JP4538949B2 - Substrate manufacturing method for mounting optical components - Google Patents

Substrate manufacturing method for mounting optical components Download PDF

Info

Publication number
JP4538949B2
JP4538949B2 JP2000371098A JP2000371098A JP4538949B2 JP 4538949 B2 JP4538949 B2 JP 4538949B2 JP 2000371098 A JP2000371098 A JP 2000371098A JP 2000371098 A JP2000371098 A JP 2000371098A JP 4538949 B2 JP4538949 B2 JP 4538949B2
Authority
JP
Japan
Prior art keywords
optical
wiring layer
optical wiring
glass substrate
via hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000371098A
Other languages
Japanese (ja)
Other versions
JP2002174744A (en
Inventor
淳 佐々木
健太 四井
初音 原
守 石崎
浩二 市川
健人 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2000371098A priority Critical patent/JP4538949B2/en
Publication of JP2002174744A publication Critical patent/JP2002174744A/en
Application granted granted Critical
Publication of JP4538949B2 publication Critical patent/JP4538949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光部品を搭載する光部品搭載用基板、及び光部品搭載用基板に光部品等を搭載した実装基板、更に実装基板が導電性バンプを介して接合しているプリント基板に関する。
【0002】
【従来の技術】
より速く演算処理が行えるコンピュータを作るために、CPUのクロック周波数は益々増大する傾向にあり、現在では1GHzオーダーのものが出現するに至っている。この結果、コンピュータの中のプリント基板上の銅による電気配線には高周波電流の流れる部分が存在する事になるので、ノイズの発生により誤動作を生じたり、また電磁波が発生して周囲に悪影響を与えることにもなる。
【0003】
このような問題を解決するために、プリント基板上の銅による電気配線の一部を光ファイバー又は光導波路(以下、光配線という)に置き換え、電気信号の代わりに光信号を利用することが行われている。なぜなら、光信号の場合は、ノイズ及び電磁波の発生を抑えられるからである。
【0004】
一般的にはIC等と同じようにレーザーダイオード(LD)やフォトダイオード(PD)等の光電素子は基板表面に実装され、導波路によって基板表面で信号電送を行っている。このような光回路においては、IC等電気部品の数が増加してくると光導波路を交差させる必要が生じ、光導波路と光電素子との光軸合わせが次第に困難になるという問題を抱えている。
【0005】
更に詳述すると、現在低損失光ファイバの開発による光通信システムの実用化に伴い、種々の光通信用部品の開発が望まれている。そして、これら光部品を高密度に実装する光配線技術、特に光導波路技術の確立が望まれている。一般に、光導波路には、▲1▼光損失が小さい、▲2▼製造が容易、▲3▼コア、クラッドの屈折率差を制御できる等の条件が要求される。これまでに低損失な光導波路としては石英系が主に検討されている。光ファイバーで実証済みのように石英は光透過性が極めて良好であるため導波路とした場合も波長が1. 3μm帯においても0. 1dB/ cm以下の低損失化が達成されている。しかし、石英は柔軟性に乏しくシリコン基板上等に作製する必要があり、そのままプリント基板に搭載するなら、電気部品の接続に多大な制約を受けてしまう問題を抱えていた。
【0006】
一方、近年上記光導波路の中でポリマを用いた光導波路は簡易なプロセスで低コストに製造できる可能性があることから注目されている。一例としての、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリカーボネート(PC)等のプラスチック系光導波路は石英系光導波路と比較して可視波長より長波長領域での十分な低光損失が達成されていない等の欠点はあるが、低い温度での形成が可能であり、加工が容易である。製造方法はシリコン基板等の基材上に低屈折率のポリマ材料からなるクラッドと高屈折率のポリマ材料からなるコア層を順次形成し、フォトレジストパターンをマスクとしてドライエッチングプロセスを行う。こうして断面概略矩形状のポリマコア層を加工した後、再び低屈折率のポリマ材料によって上部にクラッド層を形成しトータル膜厚で30〜60μmの光導波路が形成される。
【0007】
上記工程の後、光導波路をシリコン等の基材からフッ酸等を用いて剥離し、電気配線板へ接着剤を用いて貼り合わせ、光部品搭載用基板が作られる。
【0008】
しかしながら、ポリマー光導波路をシリコン基板などから剥離し一度フィルムにすると、熱膨張係数差起因で収縮が生じてしまい、電気配線板への十分な張り合わせ精度を得られず問題となっていた。場合によっては収縮要因によってクラック等の問題を伴い屈折率が変動し光導波路の光損失も生じ、まだ実用化に至っていない。また、電気配線板に張り合わせる際の上下方向の精度も厳しく、光学部品搭載と同じ±1μm以下が要求され、張り合わせには多大な困難を伴っていた。
【0009】
また、半導体チップの小型化、高性能化の技術の進歩が著しく、機器の更なる軽薄短小化を求められる中で光学部品、電気部品等の表面実装部品の効率良い混載の為には、貼り合わせた光導波路の上部へこれまで以上に微細な配線を実現させる事も要求されている。
【0010】
【発明が解決しようとする課題】
本発明は、係る従来技術の状況に鑑みてなされたもので、電気部品や光部品の光導波路上への高密度実装が可能で、しかも光導波路と光電素子との光軸合わせを容易に実現できる光部品搭載用基板及び実装基板、並びにプリント板の提供を課題とする。
【0011】
本発明の一実施形態は、感光性ガラス基板のビアホール形成部位を紫外線照射によって露光し、熱処理、並びに、酸処理による現像処理を行うことにより、該感光性ガラス基板を貫通するビアホールを形成する工程と、前記ビアホールを樹脂で穴埋めすることにより、前記感光性ガラス基板の第1の面及びこれに対向する第2の面を平滑な状態とする工程と、前記ビアホールが前記樹脂で穴埋めされた前記感光性ガラス基板の前記第1の面に第1光配線材料を塗布する工程と、前記第1光配線材料をパターニングし、コア及びクラッドを有する第1光配線層を形成する工程と、第1光部品と第1光配線層のコアとを光学的に結合するための第1光路変換ミラーを前記第1光配線層中に形成する工程と、前記ビアホールが前記樹脂で穴埋めされた前記感光性ガラス基板の第1光配線材料を塗布した前記第1の面と対向する前記第2の面に第2光配線材料を塗布する工程と、前記第2光配線材料をパターニングし、コア及びクラッドを有する第2光配線層を形成する工程と、第2光部品と第2光配線層のコアとを光学的に結合するための第2光路変換ミラーを前記第2光配線層中に形成する工程と、前記第1光配線層及び前記第2光配線層が形成された前記感光性ガラス基板を加熱し、前記ビアホールに充填された前記樹脂を熱分解する工程と、前記第1光配線層および前記第2光配線層に、前記ビアホールと対応する位置に貫通孔を形成する工程と、めっきにより前記ビアホール内及び前記貫通孔内に導体を析出させると共に、前記感光性ガラス基板の前記第1の面に形成された前記第1光配線層の表面、並びに、前記感光性ガラス基板の前記第2の面に形成された前記第2光配線層の表面、のいずれからも突出するように、めっきを十分成長させることにより、前記第1光配線層の表面上に前記第1光部品と接続するパッドを形成するかもしくは前記第2光配線層の表面上に前記第2光部品と接続するパッドを形成するとともに、他方の光配線層の表面上にバンプを形成する工程と、を備えたことを特徴とする光部品搭載用基板製造方法である。
