基 板について、 実施例 1と同様な評価を行なったところ、 光配線が機能しているこ とが確認された。 また金属層 1 3を形成する銅箔のピール強度を測定したところ、 9. 8 /cm (1. 0 k g/cm) であり、 接着剤層 14によって金属層 1 3 の密着強度が向上していることが確認、された。  The same processing as in Example 1 was performed on the material for an optical circuit / electric circuit hybrid board to obtain an optical circuit / electric circuit hybrid board. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning. When the peel strength of the copper foil forming the metal layer 13 was measured, it was 9.8 / cm (1.0 kg / cm), and the adhesive strength of the metal layer 13 was improved by the adhesive layer 14. Was confirmed.
(実施例 4) (Example 4)
ステンレス板を支持体 1 6として用い、 ステンレス板の表面に両面粘着テープ で銅箔のシャイニー面を接着することによって、 支持体 1 6に金属層 1 3を張つ た。 そしてこの金属層 1 3の表面に実施例 1と同様にして光透過性樹脂層 1、 光 回路形成層 2を形成することによって、 図 1 (d) のような光回路一電気回路混 載基板用材料を作製した。 このものでは、 薄い金属層 1 3が剛体の支持体 1 6で 補強されているので、 ハンドリング性が優れるものであった。 Using a stainless steel plate as the support 16, the metal layer 13 was attached to the support 16 by bonding the shiny surface of the copper foil to the surface of the stainless steel plate with a double-sided adhesive tape. By forming a light-transmitting resin layer 1 and an optical circuit forming layer 2 on the surface of the metal layer 13 in the same manner as in Example 1, an optical circuit-electric circuit mixed substrate as shown in FIG. Material was prepared. In this case, a thin metal layer 13 is a rigid support 16 Because it was reinforced, it had excellent handling properties.
そしてこの光回路一電気回路混載基板用材料に実施例 1と同様な加工を行ない、 最後に支持体 16を剥がすことによって、 光回路一電気回路混載基板を得た。 こ の光回路一電気回路混載基板について、 実施例 1と同様な評価を行なったところ、 光配線が機能していることが確認された。 また金属層 13を形成する銅箔のピー ル強度を測定したところ、 6. 9N/cm (0. 7 k g/c m) であった。  Then, the same processing as in Example 1 was performed on the material for an optical circuit / electric circuit hybrid board, and finally the support 16 was peeled off to obtain an optical circuit / electric circuit hybrid board. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning. When the peel strength of the copper foil forming the metal layer 13 was measured, it was 6.9 N / cm (0.7 kg / cm).
(実施例 5) (Example 5)
実施例 1と同じ銅箔を金属層 13として用い、 金属層 13に感光性樹脂 Bのヮ ニスをロール転写法で 100 m厚に塗布し、 加熱乾燥して 50 ± 5 μ m厚の 光回路形成層 5を形成することによって、 図 7 (a) のような光回路一電気回路 混載基板用材料を作製した。  Using the same copper foil as in Example 1 as the metal layer 13, a varnish of the photosensitive resin B was applied to the metal layer 13 by a roll transfer method to a thickness of 100 m, and dried by heating to obtain an optical circuit having a thickness of 50 ± 5 μm. By forming the formation layer 5, an optical circuit-electric circuit mixed substrate material as shown in FIG. 7A was produced.
ここで、 感光性樹脂 Bとしては、 日本ペイント (株) 製 「グラシア P S _ S R 103」 を用いた。 このものはポリシラン樹脂であり、 厚み 50/imにおいて、 硬化後 (紫外線照射) の屈折率は 1. 64であり、 また 10 jZcm2の紫外線 を照射した露光後の屈折率は 1. 58〜 1. 62に変化する。 Here, as the photosensitive resin B, “GRACIA PS_SR103” manufactured by Nippon Paint Co., Ltd. was used. This is a polysilane resin. At a thickness of 50 / im, the refractive index after curing (irradiation with ultraviolet light) is 1.64, and the refractive index after exposure to ultraviolet light of 10 jZcm 2 is 1.58 to 1 Changes to 62.
上記のように作製した光回路一電気回路混載基板用材料を 6 c m角に力ットし、 40 / m幅の線状に光が遮られるように作製したマスクを通して光回路形成層 5 に 10 jZcm2のパワーの高圧水銀ランプを照射して露光し (図 8 (a) 参 照) 、 露光部分の屈折率を低下させ、 露光部分を低屈折率部 5 bにすることによ つて、 未露光部分を高屈折率部 5 aとして形成した。 (図 8 (b) 参照) 。 次に、 光回路形成層 5を被覆するように光透過性樹脂 Bを塗布厚み 40 μ mで塗布し、 100。Cで 1時間、 さらに 150 °Cで 1時間加熱処理して硬化させることによつ て光透過性樹脂層 20を形成し (図 8 (c) 参照) 、 さらにこの上に接着剤ヮニ ス Aを 40 m厚に塗布し、 150 °Cで乾燥して接着剤層 23を形成した。 そし て FR— 5タイプのプリント配線板 22に接着剤層 23を介して重ね、 170°C で真空プレス成形することによって、 光回路形成層 5に線状の高屈折率部 5 aで 光配線のコア部 26が形成された光回路一電気回路混載基板を得た (図 8 (d) (e) 参照) 。 ここで、 光透過性樹脂 Bとしては、 東都化成 (株) 製 「BPAF—DGEJ (フッ素化ビスフエノール A型エポキシ樹脂、 エポキシ当量 242) 100質量 部、 大日本インキ工業 (株) 製 「B 650」 (メチルへキサヒドロ無水フタノレ酸、 酸無水物当量 168) 66質量部、 サンァプロ (株) 製 「S A— 102」 (ジァ ザビシク口ゥンデセンのオタチル酸塩) 2質量部からなる熱硬化性エポキシ樹月旨 を用レ、た。 この樹脂を 100 °Cで 1時間、 さらに 150 °Cで 1時間加熱して硬化 したときの、 硬化後の屈折率は 1. 5 1である。 Apply the optical circuit-electric circuit mixed substrate material prepared as described above to a 6 cm square material, and pass through the optical circuit forming layer 5 through a mask prepared so as to block light in a 40 / m wide line. Exposure is performed by irradiating a high-pressure mercury lamp with a power of jZcm 2 (see Fig. 8 (a)) to lower the refractive index of the exposed portion and to make the exposed portion a low-refractive-index portion 5b. The exposed portion was formed as a high refractive index portion 5a. (See Figure 8 (b)). Next, a light-transmitting resin B is applied with a coating thickness of 40 μm so as to cover the optical circuit forming layer 5, and 100. C. for 1 hour and then at 150 ° C. for 1 hour to cure, thereby forming a light-transmitting resin layer 20 (see FIG. 8 (c)). A was applied to a thickness of 40 m and dried at 150 ° C to form an adhesive layer 23. Then, it is superposed on the FR-5 type printed wiring board 22 with an adhesive layer 23 interposed therebetween, and is vacuum-pressed at 170 ° C. so that the optical circuit forming layer 5 has a linear high-refractive-index portion 5a and an optical wiring. Thus, an optical circuit-electric circuit hybrid board on which the core portion 26 was formed was obtained (see FIGS. 8 (d) and (e)). Here, as the light transmitting resin B, 100 parts by mass of “BPAF-DGEJ (fluorinated bisphenol A type epoxy resin, epoxy equivalent: 242)” manufactured by Toto Kasei Co., Ltd., “B 650 manufactured by Dainippon Ink Industries, Ltd.” (Thermosetting epoxy resin consisting of 66 parts by mass of methylhexahydrophthalanic anhydride, acid anhydride equivalent 168) and 2 parts by mass of "SA-102" (Otatyl salt of diazabisic mouth pendene) manufactured by Sanpro Corporation I used the moonlight. When this resin was cured by heating at 100 ° C for 1 hour and further at 150 ° C for 1 hour, the refractive index after curing was 1.51.
上記のようにして得た光回路一電気回路混載基板について、 実施例 1と同様に、 評価したところ、 光が導波していることが観測され、 光配線が機能していること が確認された。 また、 金属層 13を形成する銅箔のピール強度を測定したところ、 4. ΘΝ/οιη (0. 5 k g/cm) であった。  The optical circuit-electric circuit mixed board obtained as described above was evaluated in the same manner as in Example 1, and it was confirmed that light was guided, and that the optical wiring was functioning. Was. Further, the peel strength of the copper foil forming the metal layer 13 was measured and found to be 4.ΘΝ / οιη (0.5 kg / cm).
(実施例 6 ) (Example 6)
実施例 5において、 光回路形成層 5を形成した後、 光回路形成層 5の表面に厚 み 25 //mの透明 PETフィルムからなるカバーフィルム 1 5をロールで押し当 てて張り付けることによって、 図 7 (c) のような光回路一電気回路混載基板用 材料を作製した。 このものでは、 光回路形成層 5が剥き出しにならないので、 ノヽ ンドリング性が優れるものであった。  In Example 5, after the optical circuit forming layer 5 was formed, a cover film 15 made of a transparent PET film having a thickness of 25 // m was pressed against a surface of the optical circuit forming layer 5 with a roll and stuck. Then, a material for an optical circuit-electric circuit hybrid board as shown in Fig. 7 (c) was fabricated. In this case, the optical circuit forming layer 5 was not exposed, so that the nodeability was excellent.
そしてカバーフィルム 15の上から露光した後にカバーフィルム 15を剥ぎ取 つて光透過性樹脂層 20を形成するようにした他は、 光回路一電気回路混載基板 用材料に実施例 5と同様な加工を行なうことによって、 光回路一電気回路混載基 板を得た。 この光回路一電気回路混載基板について、 実施例 1と同様な評価を行 なったところ、 光配線が機能していることが確認された。 また金属層 1 3を形成 する銅箔のピール強度を測定したところ、 4. 9N/cm (0. 5 k g/cm) であった。  Then, the same processing as in Example 5 was performed on the material for the optical circuit-electric circuit hybrid board, except that the cover film 15 was peeled off after being exposed from above the cover film 15 to form the light-transmitting resin layer 20. As a result, an optical circuit-electric circuit mixed board was obtained. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning. When the peel strength of the copper foil forming the metal layer 13 was measured, it was 4.9 N / cm (0.5 kg / cm).
(実施例 7) (Example 7)
実施例 5と同様に銅箔を金属層 13として用い、 金属層 13に接着剤ワニス A を 40 / m厚に塗布し、 150°Cで乾燥することによって、 接着剤層 14を形成 した、 あとはこの接着剤層 1 4の上に実施例 5と同様にして光回路形成層 5を形 成することによって、 図 7 (b) のような光回路—電気回路混載基板用材料を作 製した。 Using a copper foil as the metal layer 13 as in Example 5, an adhesive varnish A was applied to the metal layer 13 to a thickness of 40 / m, and dried at 150 ° C to form the adhesive layer 14. Then, by forming an optical circuit forming layer 5 on the adhesive layer 14 in the same manner as in Example 5, the material for an optical circuit-electric circuit mixed substrate as shown in FIG. Made.
そしてこの光回路一電気回路混載基板用材料に実施例 5と同様な加工を行なう ことによって、 光回路一電気回路混載基板を得た。 この光回路一電気回路混載基 板について、 実施例 1と同様な評価を行なったところ、 光配線が機能しているこ とが確認された。 また金属層 1 3を形成する銅箔のピール強度を測定したところ、 8. 8N/cm (0. 9 k g/ cm) であり、 接着剤層 14によって金属層 1 3 の密着強度が向上していることが確^■された。  The same processing as in Example 5 was performed on this material for an optical circuit / electric circuit hybrid board to obtain an optical circuit / electric circuit hybrid board. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning. When the peel strength of the copper foil forming the metal layer 13 was measured, it was 8.8 N / cm (0.9 kg / cm), and the adhesive strength of the metal layer 13 was improved by the adhesive layer 14. It was confirmed that there was.
(実施例 8) (Example 8)
ステンレス板を支持体 1 6として用い、 ステンレス板の表面に両面粘着テープ で銅箔のシャイ-一面を接着することによって、 支持体 1 6に金属層 1 3を張つ た。 そしてこの金属層 1 3の表面に実施例 5と同様にして光回路形成層 5を形成 することによって、 図 7 (d) のような光回路一電気回路混載基板用材料を作製 した。 このものでは、 薄い金属層 1 3が剛体の支持体 1 6で補強されているので、 ハンドリング性が優れるものであった。  Using a stainless steel plate as the support 16, a metal layer 13 was attached to the support 16 by bonding a shy surface of copper foil to the surface of the stainless steel plate with a double-sided adhesive tape. Then, an optical circuit forming layer 5 was formed on the surface of the metal layer 13 in the same manner as in Example 5, whereby an optical circuit-electric circuit mixed substrate material as shown in FIG. In this case, since the thin metal layer 13 was reinforced by the rigid support 16, the handleability was excellent.
そしてこの光回路一電気回路混載基板用材料に実施例 1と同様な加工を行ない、 最後に支持体 1 6を剥がすことによって、 光回路一電気回路混載基板を得た。 こ の光回路—電気回路混載基板について、 実施例 1と同様な評価を行なったところ、 光配線が機能していることが確認された。 また金属層 1 3を形成する銅箔のピー ノレ強度を測定したところ、 4. 9N/cm (0. 5 k g/c m) であった。  Then, the same processing as in Example 1 was performed on the material for an optical circuit / electric circuit hybrid board, and finally the support 16 was peeled off to obtain an optical circuit / electric circuit hybrid board. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning. Further, when the Peinole strength of the copper foil forming the metal layer 13 was measured, it was 4.9 N / cm (0.5 kg / cm).
(実施例 9) (Example 9)
実施例 1と同じ銅箔を金属層 1 3として用い、 金属層 1 3に感光性樹脂 Bのヮ ニスを口ール転写法で 1 00 m厚に塗布し、 加熱乾燥して 50 ± 5 / mtfの 第光回路形成層 1 2を形成し、 さらにこの上に光透過性樹脂 Bを口ール転写法で 厚み 50 μ mに塗布し、 1 00 °Cで 1時間、 さらに 1 50 °Cで 1時間加熱処理し て硬化させことによ て光透過性樹脂層 1 1を形成し、 図 1 5 (a) のような光 回路一電気回路混載基板用材料を作製した。 Using the same copper foil as in Example 1 as the metal layer 13, a varnish of the photosensitive resin B was applied to the metal layer 13 to a thickness of 100 m by a mouth transfer method, and heated and dried to 50 ± 5 / An optical circuit forming layer 12 of mtf is formed, and a light-transmissive resin B is applied thereon to a thickness of 50 μm by a pallet transfer method, and then at 100 ° C. for 1 hour and further at 150 ° C. After heating for 1 hour and curing, a light-transmitting resin layer 11 is formed, and the light as shown in Fig. 15 (a) is formed. A material for a circuit-electric circuit mixed board was prepared.
上記のように作製した光回路一電気回路混載基板用材料を 6 c m角に力ットし、 40 / m幅の線状に光が通過するように作製したマスクを通して光回路形成層 1 2に 10 jZcm2のパワーの高圧水銀ランプを照射して露光し (図 1 6 (a) 参照) 、 露光部分の屈折率を低下させ、 露光部分を低屈折率部 1 2 bにすること によって、 未露光部分を高屈折率部 1 2 aとして形成した。 (図 16 (b) 参 照) 。 次に、 光透過性樹脂層 1 1の表面に接着剤 Aのワニスを 40 / m厚に塗布 し、 1 50°Cで乾燥して接着剤層 23を形成した。 そして FR— 5タイプのプリ ント配線板 22に接着剤層 23を介して重ね、 1 70°Cで真空プレス成形するこ とによって、 光回路形成層 1 2に線状の高屈折率部 1 2 aで光配線のコア部 26 が形成された光回路一電気回路混載基板を得た (図 1 6 (c) および図 16 (d) 参照) 。 The optical circuit produced as described above is applied to the optical circuit forming layer 12 through a mask prepared so that light passes through a 40 / m-width line by applying a force of 6 cm square to the electric circuit mixed substrate material. Exposure is performed by irradiating a high-pressure mercury lamp with a power of 10 jZcm 2 (see Fig. 16 (a)) to lower the refractive index of the exposed part and to reduce the exposed part to a low refractive index part 12b. The exposed portion was formed as a high refractive index portion 12a. (See Figure 16 (b)). Next, a varnish of adhesive A was applied to the surface of the light-transmitting resin layer 11 at a thickness of 40 / m, and dried at 150 ° C to form an adhesive layer 23. Then, the optical circuit forming layer 12 is overlaid on the FR-5 type printed wiring board 22 via an adhesive layer 23 via an adhesive layer 23 and vacuum-pressed at 170 ° C. In step a, an optical circuit-electric circuit hybrid board on which the optical wiring core 26 was formed was obtained (see FIGS. 16 (c) and 16 (d)).
上記のようにして得た光回路—電気回路混載基板について、 実施例 1と同様に 評価したところ、 光が導波していることが観測され、 光配線が機能していること が確認された。 また、 金属層 1 3を形成する銅箔のピール強度を測定したところ、 4. 9N/cm (0. 5 k g/ cm) であった。  The optical circuit-electric circuit mixed board obtained as described above was evaluated in the same manner as in Example 1. It was observed that light was guided, and it was confirmed that the optical wiring was functioning. . The peel strength of the copper foil forming the metal layer 13 was measured and found to be 4.9 N / cm (0.5 kg / cm).
(実施例 10) (Example 10)
実施例 9において、 光回路形成層 1 2及び光透過性樹脂層 1 1を形成した後、 光透過性樹脂層 1 1の表面に厚み 25 / mの透明 PETフィルムからなるカバー フィルム 1 5をロールで押し当てて張り付けることによって、 図 1 5 (c) のよ うな光回路一電気回路混載基板用材料を作製した。 このものでは、 樹脂層が剥き 出しにならないので、 ハンドリング ^feが優れるものであった。  In Example 9, after forming the optical circuit forming layer 12 and the light transmitting resin layer 11, the cover film 15 made of a transparent PET film having a thickness of 25 / m was rolled on the surface of the light transmitting resin layer 11. By pressing and sticking with, a material for an optical circuit-electric circuit mixed board as shown in Fig. 15 (c) was produced. In this case, the handling ^ fe was excellent because the resin layer was not exposed.
そしてカバーフィルム 1 5の上から露光した後にカバーフィルム 1 5を剥ぎ取 つて接着剤層 23の形成を行なうようにした他は、 光回路一電気回路混載基板用 材料に実施例 9と同様な加工を行なうことによって、 光回路一電気回路混載基板 を得た。 この光回路一電気回路混載基板について、 実施例 1と同様な評価を行な つたところ、 光配線が機能していることが確認された。 また金属層 1 3を形成す る銅箔のピール強度を測定したところ、 4. 9N/cm (0. 5 k g cm) で あった。 Then, the same processing as in Example 9 was performed on the material for the optical circuit / electric circuit hybrid board, except that the cover film 15 was peeled off after being exposed from above the cover film 15 to form the adhesive layer 23. As a result, an optical circuit-electric circuit mixed board was obtained. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring functioned. When the peel strength of the copper foil forming the metal layer 13 was measured, it was found to be 4.9 N / cm (0.5 kg cm). there were.
(実施例 1 1 ) (Example 11)
ステンレス板を支持体 1 6として用レ、、 ステンレス板の表面に両面粘着テープ で銅箔のシャイニー面を接着することによって、 支持体 1 6に金属層 1 3を張つ た。 そしてこの金属層 1 3の表面に実施例 9と同様にして光回路形成層 1 2及び 光透過性樹脂層 1 1を形成することによって、 図 1 5 (d) のような光回路ー電 気回路混載基板用材料を作製した。 このものでは、 薄い金属層 1 3が剛体の支持 体 1 6で補強されているので、 ハンドリング性が優れるものであった。  A stainless steel plate was used as the support 16, and the metal layer 13 was attached to the support 16 by bonding the shiny surface of the copper foil to the surface of the stainless plate with a double-sided adhesive tape. Then, an optical circuit forming layer 12 and a light-transmitting resin layer 11 are formed on the surface of the metal layer 13 in the same manner as in Example 9, whereby an optical circuit-electrical layer as shown in FIG. A material for a circuit-mixed board was manufactured. In this case, since the thin metal layer 13 was reinforced by the rigid support 16, the handleability was excellent.
そしてこの光回路一電気回路混載基板用材料に実施例 1と同様な加工を行ない、 最後に支持体 1 6を剥がすことによって、 光回路一電気回路混載基板を得た。 こ の光回路一電気回路混載基板について、 実施例 1と同様な評価を行なったところ、 光配線が機能していることが確認された。 また金属層 1 3を形成する銅箔のピー ル強度を測定したところ、 4. 9N/cm (0. 5 k gノ c m) であった。  Then, the same processing as in Example 1 was performed on the material for an optical circuit / electric circuit hybrid board, and finally the support 16 was peeled off to obtain an optical circuit / electric circuit hybrid board. The same evaluation as in Example 1 was performed on this optical circuit / electric circuit hybrid board, and it was confirmed that the optical wiring was functioning. When the peel strength of the copper foil forming the metal layer 13 was measured, it was 4.9 N / cm (0.5 kg / cm).
(実施例 1 2) (Example 1 2)
