JP3629713B2 - Optical connection integrated circuit - Google Patents

Optical connection integrated circuit Download PDF

Info

Publication number
JP3629713B2
JP3629713B2 JP34378592A JP34378592A JP3629713B2 JP 3629713 B2 JP3629713 B2 JP 3629713B2 JP 34378592 A JP34378592 A JP 34378592A JP 34378592 A JP34378592 A JP 34378592A JP 3629713 B2 JP3629713 B2 JP 3629713B2
Authority
JP
Japan
Prior art keywords
integrated circuit
substrate
optical
optical connection
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34378592A
Other languages
Japanese (ja)
Other versions
JPH0645584A (en
Inventor
光夫 武田
厳雄 林
光正 小柳
Original Assignee
厳雄 林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厳雄 林 filed Critical 厳雄 林
Priority to JP34378592A priority Critical patent/JP3629713B2/en
Publication of JPH0645584A publication Critical patent/JPH0645584A/en
Application granted granted Critical
Publication of JP3629713B2 publication Critical patent/JP3629713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、集積回路(IC、LSI、及び超LSI等)に関し、特に素子間の接続を光接続とした光接続集積回路に関する。
【0002】
【従来の技術】
一般に、コンピュータなどの電子装置内部では、電子部品間の電気的接続に金属線や針金等の金属導体が使用されている。しかし、電子装置の高速化、高密度化が進むに従い、金属導体による電気的接続が問題になってきている。すなわち、複数の接続線の相互誘導による雑音の発生や、金属線の浮遊容量充電のための時間遅れと金属線の抵抗の効果を加えたRC遅れの発生が問題となっている。
【0003】
そこで、最近では、電子装置の内部の電気的接続を光素子(発光素子及び受光素子)を用いて光接続に置き換えることが試みられている。図5(後述の論文に掲載予定)に集積回路(IC、LSI等)チップ上における電気的接続及び光学的接続に関する、接続距離と信号遅延時間との関係を示す。図5に示す様に、2mm以上の接続距離では、電気的接続に比べ光学的接続を用いた方が遅延時間が短い。この遅延時間の違いは、距離の増大に伴って大きくなり(スーパーリニア的に増大)、接続距離10mmで1桁、接続距離100mmで2桁から3桁の違いになっている。
【0004】
最近は、電子装置のさらなる高速化、高密度化を進めようとして、各電子部品、特に集積回路などにおいて、その内部での金属配線によるノイズの発生、信号の遅延を減少させることが検討されている。
【0005】
【発明が解決しようとする課題】
しかしながら、集積回路は、半導体層及び金属膜で構成されており、そこに有機材料等で構成される光導波路を構成することは作製上困難であり、また、集積回路の設計の自由度を大きく制限することになる。
【0006】
本発明は、集積回路基板上に光導波路を形成すること無く、金属配線によるノイズの発生、及び信号の遅延を抑制した集積回路を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明によれば、半導体基板、集積回路を構成する複数の素子、発光素子、及び、受光素子とを備え、前記複数の素子、前記発光素子、及び、前記受光素子との間を電気的に接続した集積回路基板と、前記集積回路基板上に間隔を置いて前記集積回路基板の上に設置され、前記半導体基板と同じ半導体材料によって形成された光接続基板と、前記光接続基板上に設けられた光導波路網とを有し、前記光導波路網は、前記集積回路基板の前記発光素子及び前記受光素子と対向する位置に設けられた端部と、前記端部から前記集積回路基板とは反対側の表面上に引きだされた光導波路とを備え、前記光導波路は前記光接続基板と実質的に同じ膨張係数を有する材料によって形成されていることを特徴とする光接続集積回路が得られる。
【0009】
【実施例】
以下に図面を参照して本発明の実施例を説明する。図1に本発明の第1の実施例を示す。集積回路基板としての集積回路チップ101には、集積回路を構成する多数の素子(図示せず)と、クロック発振器(または、クロックパルスが入力される入力端子)と、クロック発振器に接続された発光素子(Laserdiode;図示せず)と、複数の受光素子(Photodiode)102とが、通常のIC、LSI作製技術によって単一半導体基板上に作製されている。
【0010】
一方、光接続基板103には、基板103の主面と平行な光導波路で構成される光導波路網104が形成されている。光導波路網104の端部は導波路内を伝播してきた光信号を裏面から出力する、または裏面から入力した光信号を導波路内に導く構造となっている。
【0011】
光導波路網104の端部105は、集積回路チップ101上に設けられた発光素子に対向する位置に設けられ、発光素子からの光信号を導波路網104に導くようになっている。また、その他の端部は、それぞれ受光素子102に対向する位置に設けられ、導波路網104を伝播してきた光信号を裏面から出力する形状となっている。
【0012】
導波路網104の端部は、種々の形態が考えられ、例えば、端部106は基板の表面から裏面にかけて光を導く光導波路107が設けられ、端部108には光を集光するレンズ109が端部108に接して設けられ、端部110には基板の中間に端部110と距離を置いてレンズ111が設けられ、端部112はその形状を凹面鏡としている。
【0013】
光接続基板103としては、例えば、Si基板が用いられる。そして、Si基板の表面にSiO膜等を形成し、導波路用コアとしてTiOやTaOなどを形成し、その表面をSiO膜で覆い、光導波路とする。導波路は、他にポリーマー系材料、例えば、ポリイミドやPMMAなど、基板と膨脹係数がほぼ一致すればそれらを使用することもできる。
【0014】
また、集積回路チップ101には突起113が、光接続基板103には突起受114が設けられており、精度よく導波路網104の端部と受光素子102とが対向するようにしてある。ここで、突起113はその先端のみが突起受114に受け入れられるようにすることで、集積回路チップ101と光接続基板103とを所定の距離だけ離すことができ、集積回路チップ101上に形成された電子素子に光接続基板103が接触して悪影響を与えるようなことはない。
【0015】
本実施例によれば、集積回路チップ101に形成された発光素子から出力されたクロックパルス光信号は端部105に入力され、光導波路網104を伝播して他の全ての端部に送られ、受光素子102に与えられる。こうして、クロック信号をすべての受光素子に実質的に遅延無く供給することができる。
【0016】
また、本実施例によれば、組み立て前に、電気的検査と、光学的検査を独立して行うことができるので、歩留まりが良くなり量産性が向上する。
【0017】
さらに、集積回路基板を他の光導波路基板と組み合わせたり(単一の集積回路基板に対向して複数枚の光導波路基板を配置する)、光導波路基板を他の集積回路基板と組み合わせたり(並置した複数枚の集積回路基板に対向して単一の光導波路基板を配置する)することもできる。
【0018】
なお、本実施例では、多モード光信号でも単一モード光信号でも使用することができる。また、本実施例では、1対多接続の場合について説明したが、1対1接続はいうまでもなく、多対多接続及び多対1接続も可能である。多対多接続等の場合は、1枚の光接続基板上に全ての光導波路を形成するのではなく、複数の光接続基板に、それぞれ、光導波路網を設け、これら複数の光接続基板を重ね合わせて、複数の異なる光信号を用いて光接続することもできる。
【0019】