また、前記感光性ガラス基板は、Au、CeO2、からなる群から選ばれた少なくとも1つ以上の材料を含むことが好ましい。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。図1は本発明の光部品搭載用基板及び実装基板並びにプリント基板を示す説明図である。本発明の光部品搭載用基板10は、ガラス基板1の一面又は両面に光部品搭載部及びコアとクラッドから構成された光配線層9を少なくとも有するとともに、前記光部品搭載部と導通し、ガラス基板を貫通するビアホールを具備する。これに更に光部品14、電気部品15を搭載し、実装基板となる。そして、実装基板(光部品搭載用基板10)は図中下側に示したプリント基板20と接続される。
【0013】
更に詳述すると、光部品搭載用基板10は基材としてガラス基板1を用いる。このガラス基板の少なくとも一面に光部品搭載部(パッド、電気配線等)及びコアとクラッドから構成された光配線層を少なくとも形成する。また、ガラス基板1には貫通する孔2があけられている。各孔2の内部はメッキで設けた導体によって埋められており、下部にはプリント配線20の電極21の位置に対応するバンプが設けられている。これにより光部品と電気部品と、プリント配線基板20側の電極を電気的に接続する事ができる。
【0014】
この構成を採用することにより、光導波路を剥離しフィルムにするといった工程が不要であるとともに、電気配線板との位置精度も良好となる。
【0015】
次に、図1に示した光部品搭載用基板10の製造方法について説明する。図2〜9は光部品搭載用基板10の製造工程を示す工程図である。尚、説明中の光部品搭載部形成面(電気配線層)及び光配線層形成面をb面、バンプをa面とする。
【0016】
ガラス基板1はLi2 O−Al2 3 −SiO2 (Au, CeO2 )系の化学的加工性を有する感光性ガラス板であることが好ましい。また、このガラス基板1のa及びb面は優れた平滑性を有している。このガラス基板に孔状を有したフォトマスクを介してHg−Xeランプを100mJ/ cm2 照射し(図2参照)、現像を行った。この感光性ガラス中の成分であるAu、CeO2 は、紫外線照射によって露光されると、露光部分に感光性金属Au、CeO2 の粒子からなる核が生成し潜像(図示せず)を形成できる。
【0017】
その後、露光によって潜像を形成したガラスを550℃乃至620℃で熱処理し、酸に溶出し易い結晶を析出させる。この熱処理により、上記露光部分(潜像)内に存在する感光性金属の粒子を核として、リチウムメタシリケート結晶が析出する。このようにして得た結晶は酸に容易に溶解する性質を有するので、希弗化水素酸で酸処理して、現像処理を行った(図3参照)。
【0018】
上記の工程による処理の結果、感光性のガラス基板1にビアホール2が形成される。このビアホールは感光性のガラス基板1を貫通する孔であり、接続すべきプリント基板20側の電極の位置と合致するように形成されている。
【0019】
ビアホール2が形成された感光性のガラス基板1のb面に、光又は熱硬化性の樹脂3でビアホール2を充填しガラス基板1のb面を平滑な状態にした後、光配線層材料(例えばポリイミド)で下部クラッド4、コア5と順次塗布する(図4参照)。
【0020】
次いで、光導波路材の上部にフォトレジスト6を塗布し(図5参照)、導波路パターン用マスクで露光、フォトレジスト6を現像し、露光された部分を除去する。そして、反応性イオンエッチングによって断面が矩形状になるようにコアをパターニングし、次いでフォトレジスト5を除去する。
【0021】
なお、前記コアは、直線、曲線、S字曲線、平行線などの少なくとも1つを有して形成されている。
【0022】
更にコア配線パターンの所定の個所にミラー7を形成し、再び上部クラッド8を塗布し光配線層9を形成する(図6、図7参照)。ミラー7はレーザー等によりコアを斜め45°に加工し、Al膜を選択的に蒸着する。尚この時、光部品搭載のためのアライメントマーク23をAl膜で下部クラッド上の任意の位置に形成しておく。
【0023】
この後、約350℃で光配線層の加熱処理工程を行う。ビアホール2に充填した樹脂はここで熱分解し除去される。樹脂の分解成分がホール内に残る場合は、重クロム酸、過マンガン酸等で有機残さを除去できる。
【0024】
そして、メッキによりビアホール2内に導体を析出させると共に、感光性のガラス基板1a面よりも突出するように、めっきを十分成長させバンプ11を形成する(図8参照)。
【0025】
メッキを行う際には、ビアホール2の内壁表面にのみ低粘度の接着剤層を選択的に塗布し、接着剤層上へメッキ処理を施すことにより、感光性ガラス界面とメッキ金属膜の接着性をさらに向上させることが出来る。こうして、金属導体でビアホール2が埋まるとともに、a 面側にバンプ11が形成される。
【0026】
感光性のガラス基板1のビアホール2の位置に合致するように、光配線層へレーザー照射等によりブラインドビア状に追加加工を施し、光配線層側にもビアホール2を形成する(図9参照)。また、同様にして内部をメッキで金属導体を充填し、光配線層9表面に金属導体によりパッドを形成する。
【0027】
以上のようにして製造された光部品搭載用基板10上部へ、光学素子(LD、PD)及びLSIチップ等を、ミラー工程と同時に下部クラッドに形成したアライメントマークを頼りに光軸がずれないように搭載する。感光性ガラス基板1は表面平滑である為、アライメントマークとの高さ方向の距離を正確に把握できるので、光部品搭載用基板10の端面に光軸がずれないように光学部品を設置することも可能である。更に、この後、光部品搭載用基板10自体をプリント基板に接続し図1の第1の例を完成させる。
【0028】
PD・LDといった光学部品やLSIといった電気部品はリード線或いはバンプを介して光部品搭載用基板上部の配線パターンに接続されている。一方、プリント基板20の上面には、光部品搭載用基板10のバンプ11と電気的に接続するための電極21が設けられ、相互に接続されている。これにより、PD、LDといった光学部品やLSIといった電気部品とプリント基板20とが電気的に接続される。
【0029】
また、プリント基板20からの電気信号の一部がLDにより光信号に変換され、その光信号は導波路へと入射されていく。そして、光信号がミラーで反射され光導波路内を伝送し、再びミラー反射されPDで電気信号に変換され、LSI等で信号処理が行われる。こうして電気的な接続と光接続が高信頼性で実現できる。このような光部品搭載用基板を複数個プリント基板に搭載し光通信装置、光情報装置の高度化を図っても良い。
【0030】
図10は本発明の光部品搭載用基板を搭載したプリント基板の第2の例を示す図である。これは、光電気配線板の光配線層の上部に電気配線層22を形成し多層構造となっている場合の例である。
【0031】
この例に示す光部品搭載用基板10において感光性のガラス基板1のビアホール2は、導電性物質で埋められており光配線層の配線電極及びその上層の電気配線層の配線電極が光部品や電気部品の電極に電気配線密度を対応させてビアホール2と接続されている。
【0032】
一方、感光性のガラス基板a面側に形成されたビアホール2からのバンプ11の位置はプリント基板20の電極21に合致すべき位置となっている。
【0033】
このようにして、製造された光電気配線10を用いて光学素子(LD、PD)及びLSI(ベア)チップ等を上部に搭載し、光部品搭載用基板をプリント基板に接続される。このようにして、プリント基板20からの電気信号の一部がLDによって光信号によって変換され、ミラーで反射された光信号が光導波路内を伝送する。光伝送した信号は再びミラーで90°光路変換されPDで電気信号に変換され、LSI等で信号処理される。こうして電気的な接続と光接続が高信頼性で実現できる。
