WO2003092968A1 - Dispositif de commande d'attitude d'un robot mobile - Google Patents

Dispositif de commande d'attitude d'un robot mobile Download PDF

Info

Publication number
WO2003092968A1
WO2003092968A1 PCT/JP2003/004990 JP0304990W WO03092968A1 WO 2003092968 A1 WO2003092968 A1 WO 2003092968A1 JP 0304990 W JP0304990 W JP 0304990W WO 03092968 A1 WO03092968 A1 WO 03092968A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
target
posture
moment
force
Prior art date
Application number
PCT/JP2003/004990
Other languages
English (en)
French (fr)
Inventor
Toru Takenaka
Tadaaki Hasegawa
Takashi Matsumoto
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to KR10-2004-7016725A priority Critical patent/KR20040111534A/ko
Priority to US10/512,819 priority patent/US7112938B2/en
Priority to AU2003235263A priority patent/AU2003235263A1/en
Priority to DE60328285T priority patent/DE60328285D1/de
Priority to EP03723148A priority patent/EP1510302B1/en
Publication of WO2003092968A1 publication Critical patent/WO2003092968A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/01Mobile robot

Definitions

  • the present invention relates to a posture control device for a moving port pot, and more particularly to a two-legged mobile robot equipped with an arm or a posture control device for a wheel-type moving port pot, in which a robot reacts to a target object via an arm.
  • the present invention relates to a posture control device configured to stabilize a posture when performing a work that receives a posture.
  • the applicant actively generates a moment for restoring the posture of the robot as a total floor reaction moment when the posture of the robot is inclined regardless of whether the robot receives the reaction force from the object.
  • a technology for causing the total floor reaction force to be exceeded has been proposed (Japanese Patent Application Laid-Open No. H10-2777969), there is a limit to the total floor reaction force moment. When you try to cause a part of the foot from the floor As a result, the robot could lose its dynamic balance and, in the worst case, fall.
  • Japanese Patent No. 32696852 Japanese Patent No. 32696852.
  • Japanese Patent No. 32696852 Japanese Patent No. 32696852.
  • a first object of the present invention is to solve the above-mentioned disadvantages, and when the transfer port is performing an operation to receive a reaction from an object, the posture becomes unstable, Alternatively, it is an object of the present invention to provide a posture control device for a mobile robot that maintains a dynamic balance and maintains a stable posture even when an unexpected reaction force is received from an object.
  • a second object of the present invention is to provide a posture control device for a mobile robot that maintains a dynamic posture and maintains a stable posture without manipulating the floor reaction force to be applied or reducing the amount of operation. Aim.
  • the present invention provides at least one member capable of acting on at least a base, a moving mechanism, and an object, as described in claim 1 described below.
  • Robot posture control system consisting of arm links
  • a second external force is applied to the arm link in a direction orthogonal to the predetermined direction according to a first external force which is a component of the unexpected external force in a predetermined direction.
  • the arm link is driven so as to operate so that the posture of the robot is stabilized.
  • the direction orthogonal to the predetermined direction according to the first external force which is a component of the unexpected external force in a certain direction when an unexpected external force acts on the posture control device of the mobile robot, the direction orthogonal to the predetermined direction according to the first external force which is a component of the unexpected external force in a certain direction.
  • the arm link is driven so that the second external force acts on the arm link, and the robot is controlled so as to stabilize the posture of the robot, so that the mobile robot receives a reaction force from the object.
  • the dynamic balance can be maintained and the stable posture can be maintained.
  • the present invention provides a mobile robot comprising at least a base, a moving mechanism, and at least one arm link capable of applying a force to an object, as described in claim 2 described later.
  • a target motion including at least a target arm link position / posture of the robot and a target object reaction force that is a target value of a target reaction force acting on the arm link from the target object is generated.
  • a target motion generating means an actual object reaction force detecting means for detecting or estimating an actual object reaction force which is an actual value of the object reaction force, wherein at least based on the detected or estimated actual object reaction force, Attitude stabilizing control means for correcting the target motion so that the posture of the robot is stabilized, and driving the arm link based on at least the corrected target motion.
  • the arm drive device was provided.
  • the target including at least the target arm link position / posture of the robot and the target object reaction force which is the target value of the object reaction force acting on the arm link from the object.
  • a motion is generated, the actual object reaction force, which is the actual value of the object reaction force, is detected or estimated, and the posture of the robot is stabilized based on at least the detected or estimated actual object reaction force. Since the target motion is corrected and an arm driving device that drives the arm link based on the corrected target motion is provided, when the mobile robot is performing an operation that receives a reaction force from the object, Even if the posture becomes unstable or receives an unexpected reaction force from the object, it is possible to maintain a dynamic balance and maintain a stable posture. Furthermore, maintaining dynamic balance without affecting the movement of the object To maintain a stable posture.
  • the posture stabilization control means includes an object reaction force indicating at least a difference between the actual object reaction force and the target object reaction force.
  • the target operation is modified based on the deviation so that the posture of the robot is stabilized.
  • the target operation is modified so that the robot's posture is stabilized based on at least the object reaction force deviation indicating the difference between the actual object reaction force and the target object reaction force.
  • the posture stability control means controls all or a part of the overturning force generated by the first component of the object reaction force deviation.
  • the target operation is modified so as to be canceled by a second component obtained from the first component. In this way, the target operation is modified so that all or part of the overturning force generated by the first component of the object reaction force deviation is canceled by the second component obtained from the first component. Therefore, the above-described effects can be further improved.
  • the present invention provides a mobile robot comprising at least a base, a moving mechanism, and at least one arm link capable of acting on a target object, as described in claim 5 described later.
  • a target motion including at least a target arm link position / posture of the robot and a target object reaction force that is a target value of a target reaction force acting on the arm link from the target object is generated.
  • an arm drive unit for driving the arm link based on the arm link.
  • the target operation including at least the target arm link position and posture of the robot and the target object reaction force that is the target value of the object reaction force acting on the arm link from the object.
  • the robot is configured to detect the posture inclination deviation of the robot, correct the target operation so that the detected posture inclination deviation approaches zero, and drive the arm link based on the corrected target operation.
  • the posture may become unstable, or even if the mobile robot receives an unexpected reaction force from the target object, And a stable posture can be maintained.
  • a stable posture can be maintained by maintaining a dynamic balance without affecting the movement of the object.
  • the term “mobile robot” is used to mean a moving port pot that receives a reaction force of an object in addition to the arm link.
  • the “arm link” even if it is a leg link, if it acts on the work target, it is regarded as an arm link. For example, in a robot with six insect-type leg links, if an object is lifted using the previous two leg links, the leg link is regarded as an arm link.
  • position / posture may include both “position” and “posture”, or is used in a sense that any one of them may be used. In other words, “position and orientation” does not necessarily include both “position” and “posture”.
  • FIG. 1 is a front view of a leg-type moving port pot to which a posture control device for a mobile robot according to one embodiment of the present invention is applied.
  • FIG. 2 is a side view of the robot shown in FIG.
  • FIG. 3 is an explanatory diagram showing the robot shown in FIG. 1 as a skeleton.
  • FIG. 4 is a block diagram showing the configuration of the electronic control unit (ECU) shown in FIG. 3 in detail.
  • ECU electronice control unit
  • FIG. 5 is a block diagram showing a configuration of a posture control device for a mobile robot according to one embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing a supporting leg coordinate system in a gait generated by a target work pattern generator of the device shown in FIG.
  • FIG. 7 is an explanatory diagram showing a supporting leg coordinate system in a gait generated by the target work pattern generator of the device shown in FIG. 5, as in FIG.
  • FIG. 8 is a block diagram showing a configuration of a composite compliance control device applied to the leg main control device in the device shown in FIG.
  • FIG. 9 is an explanatory diagram of the principle premised on the device shown in FIG.
  • FIG. 10 is an explanatory diagram of the principle assumed by the device shown in FIG. 5, as in FIG. is there.
  • FIG. 11 is an explanatory diagram of the principle premised on the apparatus shown in FIG. 5, as in FIG.
  • FIG. 12 is an explanatory diagram of the principle assumed by the device shown in FIG. 5, as in FIG. 9.
  • FIG. 13 is an explanatory diagram of the principle premised on the apparatus shown in FIG. 5, as in FIG.
  • FIG. 14 is a block diagram showing a configuration of a posture stabilization main control device of the devices shown in FIG.
  • FIG. 15 is a block diagram showing a configuration of a posture stabilizing moment calculator in the posture stabilization main control device shown in FIG.
  • FIG. 16 is a block diagram showing a configuration of an object reaction force deviation moment separator in the attitude stabilization main control device shown in FIG.
  • FIG. 17 is a block diagram showing a configuration of an object reaction force balance control distributor in the attitude stabilizing main control device shown in FIG.
  • FIG. 18 is a block diagram similar to FIG. 17 showing the configuration of the object reaction force balance control distributor in the attitude stabilization main controller shown in FIG.
  • FIG. 19 is a block diagram showing a configuration of an object reaction force balance control device of the attitude stabilization main control device shown in FIG.
  • FIG. 20 is a block diagram showing a configuration of a compensation moment distributor in the attitude stabilizing main control device shown in FIG.
  • FIG. 21 is a block diagram showing a configuration of a corrected target object reaction force calculator in the attitude stabilization main control device shown in FIG.
  • FIG. 22 is a block diagram showing a control system in a simplified manner while deforming the control system by paying attention to the reaction force of the object in order to explain the operation and effect of the device shown in FIG.
  • FIG. 23 is a block diagram showing the control system in a simplified manner while deforming the control system by focusing on the reaction force of the object in order to explain the operation and effect of the device shown in FIG. is there.
  • FIG. 24 is an explanatory diagram for explaining the operation of the attitude stabilization main control device shown in FIG.
  • FIG. 25 is a block diagram showing the configuration of the attitude control device of the mobile robot according to the second embodiment of the present invention.
  • FIG. 26 is an explanatory diagram showing a configuration of a mobile robot posture control device according to a third embodiment of the present invention.
  • FIG. 1 is a front view of a leg-type moving port pot which is a target of a posture control device for a mobile robot according to this embodiment
  • FIG. 2 is a side view thereof.
  • a humanoid legged mobile robot having two leg links and two arm links is taken as an example.
  • a legged mobile robot (hereinafter referred to as a "robot") 1 has a plurality of (books), more specifically, two (books) leg links (or legs) 2.
  • an upper body (base) 3 is provided above it.
  • a head 4 is formed further above the upper body 3, and two (book) arm links (or arms) 5 are connected to both sides of the upper body 3.
  • a storage section 6 is provided at the back of the upper body 3, and an electronic control unit (described later) and the like are accommodated therein.
  • the robot 1 shown in FIGS. 1 and 2 is covered with a cover for protecting the internal structure.
  • FIG. 3 is an explanatory diagram showing the robot 1 by a skeleton.
  • the internal structure of the robot 1 will be described with reference to the figure.
  • the robot 1 is powered by one electric motor to each of the left and right leg links 2 and the arm links 5. It has six joints.
  • the robot 1 has an electric motor 1 OR, 10 L (R on the right side, which drives a joint that rotates the leg link 2 on the waist (crotch part) around the mouth and a straight axis (Z axis or vertical axis).
  • the left side is L.
  • the electric motors 12 R, 12 L that drive the joints that move the leg link 2 in the pitch (progression) direction (around the Y axis)
  • a knee that rotates the lower part of the leg link 2 on the knee in the pitch direction (around the Y axis).
  • the joint is indicated by the rotation axis of the electric motor that drives it (or a transmission element such as a pulley that is connected to the electric motor and transmits the power).
  • the legs (foot) 22 R and 22 L are attached to the end of the leg link 2.
  • the electric motors 1 OR (L), 12 R (L), and 14 R (L) are arranged at the hip joint (hip joint) of the leg link 2 so that their rotation axes are orthogonal to each other.
  • electric motors 18R (L) and 2OR (L) are arranged so that their rotation axes are orthogonal to each other.
  • the hip and knee joints are connected by a thigh link 24R (L), and the knee joint and ankle joint are connected by a lower Ji retraction link 26R (L).
  • the leg link 2 is connected to the upper body 3 via the hip joint, but the upper body 3 is simply shown as the upper body link 28 in FIG. As described above, the arm link 5 is connected to the upper body 3.
  • the arm link 5 is configured similarly to the leg link 2. That is, the robot 1 is provided with an electric motor 3 OR, 30 L for driving a joint for rotating the arm link 5 in the pitch direction and an electric motor 3 2 R, 32 L for driving a joint for rotating the arm link 5 in the roll direction. And an electric motor 34 R, 34 L for driving a joint for rotating the free end side thereof, and an electric motor 36 R, 36 L for driving a joint for rotating a portion after the elbow, Furthermore, electric motors 38R and 38L for driving the wrist joint that rotates it are provided at the distal end side. At the end of the wrist, a hand (end emaschinea) 4 OR, 40 L is attached.
  • the electric motors 3OR (L), 32R (L), and 34R (L) are arranged at the shoulder joint of the arm link 5 such that their rotation axes are orthogonal to each other.
  • the shoulder joint and elbow joint are upper arm link 42R (L), and the elbow joint and wrist joint are lower arm link 44R (L). ).
  • the head 4 is connected to the upper body 3 via a neck joint 46 around a vertical axis and a head swinging mechanism 48 that rotates the head 4 around an axis perpendicular to the neck joint 46.
  • a visual sensor 50 composed of a CCD camera, which outputs a signal indicating a captured image, is arranged inside the head 4 and a voice input / output device 52 composed of a receiver and a microphone. Is arranged.
  • the leg link 2 is provided with six joints for the left and right feet, giving a total of 12 degrees of freedom. By driving the six joints at appropriate angles (joint displacement), A desired movement can be given to the partial link 2, and the robot 1 can walk the three-dimensional space arbitrarily.
  • the arm link 5 also has five joints for the left and right arms and is given a total of 10 degrees of freedom. The desired work can be performed by driving the five joints at appropriate angles (joint displacement). Can be done.
  • the head 4 is provided with a joint or a swing mechanism having two degrees of freedom, and by driving these at an appropriate angle, the head 4 can be directed in a desired direction.
  • Each of the electric motors such as OR (L) is provided with a rotary encoder (not shown), and a signal indicating at least one of an angle, an angular velocity, and an angular acceleration of a corresponding joint through rotation of a rotating shaft of the electric motor. Is output.
  • a well-known 6-axis force sensor (hereinafter referred to as “force sensor”) 56 is attached to the foot 2 2 R (L).
  • force sensor the floor reaction force acting on the robot 1 from the ground contact surface It outputs signals indicating the three-directional components FX, Fy, Fz and the three-directional components Mx, My, Mz of the moment.
  • a similar type of force sensor (6-axis force sensor) 58 is attached between the wrist joint and the hand 4 OR (L), and an external force other than the floor reaction force acting on the mouth pot 1, specifically, the hand 4 Outputs signals indicating the three-directional components Fx, Fy, and Fz of the external force (object reaction force) acting on the object at OR (L) and the three-directional components Mx, My, and Mz of the moment.
  • an inclination sensor 60 is installed on the upper body 3, and at least one of the inclination (inclination angle) of the upper body 3 with respect to the vertical axis and its angular velocity, that is, the inclination (posture) of the upper body 3 of the robot 1, etc. A signal indicating a state quantity is output.
  • the output groups of these force sensors 56 are stored in the storage unit 6 on the back side of the upper body 3 of the robot 1. (Shown in Fig. 2), an electronic control unit consisting of a microcomputer. This is sent to the ECU 62 hereinafter (only the right side of the robot 1 is shown for convenience of illustration).
  • FIG. 4 is a block diagram showing details of the ECU 62, which is composed of a microcomputer. There, the outputs of the tilt sensor 60 and the like are converted to digital values by the AZD converter 70, and the output is sent to the RAM 74 via the path 72. The output of the encoder arranged adjacent to the electric motor in each actuator is input to the RAM 74 via the counter 76.
  • the ECU 62 is provided with an arithmetic unit 80 including a CPU.
  • the arithmetic unit 80 generates a joint angular displacement command (actuator displacement command) so that the robot can maintain a stable posture based on the gait generated by the arithmetic unit 80. ) Is calculated and sent to the RAM74.
  • Reference numeral 84 indicates a ROM.
  • the arithmetic unit 80 reads the command and the detected measured value from the RAM 74, calculates a control value (operating amount) necessary for driving each joint, and is provided in the DZA converter 86 and each joint. Drives each joint via actuator drive unit (amplifier) 88, outputs to electric motors 1 OR (L), 12R (L), etc. of leg actuator 90 and arm actuator 92 with displacement detector (encoder) .
  • FIG. 5 is a block diagram functionally showing the configuration and operation of the posture control device (mainly corresponding to the arithmetic device 80) of the legged mobile robot according to this embodiment.
  • This device is a device that controls the movement of the legs and arms in an integrated manner, calculates the amount of operation and outputs an actuator displacement command to each actuator drive unit 88 as described later, and the leg actuator 90 and the arm actuator 90 Operate 92. As shown in the figure, this device includes a target work pattern generator 100, a leg main control device 102, an arm main control device 104, and a posture stabilization main control device 106.
  • the target work pattern generator 100 generates a target work pattern including a gait that satisfies the dynamic equilibrium condition of the robot 1 under certain assumed conditions.
  • the target work pattern is represented by the time-varying patterns of multiple variables. This variable is It is composed of variables that express motion and variables that express the reaction force received from the environment.
  • the variables expressing the motion are a set of variables from which the posture at each moment can be uniquely determined. Specifically, it is composed of a target foot position / posture, a target body position / posture, and a target hand position / posture.
  • the variables expressing the reaction force received from the environment consist of the target total floor reaction force center point, the target reaction force, and the target object reaction force described later.
  • the coordinates of the support leg coordinate system are the origin of the vertical projection point from the support leg ankle (the intersection of the rotation axes of the electric motors 18 and 2 OR (L) driving the ankle) to the foot 22 R (L).
  • the coordinate system is fixed on the floor where the support legs are in contact with the ground. This is a coordinate system in which the axis direction and the vertical upward direction are the Z-axis direction.
  • the “object reaction force” means an external force excluding each floor floor reaction force among the external forces that the robot 1 receives from the environment.
  • the hand 4OR (L) means the reaction force received by the work object (for example, the handle of the door).
  • the target value is called “target object reaction force”.
  • the target object reaction force output by the target work pattern generator 100 is represented by a force and a moment acting around a target total floor reaction force center point described later. By the way, what is important for posture stabilization is the moment component.
  • the target total floor reaction force and the target total floor reaction force center point the resultant force of the target floor reaction force that each foot should receive from the floor during work is called “broadly defined target total floor reaction force”.
  • the desired total floor reaction force is expressed by the point of action and the force and moment at that point.
  • the desired total floor reaction force center point (position) is expressed by the force and moment with the target total floor reaction force as the point of action, the moment component around the X axis and the moment component around the Y axis become zero (0). Is a point on the floor.
  • the target total floor reaction force in a narrow sense means the force and moment when the target total floor reaction force in a broad sense is expressed in terms of force and moment with the target point of the total floor reaction force as the point of action.
  • the target total floor reaction force output by the target work pattern generator is the target total floor reaction force in a narrow sense.
  • the target total floor reaction force refers to the target total floor reaction force in a narrow sense.
  • the target total floor reaction force center point is usually located on the floor.
  • the fact that the target work pattern satisfies the dynamic equilibrium condition means that the above-mentioned inertial force, gravity, object reaction force resulting from the target work pattern, and the target total floor reaction force cancel each other to zero. That is. Therefore, in order to satisfy the dynamic equilibrium condition, the target total floor reaction force center point (position) and the target ZMP (position) must match.
  • the target work pattern generator 100 generates a target work pattern including a gait that satisfies the dynamic equilibrium condition when the global stability control described later is not working.
  • the target total floor reaction force center point (position) generated by the target work pattern generator 100 matches the target ZMP (position).
  • the desired foot position / posture, the desired body position / posture, and the desired hand position / posture represent the position and posture of each part expressed in the aforementioned support leg coordinate system. More specifically, the position of the body 3 or its speed means a representative point such as the position of the center of gravity of the body 3 or its (displacement) speed. Furthermore, the posture of the upper body 3 or the foot 22R (L) means the direction in the X, Y, ⁇ space.
  • leg main controller 102 will be described.
  • the functions of the leg main controller 102 can be summarized as follows: posture follow-up control that operates a leg actuator (such as an electric motor such as 10R (L)) to follow the target posture; It is a device that simultaneously performs floor reaction force control that follows the resultant force of moment (described later).
  • posture follow-up control that operates a leg actuator (such as an electric motor such as 10R (L)) to follow the target posture
  • It is a device that simultaneously performs floor reaction force control that follows the resultant force of moment (described later).
  • the total force of the desired floor reaction force and the compensating total floor reaction force moment and the target posture are completely satisfied at the same time. Since it is impossible to do so, appropriate adjustments are made and control is made to satisfy both in the long run.
  • the leg main controller 102 includes a corrected target body position / posture (described later), a target foot position / posture, a target total floor reaction force center point (position), and a target total floor acting on the center point. Enter the reaction force and compensation total floor reaction force moment, and the moment component of the actual total floor reaction force acting on the target total floor reaction force center point (position) is compensated as the target total floor reaction force moment (usually zero). Correct the desired foot position and posture so that it matches the sum of the total floor reaction force moments.
  • corrected target foot position / posture is referred to as “corrected target foot position / posture”.
  • the leg main controller 102 outputs an actuator displacement command so that the actual joint displacement follows the target leg joint displacement determined from the corrected target body position / posture and the corrected target foot position / posture. To control the leg actuator 90.
  • the device for performing the combined compliance control includes a force sensor 56 provided on the foot 22R (L), an actuator drive device 88 and an actuator 90, in addition to the leg main control device. You.
  • FIG. 8 shows a block diagram of the composite compliance control device, the detailed description of which is omitted in the above-mentioned Japanese Patent Application Laid-Open No. 10-277779.
  • the composite compliance control device shown in FIG. 8 is different from the composite compliance control device described in Japanese Patent Application Laid-Open No. H10-2777969 in that the posture stabilization control of the body tilt feedback system is performed. (Calculation of the total floor reaction force moment) has been omitted.
  • a body tilt feed pack system may be added to suppress the fluctuation of the floor reaction force due to the body tilt deviation.
  • the technique described in the above-mentioned Japanese Patent No. 3268952 (hereinafter referred to as “global stabilization control”) is added to the composite compliance control.
  • the general stability dani control corrects the position of the upper body and the stride.
  • the above-mentioned correction target body position / posture is further corrected.
  • the target ZMP in the target work pattern is controlled to a point deliberately shifted from the target total floor reaction force center point.
  • the correction target body position / posture is further corrected by adding the global stabilization control, and as a result, the final target body position / posture obtained as a result is shown in FIG. Target body position and posture ".
  • the addition of global stabilization control is not essential in the present invention. That is, the global stabilization control need not be added, and in such a case, it is sufficient to treat the corrected target body position / posture as the final corrected target body position / posture.
  • the final corrected target foot position / posture corrected by the leg main controller 102 is input to the posture stabilization main controller 106. If the change in the position of the center of gravity of the robot due to the correction of the target foot position / posture can be ignored in the main control unit 106, the final corrected target foot position / posture is reduced to a low posture. It is not necessary to make the input to the main control device 106.
  • the arm actuator (electric motor such as 3OR (L)) 92 operates the posture control to follow the target posture and the corrected target object reaction force (described later).
  • the “posture” here indicates the set of displacements of all the joints of the arm link 5). Since it is impossible to completely satisfy the target attitude and the corrected target object reaction force at the same time, use an appropriate method, for example, a conventional compliance control of a manipulator, so-called virtual compliance control ( Handbook of Mechanical Engineering, Engineering, C4-100 page).
  • the arm main control system also includes a car sensor 58 provided in the above-described hand 40R (L) and an actuator driving device 8. 8 and the arm actuator 92.
  • the arm main controller 104 is configured to output the final target body position / posture (or the corrected target body position Postures), enter the target hand position and orientation and the corrected desired object reaction force, the force sensor 5
  • the target hand position / posture is corrected according to the difference between the actual target reaction force detected by step 8 and the corrected target target reaction force.
  • the corrected target hand position / posture is called “final corrected target hand position / posture”.
  • the arm actuator 92 is controlled so that the actual joint displacement follows the target arm joint displacement determined from the final corrected target body position / posture (or the corrected target body position / posture) and the final corrected target hand position / posture. .
  • the posture stabilization main control device 106 performs control in consideration of the dynamic flatness condition in order to obtain a dynamic balance or a posture balance. Therefore, first, before describing the outline of the device, the dynamic equilibrium conditions will be described below.
  • the most important factor that determines the behavior of the posture and inclination of the actual robot 1 is the balance of the moment of the actual force around the target total floor reaction force center point (that is, the target ⁇ ⁇ ).
  • Poor force moment is the moment generated by the change in the angular momentum of the robot around the desired total floor reaction force center point. This value is obtained by the Euler equation. Specifically, the sign of the first derivative of the angular momentum of the robot 1 around the target total floor reaction force center point is inverted. The moment of inertia of the target work pattern is called “target moment of inertia”. The moment of inertia when the actual robot 1 is working is called the “actual moment of inertia”. The gravitational moment is the moment at which the gravity acting on the center of gravity of the robot 1 acts around the target ⁇ reaction force center point.
  • the resultant force of the floor reaction forces acting on the two feet 22R (L) is called the "total floor reaction force".
  • the total floor reaction force moment is a moment in which the total floor reaction force acts around the target total floor reaction force center point.
  • the object reaction force moment is the moment that the object reaction force acts around the target total floor reaction force center point.
  • the robot 1 faithfully follows the movement pattern of the target work pattern by the ideal leg main controller.
  • the actual moment of inertia coincides with the target moment of inertia
  • the actual moment of gravity coincides with the target moment of gravity.
  • the actual object reaction force moment does not coincide with the target object reaction force moment, and a difference occurs.