実施例 1と同じ銅箔を金属層 1 3として用レ、、 金属層 1 3に光透過性樹脂 Aを ロール転写法で 50 /xm厚に塗布し、 2. 5 jZcm2のパワーの高圧水銀ラン プを照射して硬化させることによって第 1光透過性樹脂層 1を形成した。 次に感 光性樹脂 Bのワニスを 80 /xm厚に塗布し、 加熱乾燥して 4 0 ± 5 m厚の光 回路形成層 8を形成し、 さらにこの上に光透過性樹脂 Bのワニスをロール転写法 で厚み 5 0 // mに塗布し、 1 00。Cで 1時間、 さらに 1 50 °Cで 1時間加熱処理 して硬化させることによって第 2光透過性樹脂層 9を形成し、 図 1 1 (a) のよ うな光回路一電気回路混載基板用材料を作製した。 The same copper foil as in Example 1 was used as the metal layer 13. Light-transmissive resin A was applied to the metal layer 13 by a roll transfer method to a thickness of 50 / xm, and high-pressure mercury with a power of 2.5 jZcm 2 was used. The first light-transmitting resin layer 1 was formed by irradiating and curing the lamp. Next, a varnish of photosensitive resin B is applied to a thickness of 80 / xm, and dried by heating to form an optical circuit forming layer 8 having a thickness of 40 ± 5 m, and a varnish of light-transmitting resin B is further formed thereon. Apply to a thickness of 50 // m by the roll transfer method, and add 100. By heating and curing at C for 1 hour and then at 150 ° C for 1 hour, the second light-transmitting resin layer 9 is formed, and as shown in Fig. 11 (a), for an optical circuit-electric circuit mixed board Materials were made.
上記のように作製した光回路一電気回路混載基板用材料を 6 c m角に力ットし、 The material for the optical circuit-electric circuit mixed board prepared as described above is urged to a 6 cm square,
A O μ m幅の線状に光が通過するように作製したマスクを通して光回路形成層 8 に 1 0 JZ cm 2のパワーの高圧水銀ランプを照射して露光し (図 1 2 (a) 参 照) 、 露光部分の屈折率を低下させ、 露光部分を低屈折率部 8 bにすることによ つて、 未露光部分を高屈折率部 8 aとして形成した (図 1 2 (b) 参照) 。 次に、 第 2光透過性樹脂層 9の表面に接着剤 Aのワニスを 40 ;um厚に塗布し、 150 °Cで乾燥して接着剤層 23を形成した。 そして FR— 5タイプのプリント 配線板 22に接着剤層 23を介して重ね、 170°Cで真空プレス成形することに よって、 光回路形成層 8に線状の高屈折率部 8 aで光配線のコア部 26が形成さ れた光回路一電気回路混載基板を得た (図 12 (c) および図 12 (d) 参照) 。 上記のようにして得た光回路一電気回路混載基板について、 実施例 1と同様に 評価したところ、 光が導波していることが観測され、 光配線が機能していること が確認された。 また、 金属層 13を形成する銅箔のピール強度を測定したところ、 6. 9 N/c m (0. 7 k g/c m) であった。 The optical circuit forming layer 8 is exposed to a high-pressure mercury lamp with a power of 10 JZ cm 2 through a mask made so that light passes in a line with an AO μm width (see Fig. 12 (a)). The unexposed portion was formed as a high-refractive-index portion 8a by lowering the refractive index of the exposed portion and making the exposed portion a low-refractive-index portion 8b (see FIG. 12 (b)). Next, a varnish of adhesive A was applied to the surface of the second light transmitting resin layer 9 to a thickness of 40 μm, and dried at 150 ° C. to form an adhesive layer 23. Then, it is superposed on the FR-5 type printed wiring board 22 with the adhesive layer 23 interposed therebetween, and is vacuum-pressed at 170 ° C., thereby forming the optical circuit forming layer 8 with a linear high refractive index portion 8a. An optical circuit-electric circuit hybrid board having the core portion 26 formed was obtained (see FIGS. 12 (c) and 12 (d)). The optical circuit-electric circuit hybrid board obtained as described above was evaluated in the same manner as in Example 1, and it was confirmed that light was guided, and that the optical wiring was functioning. . The peel strength of the copper foil forming the metal layer 13 was measured and found to be 6.9 N / cm (0.7 kg / cm).
(実施例 13) (Example 13)
実施例 1と同じ銅箔を金属層 13として用い、 金属層 13に光透過性樹脂 Bを 口ール転写法で 50 m厚に'塗布し、 : L 00 °Cで 1時間、 さらに 150 で 1時 間加熱処理して硬化させることによつて光透過性樹脂層 1を形成した。 また厚み 25 /zmの透明 PETフィルムからなるカバーフィルム 15に光透過性樹脂 Bを 口ール転写法で 50 μ m厚に塗布し、 100でで 1時間、 さらに 150 °Cで 1時 間加熱処理して硬化させることによって第 2光透過性樹脂層 9を形成した。 そし て感光性樹脂 Cをキャスティングすることによって 40 Aim厚にフィルム化した 光回路形成層 8を光透過性樹脂層 1と第 2光透過性樹脂層 9の間に挟んでラミネ ートすることによって、 図 11 (c) のような光回路一電気回路混載基板用材料 を作製した。 The same copper foil as in Example 1 used as the metal layer 13, a light transmissive resin B to 5 0 m thick in the mouth Lumpur transfer method 'is applied to the metal layer 13,: 1 hour L 00 ° C, further 150 The light-transmitting resin layer 1 was formed by heating and curing for 1 hour. Also applied to the cover film 15 made of a transparent PET film having a thickness of 25 / zm light transmitting resin B to 5 0 mu m thick in the mouth Lumpur transfer method, 1 hour at 100, further for 1 hour at 0.99 ° C The second light-transmitting resin layer 9 was formed by heating and curing. Then, by laminating the optical circuit forming layer 8 formed into a film having a thickness of 40 Aim by casting the photosensitive resin C between the light transmitting resin layer 1 and the second light transmitting resin layer 9 and laminating the same. Then, an optical circuit / electric circuit hybrid board material as shown in Fig. 11 (c) was prepared.
ここで、 感光性樹脂 Cとしては、 三菱ガス化学 (株) 製 「ユーピロン Z」 (ポ リカーボネート樹脂、 屈折率 1. 59) 35質量部、 メチルァクリレート 20質 量部、 ベンゾインェチルエーテル 1質量部、 ハイドロキノン 0. 04質量部をテ トラハイドロフランに溶解させたワニスを使用した。 この感光性樹脂 Cの厚み 4 0 μ mの硬化樹脂の屈折率は 1. 53である。 そしてこれに 3 J /cm2のパヮ 一の高圧水銀ランプを照射した後、 真空中 95°Cで 12時間した後の屈折率は、 露光部で 1. 55〜1. 58、 非露光部で 1. 585〜1. 59である。 Here, as photosensitive resin C, 35 parts by mass of “Iupilon Z” (polycarbonate resin, refractive index 1.59) manufactured by Mitsubishi Gas Chemical Co., Ltd., 20 parts by mass of methyl acrylate, benzoin ethyl ether A varnish prepared by dissolving 1 part by mass of hydroquinone and 0.44 parts by mass of hydroquinone in tetrahydrofuran was used. The refractive index of the cured resin having a thickness of 40 μm of the photosensitive resin C is 1.53. After irradiating this with a high-pressure mercury lamp of 3 J / cm 2 , the refractive index after exposure to vacuum at 95 ° C for 12 hours is 1.55 to 1.58 in the exposed part and in the non-exposed part. 1. 585 to 1.59.
上記のように作製した光回路一電気回路混載基板用材料を 6 c m角に力ットし、 40 / m幅の線状に光が通過するように作製したマスクをカバ一フィルム 1 5の 表面にコンタク トさせると共にマスクを通して光回路形成層 8に 3 jZcm2の パワーの高圧水銀ランプを照射して露光した (図 1 2 (a) 参照) 。 そして 1時 間放置した後に 26 7 P a (2T o r r ) の真空中、 95でで 1 2時間加熱した。 このように露光及び加熱処理を行なうことによって、 露光部分は未露光部分より も屈折率が低くなり、 未露光部分が高屈折率部 8 a、 露光部分が低屈折率部 8 b として形成された (図 1 2 (b) 参照) 。 The material for the optical circuit-electric circuit mixed board prepared as described above was pressed into a 6 cm square, A mask made to allow light to pass through in a 40 / m wide line was contacted to the surface of the cover film 15 and the optical circuit forming layer 8 was irradiated with a high-pressure mercury lamp of 3 jZcm 2 through the mask. (See Figure 12 (a)). After standing for 1 hour, the mixture was heated at 95 in a vacuum of 267 Pa (2 Torr) for 12 hours. By performing the exposure and heat treatment in this manner, the exposed portion has a lower refractive index than the unexposed portion, and the unexposed portion is formed as a high refractive index portion 8a and the exposed portion is formed as a low refractive index portion 8b. (See Figure 12 (b)).
次に、 カバーフィルム 1 5を剥がした後、 第 2光透過性樹脂層 9の表面に接着 剤ワニス Aを 40 μπι厚に塗布し、 1 50°Cで乾燥して接着剤層 23を形成した。 そして FR— 5タイプのプリント配線板 22に接着剤層 23を介して重ね、 1 7 0°Cで真空プレス成形することによって、 光回路形成層 8に線状の高屈折率部 8 aで光配線のコア部 26が形成された光回路—電気回路混載基板を得た (図 1 2 (c) および図 1 2 (d) 参照) 。  Next, after the cover film 15 was peeled off, an adhesive varnish A was applied to the surface of the second light-transmitting resin layer 9 to a thickness of 40 μπι, and dried at 150 ° C. to form an adhesive layer 23. . Then, the printed circuit board 22 of the FR-5 type is laminated with an adhesive layer 23 interposed therebetween, and is vacuum-pressed at 170 ° C. to form a light on the optical circuit forming layer 8 with a linear high refractive index portion 8a. An optical circuit-electric circuit hybrid board on which the wiring core 26 was formed was obtained (see FIGS. 12 (c) and 12 (d)).
上記のようにして得た光回路一電気回路混載基板について、 実施例 1と同様に 評価したところ、 光が導波していることが観測され、 光配線が機能していること が確認された。 また、 金属層 1 3を形成する銅箔のピール強度を測定したところ、 7. 8N/cm (0. 8 k g/cm) であった。  When the optical circuit-electric circuit mixed board obtained as described above was evaluated in the same manner as in Example 1, light was observed to be guided, and it was confirmed that the optical wiring was functioning. . The peel strength of the copper foil forming the metal layer 13 was measured and found to be 7.8 N / cm (0.8 kg / cm).
(実施例 14) (Example 14)
厚み 3 5 //mの銅箔 (古河電工 (株) 製 「MPGT」 ) を金属層 20 2として 用レ、、 金属層 202に光透過性樹脂 Bをロール転写法で塗布厚み 50 μ mに塗布 し、 100°C で 1時間、 続いて 1 50°Cで 1時間加熱して硬化させることによ つて、 光透過性樹脂層 2 1 7を形成した。 次に光透過性樹脂層 2 1 7の上に感光 性樹脂 Aのワニスを 80 / m厚に塗布し、 加熱乾燥して厚み 40± 5 /xmの光 回路形成層 20 1を形成した後、 この上に厚み 25 μπιの透明 PETフィルムか らなるカバーフィルム 2 1 5をロールで押し当てて張り付けることによって、 積 層物 203を得た (図 1 7 (a) 参照) 。  A copper foil with a thickness of 3 5 // m ("MPGT" manufactured by Furukawa Electric Co., Ltd.) is used as the metal layer 202, and the light transmitting resin B is applied to the metal layer 202 by a roll transfer method to a coating thickness of 50 μm. The light-transmissive resin layer 217 was formed by applying and curing by heating at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour. Next, a varnish of the photosensitive resin A is applied to a thickness of 80 / m on the light-transmitting resin layer 2 17 and dried by heating to form an optical circuit forming layer 201 having a thickness of 40 ± 5 / xm. A cover film 215 made of a transparent PET film having a thickness of 25 μπι was pressed on this with a roll and attached to obtain a laminate 203 (see FIG. 17 (a)).
上記のようにして得た積層物 203を 6 cm角にカットして用い、 また 40 m幅の線状の光通過スリットが 250 /zm間隔で 20本平行に配置して形成され たフォトマスクを用いた。 そして金属層 202に予め形成された基準マーク (線 幅 100 μηι、 サイズ 500 zm角の十字形状) を基準にしてフォトマスクを ァライメントした後、 積層物 203のカバーフィルム 215の表面にフォトマス クをコンタクトし、 フォトマスクを通して 10 J cm2のパワーの高圧水銀で 露光した (図 17 (b) 参照) 。 The laminate 203 obtained as described above was cut into 6 cm squares, and 20 linear slits of 40 m width were formed in parallel at intervals of 250 / zm. A photomask was used. Then, after aligning the photomask with reference to the fiducial mark (a cross shape having a line width of 100 μηι and a size of 500 zm) formed on the metal layer 202, a photomask is formed on the surface of the cover film 215 of the laminate 203. They were contacted and exposed through a photomask with high-pressure mercury at a power of 10 Jcm2 (see Fig. 17 (b)).
次に、 切断刃 40の頂角が 90° の回転ブレード 241を用い、 金属層 20 2の基準マークを基準として V溝 221を加工した (図 17 (c) 参照) 。 ここ で、 回転ブレード 241として、 ディスコ社の # 5000ブレード (型番 「B1E863SD5000L100MT38J ) を用い、 回転数 3000◦ r p mで、 カバーフィノレ ム 215の側から回転ブレード 241を下降速度 0. 03mmZsで積層物 20 Next, a V-shaped groove 221 was machined using a rotating blade 241 having a vertical angle of 90 ° of the cutting blade 40 with reference to a reference mark of the metal layer 202 (see FIG. 17C). Here, a # 5000 blade from Disco (model number "B1E863SD5000L100MT38J") is used as the rotating blade 241. The rotating blade 241 is lowered from the side of the cover fin rem 215 at a rotation speed of 3000 rpm at a speed of 0.03 mmZs.
3に接触させて 80 /xmの深さに切り込み、 この切り込み深さを維持したまま 2 0本の露光部 1 aを全て直角に横切るように、 0. ImmZsの速度で回転ブレ ード 241を走査させた後、 積層物 203から回転ブレード 241を離脱させた (図 19 (b) 参照) 。 形成された V溝 221の面粗度は、 1" 111 3表示で6011 mと良好なものであった。 3 and make a cut to a depth of 80 / xm. After the scanning, the rotating blade 241 was detached from the laminate 203 (see FIG. 19B). The surface roughness of the V-groove 221 formed in was 1 "111 3 favorable and 60 1 1 m in view.
この後、 V溝 221の部分に粒径 10 nm以下の銀粒子が分散された銀ペース トを滴下し、 120°Cで 1時間加熱して溶剤を除去すると共に加熱することによ つて、 V溝 221の傾斜面 207に光反射部 208を設けて偏向部 205を形成 した (図 18 (a) 参照) 。  Thereafter, a silver paste in which silver particles having a particle size of 10 nm or less are dispersed is dropped into the V-groove 221 and heated at 120 ° C. for 1 hour to remove the solvent and to heat the V paste. A light reflecting portion 208 was provided on the inclined surface 207 of the groove 221 to form a deflecting portion 205 (see FIG. 18A).
次にカバーフィルム 215を剥離して除去し、 トルエンとクリーンスルー (花 王 (株) 製のフレオン代替の水系洗浄剤) で現像することによって、 非露光部を 除去し、 水で洗浄後乾燥した (図 17 (d) 参照) 。  Next, the cover film 215 was peeled off and removed, and developed with toluene and clean-through (aqueous cleaning agent instead of Freon manufactured by Kao Corporation) to remove the non-exposed areas, washed with water and dried. (See Fig. 17 (d)).
この後、 積層物 203の光回路形成層 201の側に光透過性樹脂 Bを塗布厚み 50 πιに塗布し、 100°Cで 1時間、 続いて 150°Cで 1時間加熱して硬化さ せることによって第 2光透過性樹脂層を形成し、 この上に接着剤 Aのワニスを 4 0 μ m厚に塗布して 150 °Cで乾燥し、 接着剤 214の層を形成した。  Thereafter, the light-transmitting resin B is applied to a thickness of 50 πι on the optical circuit forming layer 201 side of the laminate 203, and is cured by heating at 100 ° C for 1 hour, and subsequently at 150 ° C for 1 hour. Thus, a second light-transmitting resin layer was formed, and a varnish of the adhesive A was applied thereon to a thickness of 40 μm, and dried at 150 ° C. to form a layer of the adhesive 214.
そして電気回路 212を設けた FR— 5タイプのプリント酉己線基板 211を用 レ、、 基板 211に積層物 203を重ねて 170°Cにて真空プレスし、 両者を接着 した (図 17 (e) 参照:第 2光透過性樹脂層の図示は省略) 。 この後、 金属層 202のビアホーノレ 2 13を形成する箇所にサイズ 100 μπι φのコンフォーマルマスク孔及び基準ガイドを形成した後、 エキシマレーザを照 射して開口径 100 xmのビアホール 213を形成し (図 17 (f ) 参照) 、 次 いで過マンガン酸デスミアによる表面処理、 硫酸過水系によるソフトエッチング 処理を施した後にパネルメツキをしてビアホール 213に電気導通部 22を形成 し (図 17 (g) 参照) 、 さらに金属層 202をパターユングして電気回路 20 6を形成することによって、 光回路一電気回路混載基板を得た (図 17 (h) 参 照) 。 また、 偏向部 205の直上部の光透過性樹脂層 21 7の表面に、 この光透 過性樹脂層 21 7と同じ樹脂 (つまり同じ屈折率) である光透過性樹脂 Aを 1 μ g滴下し、 100°Cで 1時間、 続いて 1 50°Cで 1時間加熱して硬化させること によって、 光透過性樹脂 216の層を形成した (図 25 (a) 参照) 。 Then, the printed circuit board 211 of the FR-5 type provided with the electric circuit 212 was used. The laminate 203 was overlaid on the board 211, and vacuum-pressed at 170 ° C. to bond the two together (FIG. 17 (e Reference: illustration of the second light-transmitting resin layer is omitted). Thereafter, a conformal mask hole having a size of 100 μπιφ and a reference guide are formed at a portion of the metal layer 202 where the via hole 213 is to be formed, and a via hole 213 having an opening diameter of 100 × m is formed by irradiating an excimer laser ( Next, the surface is treated with desmear permanganate and soft-etched with a sulfuric acid-hydrogen peroxide system, and then panel plating is performed to form the electrical conduction portion 22 in the via hole 213 (see FIG. 17 (g)). Then, the electric circuit 206 was formed by patterning the metal layer 202 to obtain an optical circuit-electric circuit mixed board (see FIG. 17 (h)). In addition, 1 μg of the light-transmitting resin A, which is the same resin as the light-transmitting resin layer 217 (that is, the same refractive index), is dropped on the surface of the light-transmitting resin layer 217 immediately above the deflection section 205. Then, by heating and curing at 100 ° C. for 1 hour, and then at 150 ° C. for 1 hour, a layer of the light-transmitting resin 216 was formed (see FIG. 25 (a)).
このようにして得られた光回路一電気回路混載基板にあって、 偏向部 205及 びその直上の光透過性樹脂 216を設けた開口部 231は、 フォトマスクによつ てパターユングされた 40 μπι幅の光導波路 204の両端に、 対をなすように形 成してあり、 また、 電気回路 206にはベアの面発光レーザチップ (波長 850 nm、 放射広がり角土 10° 、 放射強度 0 d Bm) と、 ベアの P I Nフォトダ ィオードチップ (受光エリア 38 //in) をボールハンダによってフリップチップ 実装した。 そしてこの面発光レーザチップからの発光を 1対の偏向部 205と光 導波路 204を通して P I Nフォトダイオードチップで— 6. 8 dBmにて受光 できることを確認した。  In the optical circuit-electric circuit hybrid board obtained in this way, the opening 231 provided with the deflecting section 205 and the light-transmitting resin 216 immediately above the deflecting section 205 was formed by a 40 μπιι pattern patterned by a photomask. A pair of optical waveguides 204 is formed at both ends of the optical waveguide 204, and a bare surface emitting laser chip (wavelength 850 nm, radiation spread angle 10 °, radiation intensity 0 d Bm ) And the bare PIN photodiode chip (light receiving area 38 // in) were flip-chip mounted by ball soldering. Then, it was confirmed that light emitted from the surface emitting laser chip could be received at −6.8 dBm by the PIN photodiode chip through the pair of deflection portions 205 and the optical waveguide 204.
(実施例 15) (Example 15)
厚み 35 / mの銅箔 (古河電工 (株) 製 「MPGT」 ) を金属層 202として 用い、 金属層 202に光透過性樹脂 Bを口一ノレ転写法で塗布厚み 50 / mに塗布 し、 100 °C で 1時間、 続いて 150でで 1時間加熱して硬化させることによ つて、 光透過性樹脂層 21 7を形成した。 次に光透過性樹脂層 217の上に感光 性樹脂 Bのワニスを 100 /im厚に塗布し、 加熱乾燥して厚み 50 ± 5 /xmの 光回路形成層 201を形成した後、 この上に厚み 25 // mの透明 P E Tフィルム からなるカバーフィルム 215をロールで押し当てて張り付けることによって、 積層物 2 0 3を得た (図 2 6 ( a ) 参照) 。 Using a copper foil with a thickness of 35 / m (“MPGT” manufactured by Furukawa Electric Co., Ltd.) as the metal layer 202, apply the light-transmitting resin B to the metal layer 202 by a one-sided transfer method to a coating thickness of 50 / m. The light-transmitting resin layer 217 was formed by heating and curing at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour. Next, a varnish of photosensitive resin B is applied to a thickness of 100 / im on the light-transmitting resin layer 217, and dried by heating to form an optical circuit forming layer 201 having a thickness of 50 ± 5 / xm. By pressing a cover film 215 made of a transparent PET film with a thickness of 25 // m with a roll and attaching it, A laminate 203 was obtained (see FIG. 26 (a)).
上記のようにして得た積層物 2 0 3を 6 c m角にカツトして用レ、、 また 4 0 m幅の線状の光遮断領域を 2 5 0 μ m間隔で 2 0本平行に配置して形成したフォ トマスクを用いた。 そして金属層 2 0 2に予め形成された基準マークを基準にし てフォトマスクをァライメントした後、 積層物 2 0 3のカバーフィルム 2 1 5の 表面にフォトマスクをコンタクトし、 フォトマスクを通して 1 0 j / c m 2のパ ヮ一の高圧水銀で露光した (図 2 6 ( b ) 参照) 。 このように露光することによ つて、 露光部 2 0 1 aは非露光部 2 0 1 bより屈折率が低下した。 The laminate 203 obtained as described above was cut into 6 cm squares for use, and 20 linear light-blocking areas with a width of 40 m were arranged in parallel at intervals of 250 μm. The photomask formed was used. Then, after aligning the photomask with reference to the fiducial mark previously formed on the metal layer 202, the photomask is brought into contact with the surface of the cover film 215 of the laminate 203, and the photomask is passed through the photomask. It was exposed to a high pressure of mercury at a rate of / cm 2 (see Figure 26 (b)). By performing such exposure, the exposed portion 201a had a lower refractive index than the unexposed portion 201b.