【0034】
次に、図11に示した光部品搭載用基板10の製造方法について説明する。図12〜14は光部品搭載用基板10の製造工程を示す工程図である。尚、説明中下部のバンプ形成面をa面、対面(上面)をb面とする。
【0035】
感光性のガラス基板の1面に光配線層を形成する工程は、図2〜7に示した光部品搭載用基板10の製造方法と同様である。続いて、ガラス基板1のa面側に全く同様の手順で光配線材料(例えばポリイミド)で下部クラッド4、コア5、上部クラッド8を順次塗布し光配線層を9を形成する。コア5は断面矩形状となるようパターニングを行い、またコア配線パターンの所定の個所にミラー7を設けておく(図12参照)。
【0036】
少なくともa面或いはb面のどちらか一方の光配線層9は感光性のガラス基板1のビアホール2の位置に合致するように、レーザー等によりブラインドビアを追加加工し、光配線層にもビアホール2を形成する(図13参照)。また、内部をメッキで金属導体を充填すると共に、光配線層9表面よりも突出するようにめっきを十分成長させバンプ11を形成する。また、光配線層9上下両側の表面にも金属導体を配線する。
【0037】
以上のようにして製造された光部品搭載用基板10両面へ、光学素子(LD、PD)及びLSIチップ等を、ミラー工程と同時に下部クラッドに形成したアライメントマーク等を頼りに光軸がずれないように搭載して実装基板を製造する。尚、感光性ガラス基板1は表面平滑である為、上面に塗布したクラッド層及びアライメントマークも平滑のままである。従って、光部品14搭載時のアライメント精度を高く維持でき光軸のズレを抑えられる事になる。また、高さ方向の距離(膜厚)を正確に把握できるので、光部品14を光・電気配線基板10の端面に光軸がずれないように光学部品を設置することも可能である。この後、実装基板自体をプリント基板に接続し図14の例を完成させる。
【0038】
以上作製した光部品搭載用基板及びプリント基板において、PD・LDといった光学部品やLSIといった電気部品はリード線或いはバンプを介して光部品搭載用基板上部の配線パターン及びビアホールに接続されている。一方、プリント基板20の上面には、光部品搭載用基板10のビアホールから突出したバンプ11と電気的に接続するための電極21が設けられ、相互に接続されている。これにより、PD、LDといった光学部品やLSIといった電気部品とプリント基板20とが電気的に接続される。
【0039】
また、プリント基板20からの電気信号の一部がLDにより光信号に変換され、その光信号は導波路へと入射されていく。そして、光信号がミラーで反射され光導波路内を伝送し、再びミラー反射されPDで電気信号となり、LSI等で信号処理が行われる。こうして電気的な接続と光接続が高信頼性で実現できる。このような光・電気配線基板をサイズ数cm〜数十cmの範囲で複数個プリント基板に搭載し光通信装置、光情報装置の高度化を図っても良い。
【0040】
図15は本発明の光部品搭載用基板を搭載したプリント基板の第2の例を示す図である。これは、光部品搭載用基板の光配線層両面の上部に電気配線層22を形成し多層構造となっている場合の例である。ここで電気配線層22は、公知のアディティブ法やサブトラクト法を用いて形成することができる。
【0041】
この例に示す光部品搭載用基板10において感光性ガラス基板1のビアホール2は、導電性物質で埋められており、且つ光配線層の配線電極16及びその上層の電気配線層の配線電極16が光部品や電気部品の電極に対応した配線密度を有し、ビアホール2と接続されている。
【0042】
一方、感光性ガラスa面側のビアホール2の位置はプリント基板20の電極21に合致すべき位置となっており、ビアホール2と電極21とが接続されている。こうして、光配線層と電気配線層とがガラス基板に主要な構成として多層形成できるので上部に搭載される光部品、電気部品の電極に電気配線密度を対応させる事が可能となり、プリント基板への効率よいデバイス実装が可能になる。
【0043】
このようにして、製造された光部品搭載用基板10を用いて光学素子(LD、PD)及びLSI(ベア)チップ等を上部に搭載し、光・電気配線基板をプリント基板に接続される。このようにして、プリント基板20からの電気信号の一部がLDによって光信号によって変換され、ミラーで反射された光信号が光導波路内を伝送する。光伝送した信号は再びミラーで90°光路変換されPDで電気信号に変換され、LSI等で信号処理される。こうして電気的な接続と光接続が高信頼性で実現できる。
【0044】
尚、光導波路には、石英、ポリカーボネート、ポリメタクリル酸メチル、ポリスチレンからなるポリマー材料であるか、或いはSiO2 - Ge2 、ZrF4 - BaF2 - GdF3 - AlF3 、As- S、As- Ge- Seなどからなるガラス系或いはCsBr、KRS- 5などからなる結晶系の何れかを用いて構成しても同図11の様になる。
【0045】
【発明の効果】
本発明の光部品搭載用基板は、直接ガラス基板上に配線した光配線層を形成する。従って、光学部品と光配線層の光軸合わせは高精度となる。また、光配線層(導波路フィルム)を剥離させないため、収縮に伴う屈折率といった諸物性の変動もない。更に、光部品搭載部が電気配線層であれば、光部品搭載部に搭載される光部品、電気部品の電極に電気配線密度を対応させた実装基板の提供が可能となり、ビアホールと導電性バンプを介して低配線密度のプリント基板に接続できる。
【0046】
以上のようにして、伝送路としての光導波路の接続特性や信頼性に格段に優れまた、配線設計の自由度の高い、安価で実用的な光部品搭載用基板及び実装基板、並びにプリント基板を提供できる。
【0047】
【図面の簡単な説明】
【図1】本発明の光部品搭載用基板及び実装基板、並びにプリント基板を示す説明図である。
【図2】光部品搭載用基板の製造工程を示す説明図である。
【図3】光部品搭載用基板の製造工程を示す説明図である。
【図4】光部品搭載用基板の製造工程を示す説明図である。
【図5】光部品搭載用基板の製造工程を示す説明図である。
【図6】光部品搭載用基板の製造工程を示す説明図である。
【図7】光部品搭載用基板の製造工程を示す傾斜図である。
【図8】光部品搭載用基板の製造工程を示す説明図である。
【図9】光部品搭載用基板の製造工程を示す説明図である。
【図10】本発明の光部品搭載用基板及び実装基板、並びにプリント基板を示す説明図である。
【図11】本発明の光部品搭載用基板及び実装基板、並びにプリント基板を示す説明図である。
【図12】光部品搭載用基板の製造工程を示す説明図である。
【図13】光部品搭載用基板の製造工程を示す説明図である。
【図14】光部品搭載用基板の製造工程を示す説明図である。
【図15】本発明の光部品搭載用基板及び実装基板、並びにプリント基板を示す説明図である。
【符号の説明】
1・・・ガラス基板
2・・・孔(ビアホール)
3・・・光又は熱硬化性樹脂
4・・・下部クラッド
5・・・コア
6・・・フォトレジスト
7・・・ミラー
8・・・上部クラッド
9・・・光配線層
10・・・光部品搭載用基板
11・・・バンプ
12・・・パッド
14・・・光部品
15・・・電気部品
16・・・配線電極
20・・・プリント基板
21・・・電極
22・・・電気配線層
23・・・アライメントマーク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical component mounting substrate on which an optical component is mounted, a mounting substrate in which an optical component or the like is mounted on the optical component mounting substrate, and a printed circuit board in which the mounting substrate is bonded via conductive bumps.