  • the absolute value of the actual rolling friction force of the trolley 108 is smaller than the expected value. It is a situation that has suddenly become smaller.
  • the moment in which the real object reaction force acts around the ⁇ axis of the target total floor reaction force center point is the moment in which the target object reaction force acts around the ⁇ axis of the target total floor reaction force center point.
  • Robot 1 tilts forward because it becomes larger in the positive direction than condition and no longer satisfies condition 1.
  • the direction of the moment is positive when the moment rotates the robot 1 clockwise in the positive direction of the coordinate axes.
  • Method 1 Change the actual total floor reaction force moment so as to cancel the above deviation. Specifically, the leg main controller 102 is instructed to generate a negative floor reaction force moment about the target ⁇ reaction force center point, and the leg main controller 102 issues an actuator displacement command. Lower the toe of the foot 2 2 R (L) to increase the actual ⁇ reaction moment in the negative direction, that is, to take a posture such that the leg link 2 stops the foot.
  • Method 2) Correct the target moment of inertia and the target moment of gravity by correcting the motion pattern of the target work pattern so as to cancel the above deviation. Specifically, by correcting the target body position and / or posture, the target inertial camouflage and the target gravity moment are corrected. That is, the upper body 3 is moved in the front-back direction.
  • Method 1 is suitable for short-term response because the actual total floor reaction force moment can be quickly changed by changing the leg main control device only by changing the target total floor reaction force moment.
  • the contact pressure distribution of the foot 22 R (L) is biased and the feeling of contact is reduced, and in the worst case, the contact pressure of the foot 22 R (L) is reduced.
  • the part floats. Therefore, in the long term, it should be restored to the original target total floor reaction force moment as much as possible.
  • a method (method 3) for intentionally changing the constraint direction component of the component of the actual object reaction force is added.
  • a legged mobile robot equipped with one (book) arm link works on an object using a hand placed at the tip of the arm link. Think about it. At this time, the hand receives binding force from the object and performs a binding motion.
  • the object is supported in the air by the hand and supported by something other than the hand Otherwise, the hand motion has a total of six degrees of freedom, three-dimensional translational freedom and three-dimensional rotational freedom, and is not constrained by the object at all.
  • the posture control device focuses on the restraining force and performs control for stabilizing the posture of the robot.
  • Vx, Vy, and Vz are the velocity components in the X, Y, and Z directions at a certain moment of the hand.
  • the rotational speed components around the X, Y and Z axes at the same moment are ⁇ X, coy and ⁇ z, respectively.
  • Rotation is defined as positive when it rotates around the clock in the positive direction of the coordinate axes.
  • the speed of the hand at this moment is represented by a vector (Vx, Vy, Vz, ⁇ , coy, ⁇ ), which is called a “hand speed vector”.
  • the set of all hand speed vectors that cannot be realized at a certain moment is called the “constrained speed region” at this moment.
  • the unrealizable hand speed vector here is determined from a geometrical point of view. In other words, the hand speed vector at which stress is generated with almost no hand displacement due to interference between the hand and the object at this moment is defined as an unrealizable hand speed vector. At this time, there are no restrictions due to the arm actuator or arm joint arrangement.
  • 19 x 1, ⁇ ⁇ ⁇ , ⁇ z 1) is an element in the constrained velocity region, it is multiplied by any positive real number k (kVx l, k Vy 1, k V z 1, k ⁇ 1, k ⁇ y 1, k ⁇ z 1) are also elements of the constrained speed region.
  • the zero vector (0, 0, 0, 0, 0, 0) is also an element in the bounded velocity region.
  • the constrained speed region is not to be confused with the movable speed region under constrained conditions.
  • the constrained velocity region is not limited to a so-called vector space. For example, if a sufficiently hard object placed on the floor is grasped with a hand, the hand cannot be lowered directly below (downward in the normal direction of the floor), but in the opposite direction (upward in the normal direction). You can move.
  • the hand speed vector in the downward direction is an element of the constrained speed area, but the opposite direction is not an element of the constrained speed area.
  • the constrained velocity region is a beta space
  • any vector (Vxl, Vy1, Vz1, ⁇ 1, ⁇ y1, ⁇ 1) in the constrained speed region can be inversed by one vector ,
  • One Vy 1, — V z 1, — ⁇ ⁇ 1,- ⁇ y 1, one ⁇ ⁇ ⁇ ) must also be elements of the constrained speed region, but the constrained speed region in this case satisfies this condition. No, it is not a vector space.
  • the constrained velocity space is defined as follows. That is, any vector vectors (Vxl, Vy1, Vz1, ⁇ 1, ⁇ y1, ⁇ 1) in the constrained velocity region and inverse vector vectors (one V1, -Vy1, one Vzl,- A set of ⁇ 1, - ⁇ y 1, one ⁇ ⁇ ⁇ ) is defined as a constrained velocity space.
  • the constrained velocity space is a partial vector space of the entire motion velocity space.
  • free velocity space The set of all vectors in the vector in the total motion velocity space whose inner product with any vector in the constrained velocity region is zero (that is, orthogonal to the vector) is called "free velocity space”.
  • the beta in the constrained velocity space and the free velocity space is defined as follows.
  • the direction vector, which is an element of the constrained velocity space is called the “constrained direction vector”, and when simply called the constrained direction, it refers to the direction of any constrained direction vector.
  • the direction vector, which is an element of the free-velocity space is called the “free direction vector”. When simply referred to as the free direction, it refers to the direction of any free direction vector.
  • the constrained velocity space is a space consisting of only zero vectors.
  • the free velocity space corresponds to the total motion velocity space.
  • the constrained velocity space is a set of hand velocity vectors (0, 0, Vz, ⁇ , ⁇ y, 0) with arbitrary real numbers Vz, ⁇ X, and coy.
  • the hinge axis is the Z axis
  • the X coordinate of the hand at this moment is 0, and the Y coordinate is 1 r (r is the turning radius of the door 114, more specifically, the turning radius of the handle 110)
  • the free speed space is It is a set of velocity vectors (Vx, 0, 0, 0, 0, Vx / r) of the hand having a desired real number Vx.
  • the constrained velocity space is a set of hand velocity vectors (Vx, Vy, V ⁇ , ⁇ x, coy, — r * Vx) with arbitrary real numbers Vx, Vy, Vz, ⁇ , and coy.
  • Work 4 When climbing up and down stairs 122 while sliding hand 40R on cylindrical handrail 120 in the environment shown in Fig. 11
  • the free velocity space is a hand velocity vector with arbitrary real numbers Vx and ⁇ X. (V, 0, Vx, ⁇ ⁇ , 0, ⁇ ⁇ ).
  • the constrained velocity space is a set of hand velocity vectors (Vx, Vy, -Vx, ⁇ , ⁇ y, - ⁇ ) having arbitrary real numbers Vx, Vy, ⁇ x, and coy.
  • the angle between the handrail 120 and the X axis is 45 degrees.
  • the constrained velocity space coincides with the entire motion velocity space.
  • the target cancels that force from the support other than the hand. If no frictional force or the like is substantially generated, the hand and the motion of the object do not change.
  • the attitude control device intends to stabilize the attitude of the robot without interfering with the motion control of the target object by utilizing such properties.
  • the robot's dynamic balance can be maintained, and the tilted posture can be restored without affecting the movement of the target object. It was configured to be.
  • the door 1 1 4 will be accelerated and its movement will deviate from the desired opening and closing movement, so that it will not generate too much restoring force Can not.
  • the mass of the door is very small compared to the mass of the robot 1, almost no restoring force can be generated.
  • the exercise of the door 114 is changed from the expected schedule, which is not desirable for work execution.
  • Another method for restoring the posture of the robot 1 is to push the doors 1 1 4 down. As a result, the robot 1 receives a reaction force from the doors 1 14 and the posture is restored. Furthermore, since the door is only pushed in the restraining direction, the movement of the door does not change as described above.
  • attitude control apparatus uses the latter method, there is a certain restriction direction in the movement of the hand as in the above-mentioned work 2, work 3 and work 4. Are the necessary conditions for applying the present invention. Therefore, it cannot be applied to the operation 1.
  • the coordinate system representing the constrained velocity space and the like may be a cylindrical coordinate system or a polar coordinate system. This is because conversion can be performed between them using any ordinary coordinate system, and there is no difference in the space pointed to by the constrained velocity space at that moment.
  • the constrained velocity space can be made constant (universal) during the work. For example, in the operation 3, by using the cylindrical coordinate system to match the axis of the hinge 112 with the axis of the cylindrical coordinate system, the constraint velocity space at each moment can be kept constant.
  • the coordinate system uses the above-described support leg coordinate system, and the velocity components in the X, Y, and Z directions at a certain moment of the jth hand are Vxj, Vyj, and Vzj, respectively. Also, the rotational speed components around the X, Y and z axes at the same moment are denoted by ⁇ X j, ⁇ y] and ⁇ ⁇ ], respectively.
  • the vector (V ⁇ 1, V y 1, V ⁇ 1, ⁇ 1, ⁇ y 1, ⁇ ⁇ 1, V x 2, V y 2, V ⁇ 2, ⁇ ⁇ 2, ⁇ y 2, ⁇ ⁇ ⁇ ⁇ , V ⁇ ⁇ , V y ⁇ , V ⁇ ⁇ , ⁇ ⁇ ⁇ , ⁇ y ⁇ , ⁇ ⁇ ⁇ ) are referred to as “all-node speed vector vectors”.
  • the elements of the hand speed vector from the first hand to the ⁇ th hand are arranged in order.
  • it may be expressed by an n-by-6 matrix in which the j-th row is the speed vector of the j-th hand.
  • total motion speed space A set of hand speed vectors with arbitrary real numbers as elements is called “total motion speed space” again. This total velocity space is a 6 * n-dimensional vector space.
  • the set of all hand speed vectors that cannot be realized at a certain moment is called the “constrained speed region” at this moment.
  • the unrealizable hand speed vector here is determined from a geometrical point of view. In other words, at this moment, between the hand and the object Alternatively, a hand speed vector in which stress is generated with almost no hand displacement due to interference between the hand and another hand is defined as an unrealizable hand speed vector.
  • constrained velocity space a set consisting of an arbitrary vector in the constrained velocity region and its inverse vector (a vector with the same size but opposite direction) is defined again as “constrained velocity space”.
  • the constrained speed space is a partial vector space of the whole motion speed space.
  • the set of vectors in all the motion velocity spaces in which the inner product with any vector in the constrained velocity region is zero is called the "free velocity space" again.
  • the direction vector which is an element of the constrained velocity space
  • the direction vector which is an element of the free-velocity space
  • the free-direction vector again, and the term “free direction” simply refers to the direction of an arbitrary free-direction vector.
  • the object is a circular wheel 130 with a height r and a radius r that can rotate only about the Z axis existing in front of b and has a radius r.
  • This wheel 130 is used for the first hand and the second hand.
  • An example is the work of gripping and turning with two hands.
  • the constrained velocity space is defined by any real numbers Vx1, Vy1, Vzl, ⁇ x1, ⁇ y1, ⁇ 1, Vx2, Vy2, V ⁇ 2, ⁇ 2, ⁇ y2.
  • Hand speed vector (Vxl, Vy1, Vz1, ⁇ 1, ⁇ y1, ⁇ , Vx2, Vy2, V ⁇ 2, ⁇ 2, ⁇ y2, r * Vx l— ozl + r * Vx 2)
  • the hand speed vector (Vxl, 0, 0, 0, 0, Vx1, 0, 0, 0, 0) is a speed vector in the constrained speed space. This means that if the friction of the axis of wheel 1 30 is zero, pressing both hands with the same force in the X direction
  • FIG. 140 As shown in the figure, an example of an operation of opening and closing a door 144 with a hinge 142 with a second hand while holding a fixed object (for example, a pillar) 140 with a first hand.
  • a fixed object for example, a pillar
  • the axis (142 mm) of the hinge 142 is parallel to the ⁇ axis, the X coordinate of the hinge axis 14 2 ⁇ is b, the Y coordinate of the hinge axis is] :, and the coordinates of the second hand at this moment are (b, 0 , H).
  • the free velocity space is a hand velocity vector (0, 0, 0, 0, 0, 0, r * co z 2, 0, 0, 0, 0, ⁇ z 2).
  • the node velocity vector (Vx1, Vy1, Vz1, ⁇ 1, ⁇ y1, ⁇ ⁇ , 0, 0, 0, 0, 0, 0) is a velocity vector in the constrained velocity space. . this Means that pressing the fixed object 140 with the first hand does not affect the rotational movement of the door 144.
  • the restraining force cancels the force from a supporting object other than the hand on the object, and no force is generated. If no frictional force or the like is generated, the movement of the hand and the object does not change.
  • the robot's posture can be stabilized without interfering with the motion control of the target object using the same principle as with one hand.
  • the constraint direction component of the force acting on the hand from the object the dynamic balance of the robot can be maintained without affecting the motion of the object, Inclination
  • V can restore the posture.
  • the dimension of the constrained velocity space becomes higher than that in the case of one hand.
  • the attitude stabilization main controller 106 is based on the three methods described above, namely,
  • the attitude stabilization main controller 1 o 6 is composed of an attitude stabilization compensation moment calculator 20 ⁇ , an object reaction force balance controller 202, an object reaction force moment deviation separator 204, and a correction target. It comprises an object reaction force calculator 206 and various distributors (specifically, an object reaction force balance control distributor 208 and a compensation moment distributor 210).
  • All the constituent elements of the posture stabilization main control device are calculated at each control cycle (for example, at every 100 ms). If a plurality of arithmetic processing cannot be performed at the same time due to the performance of the ECU 62, the arithmetic processing may be performed in order from the upstream side of the arrow in FIG.
  • the variables processed by the attitude stabilization main controller 106 and their components will be described (defined) below.
  • the posture control device controls the constraint direction component of the reaction force of the target object, thereby maintaining the dynamic balance of the robot 1 without affecting the motion of the target object
  • the present invention relates to a control device for restoring an inclined posture.
  • the reaction force of the target object in a certain restraining direction should not be changed due to the work purpose and the nature of the object.
  • the components that should be used to maintain the dynamic balance of the robot 1 and restore the tilted posture among the restraining direction components of the reaction force of the object, the degree of the effect of restoring, the work purpose, and the It should be selected appropriately in consideration of the nature.
  • the robot 1 should be stretched in all the constraining directions to be used for maintaining the dynamic balance of the robot 1 and restoring the inclined posture in the entire velocity space.
  • the kutor space is called the “operation space”.
  • the operation space is a partial vector space of the constrained velocity space.
  • a vector in any direction in the operation space is referred to as “object reaction force operation direction” or simply “operation direction”.
  • the operation space corresponds to a white background portion obtained by removing the work space from the constrained speed space.
  • non-operational space Of the directional vectors in the entire velocity space, those whose inner product with any object reaction force operation direction is zero (that is, orthogonal to that direction) are defined as “object reaction force non-operation direction” or The space where all the non-operational directions extend is called the “non-operational space”.
  • the non-operation space is a partial vector space of the entire motion velocity space
  • the free velocity space is a partial vector space of the non-operation space.
  • any vector in the operation space and any vector in the non-operation space are orthogonal.
  • the operation direction is considered to be a kind of control parameter, like the compliance constant of the compliance control. This value is generally not constant, but changes as the work progresses. How to determine this value is also important, but it is not the essence of the attitude control device according to the present invention. Therefore, in this embodiment, for the sake of convenience of explanation, the operation direction is set in advance to the work purpose, work pattern and It is assumed that it is determined based on the properties of the target object (the operation direction, etc., may be determined during work).
  • attitude stabilization main controller 106 Based on the above, the above components of the attitude stabilization main controller 106 will be described in detail.
  • the posture stabilizing compensation moment calculator 200 0 is used to converge the posture inclination deviation of the robot 1, more specifically, the body inclination deviation, which is the difference between the actual body inclination and the target body inclination, to zero.
  • This is a device for calculating the compensation moment for posture stabilization (the moment used to correct the actual total floor reaction force moment), and is a configuration for achieving the above method 1).
  • This device stabilizes the posture so as to reduce the deviation at least according to the deviation between the body inclination angle detected by the inclination sensor 60 and the target body inclination angle generated by the target work pattern generator 100. Calculate the compensation moment.
  • Fig. 15 shows the posture stabilization compensation moment calculator 200 with the simplest configuration.
  • both the input and output are shown as a one-dimensional scalar quantity.
  • there are an X-direction component and a Y-direction component and the illustrated processing is performed on each of them.
  • the Z direction component is ignored because it has no relation to the posture stability.
  • the body inclination deviation which is the difference between the actual body inclination and the target body inclination.
  • k d Derivative value of body tilt deviation ' ⁇ 1
  • k p and k d are control gains. It should be noted that, other than this, H-infit control or the like may be used.
  • the object reaction force equilibrium control device 202 detects a target but receives an unpredictable object reaction force.
  • This is a device that performs control to maintain the dynamic balance by correcting the target inertia force moment and the target gravitational moment generated by the target work pattern generator 100 by correcting the body position and orientation. This is the configuration to achieve.
  • the object reaction force moment deviation separator 204 is a device that separates the object reaction force into a component in the restraining direction used for stabilizing the posture and other components.
  • Reference numeral 206 denotes a device for calculating a target object reaction force obtained by adding a target constraint force required for stabilizing the posture to the object reaction force.
  • the actual hand force detected by the force sensor 58 of the hand 4 OR (L) is the force acting on the hand reference point and the moment of the force. It is assumed that the coordinates are expressed in a coordinate system set locally in the hand.
  • the hand reference point is a reference point in the hand for indicating the position of the hand 4OR (L). Further, the origin of the coordinate system set locally in the hand is set at a node reference point.
  • the hand position / posture indicates the origin position and the orientation of the coordinate system when the coordinate system set locally in the hand is viewed from the support leg coordinate system. More specifically, the origin position is represented by a vector, and the direction of the coordinate system is represented by a 3-by-3 matrix. Alternatively, a homogeneous matrix expressing the origin position and the direction of the coordinate system collectively, which is an expression often used in robotics, may be used.
  • the actual position and orientation of the hand 4 OR (L) is determined by the arm main controller 1 described above.
  • the coordinate system set locally in the hand is based on the final corrected target hand position and attitude. It may be considered that the coordinate system is as follows.
  • FIG. 16 is a block diagram showing the configuration of the object reaction force moment deviation separator 204.
  • the object reaction force moment deviation separator 204 includes an actual object reaction force moment component separator 204a, and the separator 204a is the final corrected target hand as viewed from the support leg coordinate system. Enter the posture and convert the actual nodeca to the value of the supporting leg coordinate system.
  • the actual hand force converted to the support leg coordinate system is also represented by the force acting on the hand reference point and the moment of the force.
  • the actual object reaction force is obtained by converting the point of action of the actual hand force converted to the support leg coordinate system to the center point of the total floor reaction force. In other words, these expressions mean different forces and the same thing.
  • the actual nodeca converted to the supporting leg coordinate system is represented by one vector in which the components of the hand force of each hand are arranged in order. That is, it is represented by a vector in the entire motion velocity space. More specifically,
  • the separator 204a separates the actual hand force converted into the support leg coordinate system into an operation direction component and a non-operation direction component according to an operation direction selected in advance. It should be noted here that each component is a vector in the entire velocity space as described above, and is not a real 3-dimensional space vector.
  • the separator 204a separates by the following operation.
  • the orthogonal basis vectors of the operation space are A1, A2, ⁇ , Am.
  • the orthogonal basis vectors in the non-operation space be B1, B2, ⁇ , Be.
  • the sum of m and e is 6 times the number of hands.
  • the vector of the actual hand force converted into the support leg coordinate system is described as F.
  • the operation direction component of the actual hand force is described as Fa, and the non-operation direction component of the actual hand force is described as Fb.
  • These betators are betators in the entire velocity space.
  • the operation direction component F a of the actual hand force and the non-operation direction component F b of the actual hand force are obtained by Expression 2.
  • the separator 204a is used to control the final corrected target hand position / posture and the actual hand force. Based on the direction component F a, the sum of forces acting around the target total floor reaction force center point is calculated for all components of the operation direction component F a of the actual hand force. This is called the “sum of the actual object reaction force operation direction components around the target total floor reaction force center point”. This force is represented by the force and the moment of the force in three-dimensional space.
  • the support leg coordinate system is used as the coordinate system.
  • the moment component of the real object reaction force operation direction component around the target total floor reaction force central point is called the “sum of the actual object reaction force moment operation direction components around the target ⁇ reaction force central point”.
  • the separator 204 a uses the separator 204 a to generate all the components of the non-operational direction component Fb of the actual hand force as the target total floor. Find the sum of the forces acting on the reaction force center point. This is referred to as the “actual object reaction force non-operation direction component sum around the desired total floor reaction force center point”.
  • This force is also represented by the force and the moment of the force in the three-dimensional space.
  • the support leg coordinate system is used as the coordinate system.
  • the moment component of the real object reaction force non-operation direction component around the target total floor reaction force center point is called the “sum of the actual object reaction force moment non-operation direction component around the target total floor reaction force center point”. .
  • the object reaction force moment deviation separator 204 has a target hand position action point converter 204 b, and the converter 204 b also performs the above-described processing (operation) on the target object reaction force. Do it for force.
  • the target object reaction force is also a vector in the entire motion velocity space, like the actual hand force. Specifically, first, since the target object reaction force is expressed using the target total floor reaction force center point as an operation point, the variable 204 b temporarily sets this action point to the target hand position (target (Reference position of the hand) is converted to a force and a moment of force with the point of action as This is called a "target object reaction force with the target hand position as the point of action.”
  • the object reaction force moment deviation separator 204 A component separator 204c is provided, and the separator 204c separates into an operation direction component and a non-operation direction component by the same processing as described above. These are referred to as the “operation direction component of the target object reaction force with the target hand position as the operation point” and the “non-operation direction component of the target object reaction force with the target hand position as the point of action”, respectively.
  • the separator 204c calculates the target object reaction force based on the operation direction component of the target object reaction force with the target hand position as the point of action and the target hand position (target hand reference point position).
  • the sum of the forces acting on the center point of the desired total floor reaction force is calculated for all the components of the operation direction component of. This is referred to as a “target object reaction force operation direction component sum around the desired total floor reaction force center point”.
  • This force is expressed as a force and a moment of force in a three-dimensional space.
  • the support leg coordinate system is used as the coordinate system.
  • the moment component of the target object reaction force operation direction component around the desired total floor reaction force central point is referred to as the “sum of target object reaction force moment operation direction components around the desired total floor reaction force central point”.
  • the separator 204c determines the target object reaction force based on the non-operating direction component of the target object reaction force with the target hand position as the action point and the target hand position (target hand reference point position).
  • the sum of the forces acting on the center point of the desired total floor reaction force is calculated for all the non-operational components of the force. This is referred to as the “target object reaction force non-operation direction component sum around the target total floor reaction force center point”.
  • This force is also represented by the force and the moment of the force in three-dimensional space.
  • the support leg coordinate system is used as the coordinate system.
  • the moment component of the target object reaction force non-operation direction component around the target total floor reaction force central point is referred to as the “target object reaction force moment non-operation direction component sum around the target total floor reaction force central point”. .
  • the target object around the target total floor reaction force center point is calculated from the sum of the actual object reaction force moment operating direction components around the target total floor reaction force center point obtained by force.
  • the object reaction force deviation moment operation direction component sum around the target total floor reaction force center point is obtained.
  • the target object reaction force non-operation direction around the target total floor reaction force center point is calculated from the sum of the actual object reaction force non-operation direction component around the target total floor reaction force center point. By subtracting the component sum, the object reaction force deviation moment non-operation direction component sum around the target total floor reaction force center point is obtained.
  • the target reaction force deviation moment operating direction component sum around the target reaction force center point obtained as described above is calculated as the compensation total floor reaction camoment as described later. Used for calculation.
  • the object reaction force deviation moment non-operating direction component sum around the desired total floor reaction force center point is input to the object reaction force balance control distributor 208.
  • the object reaction force balance control distributor 208 will be described with reference to FIG. 17.
  • the distributor 208 has functions 208a and 208b, and the object reaction force balance control
  • the distributor 208 inputs the object reaction force around the desired total floor reaction force center point and the sum of the components of the non-operational direction of the deviation moment to the functions 208 a and 208 b, and controls the object reaction force balance control.
  • the target reaction force deviation moment sum to be balanced by and the target reaction force deviation moment sum to be balanced by other than the object reaction force balance control are output.
  • the object reaction force balance control is a control performed by the object reaction force balance control device 202 in order to achieve the above-mentioned method 2). This is a control that generates a gravitational moment by shifting, and thus cancels the sum of the object reaction force deviation moments.
  • both input and output are shown as a one-dimensional scalar quantity.
  • the Z direction component is ignored because it has no relation to the posture stability.
  • a function having upper and lower limiter characteristics saturated characteristics
  • the function that outputs the sum of the object reaction force deviation and moment to be balanced other than the object reaction force equilibrium control uses a function with a dead zone characteristic as 2 0 8 b.
  • target total floor When the absolute value of the non-operating direction component sum of the object reaction force deviation moment around the reaction force center point is less than a certain set value, the moment is canceled by the object reaction force balance control, and the moment exceeds the set value.
  • the control system works to cancel the excess by generating a reaction force on the target object mainly in the hand restraining direction. In other words, by having the upper and lower limiter characteristics, it is possible to limit the amount of shift of the body position and to prevent a geometrically unreasonable posture.
  • functions other than the illustrated example may be used for the two functions 208 a and 208 b for determining the input / output relationship.
  • the curves shown in FIG. 18 as 208 c and 208 d may be used.
  • the function should be selected according to the characteristics of the robot 1, the characteristics of the object, and the work content.
  • each output may be determined using a two-input function that inputs both the X-direction component and the Y-direction component.
