JPS62181467A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62181467A
JPS62181467A JP61021921A JP2192186A JPS62181467A JP S62181467 A JPS62181467 A JP S62181467A JP 61021921 A JP61021921 A JP 61021921A JP 2192186 A JP2192186 A JP 2192186A JP S62181467 A JPS62181467 A JP S62181467A
Authority
JP
Japan
Prior art keywords
optical waveguide
signal transmission
circuit board
wiring
integrated electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61021921A
Other languages
Japanese (ja)
Inventor
Toshio Katsuyama
俊夫 勝山
Hiroyoshi Matsumura
宏善 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61021921A priority Critical patent/JPS62181467A/en
Publication of JPS62181467A publication Critical patent/JPS62181467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To contrive the increase of integration of elements and the reduction of a signal transmission time by performing signal transmission in a semiconductor integrated electronic circuit by use of light partly or wholly. CONSTITUTION:On a circuit board 3 comprising an optical waveguide network 1, an integrated electronic device 2 having a photoelectric conversion function is connected while bringing its light input and output terminals in accordance with said optical waveguide 1 so as to attain mutual signal transmission. At this time, a dielectric ceramics is used for the circuit board 3. For the optical waveguide 1, an optical waveguide consisting of multi-component glass is formed by a usual technique for forming a glass thin film and a pattern forming technique by use of a photoresist. By this constitution, a wiring area can be cut off 50% in comparison with the case of only a conventional electric wiring and also the signal transmission of 10GHz becomes easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は素子あるいは集積化素子の間の信号伝達を容易
にかつ高速で行う電子回路を構成した半導体装置に関す
る 〔従来の技術〕 近年半導体装置を作製するプロセス技術が進歩して、極
めて高密度の集積素子を製造することが可能となった。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device comprising an electronic circuit that easily and quickly transmits signals between elements or integrated elements [Prior Art] In recent years, semiconductor devices have been developed. Advances in process technology have made it possible to produce extremely high-density integrated devices.

しかしながら素子の高集積化は素子間の信号伝達機構を
複雑化し、信号の処理時間は、素子の演算時間よりもむ
しろ素子間や装置間の信号伝達時間で規制されるように
なってきた。そのために装置間の信号伝達に光を用いる
方法が提案されている。(リュー・ダブリュー・グツド
マン他: [ヴイ エル ニス アイ システムの光学
的接続」アイ !−リプルイー刊行物、第72巻197
4年7月刊、第850〜866頁)  (J、W、Go
odman他:“0ptical Interconr
+ections for VLSI SyStems
”Proc、of IERE、Vol 72.July
 1.974.PR50〜P866参照)。
However, the high integration of devices has made the signal transmission mechanism between the devices complicated, and the signal processing time has come to be regulated by the signal transmission time between the devices and devices rather than the operation time of the devices. To this end, methods have been proposed that use light for signal transmission between devices. (Liu W. Gutsudmann et al.: [Optical Connections in Visual Systems] Eye! - Ripley Publications, Vol. 72, 197
Published July 4th, pp. 850-866) (J, W, Go
odman et al.: “0ptical Interconr
+ections for VLSI SyStems
”Proc, of IERE, Vol 72.July
1.974. (See PR50-P866).

すなわち、高!A積化に伴い相互キャパシタンスの増加
や駆動電圧の低下が生じ、信号のクロストークが問題と
なり、また、装置間の接続配線数の増加に伴うクロスト
ークなどが問題となっている。
In other words, high! As A multiplication increases, mutual capacitance increases and drive voltage decreases, causing signal crosstalk, and crosstalk due to an increase in the number of interconnections between devices.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上示したように、素子や装置の高集積化、高速化に伴
い集積化装置内における素子間あるいは集積化装置間の
信号伝達性能を向上させるための技術的対策が必要とな
ってきた。
As described above, as elements and devices become more highly integrated and operate at higher speeds, technical measures have become necessary to improve signal transmission performance between elements within an integrated device or between integrated devices.

本発明の目的は、光による信号伝達を行うことにより従
来技術による素子の高集積化を図るとともに信号伝達時
間の短縮を図った半導体装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that achieves high integration of conventional elements and shortens signal transmission time by transmitting signals using light.