[0002]
[Prior art]
In order to make a computer that can perform arithmetic processing faster, the clock frequency of the CPU tends to increase more and more, and now the one of the order of 1 GHz has appeared. As a result, there is a portion where high-frequency current flows in the copper electrical wiring on the printed circuit board in the computer, so that malfunctions may occur due to the generation of noise, and electromagnetic waves may be generated, adversely affecting the surroundings. It will also be.
[0003]
In order to solve such problems, a part of the electrical wiring made of copper on the printed circuit board is replaced with an optical fiber or an optical waveguide (hereinafter referred to as an optical wiring), and an optical signal is used instead of the electrical signal. ing. This is because the generation of noise and electromagnetic waves can be suppressed in the case of optical signals.
[0004]
Generally, like an IC or the like, a photoelectric element such as a laser diode (LD) or a photodiode (PD) is mounted on a substrate surface, and signal transmission is performed on the substrate surface by a waveguide. In such an optical circuit, when the number of electrical components such as ICs increases, it is necessary to cross the optical waveguide, and there is a problem that the optical axis alignment between the optical waveguide and the photoelectric element becomes increasingly difficult. .
[0005]
More specifically, along with the practical application of optical communication systems through the development of low-loss optical fibers, development of various optical communication components is desired. And establishment of the optical wiring technique which mounts these optical components in high density, especially an optical waveguide technique is desired. In general, optical waveguides are required to satisfy the following conditions: (1) small optical loss, (2) easy manufacture, and (3) control of refractive index difference between core and clad. So far, quartz-based optical waveguides have been mainly studied as low-loss optical waveguides. As demonstrated by optical fibers, quartz has extremely good light transmission, so that a loss of 0.1 dB / cm or less is achieved even when a waveguide is used, and even when the wavelength is 1.3 μm. However, quartz has poor flexibility and needs to be produced on a silicon substrate or the like. If it is mounted on a printed circuit board as it is, there is a problem that connection of electric parts is greatly restricted.
[0006]
On the other hand, in recent years, an optical waveguide using a polymer among the optical waveguides has attracted attention because it may be manufactured at a low cost by a simple process. As an example, plastic optical waveguides such as polymethyl methacrylate (PMMA), polystyrene (PS), and polycarbonate (PC) achieve sufficiently low optical loss in the wavelength region longer than the visible wavelength compared to quartz optical waveguides. Although there are drawbacks such as not being performed, formation at a low temperature is possible and processing is easy. In the manufacturing method, a clad made of a low refractive index polymer material and a core layer made of a high refractive index polymer material are sequentially formed on a base material such as a silicon substrate, and a dry etching process is performed using the photoresist pattern as a mask. After the polymer core layer having a substantially rectangular cross section is processed in this way, a clad layer is formed on the upper portion again with a low refractive index polymer material to form an optical waveguide having a total film thickness of 30 to 60 μm.
[0007]
After the above process, the optical waveguide is peeled off from a base material such as silicon using hydrofluoric acid or the like, and bonded to the electric wiring board using an adhesive to produce an optical component mounting substrate.
[0008]
However, once the polymer optical waveguide is peeled off from a silicon substrate or the like to form a film, shrinkage occurs due to a difference in thermal expansion coefficient, and sufficient bonding accuracy to the electric wiring board cannot be obtained. In some cases, the refractive index fluctuates with a problem such as a crack due to a shrinkage factor, causing optical loss of the optical waveguide, and has not yet been put into practical use. In addition, the accuracy in the vertical direction when pasting to the electric wiring board is strict, and the same ± 1 μm or less as that of the optical component mounting is required, and the pasting is accompanied with great difficulty.
[0009]
In addition, the progress in technology for miniaturization and high performance of semiconductor chips is remarkable, and in order to efficiently mount surface mount parts such as optical parts and electrical parts, there is a demand for further lighter, thinner and shorter equipment. It is also required to realize finer wiring than ever before on the top of the combined optical waveguide.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the state of the related art, and enables high-density mounting of an electrical component or an optical component on an optical waveguide, and easily realizes optical axis alignment between the optical waveguide and the photoelectric element. An object of the present invention is to provide an optical component mounting substrate, a mounting substrate, and a printed board.
[0011]
In one embodiment of the present invention, a process for forming a via hole penetrating the photosensitive glass substrate by exposing a via hole forming portion of the photosensitive glass substrate by ultraviolet irradiation and performing a heat treatment and a development treatment by an acid treatment. And filling the via hole with a resin to smooth the first surface of the photosensitive glass substrate and the second surface opposite to the first surface, and the via hole filled with the resin. applying a first optical wiring material on the first surface of the photosensitive glass substrate, patterning the first optical wiring material to form a first optical wiring layer having a core and a cladding, the first forming a first optical path conversion mirror for coupling the core of the optical component and the first optical wiring layer optically to the first optical wiring layer, the via hole is filling with the resin A step of applying a second optical wiring material on the second surface facing the first surface and the first optical wiring material is applied of the photosensitive glass substrate, patterning the second optical wiring material, the core And forming a second optical wiring layer having a cladding and a second optical path conversion mirror for optically coupling the second optical component and the core of the second optical wiring layer in the second optical wiring layer Forming , heating the photosensitive glass substrate on which the first optical wiring layer and the second optical wiring layer are formed, pyrolyzing the resin filled in the via hole, and the first light the wiring layer and the second optical wiring layer, forming a through hole at a position corresponding to the via hole, Rutotomoni to deposit the conductor in said via hole and the through-holes by plating, the photosensitive glass substrate Formed on the first surface By sufficiently growing the plating so as to protrude from both the surface of one optical wiring layer and the surface of the second optical wiring layer formed on the second surface of the photosensitive glass substrate, A pad connected to the first optical component is formed on the surface of the first optical wiring layer, or a pad connected to the second optical component is formed on the surface of the second optical wiring layer. And a step of forming bumps on the surface of the optical wiring layer .
The photosensitive glass substrate preferably contains at least one material selected from the group consisting of Au and CeO2.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an optical component mounting board, a mounting board, and a printed board according to the present invention. The optical component mounting substrate 10 of the present invention has at least an optical wiring layer 9 composed of an optical component mounting portion, a core, and a clad on one or both surfaces of the glass substrate 1, and is electrically connected to the optical component mounting portion. A via hole penetrating the substrate is provided. Further, an optical component 14 and an electrical component 15 are mounted thereon to form a mounting board. The mounting board (optical component mounting board 10) is connected to the printed board 20 shown on the lower side in the figure.