次に、 切断刃 4 0の頂角が 9 0 ° の回転ブレード 2 4 1を用レ、、 金属層 2 0 2の基準マークを基準として V溝 2 2 1を加工した (図 2 6 ( c ) 参照) 。 ここ で、 V溝 2 2 1の加工は、 まず第一の回転ブレード 2 4 1で切削を行なった後、 第二の回転ブレード 2 4 1で同じ箇所を再度切削することによって行なった。 す なわち、 第一の回転ブレード 2 4 1として、 ディスコ社の # 4 0 0 0ブレード (型番 「B1E863SM000L100 MT38」 ) を用い、 回転数 3 0 0 0 0 r p mで、 カバ 一フィルム 2 1 5の側から第一の回転ブレード 2 4 1を下降速度◦. 0 3 mmZ sで積層物 2 0 3に接触させて 9 0 mの深さに切り込み、 この切り込み深さ を維持したまま 2 0本の露光部 1 aを全て直角に横切るように、 0 . I mmZ s の速度で第一の回転ブレード 2 4 1を走査させた後、 積層物 2 0 3から第一の回 転ブレード 2 4 1を離脱させることによって、 第一の回転ブレード 2 4 1による 切削を行ない、 次に第二の回転ブレード 2 4 1として、 ディスコ社の # 6 0 0 0 ブレード (型番 「B1E863SD6000L100MT38」 ) を用い、 同一条件で、 同一箇所を走 查させることによって、 第二の回転ブレード 2 4 1による切削を行なった。 形成 された V溝 2 2 1には、 小砥粒径ブレードに特有の切削力不足による切り込み表 面の引っ張り歪みが見られず、 また V溝 2 2 1の面粗度は r m s表示で 5 0 n m と良好なものであった。  Next, a V-shaped groove 2 21 was machined using a rotating blade 2 41 having a 90 ° apex angle of the cutting blade 40 and a fiducial mark of the metal layer 202 (see FIG. 26 (c ))). Here, the machining of the V-groove 221 was performed by first cutting with the first rotating blade 241 and then cutting the same portion again with the second rotating blade 241. In other words, as the first rotating blade 241, a Disco # 400 blade (model number "B1E863SM000L100 MT38") was used, and the rotation speed was 30000 rpm and the cover film 2 15 was used. From the side, the first rotating blade 2 41 is brought into contact with the laminated body 203 at a descending speed of 0 3 mmZ s and cut into a depth of 90 m, and while maintaining this cutting depth, 20 After scanning the first rotating blade 241 at a speed of 0.1 mmZs so as to traverse all the exposed parts 1a at right angles, the first rotating blade 241 is moved from the laminate 203 to the first rotating blade 241. By disengaging, the first rotating blade 241 is used for cutting, and then, as the second rotating blade 241, a Disco # 600 blade (model number “B1E863SD6000L100MT38”) is used under the same conditions. Then, cutting was performed by the second rotating blade 241 by running the same place. The formed V-groove 2 21 does not show the tensile strain on the cut surface due to insufficient cutting force specific to the small abrasive grain blade, and the surface roughness of the V-groove 2 21 is 50 in rms. nm, which was good.
この後、 V溝 2 2 1の部分に電子ビーム蒸着によって、 金を 8 AZ秒の速度で 厚み 2 0 0 0 A蒸着し、 V溝 2 2 1の傾斜面 2 0 7に光反射部 2 0 8を設けて偏 向咅 2 0 5を形成した (図 1 8 ( a ) 参照) 。 次いでカバーフィルム 2 1 5を剥 離して除去した (図 2 6 ( d ) ) 。 この後、 積層物 203と電気回路 212を設けた FR— 5タイプのプリント配 線基板 21 1の間にプリプレダ 32を二枚重ねて挟み、 150 °C、 0. 98MP a (10 k g f /cm2) 、 30分間の条件で加熱加圧し、 プリプレグ 32によ る接着剤 214で両者を接着した (図 26 (e) ) 。 Thereafter, gold was vapor-deposited at a rate of 8 AZ seconds to a thickness of 200 A by electron beam vapor deposition on the V-groove 2 21, and the light reflecting portion 20 was formed on the inclined surface 2 07 of the V-groove 2 21. 8 was provided to form a deflection 咅 205 (see FIG. 18 (a)). Next, the cover film 215 was peeled off and removed (FIG. 26 (d)). After that, two pre-predaers 32 are stacked and sandwiched between the FR-5 type printed wiring board 211 provided with the laminate 203 and the electric circuit 212, at 150 ° C. and 0.98 MPa (10 kgf / cm 2 ). Heat and pressure were applied for 30 minutes, and the two were bonded with an adhesive 214 using prepreg 32 (FIG. 26 (e)).
ここで、 上記のプリプレダとしては、 ダウ -ケミカル (株) 製 「DER— 51 Here, the above-mentioned prepredder is “DER-51” manufactured by Dow Chemical Co., Ltd.
4J (エポキシ樹脂) 73. 6質量部、 大日本インキ化学工業 (株) 製 「ェピク ロン N 613」 (エポキシ樹脂) 18. 4質量部、 グッドリッテ (株) 製 「CT BN# 13」 (ゴム材) 8質量部、 ジシアンジアミ ド 2. 4質量部、 四国化成 (株) 製 「2E4MZ」 (2ェチル 4メチルイミダゾール) 0. 05質量部を、 メチルェチルケトンとジメチルホルムアミ ドの混合溶液に溶解したワニス Fを 0. lmm厚のガラスクロスに含浸乾燥して得られた、 レジン含有率 56質量%のェ ポキシプリプレダを用いた。 このプリプレダの硬化状態での屈折率は 1. 585 である。 4J (epoxy resin) 73.6 parts by mass, Dainippon Ink & Chemicals, Inc. "Epiclon N 613" (epoxy resin) 18.4 parts by mass, Goodritte Co., Ltd. "CT BN # 13" (rubber material) 8 parts by mass, dicyandiamide 2.4 parts by mass, Shikoku Chemicals Co., Ltd. “2E4MZ” (2-ethyl 4-methylimidazole) 0.05 parts by mass dissolved in a mixed solution of methyl ethyl ketone and dimethylformamide Epoxy prepreg having a resin content of 56% by mass, obtained by impregnating the varnish F with a glass cloth having a thickness of 0.1 mm and drying, was used. The refractive index of this pre-preda in the cured state is 1.585.
この後、 実施例 14と同様にして光回路一電気回路混載基板を得た (図 26 (ί) 〜図 26 ( i) 参照) 。 ここで、 偏向部 205の直上部において、 金属箔 Thereafter, an optical-circuit / electric-circuit-mixed substrate was obtained in the same manner as in Example 14 (see FIGS. 26A to 26I). Here, immediately above the deflection unit 205, a metal foil
2をエッチングして開口部 231を形成し、 開口部 231の周囲の金属箔 2の表 面及び端面 (または側面) に、 住友スリ一ェム社製 「フロリナート FC—77J で 100倍に希釈した、 旭硝子社製 「サイトップ CTL— 107M」 を 1 g滴 下して乾燥することによって撥水処理を行なった。 この後、 開口部 231に露出 する光透過性樹脂層 217の表面に、 この光透過性樹脂層 217とほぼ同等の屈 折率を有する東亜合成 (株) 製 「ァロニックス UV_3100」 (光硬化性ァク リル樹脂) を 滴下し、 5 J cm2のパワーの高圧水銀ランプを照射して 硬化させることによって、 凸レンズ形状の光透過性樹脂 216の層を形成した (図 25 (c) 参照) 。 2 is etched to form an opening 231, and the surface and the end surface (or side surface) of the metal foil 2 around the opening 231 are diluted 100-fold with “Fluorinert FC-77J” manufactured by Sumitomo Sliem. Water-repellent treatment was performed by dropping 1 g of “CYTOP CTL-107M” manufactured by Asahi Glass Co., Ltd. and drying. Thereafter, on the surface of the light-transmitting resin layer 217 exposed to the opening 231, “Alonics UV_3100” (photocurable resin) manufactured by Toa Gosei Co., Ltd. Then, by applying a high-pressure mercury lamp with a power of 5 Jcm 2 to cure the resin, a layer of light-transmitting resin 216 having a convex lens shape was formed (see FIG. 25 (c)).
このようにして得られた光回路一電気回路混載基板にあって、 実施例 14と同 様にベアの面発光レーザチップとベアの P I Nフォトダイオードチップを実装し、 そしてこの面発光レーザチップからの発光を 1対の偏向部 205と光導波路 20 4を通して P I Nフォトダイォ一ドチップで一 4. 5 d Bmにて受光できること を確認した。 また凸レンズ形状に光透過性樹脂 216を形成することによって、 光導波路 204と光の結合効率が 1〜 2 d B向上した。 (実施例 16 ) A bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the thus obtained optical circuit-electrical circuit hybrid board in the same manner as in Embodiment 14, and the surface emitting laser chip It was confirmed that the emitted light could be received at 14.5 dBm with a PIN photodiode chip through a pair of deflection sections 205 and an optical waveguide 204. Also, by forming the light transmitting resin 216 in a convex lens shape, The coupling efficiency between the optical waveguide 204 and light was improved by 1 to 2 dB. (Example 16)
厚み 100 μπιのステンレス板で形成した支持体 33に両面粘着テープ 34 (住友スリーェム (株) 製 「4591 HL」 、 片面弱粘着用両面テープ) を、 支 持体 33側に強粘着層が向くように貼り、 また厚み 35 / mの銅箔 (古河電工 A double-sided adhesive tape 34 (“4591 HL”, double-sided tape for one-sided weak adhesive) manufactured by Sumitomo 3LEM Co., Ltd. is applied to a support 33 made of a stainless steel plate with a thickness of 100 μπι, and the strong adhesive layer faces the support 33 side. And a 35 / m thick copper foil (Furukawa Electric
(株) 製 「MPGT」 ) を金属層 202として用い、 この金属層 202を両面粘 着テープで支持体に貼った。 そして金属層 202に光透過性樹脂 Bをロール転写 法で塗布厚み 50 μ mに塗布し、 100°Cで 1時間、 続いて 150°Cで 1時間加 熱して硬化させることによって、 光透過性樹脂層 217を形成した。 次に光透過 性樹脂層 217の上に感光性樹脂 Bのワニスを 100 At m厚に塗布し、 加熱乾燥 して厚み 50 ± 5 /1 mの光回路形成層 201を形成した。 次ぎにこの上に光透 過性樹脂 Bを口ール転写法で塗布厚み 50 μ mに塗布し、 100でで 1時間、 続 いて 150でで 1時間加熱して硬化させることによって、 第 2光透過性樹脂層 2 23を形成した。 そしてこの上に厚み 25 / mの透明 PETフィルムからなる力 バーフィルム 215をロールで押し当てて張り付けることによって、 積層物 20 3を得た (図 23 (a) 参照:支持体の図示は省略) 。 “MPGT” manufactured by KK Corporation was used as the metal layer 202, and this metal layer 202 was adhered to the support with a double-sided adhesive tape. Then, the light-transmitting resin B is applied to the metal layer 202 by a roll transfer method to a coating thickness of 50 μm, and is heated and cured at 100 ° C for 1 hour, and then at 150 ° C for 1 hour, thereby obtaining a light-transmitting resin. The resin layer 217 was formed. Next, a varnish of photosensitive resin B was applied on the light transmitting resin layer 217 to a thickness of 100 Atm, and dried by heating to form an optical circuit forming layer 201 having a thickness of 50 ± 5/1 m. Next, a light-transmissive resin B was applied to this to a coating thickness of 50 μm by a mouth transfer method, and was cured by heating at 100 for 1 hour and subsequently at 150 for 1 hour to cure. A light transmitting resin layer 223 was formed. Then, a laminate 203 was obtained by pressing a power bar film 215 made of a transparent PET film having a thickness of 25 / m with a roll on the laminate, and obtaining a laminate 203 (see FIG. 23 (a): the support is not shown). ).
上記のようにして得た積層物 203を 6 cm角にカットして用い、 また、 40 μ m幅の線状の光遮断領域を 250 μ m間隔で 20本平行に配置して形成したフ オトマスクを用いた。 そして金属層 202に予め形成された基準マークを基準に してフォトマスクをァライメントした後、 積層物 203のカバーフイノレム 215 の表面にフォトマスクをコンタクトし、 フォトマスクを通して l O j/cm2の パワーの高圧水銀で露光した (図 23 (b) 参照) 。 このように露光することに よって、 露光部 1 aは非露光部 1 bより屈折率が低下した。 A photomask formed by cutting the laminate 203 obtained as described above into 6 cm squares and using 20 40 μm wide linear light blocking areas arranged in parallel at 250 μm intervals Was used. Then, after aligning the photomask with reference to the reference mark formed in advance on the metal layer 202, the photomask is brought into contact with the surface of the cover finolem 215 of the laminate 203, and the power of l O j / cm 2 is passed through the photomask. Exposure with high-pressure mercury (see Figure 23 (b)). By such exposure, the exposed portion 1a had a lower refractive index than the unexposed portion 1b.
次に、 金属層 202の基準マークを基準として、 短パルスレーザの集光照射を 用いて、 光導波路 204のコア部 204 aとなる非露光部 201 bに周期構造体 の微小列 28を設けてグレーティング力ブラを描画した。 ここで、 レーザ光には 波長 800 nm、 パルス幅 150 f s、 パルスエネルギー 50 n J、 パルス繰り 返し 1 kHzのものを用い、 これを開口数 1. 25の油浸対物レンズによって力 バーフィルム 215を通して光回路形成層 201の非露光部 201 b内に集光照 射した。 レーザ光はストローク 40 im、 移動速度 400 m/ sで、 直線状に 走査され、 これを 0. 57 μπιピッチで 200本描画し、 グレーティングカプラ となる周期構造体の微小列 28を設け、 偏向部 205を形成した (図 24 ( b ) 参照) 。 Next, using the short-pulse laser focused irradiation with reference to the reference mark of the metal layer 202, a minute row 28 of the periodic structure is provided in the non-exposed part 201b which becomes the core part 204a of the optical waveguide 204. Drawn grating power bra. Here, a laser beam with a wavelength of 800 nm, a pulse width of 150 fs, a pulse energy of 50 nJ, and a pulse repetition rate of 1 kHz was used. The light was condensed and irradiated into the non-exposed portion 201 b of the optical circuit forming layer 201 through the bar film 215. The laser beam is linearly scanned at a stroke of 40 im and a moving speed of 400 m / s, and 200 lines are drawn at a pitch of 0.57 μπι. A minute array 28 of periodic structures to be a grating coupler is provided. 205 was formed (see FIG. 24 (b)).
この後、 積層物 203の光回路形成層 201の ^(則に接着剤 Aのワニスを 40 μ m厚に塗布して 150°Cで乾燥し、 接着剤 214の層を形成し、 そして電気回路 212を設けた FR— 5タイプのプリント配線基板 211に積層物 203を重ね て 1 70°Cにて真空プレスし、 両者を接着した (図 23 (e) 参照) 。  Then, apply a varnish of adhesive A to the optical circuit forming layer 201 of the laminate 203 to a thickness of 40 μm and dry at 150 ° C to form a layer of adhesive 214, The laminate 203 was overlaid on the FR-5 type printed wiring board 211 provided with 212, and vacuum-pressed at 170 ° C. to bond the two together (see FIG. 23 (e)).
後は実施例 14と同様にして光回路一電気回路混載基板を得た (図 23 ( f ) Thereafter, an optical circuit-electrical circuit board was obtained in the same manner as in Example 14 (FIG. 23 (f)).
〜図 23 (h) 参照) 。 また、 偏向部 205の直上部の表面に光透過性樹脂層 2 17と同じ樹脂 (つまり同じ屈折率) である光透過性樹脂 Aを 1 μ g滴下し、 1 00°Cで 1時間、 続いて 1 50°Cで 1時間加熱して硬化させることによって、 光 透過性樹脂 216の層を形成した (図 25 (a) 参照) 。 ~ See Figure 23 (h)). Also, 1 μg of the light-transmitting resin A, which is the same resin as the light-transmitting resin layer 217 (that is, the same refractive index), is dropped on the surface immediately above the deflecting section 205, and the temperature is maintained at 100 ° C. for 1 hour. By heating at 150 ° C. for 1 hour to cure, a layer of light transmissive resin 216 was formed (see FIG. 25 (a)).
このようにして得られた光回路一電気回路混載基板にあって、 実施例 14と同 様にベアの面発光レーザチップとベアの P I Nフォトダイオードチップを実装し、 そしてこの面発光レーザチップからの発光を 1対の偏向部 205と光導波路 20 4を通して P I Nフォトダイォードチップで一 15 d Bmにて受光できることを 確認した。  A bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the thus obtained optical circuit-electrical circuit hybrid board in the same manner as in Embodiment 14, and the surface emitting laser chip It was confirmed that the emitted light could be received at 15 dBm with a PIN photodiode chip through a pair of deflection sections 205 and an optical waveguide 204.
(実施例 17) (Example 17)
厚み 100 / mのステンレス板で形成した支持体 33に両面粘着テープ 34 (住友スリーェム (株) 製 「4591HL」 、 片面弱粘着用両面テープ) を、 支 持体 33側に強粘着層が向くように貼り、 また厚み 35 /i mの銅箔 (古河電工 (株) 製 「MPGT」 ) を金属層 202として用い、 この金属層 202を両面粘 着テープ 34で支持体 33に貼った。 そして金属層 202に光透過性樹脂 Bを口 ール転写法で塗布厚み 50 μ mに塗布し、 100°Cで 1時間、 続いて 1 50°Cで 1時間加熱して硬化させることによって、 光透過性樹脂層.217を形成した。 次 に光透過性樹脂層 21 7の上に感光性樹脂 Cを 40 m厚に塗布し、 窒素雰囲気 中、 室温で乾燥させて光回路形成層 20 1を形成した。 次ぎにこの上に厚み 25 μπιの透明 PETフィルムからなるカバーフィルム 2 1 5をロールで押し当てて 張り付けることによって、 積層物 203を得た (図 27 (a) 参照) 。 Double-sided adhesive tape 34 (“4591HL”, double-sided tape for one-sided low-adhesion) manufactured by Sumitomo 3LEM Co., Ltd. is applied to a support 33 made of a stainless steel plate with a thickness of 100 / m, with the strong adhesive layer facing the support 33 side. Further, a 35 / im-thick copper foil (“MPGT” manufactured by Furukawa Electric Co., Ltd.) was used as the metal layer 202, and the metal layer 202 was bonded to the support 33 with a double-sided adhesive tape 34. Then, the light-transmissive resin B is applied to the metal layer 202 to a coating thickness of 50 μm by a pallet transfer method, and is cured by heating at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour. A light transmitting resin layer .217 was formed. Next, apply photosensitive resin C to the light-transmitting resin layer 217 to a thickness of 40 m in a nitrogen atmosphere. It was dried at room temperature at room temperature to form an optical circuit forming layer 201. Next, a cover film 215 made of a transparent PET film having a thickness of 25 μπι was pressed on the roll with the roll and stuck to obtain a laminate 203 (see FIG. 27 (a)).
上記のようにして得た積層物 203を 6 cm角にカツトして用い、 また 40 ^ m幅の線状の光遮断領域を 250 / m間隔で 20本平行に配置して形成したフォ トマスクを用いた。 そして金属層 202に予め形成された基準マークを基準にし てフォトマスクをァライメントした後、 積層物 203のカバーフィルム 2 1 5の 表面にフォトマスクをコンタクトし、 窒素雰囲気中、 フォトマスクを通して 3 J /cm2のパワーの高圧水銀で露光し、 さらに 1時間放置した後、 267 P a (2 T o r r) の真空中、 95 °Cで 1 2時間加熱した (図 27 (b) 参照) 。 こ のように露光することによって、 フォトマスクの光通過領域 (露光部 20 1 a) は屈折率が上昇するが、 その後の加熱によって非露光部 1 bのメチルメタクリレ ートモノマーが外拡散し、 その結果非露光部 20 1 bの屈折率は露光部 20 1 a より高くなつた。 A photomask formed by cutting the laminate 203 obtained as described above into a 6 cm square and using 20 light-shielding regions each having a width of 40 m and arranged in parallel at intervals of 250 / m was used. Using. Then, after aligning the photomask with reference to the reference mark formed in advance on the metal layer 202, the photomask is brought into contact with the surface of the cover film 215 of the laminate 203, and the photomask is passed through the photomask in a nitrogen atmosphere. Exposure was performed with high-pressure mercury having a power of cm 2 , and after further leaving for 1 hour, it was heated at 95 ° C. for 12 hours in a vacuum of 267 Pa (2 Torr) (see FIG. 27 (b)). This exposure increases the refractive index in the light-passing area of the photomask (exposed area 201a), but the subsequent heating causes the methyl methacrylate monomer in the non-exposed area 1b to diffuse out, and As a result, the refractive index of the unexposed area 201b was higher than that of the exposed area 201a.
次に、 カバーフィルム 2 1 5を剥がして除去した (図 27 (c) 参照) 。 そし てシリコンマスター型を用いた N i電铸及びフッ素樹脂被覆による表面離型処理 によって作製した、 ピッチ 0. 57 //m、 凹凸比 50%、 凹み深さ 1. 5 μ m、 凸ライン数 200本、 凸ライン幅 40 / mの周期的な微小突起 25を有する押し 型 26を用い、 押し型 26を 1 70°Cに加熱した状態で、 金属層 202の基準マ —クを基準にして、 光導波路 204のコア部 204 aとなる非露光部 1 bに押し 型 26を押し当て、 その状態のまま徐冷した後離型し、 グレーティング周期構造 体の微小列 27を転写して偏向部 205を形成した (図 27 ( d ) 参照) 。 この後、 積層物 203の光回路形成層 20 1の側に光透過性樹脂 Bを塗布厚み 50 μ mに塗布し、 100でで 1時間、 続いて 1 50でで 1時間加熱して硬化さ せることによって第三の光透過性樹脂層 35を形成し、 この上に接着剤 Aのヮニ スを 40 μ m厚に塗布して 1 50 °Cで乾燥し、 接着剤 2 14の層を形成した。 そ して電気回路 2 1 2を設けた FR— 5タイプのプリント配線基板 2 1 1に積層物 20 3を重ねて 1 70°C にて真空プレスし、 両者を接着した (図 27 (e) 参 照) 。 後は実施例 14と同様にして光回路—電気回路混載基板を得た (図 27 ( f ) 〜図 27 ( i ) 参照) 。 また、 偏向部 205の直上部の表面に光透過性樹脂層 2 17と同じ樹脂 (つまり同じ屈折率) である光透過性樹脂 Aを 1 g滴下し、 1 00°じで1時間、 続いて 1 50°C で 1時間加熱して硬化させることによって、 光透過性樹脂 216の層を形成した (図 25 (a) 参照) 。 Next, the cover film 215 was peeled off and removed (see FIG. 27 (c)). The pitch was 0.57 // m, the asperity ratio was 50%, the dent depth was 1.5 μm, and the number of convex lines was made by surface release treatment using a Ni master electrode with a silicon master mold and fluororesin coating. Using a stamping die 26 having 200 micro-projections 25 with periodic fine protrusions 25 with a convex line width of 40 / m. With the stamping die 26 heated to 170 ° C, with reference to the reference mark of the metal layer 202. The pressing mold 26 is pressed against the non-exposed portion 1 b serving as the core portion 204 a of the optical waveguide 204, and is gradually cooled in this state, and then released, and the micro array 27 of the grating periodic structure is transferred to the deflection portion. 205 was formed (see FIG. 27 (d)). Thereafter, a light-transmissive resin B is applied to a thickness of 50 μm on the side of the optical circuit forming layer 201 of the laminate 203, and is cured by heating at 100 for 1 hour and then at 150 at 1 hour. To form a third light-transmitting resin layer 35, apply a 40 μm thick adhesive A on top of this, and dry at 150 ° C to form a layer of adhesive 214. Formed. Then, the laminate 203 was placed on the FR-5 type printed circuit board 211 provided with the electric circuit 211, and vacuum-pressed at 170 ° C to bond the two together (Fig. 27 (e) See). Thereafter, an optical circuit / electric circuit mixed board was obtained in the same manner as in Example 14 (see FIGS. 27 (f) to 27 (i)). Also, 1 g of the light-transmitting resin A, which is the same resin as the light-transmitting resin layer 217 (that is, the same refractive index), is dropped on the surface immediately above the deflecting portion 205, and then, for one hour at 100 °, By heating and curing at 150 ° C for 1 hour, a layer of light-transmitting resin 216 was formed (see Fig. 25 (a)).
このようにして得られた光回路一電気回路混載基板にあって、 実施例 14と同 様にベアの面発光レーザチップとベアの P I Nフォトダイオードチップを実装し、 そしてこの面発光レーザチップからの発光を 1対の偏向部 205と光導波路 20 4を通して P I Nフォトダイォードチップで一 21 d Bmにて受光できることを 確認した。  A bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the thus obtained optical circuit-electrical circuit hybrid board in the same manner as in Embodiment 14, and the surface emitting laser chip It was confirmed that the emitted light could be received by the PIN photodiode chip at 21 dBm through a pair of deflection sections 205 and the optical waveguide 204.
(実施例 18) (Example 18)
厚み 35 / mの銅箔 (古河電工 (株) 製 「MPGT」 ) を金属層 202として 用い、 金属層 202に光透過性樹脂 Bをロール転写法で塗布厚み 50 mに塗布 し、 100°C で 1時間、 続いて 150°Cで 1時間加熱して硬化させることによ つて、 光透過性樹脂層 21 7を形成した。 次に光透過性樹脂層 217の上に感光 性樹脂 Aのワニスを 80 μπι厚に塗布し、 加熱乾燥して厚み 40± 5 /imの光 回路形成層 201を形成した後、 この上に厚み 20/xrnの透明ポリプロピレンフ イルムからなるカバーフィルム 215をロールで押し当てて張り付けることによ つて、 積層物 203を得た (図 17 (a) 参照) 。 そしてこの積層物 203を 6 c m角に力ットして用いるようにした。  Using a 35 / m-thick copper foil (“MPGT” manufactured by Furukawa Electric Co., Ltd.) as the metal layer 202, apply the light-transmitting resin B to the metal layer 202 by a roll transfer method to a coating thickness of 50 m, and apply 100 ° C Then, the resultant was heated and cured at 150 ° C. for 1 hour to form a light-transmitting resin layer 217. Next, a varnish of photosensitive resin A is applied to a thickness of 80 μπι on the light-transmitting resin layer 217 and dried by heating to form an optical circuit forming layer 201 having a thickness of 40 ± 5 / im. A laminate 203 was obtained by pressing and covering a cover film 215 made of a 20 / xrn transparent polypropylene film with a roll (see FIG. 17 (a)). Then, this laminate 203 was used with a force of 6 cm square.
また、 粒径 100 nm以下の銀粒子が分散された銀ペーストを成形して底面 1 O O/xm四方、 高さ 50/xm、 頂角が 90° の二等辺三角形状に反射体 210 (直角二等辺三角形を両側面に有する、 横倒しの三角柱形状で、 直角部をその頂 上稜とするもの) を予め作製しておき、 そして金属層 202の基準マークを基準 として、 積層物 203に反射体 10を頂角の側から押し当て、 カバーフィルム 2 15を貫通させて光回路形成層 201に反射体 10を埋めこみ、 偏向部 205を 形成した (図 21 (a) 参照) 。  In addition, a silver paste in which silver particles having a particle size of 100 nm or less are dispersed is molded to form a reflector 210 (rectangular square) with a shape of 1 OO / xm square, a height of 50 / xm, and a vertex angle of 90 °. A sideways triangular prism shape with equilateral triangles on both sides, with the right-angled part as the top ridge) is prepared in advance, and the reflector 203 is attached to the laminate 203 based on the reference mark of the metal layer 202. Was pressed from the side of the apex to penetrate the cover film 215 to embed the reflector 10 in the optical circuit forming layer 201 to form the deflecting portion 205 (see FIG. 21A).
次に、 40 μ m幅の線状の光通過スリットが 250 μ m間隔で 20本平行に配 置して形成されたフォトマスクを用い、 金属層 202に予め形成された基準マー クを基準にしてフォトマスクをァライメントした後、 積層物 203のカバーフィ ルム 215の表面にフォトマスクをコンタク トし、 フォトマスクを通して 10 J /cm 2のパワーの高圧水銀で露光した (図 17 (b) 参照) 。 Next, 20 40 μm wide linear light passing slits are arranged in parallel at 250 μm intervals. After the photomask is aligned using the photomask formed by placing the photomask on the basis of the reference mark formed in advance on the metal layer 202, the photomask is contacted on the surface of the cover film 215 of the laminate 203, Exposure was performed with high-pressure mercury at a power of 10 J / cm 2 through a photomask (see FIG. 17 (b)).
次にカバーフィルム 215を剥離して除去し、 トルエンとクリーンスルー (花 王 (株) 製のフレオン代替の水系洗浄剤) で現像することによって、 非露光部を 除去し、 水で洗净後乾燥した (図 17 (d) 参照) 。  Next, the cover film 215 is peeled off and removed, and developed with toluene and clean-through (aqueous cleaning agent instead of Freon manufactured by Kao Corporation) to remove the non-exposed areas, rinse with water, and dry. (See Fig. 17 (d)).
後は実施例 14と同様にして光回路一電気回路混載基板を得た (図 1 7 (e) 〜図 17 (h) 参照) 。 また、 偏向部 205の直上部の表面に光透過性樹脂層 2 17と同じ樹脂 (つまり同じ屈折率) である光透過性樹脂 216の層を形成した (図 25 (a) 参照) 。 このようにして得られた光回路—電気回路混載基板にあ つて、 実施例 14と同様にベアの面発光レーザチップとベアの P I Nフォトダイ ォードチップを実装し、 そしてこの面発光レーザチップからの発光を 1対の偏向 部 205と光導波路 204を通して P I Nフォトダイォードチップで一 7. 0 d Bmにて受光できることを確認した。  Thereafter, an optical circuit-electric circuit mixed board was obtained in the same manner as in Example 14 (see FIGS. 17 (e) to 17 (h)). Further, a layer of a light-transmitting resin 216 having the same resin as the light-transmitting resin layer 217 (that is, the same refractive index) was formed on the surface immediately above the deflection section 205 (see FIG. 25A). A bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the optical circuit-electric circuit mixed board thus obtained in the same manner as in Embodiment 14, and light emission from the surface emitting laser chip is performed. It was confirmed that light could be received at 17.0 dBm with a PIN photodiode chip through a pair of deflection sections 205 and an optical waveguide 204.
(実施例 19) (Example 19)
厚み 35 /imの銅箔 (古河電工 (株) 製 「MPGT」 ) を金属層 202として 用レ、、 金属層 202に光透過性樹脂 Bを口ール転写法で塗布厚み 50 / mに塗布 し、 100 °C で 1時間、 続いて 150でで 1時間加熱して硬化させることによ つて、 光透過性樹脂層 217を形成した。 次に光透過性樹脂層 217の上に感光 性樹脂 Cを 40 μπι厚に塗布し、 窒素雰囲気中、 室温で乾燥させて光回路形成層 201を形成した。 次にこの上に厚み 25 /xmの透明 PETフィルムからなる力 バーフィルム 215をロールで押し当てて張り付けることによって、 積層物 20 3を得た (図 28 (a) 参照) 。  35 / im thick copper foil ("MPGT" manufactured by Furukawa Electric Co., Ltd.) is used as the metal layer 202. Light transmitting resin B is applied to the metal layer 202 by the mouth transfer method to a thickness of 50 / m. Then, the resultant was heated and cured at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour to form a light-transmitting resin layer 217. Next, a photosensitive resin C was applied on the light transmitting resin layer 217 to a thickness of 40 μπι, and dried at room temperature in a nitrogen atmosphere to form an optical circuit forming layer 201. Next, a laminate 203 was obtained by pressing a roll bar film 215 made of a transparent PET film having a thickness of 25 / xm with a roll on the roll and attaching it (see FIG. 28 (a)).
上記のようにして得た積層物 203を 6 cm角にカットして用い、 また 4 Ομ m幅の線状の光遮断領域を 250 / m間隔で 20本平行に配置して形成したフォ トマスクを用いた。 そして金属層 202に予め形成された基準マークを基準にし てフォトマスクをァライメントした後、 積層物 203のカバーフィルム 21 5の 表面にフォトマスクをコンタクトし、 窒素雰囲気中、 フォトマスクを通して 3 J / c m 2のパワーの高圧水銀で露光し、 さらに 1時間放置した後、 267 P aA photomask formed by cutting the laminate 203 obtained as described above into a 6 cm square and using 20 linear light-shielding regions with a width of 4 μm arranged in parallel at 250 / m intervals was used. Using. Then, after aligning the photomask with reference to the fiducial marks formed in advance on the metal layer 202, the cover film 215 of the laminate 203 is formed. After a photomask in contact with the surface, in a nitrogen atmosphere, exposed with high pressure mercury 3 J / cm 2 of power through a photomask, was left for a further 1 hour, 267 P a
(2 To r r) の真空中、 95 °Cで 1 2時間加熱した (図 28 (b) 参照) 。 こ のように露光することによって、 フォトマスクの光通過領域 (露光部 l a) は屈 折率が上昇するが、 その後の加熱によって非露光部 1 bのメチルメタタリレート モノマーが外拡散し、 その結果非露光部 1 bの屈折率は露光部 1 aより高くなつ た。 The mixture was heated at 95 ° C for 12 hours in a vacuum of (2 Torr) (see FIG. 28 (b)). The exposure increases the refractive index in the light-passing area (exposed area la) of the photomask, but the subsequent heating causes the methylmethacrylate monomer in the non-exposed area 1b to diffuse out, and As a result, the refractive index of the unexposed portion 1b was higher than that of the exposed portion 1a.
次に、 先端の頂角が 90° の屋根型形状をした押し当て型 36 (底面 1 00 μ m四方、 高さ 50 /xm、 頂角 90° の二等辺三角形状) を用い、 金属層 20 2の基準マークを基準にして、 積層物 203に押し当て型 36を頂角の側から押 し当てることによって、 V溝 22 1を形成した (図 28 (c) ) 。 このとき、 押 し当て型 36による V溝 2 2 1の転写性を高めるために、 押し当て型 3 6を 1 7 0°Cに加熱し、 離型は徐冷後に行なった。 また離型性を確保するために押し当て 型 36の表面にはフッ素樹脂被覆による表面離型処理を施しておいた。 この後、 粒径 10 nm以下の銀粒子が分散された銀ペーストを V溝 2 2 1の部分にディス ペンサ一によつて滴下し、 1 20°Cで 1時間加熱して溶剤を除去すると共に硬化 させることによって、 V溝 22 1の傾斜面 207に光反射部 208を設けて偏向 部 205を形成した (図 1 8 (a) 参照) 。 次いでカバーフィルム 2 1 5を剥離 して除去した (図 28 (d) 参照) 。  Next, the metal layer 20 was used by using a roof-type press-type 36 with a 90 ° apex at the tip (100 μm square, 50 / xm height, 90 ° vertex). The V-shaped groove 221 was formed by pressing the pressing die 36 against the laminate 203 from the apex side with reference to the reference mark 2 (FIG. 28 (c)). At this time, in order to enhance the transferability of the V-groove 221 by the pressing die 36, the pressing die 36 was heated to 170 ° C., and the releasing was performed after the cooling. In addition, the surface of the pressing die 36 was subjected to a surface release treatment with a fluororesin coating in order to ensure releasability. Thereafter, a silver paste in which silver particles having a particle size of 10 nm or less are dispersed is dropped by a dispenser into the V-groove 221, and heated at 120 ° C for 1 hour to remove the solvent and By curing, a light reflecting portion 208 was provided on the inclined surface 207 of the V groove 221 to form a deflecting portion 205 (see FIG. 18 (a)). Next, the cover film 215 was peeled off and removed (see FIG. 28 (d)).
この後、 積層物 203の光回路形成層 20 1の側に光透過性樹脂 Bを塗布厚み After that, the light-transmitting resin B is applied to the side of the optical circuit forming layer 201 of the laminate 203.
50 M mに塗布し、 100でで 1時間、 続いて 1 50 °Cで 1時間加熱して硬化さ せることによって第三の光透過 樹脂層 35を形成し、 この上に接着剤 Αのヮニ スを 40 /xm厚に塗布して 1 50°Cで乾燥し、 接着剤 2 14の層を形成した (図 28 (e) 参照) 。 そして電気回路 2 1 2を設けた FR— 5タイプのプリント配 線基板 2 1 1に積層物 203を重ねて 1 70°Cにて真空プレスし、 両者を接着し た (図 28 ( f ) 参照) 。 A third light-transmitting resin layer 35 is formed by applying the composition to 50 mm, and then curing by heating at 100 at 1 hour and then at 150 ° C. for 1 hour to form a third light-transmitting resin layer 35. The varnish was applied to a thickness of 40 / xm and dried at 150 ° C to form a layer of adhesive 214 (see Figure 28 (e)). Then, the laminate 203 was superimposed on the FR-5 type printed wiring board 2 11 provided with the electric circuit 2 12, and vacuum-pressed at 170 ° C. to bond the two together (see FIG. 28 (f)). ).
後は実施例 14と同様にして光回路一電気回路混載基板を得た (図 28 ( g ) 〜図 28 ( i ) 参照) 。 また、 偏向部 205の直上部の表面に光透過性樹脂層 2 1 7と同じ樹月旨 (つまり同じ屈折率) である光透過性樹脂 Aを 1 μ g滴下し、 1 00でで 1時間、 続いて 150 °C で 1時間加熱して硬化させることによって、 光透過性樹脂 216の層を形成した (図 28 ( j ) 参照) 。 Thereafter, an optical-circuit / electric-circuit-mixed substrate was obtained in the same manner as in Example 14 (see FIGS. 28 (g) to 28 (i)). Also, 1 μg of light-transmitting resin A having the same luster as the light-transmitting resin layer 217 (that is, the same refractive index) as the light-transmitting resin layer 217 was dropped on the surface immediately above the deflecting section 205, By heating at 00 for 1 hour and then at 150 ° C. for 1 hour to cure, a layer of the light transmitting resin 216 was formed (see FIG. 28 (j)).
このようにして得られた光回路—電気回路混載基板にあって、 実施例 14と同 様にベアの面発光レーザチップとベアの P I Nフォトダイオードチップを実装し、 そしてこの面発光レーザチップからの発光を 1対の偏向部 205と光導波路 20 4を通して P I Nフォトダイォードチップで一 7. 1 d Bmにて受光できること を確認した。  A bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the optical circuit-electric circuit mixed board thus obtained, as in Embodiment 14, and the It was confirmed that the emitted light could be received at 17.1 dBm with a PIN photodiode chip through a pair of deflection sections 205 and an optical waveguide 204.
(実施例 20 ) (Example 20)
厚み 35 μπιの銅箔 (古河電工 (株) 製 「MPGT」 ) を金属層 202として 用レ、、 金属層 202に光透過性樹脂 Bをロール転写法で塗布厚み 50 /i mに塗布 し、 100 °C で 1時間、 続いて 150でで 1時間加熱して硬化させることによ つて、 光透過性樹脂層 21 7を形成した。 次に光透過性樹脂層 217の上に感光 性樹脂 Cを 40 / m厚に塗布し、 窒素雰囲気中、 室温で乾燥させて光回路形成層 201を形成した。 次にこの上に厚み 25 /zmの透明 PETフィルムからなる力 バーフィルム 215をローノレで押し当てて張り付けることによって、 積層物 20 3を得た (図 29 (a) 参照) 。  A copper foil with a thickness of 35 μπι (“MPGT” manufactured by Furukawa Electric Co., Ltd.) is used as the metal layer 202, and the light-transmitting resin B is applied to the metal layer 202 by a roll transfer method to a coating thickness of 50 / im. The resultant was heated and cured at 150 ° C. for 1 hour and then at 150 ° C. for 1 hour to form a light-transmitting resin layer 217. Next, the photosensitive resin C was applied to a thickness of 40 / m on the light transmitting resin layer 217, and dried at room temperature in a nitrogen atmosphere to form the optical circuit forming layer 201. Next, a laminate bar 203 was obtained by pressing a force bar film 215 made of a transparent PET film having a thickness of 25 / zm with a lancer and sticking thereon (see FIG. 29 (a)).
上記のようにして得た積層物 203を 6 cm角にカツトして用い、 また 4 O/i m幅の線状の光遮断領域を 250 μ m間隔で 20本平行に配置して形成したフォ トマスクを用いた。 そして金属層 202に予め形成された基準マークを基準にし てフォトマスクをァライメントした後、 積層物 203のカバーフィルム 215の 表面にフォトマスクをコンタクトし、 窒素雰囲気中、 フォトマスクを通して 3 J /cm 2のパワーの高圧水銀で露光し、 さらに 1時間放置した後、 267 P a (2To r r) の真空中、 95°Cで 12時間加熱した (図 29 (b) 参照) 。 こ のように露光することによって、 フォトマスクの光通過領域 (露光部 201 a) は屈折率が上昇するが、 その後の加熱によって非露光部 1 bのメチルメタクリレ 一トモノマーが外拡散し、 その結果非露光部 201 bの屈折率は露光部 201 a より高くなつた。 A photomask formed by cutting the laminate 203 obtained as above into a 6 cm square and using 20 light-shielding regions with a width of 4 O / im arranged in parallel at intervals of 250 μm. Was used. And after Araimento a photomask based on the reference mark previously formed on the metal layer 202, and contacts the photomask to the surface of the cover film 215 of the laminate 203 in a nitrogen atmosphere, 3 through a photomask J / cm 2 After exposure to high-pressure mercury with a power of, and left for 1 hour, it was heated at 95 ° C for 12 hours in a vacuum of 267 Pa (2 Torr) (see Fig. 29 (b)). This exposure increases the refractive index of the light-passing area (exposed area 201a) of the photomask, but the subsequent heating causes the methyl methacrylate monomer in the non-exposed area 1b to diffuse out, and As a result, the refractive index of the unexposed portion 201b was higher than that of the exposed portion 201a.
次に、 実施例 14と同様に頂角 90° の回転ブレード 241を用い、 金属層 20 2の基準マークを基準として V溝 2 2 1を加工した (図 2 9 (c) 参照) 。 この後、 V溝 2 2 1の部分に電子ビーム蒸着によって、 金を 8 /秒の速度で厚 み 2 000 A蒸着し、 V溝 2 2 1の傾斜面 2 0 7に光反射部 2 0 8を設けて偏向 部 2 0 5を形成した (図 1 8 (a ) 参照) 。 次いでカバーフィルム 2 1 5を剥離 して除去した (図 2 9 (d) 参照) 。 Next, a rotating blade 241 having an apex angle of 90 ° was used in the same manner as in Example 14 to form a metal layer. The V-groove 221 was machined with reference to 202 fiducial marks (see Fig. 29 (c)). Thereafter, gold was vapor-deposited at a rate of 8 / sec to a thickness of 2,000 A on the V-groove 221 by electron beam evaporation. The deflection section 205 was formed by providing the above (see FIG. 18 (a)). Next, the cover film 215 was peeled off and removed (see FIG. 29 (d)).
この後、 積層物 20 3の光回路形成層 20 1の側に光透過性樹脂 Aを塗布厚み 50 μ mに塗布し、 1 00 °Cで 1時間、 続いて 1 50 °Cで 1時間加熱して硬化さ せることによって第三の光透過性樹脂層 3 5を形成し、 この上に接着剤 Cのヮニ スを 40 μ m厚に塗布して 1 50°Cで乾燥し、 接着剤 2 1 4の層を形成した (図 2 9 (e) 参照) 。 そして電気回路 2 1 2を設けた FR_ 5タイプのプリント配 線基板 2 1 1に積層物 20 3を重ねて 1 70°Cにて真空プレスし、 両者を接着し た (図 2 9 ( f ) 参照) 。  Thereafter, the light-transmitting resin A is applied to a thickness of 50 μm on the side of the optical circuit forming layer 201 of the laminate 203, and heated at 100 ° C for 1 hour, and then heated at 150 ° C for 1 hour. To form a third light-transmissive resin layer 35, apply a 40 μm-thick layer of adhesive C on top of this, and dry at 150 ° C. A layer of 2 14 was formed (see Fig. 29 (e)). Then, the laminate 203 was placed on the FR_5 type printed wiring board 211 provided with the electric circuit 211, and the two were bonded by vacuum pressing at 170 ° C (Fig. 29 (f)). See).
後は実施例 1 4と同様にして光回路一電気回路混載基板を得た (図 2 9 ( g ) 〜図 2 9 ( i ) 参照) 。 また、 偏向部 20 5の直上部の表面に光透過性樹脂層 2 1 7と同じ樹脂 (つまり同じ屈折率) である光透過性樹脂 Aを 1 μ g滴下し、 1 00°Cで 1時間、 続いて 1 50°C で 1時間加熱して硬化させることによって、 光透過性樹脂 2 1 6の層を形成した (図 2 9 ( j ) 参照) 。  Thereafter, an optical circuit-electric circuit mixed board was obtained in the same manner as in Example 14 (see FIGS. 29 (g) to 29 (i)). Also, 1 μg of the light-transmitting resin A, which is the same resin as the light-transmitting resin layer 217 (that is, the same refractive index), is dropped on the surface immediately above the deflecting portion 205, and the temperature is set at 100 ° C. for 1 hour. Then, by heating and curing at 150 ° C. for 1 hour, a layer of the light-transmitting resin 216 was formed (see FIG. 29 (j)).
このようにして得られた光回路一電気回路混載基板にあって、 実施例 1 4と同 様にベアの面発光レーザチップとベアの P I Nフォトダイオードチップを実装し、 そしてこの面発光レーザチップからの発光を 1対の偏向部 20 5と光導波路 20 4を通して P I Nフォトダイオードチップで一 6. 5 d Bmにて受光できること を確 ¾ した。  On the optical circuit-electric circuit hybrid board obtained in this way, a bare surface emitting laser chip and a bare PIN photodiode chip are mounted in the same manner as in Example 14, and the surface emitting laser chip It was confirmed that the light emitted by the PIN photodiode chip could be received at 16.5 dBm through a pair of deflection sections 205 and the optical waveguide 204.
(実施例 2 1 ) (Example 21)
厚み 3 5 /xmの銅箔 (古河電工 (株) 製 「MPGT」 ) を金属層 20 2として 用い、 金属層 20 2に上記のワニス Fを塗布して 1 50°Cで乾燥することによつ て 5 0 /i m厚の難燃性接着層を形成した後、 この上に光透過性樹脂 Bをロール 転写法で塗布厚み 5 0 /i mに塗布し、 1 00でで 1時間、 続いて 1 5 0でで 1時 間加熱して硬化させることによって、 光透過性樹脂層 2 1 7を形成した。 また、 25 μπιの透明 PETフィルムからなるカバーフィルム 2 1 5に感光性樹脂 Aの ワニスを 1 00 πι厚に塗布し、 加熱乾燥して厚み 50土 5 μιηの光回路形成 層 201を形成した。 そして、 光透過性樹脂層 2 1 7と光回路形成層 201を重 ねてラミネートすることによって、 積層物 203を得た (図 1 7 (a) 参照) 。 上記のようにして得た積層物 203を 6 cm角にカットして用い、 また 40 m幅の線状の光通過スリットが 250 μπι間隔で 20本平行に配置して形成され たフォトマスクを用いた。 そして金属層 20 2に予め形成された基準マーク (線 幅 1 00 /xm、 サイズ 500 /ζπι角の十字形状) を基準にしてフォトマスクを ァライメントした後、 積層物 203のカバーフィルム 2 1 5の表面にフォトマス クをコンタクトし、 フォトマスクを通して 1 0 cm2のパワーの高圧水銀で 露光した (図 1 7 (b) 参照) 。 Using a copper foil of 35 / xm thickness (“MPGT” manufactured by Furukawa Electric Co., Ltd.) as the metal layer 202, apply the varnish F to the metal layer 202 and dry at 150 ° C. After forming a flame-retardant adhesive layer having a thickness of 50 / im, light-transmissive resin B was applied thereon by a roll transfer method so as to have a coating thickness of 50 / im. By heating at 150 ° C. for one hour to cure, a light transmitting resin layer 217 was formed. Also, A varnish of photosensitive resin A was applied to a thickness of 100 πι on a cover film 215 made of a transparent PET film having a thickness of 25 μπι, and dried by heating to form an optical circuit forming layer 201 having a thickness of 50 μm and a thickness of 5 μιη. Then, the light-transmitting resin layer 2 17 and the optical circuit forming layer 201 were overlapped and laminated to obtain a laminate 203 (see FIG. 17A). The laminate 203 obtained as described above was cut into 6 cm squares and used, and a photomask formed by arranging 20 40 m wide linear light passing slits in parallel at 250 μπι intervals was used. Was. Then, after aligning the photomask with reference to the fiducial mark (line width 100 / xm, size 500 / ζπι angle cross shape) previously formed on the metal layer 202, the cover film 211 of the laminate 203 is formed. contacts the photomasks on the surface, exposed with high pressure mercury 1 0 cm 2 of power through a photomask (see FIG. 1 7 (b)).
次に、 実施例 14と同様に頂角 90° のブレードを用い、 金属層 202の基 準マークを基準として V溝 22 1を加工した (図 1 7 (c) 参照) 。 この後、 V 溝 2 21の部分に電子ビーム蒸着によって、 金を 8 A/秒の速度で厚み 2000 A蒸着し、 V溝 22 1の傾斜面 207に光反射部 208を設けて偏向部 205を 形成した (図 1 8 (a) 参照) 。 次いでカバーフィルム 2 1 5を剥離して除去し た (図 1 7 (d) 参照) 。  Next, as in Example 14, a V-groove 221 was machined using a blade having a vertical angle of 90 ° with reference to the reference mark of the metal layer 202 (see FIG. 17 (c)). Thereafter, gold is vapor-deposited at a rate of 8 A / sec to a thickness of 2000 A by electron beam vapor deposition on the V-groove 221 portion, and a light reflecting portion 208 is provided on the inclined surface 207 of the V-groove 221 to form a deflecting portion 205. Formed (see Fig. 18 (a)). Next, the cover film 215 was peeled off and removed (see FIG. 17 (d)).
後は実施例 1 4と同様にして光回路一電気回路混載基板を得た (図 1 7 (e) 〜図 1 7 (h) 参照) 。 また、 偏向部 205の直上部の表面に、 実施例 2と同様 にして撥水処理を施した後、 東亜合成 (株) 製 「ァロニックス UV—3 100」 (光硬化性アクリル樹脂) を 3 g滴下し、 5 J cm2のパワーの高圧水銀ラ ンプを照射して硬化させることによって、 凸レンズ形状の光透過性樹脂 2 1 6の 層を形成した (図 25 (b) 参照) 。 このようにして得られた光回路一電気回路 混載基板にあって、 実施例 14と同様にベアの面発光レーザチップとベアの P I Nフォトダイオードチップを実装し、 そしてこの面発光レーザチップからの発光 を 1対の偏向部 205と光導波路 204を通して P I Nフォトダイォードチップ で一 4. 2 dBmにて受光できることを確認した。 Thereafter, an optical circuit-electric circuit mixed board was obtained in the same manner as in Example 14 (see FIGS. 17 (e) to 17 (h)). After water-repellent treatment was performed on the surface immediately above the deflection unit 205 in the same manner as in Example 2, 3 g of “ALONIX UV-3100” (photo-curable acrylic resin) manufactured by Toa Gosei Co., Ltd. was used. By dropping and irradiating with a high-pressure mercury lamp with a power of 5 Jcm 2 to cure it, a layer of a light-transmitting resin 2 16 having a convex lens shape was formed (see FIG. 25 (b)). A bare surface emitting laser chip and a bare PIN photodiode chip are mounted on the thus obtained optical circuit-electric circuit mixed mounting board in the same manner as in Embodiment 14, and light emission from the surface emitting laser chip is performed. It was confirmed that the PIN photodiode chip could receive light at 14.2 dBm through a pair of deflection sections 205 and the optical waveguide 204.
(実施例 22) 厚み 35 μιηの銅箔 (古河電工 (株) 製 「MPGT」 ) を金属層 20 2として 用い、 金属層 202に光透過性樹脂 Bをローノレ転写法で塗布厚み 50 /i mに塗布 し、 1 00°C で 1時間、 続いて 1 50°Cで 1時間加熱して硬化させることによ つて、 光透過性樹脂層 2 1 7を形成した。 次に光透過性樹脂層 2 1 7の上に感光 性樹脂 Aのワニスを 80 / m厚に塗布し、 加熱乾燥して厚み 40± 5 /xmの光回 路形成層 20 1を形成した後、 この上に厚み 25 jumの透明 PETフイノレムから なるカバーフィルム 2 1 5をロールで押し当てて張り付けることによって、 積層 物 203を得た (図 32 (a) 参照) 。 (Example 22) A copper foil having a thickness of 35 μιη (“MPGT” manufactured by Furukawa Electric Co., Ltd.) was used as the metal layer 202, and the light-transmissive resin B was applied to the metal layer 202 to a coating thickness of 50 / im by the Lohnolet transfer method. The light-transmitting resin layer 217 was formed by heating and curing at a temperature of 150 ° C. for 1 hour and then at a temperature of 150 ° C. for 1 hour. Next, a varnish of the photosensitive resin A is applied to a thickness of 80 / m on the light-transmitting resin layer 2 17 and heated and dried to form an optical circuit forming layer 201 having a thickness of 40 ± 5 / xm. Then, a cover film 215 made of a transparent PET finolem having a thickness of 25 jum was pressed on this with a roll and stuck to obtain a laminate 203 (see FIG. 32 (a)).
上記のようにして得た積層物 203を 6 cm角にカットして用い、 また 40 μ m幅の線状の光通過スリットが 250 μηι間隔で 20本平行に配置して形成され たフォトマスクを用いた。 そして金属層 20 2に予め形成された基準マーク (線 幅 1 00 mの十字形状、 サイズ: 500 /X mX 500 μ m) を基準にしてフ オトマスクをァライメントした後、 積層物 203のカバーフィルム 2 1 5の表面 にフォトマスクをコンタク トし、 フォトマスクを通して 1 0 J /cm2のパワー の高圧水銀で露光した (図 32 (b) 参照) 。 The laminate 203 obtained as described above was cut into 6 cm squares, and a photomask formed by arranging 20 parallel 40 μm wide linear light passing slits at 250 μηι intervals in parallel was used. Using. Then, after aligning the photomask with reference to the fiducial mark (cross shape having a line width of 100 m, size: 500 / XmX500 μm) formed in advance on the metal layer 202, the cover film 2 of the laminate 203 is formed. 1 to 5 of the surface of a photomask should contact, exposed with high pressure mercury 1 0 J / cm 2 of power through a photomask (see FIG. 32 (b)).
次に、 切断刃 40の頂角が 90° の回転ブレード 24 1を用い、 金属層 20 2の基準マークを基準として V溝 2 1を加工した (図 3 2 (c) 参照) 。 ここで、 回転ブレード 24 1として、 ディスコ社の # 5000ブレード (型番  Next, the V-groove 21 was machined using the rotating blade 241 having a vertical angle of 90 ° of the cutting blade 40 with reference to the reference mark of the metal layer 202 (see FIG. 32 (c)). Here, as the rotating blade 241, Disco's # 5000 blade (Model No.
「B1E863SD5000L100MT38 」 ) を用い、 回転数 30000 r p mで、 カバーフィ ルム 2 1 5の側から回転ブレード 24 1を下降速度 0. 03 mm/ sで積層物 2 Using the “B1E863SD5000L100MT38”), the rotating blade 241 is lowered from the side of the cover film 215 at a rotation speed of 30000 rpm at a descent speed of 0.03 mm / s.
03に接触させて 45 //mの深さに切り込み、 この切り込み深さを維持したまま 20本の露光部 1 aを全て直角に横切るように、 0. 1 mm/ sの速度で回転ブ レ一ド 24 1を走査させた後、 積層物 203から回転プレード 241を離脱させ た (図 1 9 (b) 参照) 。 形成された V溝 2 2 1の面粗度は、 rms表示で 60 nmと良好なものであった。 03 and cut to a depth of 45 // m, and while maintaining this depth of cut, rotate at a speed of 0.1 mm / s so as to cross all 20 exposed parts 1a at right angles. After scanning the plate 241, the rotating blade 241 was detached from the laminate 203 (see FIG. 19 (b)). The surface roughness of the formed V-groove 221 was as good as 60 nm in rms display.
この後、 V溝 22 1の部分に粒径 1 0 nm以下の銀粒子が分散された銀ペース トを滴下し、 1 20°Cで 1時間加熱して溶剤を除去すると共に加熱することによ つて、 V溝 22 1の傾斜面 207に光反射部 208を設けて偏向部 20 5を形成 した (図 1 8 (a) 参照) 。 ここで、 V溝 221は露光部 1 aの厚み方向の一部 を残して形成されており、 露光部 1 aによって形成される光導波路 204のコア 部 2 04 aを伝搬される光の半分を偏向部 2 0 5から出射させると共に残りの半 分を通過させる分岐出射ミラーが形成された。 Thereafter, a silver paste in which silver particles having a particle size of 10 nm or less are dispersed is dropped into the V groove 221 and heated at 120 ° C. for 1 hour to remove the solvent and heat. Then, a light reflecting portion 208 was provided on the inclined surface 207 of the V-shaped groove 221 to form a deflecting portion 205 (see FIG. 18 (a)). Here, the V groove 221 is a part of the exposed portion 1a in the thickness direction. And a branch that allows half of the light propagating through the core portion 204 a of the optical waveguide 204 formed by the exposure portion 1 a to exit from the deflection portion 205 and pass through the other half. An exit mirror was formed.
次にカバーフィルム 2 1 5を剥離して除去し、 トルエンとクリーンスルー (花 王 (株) 製のフレオン代替の水系洗浄剤) で現像することによって、 非露光部を 除去し、 水で洗浄後乾燥した (図 3 2 (d) 参照) 。  Next, the cover film 215 is peeled off and removed, and developed with toluene and clean-through (aqueous cleaning agent instead of Freon manufactured by Kao Corporation) to remove the non-exposed areas and wash with water. It was dried (see Figure 32 (d)).
この後、 積層物 20 3の光回路形成層 20 1の側に光透過性樹脂 Bを塗布厚み 5 0 μ mに塗布し、 1 00でで 1時間、 続いて 1 5 0°Cで 1時間加熱して硬化さ せることによって第三の光透過性樹脂層を形成し、 この上に接着剤 Aのワニスを 40 μ m厚に塗布して 1 5 0°Cで乾燥し、 接着剤 2 1 4の層を形成した。  Thereafter, the light-transmitting resin B is applied to a thickness of 50 μm on the side of the optical circuit forming layer 201 of the laminate 203, and is applied at 100 ° C for 1 hour, and then at 150 ° C for 1 hour. A third light transmissive resin layer is formed by heating and curing, and a varnish of adhesive A is applied thereon to a thickness of 40 μm and dried at 150 ° C. Four layers were formed.
そして電気回路 2 1 2を設けた FR— 5タイプのプリント配線基板 2 1 1を用 い、 基板 2 1 1に積層物 2 03を重ねて 1 7 0°Cにて真空プレスし、 両者を接着 した (図 3 2 (e) 参照:第三の光透過性樹脂層の図示は省略) 。  Then, using a FR-5 type printed wiring board 2 11 provided with an electric circuit 2 1 2, the laminate 2 03 is superimposed on the board 2 1 1 and vacuum-pressed at 170 ° C, and the two are bonded. (See FIG. 32 (e): illustration of the third light-transmitting resin layer is omitted).
この後、 金属層 20 2のビアホール 2 1 3を形成する箇所にサイズ 1 00 Aim φのコンフォーマルマスク孔及び基準ガイドを形成した後、 エキシマレーザを照 射して開口径 1 00 mのビアホール 2 1 3を形成し (図 3 2 ( f ) 参照) 、 次 いで過マンガン酸デスミアによる表面処理、 硫酸過水系によるソフトエッチング 処理を施した後にパネルメツキをしてビアホール 2 1 3に電気導通部 2 2を形成 し (図 3 2 (g) 参照) 、 さらに金属層 20 2をパターニングして電気回路 20 6を形成することによって、 光回路一電気回路混載基板を得た (図 3 2 (h) 参 照) 。  Thereafter, a conformal mask hole having a size of 100 Aim φ and a reference guide are formed at a position where the via hole 2 13 of the metal layer 202 is to be formed, and then a via hole 2 having an opening diameter of 100 m is irradiated by excimer laser. 13 is formed (see Fig. 32 (f)), and then subjected to surface treatment with desmear permanganate and soft etching with a sulfuric acid / hydrogen peroxide system. (See FIG. 32 (g)), and by further patterning the metal layer 202 to form an electric circuit 206, an optical circuit-electric circuit hybrid board was obtained (see FIG. 32 (h)). See).
次に、 電気回路 2 0 6をパターンニングする際に同時に偏向部 20 5の直上位 置の表面に形成された直径 2 5 5 xmの開口部 2 3 1に、 開口部 2 3 1に露出す る光透過性樹脂層 2 1 7とほぼ同等の屈折率を有する東亜合成 (株) 製 「ァロニ ックス UV— 3 1 00」 (光硬化性アクリル樹脂、 粘度 3400mP a · s、 屈 折率 1. 5 2) を 2 / g滴下し、 光透過性樹脂 24 7を充填した (図 3 2  Next, when the electric circuit 206 is patterned, the electric circuit 206 is exposed to the opening 2 31 having a diameter of 255 xm formed on the surface immediately above the deflection section 205 and to the opening 2 31. "ARONIX UV-3100" manufactured by Toagosei Co., Ltd., which has almost the same refractive index as the light-transmitting resin layer 211 (photocurable acrylic resin, viscosity 3400 mPas, refractive index 1. 5 2) was dropped at 2 / g and filled with light-transmitting resin 247 (Fig. 3 2
( i ) 参照) 。 そして、 その上にボールレンズ (材質 BK 7、 屈折率 1. 5 1 6) からなるレンズ体 24 6を搭載し (図 3 2 ( j ) 参照) 、 5 jZcm2のパ ヮ一の高圧水銀ランプを全面照射して 「ァロニックス UV— 3 1 00」 を硬化さ せることによって、 レンズ体 246を固着させた (図 32 (k) 参照) 。 (See (i)). Then, mounting the lens body 24 6 consisting of a ball lens (material BK 7, refractive index 1.5 1 6) thereon (see FIG. 3 2 (j)), 5 jZcm 2 of path Wa one high pressure mercury lamp To cure “ALONIX UV—3 1 00” As a result, the lens body 246 was fixed (see FIG. 32 (k)).
このようにして得られた光回路一電気回路混載基板にあって、 実施例 14と同 様に面発光レーザチップ (但し、 レンズ付きパッケージに実装済み) と、 ベアの P I Nフォトダイオードチップを実装し、 そしてこの面発光レーザチップからの 発光を、 レンズ体 246を具備した 1対の偏向部 205と光導波路 204を通し て P I Nフォトダイォードチップで一 7. 2 d Bmにて分岐出射受光できること を確 ¾忍した。  On the optical circuit-electric circuit hybrid board obtained in this way, a surface emitting laser chip (provided in a package with a lens) and a bare PIN photodiode chip are mounted as in Example 14. Then, the light emitted from the surface emitting laser chip can be branched and received by the PIN photodiode chip at one 7.2 dBm through the pair of deflecting parts 205 having the lens body 246 and the optical waveguide 204. I was convinced.
(実施例 23) (Example 23)
厚み 35 / mの銅箔 (古河電工 (株) 製 「MPGT」 ) を金属層 202として 用レ、、 金属層 202に光透過性樹脂 Bをロール転写法で塗布厚み 50 μ mに塗布 し、 100°C で 1時間、 続いて 150°Cで 1時間加熱して硬化させることによ つて、 光透過性樹脂層 217を形成した。 次に光透過性樹脂層 217の上に感光 性樹脂 Aのワニスを 80 /xm厚に塗布し、 加熱乾燥して厚み 40± 5 μ mの光 回路形成層 201を形成した後、 この上に厚み 25 //mの透明 PETフィルムか らなるカバーフィルム 215をロールで押し当てて張り付けることによって、 積 層物 203を得た (図 17 (a) 参照) 。 感光性樹脂 Aの硬化樹脂の屈折率は既 述のように 1. 53である。  A copper foil with a thickness of 35 / m (“MPGT” manufactured by Furukawa Electric Co., Ltd.) is used as the metal layer 202. The light-transmissive resin B is applied to the metal layer 202 by a roll transfer method to a thickness of 50 μm. The light-transmitting resin layer 217 was formed by heating and curing at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour. Next, a varnish of the photosensitive resin A is applied on the light-transmitting resin layer 217 to a thickness of 80 / xm and dried by heating to form an optical circuit forming layer 201 having a thickness of 40 ± 5 μm. A laminate 203 was obtained by pressing a cover film 215 made of a transparent PET film having a thickness of 25 // m with a roll and applying it (see FIG. 17 (a)). The refractive index of the cured resin of photosensitive resin A is 1.53 as described above.
上記のようにして得た積層物 203を 6 cm角にカツトして用い、 また 4 O/i m幅の線状の光通過スリットが 250 μ m間隔で 20本平行に配置され、 かつ、 線幅 100 μ m、 サイズ 500 m角の +字形状の基準マーク形成用光通過領域 を有するフォトマスクを用いた。 そして上記の積層物 203の面積内にフォトマ スク内の前記光通過スリット及び基準マーク形成用光通過領域が総て入るように、 フォトマスク位置を調整した後、 積層物 203のカバーフィルム 21 5の表面に フォトマスクをコンタク トし、 フォトマスクを通して 10 JZC m2のパワーの 高圧水銀で露光した (図 17 (b) 参照) 。 これによつて光回路形成層 201内 に光導波路 204のコア部 204 aおよび基準マーク (図示省略) が形成された。 次に、 切断刃 40の頂角が 90° の回転ブレード 241を用い、 光回路形成 層 201に形成された基準マークを基準として V溝 221を加工した (図 17 (c) 参照) 。 ここで回転ブレード 24 1として、 ディスコ社の # 50 00ブレ 一ド (型番 B1E863 SD5000L100 T38) を用い、 回転数 3 0000 r pm、 カバー フィルム 2 1 5の側から回転ブレード 24 1を下降速度 0. 0 3 mm/ sで積層 物 2 0 3に接触させて 80 μ mの深さに切り込み、 この切り込み深さを維持し たまま 20本の露光部 1 aを全て直角に横切るように、 0. l mm/ sの速度で 回転ブレード 24 1を走させた後、 積層物 2 0 3から回転ブレード 24 1を離脱 させた (図 1 9 (b) 参照) 。 形成された踏 22 1の面粗度は、 r m s表示で 60 nmと良好なものであった。 この後、 V溝 2 2 1の部分に粒径 1 0 nm以下 の銀粒子が分散された銀ペーストを滴下し、 1 20°Cで 1時間加熱して溶剤を除 去すると共に加熱することによって、 V溝 2 2 1の傾斜面 20 7に光反射部 20 8を設けて偏向部 20 5を形成した (図 1 8 (a) 参照) 。 The laminate 203 obtained as described above was cut into a 6 cm square, and 20 linear slits for light transmission with a width of 4 O / im were arranged in parallel at intervals of 250 μm, and the line width was A photomask having a + -shaped reference mark forming light-passing area of 100 μm and size of 500 m square was used. Then, after adjusting the position of the photomask so that the light-passing slit and the reference mark-forming light-passing area in the photomask are all within the area of the laminate 203, the cover film 215 of the laminate 203 is adjusted. should contact the photomask to the surface, exposed with high pressure mercury 10 JZC m 2 of power through a photomask (see FIG. 17 (b)). As a result, the core portion 204a of the optical waveguide 204 and the reference mark (not shown) were formed in the optical circuit forming layer 201. Next, a V-shaped groove 221 was machined using a rotating blade 241 having a vertical angle of 90 ° of the cutting blade 40 with reference to a reference mark formed on the optical circuit forming layer 201 (FIG. 17). (c)). Here, as the rotating blade 241, a Disco # 500 blade (model number B1E863 SD5000L100 T38) is used, the rotation speed is 30000 rpm, and the rotating blade 241 is lowered from the side of the cover film 215 to 0. At 0.3 mm / s, the layer is brought into contact with the layered product 203 and cut to a depth of 80 μm.While maintaining this cutting depth, all the 20 exposed parts 1a cross at right angles. After the rotating blade 241 was run at a speed of l mm / s, the rotating blade 241 was detached from the laminate 203 (see FIG. 19 (b)). The surface roughness of the formed step 221 was as good as 60 nm in rms display. Thereafter, a silver paste in which silver particles having a particle size of 10 nm or less are dispersed is dropped into the V-groove 222, and the mixture is heated at 120 ° C. for 1 hour to remove the solvent and heat. A light reflecting portion 208 was provided on the inclined surface 207 of the V-shaped groove 221 to form a deflecting portion 205 (see FIG. 18 (a)).
次にカバーフィルム 2 1 5を剥離して除去し、 トルエンとクリーンスルー (花 王 (株) 製のフレオン代替の水系洗浄剤) で現像することによって、 非露光部を 除去し、 水で洗浄後乾燥した (図 1 7 (d) 参照) 。  Next, the cover film 215 is peeled off and removed, and developed with toluene and clean-through (aqueous cleaning agent instead of Freon manufactured by Kao Corporation) to remove the non-exposed areas and wash with water. It was dried (see Figure 17 (d)).
この後、 積層物 2 0 3の光回路形成層 20 1の側に光透過性樹脂 Bを塗布厚み Thereafter, the light-transmitting resin B is applied on the side of the optical circuit forming layer 201 of the laminate 203.
5 0 μ mに塗布し、 1 00。Cで 1時間、 続いて 1 5 0 °Cで 1時間加熱して硬化さ せることによって第 2光透過性樹脂層を形成し、 この上に接着剤 Aのワニスを 4 0 μ m厚に塗布して 1 50 °Cで乾燥し、 接着剤 2 1 4の層を形成した。 Apply to 50 μm, 100. A second light-transmitting resin layer is formed by heating at 150 ° C for 1 hour and then at 150 ° C for 1 hour to cure, and a varnish of Adhesive A is applied to this to a thickness of 40 μm. And dried at 150 ° C. to form a layer of adhesive 214.
そして電気回路 2 1 2を設けた FR— 5タイプのプリント配線基板 2 1 1を用 レ、、 基板 2 1 1に積層物 2 0 3を重ねて 1 70°Cにて真空プレスし、 両者を接着 した (図 1 7 (e) 参照:第 2光透過性樹脂層の図示は省略) 。  Then, using an FR-5 type printed circuit board 211 provided with an electric circuit 211, a laminate 203 is laminated on the substrate 211, and vacuum-pressed at 170 ° C. (See FIG. 17 (e): illustration of the second light transmitting resin layer is omitted.)
この後、 光回路形成層 2 0 1に形成された上記の基準マークの近傍位置におい て金属層 20 2を選択エッチングして、 φ 1. Ommの開口部を金属層 20 2に 設けることによって、 金属層 20 2の側から基準マークが認、識できるようにし、 以降の工程を全てこの基準マークを基準にして行った。 すなわちまず金属層 20 2のビアホール 2 1 3を形成する箇所にサイズ 1 00 μτηφのコンフォーマルマ スク孔及び基準ガイドを形成した後、 エキシマレーザを照射して開口径 1 00 μ mのビアホール 2 1 3を形成し (図 1 7 ( f ) 参照) 、 次いで過マンガン酸デス ミアによる表面処理、 硫酸過水系によるソフトエッチング処理を施した後にパネ ルメツキをしてビアホール 213に電気導通部 22を形成し (図 17 (g) 参 照) 、 さらに金属層 202をパターニングして電気回路 206を形成することに よって、 光回路一電気回路混載基板を得た (図 1 Ί (h) 参照) 。 また、 偏向部 205の直上部の光透過性樹脂層 21 7の表面に、 この光透過性樹脂層 21 7と 同じ樹脂 (つまり同じ屈折率) である光透過性樹脂 Aを 1;! g滴下し、 100°C で 1時間、 続いて 150°Cで 1時間加熱して硬化させることによって、 光透過性 樹月旨 216の層を形成した (図 25 (a) 参照) 。 Thereafter, the metal layer 202 is selectively etched at a position near the reference mark formed on the optical circuit forming layer 201 to provide an opening of φ1.0 mm in the metal layer 202, The reference mark was recognized and recognized from the side of the metal layer 202, and all the subsequent steps were performed with reference to this reference mark. That is, first, a conformal mask hole having a size of 100 μτηφ and a reference guide are formed at a position where a via hole 2 13 of the metal layer 202 is formed, and then a via hole 2 1 3 having an opening diameter of 100 μm is irradiated by excimer laser. (See Figure 17 (f)), followed by surface treatment with desmear permanganate and soft etching with sulfuric acid / hydrogen peroxide, followed by panel The electrical conduction portion 22 is formed in the via hole 213 by lumming (see FIG. 17 (g)), and the metal layer 202 is further patterned to form the electrical circuit 206. (See Fig. 1 (h)). 1 g of light-transmitting resin A, which is the same resin as the light-transmitting resin layer 217 (that is, the same refractive index), is dropped on the surface of the light-transmitting resin layer 217 directly above the deflection section 205. Then, the layer was cured by heating at 100 ° C for 1 hour and then at 150 ° C for 1 hour to form a layer of light-transmitting dendrite 216 (see Fig. 25 (a)).
このようにして得られた光回路一電気回路混載基板にあって、 偏向部 205及 びその直上の光透過性樹脂 216を設けた開口部 231は、 フォトマスクによつ てパターユングされた 40 /xm幅の光導波路 204の両端に対をなすように形成 してあり、 また電気回路 206にはベアの面発光レーザチップ (波長 850 nm、 放射広がり角 ± 10° 、 放射強度 O dBm) と、 ベアの P I Nフォトダイォー ドチップ (受光エリア 38 μπιφ ) をボールハンダによってフリップチップ実 装した。 そしてこの面発光レーザチップからの発光を 1対の偏向部 205と光導 波路 204を通して P I Νフォトダイオードチップで一 6. 8 d Bmにて受光で きることを確認した。  In the thus obtained optical circuit-electric circuit mixed board, the opening 231 provided with the deflecting portion 205 and the light-transmitting resin 216 immediately above the deflecting portion 205 was patterned by a photomask. It is formed as a pair at both ends of an optical waveguide 204 having a width of xm, and an electric circuit 206 includes a bare surface emitting laser chip (wavelength 850 nm, radiation spread angle ± 10 °, radiation intensity O dBm), A bare PIN photodiode chip (light receiving area: 38 μπιφ) was flip-chip mounted by ball soldering. Then, it was confirmed that the light emitted from the surface emitting laser chip could be received at 16.8 dBm by the PIΝphotodiode chip through the pair of deflection portions 205 and the optical waveguide 204.
(実施例 24 ) (Example 24)
離型処理が施された厚み 100 jumのステンレス板で形成した支持体 233に、 光透過性樹脂 Bを口ール転写法で塗布厚み 50 μ mに塗布し、 100でで 1時間、 続いて 150°Cで 1時間加熱して硬化させることによって、 光透過性樹脂層 21 7を形成した。 次に光透過性樹脂層 21 7の上に感光性樹脂 Bのワニスを 100 /im厚に塗布し、 加熱乾燥して厚み 50± 5 μπιの光回路形成層 201を形成し た。 次に、 この上に光透過性樹脂 Βをロール転写法で塗布厚み 50 μ mに塗布し、 100°Cで 1時間、 続いて 150°Cで 1時間加熱して硬化させることによって、 第 2光透過性樹脂層 223を形成した。 そしてこの上に厚み 25 / mの透明 PE Tフィルムからなるカバ一フィルム 215をロールで押し当てて張り付けること によって、 積層物 203を得た (図 33 (a) 参照) 。  A light-transmissive resin B is applied to a support 233 formed of a 100-jum-thick stainless steel plate subjected to a mold release treatment by a mouth transfer method so as to have a coating thickness of 50 μm. The light-transmitting resin layer 217 was formed by heating and curing at 150 ° C. for 1 hour. Next, a varnish of photosensitive resin B was applied on the light transmitting resin layer 217 to a thickness of 100 / im, and dried by heating to form an optical circuit forming layer 201 having a thickness of 50 ± 5 μπι. Next, a light-transmissive resin 塗布 was applied thereon by a roll transfer method to a coating thickness of 50 μm, and was cured by heating at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour. The light transmitting resin layer 223 was formed. Then, a cover film 215 made of a transparent PET film having a thickness of 25 / m was pressed against this with a roll and stuck thereon to obtain a laminate 203 (see FIG. 33 (a)).
上記のようにして得た積層物 203を 6 cm角にカットして用い、 また、 40 μ m幅の線状の光透過スリットが 2 5 0 μ m間隔で 20本平行に配置され、 かつ、 線幅 1 00 /X m、 サイズ 5 00 μ m角の十字形状の光通過領域を有する基準マー ク形状が形成されたフォトマスクを用いた。 マークを基準にしてフォトマスクを ァライメントした後、 そしてかかる積層物 2 0 3内にフォトマスク内の前記光通 過スリッ ト及び基準マークが全て入るように、 フォトマスク位置を調整した後、 積層物 203のカバーフィルム 2 1 5の表面にフォトマスクをコンタク トし、 フ オトマスクを通して 1 0 Jノ cm2のパワーの高圧水銀で露光した (図 3 3The laminate 203 obtained as described above was cut into 6 cm squares and used. Twenty μm wide linear light transmission slits are arranged in parallel at 250 μm intervals, and have a cross-shaped light passage area with a line width of 100 / X m and a size of 500 μm square. A photomask having a reference mark shape was used. After aligning the photomask with reference to the mark, and adjusting the position of the photomask so that all the light transmission slits and the reference mark in the photomask are included in the laminate 203, the laminate is formed. You should contact a photomask 203 cover film 2 1 5 of the surface of exposed with high pressure mercury 1 0 J Bruno cm 2 of power through full Otomasuku (Fig 3
(b) 参照、 基準マークは図示されず) 。 これによつて光回路形成層 2 0 1内に 光導波路 204のコア部 2 04 aおよび基準マーク (図示せず) が形成された。 次に、 頂角 9 0°のブレードを用い、 前記光回路形成層 20 1内に形成された 基準マークを基準として V溝 2 2 1を加工した (図 3 3 (c) 参照) 。 ブレード には、 ディスコ社の # 5000ブレード (型番 B1E863SD5000L100MT38) を用い、 回転数 3 000 0 r pm、 カバーフィルム 2 1 5側より下降速度 0. 0 3mm/ sで 1 0 O /imの深さでブレードで切込み、 その後、 深さを維持したまま 2 0本 の導波路を全てそれらに対して垂直に横切るように 0. 1 mm/ sの速度で走查 した後、 ブレードを離脱させた。 (See (b), fiducial marks not shown). As a result, a core portion 204a of the optical waveguide 204 and a reference mark (not shown) were formed in the optical circuit forming layer 201. Next, a V-groove 221 was machined using a blade having an apex angle of 90 ° with reference to a reference mark formed in the optical circuit forming layer 201 (see FIG. 33 (c)). The blade is a # 5000 blade from Disco (model number B1E863SD5000L100MT38), the rotation speed is 3 000 rpm, the descent speed from the cover film 2 15 side is 0.03 mm / s, and the depth is 10 O / im. The blade was cut with a blade, and after running at a speed of 0.1 mm / s so as to traverse all the 20 waveguides perpendicularly to the waveguide while maintaining the depth, the blade was detached.
形成された V溝 2 2 1の面粗度は、 r m s表示で 60 nmと良好なものであつ た。 この後、 V溝 2 2 1の部分に電子ビーム蒸着によって、 金を 8 A/ /秒の速度 で厚み 2 000 A蒸着し、 V?冓 2 2 1の傾斜面 7に光反射部 20 8を設けて偏向 部 20 5を形成した (図 1 8 (a ) 参照) 。 次いでカバーフィルム 2 1 5を剥離 して除去した (図 3 3 (d) 参照) 。 The surface roughness of the formed V-shaped groove 221 was as good as 60 nm in rms display. Thereafter, by electron beam evaporation to a V groove 2 2 1 part, gold thickness 2 000 A deposited at a rate of 8 A / / sec, V? A light reflecting portion 208 was provided on the inclined surface 7 of the ridge 2 21 to form a deflecting portion 205 (see FIG. 18 (a)). Next, the cover film 215 was peeled off and removed (see FIG. 33 (d)).
この後、 積層物 20 3の第 2光透過性樹脂層 2 2 3の側に接着剤 Aのワニスを 4 0 X m厚に塗布して 1 50°Cで乾燥し、 接着剤 2 1 4の層を形成し、 そして電 気回路 2 1 2を設けた FR— 5タイプのプリント配線基板 2 1 1に積層物 20 3 を重ねて 1 70 °Cにて真空プレスし、 両者を接着した後、 支持体 2 3 3を剥離し た (図 3 3 (e) 参照) 。  Thereafter, a varnish of the adhesive A is applied to the side of the second light-transmitting resin layer 22 3 of the laminate 20 3 in a thickness of 40 Xm, dried at 150 ° C., and dried. After forming a layer, the laminate 20 3 is superimposed on the FR-5 type printed wiring board 2 11 provided with the electric circuit 2 12 and vacuum-pressed at 170 ° C., and the two are adhered. The support 233 was peeled off (see FIG. 33 (e)).
さらにこの後、 積層物 20 3の支持体 2 3 3を剥離した側に、 樹脂層 (接着剤 層として機能する) 2 9 5付き銅箔材料 2 9 0 (松下電工製 ARCC R— 0 8 8 0) を 1 7 0°Cにて 1時間真空プレスした (図 3 3 ( f ) 参照) 。 この後、 樹脂付き銅箔 (291) 材料 290のビアホーノレ 213を形成する箇 所にサイズ 100 μπιφのコンフォーマルマスク孔及び基準ガイドを形成した後、 エキシマレーザを照射して開口径 1 Ο Ομπιのビアホール 213を形成し (図 3 3 (g) 参照) 、 次いで過マンガン酸デスミアによる表面処理、 硫酸過水系によ るソフトエッチング処理を施した後にパネルメツキをしてビアホール 213に電 気導通部 222を形成し (図 33 (h) 参照) 、 さらに樹脂層 295付き銅箔材 料 290の銅箔層 291をパターユングして電気回路 206を形成することによ つて、 光回路一電気回路混載基板を得た (図 33 ( i ) 参照) 。 また、 偏向部 2 05の直上部の接着剤層 295の表面に光透過性樹脂 Bを 1 μ g滴下し、 10 0°Cで 1時間、 続いて 150°Cで 1時間加熱して硬化させることによって、 光透 過性樹脂 216の層を形成した (図 25 (a) 参照) 。 After that, on the side of the laminate 203 from which the support 23 was removed, a copper foil material 290 with a resin layer (functioning as an adhesive layer) 295 (ARCC R—0888 manufactured by Matsushita Electric Works) 0) was vacuum-pressed at 170 ° C for 1 hour (see Fig. 33 (f)). After that, a conformal mask hole with a size of 100 μπιφ and a reference guide are formed at the place where the via-horne 213 of the copper foil with resin (291) material 290 is to be formed. 213 is formed (see Fig. 33 (g)), and then subjected to surface treatment with desmear permanganate and soft etching with a sulfuric acid / hydrogen peroxide system. (See Fig. 33 (h).) Further, by forming an electric circuit 206 by patterning the copper foil layer 291 of the copper foil material 290 with the resin layer 295, an optical circuit-electric circuit mixed board is obtained. (See Fig. 33 (i)). Also, 1 μg of the light-transmitting resin B is dropped on the surface of the adhesive layer 295 immediately above the deflecting section 205, and cured by heating at 100 ° C. for 1 hour and subsequently at 150 ° C. for 1 hour. As a result, a layer of a light-transmitting resin 216 was formed (see FIG. 25A).
このようにして得られた光回路一電気回路混載基板にあって、 偏向部 205及 びその直上の光透過性樹脂 216を設けた開口部 231は、 フォトマスクによつ てパターエングされた 40 μπι幅の光導波路 204の両端に対をなすように形成 してあり、 実施例 14と同様にベアの面発光レーザチップとベアの P I Νフォト ダイォ一ドチップを実装し、 そしてこの面発光レーザチップからの発光を 1対の 偏向部 205と光導波路 204を通して P I Νフォトダイォードチップで一 6. 5 d Bmにて受光できることを確認した。 尚、 本出願は、 先の日本国特許出願第 2002— 154809号 (2002年 In the optical circuit-electric circuit hybrid board obtained in this way, the opening 231 provided with the deflecting part 205 and the light-transmitting resin 216 immediately above the deflecting part 205 has a 40 μπι width patterned by a photomask. A pair of bare surface-emitting laser chips and a bare PI Ν photo diode chip are mounted in the same manner as in Embodiment 14, and both ends of the optical waveguide 204 are formed. It was confirmed that the emitted light could be received at 16.5 dBm with a PI II photodiode chip through a pair of deflection sections 205 and an optical waveguide 204. This application is based on Japanese Patent Application No. 2002-154809 (2002
5月 28日出願、 発明の名称:光電気混載基板用材料) および第 2002— 15 4810号 (2002年 5月 28日出願、 発明の名称:光電気混載基板の製造方 法) に基づく優先権を主張し、 これらの出願において開示された内容は、 この参 照によって、 本明細書の内容の一部を構成する。 Priority filed on May 28, Title of invention: Material for opto-electric hybrid board) and No. 2002-154810 (Filed on May 28, 2002, Title of invention: Method of manufacturing opto-electric hybrid board) The content disclosed in these applications is hereby incorporated by reference into the content of the present specification.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光透過性樹脂層、 および 1. a light-transmitting resin layer, and
活性エネルギー線の照射によって屈折率が増加する光透過性樹脂で形成され、 光透過性樹脂層に隣接する光回路形成層  An optical circuit forming layer formed of a light-transmitting resin whose refractive index is increased by irradiation with active energy rays and adjacent to the light-transmitting resin layer
を有して成る、 光回路一電気回路混載基板用材料であって、 An optical circuit-an electric circuit mixed board material, comprising:
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 光回路形成層の該一部分の屈折率 は、 光透過性樹脂層の屈折率より大きレヽ、 光回路一電気回路混載基板用材料。  When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with the active energy ray, the refractive index of the part of the optical circuit forming layer is determined by the refractive index of the light transmitting resin layer. Larger than the refractive index, a material for optical circuit-electric circuit mixed board.
2 . 光透過性樹脂層、 および  2. Light transmitting resin layer, and
活性エネルギー線の照射によって屈折率が減少する光透過性樹脂で形成され、 光透過性樹脂層に隣接する光回路形成層  An optical circuit formation layer formed of a light-transmitting resin whose refractive index is reduced by irradiation with active energy rays, and adjacent to the light-transmitting resin layer
を有して成る、 光回路—電気回路混載基板用材料であって、 An optical circuit-electric circuit mixed substrate material, comprising:
光回路形成層の屈折率は、 光透過性樹脂層の屈折率より大きく、  The refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer,
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 光回路形成層の該一部分の屈折率 は、 活性エネルギー線が照射されない、 光回路形成層の残りの部分の屈折率より 小さい、 光回路一電気回路混載基板用材料。  When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with an active energy ray, the refractive index of the part of the optical circuit forming layer is not irradiated with the active energy ray A material for an optical circuit-electric circuit mixed substrate, which is smaller than the refractive index of the remaining portion of the optical circuit formation layer.
3 . 第 2光透過性樹脂層を更に有して成り、 光透過性樹脂層と第 2光透過性樹 脂層との間に光回路形成層が位置し、  3. further comprising a second light-transmitting resin layer, wherein an optical circuit forming layer is located between the light-transmitting resin layer and the second light-transmitting resin layer,
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 光回路形成層の該一部分の屈折率 は、 第 2光透過性樹脂層の屈折率より大きい、 請求項 1に記載の光回路一電気回 路混載基板用材料。  When irradiating an active energy ray to the material for the optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with the active energy ray, the refractive index of the part of the optical circuit forming layer is the second light transmitting resin. 2. The material for an optical-circuit / electric-circuit-mixed substrate according to claim 1, wherein the material is larger than the refractive index of the layer.
4 . 第 2光透過性樹脂層を更に有して成り、 光透過性樹脂層と第 2光透過性樹 脂層との間に光回路形成層が位置し、  4. An optical circuit forming layer is further disposed between the light-transmitting resin layer and the second light-transmitting resin layer, further comprising a second light-transmitting resin layer,
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 活性エネルギー線が照射されない、 光回路形成層の該残りの部分の屈折率は、 第 2光透過性樹脂層の屈折率より大き い、 請求項 2に記載の光回路一電気回路混載基板用材料。 When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with an active energy ray, the active energy ray is not irradiated. The refractive index is larger than the refractive index of the second light-transmitting resin layer. 3. The material for an optical circuit-electric circuit hybrid board according to claim 2.
5 . 光透過性樹脂層、 および  5. Light transmitting resin layer, and
活性エネルギー線の照射によって溶剤への溶解性が変化する光透過性樹脂で形 成され、 光透過性樹脂層に隣接する光回路形成層  An optical circuit forming layer formed of a light-transmitting resin whose solubility in a solvent changes when irradiated with active energy rays, and adjacent to the light-transmitting resin layer
を有して成る、 光回路一電気回路混載基板用材料であって、 An optical circuit-an electric circuit mixed board material, comprising:
光回路—電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、  When irradiating an active energy ray to a material for an optical circuit-electric circuit hybrid substrate and irradiating a part of an optical circuit forming layer with an active energy ray,
光回路形成層の屈折率は光透過性樹脂層の屈折率より大きく、  The refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer,
活性エネルギー線が照射される光回路形成層の該一部分は、 溶剤によつて溶解 除去可能な状態から不可能な状態に変化し、  The part of the optical circuit forming layer to which the active energy ray is irradiated changes from a state capable of being dissolved and removed by a solvent to a state impossible,
活性エネルギー線が照射されなレ、、 光回路形成層の残りの部分は、 溶剤によつ て溶解除去可能な状態のままである、 光回路一電気回路混載基板用材料。  A material for an optical circuit-electric circuit hybrid substrate, in which the active energy beam is not irradiated, and the remaining portion of the optical circuit forming layer remains in a state that can be dissolved and removed by a solvent.
6 . 光透過性樹脂層、 および  6. Light transmitting resin layer, and
活性エネルギー線の照射によつて溶剤への溶解性が変化する光透過性樹脂で形 成され、 光透過性樹脂層に隣接する光回路形成層  An optical circuit formation layer formed of a light-transmitting resin whose solubility in a solvent changes when irradiated with active energy rays, and adjacent to the light-transmitting resin layer
を有して成る、 光回路一電気回路混載基板用材料であって、 An optical circuit-an electric circuit mixed board material, comprising:
光回路形成層の屈折率は光透過性樹脂層の屈折率より大きく、  The refractive index of the optical circuit forming layer is larger than the refractive index of the light transmitting resin layer,
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、  When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with an active energy ray,
活性エネルギー線が照射される光回路形成層の該一部分は、 溶剤によって溶解 除去不可能な状態から可能な状態に変化し、  The part of the optical circuit forming layer to which the active energy rays are irradiated changes from a state in which it cannot be dissolved and removed by a solvent to a state in which it can be removed,
活性エネルギー線が照射されない、 光回路形成層の残りの部分は、 溶剤によつ て溶解除去不可能な状態のままである、 光回路一電気回路混載基板用材料。  A material for an optical circuit-electric circuit hybrid substrate, in which the active energy ray is not irradiated, and the remaining portion of the optical circuit forming layer remains in a state where it cannot be dissolved and removed by a solvent.
7 . 金属層を更に有して成り、 金属層と光回路形成層との間に光透過性樹脂層 が位置する請求項 1〜 6のいずれかに記載の光回路一電気回路混載基板用材料。  7. The material for an optical circuit-electric circuit hybrid board according to any one of claims 1 to 6, further comprising a metal layer, wherein the light transmitting resin layer is located between the metal layer and the optical circuit forming layer. .
8 . 金属層、 および  8. the metal layer, and
活性エネルギー線の照射によつて屈折率が増加する光透過性樹脂で形成され、 金属層に隣接する光回路形成層  An optical circuit forming layer formed of a light-transmitting resin whose refractive index is increased by irradiation with active energy rays and adjacent to a metal layer
を有して成る、 光回路一電気回路混載基板用材料であって、 光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 光回路形成層の該一部分の屈折率 は、 活性エネルギー線が照射されない、 光回路形成層の残りの部分の屈折率より 大きい、 光回路一電気回路混載基板用材料。 An optical circuit-an electric circuit mixed board material, comprising: When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with the active energy ray, the refractive index of the part of the optical circuit forming layer is not irradiated with the active energy ray A material for an optical circuit-electrical circuit board, which is larger than the refractive index of the remaining portion of the optical circuit forming layer.
9 . 金属層、 および  9. Metal layer, and
活性エネルギー線の照射によって屈折率が減少する光透過性樹脂で形成され、 金属層に隣接する光回路形成層  Optical circuit forming layer formed of light transmissive resin whose refractive index decreases by irradiation with active energy rays, adjacent to the metal layer
を有して成る、 光回路一電気回路混載基板用材料であって、 An optical circuit-an electric circuit mixed board material, comprising:
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 光回路形成層の該一部分の屈折率 は、 活性エネルギー線が照射されない、 光回路形成層の残りの部分の屈折率より 小さい、 光回路一電気回路混載基板用材料。  When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with an active energy ray, the refractive index of the part of the optical circuit forming layer is not irradiated with the active energy ray A material for an optical circuit-electric circuit mixed substrate, which is smaller than the refractive index of the remaining portion of the optical circuit formation layer.
1 0 . 光透過性樹脂層を更に有して成り、 光回路形成層は金属層と光透過性樹 脂層との間に位置し、  10. It further comprises a light-transmitting resin layer, wherein the optical circuit forming layer is located between the metal layer and the light-transmitting resin layer,
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 光回路形成層の該一部分の屈折率 は、 光透過性樹脂層の屈折率より大きい、 請求項 8に記載の光回路一電気回路混 載基板用材料。  When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with the active energy ray, the refractive index of the part of the optical circuit forming layer is determined by the refractive index of the light transmitting resin layer. 9. The material for an optical circuit-electric circuit mixed substrate according to claim 8, which has a refractive index larger than the refractive index.
1 1 . 光透過性樹脂層を更に有して成り、 光回路形成層は金属層と光透過性榭 脂層との間に位置し、  11. The optical circuit forming layer further includes a light-transmitting resin layer, the optical circuit forming layer is located between the metal layer and the light-transmitting resin layer,
光回路一電気回路混載基板用材料に活性エネルギー線を照射して光回路形成層 の一部分に活性エネルギー線を照射する場合、 活性エネルギー線が照射されない、 光回路形成層の該残りの部分の屈折率は、 光透過性樹脂層の屈折率より大きい、 請求項 9に記載の光回路一電気回路混載基板用材料。  When irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate and irradiating a part of the optical circuit forming layer with an active energy ray, the active energy ray is not irradiated, and the remaining part of the optical circuit forming layer is refracted. 10. The material for an optical circuit-electric circuit hybrid board according to claim 9, wherein the refractive index is larger than the refractive index of the light transmitting resin layer.
1 2 . 金属層はそれに隣接して接着剤層を有して成り、 接着剤層は、 金属層と 光回路形成層との間に位置する、 請求項 7〜1 1のいずれかに記載の光回路ー電 気回路混載基板用材料。  12. The metal layer according to any one of claims 7 to 11, wherein the metal layer has an adhesive layer adjacent thereto, and the adhesive layer is located between the metal layer and the optical circuit forming layer. Material for mixed circuit board with optical circuit and electric circuit.
1 3 . 剥離性支持体を更に有して成り、 支持体は、 金属層から近い側の光回路 一電気回路混載基板用材料の露出表面を構成する、 請求項 7〜1 2のいずれかに 記載の光回路一電気回路混載基板用材料。 13. The method according to claim 7, further comprising a releasable support, wherein the support forms an exposed surface of the material for the optical circuit and the electric circuit mixed board on the side closer to the metal layer. 13. The material for an optical circuit-electric circuit mixed board described in the above.
14. 光透過性カバーフィルムを更に有して成り、 カバーフィルムは、 金属層 から遠い側の光回路一電気回路混載基板用材料の表面を構成する、 請求項 7〜 1 3のいずれかに記載の光回路一電気回路混載基板用材料。  14. The light-transmitting cover film further comprising: a cover film that constitutes a surface of a material for an optical circuit-electric circuit hybrid board far from the metal layer; Optical circuit-electric circuit mixed board material.
1 5. 光回路—電気回路混載基板を製造する方法であって、  1 5. A method for manufacturing an optical circuit-electrical circuit board,
(1) 少なくとも光回路形成層を有して成る光回路一電気回路混載基板用材料 に活性エネルギー線を照射して光回路形成層に光導波路のコァ部を形成する工程 であって、 回路形成層は、 活性エネルギー線の照射によって溶剤への溶解性が変 化する力、 あるいは屈折率が変化する光透過性樹脂から形成されている工程、 (2) 光の偏向部をコア部に形成する工程、  (1) A step of irradiating an active energy ray to a material for an optical circuit-electrical circuit hybrid substrate having at least an optical circuit formation layer to form a core portion of an optical waveguide in the optical circuit formation layer, The layer is formed of a force that changes the solubility in a solvent by irradiation with active energy rays, or a process that is made of a light-transmitting resin whose refractive index changes. (2) A light deflecting portion is formed in the core portion. Process,
(3) 金属層を該光回路—電気回路混載基板用材料に接着する工程、 および (3) bonding a metal layer to the optical circuit-electric circuit mixed substrate material; and
(4) 金属層を加工して電気回路を形成する工程 (4) Process of forming an electric circuit by processing a metal layer
を含んで成る製造方法。 A production method comprising:
16. 光回路一電気回路混載基板用材料は、 請求項 1〜6のいずれかに記載の 光回路一電気回路混載基板用材料である、 請求項 15に記載の製造方法。  16. The manufacturing method according to claim 15, wherein the material for an optical circuit-electrical circuit hybrid board is the material for an optical circuit-electric circuit hybrid board according to any one of claims 1 to 6.
1 7. 光回路一電気回路混載基板を製造する方法であって、  1 7. A method of manufacturing an optical circuit-electrical circuit board,
(1) 少なくとも金属層および光回路形成層を有して成る光回路一電気回路混 載基板用材料の光回路形成層に活性エネルギー線を照射して光回路形成層に光導 波路のコア部を形成する工程であって、 回路形成層は、 活性エネルギー線の照射 によって溶剤への溶解性が変化するか、 屈折率が変化する光透過性樹脂から形成 されている工程、  (1) An active energy ray is applied to the optical circuit forming layer of the optical circuit-electric circuit hybrid substrate material having at least a metal layer and an optical circuit forming layer to irradiate the optical circuit forming layer with the core portion of the optical waveguide. Forming a circuit forming layer, wherein the circuit forming layer is formed from a light-transmitting resin whose solubility in a solvent changes or a refractive index changes by irradiation with an active energy ray;
(2) 光の偏向部をコア部に形成する工程、 および  (2) forming a light deflection part in the core part, and
(3) 金属層を加工して電気回路を形成する工程  (3) Process of forming electric circuit by processing metal layer
を含んで成る製造方法。 A production method comprising:
18. 光回路—電気回路混載基板用材料は、 請求項 7〜14のいずれかに記載 の光回路一電気回路混載基板用材料である、 請求項 17に記載の製造方法。  18. The manufacturing method according to claim 17, wherein the material for an optical circuit-electric circuit mixed board is the optical circuit-electric circuit mixed board material according to any one of claims 7 to 14.
19. 光回路一電気回路混載基板用材料の金属層にあらかじめ形成された基準 マークを基準として、 光導波路のコア部、 偏向部、 電気回路を所定の位置に形成 することを特徴とする請求項 17または 18に記載の光回路一電気回路混載基板 の製造方法。 19. The optical waveguide core part, the deflection part, and the electric circuit are formed at predetermined positions with reference to a reference mark formed in advance on a metal layer of a material for an optical circuit-electrical circuit hybrid board. Optical circuit-electric circuit mixed board described in 17 or 18 Manufacturing method.
2 0 . コア部を形成する工程 (1 ) において、 活性エネルギー線の照射と同時 に光回路形成層に基準マークを形成し、 偏向部および電気回路をこの基準マーク を基準として所定の位置に形成することを特徴とする請求項 1 5〜1 8に記載の 光回路一電気回路混載基板の製造方法。  20. In the step of forming the core portion (1), a reference mark is formed on the optical circuit forming layer simultaneously with the irradiation of the active energy ray, and the deflection portion and the electric circuit are formed at predetermined positions based on the reference mark. 19. The method for manufacturing an optical circuit-electrical circuit hybrid board according to claim 15, wherein:
2 1 .電気回路を形成する工程 ( 4 ) または (3 ) の前に、 電気回路を形成す る側の光回路一電気回路混載基板用材料の表面と反対側の光回路一電気回路混載 基板用材料の表面に基板を接着する、 請求項 1 5〜 2 0のいずれかに記載の光回 路ー電気回路混載基板の製造方法。  2 1. Before forming the electric circuit (4) or (3), the optical circuit on the side where the electric circuit is formed and the optical circuit on the side opposite to the surface of the material for the electric circuit mixed board The method for producing an optical circuit-electric circuit hybrid substrate according to any one of claims 15 to 20, wherein the substrate is adhered to a surface of a material for use.
2 2 . 基板が表面または内部に第 2電気回路を有する配線基板であり、 第 2電 気回路と、 形成した電気回路とを電気的に接続する工程を更に含む請求項 2 1に 記載の光回路一電気回路混載基板の製造方法。  22. The light according to claim 21, wherein the substrate is a wiring substrate having a second electric circuit on the surface or inside, and further comprising a step of electrically connecting the second electric circuit and the formed electric circuit. Circuit-A method for manufacturing an electric circuit mixed board.
2 3 . 基板を接着剤層を介して接着することを含み、 接着剤層は、 コア部の屈 折率よりも低い屈折率を有する請求項 2 1または 2 2に記載の光回路一電気回路 混載基板の製造方法。  23. The optical circuit-electric circuit according to claim 21 or 22, further comprising bonding the substrate via an adhesive layer, wherein the adhesive layer has a refractive index lower than a refractive index of the core portion. A method for manufacturing a mixed board.
2 4 . 光回路一電気回路混载基板用材料は、 光回路形成層の金属層が存在する 側と反対側の光回路一電気回路混載基板用材料の露出表面、 または光回路—電気 回路混載基板用材料の金属層を接着する側と反対側の光回路一電気回路混載基板 用材料の露出表面を構成するカバーフィルムを更に有して成り、  2 4. The material for the optical circuit / electric circuit hybrid substrate is the exposed surface of the optical circuit / electric circuit hybrid substrate material on the side opposite to the side where the metal layer of the optical circuit formation layer is present, or the optical circuit / electric circuit hybrid substrate. Further comprising a cover film constituting an exposed surface of the optical circuit-electric circuit mixed substrate material on the side opposite to the side to which the metal layer of the substrate material is bonded,
光の偏向部を形成する工程 (2 ) は、 カバーフィルムを有した状態で、 光導波 方向に対して傾斜する面を少なくともコア部に形成し、 この傾斜する面に光反射 部を形成し、 その後、 カバーフィルムを剥離することによって実施する請求項 1 5〜 2 3のいずれかに記載の光回路一電気回路混載基板の製造方法。  In the step (2) of forming a light deflecting portion, a surface inclined with respect to the optical waveguide direction is formed at least in the core portion with the cover film, and a light reflecting portion is formed on the inclined surface. The method for producing an optical-circuit / electric-circuit hybrid board according to any one of claims 15 to 23, wherein the method is performed by peeling off the cover film.
2 5 . 光導波方向に対して傾斜する面を少なくともコア部に形成し、 この傾斜 する面に金属粒子を含むペーストを供給して光反射部を形成することによって偏 光部を形成する、 請求項 1 5〜 2 4のいずれかに記載の光回路一電気回路混載基 板の製造方法。  25. A polarizing portion is formed by forming at least a surface inclined with respect to the optical waveguide direction in the core portion and supplying a paste containing metal particles to the inclined surface to form a light reflecting portion. Item 15. The method for producing an optical circuit-electric circuit hybrid board according to any one of Items 15 to 24.
2 6 . 電気回路の形成時、 偏向部の上方に位置する金属層の部分を除去し、 そ の後、 この部分に光透過性樹脂を塗布する請求項 1 5〜2 5のいずれかに記載の 光回路一電気回路混載基板の製造方法。 26. The method according to any one of claims 15 to 25, wherein at the time of forming the electric circuit, a portion of the metal layer located above the deflection portion is removed, and thereafter, a light transmitting resin is applied to this portion. of A method for manufacturing an optical circuit-electric circuit mixed board.
2 7 . 電気回路の形成時、 偏向部の上方に位置する金属層の部分を除去し、 そ の後、 その部分の周囲に残存する金属層と接するようにその部分に、 レンズ体の 光軸が偏向部を通るようにレンズ体を配置する請求項 1 5〜2 5のいずれかに記 載の光回路一電気回路混載基板の製造方法。  27. When forming the electric circuit, remove the metal layer located above the deflection part, and then attach the optical axis of the lens body to the part so as to be in contact with the metal layer remaining around the part. 26. The method of manufacturing an optical circuit-electric circuit hybrid board according to claim 15, wherein the lens body is disposed so that the lens passes through the deflection unit.
2 8 . 光回路一電気回路混載基板用材料は、 光回路形成層と金属層との間に、 または金属層を接着する側の面の光回路形成層の表面に、 形成されるコア部より 屈折率が低い光透過性樹脂層を有する、 請求項 1 5〜2 7のいずれかに記載の光 回路一電気回路混載基板の製造方法。  28. The material for the optical circuit-electric circuit mixed board is from the core formed between the optical circuit formation layer and the metal layer, or on the surface of the optical circuit formation layer on the side where the metal layer is bonded. 28. The method for manufacturing an optical-circuit / electric-circuit hybrid board according to claim 15, further comprising a light-transmitting resin layer having a low refractive index.
PCT/JP2003/006569 2002-05-28 2003-05-27 Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly WO2003100486A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2003241784A AU2003241784A1 (en) 2002-05-28 2003-05-27 Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
KR1020047019244A KR100730320B1 (en) 2002-05-28 2003-05-27 Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
EP03733077A EP1512996A4 (en) 2002-05-28 2003-05-27 Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
US10/515,175 US7330612B2 (en) 2002-05-28 2003-05-27 Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
US11/783,796 US8073295B2 (en) 2002-05-28 2007-04-12 Material for substrate mounting optical circuit-electrical circuit mixedly and substrate mounting optical circuit-electrical circuit mixedly
US11/957,121 US20080113168A1 (en) 2002-05-28 2007-12-14 Material for substrate mounting optical circuit-electrical circuit mixedly and substrate mounting optical circuit-electrical circuit mixedly
US11/957,072 US20080107881A1 (en) 2002-05-28 2007-12-14 Material for substrate mounting optical circuit-electrical circuit mixedly and substrate mounting optical circuit-electrical circuit mixedly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-154809 2002-05-28
JP2002154810 2002-05-28
JP2002-154810 2002-05-28
JP2002154809A JP4224259B2 (en) 2002-05-28 2002-05-28 Manufacturing method of opto-electric hybrid board

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US10515175 A-371-Of-International 2003-05-27
US11/783,796 Division US8073295B2 (en) 2002-05-28 2007-04-12 Material for substrate mounting optical circuit-electrical circuit mixedly and substrate mounting optical circuit-electrical circuit mixedly
US11/957,072 Division US20080107881A1 (en) 2002-05-28 2007-12-14 Material for substrate mounting optical circuit-electrical circuit mixedly and substrate mounting optical circuit-electrical circuit mixedly
US11/957,121 Division US20080113168A1 (en) 2002-05-28 2007-12-14 Material for substrate mounting optical circuit-electrical circuit mixedly and substrate mounting optical circuit-electrical circuit mixedly

Publications (1)

Publication Number Publication Date
WO2003100486A1 true WO2003100486A1 (en) 2003-12-04

Family

ID=29585998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006569 WO2003100486A1 (en) 2002-05-28 2003-05-27 Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly

Country Status (6)

Country Link
US (4) US7330612B2 (en)
EP (1) EP1512996A4 (en)
KR (1) KR100730320B1 (en)
CN (1) CN1656401A (en)
AU (1) AU2003241784A1 (en)
WO (1) WO2003100486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662282A1 (en) * 2004-11-25 2006-05-31 Nitto Denko Corporation Process for producing electro-optic hybrid circuit board

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100486A1 (en) * 2002-05-28 2003-12-04 Matsushita Electric Works, Ltd. Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
JP4175183B2 (en) * 2003-06-04 2008-11-05 富士ゼロックス株式会社 Method for producing polymer optical waveguide
KR20050040589A (en) * 2003-10-29 2005-05-03 삼성전기주식회사 Painted circuit board having the waveguide and manufacturing method thereof
JP4225207B2 (en) * 2004-01-23 2009-02-18 富士ゼロックス株式会社 Method for producing polymer optical waveguide
JP2006017885A (en) * 2004-06-30 2006-01-19 Fuji Xerox Co Ltd Waveguide film type optical module, optical waveguide film and its manufacturing method
US7049844B1 (en) * 2004-12-08 2006-05-23 Kla-Tencor Technologies Corporation Test patterns for optical measurements on multiple binary gratings
JP2006332094A (en) * 2005-05-23 2006-12-07 Seiko Epson Corp Process for producing electronic substrate, process for manufacturing semiconductor device and process for manufacturing electronic apparatus
KR100705582B1 (en) * 2005-09-07 2007-04-09 삼성전자주식회사 apparatus and method of service providing in multitude network system
US8045829B2 (en) * 2005-12-02 2011-10-25 Kyocera Corporation Optical waveguide member, optical wiring board, optical wiring module and method for manufacturing optical waveguide member and optical wiring board
US20070145595A1 (en) * 2005-12-27 2007-06-28 Hall Stephen H High speed interconnect
JP4711895B2 (en) * 2006-02-03 2011-06-29 ホシデン株式会社 Photoelectric flexible wiring board connection structure, connector and photoelectric flexible wiring board
JP2007232845A (en) * 2006-02-28 2007-09-13 Nippon Paint Co Ltd Method for manufacturing optical wiring laminate, and the optical wiring laminate body
JP5139685B2 (en) * 2007-01-26 2013-02-06 パナソニック株式会社 Multilayer element
JP2009036924A (en) 2007-07-31 2009-02-19 Nitto Denko Corp Optical waveguide film, optical substrate and methods for manufacturing the same
US7553215B2 (en) * 2007-08-24 2009-06-30 Panasonic Electric Works Co, Ltd. Process of forming a deflection mirror in a light waveguide
KR100918381B1 (en) * 2007-12-17 2009-09-22 한국전자통신연구원 Semiconductor integrated circuits including a grating coupler for optical communication and methods of forming the same
JP5413200B2 (en) * 2007-12-17 2014-02-12 日立化成株式会社 Optical waveguide and method for manufacturing the same
JP2009276724A (en) * 2008-05-19 2009-11-26 Nitto Denko Corp Method of manufacturing optical waveguide device
KR100969435B1 (en) * 2008-05-23 2010-07-14 삼성전기주식회사 A printed circuit board comprising a optical waveguide and method for manufacturing the same
JP2010066667A (en) * 2008-09-12 2010-03-25 Nitto Denko Corp Method of manufacturing optical waveguide device
JP5106332B2 (en) * 2008-09-18 2012-12-26 日東電工株式会社 Manufacturing method of optical waveguide device and optical waveguide device obtained thereby
JP2010117380A (en) * 2008-10-14 2010-05-27 Nitto Denko Corp Method for manufacturing light guide device
KR101059621B1 (en) * 2008-12-09 2011-08-25 삼성전기주식회사 Printed circuit board for optical waveguide and manufacturing method thereof
EP2359172B1 (en) * 2008-12-22 2015-02-25 Panasonic Corporation Method for forming mirror-reflecting film in optical wiring board
US20100184241A1 (en) * 2009-01-16 2010-07-22 Edison Opto Corporation Method for manufacturing thin type light emitting diode assembly
TWI432806B (en) 2009-03-26 2014-04-01 Panasonic Corp Method of manufacturing optical waveguide having mirror face
DE102009025072A1 (en) * 2009-06-16 2010-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method of producing a region of increased refractive index and a substrate of locally variable refractive index
CN101951739A (en) * 2009-07-10 2011-01-19 深圳富泰宏精密工业有限公司 Shell and method for manufacturing same
JP2011039489A (en) * 2009-07-17 2011-02-24 Nitto Denko Corp Method of manufacturing optical waveguide device
KR101562313B1 (en) * 2009-08-17 2015-10-22 삼성디스플레이 주식회사 Opticall film method of the same and display apparatus having the same
KR101079867B1 (en) * 2009-11-13 2011-11-04 삼성전기주식회사 Optical wiring board and manufacturing method thereof
JP5462073B2 (en) * 2010-05-21 2014-04-02 新光電気工業株式会社 Optical waveguide device and manufacturing method thereof
JP2012027141A (en) * 2010-07-21 2012-02-09 Sumitomo Electric Ind Ltd Optical semiconductor device
JP2012073358A (en) 2010-09-28 2012-04-12 Nitto Denko Corp Method for manufacturing optical waveguide for connector
KR20120070732A (en) * 2010-12-22 2012-07-02 삼성전기주식회사 Method for manufacturing a printed curcuit board with optical waveguides
WO2012093462A1 (en) * 2011-01-07 2012-07-12 パナソニック株式会社 Optoelectric complex flexible circuit substrate
KR101181322B1 (en) * 2011-03-18 2012-09-11 광 석 서 Transparent electrode films having a conductive polymer electrode layer
JP5840989B2 (en) * 2012-03-16 2016-01-06 日東電工株式会社 Opto-electric hybrid board and manufacturing method thereof
WO2014017242A1 (en) * 2012-07-27 2014-01-30 コニカミノルタ株式会社 Organic electroluminescent element
US20140119703A1 (en) * 2012-10-26 2014-05-01 Cisco Technology, Inc. Printed Circuit Board Comprising Both Conductive Metal and Optical Elements
CN104049321B (en) * 2013-03-15 2017-09-15 赛恩倍吉科技顾问(深圳)有限公司 Optical communication device and its manufacture method
US9348099B2 (en) * 2014-07-18 2016-05-24 Intel Corporation Optical coupler
JP6165127B2 (en) * 2014-12-22 2017-07-19 三菱重工工作機械株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6076420B2 (en) 2015-07-22 2017-02-08 日東電工株式会社 Conductive film laminate having transparent adhesive layer
EP3125008A1 (en) * 2015-07-29 2017-02-01 CCS Technology Inc. Method to manufacture optoelectronic modules
US11414608B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor used with opportunity feedstocks
US11414607B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with increased production rate of converted products
US11421164B2 (en) 2016-06-08 2022-08-23 Hydrocarbon Technology & Innovation, Llc Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product
CN107632340A (en) * 2016-07-19 2018-01-26 中兴通讯股份有限公司 A kind of lightguide cross unit
US11732203B2 (en) 2017-03-02 2023-08-22 Hydrocarbon Technology & Innovation, Llc Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling
US11118119B2 (en) 2017-03-02 2021-09-14 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with less fouling sediment
JP2019054150A (en) * 2017-09-15 2019-04-04 東芝メモリ株式会社 Semiconductor device manufacturing method and semiconductor wafer
JP7017359B2 (en) * 2017-09-29 2022-02-08 Hoya株式会社 Optical semiconductor device
CA3057131A1 (en) 2018-10-17 2020-04-17 Hydrocarbon Technology And Innovation, Llc Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms
US11231554B2 (en) * 2019-12-16 2022-01-25 The Boeing Company Devices and methods for protecting IR-VIS sensors from electromagnetic interference
CN114205990B (en) * 2020-09-17 2024-03-22 深南电路股份有限公司 Circuit board and preparation method thereof
CN115876179B (en) * 2023-03-08 2023-05-30 中国船舶集团有限公司第七〇七研究所 Chip type integrated optical gyroscope

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281831A (en) * 1993-03-25 1994-10-07 Nippon Telegr & Teleph Corp <Ntt> Electric wiring/optical wiring combined flexible printed circuit board and substrate therefor
JPH10232323A (en) * 1997-02-19 1998-09-02 Hitachi Cable Ltd Polymer waveguide and its manufacture
JP2000180643A (en) * 1998-10-05 2000-06-30 Nippon Telegr & Teleph Corp <Ntt> Photosensitive composition for optical waveguide, manufacturing of the same, and formation of high polymer optical waveguide pattern
JP2000298217A (en) * 1999-04-13 2000-10-24 Toppan Printing Co Ltd Optical-electric wiring substrate and manufacture therefor, and mounting substrate
JP2000321455A (en) * 1999-05-06 2000-11-24 Mitsui Chemicals Inc Production of polyimide optical waveguide
JP2000340957A (en) * 1999-06-01 2000-12-08 Toppan Printing Co Ltd Optical/electrical wiring board, manufacture thereof and mounting board
JP2001166165A (en) * 1999-12-08 2001-06-22 Hitachi Cable Ltd Waveguide film with adhesive sheet and method for packaging the same
JP2001196494A (en) * 2000-01-11 2001-07-19 Toppan Printing Co Ltd Chip carrier for mounting opto-electric element, manufacturing and mounting method therefor, opto- electric wiring board, manufacturing method therefor and mounted substrate
JP2002006161A (en) * 2000-06-19 2002-01-09 Sony Corp Optical wiring substrate and optical wiring module and their manufacturing method
JP2002053667A (en) * 2000-08-09 2002-02-19 Mitsubishi Chemicals Corp Polyimide resin shaped article having refractive index distribution
JP2003057478A (en) * 2001-08-21 2003-02-26 Hitachi Cable Ltd Method for manufacturing waveguide using polymer material as start material

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US572619A (en) * 1896-12-08 Paper-file
US3486934A (en) * 1966-08-01 1969-12-30 Minnesota Mining & Mfg Process for the production of a metal-polyimide composite and the resulting article
DE2710074A1 (en) * 1977-03-08 1978-09-14 Geb Drautzburg Chris Hartinger Base material for optical (electrical) circuits - has soluble, optically conductive layer forming circuits printed in insoluble lacquer
US4376160A (en) * 1980-04-07 1983-03-08 California Institute Of Technology Method of making and structure for monolithic optical circuits
US4472020A (en) 1981-01-27 1984-09-18 California Institute Of Technology Structure for monolithic optical circuits
US4736160A (en) * 1985-05-29 1988-04-05 Hitachi, Ltd. Nuclear magnetic resonance imaging method
GB2191603A (en) * 1986-06-13 1987-12-16 Northern Telecom Ltd Optical conductor having at least three layers
US5054872A (en) 1990-03-16 1991-10-08 Ibm Corporation Polymeric optical waveguides and methods of forming the same
DE69434548T2 (en) 1993-03-18 2006-08-03 Nippon Telegraph And Telephone Corp. METHOD OF MANUFACTURING A POLYIMIDE OPTICAL WAVEGUIDE
EP0617303A1 (en) * 1993-03-19 1994-09-28 Akzo Nobel N.V. A method of integrating a semiconductor component with a polymeric optical waveguide component, and an electro-optical device comprising an integrated structure so attainable
JP3153682B2 (en) 1993-08-26 2001-04-09 松下電工株式会社 Circuit board manufacturing method
JPH07333450A (en) * 1994-06-08 1995-12-22 Hoechst Japan Ltd Forming method for optical coupling waveguide and optical waveguide element having optical coupling waveguide
US5666400A (en) * 1994-07-07 1997-09-09 Bell Atlantic Network Services, Inc. Intelligent recognition
JP3258520B2 (en) * 1994-12-12 2002-02-18 松下電器産業株式会社 Optical fiber sensor and method of manufacturing the same
US5659648A (en) * 1995-09-29 1997-08-19 Motorola, Inc. Polyimide optical waveguide having electrical conductivity
JPH09281352A (en) 1996-04-10 1997-10-31 Fuji Xerox Co Ltd Formation of opto-electric transmission path and opto-electric wiring board
US6052693A (en) * 1996-07-02 2000-04-18 Harlequin Group Plc System for assembling large databases through information extracted from text sources
US6161130A (en) * 1998-06-23 2000-12-12 Microsoft Corporation Technique which utilizes a probabilistic classifier to detect "junk" e-mail by automatically updating a training and re-training the classifier based on the updated training set
US6537723B1 (en) 1998-10-05 2003-03-25 Nippon Telegraph And Telephone Corporation Photosensitive composition for manufacturing optical waveguide, production method thereof and polymer optical waveguide pattern formation method using the same
JP3706496B2 (en) * 1999-03-25 2005-10-12 京セラ株式会社 Manufacturing method of optical waveguide
TW460717B (en) 1999-03-30 2001-10-21 Toppan Printing Co Ltd Optical wiring layer, optoelectric wiring substrate mounted substrate, and methods for manufacturing the same
JP2000347051A (en) 1999-03-30 2000-12-15 Toppan Printing Co Ltd Optical/electrical wiring board, its manufacturing method and package board
JP3628547B2 (en) 1999-04-16 2005-03-16 日本電信電話株式会社 Electrical / optical functional module
TW451084B (en) * 1999-06-25 2001-08-21 Toppan Printing Co Ltd Optical-electro wiring board, mounted board, and manufacturing method of optical-electro wiring board
JP4258065B2 (en) 1999-06-30 2009-04-30 凸版印刷株式会社 Manufacturing method of optical / electrical wiring board
US7369304B2 (en) * 1999-10-29 2008-05-06 Cytyc Corporation Cytological autofocusing imaging systems and methods
JP2001311846A (en) 2000-04-28 2001-11-09 Oki Printed Circuit Kk Method for manufacturing electric wiring/optical wiring coexisting multilayer sheet and method for manufacturing electric wiring/optical wiring coexisting multilayer substrate
US6618715B1 (en) * 2000-06-08 2003-09-09 International Business Machines Corporation Categorization based text processing
JP3825227B2 (en) 2000-06-22 2006-09-27 京セラ株式会社 Photoelectric circuit board manufacturing method
JP3764640B2 (en) * 2000-09-26 2006-04-12 京セラ株式会社 Optical module and manufacturing method thereof
WO2003100486A1 (en) * 2002-05-28 2003-12-04 Matsushita Electric Works, Ltd. Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
WO2004098466A2 (en) * 2003-05-02 2004-11-18 Smart Disc, Inc. Artificial spinal disk

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281831A (en) * 1993-03-25 1994-10-07 Nippon Telegr & Teleph Corp <Ntt> Electric wiring/optical wiring combined flexible printed circuit board and substrate therefor
JPH10232323A (en) * 1997-02-19 1998-09-02 Hitachi Cable Ltd Polymer waveguide and its manufacture
JP2000180643A (en) * 1998-10-05 2000-06-30 Nippon Telegr & Teleph Corp <Ntt> Photosensitive composition for optical waveguide, manufacturing of the same, and formation of high polymer optical waveguide pattern
JP2000298217A (en) * 1999-04-13 2000-10-24 Toppan Printing Co Ltd Optical-electric wiring substrate and manufacture therefor, and mounting substrate
JP2000321455A (en) * 1999-05-06 2000-11-24 Mitsui Chemicals Inc Production of polyimide optical waveguide
JP2000340957A (en) * 1999-06-01 2000-12-08 Toppan Printing Co Ltd Optical/electrical wiring board, manufacture thereof and mounting board
JP2001166165A (en) * 1999-12-08 2001-06-22 Hitachi Cable Ltd Waveguide film with adhesive sheet and method for packaging the same
JP2001196494A (en) * 2000-01-11 2001-07-19 Toppan Printing Co Ltd Chip carrier for mounting opto-electric element, manufacturing and mounting method therefor, opto- electric wiring board, manufacturing method therefor and mounted substrate
JP2002006161A (en) * 2000-06-19 2002-01-09 Sony Corp Optical wiring substrate and optical wiring module and their manufacturing method
JP2002053667A (en) * 2000-08-09 2002-02-19 Mitsubishi Chemicals Corp Polyimide resin shaped article having refractive index distribution
JP2003057478A (en) * 2001-08-21 2003-02-26 Hitachi Cable Ltd Method for manufacturing waveguide using polymer material as start material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KATSUYUKI IMOTO ET AL.: "Photo-bleaching-yo polymer zairyo o mochiita doharo kozo oyobi sono seizo hoho no ichikento (photo-bleaching type waveguide and its fabrication method)", 2002 NEN, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI, B-10-82, 2002, pages 519, XP002970437 *
KATSUYUKI IMOTO ET AL.: "Photo-bleaching-yo polymer zairyo oyobi sore o mochiita doharo kozo to sono seizo hoho no kento (optical waveguide structure and its fabrication method with a novel photobleaching type polymeric material)", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU (OME2002 13-19), vol. 102, no. 47, 2002, pages 25 - 30, XP002970438 *
See also references of EP1512996A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662282A1 (en) * 2004-11-25 2006-05-31 Nitto Denko Corporation Process for producing electro-optic hybrid circuit board

Also Published As

Publication number Publication date
EP1512996A4 (en) 2005-11-16
CN1656401A (en) 2005-08-17
KR100730320B1 (en) 2007-06-19
KR20050004884A (en) 2005-01-12
US20070189661A1 (en) 2007-08-16
EP1512996A1 (en) 2005-03-09
US20080113168A1 (en) 2008-05-15
US20050238278A1 (en) 2005-10-27
US8073295B2 (en) 2011-12-06
AU2003241784A1 (en) 2003-12-12
US20080107881A1 (en) 2008-05-08
US7330612B2 (en) 2008-02-12

Similar Documents

Publication Publication Date Title
WO2003100486A1 (en) Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
JP4539031B2 (en) Manufacturing method of opto-electric hybrid board
TWI432806B (en) Method of manufacturing optical waveguide having mirror face
US9535216B2 (en) Optical waveguide dry film, and optical waveguide manufacturing method and optical waveguide using optical waveguide dry film
TW200411234A (en) Optical waveguide and method of manufacturing the same
JP5475428B2 (en) Mirror reflection film forming method for optical wiring board and optical wiring board
TWI575270B (en) Optical waveguide and its manufacturing method
JP4131222B2 (en) Manufacturing method of optical circuit board
JP4951330B2 (en) Method for manufacturing photoelectric composite substrate
JP2006039231A (en) Method for manufacturing photoelectric wiring consolidated board
JP6044174B2 (en) Optical waveguide manufacturing method and optical waveguide
JP4224259B2 (en) Manufacturing method of opto-electric hybrid board
JP6044175B2 (en) Optical waveguide manufacturing method and optical waveguide
JP4742771B2 (en) Method for manufacturing photoelectric composite substrate
JP6048033B2 (en) Optical waveguide and method for manufacturing the same
JP5099002B2 (en) Method for producing polymer optical waveguide
JP2012098332A (en) Method of manufacturing photoelectric composite wiring board and photoelectric composite wiring board
JP6048032B2 (en) Optical waveguide and method for manufacturing the same
JP2007094436A (en) Manufacturing method of optical-electrical consolidated substrate
JP2009145647A (en) Hybrid wiring board and method of manufacturing the same
JP2013142827A (en) Optical waveguide and method for manufacturing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047019244

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038122812

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003733077

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10515175

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020047019244

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003733077

Country of ref document: EP