〔問題点を解決するための手段〕[Means for solving problems]

素子の高集積化に伴って信号伝達機構が複雑になれるの
は、配線数の増大と配線面積の増大によつる。これは、
信号伝達の手段として電子を用いることによる。電子を
一定場所へ導くためには、ポテンシャル勾配が必要であ
り、ある一つの信号を他の信号と区別するためには、異
なる信号を担う電子をアイソレートする必要がある。こ
のためには一つの信号に対応して一つの配線が必要であ
ることを意味する。したがって、信号伝達の手段として
電子を用いる限り、信号伝達機構が複雑になるのは避け
られない。
The reason why signal transmission mechanisms become more complex as elements become more highly integrated is due to an increase in the number of wiring lines and an increase in the wiring area. this is,
By using electrons as a means of signal transmission. In order to guide electrons to a fixed location, a potential gradient is necessary, and in order to distinguish one signal from another, it is necessary to isolate the electrons carrying different signals. This means that one wiring is required for one signal. Therefore, as long as electrons are used as a means of signal transmission, it is inevitable that the signal transmission mechanism will become complicated.

本発明者は、信号伝達手段として従来技術より効果的に
半導体電子装置に導入することを発明した。しかし、光
の場合、信号を伝送する導波路の幅を信号の波長より小
さくすることが難しく、したがって導波路幅を電子の場
合の配線幅より小さくすることが鷺しい。そこで、本発
明者はさらに異なる波長を有する光を半導体装置の信号
伝達の手段として用いることを発明した。この場合、そ
の波長を識別することにより、一つの導波路で波長の異
なる信号を伝送でき、また、その信号がどこから来たか
を容易に認識することが可能であり、したがって、導波
路内で光をアイソレーションする必要が全くなく、一つ
の導波路で多量の信号を伝送できるという長所がある。
The present inventor has invented a method for introducing a signal transmission means into a semiconductor electronic device more effectively than the prior art. However, in the case of light, it is difficult to make the width of a waveguide for transmitting a signal smaller than the wavelength of the signal, and therefore it is difficult to make the waveguide width smaller than the wiring width for electrons. Therefore, the present inventor further invented the use of light having different wavelengths as a means of signal transmission in a semiconductor device. In this case, by identifying the wavelength, it is possible to transmit signals with different wavelengths in one waveguide, and it is also possible to easily recognize where the signal came from, so that light can be transmitted within the waveguide. It has the advantage that there is no need for isolation at all, and a large amount of signals can be transmitted using a single waveguide.

すなわち、光を伝搬させる部分は、全信号共通で使用で
きる。
That is, the portion for propagating light can be used commonly for all signals.

〔作用〕[Effect]

第1図は、上述の方法を実現する構成の一例を示したも
のである。すなわち、光導波路網1を有する回路基板3
上に、集積化電子装置2を該光導波路1と信号伝達がで
きるように接続したもので。
FIG. 1 shows an example of a configuration for realizing the above method. That is, a circuit board 3 having an optical waveguide network 1
On the top, an integrated electronic device 2 is connected to the optical waveguide 1 for signal transmission.

集積化電子装置2は、光・電気および/もしくは電気・
光信号変換装置を有していることはいうまでもない。
The integrated electronic device 2 is an optical/electrical and/or electrical/electrical device.
Needless to say, it includes an optical signal converter.

さらに、第2図は、回路基板3は、光導波路1および電
気配線4を有し、集積化装置2を駆動する電力の供給を
電気配線4で行うようにしたものである。この場合、光
導波路は電磁気的雑音を受けないので光導波路1と電気
配線4が接近してもよく、したがって装置の設計が極め
て容易となる。
Further, in FIG. 2, the circuit board 3 has an optical waveguide 1 and an electric wiring 4, and the electric wiring 4 supplies power for driving the integrated device 2. In this case, since the optical waveguide is not affected by electromagnetic noise, the optical waveguide 1 and the electrical wiring 4 may be placed close to each other, and therefore the design of the device becomes extremely easy.

また、回路基板3の光導波路網1と電気配$4を多層で
構成し、これらが交差できろような装置も可能であり、
その−例としては第3図に示すように回路基板3の一方
の面に導波網1を、他の面に電気配線4を形成した。そ
の結果によって、小型で高性能の半導体装置ができた。
It is also possible to construct a device in which the optical waveguide network 1 of the circuit board 3 and the electrical wiring 4 are configured in multiple layers so that they can cross each other.
As an example, as shown in FIG. 3, a waveguide network 1 was formed on one side of a circuit board 3, and an electric wiring 4 was formed on the other side. The result was a compact, high-performance semiconductor device.