  • the sum of the object reaction force deviation moments, which should be taken after ⁇ except for the object reaction force balance control, distributed by the object reaction force balance control distributor 208, is as follows. Then, the polarity is inverted by 11 at the multiplication point 2 14 and the polarity is inverted.Then, it is input to the compensation moment distributor 210 as the object reaction force compensation moment required for means other than the object reaction force balance control. You. In addition, the sum of the object reaction force deviation moments to be balanced by the object reaction force balance control is input to the object reaction force balance control device 202.
  • the object reaction force equilibrium control device 202 has the target body position and orientation as described above.
  • the target body position and posture should be balanced so that the target reaction force balance moment should be balanced dynamically with the target reaction force balance moment.
  • the target total floor reaction force is corrected, and the corrected target body position / posture and the compensated total floor reaction force moment for the object reaction force balance control are output.
  • the device 202 changes the gravitational moment generated by shifting the target body position / posture into a dynamic sum of the object reaction force deviation moment to be balanced by the object reaction force balance control.
  • the object reaction force balance control device 202 is configured to solve the above-mentioned method 2) and has a feature that the correction amount of the desired total floor reaction force returns to zero.
  • This technique is already proposed by a person in Japanese Patent Application Laid-Open No. H10-230485, but in this embodiment, the latter half of the object reaction force balance control device described in this publication is disclosed. Only the configuration of the part is used, and the above-mentioned "object reaction force deviation moment sum to be balanced by the object reaction force balance control" is input to the part where "object reaction force deviation" has been input. It differs in that it has been changed to:
  • Fig. 19 is a block diagram showing the configuration of the object reaction force balance control device 202.
  • the inputs to these are the object reaction force deviation moment sum to be balanced by the object reaction force balance control, target body position / posture, final corrected target hand position / posture, final corrected target body position / posture, final corrected target.
  • the foot position and posture are calculated using an approximate calculation in the object reaction force balance control, that is, the perturbation dynamic model 20 Not needed if 2 c is an approximate model.
  • the above-described posture stabilizing compensation moment is not partially input to the object reaction force balance control device 202.
  • the compensation moment for posture stabilization is a moment that should be given to the robot from the outside in order to restore the position of the center of gravity that is shifted as a result of the posture inclination.
  • the function of the object reaction force balance control device 202 is as follows. By shifting the center of gravity of the target attitude, the steady object reaction force deviation is canceled out, and the shifted center of gravity cannot be restored as a result of tilting the attitude.
  • the sum of the target reaction force deviation moments to be balanced by the input target reaction force balance control is input to the final target center of gravity position perturbation amount calculation unit 202a.
  • the centroid perturbation for obtaining the balance by canceling out the object reaction force deviation moment sum to be balanced in this object reaction force balance control in the long term is called the "final target target center of gravity position perturbation”.
  • the final arrival target centroid position perturbation amount calculation unit 202a calculates and outputs the final arrival target centroid position perturbation amount from the above sum.
  • the final target gravity center position perturbation amount is input to the model control law calculator 202b.
  • model control law arithmetic unit 200b if the difference between the final target center-of-gravity position perturbation and the target center-of-gravity position perturbation output by the perturbation dynamics model 202c is defined as the center-of-gravity displacement deviation, model control
  • the law calculator 202b determines the compensation total floor reaction force moment for the object reaction force balance control, which is the moment for converging the center-of-gravity displacement deviation to zero, according to the PD control law and outputs it.
  • the perturbation dynamics model 202c is the target total floor reaction force moment perturbation and the body position / posture for the model when certain constraints are given to the motion (perturbation) of the target work pattern. It is a model showing the relationship with the amount of perturbation.
  • the perturbation dynamics model provides the object reaction force balance control compensation for the total floor reaction force by the addition point 202d.
  • the sum of the moment and the sum of the object reaction force deviation moments to be balanced by the object reaction force balance control is input as the desired total floor reaction force moment perturbation (model input amount) for the model.
  • the body position / posture perturbation amount is calculated by the perturbation dynamics model so as to correspond to the input. It is added to the target body position / posture at the addition point 202d, and the corrected target body position / posture is output.
  • the output of the object reaction force flat ⁇ control device 202 outputs the corrected target body position and orientation obtained by correcting the input target body position and orientation, and the object Reaction force Compensated total floor reaction force moment for balance control.
  • the outputted compensation total floor reaction force moment for the object reaction force balance control is input to the compensation moment distributor 210 described below, as shown in FIG.
  • the moment component of the compensation total floor reaction force for the object reaction force balance control is output from the device 202 because of the compensation total floor for the object reaction force balance control.
  • a particularly important component for stabilizing the posture of the robot is the moment about the X axis. Component and the moment component around the Y axis. It is better to use a control system that considers other than the moment component, but no remarkable effect can be expected.
  • the compensating moment distributor 210 has a compensating total floor reaction force moment for the object reaction force balance control and an object reaction force required for means other than the object reaction force balance control. It has two functions to input the compensation moment and the compensation moment for posture stability and distribute them to the target restraining force moment and the compensation total floor reaction force main moment.
  • the object reaction force compensation moment required by means other than the object reaction force balance control is, as described above, the object reaction force deviation moment to be balanced by means other than the object reaction force balance control. It is the value obtained by multiplying the sum by 11 at the multiplication point 2 1 4.
  • the target restraining force moment is a moment to be generated around the target total floor reaction force center point by the object reaction force in the restraining direction in the input
  • the compensation total floor reaction force main moment is The moment to be generated by the total floor reaction force around the target total floor reaction force center point in the input.
  • both the input and output forces are shown as a one-dimensional scalar quantity.
  • the ⁇ direction component has nothing to do with the posture stability and is ignored.
  • the distributor 210 has an addition point 210a, which is required at the addition point 210a for means other than the object reaction force balance control compensating total floor reaction force moment and the object reaction force balance control. Obtain the sum of the object reaction force compensation moments and input it to the two functions.
  • the compensation moment for attitude stabilization is set to u
  • the sum is set to V
  • the value of a function gl (u, v) which is one of the two functions, is calculated. Force main moment.
  • the value of the other function g 2 (u, V) is obtained, and this is set as the target restraining force moment.
  • each function is a function of 2 inputs and 1 output.
  • the sum of the inputs of the compensation moment distributor (the total floor reaction force moment for the object reaction force balance control and the object reaction force compensation moment required for the means other than the object reaction force balance control)
  • the compensation total floor reaction force moment for the object reaction force balance control is u
  • the object reaction force compensation moment required for means other than the object reaction force balance control is V
  • the posture stabilization compensation moment is w.
  • the output sum may be increased in consideration of control deviations such as complex compliance control.
  • the posture-stabilizing compensation moment is a feedback amount, even if the sum of the output components affected by the posture-stabilizing compensation moment differs from the posture-stabilizing compensation moment by several tens of percent, there is little problem. Nana! / ,.
  • the target restraining force moment which is one of the moments output from the compensation moment distributor 210, is sent to the addition point 215, where It is subtracted from the target reaction force deviation moment operation direction component sum around the target total floor reaction force center point described above.
  • the difference between the sum of the deviation moment operation direction components and the target restraining force moment is subtracted, and the compensated total floor reaction force moment is output.
  • the compliance of the arm actuator 92 is high and the target reaction force deviation moment around the target total floor reaction force center point is controlled so that the operating direction component sum almost coincides with the target constraint force moment, the addition is performed.
  • the target total floor reaction force center The object reaction force deviation moment around the point Compensating total floor reaction force main moment is directly compensated without reducing the difference between the operating direction component sum and the target constraint force moment May be used
  • the addition point 2 16 is deleted, and the compensating total floor reaction force moment is used as the compensating total floor reaction force main moment.
  • the object reaction force deviation to be balanced by the object reaction force balance control it is also possible to reduce the difference between the sum of the directional components and the target constraint force moment (the output at the addition point 2 15) around the target total floor reaction force center point.
  • the above-described target restraining force moment is also input to the corrected target object reaction force calculator 206.
  • FIG. 21 shows the configuration of the corrected target object reaction force calculator 206.
  • the corrected target object reaction force calculator 206 calculates the target hand position / posture (or final correction target hand position / posture), target restraining force moment, target total floor reaction force center point position, The working direction and the target object reaction force are input, and the corrected target object reaction force is calculated and output based on those inputs.
  • the calculator 206 includes a target hand force correction amount determiner 206a, a converter 206b, and an addition point 206c.
  • the target hand correction amount determiner 206 a is expressed as using the target hand position (or the final corrected target hand position) as the working point.
  • the target hand correction amount which is the correction amount of the target object reaction force, is expressed. Is determined as follows. That is, when the target hand force correction amount acts on the target hand position (or the final corrected target hand position), the determiner 206a calculates the sum of the moment acting on the target total floor reaction force center point and the target constraint force. Determine the target hand correction amount so that the moment difference approaches zero. However, the determiner 206a determines that the target hand force correction amount is the force in the operation direction and the moment of the force, and does not include the non-operation direction component.
  • the correction amount of the target hand power is expressed in the support leg coordinate system.
  • the simplest determination method is shown below. First, freely select two vectors in the operation direction. Each vector is obtained by appropriately linearly combining the orthogonal basis vectors A1, A2,..., Am in the operation space. Let these vectors be Ql and Q2, respectively.
  • the target hand force correction amount is set in the form of aQl + bQ2.
  • a and b are coefficients.
  • the moment M of the resultant force acting on the target total floor reaction force center point is obtained by dynamic calculation.
  • Mx a k l l + b k l 2
  • a and b are determined so that Mx matches the X component of the target constraint force moment and My matches the Y component of the target constraint force moment.
  • the value of the target hand force correction amount aQl + bQ2 is obtained using the vectors Ql and Q2 and the a and b. The obtained correction amount is input to the transformation 206206 and transformed.
  • the unit 206 b converts the target hand force correction amount into an expression in which the point of action is changed from the target hand position (or the final corrected target hand position) force to the total floor reaction force center point, and thus the total floor reaction force is calculated.
  • the target object reaction force correction amount having the center point as the action point is output.
  • the target object reaction force correction amount with the total floor reaction force central point to the target object reaction force with the total floor reaction force central point as the point of action.
  • a corrected target object reaction force having the total floor reaction force central point as an action point is output.
  • the corrected target object reaction force is a vector in the entire motion velocity space.
  • the corrected target object reaction force obtained as described above and the corrected target body position / posture and the compensation total floor reaction force moment described above are combined with the posture stabilization main control. This is the final output of device 106. Then, as shown in FIG. 5, the corrected target object reaction force is applied to the arm main controller 104, the compensated total floor reaction force moment is applied to the leg main controller 102, and the corrected target body position / posture is set. Entered for both.
  • leg main control unit 102 has the actual whole floor acting on the target total floor reaction force center point position.
  • the target foot position and orientation are corrected so that the moment component of the reaction force matches the sum of the desired total floor reaction force moment (usually zero) and the compensation total floor reaction force moment.
  • An actuator displacement command is output to control the leg joint actuator so that the actual joint displacement follows the target leg joint displacement determined from the corrected target foot position and orientation.
  • the arm main controller 104 uses the difference between the actual target reaction force (actual hand force) detected by the force sensor 58 of the hand 4 OR (L) and the corrected target object reaction force.
  • the target hand position / posture is corrected by PD control or the like so that the difference approaches zero according to.
  • an actuator displacement command is output so that the actual joint displacement follows the target arm joint displacement determined from the corrected target body position / posture (or the final corrected target body position / posture) and the corrected target hand position / posture. To control the arm joint actuator.
  • the posture stabilization main control device 106 separates the object reaction force deviation moment acting on the target total floor reaction force center point into an operation direction component and a non-operation direction component, and The dynamic imbalance generated by the operation direction component is partially The target object reaction force moment operating direction component to be canceled at the target total floor reaction force center point by canceling out the rest by the object reaction force balance control device, in other words, by correcting the arm movement, It is configured to cancel by changing the operation direction component.
  • Maintaining the dynamic balance of 1 or restoring the inclined posture does not affect the movement of the object.
  • Manipulation of the target restraining moment which is the correction amount of the target object reaction force moment operating direction component to be applied to the desired total floor reaction force center point, and the object reaction force deviation moment around the target total floor reaction force center point
  • the relationship between the direction component sum and the non-operation direction component sum is as shown in FIG. 14 described above.
  • the object reaction force moment deviation direction acting on the target total floor reaction force center point which is separated by the object reaction force moment deviation separator 204 in the posture stability controller 106 Of the component sum and the non-operation direction component sum, correct the target object reaction force moment operation direction component in which the dynamic imbalance generated by the non-operation direction component sum should act on the target total floor reaction force center point.
  • a control system consisting of an arm control system (a control system consisting of the arm main control device 104, actuator 82 and actuator drive device 88 shown in Fig.
  • FIG. 22 When focusing on the reaction force of the object, the system can be simplified as shown in FIG.
  • the disturbance moment in Fig. 22 is assumed for the target object. Since the object has a different property from the expected one, it is an object reaction force generated when the object behaves unexpectedly, that is, an unexpected object reaction force. For example, the friction generated by the object is different from the expected one.
  • the operation direction component of the disturbance moment is called “disturbance moment operation direction component”, and the non-operation direction component is called “disturbance moment non-operation direction component”.
  • the target restraining force moment is determined so as to cancel this, and it is added at the addition point 222.
  • the target object reaction force moment operation around the target total floor reaction force center point is corrected, the direction component sum is corrected, the target hand position posture is corrected by the correction amount in the operation direction arm compliance control unit, and the actuator of the arm link 5 is further corrected.
  • the displacement command is corrected, and the arm link 5 of the robot 1 is driven to maintain the dynamic balance. Also, even if the disturbance moment operation direction component changes, the target value for arm compliance control does not change.
  • the attitude stabilization main controller 106 converts the dynamic imbalance generated by the sum of the non-operation direction components into the target object reaction force moment non-operation direction to be applied to the target total floor reaction force center point. Assuming that the system is configured to cancel by correcting the component sum, the control system consisting of the arm control system and the posture stabilization main controller 106 will focus on the object reaction force as shown in Fig. 23. It can be simplified.
  • the feedback loop including the attitude stabilization main controller becomes positive feedback and diverges.
  • the target restraining force moment is calculated by the posture stabilization main controller from the sum of the non-operating direction component of the object reaction force deviation moment around the desired total floor reaction force center point, and the calculated moment is input at the addition point 2 26
  • the corrected target object reaction force moment non-operation direction component sum around the desired total floor reaction force center point is calculated by adding the target object reaction force moment non-operation direction component sum around the total floor reaction force center point. It is subtracted from the sum of the actual object reaction force moment non-operation direction components around the target total floor reaction force center point at the addition point 2 2 8 to obtain the object reaction force deviation moment non-operation direction around the target total floor reaction force center point.
  • the feedback loop until the sum of components is calculated becomes positive feedback and diverges.
  • the object reaction force moment around the target total floor reaction force center point is calculated as The divergence is prevented by separating the operation direction component sum and forming a feed-pack loop so as not to return to normal as shown in Fig. 22. That is, such a divergence is prevented by configuring so that the value fed back on the non-operation direction side is added to the operation direction side.
  • FIG. 25 shows a posture control device of a mobile robot according to a second embodiment of the present invention.
  • the output of the object reaction force balance control distributor 208 is set to include the object reaction force balance control.
  • the sum of the object reaction force deviation moments to be balanced by control is set to zero (shown by a broken line in the figure), and the output of the distributor 208 is set to the object reaction force to be balanced by other means. The deviation moment sum was used.
  • FIG. 26 shows a posture control device of a mobile robot according to a third embodiment of the present invention.
  • the illustrated wheeled mobile robot 300 includes a cylindrical base (upper body) 302 and an active suspension (not shown) that strokes up and down (in the Z-axis direction). Equipped with three wheels (only two shown in the figure) mounted via.
  • a mount 303 is rotatably mounted on the upper part of the base body 302, and a bendable arm (arm link) 310 is mounted thereon.
  • the arm 310 has a first link 310a attached to the mount 306, a second link 310b attached to the first link 310a via a joint (not shown), and a free end of the second link 310b. It consists of a hand 3 10c attached to the side via a joint (not shown). Each joint has a built-in actuator such as an electric motor.
  • an electronic control unit (ECU) 312 including a microcomputer is stored inside the base 302.
  • An inclination sensor (not shown) is arranged near the position of the center of gravity of the base 302, and generates an output according to the inclination of the base 302 with respect to the Z axis and the angular velocity thereof.
  • a weight sensor (not shown) is disposed on each of the wheels 304, and detects a floor reaction force (load) F1, F2,... Acting on each of the four wheels 304 from the ground contact surface.
  • the rotation angle of the mount 306 around the Z axis is ⁇ 1
  • the angle of the first link 310a with respect to the Z axis is ⁇ 2
  • the relative angle of the second link 310 with respect to the first link 310a is 03
  • the second link 31 Assuming that the relative angle of the hand 310c to Ob is 04, the target operation of the mobile robot 300 can be represented by an operation pattern from 01 to 04 and ZMP.
  • ⁇ 2 is the target body position of the legged mobile robot 1 of the first embodiment.
  • the set of 01, ⁇ 3, S4 corresponds to the desired body posture. Also, it corresponds to the position and orientation of the 04 command 310c.
  • the operation of the electronic control unit (ECU) 312 that controls the active suspension corresponds to the operation of the composite compliance operation determination unit in the configuration shown in FIG. 8 of the first embodiment, and the weight F is changed from F1. Control by distributing to F4.
  • the base the upper body 3
  • the moving mechanism the leg link 2 or the vehicle
  • a posture control device of a mobile robot 1, 3 0 0 comprising a wheel 3 0 4) and at least one arm link 5 (or an arm 3 10) capable of applying a force to an object
  • the first external force the object reaction force deviation moment about the own floor total floor reaction force center point in the non-operation direction component sum
  • a second external force acts on the arm link in a direction orthogonal to the predetermined direction, in other words, The sum of the object reaction force deviation moments to be obtained by means other than the object reaction force balance control obtained based on the object reaction force deviation moment non-operation component sum around the target total floor reaction force center point.
  • At least a base upper body 3
  • a moving mechanism leg link 2 or wheels 304
  • at least one arm link 5 or arm 31
  • At least the target arm link position / posture (target hand position / posture) of the robot is applied to the posture control device of the mobile robots 1 and 3
  • a target operation generating means (a target work pattern generator 100) for generating a target operation (a target object reaction force or a target position / posture) composed of a target object reaction force which is a target value of the object reaction force
  • Actual object reaction force detection means that detects or estimates (via an observer) the actual object reaction force (actual hand force), which is the actual value of the object reaction force
  • a posture stabilization control unit (posture stabilization main control device 10) that corrects the target operation so that the posture of the robot is stabilized based at least on the detected or estimated real object reaction force. 6) and an arm drive device (actuator 90, 92
  • the attitude stabilization control means may include at least the actual object reaction force and the target pair. Based on the object reaction force deviation indicating the difference from the object reaction force (the object reaction force around the target total floor reaction force center point, the sum of the non-operating direction component of the moment), the posture of the mouth pot is stabilized so as to be stable. It was configured to modify the target action.
  • the attitude stabilization control means may include a first component of the object reaction force deviation (a sum of the object reaction force deviation moment non-operation component around the target total floor reaction force center point) and a falling force generated by the first component of the object reaction force deviation.
  • the target operation is modified so that all or part of the target operation is canceled by the second component (object reaction force compensation moment required for means other than the object reaction force balance control) obtained from the first component. It was configured so that
  • At least a base upper body 3
  • a moving mechanism leg link 2 or wheels 304
  • at least one arm link 5 capable of applying a force to an object.
  • at least a target arm link position / posture target hand position / posture of the robot, and an object acting on the arm link from the object.
  • a target motion generating means (a target work pattern generator 100) for generating a target motion (a target object reaction force or a target position / posture) composed of a target object reaction force which is a target value of the reaction force; Detecting the inclination deviation (the body inclination angle), and performing the target operation such that the detected posture inclination deviation, more specifically, the posture stability compensation moment calculated based on the detected value, approaches zero.
  • To Positive attitude stability I inhibit control means pose stabilization Ihimein controller 1 0 6
  • an arm drive device (actuator 90, 92) for driving the arm link based on at least the corrected target motion.
  • the sum of the non-operating direction components of the actual object reaction force around the target total floor reaction force center point is the sum of the forces acting around the target total floor reaction force center point. It may be obtained by subtracting the sum of the actual object reaction force operation direction components around the desired total floor reaction force center point from the sum. This is because the sum of the real object reaction force operation direction component around the desired total floor reaction force central point and the actual object reaction force non-operation direction component around the desired total floor reaction force central point is the actual object reaction force. Is equal to the sum of the forces acting around the desired total floor reaction force center point.
  • the sum of the actual object reaction force operation direction components around the desired total floor reaction force central point is calculated from the sum of the forces acting around the desired total floor reaction force central point by all the components of the actual object reaction force. All goals It may be obtained by reducing the sum of the components of the non-operation direction of the actual object reaction force around the floor reaction force center point.
  • the same method may be used to calculate the sum of the object reaction force operation direction components around the desired total floor reaction force center point and the sum of the object reaction force non-operation direction components around the desired total floor reaction force center point.
  • the target hand position / posture may be changed instead of correcting the target object reaction force. More specifically, the arm main control device 104 cannot normally control the target reaction force and the hand position / posture to coincide with the target values. Therefore, the target reaction force control and the hand position are not performed. There is a trade-off in attitude control, and changing the target hand position and attitude changes the real object reaction force.
  • the target obtained in the above embodiment is obtained. This is because the correction amount of the target hand position and orientation can be obtained by multiplying the correction amount of the object reaction force by the ratio.
  • a humanoid robot with two leg links and two arm links has been described as an example of a legged mobile robot, but a legged mobile robot with a number of leg links other than two has been described.
  • a robot may be used, and the number of arm links may be one or three or more.
  • a leg link may be regarded as an arm link as long as it acts on an object other than the floor.
  • the leg link is regarded as an arm link. Can be.
  • the dynamic imbalance of the robot has been described as a tilt with respect to the X-axis direction and the Y-axis direction, but the same can be applied to a spin around the Z-axis caused by swinging of a free leg.
  • an upper body actuator controller is also required.
  • bending or twisting the upper body link is equivalent to adding a joint to the base of the arm or leg. So, conceptually, it can be regarded as an arm or leg actuator. That is, the body actuator controller can be considered to be included as a part of the arm or leg controller.
  • joint torque is controlled using another means other than the virtual compliance control device, for example, means for controlling the electric actuator by a current command type amplifier, and as a result, the target object is indirectly controlled.
  • the reaction force may be controlled. It is not necessary to place a force sensor on the hand for this control, but it is also desirable to provide a force sensor for the object reaction force control device!
  • an estimator for estimating the actual target reaction force from the joint torque may be provided in the arm main control device.
  • This estimator may use a disturbance observer which is a conventional technique.
  • the target object reaction force may be set to zero.
  • the reaction force of the target object may be set to zero.
  • the posture control device of the mobile robot when an unexpected external force is applied, the posture control device is orthogonal to the predetermined direction according to the first external force that is a component of the unexpected external force in a certain direction.
  • the arm link is driven so that the second external force acts on the arm link in the direction, so that the posture of the robot is stabilized, so that the mobile robot receives a reaction force from the target object.
  • Posture is not Even if the object becomes stable or receives an unexpected reaction force from the object, it can maintain a dynamic balance and maintain a stable posture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Toys (AREA)