[0013]
More specifically, the optical component mounting substrate 10 uses the glass substrate 1 as a base material. At least one optical component mounting portion (pad, electrical wiring, etc.) and an optical wiring layer composed of a core and a cladding are formed on at least one surface of the glass substrate. Further, the glass substrate 1 is provided with a through hole 2. The inside of each hole 2 is filled with a conductor provided by plating, and a bump corresponding to the position of the electrode 21 of the printed wiring 20 is provided below. Thereby, the optical component, the electrical component, and the electrode on the printed wiring board 20 side can be electrically connected.
[0014]
By adopting this configuration, the process of peeling the optical waveguide to form a film is unnecessary, and the positional accuracy with respect to the electric wiring board is also improved.
[0015]
Next, a manufacturing method of the optical component mounting substrate 10 shown in FIG. 1 will be described. 2 to 9 are process diagrams showing the manufacturing process of the optical component mounting board 10. The optical component mounting portion forming surface (electrical wiring layer) and the optical wiring layer forming surface in the description are referred to as b-plane and the bumps as a-plane.
[0016]
The glass substrate 1 is preferably a photosensitive glass plate having a chemical workability of Li 2 O—Al 2 O 3 —SiO 2 (Au, CeO 2 ) system. Further, the a and b surfaces of the glass substrate 1 have excellent smoothness. The glass substrate was irradiated with 100 mJ / cm 2 of a Hg—Xe lamp through a photomask having a hole shape (see FIG. 2) and developed. When the components Au and CeO 2 in the photosensitive glass are exposed by ultraviolet irradiation, nuclei composed of particles of the photosensitive metal Au and CeO 2 are formed in the exposed portion to form a latent image (not shown). it can.
[0017]
Thereafter, the glass on which the latent image has been formed by exposure is heat-treated at 550 ° C. to 620 ° C., thereby precipitating crystals that easily elute into the acid. By this heat treatment, lithium metasilicate crystals are precipitated with the photosensitive metal particles present in the exposed portion (latent image) as nuclei. The crystals thus obtained have a property of being easily dissolved in an acid, and thus were subjected to an acid treatment with dilute hydrofluoric acid and a development treatment (see FIG. 3).
[0018]
As a result of the above process, a via hole 2 is formed in the photosensitive glass substrate 1. The via hole is a hole that penetrates the photosensitive glass substrate 1 and is formed so as to coincide with the position of the electrode on the printed circuit board 20 side to be connected.
[0019]
The surface b of the photosensitive glass substrate 1 on which the via hole 2 is formed is filled with the via hole 2 with light or thermosetting resin 3 to make the surface b of the glass substrate 1 smooth, and then an optical wiring layer material ( The lower clad 4 and the core 5 are sequentially applied with polyimide, for example (see FIG. 4).
[0020]
Next, a photoresist 6 is applied to the upper portion of the optical waveguide material (see FIG. 5), exposed with a waveguide pattern mask, the photoresist 6 is developed, and the exposed portion is removed. Then, the core is patterned so that the cross section becomes rectangular by reactive ion etching, and then the photoresist 5 is removed.
[0021]
The core is formed to have at least one of a straight line, a curved line, an S-shaped curve, a parallel line, and the like.
[0022]
Further, the mirror 7 is formed at a predetermined portion of the core wiring pattern, and the upper clad 8 is applied again to form the optical wiring layer 9 (see FIGS. 6 and 7). The mirror 7 processes the core at an angle of 45 ° with a laser or the like, and selectively deposits an Al film. At this time, an alignment mark 23 for mounting an optical component is formed in an arbitrary position on the lower clad with an Al film.
[0023]
Thereafter, a heat treatment process of the optical wiring layer is performed at about 350.degree. The resin filled in the via hole 2 is thermally decomposed and removed here. When the decomposition component of the resin remains in the hole, the organic residue can be removed with dichromic acid, permanganic acid or the like.
[0024]
Then, a conductor is deposited in the via hole 2 by plating, and the bump 11 is formed by sufficiently growing the plating so as to protrude from the surface of the photosensitive glass substrate 1a (see FIG. 8).
[0025]
When plating is performed, a low-viscosity adhesive layer is selectively applied only to the inner wall surface of the via hole 2, and a plating process is performed on the adhesive layer, so that the adhesion between the photosensitive glass interface and the plated metal film is achieved. Can be further improved. Thus, the via hole 2 is filled with the metal conductor, and the bump 11 is formed on the a-plane side.
[0026]
The optical wiring layer is additionally processed in a blind via shape by laser irradiation or the like so as to match the position of the via hole 2 of the photosensitive glass substrate 1, and the via hole 2 is also formed on the optical wiring layer side (see FIG. 9). . Similarly, the inside is filled with a metal conductor by plating, and a pad is formed on the surface of the optical wiring layer 9 with the metal conductor.
[0027]
An optical element (LD, PD), LSI chip, and the like on the optical component mounting substrate 10 manufactured as described above are relied on the alignment mark formed in the lower clad simultaneously with the mirror process so that the optical axis is not shifted. To be installed. Since the photosensitive glass substrate 1 has a smooth surface, the distance in the height direction from the alignment mark can be accurately grasped, so that the optical component is installed on the end face of the optical component mounting substrate 10 so that the optical axis is not shifted. Is also possible. Thereafter, the optical component mounting board 10 itself is connected to the printed board to complete the first example of FIG.
[0028]
Optical components such as PD / LD and electrical components such as LSI are connected to the wiring pattern on the optical component mounting board via lead wires or bumps. On the other hand, electrodes 21 for electrical connection with the bumps 11 of the optical component mounting substrate 10 are provided on the upper surface of the printed circuit board 20 and are connected to each other. As a result, optical components such as PD and LD and electrical components such as LSI and the printed circuit board 20 are electrically connected.
[0029]
Further, a part of the electrical signal from the printed circuit board 20 is converted into an optical signal by the LD, and the optical signal is incident on the waveguide. Then, the optical signal is reflected by the mirror and transmitted through the optical waveguide, reflected again by the mirror, converted into an electric signal by the PD, and signal processing is performed by an LSI or the like. Thus, electrical connection and optical connection can be realized with high reliability. A plurality of such optical component mounting boards may be mounted on a printed circuit board to enhance the optical communication device and the optical information device.
[0030]
FIG. 10 is a diagram showing a second example of a printed circuit board on which the optical component mounting board of the present invention is mounted. This is an example in the case where the electrical wiring layer 22 is formed on the optical wiring layer of the photoelectric wiring board to form a multilayer structure.
[0031]
In the optical component mounting substrate 10 shown in this example, the via hole 2 of the photosensitive glass substrate 1 is filled with a conductive material, and the wiring electrode of the optical wiring layer and the wiring electrode of the electric wiring layer on the optical wiring layer are optical components or The electrical wiring density is made to correspond to the electrode of the electrical component and connected to the via hole 2.
[0032]
On the other hand, the position of the bump 11 from the via hole 2 formed on the photosensitive glass substrate a surface side is a position to be matched with the electrode 21 of the printed circuit board 20.