〔実施例〕〔Example〕

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図に示したように、光導波路網1を有する回路基板
3上に光電変換機能を有する集積化装置間@2をその光
入出力端が該光導波路1と合致させて、相互信号伝達が
できるように接続した。ここで、回路基板Pは誘電体セ
ラミクスを用い光導波路としては予成ガラスからなる光
導波路を通常のガラス薄膜の形成法およびフォトレジス
トを用いたパターン形成法によって形成した。また、集
積化電子装置には、光電変換機能として発光ダイオード
からなる光発信部とP丁N受光器からなる受信部を通常
の半導体プロセスを用いてモノリシックに組み込んであ
る。この構成で、従来の電気配線のみを用いた場合に比
べて、配線領域を50%低減でき、また1 0 G H
zの信号伝達が容易にできた。
Embodiment 1 As shown in FIG. 1, an integrated device 2 having a photoelectric conversion function on a circuit board 3 having an optical waveguide network 1 is arranged so that its optical input and output ends coincide with the optical waveguide 1, Connected to allow mutual signal transmission. Here, the circuit board P was made of dielectric ceramics, and the optical waveguide was formed of preformed glass by a normal glass thin film forming method and a pattern forming method using a photoresist. Further, in the integrated electronic device, a light transmitting section consisting of a light emitting diode and a receiving section consisting of a P-N photoreceiver are monolithically incorporated as a photoelectric conversion function using a normal semiconductor process. With this configuration, the wiring area can be reduced by 50% compared to the case where only conventional electrical wiring is used, and the wiring area can be reduced by 10 GH
z signal transmission was easily possible.

実施例2 第2図に示すように、回路基板3が光導波路]および電
気配線4を有し、集積化装置2を駆動する6カの供給を
電気配線4で行うことができるようにした。ここで、回
路基板は誘電体セラミクスを光電波路は実施例】と同様
に多成分ガラスで形成し、また電気配線はA Q、を用
いた従来の配線技術で形成した、この結果、従来の電気
配線を用いた場合に比べて、配線領域を30%低減でき
た。
Embodiment 2 As shown in FIG. 2, the circuit board 3 had an optical waveguide] and electric wiring 4, so that the electric wiring 4 could supply six components for driving the integrated device 2. Here, the circuit board is made of dielectric ceramics, the optical waveguide is made of multi-component glass as in Example], and the electrical wiring is made of conventional wiring technology using AQ. The wiring area can be reduced by 30% compared to the case where wiring is used.

実施例3 第3図に示すように、回路基板3の一方の面に光導波路
網1を、他の面に電気配線4を実施例2の方法を用いて
形成した。その結果、配線領域が、従来の電気配線のみ
を用いた場合に比べて30%低減でき、小型で高性能の
半導体装置ができた。
Example 3 As shown in FIG. 3, an optical waveguide network 1 was formed on one surface of a circuit board 3, and an electrical wiring 4 was formed on the other surface using the method of Example 2. As a result, the wiring area can be reduced by 30% compared to the case where only conventional electrical wiring is used, and a small, high-performance semiconductor device can be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光導波路網を有する回路基板上に、集積化電子
装置を光導波路と信号伝達ができるよう。 に接続した構成を示す図、第2図は、回路基板上に光導
波路と電気配線を有するようにした構成を示す図、第3
図は、回路基板の一方の面に光導波路網を、他の面に電
気配線を形成した構成を示す図である。 1・・・光導波路、2・・・集積化電子装置、3・・・
回路基3− ωf34氏 ′fIz  口 3  l:]g−基粗 +:重重税配 縁 3 図 1: 光停j反了各、 2 :  粟ジr1イヒ、l:1−a 3: 回路差叔 +:  1丸5二他己緑
FIG. 1 shows an integrated electronic device on a circuit board having an optical waveguide network for signal transmission with the optical waveguide. Figure 2 is a diagram showing a configuration in which an optical waveguide and electrical wiring are connected to a circuit board;
The figure shows a configuration in which an optical waveguide network is formed on one side of a circuit board and electrical wiring is formed on the other side. 1... Optical waveguide, 2... Integrated electronic device, 3...
Circuit board 3- ωf34 Mr.'fIz mouth 3 l:] g-base coarse +: Heavy heavy tax arrangement 3 Figure 1: Light stop j reverse each, 2: Awaji r1 Ihi, l: 1-a 3: Circuit difference Uncle +: 1 round 52 others green

Claims (1)

【特許請求の範囲】 1、半導体集積化電子回路における信号伝達の一部もし
くは全部を光を用いて行うことを特徴とする半導装置。 2、上記信号伝達を異なる波長の光を用いて行うことを
特徴とする特許請求の範囲第1項に記載の半導体装置。 3、上記集積化電子回路が、光導波路を有する回路基板
上に設けられていることを特徴とする特許請求の範囲第
1項記載の半導体装置。 4、上記集積化電子回路が、光導波路および電気配線を
有する回路基板上に設けられていることを特徴とする特
許請求の範囲第1項記載の半導体装置。 5、上記光導波路および電気配線の配線を、それらの射
像が交差している部分を有するようにしたことを特徴と
する特許請求の範囲第4項記載の半導体装置。
[Scope of Claims] 1. A semiconductor device characterized in that part or all of signal transmission in a semiconductor integrated electronic circuit is performed using light. 2. The semiconductor device according to claim 1, wherein the signal transmission is performed using light of different wavelengths. 3. The semiconductor device according to claim 1, wherein the integrated electronic circuit is provided on a circuit board having an optical waveguide. 4. The semiconductor device according to claim 1, wherein the integrated electronic circuit is provided on a circuit board having an optical waveguide and electrical wiring. 5. The semiconductor device according to claim 4, wherein the optical waveguide and the electrical wiring have a portion where their projected images intersect.
JP61021921A 1986-02-05 1986-02-05 Semiconductor device Pending JPS62181467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61021921A JPS62181467A (en) 1986-02-05 1986-02-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61021921A JPS62181467A (en) 1986-02-05 1986-02-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62181467A true JPS62181467A (en) 1987-08-08

Family

ID=12068534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61021921A Pending JPS62181467A (en) 1986-02-05 1986-02-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62181467A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627923A (en) * 1993-09-16 1997-05-06 Hitachi, Ltd. Three-dimensional opto-electric integrated circuit using optical wiring
JP2002174742A (en) * 2000-12-06 2002-06-21 Toppan Printing Co Ltd Board for mounting optical part, package substrate and printed circuit board
JP2002174744A (en) * 2000-12-06 2002-06-21 Toppan Printing Co Ltd Board for mounting optical parts, package substrate and printed circuit board
WO2003026165A1 (en) * 2001-08-01 2003-03-27 Lumenlink, Co. Ltd. Integrated optical transmitter, receiver for free space optical communication and network system and application apparatus thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244192A (en) * 1975-10-06 1977-04-06 Hitachi Ltd Optical integrated circuit
JPS5729016A (en) * 1980-07-28 1982-02-16 Fujitsu Ltd Large scale optical integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244192A (en) * 1975-10-06 1977-04-06 Hitachi Ltd Optical integrated circuit
JPS5729016A (en) * 1980-07-28 1982-02-16 Fujitsu Ltd Large scale optical integrated circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627923A (en) * 1993-09-16 1997-05-06 Hitachi, Ltd. Three-dimensional opto-electric integrated circuit using optical wiring
JP2002174742A (en) * 2000-12-06 2002-06-21 Toppan Printing Co Ltd Board for mounting optical part, package substrate and printed circuit board
JP2002174744A (en) * 2000-12-06 2002-06-21 Toppan Printing Co Ltd Board for mounting optical parts, package substrate and printed circuit board
JP4538949B2 (en) * 2000-12-06 2010-09-08 凸版印刷株式会社 Substrate manufacturing method for mounting optical components
JP4590722B2 (en) * 2000-12-06 2010-12-01 凸版印刷株式会社 Substrate manufacturing method for mounting optical components
WO2003026165A1 (en) * 2001-08-01 2003-03-27 Lumenlink, Co. Ltd. Integrated optical transmitter, receiver for free space optical communication and network system and application apparatus thereof

Similar Documents

Publication Publication Date Title
JP2853400B2 (en) Simultaneous two-way optical interconnection method
Goodman et al. Optical interconnections for VLSI systems
US5159700A (en) Substrate with optical communication systems between chips mounted thereon and monolithic integration of optical I/O on silicon substrates
US7233725B2 (en) 1×N fanout waveguide photodetector
EP0063626B1 (en) Bus arrangement for interconnectiong circuit chips
JPH06224408A (en) Optical transmitter-receiver module and its preparation
JPS60169167A (en) Optical communication system
US7865084B2 (en) Multi-chip systems with optical bypass
JPH04249205A (en) Optical bus for computer system
JPH0642527B2 (en) Information processing device using optical waveguide
WO1994007287A1 (en) Improved semiconductor architecture and application therefor
JPH03212968A (en) Interconnection system of electric circuits and photoelectric transmitter
US5313536A (en) Modular photonic waveguide distribution system
US20220236619A1 (en) Integrated plasmonic modulator
JPS62181467A (en) Semiconductor device
EP0224542B1 (en) Optical logic device and assembly
JPS6128240A (en) Signal transmitting system between boards
JP3629713B2 (en) Optical connection integrated circuit
JPS63291014A (en) Opto-electronic integrated circuit board device
JPH0758805B2 (en) Optical wiring circuit
Miller Dense optical interconnections for silicon electronics
Miller Hybrid SEED-massively parallel optical interconnections for silicon ICs
JPS61212059A (en) Semiconductor device
JPH07109466B2 (en) Information processing device using optical waveguide
JP2764127B2 (en) Optical connection integrated circuit