Description

移動ロボットの姿勢制御装置 技術分野
この発明は移動口ポットの姿勢制御装置に関し、 特に、 腕部を備える 2足の脚 式移動ロボットあるいは車輪式の移動口ポットの姿勢制御装置において、 ロボッ トが腕を介して対象物から反力を受けるような作業を行なっているときの姿勢安 定化を図るようにした姿勢制御装置に関する。 背景技術
移動ロボットの中の脚式移動ロボットの姿勢制御装置としては、 本出願人が先 に提案した特開平 1 0— 2 3 0 4 8 5号公報に記載される技術が知られている。 その技術においては、 対象物から予期せぬ反力を受けると、 長期的にはロボット の上体の位置をずらすように姿勢を徐々に修正することによってロボット全体の 重心位置をずらし、 補償のための重力モーメントを発生させて動バランス、 即ち 、 動力学的に釣り合うバランスを維持すると共に、 それまでの過渡期においては 、 目標床反力中心点 (目標 ZMPに一致している) まわりに補償のための全床反 力モーメントを発生させるように足部を動かして踏み止めさせることによって、 動バランスを維持するように構成している。
このように、 上記した従来技術においては、 対象物から受ける予期せぬ反力が 急激に変化した場合には、 その瞬間では (短期的には) 、 足部を動かして踏み止 めさせることによって動バランスを維持する、 即ち、 全床反力モーメントを発生 させることによつて姿勢安定化が図られる。
また、 本出願人は、 対象物からの反力を受ける受けないに関わらず、 ロボット の姿勢が傾いているときに、 これを復元させるためのモーメントを全床反力モー メントとして積極的に発生させる技術も提案しているが (特開平 1 0— 2 7 7 9 6 9号公報) 、 いずれの技術においても、 全床反力モーメントには限界があり、 それを越えて全床反力モーメントを発生させようとすると、 足部の一部が床から 浮いてしまい、 その結果、 ロボットは動バランスを崩し、 最悪の場合には転倒す る恐れがあった。
また、 本出願人は、 全床反力モーメントを発生させる代わりに上体の軌道を修 正することによって動バランスを維持する技術も提案しているが (特許第 3 2 6 9 8 5 2号公報) 、 力かる技術にあっては足の着地位置などを修正する必要があ るため、 腕で対象物に対する作業を行なっているとき、 上体や足が作業に適切な 位置から離れてしまう場合があった。
また、 対象物になんらかの運動を与えるような作業を行なう場合にあっては、 作業を所期通り遂行するためには、 動パランスを維持したり、 あるいは傾いた姿 勢の復元を行なっても、 対象物の運動に影響を与えないことが望ましい。 発明の開示
従って、 この発明の第 1の目的は、 上記した不都合を解消することにあり、 移 動口ポットが対象物から反カをうけるような作業を行っているとき、 姿勢が不安 定になったり、 あるいは対象物から予期せぬ反力を受けても、 動バランスを維持 して安定な姿勢を保持するようにした移動ロボットの姿勢制御装置を提供するこ とを目的とする。
さらには、 移動ロボットが対象物から反力をうけるような作業を行っていると き、 姿勢が不安定になったり、 あるいは対象物から予期せぬ反力を受けても、 接 地する床から作用される床反力を操作することなく、 あるいはその操作量を低減 しつつ、 動バランスを維持して安定な姿勢を保持するようにした移動ロボットの 姿勢制御装置を提供することを第 2の目的とする。
さらには、 移動ロボットが対象物から反力をうけるような作業を行っていると き、 姿勢が不安定になったり、 あるいは対象物から予期せぬ反力を受けても、 対 象物の運動に影響を与えることなく動バランスを維持して安定な姿勢を保持する ようにした移動ロボットの姿勢制御装置を提供することを第 3の目的とする。 この発明は、 上記した目的を達成するために、 後述する請求の範囲第 1項に記 載する如く、 少なくとも基体と、 移動機構と、 対象物に力を作用することができ る、 少なくとも 1個の腕部リンクからなる移動ロボットの姿勢制御装置において 、 想定外の外力が作用するとき、 前記想定外の外力の、 ある所定方向の成分であ る第 1の外力に応じ、 前記所定方向に直交する方向に前記腕部リンクに第 2の外 力が作用するように、 前記腕部リンクを駆動して前記ロボットの姿勢を安定させ るように制御する如く構成した。 このように、 移動ロボットの姿勢制御装置にお いて、 想定外の外力が作用するとき、 想定外の外力の、 ある所定方向の成分であ る第 1の外力に応じ、 所定方向に直交する方向に腕部リンクに第 2の外力が作用 するように、 腕部リンクを駆動して前記ロボットの姿勢を安定させるように制御 する如く構成したので、 移動ロボットが対象物から反力をうけるような作業を行 つているとき、 姿勢が不安定になったり、 あるいは対象物から予期せぬ反カを受 けても、 動パランスを維持して安定な姿勢を保持することができる。
また、 この発明は、 後述する請求の範囲第 2項に記載する如く、 少なくとも基 体と、 移動機構と、 対象物に力を作用することができる、 少なくとも 1個の腕部 リンクからなる移動ロボットの姿勢制御装置において、 少なくとも前記ロボット の目標腕部リンク位置姿勢と、 前記対象物から前記腕部リンクに作用する対象物 反力の目標値である目標対象物反力からなる目標動作を生成する目標動作生成手 段、 前記対象物反力の実際値である実対象物反力を検出あるいは推定する実対象 物反力検出手段、 少なくとも前記検出あるいは推定された実対象物反力に基づき 、 前記ロポットの姿勢が安定するように前記目標動作を修正する姿勢安定ィヒ制御 手段、 および少なくとも前記修正された目標動作に基づいて前記腕部リンクを駆 動する腕部駆動装置を備える如く構成した。 このように、 移動ロボットの姿勢制 御装置において、 少なくともロボットの目標腕部リンク位置姿勢と、 対象物から 腕部リンクに作用する対象物反力の目標値である目標対象物反力からなる目標動 作を生成し、 対象物反力の実際値である実対象物反力を検出あるいは推定し、 少 なくとも検出あるいは推定された実対象物反力に基づき、 ロボットの姿勢が安定 するように目標動作を修正し、 修正された目標動作に基づいて腕部リンクを駆動 する腕部駆動装置を備える如く構成したので、 移動ロボットが対象物から反力を うけるような作業を行っているとき、 姿勢が不安定になったり、 あるいは対象物 から予期せぬ反力を受けても、 動パランスを維持して安定な姿勢を保持すること ができる。 さらには、 対象物の運動に影響を与えることなく、 動バランスを維持 して安定な姿勢を保持することができる。
また、 この発明は、 後述する請求の範囲第 3項に記載する如く、 前記姿勢安定 化制御手段は、 少なくとも前記実対象物反力と前記目標対象物反力との差を示す 対象物反力偏差に基づき、 前記ロポットの姿勢が安定するように前記目標動作を 修正する如く構成した。 このように、 少なくとも実対象物反力と目標対象物反力 との差を示す対象物反力偏差に基づき、 ロポットの姿勢が安定するように目標動 作を修正する如く構成したので、 上記した効果を一層良く得ることができる。 また、 この発明は、 後述する請求の範囲第 4項に記載する如く、 前記姿勢安定 ィ匕制御手段は、 前記対象物反力偏差の第 1の成分によって発生する転倒力の全部 あるいは一部を、 前記第 1の成分から得られる第 2の成分によって打ち消すよう に、 前記目標動作を修正する如く構成した。 このように、 対象物反力偏差の第 1 の成分によって発生する転倒力の全部あるいは一部を、 第 1の成分から得られる 第 2の成分によって打ち消すように、 目標動作を修正する如く構成したので、 上 記した効果を一層良く得ることができる。
また、 この発明は、 後述する請求の範囲第 5項に記載する如く、 少なくとも基 体と、 移動機構と、 対象物に力を作用することができる、 少なくとも 1個の腕部 リンクからなる移動ロボットの姿勢制御装置において、 少なくとも前記ロボット の目標腕部リンク位置姿勢と、 前記対象物から前記腕部リンクに作用する対象物 反力の目標値である目標対象物反力からなる目標動作を生成する目標動作生成手 段、 前記ロボットの姿勢傾き偏差を検出し、 前記検出した姿勢傾き偏差が零に近 づくように前記目標動作を修正する姿勢安定化制御手段、 および少なくとも前記 修正された目標動作に基づいて前記腕部リンクを駆動する腕部駆動装置を備える 如く構成した。 このように、 移動ロボットの姿勢制御装置において、 少なくとも ロボットの目標腕部リンク位置姿勢と、 対象物から腕部リンクに作用する対象物 反力の目標値である目標対象物反力からなる目標動作を生成すると共に、 ロボッ トの姿勢傾き偏差を検出し、 検出した姿勢傾き偏差が零に近づくように目標動作 を修正し、 修正された目標動作に基づいて腕部リンクを駆動する如く構成したの で、 移動ロボットが対象物から反力をうけるような作業を行っているとき、 姿勢 が不安定になったり、 あるいは対象物から予期せぬ反力を受けても、 動ノ を維持して安定な姿勢を保持することができる。 さらには、 対象物の運動に影響 を与えることなく、 動パランスを維持して安定な姿勢を保持することができる。 尚、 特許請求の範囲および発明の詳細な説明欄において、 『移動ロボット』 は 腕部リンク以外に対象物反力を受ける移動口ポットも含む意味で使用する。 また 、 『腕部リンク』 に関し、 脚部リンクであっても、 作業対象物に作用するもので あれば、 腕部リンクとみなすこととする。 例えば、 昆虫型の 6個の脚部リンクを 備えたロボットにおいて、 前の 2個の脚部リンクを用いて物を持ち上げる場合に は、 その脚部リンクは腕部リンクとみなすこととする。
また、 「位置姿勢」 は 「位置」 および 「姿勢」 の両者を含んでも良く、 あるい はそのいずれかであっても良い意味で使用する。 換言すれば、 「位置姿勢」 は、 必ず 「位置」 および 「姿勢」 の両者を含まなければならないものではない。 図面の簡単な説明
第 1図は、 この発明の一つの実施の形態に係る移動ロボットの姿勢制御装置が 対象とする脚式移動口ポットの正面図である。
第 2図は、 第 1図に示すロボットの側面図である。
第 3図は、 第 1図に示すロボットをスケルトンで示す説明図である。
第 4図は、 第 3図に示す電子制御ユニット (E C U) などの構成を詳細に示す プロック図である。
第 5図は、 この発明の一つの実施の形態に係る移動ロボットの姿勢制御装置の 構成を示すプロック図である。
第 6図は、 第 5図に示す装置の目標作業パターン生成器が生成する歩容におけ る支持脚座標系を示す説明図である。
第 7図は、 第 6図と同様に、 第 5図に示す装置の目標作業パターン生成器が生 成する歩容における支持脚座標系を示す説明図である。
第 8図は、 第 5図に示す装置の内、 脚メイン制御装置に適用される複合コンプ ライアンス制御装置の構成を示すプロック図である。
第 9図は、 第 5図に示す装置が前提とする原理の説明図である。
第 1 0図は、 第 9図と同様に、 第 5図に示す装置が前提とする原理の説明図で ある。
第 1 1図は、 第 9図と同様に、 第 5図に示す装置が前提とする原理の説明図で ある。
第 1 2図は、 第 9図と同様に、 第 5図に示す装置が前提とする原理の説明図で ある o
第 1 3図は、 第 9図と同様に、 第 5図に示す装置が前提とする原理の説明図で ある。
第 1 4図は、 第 5図に示す装置の内、 姿勢安定化メイン制御装置の構成を示す ブロック図である。
第 1 5図は、 第 1 4図に示す姿勢安定ィ匕メィン制御装置の内、 姿勢安定化用モ ーメント算出器の構成を示すプロック図である。
第 1 6図は、 第 1 4図に示す姿勢安定化メイン制御装置の内、 対象物反力偏差 モーメント分離器の構成を示すプロック図である。
第 1 7図は、 第 1 4図に示す姿勢安定化メイン制御装置の内、 対象物反力平衡 制御用分配器の構成を示すプロック図である。
第 1 8図は、 第 1 4図に示す姿勢安定ィヒメイン制御装置の内、 対象物反力平衡 制御用分配器の構成を示す、 第 1 7図と同様なプロック図である。
第 1 9図は、 第 1 4図に示す姿勢安定化メイン制御装置の内、 対象物反力平衡 制御装置の構成を示すプロック図である。
第 2 0図は、 第 1 4図に示す姿勢安定化メィン制御装置の内、 補償モーメント 分配器の構成を示すブロック図である。
第 2 1図は、 第 1 4図に示す姿勢安定化メイン制御装置の内、 修正目標対象物 反力算出器の構成を示すプロック図である。
第 2 2図は、 第 5図に示す装置の作用および効果を説明するために、 制御系を 対象物反力に注目して変形しつつ簡略ィ匕して示すプロック図である。
第 2 3図は、 同様に第 5図に示す装置の作用おょぴ効果を説明するために、 制 御系を対象物反力に注目して変形しつつ簡略ィ匕して示すプロック図である。
第 2 4図は、 第 1 4図に示す姿勢安定化メィン制御装置の動作を説明する説明 図である。 第 2 5図は、 この発明の第 2の実施の形態に係る移動ロボットの姿勢制御装置 の構成を示す、 第 1 4図と類似する、 姿勢安定化メイン制御装置の構成を示すブ 口ック図である。
第 2 6図は、 この発明の第 3の実施の形態に係る移動ロボットの姿勢制御装置 の構成を示す説明図である。 発明を実施するための最良の形態
以下、 添付図面を参照してこの発明の一つの実施の形態に係る移動ロボットの 姿勢制御装置を説明する。
第 1図はこの実施の形態に係る移動ロボットの姿勢制御装置が対象とする脚式 移動口ポットの正面図、 第 2図はその側面図である。 尚、 移動ロボットとしては 、 2個の脚部リンクと 2個の腕部リンクを備えたヒューマノイド型 (人間型) の 脚式移動ロボットを例にとる。
第 1図に示すように、 脚式移動ロボット (以下 「ロボット」 という) 1は、 複 数個 (本) 、 より具体的には 2個 (本) の脚部リンク (あるいは脚) 2を備える と共に、 その上方には上体 (基体) 3が設けられる。 上体 3のさらに上方には頭 部 4が形成されると共に、 上体 3の両側には 2個 (本) の腕部リンク (あるいは 腕) 5が連結される。 また、 第 2図に示すように、 上体 3の背部には格納部 6が 設けられ、 その内部には電子制御ユエット (後述) などが収容される。 尚、 第 1 図おょぴ第 2図に示すロボット 1は、 内部構造を保護するためのカバーで被覆さ れる。
第 3図はロボット 1をスケルトンで示す説明図である。 同図を参照してその内 部構造を関節を中心に説明すると、 図示の如く、 ロボット 1は、 左右それぞれの 脚部リンク 2および腕部リンク 5に、 1 1個の電動モータで動力化された 6個の 関節を備える。
即ち、 ロボット 1は、 腰部 (股部) に、 脚部リンク 2を口、直軸 (Z軸あるいは 鉛直軸) まわりに回転させる関節を駆動する電動モータ 1 O R, 1 0 L (右側を R、 左側を Lとする。 以下同じ) と、 脚部リンク 2をピッチ (進行) 方向 (Y軸 まわり) に摇動させる関節を駆動する電動モータ 1 2 R, 1 2 Lと、 脚部リンク 2をロール (左右) 方向 (X軸まわり) に回転させる関節を駆動する電動モータ 14R, 14 Lを備えると共に、 膝部に脚部リンク 2の下部をピッチ方向 (Y軸 まわり) に回転させる膝関節を駆動する電動モータ 1 6 R, 1 6 Lを備え、 さら に足首に脚部リンク 2の先端側をピッチ方向 (Y軸まわり) に回転させる足 (足 首) 関節を駆動する電動モータ 1 8 R, 1 8 Lとロール方向 (X軸まわり) に回 転させる足 (足首) 関節を駆動する電動モータ 20 R, 20 Lを備える。
上記したように、 第 3図において、 関節はそれを駆動する電動モータ (あるい は電動モータに接続されてその動力を伝動するプーリなどの伝動要素) の回転軸 線で示す。 尚、 脚部リンク 2の先端には足部 (足平) 22 R, 22 Lが取着され る。
このように、 脚部リンク 2の股関節 (腰関節) には電動モータ 1 OR (L) , 1 2R (L) , 1 4R (L) がそれらの回転軸線が直交するように配置されると 共に、 足関節 (足首関節) には電動モータ 1 8R (L) , 2 OR (L) がそれら の回転軸線が直交するように配置される。 尚、 股関節と膝関節は大腿リンク 24 R (L) で、 膝関節と足関節は下 Ji退リンク 26R (L) で連結される。
脚部リンク 2は股関節を介して上体 3に連結されるが、 第 3図では上体 3を上 体リンク 28として簡略的に示す。 前記したように、 上体 3には腕部リンク 5が 連結される。
腕部リンク 5も、 脚部リンク 2と同様に構成される。 即ち、 ロボット 1は、 肩 部に、 腕部リンク 5をピッチ方向に回転させる関節を駆動する電動モータ 3 OR , 30 Lとロール方向に回転させる関節を駆動する電動モータ 3 2 R, 3 2 Lを 備えると共に、 その自由端側を回転させる関節を駆動する電動モータ 34 R, 3 4 Lと、 肘部にそれ以降の部位を回転させる関節を駆動する電動モータ 3 6 R, 36 Lを備え、 さらにその先端側にそれを回転させる手首関節を駆動する電動モ ータ 38R, 3 8 Lを備える。 尚、 手首の先にはハンド (エンドェフエクタ) 4 OR, 40 Lが取着される。
即ち、 腕部リンク 5の肩関節には電動モータ 3 OR (L) , 3 2R (L) , 3 4R (L) がそれらの回転軸線が直交するように配置される。 尚、 肩関節と肘関 節とは上腕リンク 42R (L) で、 肘関節と手首関節とは下腕リンク 44R (L ) で連結される。
また、 頭部 4は、 鉛直軸まわりの首関節 4 6と、 それと直交する軸まわりに頭 部 4を回転させる頭部揺動機構 4 8を介して上体 3に連結される。 第 3図に示す 如く、 頭部 4の内部には撮像した画像を示す信号を出力する、 C C Dカメラから なる視覚センサ 5 0が配置されると共に、 レシーバおよびマイクロフォンからな る音声入出力装置 5 2が配置される。
上記の構成により、 脚部リンク 2は左右の足について 6個の関節を備えて合計 1 2の自由度を与えられ、 6個の関節を適宜な角度で駆動 (関節変位) すること で、 脚部リンク 2に所望の動きを与えることができ、 ロボット 1を任意に 3次元 空間を歩行させることができる。 また、 腕部リンク 5も左右の腕について 5個の 関節を備えて合計 1 0の自由度を与えられ、 5個の関節を適宜な角度で駆動 (関 節変位) することで所望の作業を行わせることができる。 さらに、 頭部 4は 2つ の自由度からなる関節あるいは揺動機構を与えられ、 これらを適宜な角度で駆動 することにより所望の方向に頭部 4を向けることができる。
1 O R ( L) などの電動モータのそれぞれにはロータリエンコーダ (図示せず ) が設けられ、 電動モータの回転軸の回転を通じて対応する関節の角度、 角速度 、 および角加速度の少なくともいずれかを示す信号を出力する。
足部 2 2 R ( L) には公知の 6軸力センサ (以下 「力センサ」 という) 5 6が 取着され、 ロポットに作用する外力の内、 接地面からロボット 1に作用する床反 力の 3方向成分 F X , F y , F zとモーメントの 3方向成分 M x, M y , M zを 示す信号を出力する。
また、 手首関節とハンド 4 O R ( L) の間には同種の力センサ (6軸力センサ ) 5 8が取着され、 口ポット 1に作用する床反力以外の外力、 具体的にはハンド 4 O R ( L) に対象物から作用する外力 (対象物反力) の 3方向成分 F x , F y , F zとモーメントの 3方向成分 M x, My , M zを示す信号を出力する。
さらに、 上体 3には傾斜センサ 6 0が設置され、 鉛直軸に対する上体 3の傾き (傾斜角度) とその角速度の少なくともいずれ力、 即ち、 ロボット 1の上体 3の 傾斜 (姿勢) などの状態量を示す信号を出力する。
これら力センサ 5 6などの出力群は、 ロボット 1の上体 3の背中側の格納部 6 (第 2図に示す) に収容された、 マイクロコンピュータからなる電子制御ュニッ ト Electric Control Unit。 以下 「ECU」 とレ、う) 62に送られる (図示の便 宜のためロボット 1の右側についてのみ図示する) 。
第 4図は ECU 62の詳細を示すプロック図であり、 マイクロ ·コンピュータ から構成される。 そこにおいて傾斜センサ 60などの出力は AZD変 l 70で デジタル値に変換され、 その出力はパス 72を介して RAM74に送られる。 ま た各ァクチユエータにおいて電動モータに隣接して配置されるエンコーダの出力 は、 カウンタ 76を介して RAM74内に入力される。
ECU62内には CPUからなる演算装置 80が設けられており、 演算装置 8 0が生成した歩容に基づいてロボットが安定な姿勢を継続することができるよう に、 関節角変位指令 (ァクチユエータ変位指令) を算出し、 RAM74に送出す る。 尚、 符号 84は ROMを示す。
また、 演算装置 80は RAM74からその指令と検出された実測値とを読み出 し、 各関節の駆動に必要な制御値 (操作量) を算出して DZA変換器 86と各関 節に設けられたァクチユエータ駆動装置 (アンプ) 88を介して各関節を駆動す る、 変位検出器 (エンコーダ) 付きの脚ァクチユエータ 90と腕ァクチユエータ 92の電動モータ 1 OR (L) , 12R (L) などに出力する。
第 5図は、 この実施の形態に係る脚式移動ロボットの姿勢制御装置 (主として 前記した演算装置 80に相当) の構成およぴ動作を機能的に示すプロック図であ る。
この装置は脚おょぴ腕の動作を統合的に制御する装置であり、 後述するように 操作量を算出して各ァクチユエータ駆動装置 88にァクチユエータ変位指令を出 力し、 脚ァクチユエータ 90と腕ァクチユエータ 92を動作させる。 図示の如く 、 この装置は、 目標作業パターン生成器 100、 脚メイン制御装置 102、 腕メ イン制御装置 104、 および姿勢安定ィ匕メイン制御装置 106などから構成され る。
目標作業パターン生成器 100は、 ある想定条件下においてロボット 1の動力 学的平衡条件を満足する歩容を含む、 目標作業パターンを生成する。 目標作業パ ターンは、 複数の変数の時間変化パターンによって表現される。 この変数は、 運 動を表現する変数と環境から受ける反力を表現する変数から構成される。
ここで、 運動を表現する変数は、 これによつて各瞬間における姿勢が一義的に 決定できる変数の組である。 具体的には、 目標足部位置姿勢、 目標上体位置姿勢 、 目標ハンド位置姿勢から構成される。
また、 環境から受ける反力を表現する変数は、 後述する目標全床反力中心点、 目標 反力おょぴ目標対象物反力から構成される。
これら各変数は、 支持脚座標系で表される。 支持脚座標系は、 支持脚足首 (足 関節を駆動する電動モータ 1 8 , 2 O R ( L) の回転軸線の交点) から足部 2 2 R ( L) への垂直投影点を原点とする座標系であり、 第 6図および第 7図に示す ように、 支持脚が接地している床に固定された座標系であり、 支持脚足部の前向 きを X軸の向き、 左向きを Y軸の向き、 鉛直方向上向きを Z軸向きとする座標系 である。
以下、 これら各変数を詳細に説明する。
先ず、 「対象物反力」 とは、 ロボット 1が環境から受ける外力の内で、 各足部 床反力を除いた外力を意味する。 具体的には、 ハンド 4 O R ( L ) が作業対象物 (例えばドアの把手) 力 ^受ける反力を意味する。 尚、 その目標値を 「目標対象 物反力」 と呼ぶ。
目標作業パターン生成器 1 0 0が出力する目標対象物反力は、 後述する目標全 床反力中心点まわりに作用する力とモーメントによって表現される。 ちなみに、 姿勢安定化にとって重要なのは、 このうちのモーメント成分である。
目標全床反力と目標全床反力中心点 (位置) について説明すると、 作業中にお いて各足部が床から受けるべき目標床反力の合力を 「広義の目標全床反力」 と呼 ぶ。 広義の目標全床反力は、 作用点とその点における力とモーメントで表現され る。 目標全床反力中心点 (位置) は、 目標全床反力をその点を作用点とする力と モーメントで表現したとき、 X軸まわりモーメント成分と Y軸まわりモーメント 成分が零 (0 ) になる床面上の点である。
狭義の目標全床反力は、 広義の目標全床反力を、 目標全床反力中心点を作用点 として、 力とモーメントで表現した場合の力とモーメントを意味する。 目標作業 パターン生成器が出力する目標全床反力は、 狭義の目標全床反力である。 0
12 以降は特に説明がない限り、 目標全床反力は、 狭義の目標全床反力を指す。 尚 、 平坦な床面を歩行する場合には、 目標全床反力中心点は、 通常、 その床面上に ¾ れる。
歩行制御の分野において従来から公知である、 M. Vuk o b r a t o v i c によって提唱された ZMPの概念も、 次のように拡張する。 即ち、 ロボット 1の 運動によつて生じる慣性力と重力と対象物反力の合力が、 その点を作用点とする 力とモーメントで表現されたとき、 X軸まわりモーメント成分と Y軸まわりモー メント成分が 0になる床面上の点を 「ZMP」 と呼ぶ。 ロボット 1が目標の運動 を行うときの ZMPを 「目標 ZMP」 と呼ぴ、 その位置を 「目標 ZMP位置」 と 呼ぶ。
目標作業パターンが動力学的平衡条件を満足するということは、 目標作業バタ ーンによって生じる上記の慣性力と重力と対象物反力の合力と目標全床反力が、 打ち消し合って零になることである。 従って、 動力学的平衡条件を満足するため には、 目標全床反力中心点 (位置) と目標 ZMP (位置) が一致しなければなら ない。
目標作業パターン生成器 100では、 後述する大局安定ィ匕制御が働いていない 場合、 動力学的平衡条件を満足する歩容を含む目標作業パターンを生成する。 換 言すれば、 この場合、 目標作業パターン生成器 100が生成する目標全床反力中 心点 (位置) は目標 ZMP (位置) に一致する。
目標足部位置姿勢、 目標上体位置姿勢、 目標ハンド位置姿勢は、 前記した支持 脚座標系で表現されたそれぞれの部位の位置と姿勢を表す。 具体的には、 上体 3 の位置おょぴその速度は、 上体 3の重心位置などの代表点おょぴその (変位) 速 度を意味する。 更に、 上体 3あるいは足部 22R (L) の姿勢は、 X, Y, Ζ空 間における向きを意味する。
次いで、 脚メィン制御装置 102について説明する。 脚メィン制御装置 102 の機能は、 概説すると、 脚ァクチユエータ (10R (L) などの電動モータなど ) を操作し、 目標姿勢に追従する姿勢追従制御と、 目標全床反力と補償全床反力 モーメント (後述) の合力に追従する床反力制御を同時に行う装置である。 尚、 目標床反力と補償全床反力モーメントの合力と目標姿勢を同時に完全に満足させ ることは不可能であるので、 適当な調整が行われ、 長期的には両方を満足するよ うに制御される。
より詳しくは、 脚メイン制御装置 1 0 2は、 修正目標上体位置姿勢 (後述) 、 目標足部位置姿勢、 目標全床反力中心点 (位置) と、 その中心点に作用する目標 全床反力と、 補償全床反力モーメントを入力し、 目標全床反力中心点 (位置) に 作用する実全床反力のモーメント成分が、 目標全床反力モーメント (通常は零) と補償全床反力モーメントの和に一致するように、 目標足部位置姿勢を修正する
。 修正された目標足部位置姿勢を 「修正目標足部位置姿勢」 と呼ぶ。
脚メイン制御装置 1 0 2は、 この修正目標上体位置姿勢と修正目標足部位置姿 勢から決定される目標脚関節変位に実関節変位が追従するように、 ァクチユエ一 タ変位指令を出力して脚ァクチユエータ 9 0を制御する。