[0033]
In this way, optical elements (LD, PD), LSI (bare) chips and the like are mounted on the top using the manufactured opto-electric wiring 10, and the optical component mounting board is connected to the printed board. In this way, a part of the electrical signal from the printed circuit board 20 is converted into an optical signal by the LD, and the optical signal reflected by the mirror is transmitted through the optical waveguide. The optically transmitted signal is again converted by a mirror by 90 °, converted to an electric signal by a PD, and processed by an LSI or the like. Thus, electrical connection and optical connection can be realized with high reliability.
[0034]
Next, a method for manufacturing the optical component mounting substrate 10 shown in FIG. 11 will be described. 12 to 14 are process diagrams showing the manufacturing process of the optical component mounting board 10. In the description, the lower bump forming surface is a-plane, and the opposite surface (upper surface) is b-plane.
[0035]
The process of forming the optical wiring layer on one surface of the photosensitive glass substrate is the same as the manufacturing method of the optical component mounting substrate 10 shown in FIGS. Subsequently, the lower clad 4, the core 5, and the upper clad 8 are sequentially applied to the a-plane side of the glass substrate 1 with an optical wiring material (for example, polyimide) in exactly the same procedure to form an optical wiring layer 9. The core 5 is patterned so as to have a rectangular cross section, and a mirror 7 is provided at a predetermined portion of the core wiring pattern (see FIG. 12).
[0036]
A blind via is additionally processed with a laser or the like so that at least one of the optical wiring layer 9 on the a-plane or b-plane matches the position of the via-hole 2 on the photosensitive glass substrate 1, and the via-hole 2 is also formed in the optical wiring layer. (See FIG. 13). Further, the metal conductor is filled by plating, and the bump 11 is formed by sufficiently growing the plating so as to protrude from the surface of the optical wiring layer 9. Also, metal conductors are wired on the upper and lower surfaces of the optical wiring layer 9.
[0037]
Optical elements (LD, PD), LSI chips, etc. on both sides of the optical component mounting substrate 10 manufactured as described above, the optical axis does not shift by relying on alignment marks etc. formed in the lower cladding simultaneously with the mirror process. The mounting board is manufactured by mounting as described above. Since the photosensitive glass substrate 1 has a smooth surface, the cladding layer and alignment marks applied on the upper surface remain smooth. Therefore, the alignment accuracy when the optical component 14 is mounted can be maintained high, and the optical axis shift can be suppressed. In addition, since the distance (film thickness) in the height direction can be accurately grasped, it is possible to install the optical component 14 on the end face of the optical / electrical wiring board 10 so that the optical axis does not shift. Thereafter, the mounting board itself is connected to the printed board to complete the example of FIG.
[0038]
In the optical component mounting substrate and printed circuit board produced as described above, optical components such as PD / LD and electrical components such as LSI are connected to the wiring pattern and via hole on the optical component mounting substrate via lead wires or bumps. On the other hand, electrodes 21 are provided on the upper surface of the printed circuit board 20 to be electrically connected to the bumps 11 protruding from the via holes of the optical component mounting board 10 and are connected to each other. As a result, optical components such as PD and LD and electrical components such as LSI and the printed circuit board 20 are electrically connected.
[0039]
Further, a part of the electrical signal from the printed circuit board 20 is converted into an optical signal by the LD, and the optical signal is incident on the waveguide. Then, the optical signal is reflected by the mirror and transmitted through the optical waveguide, is again mirror-reflected and becomes an electric signal by the PD, and signal processing is performed by the LSI or the like. Thus, electrical connection and optical connection can be realized with high reliability. A plurality of such optical / electrical wiring boards having a size ranging from several centimeters to several tens of centimeters may be mounted on a printed circuit board to enhance the optical communication device and the optical information device.
[0040]
FIG. 15 is a diagram showing a second example of a printed circuit board on which the optical component mounting board of the present invention is mounted. This is an example in the case where the electrical wiring layer 22 is formed on both sides of the optical wiring layer of the optical component mounting substrate to form a multilayer structure. Here, the electrical wiring layer 22 can be formed using a known additive method or subtract method.
[0041]
In the optical component mounting substrate 10 shown in this example, the via hole 2 of the photosensitive glass substrate 1 is filled with a conductive material, and the wiring electrode 16 of the optical wiring layer and the wiring electrode 16 of the upper electric wiring layer are formed. It has a wiring density corresponding to the electrodes of optical components and electrical components and is connected to the via hole 2.
[0042]
On the other hand, the position of the via hole 2 on the photosensitive glass a surface side is a position to be matched with the electrode 21 of the printed circuit board 20, and the via hole 2 and the electrode 21 are connected. In this way, the optical wiring layer and the electrical wiring layer can be formed in multiple layers on the glass substrate as the main components, so that the electrical wiring density can be made to correspond to the electrodes of the optical components and electrical components mounted on the top, Efficient device mounting becomes possible.
[0043]
The optical element (LD, PD), LSI (bare) chip, and the like are mounted on the top using the optical component mounting substrate 10 thus manufactured, and the optical / electrical wiring substrate is connected to the printed circuit board. In this way, a part of the electrical signal from the printed circuit board 20 is converted into an optical signal by the LD, and the optical signal reflected by the mirror is transmitted through the optical waveguide. The optically transmitted signal is again converted by a mirror by 90 °, converted to an electric signal by a PD, and processed by an LSI or the like. Thus, electrical connection and optical connection can be realized with high reliability.
[0044]
Incidentally, in the optical waveguide, quartz, polycarbonate, polymethyl methacrylate, or a polymeric material composed of polystyrene, or SiO 2 - Ge 2, ZrF 4 - BaF 2 - GdF 3 - AlF 3, As- S, As- Even if it is configured using either a glass system made of Ge-Se or the like or a crystal system made of CsBr, KRS-5, or the like, the structure shown in FIG.
[0045]
【The invention's effect】
The optical component mounting substrate of the present invention forms an optical wiring layer wired directly on a glass substrate. Therefore, the optical axis alignment between the optical component and the optical wiring layer is highly accurate. Further, since the optical wiring layer (waveguide film) is not peeled off, there is no change in various physical properties such as refractive index due to shrinkage. Furthermore, if the optical component mounting portion is an electrical wiring layer, it is possible to provide a mounting substrate that corresponds to the electrical wiring density of the optical component mounted on the optical component mounting portion and the electrodes of the electrical component, and via holes and conductive bumps can be provided. It can be connected to a printed circuit board with low wiring density via
[0046]
As described above, the connection characteristics and reliability of the optical waveguide as the transmission line are remarkably excellent, and the inexpensive and practical optical component mounting board and mounting board as well as the printed board with a high degree of freedom in wiring design. Can be provided.
[0047]
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an optical component mounting board, a mounting board, and a printed board according to the present invention.
FIG. 2 is an explanatory view showing a manufacturing process of an optical component mounting board.
FIG. 3 is an explanatory diagram showing a manufacturing process of an optical component mounting board.
FIG. 4 is an explanatory diagram showing a manufacturing process of an optical component mounting board.
FIG. 5 is an explanatory diagram showing a manufacturing process of an optical component mounting board.
FIG. 6 is an explanatory view showing a manufacturing process of an optical component mounting board.
FIG. 7 is a tilt view showing a manufacturing process of the optical component mounting board.
FIG. 8 is an explanatory diagram showing a manufacturing process of an optical component mounting board.
FIG. 9 is an explanatory diagram showing a manufacturing process of an optical component mounting board.
FIG. 10 is an explanatory diagram showing an optical component mounting board, a mounting board, and a printed board according to the present invention.
FIG. 11 is an explanatory diagram showing an optical component mounting board, a mounting board, and a printed board according to the present invention.
FIG. 12 is an explanatory diagram showing a manufacturing process of an optical component mounting board.
FIG. 13 is an explanatory diagram showing a manufacturing process of an optical component mounting board.
FIG. 14 is an explanatory diagram showing a manufacturing process of an optical component mounting board.
FIG. 15 is an explanatory diagram showing an optical component mounting board, a mounting board, and a printed board according to the present invention.
[Explanation of symbols]
1 ... Glass substrate 2 ... Hole (via hole)
DESCRIPTION OF SYMBOLS 3 ... Light or thermosetting resin 4 ... Lower clad 5 ... Core 6 ... Photoresist 7 ... Mirror 8 ... Upper clad 9 ... Optical wiring layer 10 ... Light Component mounting substrate 11 ... Bump 12 ... Pad 14 ... Optical component 15 ... Electrical component 16 ... Wiring electrode 20 ... Printed substrate 21 ... Electrode 22 ... Electric wiring layer 23 ... Alignment mark

Claims (2)

感光性ガラス基板のビアホール形成部位を紫外線照射によって露光し、熱処理、並びに、酸処理による現像処理を行うことにより、該感光性ガラス基板を貫通するビアホールを形成する工程と、前記ビアホールを樹脂で穴埋めすることにより、前記感光性ガラス基板の第1の面及びこれに対向する第2の面を平滑な状態とする工程と、前記ビアホールが前記樹脂で穴埋めされた前記感光性ガラス基板の前記第1の面に第1光配線材料を塗布する工程と、前記第1光配線材料をパターニングし、コア及びクラッドを有する第1光配線層を形成する工程と、第1光部品と第1光配線層のコアとを光学的に結合するための第1光路変換ミラーを前記第1光配線層中に形成する工程と、前記ビアホールが前記樹脂で穴埋めされた前記感光性ガラス基板の第1光配線材料を塗布した前記第1の面と対向する前記第2の面に第2光配線材料を塗布する工程と、前記第2光配線材料をパターニングし、コア及びクラッドを有する第2光配線層を形成する工程と、第2光部品と第2光配線層のコアとを光学的に結合するための第2光路変換ミラーを前記第2光配線層中に形成する工程と、前記第1光配線層及び前記第2光配線層が形成された前記感光性ガラス基板を加熱し、前記ビアホールに充填された前記樹脂を熱分解する工程と、前記第1光配線層および前記第2光配線層に、前記ビアホールと対応する位置に貫通孔を形成する工程と、めっきにより前記ビアホール内及び前記貫通孔内に導体を析出させると共に、前記感光性ガラス基板の前記第1の面に形成された前記第1光配線層の表面、並びに、前記感光性ガラス基板の前記第2の面に形成された前記第2光配線層の表面、のいずれからも突出するように、めっきを十分成長させることにより、前記第1光配線層の表面上に前記第1光部品と接続するパッドを形成するかもしくは前記第2光配線層の表面上に前記第2光部品と接続するパッドを形成するとともに、他方の光配線層の表面上にバンプを形成する工程と、を備えたことを特徴とする光部品搭載用基板製造方法。A step of forming a via hole penetrating the photosensitive glass substrate by exposing the via hole forming portion of the photosensitive glass substrate by ultraviolet irradiation , performing a heat treatment and a development process by acid treatment, and filling the via hole with a resin by the the steps of the first surface and smooth state a second surface opposite to the photosensitive glass substrate, said first via hole is the photosensitive glass substrate which is filling with the resin A step of applying a first optical wiring material to the surface, a step of patterning the first optical wiring material to form a first optical wiring layer having a core and a cladding, a first optical component and a first optical wiring layer a step of the first optical path conversion mirror for coupling of the core optically formed in the first optical wiring layer, the photosensitive glass substrate having the via hole is filling with the resin A step of applying a second optical wiring material on the second surface facing the first surface coated with a first optical wiring material, patterning the second optical wiring material, the second having a core and a cladding Forming an optical wiring layer; forming a second optical path conversion mirror in the second optical wiring layer for optically coupling the second optical component and the core of the second optical wiring layer; Heating the photosensitive glass substrate on which the first optical wiring layer and the second optical wiring layer are formed, and thermally decomposing the resin filled in the via hole; and the first optical wiring layer and the second optical wiring layer the optical wiring layer, forming a through hole at a position corresponding to the via hole, Rutotomoni to deposit the conductor in said via hole and the through-holes by plating, on the first surface of the photosensitive glass substrate The surface of the formed first optical wiring layer, Further, by sufficiently growing the plating so as to protrude from any of the surfaces of the second optical wiring layer formed on the second surface of the photosensitive glass substrate, the first optical wiring layer A pad connected to the first optical component is formed on the surface, or a pad connected to the second optical component is formed on the surface of the second optical wiring layer, and on the surface of the other optical wiring layer. And a step of forming a bump . An optical component mounting substrate manufacturing method comprising: 前記感光性ガラス基板は、Au、CeO2、からなる群から選ばれた少なくとも1つ以上の材料を含むことを特徴とする請求項1に記載の光部品搭載用基板製造方法。The method for manufacturing a substrate for mounting an optical component according to claim 1, wherein the photosensitive glass substrate includes at least one material selected from the group consisting of Au and CeO 2.
JP2000371098A 2000-12-06 2000-12-06 Substrate manufacturing method for mounting optical components Expired - Fee Related JP4538949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000371098A JP4538949B2 (en) 2000-12-06 2000-12-06 Substrate manufacturing method for mounting optical components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000371098A JP4538949B2 (en) 2000-12-06 2000-12-06 Substrate manufacturing method for mounting optical components

Publications (2)

Publication Number Publication Date
JP2002174744A JP2002174744A (en) 2002-06-21
JP4538949B2 true JP4538949B2 (en) 2010-09-08

Family

ID=18840875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000371098A Expired - Fee Related JP4538949B2 (en) 2000-12-06 2000-12-06 Substrate manufacturing method for mounting optical components

Country Status (1)

Country Link
JP (1) JP4538949B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807385B2 (en) * 2003-05-14 2006-08-09 セイコーエプソン株式会社 OPTICAL MODULE AND ITS MANUFACTURING METHOD, OPTICAL COMMUNICATION DEVICE, ELECTRONIC DEVICE
JP4859677B2 (en) * 2004-02-18 2012-01-25 カラー チップ (イスラエル) リミテッド Photovoltaic module fabrication system and method
JP2007271998A (en) 2006-03-31 2007-10-18 Nec Corp Optical connector and optical module
TW200807047A (en) * 2006-05-30 2008-02-01 Sumitomo Bakelite Co Substrate for mounting photonic device, optical circuit substrate, and photonic device mounting substrate
KR100894152B1 (en) 2007-03-16 2009-04-27 (주)페타컴 Optical device based planar light waveguide circuit and manufacturing method thereof
JP5302177B2 (en) 2009-12-18 2013-10-02 新光電気工業株式会社 Optical waveguide substrate and opto-electric hybrid device
JP2012145743A (en) * 2011-01-12 2012-08-02 Nippon Telegr & Teleph Corp <Ntt> Optical module
WO2014080709A1 (en) 2012-11-22 2014-05-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Optical-waveguide-layer-penetrating via for electrical connection in multilayered structure where electric circuit substrate and optical waveguide layer are laminated

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137458U (en) * 1984-02-23 1985-09-11 松下電工株式会社 optical coupling socket
JPS6179290A (en) * 1984-09-26 1986-04-22 株式会社島津製作所 Light/electron printed substrate
JPS62181467A (en) * 1986-02-05 1987-08-08 Hitachi Ltd Semiconductor device
JPH02136805A (en) * 1988-11-18 1990-05-25 Nippon Sheet Glass Co Ltd Waveguide type photoelectric matrix switch
JPH02209799A (en) * 1989-02-09 1990-08-21 Fujitsu Ltd Manufacture of multilayered circuit board
JPH05246728A (en) * 1992-03-03 1993-09-24 Sankyo Seiki Mfg Co Ltd Method for stabilizing photosensitive glass substrate
JPH06132516A (en) * 1992-08-11 1994-05-13 Hitachi Ltd Semiconductor device and clock signal supplier
JPH07128531A (en) * 1993-09-10 1995-05-19 Nippon Telegr & Teleph Corp <Ntt> Optical integrated circuit and its production
JPH0996746A (en) * 1995-09-29 1997-04-08 Fujitsu Ltd Active optical circuit sheet or active optical circuit board
JPH10300961A (en) * 1996-07-31 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> Optical path changing element, manufacture thereof and blade for manufacturing the optical path changing element
JPH11177200A (en) * 1997-12-05 1999-07-02 Toshiba Corp Circuit board, production method and manufacturing device, and its inspection method
JP2000098153A (en) * 1998-09-21 2000-04-07 Nippon Telegr & Teleph Corp <Ntt> Optical device packaging structure
JP2000114581A (en) * 1998-10-09 2000-04-21 Fujitsu Ltd Multilayered photoelectron substrate with electrical intercoupling and optical intercoupling, and manufacture thereof
JP2000227524A (en) * 1999-02-05 2000-08-15 Sony Corp Optical waveguide device and optical transmission and reception device, and manufacture thereof
JP2000298217A (en) * 1999-04-13 2000-10-24 Toppan Printing Co Ltd Optical-electric wiring substrate and manufacture therefor, and mounting substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425580A (en) * 1987-07-22 1989-01-27 Matsushita Electric Ind Co Ltd Printed circuit board
TW460717B (en) * 1999-03-30 2001-10-21 Toppan Printing Co Ltd Optical wiring layer, optoelectric wiring substrate mounted substrate, and methods for manufacturing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137458U (en) * 1984-02-23 1985-09-11 松下電工株式会社 optical coupling socket
JPS6179290A (en) * 1984-09-26 1986-04-22 株式会社島津製作所 Light/electron printed substrate
JPS62181467A (en) * 1986-02-05 1987-08-08 Hitachi Ltd Semiconductor device
JPH02136805A (en) * 1988-11-18 1990-05-25 Nippon Sheet Glass Co Ltd Waveguide type photoelectric matrix switch
JPH02209799A (en) * 1989-02-09 1990-08-21 Fujitsu Ltd Manufacture of multilayered circuit board
JPH05246728A (en) * 1992-03-03 1993-09-24 Sankyo Seiki Mfg Co Ltd Method for stabilizing photosensitive glass substrate
JPH06132516A (en) * 1992-08-11 1994-05-13 Hitachi Ltd Semiconductor device and clock signal supplier
JPH07128531A (en) * 1993-09-10 1995-05-19 Nippon Telegr & Teleph Corp <Ntt> Optical integrated circuit and its production
JPH0996746A (en) * 1995-09-29 1997-04-08 Fujitsu Ltd Active optical circuit sheet or active optical circuit board
JPH10300961A (en) * 1996-07-31 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> Optical path changing element, manufacture thereof and blade for manufacturing the optical path changing element
JPH11177200A (en) * 1997-12-05 1999-07-02 Toshiba Corp Circuit board, production method and manufacturing device, and its inspection method
JP2000098153A (en) * 1998-09-21 2000-04-07 Nippon Telegr & Teleph Corp <Ntt> Optical device packaging structure
JP2000114581A (en) * 1998-10-09 2000-04-21 Fujitsu Ltd Multilayered photoelectron substrate with electrical intercoupling and optical intercoupling, and manufacture thereof
JP2000227524A (en) * 1999-02-05 2000-08-15 Sony Corp Optical waveguide device and optical transmission and reception device, and manufacture thereof
JP2000298217A (en) * 1999-04-13 2000-10-24 Toppan Printing Co Ltd Optical-electric wiring substrate and manufacture therefor, and mounting substrate

Also Published As

Publication number Publication date
JP2002174744A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
KR100751274B1 (en) Optoelectronic substrate, circuit board, and method of manufacturing optoelectronic substrate
JP4260650B2 (en) Photoelectric composite substrate and manufacturing method thereof
KR100720854B1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
US7713767B2 (en) Method of making circuitized substrate with internal optical pathway using photolithography
JP4690870B2 (en) Opto-electric integrated wiring board and opto-electric integrated wiring system
JP2004146602A (en) Hybrid circuit board mounting optical wiring and electrical wiring mixedly and its producing process, hybrid circuit module mounting wiring and electrical wiring mixedly and its producing method
US6579398B1 (en) Method of manufacturing optical waveguide
JP2002006161A (en) Optical wiring substrate and optical wiring module and their manufacturing method
JP4538949B2 (en) Substrate manufacturing method for mounting optical components
JP2002107560A (en) Mounting substrate
JP5495896B2 (en) Manufacturing method of optoelectric wiring board
JP2001196643A (en) Chip carrier for mounting light/electric element and mounting method thereof, light/electric wiring board and manufacturing method thereof, and mounting board
JP2001007463A (en) Substrate for mixedly mounting optical and electrical parts and its manufacture
US20210247568A1 (en) High-density optical waveguide structure and printed circuit board and preparation method thereof
JP2000047044A (en) Optical signal transmission system and its manufacture
JP4590722B2 (en) Substrate manufacturing method for mounting optical components
US20050164131A1 (en) Substrate optical waveguides having fiber-like shape and methods of making the same
JP2001183556A (en) Multi-chip module board and multi-chip module
JPH1195062A (en) Optical connection structure
Holden The developing technologies of integrated optical waveguides in printed circuits
JP2000340906A (en) Optical/electrical wiring board, manufacture thereof and mounting board
JP4304764B2 (en) Optical / electrical wiring board, manufacturing method, and mounting board
JP4320850B2 (en) Optical / electrical wiring board, mounting board, and manufacturing method thereof
JP2001004854A (en) Optical and electrical wiring board and mounting substrate
JP4639421B2 (en) Optical wiring layer manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees