JPH06281831A - Electric wiring/optical wiring combined flexible printed circuit board and substrate therefor - Google Patents

Electric wiring/optical wiring combined flexible printed circuit board and substrate therefor

Info

Publication number
JPH06281831A
JPH06281831A JP8949393A JP8949393A JPH06281831A JP H06281831 A JPH06281831 A JP H06281831A JP 8949393 A JP8949393 A JP 8949393A JP 8949393 A JP8949393 A JP 8949393A JP H06281831 A JPH06281831 A JP H06281831A
Authority
JP
Japan
Prior art keywords
wiring
optical
flexible printed
circuit board
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8949393A
Other languages
Japanese (ja)
Inventor
Shigekuni Sasaki
重邦 佐々木
Yoko Maruo
容子 丸尾
Shinji Ando
慎治 安藤
Toru Matsuura
松浦  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8949393A priority Critical patent/JPH06281831A/en
Publication of JPH06281831A publication Critical patent/JPH06281831A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials

Abstract

PURPOSE:To provide the electric wiring/optical wiring combined flexible printed circuit board formed by housing electric wiring and optical wiring in the same wiring board and the substrate for such circuit board. CONSTITUTION:This electric wiring/optical wiring combined flexible printed circuit board is formed by using a high-polymer film having optical waveguide and metallic wiring formed on it as main constituting elements. The electric wiring/optical wiring combined flexible printed circuit board is formed by using the high-polymer film having the optical waveguide and metallic foil formed on it as main constituting elements. The main base materials of the respective high-polymer films are polyimide and more particularly adequately polyimide of org. tetracarboxylic acid and 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl. Since the circuit boards have characteristics, such as resilience and lightness, the circuit board makes contribution for high advancement of future optical communication apparatus, optical information device, etc. The circuit boards are easily made from the substrates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子フィルムを用い
た電気配線・光配線混載フレキシブルプリント配線板及
びその基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric wiring / optical wiring mixed flexible printed wiring board using a polymer film and its substrate.

【0002】[0002]

【従来の技術】フレキシブルプリント配線板は狭い空間
を自由に配線できるメリットを生かしてカメラ、電子時
計、電卓など小型電子装置、電子部品に多く使用されて
いる。今後更に小型コンピュータ、交換機、OA機器な
ど適用領域は拡大していくものと予想される。一方光フ
ァイバの開発による光通信システムの実用化に伴い、種
々の光通信用部品の開発が行われている。またこれら光
部品を高密度に実装する光配線技術、特に光導波路技術
の確立が望まれている。一般に、光導波路には、光損失
が小さい、製造が容易、コアとクラッドの屈折率差を制
御できる、耐熱性に優れている、等の条件が要求され
る。低損失な光導波路としては石英系が主に検討されて
おり、光ファイバで実証済のように石英は光透過性が極
めて良好であるため導波路とした場合も波長が1.3μ
mにおいて0.1dB/cm以下の低光損失化が達成されて
いる。しかしその光導波路作製に長時間を必要とする、
作製時に高温が必要である、大面積化が困難であるなど
製造上の問題点がある。これに対してポリメチルメタク
リレートなどの高分子光導波路は、フィルム化や低い温
度での成形が可能であり、低価格が期待できるなどの長
所がある一方耐熱性に劣るという欠点がある。そのよう
なことから耐熱性に優れた高分子光導波路が期待される
に至っている。
2. Description of the Related Art Flexible printed wiring boards are widely used for small electronic devices such as cameras, electronic timepieces, calculators, and electronic parts, taking advantage of the fact that they can be freely wired in a narrow space. It is expected that the applicable fields such as small computers, exchanges, and office automation equipment will further expand in the future. On the other hand, with the practical use of optical communication systems through the development of optical fibers, various optical communication parts have been developed. Further, it is desired to establish an optical wiring technology for mounting these optical components at a high density, particularly an optical waveguide technology. In general, the optical waveguide is required to have conditions such as small optical loss, easy manufacture, controllable difference in refractive index between core and clad, and excellent heat resistance. As a low-loss optical waveguide, silica has been mainly studied, and since quartz has an extremely good optical transparency as demonstrated in optical fibers, the wavelength is 1.3 μm even when used as a waveguide.
A low optical loss of 0.1 dB / cm or less has been achieved at m. However, it takes a long time to manufacture the optical waveguide,
There are problems in manufacturing, such as high temperature required at the time of manufacturing and difficulty in increasing the area. On the other hand, a polymer optical waveguide such as polymethylmethacrylate has advantages that it can be formed into a film and can be molded at a low temperature and that a low price can be expected, but it has a drawback that it is inferior in heat resistance. Therefore, polymer optical waveguides having excellent heat resistance have been expected.

【0003】ところでフレキシブルプリント配線板のベ
ースフィルムとして用いられている耐熱性に優れたポリ
イミドは、これまで光導波路などの光学部品への適用実
績はほとんどない。本発明者らは光導波路に適用可能な
ポリイミド光学材料について研究開発を進めているが、
ポリイミドを光学材料として適用していく上で光の透過
性に優れていること、屈折率を自由に制御できることの
二点が特に重要である。本発明者らは特開平3−725
28号公報で透明なフッ素化ポリイミドを明らかにし、
更に特開平4−8734号公報ではこのフッ素化ポリイ
ミドを共重合することにより光導波路の形成に必要な屈
折率制御が可能であることを明らかにしている。また特
開平4−9807号、同4−235505号、同4−2
35506号各公報で明らかにしているようにこれらの
フッ素化ポリイミドを用いて光導波路の作製に成功して
いる。今後光通信技術や光情報処理技術の進展に伴い、
電気配線と光配線が同じ配線板に収容されることが要求
されていくものと考えられる。しかしながら現在のとこ
ろ電気配線と光配線が同じ配線板に収容されたフレキシ
ブルプリント配線板の報告はない。
By the way, polyimide having excellent heat resistance, which is used as a base film of a flexible printed wiring board, has hardly been applied to optical parts such as optical waveguides. Although the present inventors have been researching and developing polyimide optical materials applicable to optical waveguides,
In applying polyimide as an optical material, it is particularly important that it has excellent light transmittance and that the refractive index can be freely controlled. The inventors of the present invention disclosed in JP-A-3-725.
No. 28 discloses a transparent fluorinated polyimide,
Further, Japanese Patent Laid-Open No. 4-8734 discloses that copolymerization of this fluorinated polyimide can control the refractive index necessary for forming an optical waveguide. Further, JP-A-4-9807, 4-235505 and 4-2.
As disclosed in each publication of Japanese Patent No. 35506, an optical waveguide has been successfully produced by using these fluorinated polyimides. With the progress of optical communication technology and optical information processing technology,
It is considered that electric wiring and optical wiring will be required to be housed in the same wiring board. However, at present, there is no report on a flexible printed wiring board in which electric wiring and optical wiring are housed in the same wiring board.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、電気
配線と光配線が同じ配線板に収容された電気配線・光配
線混載フレキシブルプリント配線板及びその基板を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electric wiring / optical wiring mixed flexible printed wiring board in which electric wiring and optical wiring are accommodated in the same wiring board, and a substrate thereof.

【0005】[0005]

【課題を解決するための手段】本発明は、前記目的を達
成する電気配線・光配線混載フレキシブルプリント配線
板及びその基板に関するもので、本発明の第1の発明の
電気配線・光配線混載フレキシブルプリント配線板は、
光導波路を形成した高分子フィルムと金属配線とを主構
成要素とすることを特徴とする。本発明の第2の発明の
電気配線・光配線混載フレキシブルプリント配線板用基
板は、光導波路を形成した高分子フィルムと金属箔とを
主構成要素とすることを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a flexible printed wiring board on which electric wiring and optical wiring are mixed to achieve the above-mentioned object, and a substrate thereof. The electric wiring and optical wiring mixed flexible of the first invention of the present invention. Printed wiring board
It is characterized in that a polymer film on which an optical waveguide is formed and a metal wiring are main components. The electric wiring / optical wiring mixed flexible printed wiring board substrate of the second invention of the present invention is characterized in that a polymer film having an optical waveguide formed thereon and a metal foil are main components.

【0006】本発明の電気配線・光配線混載フレキシブ
ルプリント配線板の基本的な構成例を図示する。図1は
側面図、図2は平面図、図3は断面図を示す。各図にお
いて符号1は金属配線、2は光導波路のクラッド層、3
は光導波路のコア層を示す。
A basic configuration example of a flexible printed wiring board on which electric wiring and optical wiring are mixed according to the present invention will be shown. 1 is a side view, FIG. 2 is a plan view, and FIG. 3 is a sectional view. In each figure, reference numeral 1 is metal wiring, 2 is an optical waveguide clad layer, 3
Indicates the core layer of the optical waveguide.

【0007】1は金属配線としては例えば、銅、アルミ
ニウム、金などがあるが、通常は現在フレキシブルプリ
ント配線板で主に使用している銅が一般的である。金属
配線の厚さは現在35μmや19μmが主流であるが、
これ以外でも構わない。また金属配線の幅についても特
に限定はなく、現在のフレキシブルプリント配線板と同
様でよい。金属配線は図に示したように直接高分子フィ
ルムに密着していても良いし、接着剤を介して密着して
いても良い。
The metal wiring 1 includes, for example, copper, aluminum, gold, etc. Normally, copper, which is currently mainly used in flexible printed wiring boards, is generally used. The thickness of metal wiring is currently 35 μm or 19 μm, but
Other than this is acceptable. Also, the width of the metal wiring is not particularly limited, and may be the same as the current flexible printed wiring board. The metal wiring may be in direct contact with the polymer film as shown in the figure, or may be in contact with an adhesive.

【0008】また光導波路を形成した高分子フィルムの
クラッド層、コア層の基材は高分子材料であれば良く、
異なる高分子材料であっても良い。しかしコア層の屈折
率がクラッド層の屈折率より大きいことが必須である。
具体的な材料としては、ポリメチルメタクリレート、ポ
リスチレン、ポリエステル、ポリイミド、シリコン樹脂
などがある。フレキシブルプリント基板での実績、耐熱
性の観点からはポリイミドが好ましい。更に光導波路と
して開発の進んでいる下記の一般式(化1):
The base material of the clad layer and core layer of the polymer film on which the optical waveguide is formed may be any polymer material,
Different polymer materials may be used. However, it is essential that the refractive index of the core layer is higher than that of the cladding layer.
Specific materials include polymethylmethacrylate, polystyrene, polyester, polyimide, and silicone resin. Polyimide is preferable from the viewpoints of flexible printed circuit boards and heat resistance. Furthermore, the following general formula (Formula 1) is being developed as an optical waveguide:

【0009】[0009]

【化1】 [Chemical 1]

【0010】(但しXは4価の有機基)で表される繰返
し単位を含むポリイミドがより好ましい。しかし今後他
の高分子導波路の開発が進めば、当然のことながらその
材料を使用することができる。光導波路にはマルチモー
ドタイプ、シングルモードタイプがあるが、その両方と
も適用可能である。コア形状は球形、正方形、長方形等
いずれでも良く、またコアの寸法は導波路タイプによっ
てある程度の限定は受けるが、種々の寸法が可能であ
る。例えば正方形のコア形状でコア寸法は1〜100μ
m程度が一般的である。クラッド層の厚さはコア層の厚
さに比較してあまり薄くなると光のロスにつながるので
好ましくない。コア層とクラッド層の総計の厚さが薄
く、フレキシブルプリント配線板としての機械的強度を
持ち得ない場合は支持フィルムを張り合せても良い。
A polyimide containing a repeating unit represented by the formula (where X is a tetravalent organic group) is more preferable. However, if other polymer waveguides are developed in the future, the material can be used as a matter of course. The optical waveguide includes a multimode type and a single mode type, but both of them are applicable. The core shape may be a sphere, a square, a rectangle, or the like, and the dimensions of the core are limited to some extent depending on the waveguide type, but various dimensions are possible. For example, a square core shape with a core size of 1 to 100 μ
m is common. If the thickness of the clad layer is too thin as compared with the thickness of the core layer, it leads to a loss of light, which is not preferable. When the total thickness of the core layer and the clad layer is thin and the mechanical strength as a flexible printed wiring board cannot be obtained, a supporting film may be laminated.

【0011】図に例示した電気配線・光配線混載フレキ
シブルプリント配線板は、基本的な構造のものであり、
例えば電気配線が両面にあるもの、更に多層化したも
の、光導波路のコア層が複数あるもの、更に多層にした
ものなど種々のものがある。
The electric wiring / optical wiring mixed flexible printed wiring board illustrated in the figure has a basic structure.
For example, there are various types such as one having electric wiring on both sides, one having more layers, one having a plurality of core layers of an optical waveguide, and one having more layers.

【0012】電気配線・光配線混載フレキシブルプリン
ト配線板用基板は、光配線を施した高分子フィルムと金
属箔が一体化したもので、電気配線・光配線混載フレキ
シブルプリント配線板の配線処理を施す前の状態のもの
である。
A substrate for flexible printed wiring board on which electric wiring and optical wiring are mixed is a combination of an optical wiring-provided polymer film and a metal foil. It is in the previous state.

【0013】電気配線・光配線混載フレキシブルプリン
ト配線板は、次の通り作製する。まず光導波路を有する
高分子フィルムを形成し、その後接着剤により金属箔を
張り付けるか、メッキ処理を施す。こうして得られた電
気配線・光配線混載フレキシブルプリント配線板用基板
に配線処理を施して電気配線・光配線混載フレキシブル
プリント配線板を得る。光導波路を有する高分子フィル
ムは、適当な基板上に作製した高分子光導波路を基板か
らはく離することにより得ることができる。
A flexible printed wiring board on which electric wiring and optical wiring are mixed is manufactured as follows. First, a polymer film having an optical waveguide is formed, and then a metal foil is attached with an adhesive or plating treatment is performed. A wiring process is performed on the thus obtained substrate for a flexible printed wiring board on which electric wiring and optical wiring are mixed to obtain a flexible printed wiring board on which electric wiring and optical wiring are mixed. The polymer film having the optical waveguide can be obtained by peeling the polymer optical waveguide prepared on a suitable substrate from the substrate.

【0014】[0014]

【実施例】以下実施例を用いて本発明を詳しく説明す
る。なお本発明はこれらの実施例のみに限定されるもの
ではない。
The present invention will be described in detail with reference to the following examples. The present invention is not limited to these examples.

【0015】実施例1 2,2−ビス(3,4−ジカルボキシフェニル)ヘキサ
フルオロプロパン二無水物(6FDA)と2,2′−ビ
ス(トリフルオロメチル)−4,4′−ジアミノビフェ
ニル(TFDB)及びN,N−ジメチルアセトアミド
(DMAc)から濃度15wt%のポリアミド酸溶液を得
た。このポリアミド酸溶液をシリコンウェハ上にスピン
コートした後オーブン中で70℃で2時間、160℃で
1時間、250℃で30分、380℃で1時間加熱し、
イミド化を行い、厚さ30μmのポリイミドフィルムを
得た。次にTFDBと酸無水物の混合物(6FDA:9
0 mol%、ピロメリット酸二無水物:10 mol%)及び
DMAcから下部クラッド層よりも屈折率の大きいポリ
イミドの前駆体であるポリアミド酸の濃度15wt%溶液
を得た。このポリアミド酸溶液を上記下部クラッド層の
上にスピンコートした後オーブン中で70℃で2時間、
160℃で1時間、250℃で30分、380℃で1時
間加熱し、イミド化を行い、厚さ10μmのコア層を形
成した。このコア層の上に蒸着装置により、0.3μm
のアルミニウム膜を形成した。次に通常のポジ型レジス
トをスピンコート法により塗布した後プリベークを行っ
た。次に線幅10μm、長さ60mmのパターン形成用マ
スクを通して超高圧水銀ランプを用いて紫外線を照射し
た後現像液を用いて現像した。その後アフターベークを
した。次にレジストでコートされていないアルミニウム
のウェットエッチングを行った。洗浄乾燥後ドライエッ
チング装置を用いポリイミドの加工を行った。そしてポ
リイミドの上層にあるアルミニウムを上記したエッチン
グ液で除去し、コア層が10μm幅のリッジ型光導波路
が得られた。更にこのリッジ型光導波路の上に下部クラ
ッド層と同じポリアミド酸溶液をスピンコートした後オ
ーブン中で70℃で2時間、160℃で1時間、250
℃で30分、380℃で1時間加熱し、イミド化を行
い、厚さ30μmの上部クラッドを形成した。こうして
作製したシリコンウェハ上のポリイミド光導波路を水中
に浸漬し、放置したところ光導波路が形成されたポリイ
ミドフィルムがはく離した。これを取出し、真空下10
0℃で1時間乾燥した。次に光導波路が形成されたポリ
イミドフィルムに無電解メッキ法で銅を18μmメッキ
し、電気配線・光配線混載フレキシブルプリント配線板
用基板が得られた。更に通常のパターニング法により電
気配線を形成し、電気配線・光配線混載フレキシブルプ
リント配線板を得た。
Example 1 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl ( A polyamic acid solution with a concentration of 15 wt% was obtained from TFDB) and N, N-dimethylacetamide (DMAc). This polyamic acid solution was spin-coated on a silicon wafer and then heated in an oven at 70 ° C. for 2 hours, 160 ° C. for 1 hour, 250 ° C. for 30 minutes, 380 ° C. for 1 hour,
Imidization was performed to obtain a polyimide film having a thickness of 30 μm. Next, a mixture of TFDB and acid anhydride (6FDA: 9
From 0 mol%, pyromellitic dianhydride: 10 mol%) and DMAc, a 15 wt% solution of polyamic acid, which is a precursor of polyimide having a refractive index higher than that of the lower clad layer, was obtained. After spin-coating the polyamic acid solution on the lower clad layer, it is heated in an oven at 70 ° C. for 2 hours.
Imidization was performed by heating at 160 ° C. for 1 hour, 250 ° C. for 30 minutes, and 380 ° C. for 1 hour to form a core layer having a thickness of 10 μm. 0.3 μm on this core layer with a vapor deposition device
Of aluminum film was formed. Next, a normal positive resist was applied by spin coating and then prebaked. Next, ultraviolet rays were radiated using a super high pressure mercury lamp through a pattern forming mask having a line width of 10 μm and a length of 60 mm, and then development was performed using a developing solution. After that, it was afterbaked. Next, wet etching of aluminum not coated with resist was performed. After washing and drying, the polyimide was processed using a dry etching device. Then, aluminum on the upper layer of the polyimide was removed by the above-mentioned etching solution, and a ridge type optical waveguide having a core layer with a width of 10 μm was obtained. Further, the same polyamic acid solution as that for the lower clad layer was spin-coated on the ridge type optical waveguide and then in an oven at 70 ° C. for 2 hours and 160 ° C. for 1 hour.
The mixture was heated at 30 ° C. for 30 minutes and at 380 ° C. for 1 hour for imidization to form an upper clad having a thickness of 30 μm. The polyimide optical waveguide on the silicon wafer thus produced was immersed in water and left to stand, and the polyimide film on which the optical waveguide was formed was peeled off. Take this out and put it under vacuum 10
It was dried at 0 ° C. for 1 hour. Then, a polyimide film having an optical waveguide formed thereon was plated with copper by 18 μm by an electroless plating method to obtain a substrate for a flexible printed wiring board on which electric wiring and optical wiring were mixed. Further, electric wiring was formed by a usual patterning method to obtain a flexible printed wiring board on which electric wiring and optical wiring were mixed.

【0016】[0016]

【発明の効果】本発明の電気配線・光配線混載フレキシ
ブルプリント配線板は、電気信号と光信号を同時に伝送
することが可能で、かつ柔軟性、軽量などの特徴を有し
ているため、今後の光通信装置、光情報装置の高度化に
寄与できる効果がある。また電気配線・光配線混載フレ
キシブルプリント配線板用基板は、電気配線・光配線混
載フレキシブルプリント配線板を容易に作製できる効果
がある。
EFFECTS OF THE INVENTION The flexible printed wiring board on which electric wiring and optical wiring are mixed according to the present invention is capable of simultaneously transmitting electric signals and optical signals, and is characterized by flexibility and light weight. There is an effect that it can contribute to the sophistication of the optical communication device and the optical information device. In addition, the flexible printed wiring board mixed with electric wiring / optical wiring has an effect that a flexible printed wiring board mixed with electric wiring / optical wiring can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気配線・光配線混載フレキシブルプ
リント配線板の1例の側面図である。
FIG. 1 is a side view of an example of a flexible printed wiring board on which electric wiring and optical wiring are mixed according to the present invention.

【図2】本発明の図1の電気配線・光配線混載フレキシ
ブルプリント配線板の平面図である。
FIG. 2 is a plan view of the electric wiring / optical wiring mixed flexible printed wiring board of FIG. 1 of the present invention.

【図3】本発明の図1の電気配線・光配線混載フレキシ
ブルプリント配線板の断面図である。
FIG. 3 is a cross-sectional view of the flexible printed wiring board on which electric wiring / optical wiring is mixed according to the present invention.

【符号の説明】[Explanation of symbols]

1:金属配線、2:クラッド、3:コア 1: Metal wiring, 2: Cladding, 3: Core

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松浦 徹 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toru Matsuura 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光導波路を形成した高分子フィルムと金
属配線とを主構成要素とすることを特徴とする電気配線
・光配線混載フレキシブルプリント配線板。
1. A flexible printed wiring board on which electric wiring and optical wiring are mixed, which comprises a polymer film having an optical waveguide and a metal wiring as main components.
【請求項2】 光導波路を形成した高分子フィルムと金
属箔とを主構成要素とすることを特徴とする電気配線・
光配線混載フレキシブルプリント配線板用基板。
2. An electrical wiring comprising a polymer film having an optical waveguide and a metal foil as main components.
Substrate for flexible printed wiring board with optical wiring mixed.
【請求項3】 該光導波路を形成した高分子フィルムの
主基材としてポリイミドを用いることを特徴とする請求
項1に記載の電気配線・光配線混載フレキシブルプリン
ト配線板。
3. The flexible printed wiring board according to claim 1, wherein polyimide is used as a main base material of the polymer film on which the optical waveguide is formed.
【請求項4】 該光導波路を形成した高分子フィルムの
主基材としてポリイミドを用いることを特徴とする請求
項2に記載の電気配線・光配線混載フレキシブルプリン
ト配線板用基板。
4. The substrate for electric wiring / optical wiring mixed flexible printed wiring board according to claim 2, wherein polyimide is used as a main base material of the polymer film on which the optical waveguide is formed.
【請求項5】 該光導波路を形成した高分子フィルムの
主基材として下記の一般式(化1): 【化1】 (但しXは4価の有機基)で表される繰返し単位を含む
ポリイミドを用いることを特徴とする請求項1に記載の
電気配線・光配線混載フレキシブルプリント配線板。
5. The following general formula (Formula 1) is used as a main base material of the polymer film on which the optical waveguide is formed: A flexible printed wiring board having electrical wiring and optical wiring mixed therein according to claim 1, wherein a polyimide containing a repeating unit represented by the formula (where X is a tetravalent organic group) is used.
【請求項6】 該光導波路を形成した高分子フィルムの
主基材として下記の一般式(化1): 【化1】 (但しXは4価の有機基)で表される繰返し単位を含む
ポリイミドを用いることを特徴とする請求項2に記載の
電気配線・光配線混載フレキシブルプリント配線板用基
板。
6. The following general formula (Chemical formula 1) as a main base material of the polymer film having the optical waveguide formed thereon: The substrate for electric wiring / optical wiring mixed flexible printed wiring board according to claim 2, wherein a polyimide containing a repeating unit represented by the formula (where X is a tetravalent organic group) is used.
JP8949393A 1993-03-25 1993-03-25 Electric wiring/optical wiring combined flexible printed circuit board and substrate therefor Pending JPH06281831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8949393A JPH06281831A (en) 1993-03-25 1993-03-25 Electric wiring/optical wiring combined flexible printed circuit board and substrate therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8949393A JPH06281831A (en) 1993-03-25 1993-03-25 Electric wiring/optical wiring combined flexible printed circuit board and substrate therefor

Publications (1)

Publication Number Publication Date
JPH06281831A true JPH06281831A (en) 1994-10-07

Family

ID=13972287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8949393A Pending JPH06281831A (en) 1993-03-25 1993-03-25 Electric wiring/optical wiring combined flexible printed circuit board and substrate therefor

Country Status (1)

Country Link
JP (1) JPH06281831A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134926A (en) * 2000-06-29 2002-05-10 Internatl Business Mach Corp <Ibm> Polymer/ceramic compound electronic substrate
JP2002277664A (en) * 2000-12-06 2002-09-25 Ibiden Co Ltd Resin composition for optical waveguide, optical waveguide and multi-layer printed wiring board
WO2003100486A1 (en) * 2002-05-28 2003-12-04 Matsushita Electric Works, Ltd. Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
US6763156B2 (en) 2002-06-12 2004-07-13 Mcnc Flexible optoelectronic circuit and associated method
JP2004287396A (en) * 2003-03-03 2004-10-14 Hitachi Chem Co Ltd Optical waveguide film
US6818466B2 (en) * 2002-12-20 2004-11-16 General Electric Company Method of fabricating an integrated optoelectronic circuit
US7070207B2 (en) 2003-04-22 2006-07-04 Ibiden Co., Ltd. Substrate for mounting IC chip, multilayerd printed circuit board, and device for optical communication
US7141778B2 (en) 2000-12-28 2006-11-28 Canon Kabushiki Kaisha Semiconductor device, optoelectronic board, and production methods therefor
KR100734906B1 (en) * 2005-06-21 2007-07-03 한국정보통신대학교 산학협력단 Optical interconnect using flexible optical printed circuit board
JP2008015304A (en) * 2006-07-07 2008-01-24 Toppan Printing Co Ltd Optical substrate and manufacturing method thereof
US7437030B2 (en) 2003-11-27 2008-10-14 Ibiden Co., Ltd. Substrate for mounting IC chip, substrate for motherboard, device for optical communication, manufacturing method of substrate for mounting IC chip, and manufacturing method of substrate for motherboard
JP2009180960A (en) * 2008-01-31 2009-08-13 Sharp Corp Optoelectronic compound transmission apparatus and electronic apparatus
US7756366B2 (en) 2008-07-24 2010-07-13 Fuji Xerox Co., Ltd. Optical waveguide film, method of producing the same, and optical transmitter and receiver module
US7809228B2 (en) 2007-10-23 2010-10-05 Fuji Xerox Co., Ltd. Optical waveguide film, method for manufacturing the same, and optical transmission and reception module
US8076782B2 (en) 2002-04-01 2011-12-13 Ibiden Co., Ltd. Substrate for mounting IC chip
JP2012133118A (en) * 2010-12-21 2012-07-12 Hitachi Chem Co Ltd Photoelectric composite substrate, method for manufacturing the same, and photoelectric composite module using the same
CN103937239A (en) * 2013-01-23 2014-07-23 达胜科技股份有限公司 Polyimide film and polyimide laminate
WO2015033845A1 (en) * 2013-09-06 2015-03-12 住友電工プリントサーキット株式会社 Photoelectric mixed substrate
WO2015068593A1 (en) * 2013-11-08 2015-05-14 日東電工株式会社 Photosensitive resin composition for optical waveguide and photocurable film for formation of optical waveguide core layer, as well as optical waveguide using same and mixed-mounting flexible printed wiring board for optical and electrical transmission
WO2015118989A1 (en) * 2014-02-10 2015-08-13 日東電工株式会社 Photosensitive resin composition for optical waveguide, photocurable film for forming core layer of optical waveguide, optical waveguide using same, and mixed flexible printed wiring board for transmitting light/electricity
US11927799B2 (en) 2020-12-31 2024-03-12 AuthenX Inc. Data transmission system and data transmission method

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134926A (en) * 2000-06-29 2002-05-10 Internatl Business Mach Corp <Ibm> Polymer/ceramic compound electronic substrate
JP2002277664A (en) * 2000-12-06 2002-09-25 Ibiden Co Ltd Resin composition for optical waveguide, optical waveguide and multi-layer printed wiring board
US7141778B2 (en) 2000-12-28 2006-11-28 Canon Kabushiki Kaisha Semiconductor device, optoelectronic board, and production methods therefor
US8076782B2 (en) 2002-04-01 2011-12-13 Ibiden Co., Ltd. Substrate for mounting IC chip
US8120040B2 (en) 2002-04-01 2012-02-21 Ibiden Co., Ltd. Substrate for mounting IC chip, manufacturing method of substrate for mounting IC chip, device for optical communication, and manufacturing method of device for optical communication
US7330612B2 (en) 2002-05-28 2008-02-12 Matsushita Electric Works, Ltd. Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
WO2003100486A1 (en) * 2002-05-28 2003-12-04 Matsushita Electric Works, Ltd. Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
US8073295B2 (en) 2002-05-28 2011-12-06 Panasonic Electric Works Co., Ltd. Material for substrate mounting optical circuit-electrical circuit mixedly and substrate mounting optical circuit-electrical circuit mixedly
EP1512996A1 (en) * 2002-05-28 2005-03-09 Matsushita Electric Works, Ltd. Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
EP1512996A4 (en) * 2002-05-28 2005-11-16 Matsushita Electric Works Ltd Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
US6763156B2 (en) 2002-06-12 2004-07-13 Mcnc Flexible optoelectronic circuit and associated method
US6818466B2 (en) * 2002-12-20 2004-11-16 General Electric Company Method of fabricating an integrated optoelectronic circuit
JP2004287396A (en) * 2003-03-03 2004-10-14 Hitachi Chem Co Ltd Optical waveguide film
US7693382B2 (en) 2003-04-22 2010-04-06 Ibiden Co., Ltd. Substrate for mounting IC chip, multilayered printed circuit board, and device for optical communication
US7070207B2 (en) 2003-04-22 2006-07-04 Ibiden Co., Ltd. Substrate for mounting IC chip, multilayerd printed circuit board, and device for optical communication
US7437030B2 (en) 2003-11-27 2008-10-14 Ibiden Co., Ltd. Substrate for mounting IC chip, substrate for motherboard, device for optical communication, manufacturing method of substrate for mounting IC chip, and manufacturing method of substrate for motherboard
US7526152B2 (en) 2003-11-27 2009-04-28 Ibiden Co., Ltd. Substrate for mounting IC chip, substrate for motherboard, device for optical communication, manufacturing method of substrate for mounting IC chip, and manufacturing method of substrate for motherboard
KR100734906B1 (en) * 2005-06-21 2007-07-03 한국정보통신대학교 산학협력단 Optical interconnect using flexible optical printed circuit board
JP2008015304A (en) * 2006-07-07 2008-01-24 Toppan Printing Co Ltd Optical substrate and manufacturing method thereof
US7809228B2 (en) 2007-10-23 2010-10-05 Fuji Xerox Co., Ltd. Optical waveguide film, method for manufacturing the same, and optical transmission and reception module
US7835607B2 (en) 2008-01-31 2010-11-16 Sharp Kabushiki Kaisha Optical-electrical composite transmission device and electronic equipment
JP2009180960A (en) * 2008-01-31 2009-08-13 Sharp Corp Optoelectronic compound transmission apparatus and electronic apparatus
JP4610624B2 (en) * 2008-01-31 2011-01-12 シャープ株式会社 Photoelectric composite transmission device and electronic device
US7756366B2 (en) 2008-07-24 2010-07-13 Fuji Xerox Co., Ltd. Optical waveguide film, method of producing the same, and optical transmitter and receiver module
JP2012133118A (en) * 2010-12-21 2012-07-12 Hitachi Chem Co Ltd Photoelectric composite substrate, method for manufacturing the same, and photoelectric composite module using the same
CN103937239A (en) * 2013-01-23 2014-07-23 达胜科技股份有限公司 Polyimide film and polyimide laminate
US9612397B2 (en) 2013-09-06 2017-04-04 Sumitomo Electric Printed Circuits, Inc. Photoelectric hybrid substrate
WO2015033845A1 (en) * 2013-09-06 2015-03-12 住友電工プリントサーキット株式会社 Photoelectric mixed substrate
JP2015072461A (en) * 2013-09-06 2015-04-16 住友電工プリントサーキット株式会社 Opto-electronic hybrid circuit board
WO2015068593A1 (en) * 2013-11-08 2015-05-14 日東電工株式会社 Photosensitive resin composition for optical waveguide and photocurable film for formation of optical waveguide core layer, as well as optical waveguide using same and mixed-mounting flexible printed wiring board for optical and electrical transmission
KR20160083854A (en) * 2013-11-08 2016-07-12 닛토덴코 가부시키가이샤 Photosensitive resin composition for optical waveguide and photocurable film for formation of optical waveguide core layer, as well as optical waveguide using same and mixed-mounting flexible printed wiring board for optical and electrical transmission
JP2015092209A (en) * 2013-11-08 2015-05-14 日東電工株式会社 Photosensitive resin composition for optical waveguide, photocurable film for forming optical waveguide core layer, and optical waveguide and light/electricity transmitting hybrid flexible printed wiring board using the same
US9696491B2 (en) 2013-11-08 2017-07-04 Nitto Denko Corporation Photosensitive resin composition for optical waveguide and photocurable film for formation of optical waveguide core layer, as well as optical waveguide using same and mixed-mounting flexible printed wiring board for optical and electrical transmission
WO2015118989A1 (en) * 2014-02-10 2015-08-13 日東電工株式会社 Photosensitive resin composition for optical waveguide, photocurable film for forming core layer of optical waveguide, optical waveguide using same, and mixed flexible printed wiring board for transmitting light/electricity
JP2015148785A (en) * 2014-02-10 2015-08-20 日東電工株式会社 Photosensitive resin composition for optical waveguide and photocurable film for forming optical waveguide core layer, and optical waveguide and hybrid flexible printed wiring board for optical-electrical transmission using the resin composition or the photocurable film
KR20160119057A (en) * 2014-02-10 2016-10-12 닛토덴코 가부시키가이샤 Photosensitive resin composition for optical waveguide, photocurable film for formation of optical waveguide core layer, optical waveguide produced by using the resin composition or the photocurable film, and hybrid flexible printed wiring board for optical/electrical transmission
US9963541B2 (en) 2014-02-10 2018-05-08 Nitto Denko Corporation Photosensitive resin composition for optical waveguide, photocurable film for formation of optical waveguide core layer, optical waveguide produced by using the resin composition or the photocurable film, and hybrid flexible printed wiring board for optical/electrical transmission
CN105829931B (en) * 2014-02-10 2019-06-14 日东电工株式会社 Optical waveguide photosensitive polymer combination, optical waveguide core layer formation photo-curable film, optical waveguide and flexible print wiring board
US11927799B2 (en) 2020-12-31 2024-03-12 AuthenX Inc. Data transmission system and data transmission method

Similar Documents

Publication Publication Date Title
JPH06281831A (en) Electric wiring/optical wiring combined flexible printed circuit board and substrate therefor
KR100362829B1 (en) Method for manufacturing polymer optical waveguide
WO1998037445A1 (en) Polymer optical waveguide, optical integrated circuit, optical module and optical communication apparatus
US20060120658A1 (en) Process for producing electro-optic hybrid circuit board
US5208066A (en) Process of forming a patterned polyimide film and articles including such a film
JP2813713B2 (en) Polyimide optical waveguide
US20060086533A1 (en) Electro-optic hybrid circuit board
KR20090082130A (en) Method for producing optoelectric hybrid substrate and optoelectric hybrid substrate obtained thereby
JP2001007463A (en) Substrate for mixedly mounting optical and electrical parts and its manufacture
Popall et al. ORMOCER® S–Inorganic-organic hybrid materials for e/o-interconnection-technology
JP4799764B2 (en) Photosensitive polyimide precursor composition for optical waveguide, photosensitive polyimide composition for optical waveguide, and optical waveguide using the same
JP3327356B2 (en) Fluorinated polyimide optical waveguide and method for manufacturing the same
JP4316786B2 (en) Wiring circuit board and manufacturing method thereof
JP3943827B2 (en) Method for producing polymer optical waveguide
JP4538949B2 (en) Substrate manufacturing method for mounting optical components
JPH09251113A (en) Heat-resistant polymer optical waveguide having large difference of refractive index and its production
JP4487297B2 (en) Resin optical waveguide provided with protective layer, method for manufacturing the same, and optical component
JPH10289432A (en) Protective film material for hdd suspension, hdd suspension and its production
JP4590722B2 (en) Substrate manufacturing method for mounting optical components
JP2816770B2 (en) Method for manufacturing polyimide optical waveguide
JP3287871B2 (en) Printed circuit board manufacturing method
JP2001318257A (en) Method for producing polymeric optical waveguide
JP2001074952A (en) Optical waveguide made of resin having protective layer, its production and optical parts
JP2001313451A (en) Manufacturing method for flexible wiring board
JP2002148455A (en) High polymer optical waveguide device