以上の機能を実現させるために、 この実施の形態にあっては、 前記した特開平
1 0 - 2 7 7 9 6 9号公報に記載される技術 (以下 「複合コンプライアンス制御
」 という) を適用する。 この複合コンプライアンス制御を行う装置は、 脚メイン 制御装置の他に、 足部 2 2 R ( L) に設けた力センサ 5 6、 ァクチユエータ駆動 装置 8 8およぴァクチユエータ 9 0を包含して構成される。
第 8図に複合コンプライアンス制御装置のプロック図を示すが、 その詳細な説 明は上記特開平 1 0— 2 7 7 9 6 9号公報に記載されているので省略する。 尚、 第 8図に示す複合コンプライアンス制御装置においては、 特開平 1 0— 2 7 7 9 6 9号公報に記載される複合コンプライアンス制御装置と比較すると、 上体傾斜 フィードバック系の姿勢安定ィ匕制御 (補償全床反力モーメントの演算) が省かれ ている。
その理由は、 同様の処理が後述の姿勢安定ィ匕メイン制御装置で行なわれ、 そこ で求められた補償全床反力モーメントが入力されるためである。 伹し、 上体傾斜 偏差による床反力の変動を抑制するため、 上体傾斜フィードパック系を追加して も良い。
また、 この実施の形態において複合コンプライアンス制御に、 上記した特許第 3 2 6 9 8 5 2号公報に記載される技術 (以下、 「大局安定化制御」 という) を 加えることとする。 但し、 大局安定ィ匕制御は上体の位置や歩幅を修正、 より具体 的には上記した修正目標上体位置姿勢をさらに修正するので、 後述の腕部リンク
5の制御にあたり、 ハンド 4 O R ( L) と対象物との相対位置関係が重要な場合 には、 修正される上体の位置や歩幅の影響を考慮する必要がある。 また、 大局安 定ィ匕制御が働くと、 目標作業パターンにおける目標 Z MPは、 目標全床反力中心 点から故意にずらされた点に制御される。
大局安定化制御が加えられることで修正目標上体位置姿勢がさらに修正される こと力 ら、 それによつて最終的に得られる目標上体位置姿勢を、 第 5図に示す如 く、 「最終修正目標上体位置姿勢」 と呼ぶ。 尚、 大局安定化制御を加えることは この発明において必須ではない。 即ち、 大局安定化制御を加えなくても良く、 そ の場合は、 修正目標上体位置姿勢を最終修正目標上体位置姿勢として扱えば足り る。
尚、 第 5図において、 脚メイン制御装置 1 0 2で修正された最終修正目標足部 位置姿勢は、 姿勢安定ィ匕メイン制御装置 1 0 6に入力される。 伹し、 姿勢安定ィ匕 メイン制御装置 1 0 6において、 目標足部位置姿勢が修正されたことによるロボ ットの重心位置の変化が無視できるならば、 最終修正目標足部位置姿勢を姿勢安 定ィ匕メィン制御装置 1 0 6に入力させる必要はない。
次いで腕メィン制御装置 1 0 4について説明する。 腕メィン制御装置 1 0 4の 機能は、 概説すると、 腕ァクチユエータ (3 O R ( L ) などの電動モータなど) 9 2を操作し、 目標姿勢に追従する姿勢制御と修正目標対象物反力 (後述) に追 従する対象物反力制御を同時に行うことである (ここでの 「姿勢」 は腕部リンク 5の全関節の変位の組を表す) 。 目標姿勢と修正目標対象物反力を同時に完全に 満足させることは不可能であるので、 適宜な手法、 例えば、 従来からマニピユレ ータのコンプライアンス制御、 いわゆる仮想コンプライアンス制御として知られ るものを用いる (機械工学便覧、 エンジニアリング編、 C 4— 1 0 0頁) 。
具体的な制御系構成とァルゴリズムを以下に説明すると、 腕メイン制御系は腕 メィン制御装置 1 0 4の他に、 前記したハンド 4 0 R (L) に設けたカセンサ 5 8、 ァクチユエータ駆動装置 8 8および腕ァクチユエータ 9 2を包含して構成さ れる。
腕メイン制御装置 1 0 4は、 最終目標上体位置姿勢 (あるいは修正目標上体位 置姿勢) 、 目標ハンド位置姿勢および修正目標対象物反力を入力し、 力センサ5
8によって検出される実対象物反力と修正目標対象物反力の差に応じて目標ハン ド位置姿勢を修正する。 修正された目標ハンド位置姿勢を 「最終修正目標ハンド 位置姿勢」 と呼ぶ。 そして、 最終修正目標上体位置姿勢 (あるいは修正目標上体 位置姿勢) と最終修正目標ハンド位置姿勢から決定される目標腕関節変位に実関 節変位が追従するように腕ァクチユエータ 9 2を制御する。
次いで姿勢安定化メイン制御装置 1 0 6について説明する。 姿勢安定化メイン 制御装置 1 0 6は、 動パランスあるいは姿勢パランスをとるために動力学的平後 ΐ 条件を考慮しながら制御を行う。 そこで、 先ず、 装置の概要を説明する前に、 動 力学的平衡条件について以下に説明する。
実際のロボット 1の姿勢傾きの挙動を決定する最も大きな要因は、 目標全床反 力中心点 (即ち、 目標 Ζ ΜΡ ) まわりでの実際の力のモーメントのバランスであ る。
目標全床反力中心点まわりに作用する力のモーメントを以下に列挙する。
1 ) 慣性力モーメント
2 ) 重力モーメント
3 ) 全床反力モーメント
4 ) 対象物反力モーメント
1貧性力モーメントは、 目標全床反力中心点まわりのロボットの角運動量の変化 によって生じるモーメントである。 この値はオイラー方程式によって求められ、 具体的には目標全床反力中心点まわりのロボット 1の角運動量の 1階微分値の符 号を反転させたものである。 目標作業パターンの慣性力モーメントを 「目標慣性 力モーメント」 と呼ぶ。 実際のロボット 1が作業しているときの慣性力モーメン トを 「実慣性力モーメント」 と呼ぶ。 重力モーメントは、 ロボット 1の重心に作 用する重力が目標^^反力中心点まわりに作用するモーメントである。
2個の足部 2 2 R ( L) にそれぞれ作用する床反力の合力を 「全床反力」 と呼 ぶ。 全床反力モーメントは、 全床反力が目標全床反力中心点まわりに作用するモ 一メントである。
前述のように、 ハンド 4 O R ( L) が対象物から受ける反力を 「対象物反力」 と呼ぶ。 対象物反力モーメントは、 対象物反力が目標全床反力中心点まわりに作 用するモーメントである。
さて、 理想的な脚メィン制御装置により、 ロボット 1が目標作業パターンの運 動パターンに忠実に追従していたと仮定する。 このときには実慣性力モーメント は目標慣性力モーメントに一致し、 実重力モーメントは目標重力モーメントに一 致する。
一方、 動力学の法則 (オイラー方程式) により、 実慣性力モーメントと実重力 モーメントと実全床反力モーメントと実対象物反力モーメントの和は、 必ず零で ある。
故に、 ロポット 1が忠実に目標作業パターンの運動パターン通りに動くために は、 目標慣个生力モーメントと目標重力モーメントと実全床反力モーメントと実対 象物反力モーメントの和は、 零でなければならない。 これを条件 1とする。
ところが、 実際には実対象物反力モーメントが目標対象物反力モーメントと一 致せず、 差が生じる。 例えば、 第 9図に示すように、 台車 (対象物) 1 0 8を押 す作業を行っているとき、 台車 1 0 8の実際のころがり摩擦力の絶対値が想定し ていた ί直よりも突然小さくなってしまった状況である。
この状況では、 実対象物反力が目標全床反力中心点の Υ軸まわりに作用するモ 一メントは、 目標対象物反力が目標全床反力中心点の Υ軸まわりに作用するモー メントよりも正の向きに大きくなつて条件 1を満たさなくなり、 ロボット 1は前 傾する。 尚、 モーメントの向きは、 座標軸の正方向に向いてロボット 1を時計ま わりに回転させるモーメントを正とする。
このような状況においても条件 1を満足させるためには、 先に提案した技術で は次の 2通りの手法が考えられた。
手法 1 ) 上記偏差を打ち消すように、 実全床反力モーメントを変える。 具体的 には、 目標 ^^反力中心点まわりに負の床反力モーメントを発生するように脚メ イン制御装置 1 0 2に指令し、 脚メイン制御装置 1 0 2においてァクチユエータ 変位指令を行って足部 2 2 R ( L) のつまさきを下げ、 実 ^^反力モーメントを 負の向きに増加させる、 即ち、 脚部リンク 2.で踏み止めさせるような姿勢をとら せる。 手法 2 ) 上記偏差を打ち消すように、 目標作業パターンの運動パターンを修正 することにより、 目標慣性力モーメントと目標重力モーメントを修正する。 具体 的には、 目標上体位置および/または姿勢を修正することにより、 目標慣'生カモ 一メントと目標重力モーメントを修正する。 即ち、 上体 3を前後方向に移動させ る。
実全床反力モーメントは、 目標全床反力モーメントを変えるだけで脚メィン制 御装置によってすばやく変化させることができるので、 手法 1は短期的な対応に 向いている。但し、実全床反力モーメントを大きく変化させると、足部 2 2 R ( L ) の接地圧分布が偏って接地感が減少し、 最悪の場合には足部 2 2 R ( L) の一 部が浮いてしまう。 従って、 長期的には、 なるべく元の目標全床反力モーメント に戻すべきである。
実全床反力モーメントを元の目標全床反力モーメントに戻すためには、 重心位 置をずらし (この場合は後方にずらし) 、 目標重力モーメントによって上記偏差 を打ち消すように、 手法 2によって目標作業パターンの運動パターンを修正すれ ば良い。 但し、 重心位置を急激にずらすと、 過大な目標慣性力モーメントが逆向 きに発生するので、 ゆっくりと重心位置をずらす必要がある。 従って、 手法 2は 長期的な対応に向いている。
従来技術で述べた、 本出願人が先に提案した特開平 1 0— 2 3 0 4 8 5号公報 記載の技術は、 これら両方の手法を同時に行い、 短期的には手法 1を主に使うこ とによつて速レ、変化に対応し、 長期的には手法 2を主に使うことによつて実全床 反力モーメントを元の目標^反力モーメントに収束させるものであった。
これに対し、 この発明に係る姿勢制御装置においては、 さらに、 実対象物反力 の成分の内の拘束方向成分を意図的に変化させる手法 (手法 3 ) を追加するよう にした。
以下、 手法 3の原理について説明する。 先ず、 理解の便宜のため、 1個 (本) の腕部リンクを備えた脚式移動ロボットが、 その腕部リンクの先端に配置された ハンドを用いてある対象物に対して作業を行っている場合を考える。 このとき、 ハンドは対象物から拘束力を受け、 拘束運動をするものとする。
対象物がハンドによって空中に支持され、 ハンド以外のものによつて支持され ないならば、 ハンドの運動には 3次元の平行移動の自由度と 3次元の回転の自由 度の合計 6つの自由度があり、 対象物からは何等拘束力を受けない。
これに対し、 対象物がハンド以外のものからも支持されるならば、 場合によつ ては、 ハンドの運動はハンド以外の支持されるものによって拘束力を受ける。 具 体的には、 ハンドが対象物、 例えば静止した剛性の高い表面に接触すると、 ハン ドはその面を貫いて動くことはできず、 故に自然な位置の拘束が生じる、 換言す れば、 その面から拘束力を受けることとなる。 この発明に係る姿勢制御装置は、 その拘束力に着目し、 ロボットの姿勢安定ィ匕を図る制御を行うようにした。
説明を続ける前に、 ここで、 説明に用いる座標系、 各種空間や方向を以下のよ うに定義する。 尚、 以下に記載する変数は、 特に、 ことわりがない限り、 支持脚 座標系で表されるものとする。
また、 ハンドのある瞬間における X, Yおよび Z方向への速度成分をそれぞれ Vx, Vy, V zとする。 同じ瞬間における X, Yおよび Z軸まわりの回転速度 成分をそれぞれ ω X, co y, ω zとする。 回転は、 座標軸の正の方向に向いて時 計まわりに回転する向きを正とする。
この瞬間におけるハンドの速度を、 ベクトル (Vx, Vy, V z , ω χ, co y , ω ζ) で表わすこととし、 これを 「ハンド速度ベクトル」 と呼ぶ。
そして、 任意の実数 Vx, Vy, V z , ω χ, co y, ω ζを要素とするハンド 速度ベクトル (Vx, Vy, V z , ω x, co y, ω ζ) の集合を 「全運動速度空 間」 と呼ぶ。 全運動速度空間は、 いわゆるべクトル空間になっている。
また、 ある瞬間に実現不可能なハンド速度ベクトル全ての集合を、 この瞬間の 「拘束速度領域」 と呼ぶ。 ここでいう実現不可能なハンド速度ベクトルは、 幾何 学的な観点から判定される。 つまり、 この瞬間にハンドと対象物の間の干渉によ り、 ほとんどハンドの変位を生じることなく応力が発生するハンド速度べクトル を、 実現不可能なハンド速度ベクトルと定義する。 このとき、 腕ァクチユエータ や腕の関節配置などに因る制約は考えない。
即ち、 ハンド自身は、 対象物がなければ任意の速度で移動可能であることを前 提とする。 また、 このとき、 ハンドおよび対象物が十分な剛性を備えていれば、 剛体とみなす。 従って、 あるハンド速度ベクトル (Vx l , Vy 1 , V z 1 , ω T/JP03/04990
19 x 1, ω γ ΐ, ω z 1) が拘束速度領域の要素ならば、 任意の正の実数 kを乗じ た (kVx l, k Vy 1, k V z 1, k ω 1 , k ω y 1, k ω z 1) も拘束速 度領域の要素とする。 尚、 便宜上、 零ベクトル (0, 0, 0, 0, 0, 0) も拘 束速度領域の要素とする。
ここで注意すべき点は、 拘束速度領域を、 拘束条件下での移動可能な速度領域 と混同しないことである。 また、 拘束速度領域は、 いわゆるベクトル空間とは限 らない。 例えば、 床面に載置された十分に硬い対象物をハンドで把持した場合、 ハンドを真下 (床面の法線方向下方) に下げることはできないが、 逆方向 (法線 方向上方) には移動することができる。
つまり、 真下方向へのハンド速度ベクトルは拘束速度領域の要素であるが、 そ の逆方向は拘束速度領域の要素になっていない。 拘束速度領域がベタトル空間で あれば、 拘束速度領域の任意の要素 (Vx l, Vy 1, V z 1, ω χ 1, ω y 1 , ω ζ 1) に対し、 逆べクトル (一 Vx 1, 一Vy 1, — V z 1 , — ω χ 1, - ω y 1, 一 ω ζ ΐ) も拘束速度領域の要素でなければならないが、 この場合の拘 束速度領域は、 この条件を満足しないので、 ベクトル空間ではない。
次に、 拘束速度空間を以下のように定義する。 即ち、 拘束速度領域の任意のベ クトノレ (Vx l, Vy 1 , V z 1 , ω 1 , ω y 1 , ω ζ 1 ) と逆べクトノレ (一 V 1, -Vy 1, 一 V z l, -ω 1 , -ω y 1, 一 ω ζ ΐ) の集合を、 拘束 速度空間と定義する。 通常は、 拘束速度空間は、 全運動速度空間の部分ベクトル 空間になっている。
全運動速度空間内のべクトルの内で、 拘束速度領域の任意のベタトルとの内積 が零である (即ちそのベクトルと直交する) 全てのベクトルの集合を 「自由速度 空間」 と呼ぶ。
ここで、 拘束速度空間および自由速度空間内のベタトルを次のように定義する 。 拘束速度空間の要素である方向ベクトルを 「拘束方向ベクトル」 と呼び、 単に 拘束方向というときは、 任意の拘束方向ベクトルの向きを指す。 また、 自由速度 空間の要素である方向ベクトルを 「自由方向ベクトル」 と呼ぴ、 単に自由方向と レヽうときは、 任意の自由方向ベクトルの向きを指す。
以下にいくつかの対象物に対する作業に関して拘束速度空間を示す。 作業 1 ) 対象物をハンドによって空中に持ち上げている場合
この場合、 拘束速度空間は存在しない。 尚、 便宜上、 拘束速度空間は零べクト ルだけからなる空間とする。 自由速度空間は全運動速度空間に一致する。
作業 2) 前記した第 9図に示す如く、 自在キャスタ輪が付いた台車 108をハ ンド 40 Rで把持して押す場合
この場合、 拘束速度空間は、 任意の実数 Vz, ω X, coyを持つハンド速度べ ク トノレ (0, 0, V z , ωχ, ω y, 0) の集合である。
作業 3) 第 10図に示す如く、 ハンド 4 ORで把手 1 10を把持しながら、 ヒ ンジ 1 12が付いたドア 1 14を開閉する場合
この場合、 ヒンジ軸 1 1 2 Zまわりの回転以外の運動は拘束される。 ヒンジ軸 を Z軸とし、 この瞬間のハンドの X座標を 0、 Y座標を一 r (rはドア 1 14の 回転半径、 より詳しくは把手 110の回転半径) とすると、 自由速度空間は、 任 意の実数 Vxを持つハンドの速度ベクトル (Vx, 0, 0, 0, 0, Vx/r ) の集合である。
また、 拘束速度空間は、 任意の実数 Vx, Vy, Vz, ω χ, coyを持つハン ド速度ベク トル (Vx, Vy, V ζ, ω x, coy, — r *Vx) の集合である。 作業 4) 第 1 1図に示すような環境において、 円柱状の手摺り 120にハンド 40Rを滑らせながら階段 122を昇降する場合
この場合、 手摺り 120の軸方向の平行移動と、 手摺り 120の軸まわりの回 転以外の運動は拘束される。 手摺り 120の軸が式 x = z + c, y=-d (cお ょぴ dは定数) で表わされるとすると、 自由速度空間は、 任意の実数 Vxおよび ω Xを持つハンド速度べクトノレ (V , 0, Vx, ω χ, 0, ω χ) である。 ま た、 拘束速度空間は、 任意の実数 Vx, Vy, ω x, coyを持つハンド速度べク トル (Vx, Vy, -Vx, ω χ, ω y, -ω χ) の集合である。 尚、 理解の便 宜のため、 手摺り 120と X軸のなす角度を 45度とする。
作業 5) 第 1 1図に示す環境において、 手摺り 120をハンド 40Rでしつか り把持して階段 122を昇降する場合 '
手摺り 120をしつかりと把持しているときには運動の自由度はなく、 全ての 運動が拘束される。 従って、 拘束速度空間は、 全運動速度空間に一致する。 上記のような作業において、 ハンドから対象物に対してハンドの拘束方向に力 を作用させたとき、 対象物にはハンド以外の支持するものからその力を打ち消す 拘束力しか発生せず、 自由方向に実質的に摩擦力などが発生しないならば、 ハン ドぉよび対象物の運動は変化しなレ、。
作業 3 (第 1 0図) を例にとると、 ハンド 4 O Rによってドア 1 1 4に上向き ( Z軸上方) の力を作用させても、 ヒンジ 1 1 2の摩擦が実質的に零であるなら ば、 ヒンジ 1 1 2からドア 1 1 4に前記上向きの力を打ち消す力だけが作用する ので、 ドア 1 1 4の回転運動に何の影響も与えない。
この発明に係る姿勢制御装置は、 かかる性質を利用することで、 対象物の運動 制御に干渉せずに、 ロボットの姿勢を安定ィ匕しょうとするものである。 即ち、 対 象物からハンドに作用する力の拘束方向成分を制御することにより、 対象物の運 動に影響を与えることなく、 ロボットの動パランスを維持したり、 傾!/、た姿勢を 復元するように構成した。
以下に、 作業 3を例にとり、 この作用について説明する。 前述した第 1 0図に 示すように、 ロボット 1がドア 1 1 4の前に立ってその開閉作業を行っていると き、 ロボット 1が前に倒れそうになった状況を考える。 口ポット 1の姿勢を復元 させるための一つの方法は、 ドア 1 1 4を前に押すことである。 これによつて口 ポット 1はドア 1 1 4から反力を受け、 姿勢が復元する。
し力 し、 姿勢安定化制御のためにドア 1 1 4を押してしまうと、 ドア 1 1 4は 加速され、 その運動は望みの開閉運動からずれてしまうので、 あまり大きな復元 力を発生させることはできない。 特に、 ロボット 1の質量に較べてドアの質量が 非常に小さい場合には、 ほとんど復元力を発生させることができない。 また、 ド ァ 1 1 4の運動が所期の予定から変更されるため、 作業遂行上望ましくない。 ロボット 1の姿勢を復元させるためのもう一つの方法は、 ドア 1 1 4を下に押 すことである。 これによつてロボット 1はドア 1 1 4から反力を受け、 姿勢が復 元する。 さらに、 拘束方向に押しているだけなので、 前述のようにドアの運動は 変わらない。
この発明に係る姿勢制御装置は後者の方法を用いるものであるため、 前記作業 2、 作業 3および作業 4のようにハンドの運動に何らかの拘束方向が存在するこ とが、 この発明を適用するための必要条件になる。 従って、 前記作業 1に対して は適用することができない。
尚、 拘束速度空間などを表す座標系は、 円筒座標系や極座標系などでも良い。 通常の座標系なら何を用いてもそれらの間で変換も可能であると共に、 その瞬間 における拘束速度空間が指す空間に相違はないためである。 作業に応じて座標系 を適宜設定することで、 作業中、 拘束速度空間を一定 (普遍) にすることができ る場合もある。 例えば、 前記作業 3では、 円筒座標系を用いてヒンジ 1 1 2の軸 を円筒座標系の軸に一致させることで、 各瞬間における拘束速度空間を一定に保 つことができる。
次いで、 n個 (本) の腕を備える口ポットが作業を行う場合について考える。 この場合、 各種空間や方向の定義を、 次のように拡張する。
まず、 下式のように、 各ハンドに 1から nまでの識別番号をつけ、 それぞれを
「第 jハンド」 ( j = 1 , 2 , · · ·, !!) と呼んで区別する
座標系は前記した支持脚座標系を用いることとし、 第 jハンドのある瞬間にお ける X, Yおよび Z方向への速度成分を、 それぞれ V x j , V y j , V z j とす る。 また、 同じ瞬間における X, Yおよび z軸まわりの回転速度成分を、 それぞ れ ω X j , ω y ] , ω ζ ] とする。
そして、 ベク トノレ (V χ 1 , V y 1 , V ζ 1 , ω 1 , ω y 1 , ω ζ 1 , V x 2 , V y 2 , V ζ 2 , ω χ 2 , ω y 2 , ω ζ 2 , · · · , V χ η , V y η , V ζ η , ω χ η , ω y η , ω ζ η ) を 「全ノヽンド速度べクトノレ」 と呼ぶ。 このべクト ルは、 第 1ハンドから第 ηハンドまでのハンド速度べクトルの各要素を順に並べ たものである。 尚、 このベクトル表現の代りに、 j行目が第 jハンドの速度べク トルになっている、 n行 6列の行列で表わしても良い。
以降、 全ノヽンド速度ベクトルを改めて 「ハンド速度ベクトル」 と呼ぶ。 また、 任意の実数を要素とするハンド速度べクトルの集合を、 改めて 「全運動速度空間 」 と呼ぶ。 この全運動速度空間は、 6 * n次元ベクトル空間になっている。
さらに、 ある瞬間に実現不可能なハンド速度ベクトル全ての集合を、 改めてこ の瞬間の 「拘束速度領域」 と呼ぶ。 .ここでいう実現不可能なハンド速度べクトル は、 幾何学的な観点から判定される。 つまりこの瞬間に、 ハンドと対象物の間ま たはハンドと他のハンドの間の干渉により、 ほとんどハンドの変位を生じること なく応力が発生するハンド速度べクトルを実現不可能なハンド速度べクトルと定 る。
このとき、 腕ァクチユエータ能力や腕部リンク 5の関節配置などに関する制約 は考えない。 つまり、 ハンド自身は、 対象物がなければ任意の速度で移動可能で あることを前提とする。 また、 ハンドおよび対象物が十分な剛性を備えていれば 、 剛体とみなす。 従って、 ある速度ベクトルが拘束速度領域の要素ベクトルなら ば、 そのべクトルの全要素を k倍 (kは任意の正の実数) したべクトルも、 拘束 速度領域の要素べクトルとする。 尚、 便宜上、 零べクトルも拘束速度領域の要素 ベタトノレとする。
そして、 拘束速度領域の任意のベタトルとその逆べクトル (大きさが同じで向 きが逆のベタトル) からなる集合を改めて 「拘束速度空間」 と定義する。 通常は 、 拘束速度空間は、 全運動速度空間の部分べクトル空間になっている。
また、 拘束速度領域の任意のベクトルとの内積が零である (即ち、 そのべクト ルと直交する) 全ての全運動速度空間内のベクトルの集合を、 改めて 「自由速度 空間」 と呼ぶ。
ここで、 拘束速度空間おょぴ自由速度空間内のベクトルを、 以下のように定義 する。 拘束速度空間の要素である方向べクトノレを、 改めて 「拘束方向べクトル」 と呼ぴ、 単に拘束方向というときは、 任意の拘束方向ベクトルの向きを指す。 ま た、 自由速度空間の要素である方向ベクトルを、 改めて 「自由方向ベクトル」 と 呼び、 単に自由方向というときは、 任意の自由方向べクトルの向きを指す。
対象物およびハンドの運動の自由度と拘束に関する定義を、 上記の如く拡張す る。 これにより、 複数個 (本) の腕を備えるロボットが複数個の腕を使って作業 を行う場合でも、 全ハンドを拘束方向に動かしてハンドに対象物から反作用 (拘 束力) を受けさせることで、 全ての対象物の運動に影響を与えることなく、 ロボ ットの動パランスを維持したり、 傾いた姿勢を復元することができる。
以下に、 複数個の腕による作業の例を示す。 先ず、 第 1 2図に示すように、 対 象物が、 高さ h、 前方 bに存在する Z軸まわりの回転だけができる、 半径 rの円 形なホイ一ノレ 1 3 0であって、 このホイール 1 3 0を第 1ハンドと第 2ハンドの 計 2個のハンドで把持して回す作業を例として挙げる。
ある瞬間の第 1ハンドの座標が (b, - r, h) であり、 第 2ハンドの座標が (b, r , h) であるとする。 この瞬間の自由速度空間は、 任意の実数 ω z 1を 持つハンド速度べクトノレ (r * ω z 1. 0, 0, 0, 0, ω ζ 1 , — rネ ω ζ ΐ , 0, 0, 0, 0, ω ζ ΐ) の集合である。 これは、 対象物の軸まわりに 2個の ハンドを同じ角度だけ回転させる運動を意味する。
この瞬間の拘束速度空間は、 任意の実数 Vx 1, Vy 1, Vz l, ω x 1 , ω y 1, ω ζ 1, Vx 2, Vy 2, V ζ 2, ω χ 2, ω y 2を持つハンド速度べク トル (Vx l, Vy 1 , V z 1 , ω 1 , ω y 1 , ω ζ ΐ, Vx 2, Vy 2, V ζ 2, ω χ 2, ω y 2, 一 r *Vx l— o z l + r *Vx 2) の集合である。 例 えば、 ハンド速度ベクトル (Vx l, 0, 0, 0, 0, 0, Vx 1, 0, 0, 0 , 0, 0) は、 拘束速度空間の速度ベクトルである。 これは、 ホイール 1 30の 軸の摩擦が零であるならば、 両ハンドを X方向に同じ力で押しても、 ホイール 1
30の回転運動に影響を与えないことを意味する。
別の例を第 1 3図を参照して説明する。 同図に示すように、 第 1ハンドで固定 物 (例えば柱) 1 40を把持しながら、 第 2ハンドでヒンジ 142の付いたドア 144を開閉する作業を例に挙げる。
ヒンジ 142の軸 (142 Ζ) 方向が Ζ軸と平行であり、 ヒンジ軸 14 2 Ζの X座標が b、 ヒンジ軸の Y座標が]:、 この瞬間の第 2ハンドの座標を (b, 0, h) とする。 第 1ハンドの座標を (b, - c, h) とすると、 自由速度空間は、 任意の実数 ω z 2を持つハンド速度ベクトル (0, 0, 0, 0, 0, 0, r * co z 2, 0, 0, 0, 0, ω z 2) の集合である。
また、 拘束速度空間は、 それに直交するベクトル集合なので、 任意の実数 Vx 1, Vy丄, V z l, ω 1 , ω y 1 , ω ζ 1 , "V χ 2 , V y 2 , V ζ 2 , ω χ 2, ω y 2を持つ、 ノヽンド速度べク トノレ (Vx l, Vy 1 , V z 1 , ω 1 , ω y 1 , ω ζ ΐ, Vx 2, Vy 2, V ζ 2, ω χ 2, ω y 2, - r * Vx 2) の集 合となる。
例えば、 ノヽンド速度ベクトル (Vx 1 , Vy 1 , V z 1 , ω 1 , ω y 1 , ω ζ ΐ, 0, 0, 0, 0, 0, 0) は、 拘束速度空間の速度ベクトルである。 これ は、 第 1ハンドで固定物 1 4 0をどのように押しても、 ドア 1 4 4の回転運動に 影響を与えないことを意味する。
上記のように、 複数のハンドから対象物に対して拘束方向に力を作用させても 、 対象物にはハンド以外の支持するものからその力を打ち消す拘束力し力発生せ ず、 よって自由方向に摩擦力などを発生しないならば、 ハンドおよび対象物の運 動は変化しない。
従って、 上記のように定義を拡張することにより、 複数のハンドによる作業に おいても、 1個のハンドの場合と同じ原理で、 対象物の運動制御に干渉せずに、 ロボットの姿勢を安定にすることができる。 即ち、 複数のハンドによる作業にお いても、 対象物からハンドに作用する力の拘束方向成分を制御することにより、 対象物の運動に影響を与えることなく、 ロボットの動バランスを維持したり、 傾
V、た姿勢を復元することができる。
尚、 一般的に、 ハンドが複数、 例えばこの実施の形態のように 2個になると、 拘束速度空間の次元がハンドが 1個の場合よりも高くなるので、 この中からロボ ットの姿勢安定化に効果の高い部分ベクトル空間を選び出し、 その要素ベクトル の方向に拘束力を発生させることにより、 ハンドが 1個の場合よりも高い効果を 得ることができる。
ドアの開閉作業の例でいえば、 ドアの開閉制御に干渉しないようにロボットの 姿勢を復元させるためには、 1個の腕の場合ではドアに上下方向の力を作用させ るのが最も効果的であるが、 2個の腕の例では、 ドアを把持していないハンドで 固定物を押すようにすることで、 より効果的に動バランスを維持したり、 傾いた 姿勢を復元することができる。
以上の原理を前提とし、 第 5図に示す姿勢安定ィヒメィン制御装置 1 0 6の説明 に戻る。
姿勢安定化メィン制御装置 1 0 6は、 前記した 3つの手法、 即ち、
1 ) 実全床反力モーメントを修正する
2 ) 目標慣性力モーメントと目標重力モーメントを修正する
3 ) 実対象物反力の成分の内の拘束方向成分を修正する
の 3つの手法を併用するため、 第 1 4図に示すように構成される。 即ち、 姿勢安定化メイン制御装置 1 o 6は、 姿勢安定化用補償モーメント算出 器 2 0◦、 対象物反力平衡制御装置 2 0 2、 対象物反力モーメント偏差分離器 2 0 4、 修正目標対象物反力算出器 2 0 6、 および各種の分配器 (具体的には、 対 象物反力平衡制御用分配器 2 0 8と捕償モーメント分配器 2 1 0 ) とから構成さ れる。
姿勢安定ィ匕メイン制御装置の各構成要素は全て、 制御周期毎 (例えば 1 0 0 m s e c毎) に演算が行われる。 E C U 6 2の性能上、 同時に複数の演算処理がで きない場合には、 第 1 4図の矢印上流側から順に演算処理を実行すれば良い。 以下、 姿勢安定化メィン制御装置 1 0 6で処理される変数およびそれらの構成 要素について説明 (定義) する。
上述したように、 この発明に係る姿勢制御装置は、 対象物反力の拘束方向成分 を制御することにより、 対象物の運動に影響を与えることなく、 ロボット 1の動 パランスを維持したり、 傾いた姿勢を復元する制御装置に関する。 しかしながら
、 対象物反力の全ての拘束方向成分が、 ロボット 1の動バランスを維持したり傾 いた姿勢を復元する効果を持っているとは限らない。
また、 ある拘束方向の目標対象物反力が、 作業目的や対象物の性質上、 変更す べきではない場合もある。 つまり、 対象物反力の拘束方向成分の内で、 ロボット 1の動バランスを維持したり、 傾いた姿勢を復元するために利用すべき成分を、 復元する効果の度合、 作業目的および対象物の性質を考慮して適宜選定すべきで ある。
そこで、 新たに、 次の空間と方向を定義する。 第 2 4図を参照して説明すると 、 先ず、 全運動速度空間の中で、 ロボット 1の動バランスを維持したり、 傾いた 姿勢を復元するために利用すべき全ての拘束方向によって張られるべクトル空間 を 「操作空間」 と呼ぶ。 操作空間は、 拘束速度空間の部分べクトル空間となって いる。 また、 操作空間の任意の方向べクトルを 「対象物反力操作方向」 あるいは 単に 「操作方向」 と呼ぶ。 図示の如く、 操作空間は、 拘束速度空間から作業空間 を除いた、 白地の部分に相当する。
全運動速度空間の方向べクトルの内、 任意の対象物反力操作方向との内積が零 である (即ち、 その方向と直交する) ものを 「対象物反力非操作方向」 あるいは 単に 「非操作方向」 と呼び、 全ての非操作方向が張る空間を 「非操作空間」 と呼 ぶ。
即ち、 非操作空間は、 全運動速度空間の部分ベクトル空間となっており、 自由 速度空間は、 非操作空間の部分ベクトル空間となっている。 また、 操作空間の任 意のベタトルと非操作空間の任意のベタトルは直交する。
尚、 操作方向は、 コンプライアンス制御のコンプヺィアンス定数などと同じく 、 制御パラメータの一種と考えられる。 この値は、 一般には一定ではなく、 作業 が進行するにつれて変化する性質のものである。 この値をどのように決定すべき かも重要なことであるが、 この発明に係る姿勢制御装置の本質ではないので、 こ の実施の形態では説明の便宜上、 操作方向はあらかじめ作業目的、 作業パターン および対象物の性質に基づいて決定されているものとする (操作方向などは作業 中に決定しても良い) 。
以上を前提として姿勢安定化メイン制御装置 1 0 6の上記した構成要素につい て詳説する。
姿勢安定化用補償モーメント算出器 2 0 0は、 ロボット 1の姿勢傾斜偏差、 よ り具体的には実上体傾斜と目標上体傾斜の差である上体傾斜偏差を零に収束させ るための姿勢安定化用補償モーメント (実全床反力モーメントの修正に使用する モーメント) を算出する装置であり、 上記手法 1 ) を達成するための構成である 。 この装置は、 少なくとも、 傾斜センサ 6 0によって検出された上体傾斜角度と 目標作業パターン生成器 1 0 0が生成した目標上体傾斜角度の偏差に応じ、 その 偏差を減少するように姿勢安定化用補償モーメントを算出する。
第 1 5図に、 姿勢安定化用捕償モーメント算出器 2 0 0を最も単純な構成で示 す。 図示の例では、 入出力共に 1次元のスカラ量のように示されているが、 実際 には、 X方向成分と Y方向成分があり、 それぞれに対し、 図示の処理が行われる 。 但し、 Z方向成分は、 姿勢安定性に関係がないので無視することとする。
以下、 説明すると、 先ず実上体傾斜と目標上体傾斜の差である上体傾斜偏差を 求める。 次に、 姿勢安定ィヒ制御則部 2 0 0 aにおいて上体傾斜偏差の微分値を求 め、 最後に、 式 1に従って姿勢安定ィ匕用補償モーメントを算出する。 姿勢安定ィ匕用補償モーメント =一 k p *上体傾斜偏差
一 k d *上体傾斜偏差の微分値 ' · ·式 1 ここで、 k pと k dは制御ゲインである。 尚、 これ以外にも、 Hインフィュティ 制御などを用いても良い。
第 1 4図に戻って説明を続けると、 対象物反力平衡制御装置 2 0 2は、 検出は できるが予期できない対象物反力を受けたとき、 その対象物反力を考慮しながら 目標上体位置姿勢を修正することにより、 目標作業パターン生成器 1 0 0で生成 された目標慣性力モーメントと目標重力モーメントを修正して動バランスを維持 する制御を行なう装置であり、 上記手法 2 ) を達成させるための構成である。 また対象物反力モーメント偏差分離器 2 0 4は、 対象物反力を姿勢安定化に利 用する拘束方向の成分とそれ以外の成分に分離する装置であり、 修正目標対象物 反力算出器 2 0 6は対象物反力に姿勢安定化に必要な目標拘束力を加えた目標対 象物反力を算出する装置である。
これら 2つの装置 2 0 4, 2 0 6に各種分配器 (対象物反力平衡制御用分配器 2 0 8と補償モーメント分配器 2 1 0 ) を加えたものが、 上記手法 3 ) を達成す るための構成である。 尚、 それら装置の詳細は後述する。
先ず、対象物反力モーメント偏差分離器 2 0 4を説明すると、ハンド 4 O R ( L ) の力センサ 5 8で検出される実ハンド力は、 ハンド基準点に作用する力と力の モーメントを、 ハンド内にローカルに設定された座標系で表現したものとする。 ここで、 ハンド基準点は、 ハンド 4 O R ( L ) の位置を表わすためのハンド内の 基準点である。 また、 ハンド内にローカルに設定された前記座標系の原点は、 ノヽ ンド基準点に設定する。
ところで、 ハンド位置姿勢は、 ハンド内にローカルに設定された前記座標系を 支持脚座標系から見たときの原点位置と座標系の向きを表す。 より具体的には、 前記原点位置はべクトルで、 前記座標系の向きは 3行 3列マトリックスで表現さ れる。 あるいは、 ロボット工学で良く用いられる表現である、 前記原点位置と前 記座標系の向きをまとめて表現する同次行列を用いても良い。
また、 ハンド 4 O R ( L ) の実際の位置姿勢は、 前記した腕メイン制御装置 1 04によってァクチユエータ変位指令を介して駆動されることにより、 ほぼ最終 修正目標ハンド位置姿勢にあると考えられるので、 ハンド内にローカルに設定さ れた前記座標系は、 最終修正目標ハンド位置姿勢を基準とした座標系であると考 えても良い。
第 16図は対象物反力モーメント偏差分離器 204の構成を示すブロック図で ある。 同図を参照して説明すると、 対象物反力モーメント偏差分離器 204は実 対象物反力モーメント成分分離器 204 aを備え、 その分離器 204 aは支持脚 座標系から見た最終修正目標ハンド姿勢を入力し、 実ノヽンドカを支持脚座標系の 値に変換する。 支持脚座標系に変換された実ハンド力も、 ハンド基準点に作用す る力と力のモーメントで表現される。 尚、 支持脚座標系に変換された実ハンド力 の作用点を全床反力中心点に変換したものが、 実対象物反力である。 即ち、 これ らは表現は異なる力 同一のものを意味している。
ドが n個ある場合、 支持脚座標系に変換された実ノヽンドカは、 各ハンドの ド力の各成分を順番に並べた 1つのベクトルで表現される。 即ち、 全運動 速度空間でのベクトルで表現される。 より具体的には、
(F i x, F l y, F 1 z , Mi x, Ml y , Ml z, F 2 x, F 2 y , F 2 z , M2 x, M2 y , M2 z , · · ·, Mn z)
の形で表現される。 伹し、 ここで、 F j X, F j y, F j zは第 jハンドの基準 点に作用する力の x, y, z成分、 Mj x, Mj y, M j zは第 jハンドの基準 点に作用する力のモーメントの x, y, z成分を表わす。
次に、 分離器 204 aは、 支持脚座標系に変換した実ハンド力を、 あらかじめ 選定された操作方向に従って操作方向成分と非操作方向成分に分離する。 尚、 こ こで注意すべき点は、 各成分は、 前述したように全運動速度空間のベクトルであ つて、 現実の 3次元空間のベタトルではないことである。
具体的には、 分離器 204 aは、 次のような演算によって分離する。 先ず、 操 作空間が m次元であったとすると、 操作空間の直交基底べクトルを A 1, A 2 , • · · , Amとする。 また、 非操作空間の直交基底ベクトルを B 1, B2, · ■ ·, B eとする。 ここで、 mと eの和はハンドの個数の 6倍である。
次いで、 支持脚座標系に変換された実ハンド力のベクトルを、 Fと記述する。 また、 実ハンド力の操作方向成分を F a、 実ハンド力の非操作方向成分を F bと 記述する。 これらのベタトルは全運動速度空間のベタトルである。
実ハンド力の操作方向成分 F aと実ハンド力の非操作方向成分 F bは、 式 2に よって求められる。
F a = (Α 1 + Α 2 + · · · + Am) * F
F b = (Β 1 + Β 2 + · · - + B e ) * F · · '式 2 次に、 分離器 2 0 4 aは、 最終修正目標ハンド位置姿勢おょぴ実ハンド力の操 作方向成分 F aに基づき、 実ハンド力の操作方向成分 F aの全ての成分が、 目標 全床反力中心点まわりに作用する力の和を求める。 これを 「目標全床反力中心点 まわりの実対象物反力操作方向成分和」 と呼ぶ。 この力は、 3次元空間での力と 力のモーメントで表現される。 座標系としては支持脚座標系を用いる。 また目標 全床反力中心点まわりの実対象物反力操作方向成分の内のモーメント成分を 「目 標^^反力中心点まわりの実対象物反力モーメント操作方向成分和」 と呼ぶ。 次に、 分離器 2 0 4 aは、 最終修正目標ハンド位置姿勢および実ハンド力の非 操作方向成分 F bに基づき、 実ハンド力の非操作方向成分 F bの全ての成分が、 目標全床反力中心点に作用する力の和を求める。 これを 「目標全床反力中心点ま わりの実対象物反力非操作方向成分和」 と呼ぶ。 この力も、 3次元空間での力と 力のモーメントで表現される。 座標系としては支持脚座標系を用いる。 また目標 全床反力中心点まわりの実対象物反力非操作方向成分の内のモーメント成分を 「目標全床反力中心点まわりの実対象物反力モーメント非操作方向成分和」 と呼 ぶ。
また、 対象物反力モーメント偏差分離器 2 0 4は目標ハンド位置作用点変換器 2 0 4 bを備え、 その変換器 2 0 4 bも、 上記のような処理 (演算) を目標対象 物反力に対しても行う。 目標対象物反力も、 実ハンド力と同様、 全運動速度空間 のべクトルである。 具体的には先ず、 目標対象物反力は目標全床反力中心点を作 用点として表現されているので、 変 » 2 0 4 bは、 この作用点を一旦、 目標ハ ンド位置 (目標ハンドの基準点位置) を作用点とする力と力のモーメントに変換 する。 これを 「目標ハンド位置を作用点とする目標対象物反力」 と呼ぶ。
さらに、 対象物反力モーメント偏差分離器 2 0 4は目標対象物反力モーメント 成分分離器 2 0 4 cを備え、 分離器 2 0 4 cは、 上記と同様の処理によって操作 方向成分と非操作方向成分に分離する。 これらをそれぞれ 「目標ハンド位置を作 用点とする目標対象物反力の操作方向成分」 および 「目標ハンド位置を作用点と する目標対象物反力の非操作方向成分」 と呼ぶ。
次に、 分離器 2 0 4 cは、 目標ハンド位置を作用点とする目標対象物反力の操 作方向成分および目標ハンド位置 (目標ハンドの基準点位置) に基づき、 目標対 象物反力の操作方向成分の全ての成分が、 目標全床反力中心点に作用する力の和 を求める。 これを 「目標全床反力中心点まわりの目標対象物反力操作方向成分和 」 と呼ぶ。 この力は、 3次元空間での力と力のモーメントで表現される。 座標系 としては支持脚座標系を用いる。 また、 目標全床反力中心点まわりの目標対象物 反力操作方向成分の内のモーメント成分を 「目標全床反力中心点まわりの目標対 象物反力モーメント操作方向成分和」 と呼ぶ。
次に、 分離器 2 0 4 cは、 目標ハンド位置を作用点とする目標対象物反力の非 操作方向成分おょぴ目標ハンド位置 (目標ハンドの基準点位置) に基づき、 目標 対象物反力の非操作方向成分の全ての成分が、 目標全床反力中心点に作用する力 の和を求める。 これを 「目標全床反力中心点まわりの目標対象物反力非操作方向 成分和」 と呼ぶ。 この力も、 3次元空間での力と力のモーメントで表現される。 座標系としては支持脚座標系を用いる。 また、 目標全床反力中心点まわりの目標 対象物反力非操作方向成分の内のモーメント成分を 「目標全床反力中心点まわり の目標対象物反力モーメント非操作方向成分和」 と呼ぶ。
次いで、 加算点 2 0 4 dにおいて、 力べして得られた目標全床反力中心点まわ りの実対象物反力モーメント操作方向成分和から目標全床反力中心点まわりの目 標対象物反力モーメント操作方向成分和を減じることにより、 目標全床反力中心 点まわりの対象物反力偏差モーメント操作方向成分和を得る。
また、 加算点 2 0 4 eにおいて、 目標全床反力中心点まわりの実対象物反カモ ーメント非操作方向成分和から目標全床反力中心点まわりの目標対象物反力モー メント非操作方向成分和を減じることにより、 目標全床反力中心点まわりの対象 物反力偏差モーメント非操作方向成分和を得る。
尚、 目標全床反力中心点まわりの対象物反力偏差の内のモーメント成分を除く 成分は、 ロボット 1の姿勢にあまり関与しないので、 この実施の形態では無視す ることとした。 また、 最終修正目標ハンド位置姿勢を用いる代り、 脚部リンク 2 およぴ腕部リンク 5の実関節角を用いてキネマテイクス演算によって算出される 実ハンド位置姿勢を用いても良い。
第 1 4図の説明に戻ると、 上記のようにして得た目標^ *反力中心点まわりの 対象物反力偏差モーメント操作方向成分和は、 後に述べるように補償全床反カモ 一メントの算出に使用される。 他方、 目標全床反力中心点まわりの対象物反力偏 差モーメント非操作方向成分和は、 対象物反力平衡制御用分配器 2 0 8に入力さ れる。
この対象物反力平衡制御用分配器 2 0 8を第 1 7図を参照して説明すると、 分 配器 2 0 8は関数 2 0 8 a , 2 0 8 bを備え、 対象物反力平衡制御用分配器 2 0 8は、 それら関数 2 0 8 a , 2 0 8 bに目標全床反力中心点まわりの対象物反力 偏差モーメント非操作方向成分和を入力し、 対象物反力平衡制御で平衡をとるべ き対象物反力偏差モーメント和と、 対象物反力平衡制御以外で平衡をとるべき対 象物反力偏差モーメント和を出力させる。
尚、 対象物反力平衡制御とは、 前述の手法 2 ) を達成するために対象物反力平 衡制御装置 2 0 2で行なわれる制御であり、 概説すると、 前記したように、 上体 位置をずらすことによって重力モーメントを発生させ、 よって対象物反力偏差モ ーメント和を打ち消す制御である。
また、 第 1 7図に示す例では、 入出力共に 1次元のスカラ量のように示されて いるが、 実際には、 X方向成分と Y方向成分があり、 それぞれに対して図示の処 理が行われる。 但し、 Z方向成分は、 姿勢安定性に関係がないので無視すること とする。
図示の如く、 対象物反力平衡制御で平衡をとるべき対象物反力偏差モーメント 和を出力する関数 2 0 8 aとしては、 上下限リミッタ特性 (飽和特性) を持った 関数を用いると共に、 対象物反力平衡制御以外で平衡をとるべき対象物反力偏差 モーメント和を出力する関数 2 0 8 bとしては不感帯特性を持った関数を用いる このような関数特性を持たせた場合、 動バランスを維持するために、 目標全床 反力中心点まわりの対象物反力偏差モーメント非操作方向成分和の絶対値がある 設定値以下のとき、 そのモーメントを対象物反力平衡制御によって打ち消し、 そ のモーメントが設定値を越えたとき、 超えた分を主にハンドの拘束方向に対象物 反力を発生させて打ち消すように制御系が働く。 即ち、 前記上下限リミッタ特性 を持たすことにより、 上体位置のずらし量に制限を持たせ、 幾何学的に無理な姿 勢になるのを防止することができる。
尚、 入出力関係を決定する 2つの関数 2 0 8 a , 2 0 8 bには、 図示例以外の 関数を用いても良い。 例えば、 第 1 8図に 2 0 8 c , 2 0 8 dで示すような曲線 でも良い。 第 1 7図おょぴ第 1 8図のいずれにしても、 ロボット 1の特性、 対象 物の特性および作業内容に応じ、 関数を選定すべきである。
また、 入出力関係を決定する 2つの関数の出力和は、 基本的には入力に一致さ せるべきであるが、 厳密に一致させる必要はない。 特に、 脚コンプライアンス制 御や腕コンプライアンス制御は、 目標値の絶対値が大きいと、 発生する力が目標 に対して小さめになりやすい傾向があるので、 これを補正する意味で、 入力の絶 対値が大きい領域では、 関数出力の和の絶対値を入力の絶対値より大きくした方 が良い場合もある。 また、 X方向成分と Y方向成分を独立して分配するのでなく 、 X方向成分と Y方向成分の両方を入力とした 2入力関数を用いて、 各出力を決 定しても良い。
第 1 4図の説明に戻ると、 対象物反力平衡制御用分配器 2 0 8でかくして分配 された、 対象物反力平衡制御以外で平後 Ϊをとるべき対象物反力偏差モーメント和 は、 さらに乗算点 2 1 4で一 1倍されて極性が反転させられ、 対象物反力平衡制 御以外の手段に要求される対象物反力補償モーメントとして補償モーメント分配 器 2 1 0に入力される。 また、 対象物反力平衡制御で平衡をとるべき対象物反力 偏差モーメント和は、 対象物反力平衡制御装置 2 0 2に入力される。
次いで、 先に概説した対象物反力平衡制御装置 2 0 2について詳細に説明する 先ずその機能について概説すると、 対象物反力平衡制御装置 2 0 2は、 上述し たように目標上体位置姿勢などを入力し、 対象物反力平衡制御で平衡をとるべき 対象物反力偏差モーメント和に動力学的に平衡するように目標上体位置姿勢と目 標全床反力を修正し、 修正目標上体位置姿勢と対象物反力平衡制御用補償全床反 力モーメントを出力する。
即ち、 装置 2 0 2は、 長期的には、 目標上体位置姿勢をずらすことによって発 生する重力モーメントが、 対象物反力平衡制御で平衡をとるべき対象物反力偏差 モーメント和に動力学的に平衡し、 目標全床反力の修正量が零に戻る特徴を持つ 前述の如く、 対象物反力平衡制御装置 2 0 2は上記手法 2 ) を解決するための 構成であり、 本出願人が既に特開平 1 0— 2 3 0 4 8 5号公報で提案している技 術であるが、 この実施の形態においては、 かかる公報に記載される対象物反力平 衡制御装置の後半部の構成のみが使用されると共に、 「対象物反力偏差」 が入力 されていた部分に、 前記した 「対象物反力平衡制御で平衡をとるべき対象物反力 偏差モーメント和」 が入力されるように変更された点で異なる。
第 1 9図は対象物反力平衡制御装置 2 0 2の構成を示すプロック図であり、 最 終到達目標重心位置摂動量算出部 2 0 2 a、 モデル制御則演算器 2 0 2 b , およ び摂動動力学モデル 2 0 2 cを備える。 '
これらへの入力は、 対象物反力平衡制御で平衡をとるべき対象物反力偏差モー メント和、 目標上体位置姿勢、 最終修正目標ハンド位置姿勢、 最終修正目標上体 位置姿勢、 最終修正目標足部位置姿勢である。 尚、 この内、 最終修正目標ハンド 位置姿勢、 最終修正目標上体位置姿勢および最終修正目標足部位置姿勢は、 対象 物反力平衡制御において近似演算を用いる場合、 即ち、 摂動動力学モデル 2 0 2 cが近似モデルである場合には不要である。
尚、 前述の姿勢安定化用補償モーメントは、 部分的にも対象物反力平衡制御装 置 2 0 2には入力されない。 姿勢安定ィ匕用補償モーメントは、 姿勢が傾いた結果 ずれた重心位置を復元させるためにロボットに外部から与えられるべきモーメン トであるが、 対象物反力平衡制御装置 2 0 2の機能は、 目標姿勢の重心をずらす ことによって定常的な対象物反力偏差を打ち消すことであり、 姿勢が傾いた結果 ずれた重心を復元することはできないためである。
以下詳説すると、 入力された対象物反力平衡制御で平衡をとるべき対象物反力 偏差モーメント和は、 最終到達目標重心位置摂動量算出部 2 0 2 aに入力される この対象物反力平衡制御で平衡をとるべき対象物反力偏差モーメント和を長期 的に打ち消してパランスをとるための重心摂動量を 「最終到達目標重心位置摂動 量」 と呼ぶ。 最終到達目標重心位置摂動量算出部 2 0 2 aは、 上記和から最終到 達目標重心位置摂動量を算出して出力する。
最終到達目標重心位置摂動量は、 モデル制御則演算器 2 0 2 bに入力される。 モデル制御則演算器 2 0 2 bについて説明すると、 最終到達目標重心位置摂動量 と、 摂動動力学モデル 2 0 2 cが出力する目標重心位置摂動量との差を重心変位 偏差とすると、 モデル制御則演算器 2 0 2 bは、 この重心変位偏差を零に収束さ せるためのモーメントである対象物反力平衡制御用補償全床反力モーメントを P D制御則によって決定して出力する。
尚、 摂動動力学モデル 2 0 2 cは、 目標作業パターンの運動 (摂動) に、 ある 拘束条件を与えておいた場合の、 モデルのための目標全床反力モーメント摂動量 と上体位置姿勢摂動量との関係を表すモデルである。
モデル制御則演算器 2 0 2 bの出力直後の加算点 2 0 2 dについて説明すると 、 加算点 2 0 2 dによって、 摂動動力学モデルには、 対象物反力平衡制御用補償 全床反力モーメントと、 対象物反力平衡制御で平衡をとるべき対象物反力偏差モ ーメント和が加算されたものが、 モデルのための目標全床反力モーメント摂動量 (モデル入力量) として入力され、 その入力に対応するように前記摂動動力学モ デルによって上体位置姿勢摂動量が算出される。 それが加算点 2 0 2 dで目標上 体位置姿勢に加算され、 修正目標上体位置姿勢が出力される。
第 1 4図の説明に戻ると、 このように、 対象物反力平後 ϊ制御装置 2 0 2の出力 は、 入力した目標上体位置姿勢を修正した修正目標上体位置姿勢と、 対象物反力 平衡制御用補償全床反力モーメントである。 出力された対象物反力平衡制御用補 償全床反力モーメントは、 同図に示すように、 続いて述べる補償モーメント分配 器 2 1 0に入力される。
尚、 上記で、 装置 2 0 2から対象物反力平衡制御用捕償全床反力の内のモーメ ント成分のみが出力されるようにしたのは、 対象物反力平衡制御用補償全床反力 の内、 ロボットの姿勢安定化のための特に重要な成分は、 X軸まわりモーメント 成分と Y軸まわりモーメント成分であるためである。 モーメント成分以外も考慮 した制御系にした方がより良いが、 顕著な効果は期待できない。
次いで、 補償モーメント分配器 2 1 0について説明する。 補償モーメント分配 器 2 1 0は、 第 2 0図に示すように、 対象物反力平衡制御用補償全床反力モーメ ント、 対象物反力平衡制御以外の手段に要求される対象物反力補償モーメントお ょぴ姿勢安定ィ匕用補償モーメントを入力し、 それらを目標拘束力モーメントと補 償全床反力主モーメントに分配する、 2つの関数を備える。
ここで、 対象物反力平衡制御以外の手段に要求される対象物反力補償モーメン トは、 前記したように、 対象物反力平衡制御以外の手段で平衡をとるべき対象物 反力偏差モーメント和を乗算点 2 1 4で一 1倍した値である。
また、 目標拘束力モーメントは、 前記入力の内で、 拘束方向の対象物反力によ つて目標全床反力中心点まわりに発生させるべきモーメントであり、 捕償全床反 力主モーメントは、 前記入力の内で、 目標全床反力中心点まわりに全床反力によ つて発生させるべきモーメントである。
以下、 第 2 0図を参照して分配処理について説明する。 尚、 図示の例では入出 力共に 1次元のスカラ量のように示されている力 実際には X方向成分と Υ方向 成分があり、 それぞれに対して処理が行われる。 但し、 ζ方向成分は姿勢安定性 に関係がないので無視することとする。
分配器 2 1 0は加算点 2 1 0 aを備え、 加算点 2 1 0 aで対象物反力平衡制御 用補償全床反力モーメントと、 対象物反力平衡制御以外の手段に要求される対象 物反力補償モーメントの和を求めて 2つの関数に入力する。 ここで、 姿勢安定化 用補償モーメントを u、 前記和を Vと置き、 前記した 2つの関数の中の 1つであ る関数 g l ( u , v ) の値を求め、 これを補償全床反力主モーメントとする。 ま た、 他方の関数 g 2 ( u , V ) の値を求め、 これを目標拘束力モーメントとする 。 但し、 それぞれの関数は 2入力 1出力の関数である。
この関数は、 例えば以下に示す式のようにすれば良い。 尚、 式中の C m a xお よび C m i nは設定値である。 u + V > Cm a Xのとき g 1 (u , v) = Cm a x
u+ v<Cm i nのとき
g 1 (u, v) =Cm i n
Cm i n≤u + v≤Cma xのとき
g l (u, v) =u + v · · ·式 3 g 2 (u , v) = u + v— g 1 (u, v) · · ·式 4 第 20図では、 式 3、 式 4で表わされる関数を、 入力 uと入力 Vを水平面上の 直交軸とし、 出力値を高さで表している。
基本的には、 補償モーメント分配器の入力和 (対象物反力平衡制御用捕償全床 反力モーメントと対象物反力平衡制御以外の手段に要求される対象物反力補償モ 一メントと、 姿勢安定化用捕償モーメントの和) 力 出力和 (目標拘束力モーメ ントと補償全床反力主モーメントの和) に一致するように、 2つの関数を選定す べきである。 即ち、 g l (u, v) +g 2 (u, v) =u + vが恒等的に成立す るように、 2つの関数を選定すべきである。
尚、 対象物反力平衡制御用補償全床反力モーメントを u、 対象物反力平衡制御 以外の手段に要求される対象物反力補償モーメントを V、 姿勢安定化用補償モー メントを wと置き、 補償全床反力主モーメントと目標拘束力モーメントを、 それ ぞれ 3入力の関数 g 1 (u, v, w) 、 関数 g 2 (u, v, w) の値によって決 定しても良い。
その場合でも、 基本的には、 g l (u, v, ) + g 2 (u, v, w) =u + v+wが恒等的に成立するように関数を選定すべきである。 し力 しながら、 複合 コンプライアンス制御などの制御偏差を考慮し、 出力和を大きめにしても良い。 特に、 姿勢安定化用補償モーメントはフィードバック量であるから、 姿勢安定ィ匕 用補償モーメントに影響を受けた出力成分の和が、 姿勢安定化用補償モーメント と数十パーセント違っていてもあまり問題にならな!/、。
第 14図の説明に戻ると、 補償モーメント分配器 210から出力される、 一方 のモーメントである目標拘束力モーメントは、 加算点 215に送られ、 そこで前 述の目標全床反力中心点まわりの対象物反力偏差モーメント操作方向成分和から 減算される。
また、 捕償モーメント分配器 2 1 0から出力される、 他方のモーメントである 補償全床反力主モーメントから加算点 2 1 6で、 前述の目標全床反力中心点まわ りの対象物反力偏差モーメント操作方向成分和と目標拘束力モーメントの差が減 算され、 補償全床反力モーメントが出力される。
但し、 腕ァクチユエータ 9 2のコンプライアンス制御の能力が高く、 目標全床 反力中心点まわりの対象物反力偏差モーメント操作方向成分和がほぼ目標拘束力 モーメントに一致するように制御される場合、 加算点 2 1 6で目標全床反力中心 点まわりの対象物反力偏差モーメント操作方向成分和と目標拘束力モーメントの 差を減じることなく、 補償全床反力主モーメントをそのまま補償全床反力モーメ ントとしても良い。
尚、 加算点 2 1 6を削除し、 補償全床反力モーメントを補償全床反力主モーメ ントとし、 その代わりに、 対象物反力平衡制御で平衡をとるべき対象物反力偏差 モーメント和から、 目標全床反力中心点まわりの対象物反力偏差モーメント操作 方向成分和と目標拘束力モーメントの差 (加算点 2 1 5の出力) を減じるように しても良い。
前記した目標拘束力モーメントは、 修正目標対象物反力算出器 2 0 6にも入力 される。
第 2 1図に、 修正目標対象物反力算出器 2 0 6の構成を示す。 同図に示すよう に、 修正目標対象物反力算出器 2 0 6は、 目標ハンド位置姿勢 (あるいは最終修 正目標ハンド位置姿勢) 、 目標拘束力モーメント、 目標全床反力中心点位置、 操 作方向および目標対象物反力を入力し、 それら入力に基づいて修正目標対象物反 力を算出して出力する。
以下、 その処理について説明すると、 算出器 2 0 6は目標ハンド力修正量決定 器 2 0 6 a、 変換器 2 0 6 bおよび加算点 2 0 6 cを備える。 目標ハンドカ修正 量決定器 2 0 6 aは、 目標ハンド位置 (あるいは最終修正目標ハンド位置) を作 用点とするように表現さ.れた目標対象物反力の修正量である目標ハンドカ修正量 を以下のように決定する。 即ち、 決定器 206 aは、 目標ハンド力修正量が目標ハンド位置 (あるいは最 終修正目標ハンド位置) に作用したときに、 目標全床反力中心点に作用するモー メントの和と目標拘束力モーメントの差が零に近づくように、 目標ハンドカ修正 量を決定する。 但し、 決定器 206 aは、 目標ハンド力修正量が、 操作方向の力 と力のモーメントであって、 非操作方向成分を含まないように決定する。 尚、 目 標ハンドカ修正量は、 支持脚座標系で表現される。
最も簡単な決定法を以下に示す。 先ず、 操作方向の内のある 2つのベク トルを 自由に選択する。 各ベク トルは、 操作空間の直交基底ベクトル A 1, A 2, · · ·, Amを適当に線形結合させることによって得られる。 このベクトルをそれぞ れ Ql, Q2とする。
次いで目標ハンド力修正量を、 aQl + bQ2の形とする。 ここで、 a, bは 係数である。
目標ハンドカ修正量 a Q 1 + b Q 2が目標ハンド位置 (あるいは最終修正目標 ハンド位置) に作用したとき、 目標全床反力中心点に作用する合力のモーメント Mを、 力学演算により求める。
求められた Mの X成分を Mx、 Y成分を Myとすると、 Mx, Myと a, の 関係は、 次の連立 1次方程式の形になる。 ここで、 k l l, k 12, k 21およ ぴ k 22は係数である。 Mx =a k l l+b k l 2
My =a k 21+b k 22 · · ·式 5 次に、 Mxが目標拘束力モーメントの X成分、 Myが目標拘束力モーメントの Y成分に一致するように、 aおよび bを決定する。 具体的には、 式 5の連立方程 式を aおよび bに関して解き、 Mxに目標拘束力モーメントの X成分の値、 My に目標拘束力モーメントの Y成分の値を代入することにより、 aおよび bを得る 次に、 前記ベクトル Ql, Q2および前記 a, bを用いて目標ハンド力修正量 aQl + bQ2の値を得る。 得られた修正量は変 «206 に入力され、 変換 器 2 0 6 bは、 目標ハンド力修正量を、 作用点を目標ハンド位置 (あるいは最終 修正目標ハンド位置) 力 ら全床反力中心点に変更した表現に変換することにより 、 全床反力中心点を作用点とする目標対象物反力修正量を出力する。
最後に、 加算点 2 0 6 cで、 全床反力中心点を作用点とする目標対象物反力に 、 全床反力中心点を作用点とする目標対象物反力修正量を加えることにより、 全 床反力中心点を作用点とする修正目標対象物反力が出力される。 尚、 修正目標対 象物反力は、 全運動速度空間でのべクトルである。
第 1 4図の説明に戻ると、 以上のようにして得た修正目標対象物反力およぴ前 記した修正目標上体位置姿勢ならびに補償全床反力モーメントが、 姿勢安定化メ イン制御装置 1 0 6の最終的な出力となる。 そして、 第 5図に示すように、 修正 目標対象物反力が腕メイン制御装置 1 0 4に、 補償全床反力モーメントが脚メイ ン制御装置 1 0 2に、 修正目標上体位置姿勢がその両方に入力される。
脚メィン制御装置 1 0 2と腕メイン制御装置 1 0 4の機能を再説すると、 脚メ イン制御装置 1 0 2では、 前述のように、 目標全床反力中心点位置に作用する実 全床反力のモーメント成分が、 目標全床反力モーメント (通常は零) と補償全床 反力モーメントの和に一致するように目標足部位置姿勢を修正し、 さらに、 修正 目標上体位置姿勢と修正された目標足部位置姿勢から決定される目標脚関節変位 に実関節変位が追従するように、 ァクチユエータ変位指令を出力して脚関節ァク チユエータを制御する。
また、 腕メイン制御装置 1 0 4では、 前述のように、 ハンド 4 O R ( L) の力 センサ 5 8によって検出される実対象物反力 (実ハンド力) と修正目標対象物反 力の差に応じ、 差が零に近づくように、 P D制御などによって目標ハンド位置姿 勢を修正する。 さらに、 修正目標上体位置姿勢 (あるいは最終修正目標上体位置 姿勢) と修正された目標ハンド位置姿勢から決定される目標腕関節変位に実関節 変位が追従するように、 ァクチユエータ変位指令を出力して腕関節ァクチユエ一 タを制御する。
以上のように、 姿勢安定化メィン制御装置 1 0 6は、 目標全床反力中心点に作 用する対象物反力偏差モーメントを、 操作方向成分と非操作方向成分とに分離し 、 前記非操作方向成分によって発生する動力学的アンバランスを、 その一部を対 象物反力平衡制御装置によって打ち消し、 残りを、 目標全床反力中心点に作用す べき目標対象物反力モーメント操作方向成分を修正することにより、 言い換えれ ば、 腕の動作を修正して前記操作方向成分を変化させることにより打ち消すよう に構成した。
換言すれば、 先の提案技術において、 対象物から受ける予期せぬ反力が急激に 変化したとき、 対象物反力平衡制御装置 2 0 2によつて行なわれていた、 足部 2 2 R ( L) (および脚部リンク 2 ) を動かして踏み止めさせる (踏ん張らせる) 動作を、 腕部リンク 5の動作によって軽減、 あるいはなくすことができる。 この ため、 全床反力モーメントが限界を越えて発生する恐れがなく、 よってロボット 1の動パランスを維持することができ、 口ポットが傾いたり、 転倒したりするこ とを防止できる。
また、 操作方向成分が変化するように腕の動作を修正することから、 ロボット
1の動バランスを維持したり、 傾いた姿勢を復元しても、 対象物の運動に影響を 与えることがない。
最後に、 上記した制御系の安定性について説明する。
目標全床反力中心点に作用すべき目標対象物反力モーメント操作方向成分の修 正量である目標拘束力モーメントと、 目標全床反力中心点まわりの対象物反力偏 差モーメントの操作方向成分和と非操作方向成分和の関係は、 前記した第 1 4図 に示すようになる。
理解の便宜のため、 姿勢安定ィヒメィン制御装置 1 0 6において対象物反力モー メント偏差分離器 2 0 4が分離する、 目標全床反力中心点に作用する対象物反力 偏差モーメントの操作方向成分和と非操作方向成分和の内、 非操作方向成分和に よつて発生する動力学的ァンバランスを全て目標全床反力中心点に作用すべき目 標対象物反力モーメント操作方向成分を修正することによって打ち消すように構 成したと仮定する。 即ち、 対象物反力平衡制御を働力、せない場合を想定する。 その場合、 腕制御系 (第 5図に示す腕メイン制御装置 1 0 4ゃァクチユエータ 9 2、 ァクチユエータ駆動装置 8 8などからなる制御系) と姿勢安定ィ匕メイン制 御装置 1◦ 6からなる制御系は、 対象物反力に注目すると、 第 2 2図のように簡 略ィ匕することができる。 尚、 第 2 2図における外乱モーメントは、 対象物に想定 していた性質と異なる性質を持つていたため、 対象物が予期せぬ挙動を示したこ とによって発生する対象物反力、 即ち、 想定外の対象物反力である。 例えば、 対 象物に発生する摩擦が、 想定していたものと異なっていたことによって発生する 。 外乱モーメントの中の操作方向成分を 「外乱モーメント操作方向成分」 、 非操 作方向成分を 「外乱モーメント非操作方向成分」 と呼ぶ。
第 2 2図で加算点 2 2 0で入力される外乱モーメント非操作方向成分が変化す ると、 これを打ち消すように目標拘束力モーメントが決定され、 加算点 2 2 2で 加算されることで、 目標全床反力中心点まわりの目標対象物反力モーメント操作 方向成分和が修正され、 操作方向腕コンプライアンス制御部で目標ハンド位置姿 勢が修正量だけ修正され、 さらに腕部リンク 5のァクチユエータ変位指令が修正 され、 ロボット 1の腕部リンク 5が駆動されて動バランスが保持される。 また、 外乱モーメント操作方向成分が変化しても、 腕のコンプライアンス制御への目標 値は変化しない。
他方、 姿勢安定化メイン制御装置 1 0 6が、 前記非操作方向成分和によって発 生する動力学的アンバランスを、 目標全床反力中心点に作用すべき目標対象物反 力モーメント非操作方向成分和を修正することによって打ち消すように構成した と仮定すると、 腕制御系と姿勢安定化メイン制御装置 1 0 6からなる制御系は、 対象物反力に注目すると、 第 2 3図のように簡略ィ匕することができる。
この場合、 姿勢安定化メイン制御装置を含むフィードパックループは正帰還と なり、 発散する。
即ち、 目標全床反力中心点まわりの対象物反力偏差モーメント非操作方向成分 和から姿勢安定化メィン制御装置によって目標拘束力モーメントが算出され、 そ れが加算点 2 2 6で入力 (目標全床反力中心点まわりの目標対象物反力モーメン ト非操作方向成分和) に加算されて目標全床反力中心点まわりの修正目標対象物 反力モーメント非操作方向成分和が算出され、 それが加算点 2 2 8で目標全床反 力中心点まわりの実対象物反力モーメント非操作方向成分和から減算され、 目標 全床反力中心点まわりの対象物反力偏差モーメント非操作方向成分和が算出され るまでのフィードバックループは、 正帰還となり、 発散する。
即ち、 第 2 3図に示す構成においては、 ひとたび外乱モーメント非操作方向成 分が発生すると、 これを打ち消そうと目標全床反力中心点まわりの修正目標対象 物反力モーメント非操作方向成分和が限りなく増加あるいは減少して発散するこ ととなる。
それに対し、 この実施の形態に係る移動ロポットの姿勢制御装置にあっては、 第 1 4図などに示す如く、 目標全床反力中心点まわりの対象物反力モーメントを 操作方向成分和と非操作方向成分和に分離し、 つ、 第 2 2図に示す如く、 正帰 還にならないようにフィードパックループを構成することにより、 このような発 散を防ぐようにした。 即ち、 非操作方向側でフィ一ドバックされた値が操作方向 側に加算されるように構成することで、 そのような発散を防ぐようにした。
第 2 5図は、 この発明の第 2の実施の形態に係る移動ロボットの姿勢制御装置 である。
第 1の実施の形態と相違する点に焦点をおいて説明すると、 第 2の実施の形態 においては、 対象物反力平衡制御用分配器 2 0 8の出力の中、 対象物反力平衡制 御で平衡をとるべき対象物反力偏差モーメント和を零 (同図に破線で示す) とす ると共に、 分配器 2 0 8の出力を全てそれ以外の手段で平衡をとるべき対象物反 力偏差モーメント和とした。
尚、 残余の構成および効果は第 1の実施の形態のそれと異ならない。 第 2の実 施の形態に係る移動ロボットの姿勢制御装置は上記の如く構成したので、 第 1の 実施の形態に係る装置と同様の効果を得ることができる。
第 2 6図は、 この発明の第 3の実施の形態に係る移動ロボットの姿勢制御装置 である。
第 1の実施の形態と相違する点に焦点をおいて説明すると、 第 3の実施の形態 においては、 2足の脚式移動ロボット 1に代え、 図示のような車輪式の移動ロボ ットについて姿勢制御を行うようにした。
以下、 説明すると、 図示の車輪式の移動ロボット 3 0 0は、 円筒形の基体 (上 体) 3 0 2と、 それに上下 (Z軸方向) にストロークするアクティブサスペンシ ヨン (図示せず) を介して取りつけられる 4個の車輪 (図で 2個のみ示す) 3 0 4を備える。 基体 3 0 2の上部にはマウント 3 0 6が回転自在に取りつけられる と共に、 その上に 1個の屈曲自在なアーム (腕部リンク) 3 1 0が取りつけられ る。
即ち、 アーム 310は、 マウント 306に取りつけられる第 1リンク 310 a と、 第 1リンク 310 aに関節 (図示せず) を介して取りつけられる第 2リンク 310 bと、 第 2リンク 310 bの自由端側に関節 (図示せず) を介して取りつ けられるハンド 3 10 cからなる。 関節は、 それぞれ電動モータなどのァクチュ エータを内蔵する。
基体 302の内部には、 マイクロコンピュータからなる電子制御ユニット (E CU) 312が格納される。 基体 302の重心位置の付近には傾斜センサ (図示 せず) が配置され、 Z軸に対する基体 302の傾きとその角速度に応じた出力を 生じる。 車輪 304のそれぞれには加重センサ (図示せず) が配置され、 接地面 から 4個の車輪 304にそれぞれ作用する床反力 (加重) F l, F 2, . . を検 出する。
ここで、 マウント 306の Z軸まわりの回転角度を Θ 1、 第 1リンク 310 a の Z軸に対する角度を Θ 2、 第 1リンク 310 aに対する第 2リンク 310 の 相対角度を 03、 第 2リンク 31 O bに対するハンド 310 cの相対角度を 04 とすると、 移動ロボット 300の目標動作は、 0 1から 04の動作パターンと Z MPで表すことができる。
また、 図示の移動ロボット 300の姿勢制御において、 第 1リンク 310 aの Z軸に対する角度 02を制御するものとすると、 Θ 2が第 1の実施の形態の脚式 移動ロボット 1の目標上体位置に、 0 1, Θ 3, S 4の組が目標上体姿勢に相当 する。 また、 04カ ヽンド 310 cの位置姿勢に相当する。 アクティブサスペン シヨンを制御する電子制御ユニット (ECU) 312の動作が第 1の実施の形態 の第 8図に示す構成の中の複合コンプライアンス動作決定部の動作に相当し、 加 重 Fを F 1から F 4に分配して制御する。
従って、 第 3の実施の形態において車輪式の移動ロボット 300について上記 のような制御を行うとき、 第 1の実施の形態で述べた脚式移動ロボット 1の姿勢 制御と同様の効果を得ることができる。
以上のように、 第 1から第 3の実施の形態に係る移動ロボットの姿勢制御装置 にあっては、 少なくとも基体 (上体 3) と、 移動機構 (脚部リンク 2あるいは車 輪 3 0 4 ) と、 対象物に力を作用することができる、 少なくとも 1個の腕部リン ク 5 (あるいはアーム 3 1 0 ) からなる移動ロボット 1, 3 0 0の姿勢制御装置 において、 想定外の外力が作用するとき、 前記想定外の外力の、 ある所定方向の 成分である第 1の外力 (自標全床反力中心点まわりの対象物反力偏差モーメント 非操作方向成分和) に応じ、 前記所定方向に直交する方向に前記腕部リンクに第 2の外力 (対象物反力平衡制御以外の手段に要求される対象物反力補償モーメン ト) が作用するように、 換言すれば、 前記目標全床反力中心点まわりの対象物反 力偏差モーメント非操作方向成分和に基づいて得られる対象物反力平衡制御以外 の手段で平渙 Ϊをとるべき対象物反力偏差モーメント和の極性を反転して得られる 、 即ち、 それに直交する対象物反力平衡制御以外の手段に要求される対象物反力 補償モーメント和の極性を反転して得られる、 即ち、 それに直交する対象物反力 平衡制御以外の手段に要求される対象物反力補償モーメントが作用するように、 前記腕部リンクを駆動して、 換言すれば目標値を修正することを必要とせず、 前 記口ポットの姿勢を安定させるように制御する如く構成した。
また、 少なくとも基体 (上体 3 ) と、 移動機構 (脚部リンク 2あるいは車輪 3 0 4 ) と、 対象物に力を作用することができる、 少なくとも 1個の腕部リンク 5 (あるいはアーム 3 1 0 ) からなる移動ロボット 1 , 3 0 0の姿勢制御装置にお レ、て、 少なくとも前記ロボットの目標腕部リンク位置姿勢 (目標ハンド位置姿勢 ) と、 前記対象物から前記腕部リンクに作用する対象物反力の目標値である目標 対象物反力からなる目標動作 (目標対象物反力あるいは目標位置姿勢) を生成す る目標動作生成手段 (目標作業パターン生成器 1 0 0 ) 、 前記対象物反力の実際 値である実対象物反力 (実ハンド力) を検出あるいは (オブザーバを介して) 推 定する実対象物反力検出手段 (検出については力センサ 5 8 , 荷重センサ、 E C U 6 2 , 3 1 2、 推定についてはオブザーバ) 、 少なくとも前記検出あるいは推 定された実対象物反力に基づき、 前記ロボットの姿勢が安定するように前記目標 動作を修正する姿勢安定化制御手段 (姿勢安定化メイン制御装置 1 0 6 ) 、 およ ぴ少なくとも前記修正された目標動作に基づいて前記腕部リンクを駆動する腕部 駆動装置 (ァクチユエータ 9 0, 9 2 ) を備える如く構成した。
また、 前記姿勢安定化制御手段は、 少なくとも前記実対象物反力と前記目標対 象物反力との差を示す対象物反力偏差 (目標全床反力中心点まわりの対象物反力 偏差モーメント非操作方向成分和) に基づき、 前記口ポットの姿勢が安定するよ うに前記目標動作を修正する如く構成した。
また、 前記姿勢安定化制御手段は、 前記対象物反力偏差の第 1の成分 (目標全 床反力中心点まわりの対象物反力偏差モーメント非操作方向成分和) によって発 生する転倒力の全部あるいは一部を、前記第 1の成分から得られる第 2の成分(対 象物反力平衡制御以外の手段に要求される対象物反力補償モーメント) によって 打ち消すように、 前記目標動作を修正する如く構成した。
また、 少なくとも基体 (上体 3 ) と、 移動機構 (脚部リンク 2あるいは車輪 3 0 4 ) と、 対象物に力を作用することができる、 少なくとも 1個の腕部リンク 5 (あるいはアーム 3 1 0 ) からなる移動ロポット 1, 3 0 0の姿勢制御装置にお いて、 少なくとも前記ロボットの目標腕部リンク位置姿勢 (目標ハンド位置姿勢 ) と、 前記対象物から前記腕部リンクに作用する対象物反力の目標値である目標 対象物反力からなる目標動作 (目標対象物反力あるいは目標位置姿勢) を生成す る目標動作生成手段 (目標作業パターン生成器 1 0 0 ) 、 前記ロボットの姿勢傾 き偏差 (上体傾斜角度) を検出し、 前記検出した姿勢傾き偏差、 より具体的には 検出値に基づいて算出される姿勢安定ィヒ用補償モーメント) が零に近づくように 前記目標動作を修正する姿勢安定ィヒ制御手段 (姿勢安定ィヒメイン制御装置 1 0 6
) 、 および少なくとも前記修正された目標動作に基づいて前記腕部リンクを駆動 する腕部駆動装置 (ァクチユエータ 9 0, 9 2 ) を備える如く構成した。
尚、 上記において、 目標全床反力中心点まわりの実対象物反力非操作方向成分 和は、 実対象物反力の全ての成分が、 目標全床反力中心点まわりに作用する力の 和から、 目標全床反力中心点まわりの実対象物反力操作方向成分和を減じること によって求めても良い。 なぜなら、 目標全床反力中心点まわりの実対象物反力操 作方向成分和と目標全床反力中心点まわりの実対象物反力非操作方向成分和の和 は、 実対象物反力の全ての成分が、 目標全床反力中心点まわりに作用する力の和 に等しいからである。
逆に、 目標全床反力中心点まわりの実対象物反力操作方向成分和は、 実対象物 反力の全ての成分が、 目標全床反力中心点まわりに作用する力の和から、 目標全 床反力中心点まわりの実対象物反力非操作方向成分和を減じることによって求め ても良い。
さらには、 目標全床反力中心点まわりの対象物反力操作方向成分和と、 目標全 床反力中心点まわりの対象物反力非操作方向成分和に関しても同様の方法で求め ても良い。
また、 姿勢安定化メイン制御装置 1 0 6において、 目標対象物反力を修正する 代わりに目標ハンド位置姿勢を変更しても良い。 より詳細に説明すると、 腕メイ ン制御装置 1 0 4は、 通常、 対象物反力とハンド位置姿勢を目標値に一致させる ように制御することはできないので、 対象物反力の制御とハンド位置姿勢の制御 にトレードオフが働き、 目標ハンド位置姿勢を変更するだけでも実対象物反力が 変化する。
従って、このときの目標ハンド位置姿勢の変更量と実対象物反力の変化の比(即 ち腕メイン制御系のコンプライアンス定数) が分かっていれば、 上述の実施の形 態で求められた目標対象物反力の修正量に、 その比を乗じることにより、 目標ハ ンド位置姿勢の修正量を求めることができるためである。
また、 脚式移動ロボットとして 2個の脚部リンクと 2個の腕部リンクを備えた ヒユーマノィドロボットを例にとって説明したが、 2個以外の個数の脚部リンク を備えた脚式移動ロボットロボットでも良く、 腕部リンクの個数も 1個あるいは 3個以上でも良い。
また、 脚部リンクであっても、 床以外の対象物に作用するものであれば、 腕部 リンクとみなして良い。 例えば、 昆虫型の 6個の脚部リンクを備えたロボットに おいて、 頭部側の前の 2個の脚部リンクを用いて物を持ち上げる場合、 その脚部 リンクを腕部リンクとみなすことができる。
また、 ロボットの動力学的アンパランスを X軸方向と Y軸方向に対する傾きと して説明したが、 遊脚の振りなどに起因する Z軸まわりのスピンに対しても同様 に適用することができる。
また、 上体リンクの曲げやひねりのためのァクチユエータを設けなかったが、 それを追加するとき、 上体ァクチユエータ制御装置も必要となる。 但し、 上体リ ンクの曲げやひねりは、 腕または脚の付け根側に関節を追カ卩したことと等価であ るので、 概念上、 腕または脚のァクチユエータとみなすことができる。 即ち、 上 体ァクチユエータ制御装置は、 腕または脚の制御装置の一部として含まれると考 えることができる。
また、 腕部リンクの制御に、 仮想コンプライアンス制御装置以外の別の手段、 例えば、 電動ァクチユエータを電流指令型のアンプによって制御する手段を用い て関節トルクを制御し、 その結果、 間接的に対象物反力を制御するようにしても 良い。 その制御にはハンドに力センサを配置する必要はないが、 対象物反力制御 装置用にやはり力センサを設けるのが望まし!/、。
また、 ハンド 4 O R ( L) の力センサ 5 8の代わりに、 関節トルクから実対象 物反力を推定する推定器を腕メイン制御装置に備えても良い。 この推定器は、 従 来技術である外乱オブザーバーを用いれば良い。
また、 目標対象物反力を零に設定しても良い場合もある。 例えば、 前記した作 業 4では手摺りとハンドの間の摩擦がほぼ零であれば、 目標対象物反力を零に設 定するのが良い。 また、 作業 2で台車の自在キャスタ輪の摩擦が不明ならば、 目 標対象物反力を零に設定すれば良い。 尚、 目標対象物反力が常に零である場合で は、 対象物反力偏差は実対象物反力と一致するので、 上記において対象物反力偏 差に代えて実対象物反力を用いても良い。
また、 床が平面でない場合でも、 本出願人が特開平 5— 3 1 8 3 4 0号公報で 提案した仮想平面を想定する技術を用い、 目標全床反力中心点や目標 Z M Pを仮 想平面上に求めることで、 適用が可能となる。
また、 上記において、 ブロック図は演算処理順序を変えるなど、 種々の変形が 可能である。 産業上の利用可能性
この発明によれば、 移動ロボットの姿勢制御装置において、 想定外の外力が作 用するとき、 想定外の外力の、 ある所定方向の成分である第 1の外力に応じ、 所 定方向に直交する方向に腕部リンクに第 2の外力が作用するように、 腕部リンク を駆動して前記ロボットの姿勢を安定させるように制御する如く構成したので、 移動ロボットが対象物から反力をうけるような作業を行っているとき、 姿勢が不 安定になったり、 あるいは対象物から予期せぬ反力を受けても、 動パランスを維 持して安定な姿勢を保持することができる。

Claims

請求の範囲
1 . 少なくとも基体と、 移動機構と、 対象物に力を作用することができる、 少な くとも 1個の腕部リンクからなる移動ロボットの姿勢制御装置において、 想定外 の外力が作用するとき、 前記想定外の外力の、 ある所定方向の成分である第 1の 外力に応じ、 前記所定方向に直交する方向に前記腕部リンクに第 2の外力が作用 するように、 前記腕部リンクを駆動して前記ロボットの姿勢を安定させるように 制御することを特徴とする移動ロボットの姿勢制御装置。
2 , 少なくとも基体と、 移動機構と、 対象物に力を作用することができる、 少な くとも 1個の腕部リンクからなる移動ロポットの姿勢制御装置において、 a . 少なくとも前記ロボットの目標腕部リンク位置姿勢と、 前記対象物から前記 腕部リンクに作用する対象物反力の目標値である目標対象物反力からなる目 標動作を生成する目標動作生成手段、
b . 前記対象物反力の実際値である実対象物反力を検出あるいは推定する実対象 物反力検出手段、
c 少なくとも前記検出あるいは推定された実対象物反力に基づき、 前記ロボッ トの姿勢が安定するように前記目標動作を修正する姿勢安定化制御手段、 および
d . 少なくとも前記修正された目標動作に基づいて前記腕部リンクを駆動する腕 部駆動装置、
を備えたことを特徴とする移動ロボットの姿勢制御装置。
3 . 前記姿勢安定化制御手段は、 少なくとも前記実対象物反力と前記目標対象物 反力との差を示す対象物反力偏差に基づき、 前記ロボットの姿勢が安定するよう に前記目標動作を修正することを特徴とする請求の範囲第 2項記載の移動口ポッ トの姿勢制御装置。
4 . 前記姿勢安定化制御手段は、 前記対象物反力偏差の第 1の成分によって発生 する転倒力の全部あるいは一部を、 前記第 1の成分から得られる第 2の成分によ つて打ち消すように、 前記目標動作を修正することを特徴とする請求の範囲第 3 項記載の移動ロボットの姿勢制御装置。
5 . 少なくとも基体と、 移動機構と、 対象物に力を作用することができる、 少な くとも 1個の腕部リンクからなる移動ロボットの姿勢制御装置において、 a . 少なくとも前記ロボットの目標腕部リンク位置姿勢と、 前記対象物から前記 腕部リンクに作用する対象物反力の目標値である目標対象物反力からなる目 標動作を生成する目標動作生成手段、
b . 前記口ポットの姿勢傾き偏差を検出し、 前記検出した姿勢傾き偏差が零に近 づくように前記目標動作を修正する姿勢安定化制御手段、
および
c 少なくとも前記修正された目標動作に基づいて前記腕部リンクを駆動する腕 部駆動装置、
を備えたことを特徴とする移動ロボットの姿勢制御装置。
PCT/JP2003/004990 2002-05-01 2003-04-18 Dispositif de commande d'attitude d'un robot mobile WO2003092968A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR10-2004-7016725A KR20040111534A (ko) 2002-05-01 2003-04-18 이동 로봇의 자세 제어 장치
US10/512,819 US7112938B2 (en) 2002-05-01 2003-04-18 Attitude control device of mobile robot
AU2003235263A AU2003235263A1 (en) 2002-05-01 2003-04-18 Attitude control device of mobile robot
DE60328285T DE60328285D1 (de) 2002-05-01 2003-04-18 Lagensteuerungsvorrichtung für mobilen roboter
EP03723148A EP1510302B1 (en) 2002-05-01 2003-04-18 Attitude control device of mobile robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-129919 2002-05-01
JP2002129919A JP3833567B2 (ja) 2002-05-01 2002-05-01 移動ロボットの姿勢制御装置

Publications (1)

Publication Number Publication Date
WO2003092968A1 true WO2003092968A1 (fr) 2003-11-13

Family

ID=29397312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004990 WO2003092968A1 (fr) 2002-05-01 2003-04-18 Dispositif de commande d'attitude d'un robot mobile

Country Status (7)

Country Link
US (1) US7112938B2 (ja)
EP (1) EP1510302B1 (ja)
JP (1) JP3833567B2 (ja)
KR (2) KR100685720B1 (ja)
AU (1) AU2003235263A1 (ja)
DE (1) DE60328285D1 (ja)
WO (1) WO2003092968A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695799A1 (en) * 2003-11-27 2006-08-30 HONDA MOTOR CO., Ltd. Control device for mobile body
CN106983589A (zh) * 2017-04-07 2017-07-28 河北工业大学 一种基于干扰观测器的主动型膝上假肢终端滑模控制方法

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469166B2 (en) * 2001-06-29 2008-12-23 Honda Motor Co., Ltd. System and method of predicting novel motion in a serial chain system
US7684896B2 (en) * 2001-06-29 2010-03-23 Honda Motor Co., Ltd. System and method of estimating joint loads using an approach of closed form dynamics
US7217247B2 (en) * 2002-09-23 2007-05-15 Honda Giken Kogyo Kabushiki Kaisha Gravity compensation method in a human assist system and a human assist system with gravity compensation control
US7650204B2 (en) 2001-06-29 2010-01-19 Honda Motor Co., Ltd. Active control of an ankle-foot orthosis
US7390309B2 (en) * 2002-09-23 2008-06-24 Honda Motor Co., Ltd. Human assist system using gravity compensation control system and method using multiple feasibility parameters
US7623944B2 (en) * 2001-06-29 2009-11-24 Honda Motor Co., Ltd. System and method of estimating joint loads in a three-dimensional system
US7135003B2 (en) * 2001-06-29 2006-11-14 Honda Giken Kogyo Kabushiki Kaisha Feedback estimation of joint forces and joint moments
US7774177B2 (en) 2001-06-29 2010-08-10 Honda Motor Co., Ltd. Exoskeleton controller for a human-exoskeleton system
JP4133216B2 (ja) * 2001-10-29 2008-08-13 本田技研工業株式会社 人間補助装置のシミュレーション・システム、方法、およびコンピュータ・プログラム
US7402142B2 (en) * 2002-09-23 2008-07-22 Honda Giken Kogyo Kabushiki Kaisha Method and processor for obtaining moments and torques in a biped walking system
JP4299583B2 (ja) * 2003-05-20 2009-07-22 本田技研工業株式会社 脚式移動ロボット
JP4735927B2 (ja) * 2004-06-28 2011-07-27 独立行政法人産業技術総合研究所 人間型ロボットの制御装置
JP4611675B2 (ja) 2004-06-30 2011-01-12 本田技研工業株式会社 顧客応対ロボット
JP4594663B2 (ja) * 2004-06-30 2010-12-08 本田技研工業株式会社 警備ロボット
JP4459735B2 (ja) 2004-06-30 2010-04-28 本田技研工業株式会社 商品説明ロボット
US8793015B2 (en) 2004-08-02 2014-07-29 Honda Motor Co., Ltd. Control method for legged mobile robot
JP4485279B2 (ja) 2004-08-02 2010-06-16 本田技研工業株式会社 脚式移動ロボットの歩容生成装置および制御装置
JP4531520B2 (ja) * 2004-10-15 2010-08-25 本田技研工業株式会社 脚式移動ロボットの制御装置
JP4548135B2 (ja) * 2005-02-03 2010-09-22 トヨタ自動車株式会社 脚式ロボットとその制御方法
JP4910312B2 (ja) * 2005-06-03 2012-04-04 ソニー株式会社 撮像装置および撮像方法
US8082062B2 (en) * 2005-06-10 2011-12-20 Honda Motor Co., Ltd. Regenerative actuation in motion control
US7643051B2 (en) * 2005-09-09 2010-01-05 Roy Benjamin Sandberg Mobile video teleconferencing system and control method
JP4456561B2 (ja) * 2005-12-12 2010-04-28 本田技研工業株式会社 自律移動ロボット
JP4641252B2 (ja) * 2005-12-12 2011-03-02 本田技研工業株式会社 脚式移動ロボットの歩容生成装置
JP4456560B2 (ja) 2005-12-12 2010-04-28 本田技研工業株式会社 脚式移動ロボット制御装置および脚式移動ロボット、並びに、脚式移動ロボット制御方法
JP4591419B2 (ja) * 2006-07-18 2010-12-01 トヨタ自動車株式会社 ロボットとその制御方法
JP4930003B2 (ja) * 2006-11-20 2012-05-09 株式会社日立製作所 移動ロボット
WO2008080234A1 (en) 2007-01-05 2008-07-10 Victhom Human Bionics Inc. Joint actuation mechanism for a prosthetic and/or orthotic device having a compliant transmission
US9808357B2 (en) 2007-01-19 2017-11-07 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
CN102248537B (zh) * 2007-06-27 2013-12-04 松下电器产业株式会社 机器手控制装置及控制方法、机器人
JP4560658B2 (ja) * 2007-12-10 2010-10-13 本田技研工業株式会社 脚式移動ロボットの制御装置
JP5104355B2 (ja) * 2008-02-01 2012-12-19 富士通株式会社 ロボット制御装置、ロボット制御方法およびロボット制御プログラム
WO2009120637A1 (en) 2008-03-24 2009-10-01 Ossur Hf Transfemoral prosthetic systems and methods for operating the same
KR101479234B1 (ko) * 2008-09-04 2015-01-06 삼성전자 주식회사 로봇 및 그 제어 방법
KR101665543B1 (ko) * 2009-08-12 2016-10-13 삼성전자 주식회사 인간형 로봇의 안정화 장치 및 그 방법
JP5950234B2 (ja) * 2010-02-25 2016-07-13 本田技研工業株式会社 非水平および非定常の地面上にいる人型ロボットの運動量基準型バランス制御装置
JP6321905B2 (ja) * 2010-02-25 2018-05-09 本田技研工業株式会社 関節システムの制御方法、記憶媒体、制御システム
JP5633166B2 (ja) * 2010-03-23 2014-12-03 トヨタ自動車株式会社 ロボット、及びその制御方法
KR101200191B1 (ko) * 2010-07-14 2012-11-13 서울대학교산학협력단 데이터 기반 바이페드 제어 장치 및 방법
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US8706299B2 (en) * 2011-08-02 2014-04-22 GM Global Technology Operations LLC Method and system for controlling a dexterous robot execution sequence using state classification
US20130108995A1 (en) * 2011-10-31 2013-05-02 C&D Research Group LLC. System and method for monitoring and influencing body position
US9532877B2 (en) 2011-11-11 2017-01-03 Springactive, Inc. Robotic device and method of using a parallel mechanism
US10543109B2 (en) 2011-11-11 2020-01-28 Össur Iceland Ehf Prosthetic device and method with compliant linking member and actuating linking member
JP5962020B2 (ja) * 2012-01-17 2016-08-03 セイコーエプソン株式会社 ロボット制御装置、ロボットシステム、ロボット及びロボット制御方法
JP5966372B2 (ja) 2012-01-17 2016-08-10 セイコーエプソン株式会社 ロボット制御装置、ロボットシステム、ロボット制御方法及びロボット
US10307271B2 (en) 2012-02-17 2019-06-04 Össur Iceland Ehf Control system and method for non-gait ankle and foot motion in human assistance device
US9622884B2 (en) 2012-02-17 2017-04-18 Springactive, Inc. Control systems and methods for gait devices
WO2013123291A1 (en) * 2012-02-17 2013-08-22 Springactive, Inc. Control systems and methods for gait devices
US9044346B2 (en) 2012-03-29 2015-06-02 össur hf Powered prosthetic hip joint
WO2014129110A1 (ja) * 2013-02-25 2014-08-28 パナソニック株式会社 ロボット、ロボットの制御装置及び制御方法、並びに、ロボット用制御プログラム
CN105228559B (zh) 2013-02-26 2018-01-09 奥苏尔公司 具有增强的稳定性和弹性能恢复的假足
WO2014159114A1 (en) 2013-03-14 2014-10-02 össur hf Prosthetic ankle: a method of controlling based on adaptation to speed
US9292786B2 (en) * 2014-02-03 2016-03-22 Disney Enterprises, Inc. Universal balancing controller for lateral stabilization of bipedal robots in dynamic unstable environments
WO2015157723A1 (en) 2014-04-11 2015-10-15 össur hf Prosthetic foot with removable flexible members
JP6104867B2 (ja) * 2014-09-19 2017-03-29 Thk株式会社 ロボット上半身の支持構造
JP6645741B2 (ja) * 2015-02-17 2020-02-14 本田技研工業株式会社 ロボット
GB2538779B (en) * 2015-05-28 2017-08-30 Dyson Technology Ltd A method of controlling a mobile robot
US10351189B2 (en) * 2016-12-13 2019-07-16 Boston Dynamics, Inc. Whole body manipulation on a legged robot using dynamic balance
JP6927727B2 (ja) * 2017-03-29 2021-09-01 本田技研工業株式会社 ロボットの制御装置
CN107553492B (zh) * 2017-09-18 2019-08-20 北京卫星环境工程研究所 基于赫兹弹性模型的机器人主动力柔顺销孔对接装配方法
US11035183B2 (en) 2018-08-03 2021-06-15 National Oilwell Varco, L.P. Devices, systems, and methods for top drive clearing
US11891864B2 (en) 2019-01-25 2024-02-06 National Oilwell Varco, L.P. Pipe handling arm
JP7295654B2 (ja) * 2019-02-21 2023-06-21 Cyberdyne株式会社 自走式ロボット
WO2020172407A1 (en) 2019-02-22 2020-08-27 National Oilwell Varco, L.P. Dual activity top drive
US11834914B2 (en) 2020-02-10 2023-12-05 National Oilwell Varco, L.P. Quick coupling drill pipe connector
EP4146422A4 (en) 2020-05-03 2024-03-06 National Oilwell Varco, L.P. PASSIVE ROTARY SEPARATION
CN112068127B (zh) * 2020-09-14 2024-03-29 上海栩讷科技有限公司 一种基于高频毫米波雷达的无接触控制方法
EP4263151A1 (en) * 2020-12-21 2023-10-25 Boston Dynamics, Inc. Constrained manipulation of objects
US11365592B1 (en) * 2021-02-02 2022-06-21 National Oilwell Varco, L.P. Robot end-effector orientation constraint for pipe tailing path
US11814911B2 (en) 2021-07-02 2023-11-14 National Oilwell Varco, L.P. Passive tubular connection guide
US11982139B2 (en) 2021-11-03 2024-05-14 National Oilwell Varco, L.P. Passive spacer system
CN114043479B (zh) * 2021-11-24 2024-08-13 泉州装备制造研究所 一种误差矫正的地坪磨抛机器人轨迹纠偏方法及装置
WO2024197902A1 (zh) * 2023-03-31 2024-10-03 腾讯科技(深圳)有限公司 机械臂的控制方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205070A (ja) * 1993-12-30 1995-08-08 Honda Motor Co Ltd 脚式移動ロボットの歩行制御装置
JPH10277969A (ja) 1997-01-31 1998-10-20 Honda Motor Co Ltd 脚式移動ロボットの制御装置
EP0965416A1 (en) 1996-12-19 1999-12-22 Honda Giken Kogyo Kabushiki Kaisha Attitude controller of legged moving robot
JP3269852B2 (ja) 1992-05-29 2002-04-02 本田技研工業株式会社 脚式移動ロボットの姿勢安定化制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155423A (en) * 1986-02-18 1992-10-13 Robotics Research Corporation Industrial robot with servo
JPH083758B2 (ja) * 1986-04-04 1996-01-17 日立建機株式会社 多関節構造機械の制御装置
JPS63150176A (ja) * 1986-12-15 1988-06-22 工業技術院長 動的歩行ロボツトの歩行制御方法
JP3035051B2 (ja) * 1991-12-20 2000-04-17 本田技研工業株式会社 脚式移動ロボットの歩行制御装置
US5404086A (en) * 1992-07-20 1995-04-04 Honda Giken Kogyo Kabushiki Kaisha System for controlling locomotion of legged mobile robot and correcting inclinometer's output thereof
US7370713B1 (en) * 1993-02-24 2008-05-13 Deka Products Limited Partnership Personal mobility vehicles and methods
JP3672426B2 (ja) 1996-12-19 2005-07-20 本田技研工業株式会社 脚式移動ロボットの姿勢制御装置
FR2773339B1 (fr) * 1998-01-06 2000-01-28 Commissariat Energie Atomique Appareil stabilise par un gyroscope, et notamment un robot bipede
JP3443077B2 (ja) * 1999-09-20 2003-09-02 ソニー株式会社 ロボットの運動パターン生成装置及び運動パターン生成方法、並びにロボット
JP4279425B2 (ja) * 1999-11-05 2009-06-17 本田技研工業株式会社 脚式歩行ロボットの足部構造
US6898485B2 (en) * 2000-11-20 2005-05-24 Sony Corporation Device and method for controlling operation of legged robot, and robot device
JP2002239963A (ja) * 2001-02-21 2002-08-28 Sony Corp ロボット装置、ロボット装置の動作制御方法、プログラム及び記録媒体
EP1475198B1 (en) * 2002-01-18 2007-05-23 Honda Giken Kogyo Kabushiki Kaisha Controller of legged mobile robot
JP3599244B2 (ja) * 2002-11-06 2004-12-08 ソニー株式会社 ロボット装置、ロボット装置の運動制御装置並びに運動制御方法
EP1529556B1 (en) * 2003-11-04 2013-02-20 Toyota Jidosha Kabushiki Kaisha Travelling apparatus and method for controlling thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269852B2 (ja) 1992-05-29 2002-04-02 本田技研工業株式会社 脚式移動ロボットの姿勢安定化制御装置
JPH07205070A (ja) * 1993-12-30 1995-08-08 Honda Motor Co Ltd 脚式移動ロボットの歩行制御装置
EP0965416A1 (en) 1996-12-19 1999-12-22 Honda Giken Kogyo Kabushiki Kaisha Attitude controller of legged moving robot
JPH10277969A (ja) 1997-01-31 1998-10-20 Honda Motor Co Ltd 脚式移動ロボットの制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695799A1 (en) * 2003-11-27 2006-08-30 HONDA MOTOR CO., Ltd. Control device for mobile body
EP1695799A4 (en) * 2003-11-27 2009-11-11 Honda Motor Co Ltd DEVICE FOR CONTROLLING MOBILE BODY
CN106983589A (zh) * 2017-04-07 2017-07-28 河北工业大学 一种基于干扰观测器的主动型膝上假肢终端滑模控制方法

Also Published As

Publication number Publication date
US20050104548A1 (en) 2005-05-19
EP1510302A1 (en) 2005-03-02
EP1510302B1 (en) 2009-07-08
US7112938B2 (en) 2006-09-26
KR20040111534A (ko) 2004-12-31
DE60328285D1 (de) 2009-08-20
JP3833567B2 (ja) 2006-10-11
AU2003235263A1 (en) 2003-11-17
KR100685720B1 (ko) 2007-02-26
KR20060107582A (ko) 2006-10-13
JP2003326483A (ja) 2003-11-18
EP1510302A4 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
WO2003092968A1 (fr) Dispositif de commande d&#39;attitude d&#39;un robot mobile
EP0965416B1 (en) Attitude controller of legged moving robot
JP3629133B2 (ja) 脚式移動ロボットの制御装置
JP3132156B2 (ja) 脚式移動ロボットの歩容生成装置
JP3672426B2 (ja) 脚式移動ロボットの姿勢制御装置
JP4181114B2 (ja) 脚式移動ロボットの自己姿勢推定装置
US10246152B2 (en) Control device for mobile robot
US8532824B2 (en) Control device for robot
JP3167404B2 (ja) ロボットの関節駆動制御装置
JP3901694B2 (ja) 歩行式ロボット及びその位置移動方法
JPH05337849A (ja) 脚式移動ロボットの姿勢安定化制御装置
WO2007139135A1 (ja) ロボット及び制御装置
JP3167420B2 (ja) 脚式移動ロボットの歩行制御装置
JP2004009205A (ja) 2足歩行ロボット
JPH11300661A (ja) 脚式移動ロボットの制御装置
JP3055737B2 (ja) 脚式移動ロボットの歩行制御装置
JPH05253866A (ja) 脚式移動ロボットの歩行制御装置
JP3168066B2 (ja) リンク式移動ロボットの制御装置
JP3183557B2 (ja) 脚式移動ロボットの歩行制御装置
JPH07205070A (ja) 脚式移動ロボットの歩行制御装置
JP4237130B2 (ja) 脚式移動ロボットの制御装置
JP3760198B2 (ja) 歩行式移動装置及びその歩行制御装置及び歩行制御方法
JP5306959B2 (ja) 脚式移動ロボットの制御装置
JP3183558B2 (ja) リンク式移動ロボットの制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047016725

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10512819

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003723148

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047016725

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003723148

Country of ref document: EP