さらに、上記実施例では単一の集積回路チップと光接続基板とを組み合わせることについて説明したが、複数の集積回路チップを搭載した集積回路基板と光接続基板とを組み合わせても良い。例えば、図2(a)に示すように、ウエハー201に形成された複数の集積回路202の素子間接続を光接続基板203を用いて接続するようにしても良い。また、図2(b)に示すようにボード基板204に搭載された複数の集積回路チップ205の素子間接続を光接続基板206を用いて接続するようにしても良い(複数の集積回路チップ間の接続については、電子情報通信学会英文誌 J. of the Institute of Electronics Information and Communicatioon Enginears, Vol E76−C, No.1, January ’93 に Atsushi Iwata and Izuo Hayashi: ”Optical Interconnection as a New LSI Technology” として掲載予定)。この場合、各集積回路チップの位置合わせは、後述する方法が使用でき、光接続基板の位置合わせは上記の方法、あるいは後述の方法を用いることができる。
【0020】
次に第3図を参照して、本発明の第2の実施例を示す。この実施例では、集積回路チップ301と他の集積回路チップ302との間に、光接続基板303を位置させてある。光接続基板303には光導波路網304が形成されており、集積回路チップ301上に形成された発光素子305と、集積回路チップ302上に形成された受光素子306との間を光接続している。光導波路網304は、例えば、光導波路基板303に形成された溝内に形成される。
【0021】
また、集積回路チップ301上に形成された発光素子307と、集積回路チップ302上に形成された受光素子308のように、互いに対向する位置にあるときは、光接続基板内に光学レンズを形成するだけで光接続を行うこともできる。
【0022】
さらに、集積回路チップ301上に受光素子が、集積回路チップ302上に発光素子が形成されている場合にも同様にして光接続を行うことができる。
【0023】
なお、本実施例も、第1の実施例同様、図2に示したウエハーやボード基板に対して適用できることはいうまでもない。
【0024】
また、上記第1及び第2の実施例では、1枚または2枚の集積回路基板に形成された素子を光接続する場合について説明したがさらに多くの集積回路基板を複数の光接続基板と積層することもできる。
【0025】
さらに、上記実施例では、位置合わせに突起と突起受を使用したが、図4(a)に示すように集積回路チップ401と光導波路チップ402の所定の位置にマーク403及び404を設けておき、光学顕微鏡を用いて位置合わせを行うこともできる。この場合、集積回路チップ401上の多層配線層405と光導波路チップ402とが接触しないように支柱406を集積回路チップ401と光導波路基板402との間に設けておく。また、光導波路基板402が不透明な場合は、図4(b)に示すように導波路基板402のマーク403の中央に穴を開け、その穴にマーク404を合わせればよい。
【0026】
【発明の効果】
本発明によれば、集積回路が形成された基板とは異なる基板上に形成された光導波路と、発光素子及び受光素子とを用いて、集積回路内の一部の金属配線を、光接続に置き換えたことで、集積回路における金属配線によるノイズの発生、及び信号の遅延を抑制することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の斜視図である。
【図2】本発明の第1の実施例の応用例を示し、(a)はウエハーを使用した場合の平面図及び側面図、(b)はボード基板を使用した場合の平面図及び側面図である。
【図3】本発明の第2の実施例の断面図である。
【図4】本発明における集積回路基板と光接続基板との位置合せ方法を説明するための図であって、(a)は透明な基板を、(b)は不透明な基板を用いたときの位置合せ方法を示す。
【図5】電気的接続及び光学的接続における接続距離と遅延時間の関係を示すグラフである。
【符号の説明】
101 集積回路チップ
102 受光素子
103 光接続基板
104 光導波路網
105 レーザーダイオード
106 端部
107 光導波路
108 端部
109 レンズ
110 端部
111 レンズ
112 端部
113 突起
114 突起受
201 ウエハー
202 集積回路
203 光接続基板
204 ボード基板
205 集積回路チップ
206 光接続基板
301 集積回路チップ
302 集積回路チップ
303 光接続基板
304 光導波路網
305 発光素子
306 受光素子
307 発光素子
308 受光素子
401 集積回路チップ
402 光導波路基板
403 マーク
404 マーク
405 多層配線層
406 支柱
[0001]
[Industrial application fields]
The present invention relates to an integrated circuit (IC, LSI, VLSI, etc.), and more particularly to an optical connection integrated circuit in which connections between elements are optical connections.
[0002]
[Prior art]
Generally, in an electronic device such as a computer, a metal conductor such as a metal wire or wire is used for electrical connection between electronic components. However, as the speed and density of electronic devices increase, electrical connection using metal conductors has become a problem. That is, there is a problem of generation of noise due to mutual induction of a plurality of connection lines, or generation of RC delay in which the effects of the time delay for charging the stray capacitance of the metal line and the resistance of the metal line are added.
[0003]
Therefore, recently, an attempt has been made to replace the electrical connection inside the electronic device with an optical connection using an optical element (light emitting element and light receiving element). FIG. 5 (to be published in a paper to be described later) shows the relationship between the connection distance and the signal delay time for electrical connection and optical connection on an integrated circuit (IC, LSI, etc.) chip. As shown in FIG. 5, at a connection distance of 2 mm or more, the delay time is shorter when the optical connection is used than when the electrical connection is used. The difference in the delay time increases as the distance increases (in a super linear manner), and is one digit at a connection distance of 10 mm and two to three digits at a connection distance of 100 mm.
[0004]
Recently, in order to further increase the speed and density of electronic devices, it has been studied to reduce the generation of noise and signal delay due to metal wiring inside each electronic component, especially integrated circuits. Yes.
[0005]
[Problems to be solved by the invention]
However, an integrated circuit is composed of a semiconductor layer and a metal film, and it is difficult to manufacture an optical waveguide made of an organic material or the like, and the degree of freedom in designing the integrated circuit is greatly increased. Will limit.
[0006]
An object of the present invention is to provide an integrated circuit that suppresses generation of noise and signal delay due to metal wiring without forming an optical waveguide on an integrated circuit substrate.
[0007]
[Means for Solving the Problems]
According to the present invention, the semiconductor device includes a plurality of elements, a light emitting element, and a light receiving element constituting an integrated circuit, and electrically between the plurality of elements, the light emitting element, and the light receiving element. A connected integrated circuit board; an optical connection board disposed on the integrated circuit board at a distance from the integrated circuit board; formed of the same semiconductor material as the semiconductor substrate; and provided on the optical connection board An optical waveguide network, and the optical waveguide network includes: an end portion provided at a position facing the light emitting element and the light receiving element of the integrated circuit substrate; and the integrated circuit substrate from the end portion. And an optical waveguide drawn on the opposite surface, wherein the optical waveguide is formed of a material having substantially the same expansion coefficient as that of the optical connection substrate. It is done.
[0009]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. An integrated circuit chip 101 as an integrated circuit substrate has a number of elements (not shown) constituting an integrated circuit, a clock oscillator (or an input terminal to which a clock pulse is input), and light emission connected to the clock oscillator. An element (Laserdiode; not shown) and a plurality of light receiving elements (Photodiode) 102 are fabricated on a single semiconductor substrate by a normal IC or LSI fabrication technique.
[0010]
On the other hand, the optical connection substrate 103 is formed with an optical waveguide network 104 composed of optical waveguides parallel to the main surface of the substrate 103. The end portion of the optical waveguide network 104 has a structure for outputting an optical signal propagating through the waveguide from the back surface or guiding an optical signal input from the back surface into the waveguide.
[0011]
An end portion 105 of the optical waveguide network 104 is provided at a position facing a light emitting element provided on the integrated circuit chip 101, and guides an optical signal from the light emitting element to the waveguide network 104. Further, the other end portions are provided at positions facing the light receiving elements 102, respectively, and have a shape for outputting the optical signal propagated through the waveguide network 104 from the back surface.
[0012]
The end portion of the waveguide network 104 may have various forms. For example, the end portion 106 is provided with an optical waveguide 107 that guides light from the front surface to the back surface of the substrate, and the end portion 108 has a lens 109 that collects light. Is provided in contact with the end portion 108, the end portion 110 is provided with a lens 111 at a distance from the end portion 110 in the middle of the substrate, and the end portion 112 has a concave mirror shape.
[0013]
As the optical connection substrate 103, for example, a Si substrate is used. Then, an SiO 2 film or the like is formed on the surface of the Si substrate, TiO 2 or TaO 5 or the like is formed as a waveguide core, and the surface is covered with the SiO 2 film to form an optical waveguide. As the waveguide, other polymer-based materials such as polyimide and PMMA can be used as long as the expansion coefficient is substantially the same as that of the substrate.
[0014]
Further, the integrated circuit chip 101 is provided with a protrusion 113, and the optical connection substrate 103 is provided with a protrusion receiver 114 so that the end of the waveguide network 104 and the light receiving element 102 face each other with high accuracy. Here, the protrusion 113 is formed on the integrated circuit chip 101 by allowing the integrated circuit chip 101 and the optical connection substrate 103 to be separated by a predetermined distance by allowing only the tip of the protrusion 113 to be received by the protrusion receiver 114. The optical connection substrate 103 does not adversely affect the electronic element.
[0015]
According to the present embodiment, the clock pulse optical signal output from the light emitting element formed in the integrated circuit chip 101 is input to the end portion 105, propagates through the optical waveguide network 104, and is sent to all other end portions. To the light receiving element 102. Thus, the clock signal can be supplied to all the light receiving elements without substantial delay.
[0016]
Further, according to this embodiment, since electrical inspection and optical inspection can be performed independently before assembly, the yield is improved and the mass productivity is improved.
[0017]
Furthermore, the integrated circuit board can be combined with another optical waveguide board (a plurality of optical waveguide boards are arranged opposite to a single integrated circuit board), or the optical waveguide board can be combined with another integrated circuit board (parallel arrangement). A single optical waveguide substrate can be disposed opposite to the plurality of integrated circuit substrates.
[0018]
In this embodiment, either a multimode optical signal or a single mode optical signal can be used. In this embodiment, the case of one-to-many connection has been described. Needless to say, one-to-one connection, but many-to-many connection and many-to-one connection are also possible. In the case of many-to-many connection, etc., instead of forming all optical waveguides on one optical connection substrate, an optical waveguide network is provided on each of the plurality of optical connection substrates, and the plurality of optical connection substrates are connected to each other. It is also possible to carry out optical connection using a plurality of different optical signals by superimposing them.
[0019]
Furthermore, in the above embodiment, the combination of a single integrated circuit chip and an optical connection substrate has been described. However, an integrated circuit substrate on which a plurality of integrated circuit chips are mounted and an optical connection substrate may be combined. For example, as shown in FIG. 2A, inter-element connections of a plurality of integrated circuits 202 formed on the wafer 201 may be connected using an optical connection substrate 203. Further, as shown in FIG. 2B, the inter-element connections of the plurality of integrated circuit chips 205 mounted on the board substrate 204 may be connected using the optical connection substrate 206 (between a plurality of integrated circuit chips). For the connection of the Institute of Electronics, Information and Communication Engineers, J. of the Institute of Electronics Information and Communicion of Engineers, Vol. Will be posted as ” In this case, the alignment of each integrated circuit chip can use the method described later, and the alignment of the optical connection substrate can use the above method or the method described below.
[0020]
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, an optical connection substrate 303 is positioned between the integrated circuit chip 301 and another integrated circuit chip 302. An optical waveguide network 304 is formed on the optical connection substrate 303, and an optical connection is made between the light emitting element 305 formed on the integrated circuit chip 301 and the light receiving element 306 formed on the integrated circuit chip 302. Yes. For example, the optical waveguide network 304 is formed in a groove formed in the optical waveguide substrate 303.
[0021]
In addition, when the light emitting element 307 formed on the integrated circuit chip 301 and the light receiving element 308 formed on the integrated circuit chip 302 are at positions facing each other, an optical lens is formed in the optical connection substrate. You can also make an optical connection just by doing.
[0022]
Further, when the light receiving element is formed on the integrated circuit chip 301 and the light emitting element is formed on the integrated circuit chip 302, the optical connection can be similarly performed.
[0023]
Needless to say, this embodiment can also be applied to the wafer or board substrate shown in FIG. 2, as in the first embodiment.
[0024]
In the first and second embodiments, the case where the elements formed on one or two integrated circuit boards are optically connected has been described. However, a larger number of integrated circuit boards are stacked with a plurality of optical connection boards. You can also
[0025]
Further, in the above embodiment, the protrusion and the protrusion support are used for alignment, but marks 403 and 404 are provided at predetermined positions of the integrated circuit chip 401 and the optical waveguide chip 402 as shown in FIG. Alignment can also be performed using an optical microscope. In this case, a support column 406 is provided between the integrated circuit chip 401 and the optical waveguide substrate 402 so that the multilayer wiring layer 405 on the integrated circuit chip 401 and the optical waveguide chip 402 do not contact each other. When the optical waveguide substrate 402 is opaque, a hole is formed in the center of the mark 403 of the waveguide substrate 402 as shown in FIG. 4B, and the mark 404 is aligned with the hole.
[0026]
【The invention's effect】
According to the present invention, by using an optical waveguide formed on a substrate different from the substrate on which the integrated circuit is formed, a light emitting element, and a light receiving element, a part of the metal wiring in the integrated circuit is optically connected. The replacement can suppress the generation of noise and signal delay due to metal wiring in the integrated circuit.
[Brief description of the drawings]
FIG. 1 is a perspective view of a first embodiment of the present invention.
2A and 2B show an application example of the first embodiment of the present invention, in which FIG. 2A is a plan view and a side view when a wafer is used, and FIG. 2B is a plan view and a side view when a board substrate is used. It is.
FIG. 3 is a cross-sectional view of a second embodiment of the present invention.
FIGS. 4A and 4B are diagrams for explaining a method of aligning an integrated circuit substrate and an optical connection substrate in the present invention, where FIG. 4A is a transparent substrate, and FIG. 4B is an opaque substrate. The alignment method is shown.
FIG. 5 is a graph showing the relationship between connection distance and delay time in electrical connection and optical connection.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 Integrated circuit chip 102 Light receiving element 103 Optical connection board 104 Optical waveguide network 105 Laser diode 106 End 107 Optical waveguide 108 End 109 Lens 110 End 111 Lens 112 End 113 Protrusion 114 Protrusion receiver 201 Wafer 202 Integrated circuit 203 Optical connection Substrate 204 Board substrate 205 Integrated circuit chip 206 Optical connection substrate 301 Integrated circuit chip 302 Integrated circuit chip 303 Optical connection substrate 304 Optical waveguide network 305 Light emitting element 306 Light receiving element 307 Light emitting element 308 Light receiving element 401 Integrated circuit chip 402 Optical waveguide substrate 403 Mark 404 mark 405 multilayer wiring layer 406 support

Claims (1)

半導体基板、集積回路を構成する複数の素子、発光素子、及び、受光素子とを備え、前記複数の素子、前記発光素子、及び、前記受光素子との間を電気的に接続した集積回路基板と、前記集積回路基板上に間隔を置いて前記集積回路基板の上に設置され、前記半導体基板と同じ半導体材料によって形成された光接続基板と、前記光接続基板上に設けられた光導波路網とを有し、前記光導波路網は、前記集積回路基板の前記発光素子及び前記受光素子と対向する位置に設けられた端部と、前記端部から前記集積回路基板とは反対側の表面上に引きだされた光導波路とを備え、前記光導波路は前記光接続基板と実質的に同じ膨張係数を有する材料によって形成されていることを特徴とする光接続集積回路。 An integrated circuit board comprising a semiconductor substrate, a plurality of elements constituting the integrated circuit, a light emitting element, and a light receiving element, and electrically connecting the plurality of elements, the light emitting element, and the light receiving element; An optical connection substrate disposed on the integrated circuit substrate at an interval on the integrated circuit substrate and formed of the same semiconductor material as the semiconductor substrate; and an optical waveguide network provided on the optical connection substrate The optical waveguide network has an end portion provided at a position facing the light emitting element and the light receiving element of the integrated circuit substrate, and a surface on the opposite side of the integrated circuit substrate from the end portion. An optical connection integrated circuit comprising: an optical waveguide drawn out, wherein the optical waveguide is formed of a material having substantially the same expansion coefficient as the optical connection substrate .
JP34378592A 1992-05-25 1992-12-24 Optical connection integrated circuit Expired - Fee Related JP3629713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34378592A JP3629713B2 (en) 1992-05-25 1992-12-24 Optical connection integrated circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-132562 1992-05-25
JP13256292 1992-05-25
JP34378592A JP3629713B2 (en) 1992-05-25 1992-12-24 Optical connection integrated circuit

Publications (2)

Publication Number Publication Date
JPH0645584A JPH0645584A (en) 1994-02-18
JP3629713B2 true JP3629713B2 (en) 2005-03-16

Family

ID=26467105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34378592A Expired - Fee Related JP3629713B2 (en) 1992-05-25 1992-12-24 Optical connection integrated circuit

Country Status (1)

Country Link
JP (1) JP3629713B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042150A (en) 1999-07-30 2001-02-16 Canon Inc Optical waveguide, its manufacture and optical interconnecting device using it
JP2006171642A (en) * 2004-12-20 2006-06-29 Sony Corp Optical waveguide sheet, optoelectronic apparatus and their manufacturing method
JP2007017652A (en) * 2005-07-07 2007-01-25 Sony Corp Optical waveguide structure and its manufacturing method, and method of manufacturing optical waveguide
US8867868B2 (en) 2006-10-03 2014-10-21 Kabushiki Kaisha Toshiba Semiconductor integrated circuit
JP5325794B2 (en) * 2007-11-19 2013-10-23 アルプス電気株式会社 Manufacturing method of optical waveguide
JP2011017787A (en) * 2009-07-07 2011-01-27 Shinko Electric Ind Co Ltd Optical waveguide layer, opto-electro mixed circuit board and method of fabricating opto-electro circuit board
JP5163608B2 (en) * 2009-07-22 2013-03-13 三菱電機株式会社 Optical coupling structure and method of manufacturing electrical wiring board
JP5144617B2 (en) * 2009-09-24 2013-02-13 日本電信電話株式会社 Optical circuit assembly
JP2010266899A (en) * 2010-08-20 2010-11-25 Sony Corp Optical waveguide structure and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0645584A (en) 1994-02-18

Similar Documents

Publication Publication Date Title
JP3345143B2 (en) Manufacturing method of optical waveguide
US20100215313A1 (en) Optical interconnection assembled circuit
JP5439080B2 (en) Optical I / O array module
US7044659B2 (en) Optical communications module and method for producing the module
US20060177173A1 (en) Vertical stacking of multiple integrated circuits including SOI-based optical components
JPS60169167A (en) Optical communication system
JP2002223023A (en) Light sending/receiving module
KR20060048866A (en) Photoelectric device and production method of the same
JP2004146603A (en) Compound chip module and its manufacturing process, compound chip unit and its manufacturing process
JPH0567770A (en) Photoelectronic integrated circuit device
JP2007148087A (en) Optoelectrical integrated wiring board and optoelectrical integrated wiring system
JP3629713B2 (en) Optical connection integrated circuit
JP2006258835A (en) Optical waveguide module, photoelectric converter and optical waveguide member
JP2002006161A (en) Optical wiring substrate and optical wiring module and their manufacturing method
JP2003057468A (en) Optical element, optical waveguide device, their manufacturing method, and photoelectric hybrid substrate using them
US6736552B2 (en) Optically interconnecting integrated circuit chips
JP2003227951A (en) Optical waveguide device, method of manufacturing the same, and optoelectric coexisting substrate using the same
JP4164757B2 (en) Photoelectric composite device, socket used in this device, and mounting structure of photoelectric composite device
JP2004022666A (en) Semiconductor device
JPS63291014A (en) Opto-electronic integrated circuit board device
JP2002043611A (en) Optical transmitting/receiving system
JP2002258080A (en) Optical and electrical composite circuit
JP4590722B2 (en) Substrate manufacturing method for mounting optical components
JP3389226B2 (en) Optical sub-module
JP4646479B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees