WO2003091085A1 - Procede et dispositif permettant de reguler la maniabilite d'un vehicule - Google Patents

Procede et dispositif permettant de reguler la maniabilite d'un vehicule Download PDF

Info

Publication number
WO2003091085A1
WO2003091085A1 PCT/JP2003/005073 JP0305073W WO03091085A1 WO 2003091085 A1 WO2003091085 A1 WO 2003091085A1 JP 0305073 W JP0305073 W JP 0305073W WO 03091085 A1 WO03091085 A1 WO 03091085A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
rotation angle
angle
gear ratio
variable
Prior art date
Application number
PCT/JP2003/005073
Other languages
English (en)
French (fr)
Inventor
Hiroaki Kato
Minekazu Momiyama
Yoshiyuki Yasui
Wataru Tanaka
Kenji Asano
Yuzou Imoto
Eiichi Ono
Yuji Muragishi
Original Assignee
Toyoda Koki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki Kabushiki Kaisha filed Critical Toyoda Koki Kabushiki Kaisha
Priority to DE60316940T priority Critical patent/DE60316940T2/de
Priority to US10/507,374 priority patent/US7055645B2/en
Priority to EP03723162A priority patent/EP1508501B1/en
Publication of WO2003091085A1 publication Critical patent/WO2003091085A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/008Changing the transfer ratio between the steering wheel and the steering gear by variable supply of energy, e.g. by using a superposition gear

Definitions

  • the present invention relates to a vehicle motion control method and a vehicle motion control device.
  • V GRS transmission ratio variable mechanism
  • the variable gear ratio mechanism 32 includes a variable gear ratio motor 32 m, a reduction gear 32 g, and the like.
  • One end of the second steering shaft 23 is connected to this output side, and the second steering shaft The other end of the shaft 23 is connected to the input side of the EPS actuator 24.
  • the EPS actuator 24 is an electric power steering device.
  • the EPS actuator 24 can convert the rotational motion inputted by the second steering shaft 23 into the axial motion of the rod 25 by a rack / pinion gear (not shown) and output the same.
  • an assist motor according to the steering state is generated by an assist motor 24 m controlled by the EPS-ECU 30 to assist the driver in steering.
  • the rotation angle of the first steering shaft 22 (steering Angle) is detected by the steering angle sensor 26 to the VGRS_ECU 40 as a steering angle signal 6 h, and the steering torque by the second steering shaft 23 is detected by the torque sensor 28 to be EPS control processing as a torque signal Tp.
  • the vehicle speed is detected by a vehicle speed sensor 27 and input as a vehicle speed signal V to EPS_ECU 30 and VGRS_ECU 40, respectively.
  • the rod 25 is equipped with unillustrated steering wheels.
  • variable gear ratio mechanism 32 and the VGRS-ECU 40 the ratio of the output gear to the input gear is changed in real time according to the vehicle speed by the variable gear ratio motor 32m and the reduction gear 32g. And the ratio of the output angle of the second steering shaft 23 to the steering angle of the first steering shaft 22 is varied.
  • the EPS actuator 24 and the EPS_ECU 30 use an assist motor 24 to assist the driver in steering according to the driver's steering state and vehicle speed detected by the torque sensor 28 and the vehicle speed sensor 27. Generated by m.
  • the steering gear ratio by the variable gear ratio mechanism 32 is set small and the assist power by the assist motor 24 m is increased. Steering transportation is greatly cut off. This makes it easier for the driver to steer.
  • the assisting force of the assist motor 24 m is reduced and the steering gear ratio is set by the variable gear ratio mechanism 32, so that the steering operation becomes heavy and Even if the steering is turned sharply, the steered wheels are only slightly cut. This can be expected to further improve the stability of vehicle control.
  • the assist motor 24 m rotation angle sensor 24 s and the gear ratio variable motor 32 2 Many sensors are used, such as a steering angle sensor 26, a vehicle speed sensor 27, and a torque sensor 28, including a rotation angle sensor 32s of m. For this reason, the vehicle motion control device 100 has a problem in that the use of such sensors frequently causes an increase in product cost and prevents a reduction in the failure rate.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a vehicle motion control method and a vehicle motion control device capable of reducing the number of parts. is there.
  • Another object of the present invention is to provide a vehicle motion control method and a vehicle motion control device that can improve the vehicle motion control performance. Disclosure of the invention
  • the transmission ratio is varied by driving a variable gear ratio motor in a steering transmission system connecting the handle and the steered wheels.
  • a motion control method for a vehicle comprising: a variable transmission ratio mechanism; and an assist motor for supplementing a steering force based on a steering torque generated on an output shaft of the variable transmission ratio mechanism, comprising: a rotation angle ⁇ of the assist motor. a first step of detecting ⁇ , a second step of detecting a rotation angle 0 vm of the variable gear ratio motor, and a detection of the rotation angle 0 pm detected in the first step and the second step. Controlling the transmission ratio variable mechanism based on the steering angle of the steering wheel obtained in the third step, and a third step of obtaining a steering angle of the steering wheel based on the obtained rotation angle ⁇ vm. And technical features to be performed.
  • the steering angle of the steering wheel is obtained based on the rotation angle ⁇ ⁇ pm detected in the first step and the rotation angle ⁇ ⁇ detected in the second step.
  • the transmission ratio variable mechanism that varies the transmission ratio of the steering transmission system is controlled based on the steering angle.
  • the steering angle of the steering wheel can be obtained even without a mechanical or electrical component for detecting the steering angle, such as a steering angle sensor. Therefore, since components for detecting such a steering angle can be eliminated, the number of components can be reduced.
  • the rotation angle 0 pm in the first step may be detected, and the rotation angle 0 in the second step may be detected.
  • a technical feature is that a rotation angle is input to at least one of the detections of vm via a deceleration means.
  • the resolution of the input rotation angles of 0 pm and 0 vm is determined. Can be enhanced.
  • the steering angle of the steering wheel can be obtained based on the rotation angles ⁇ pm and ⁇ vm with high resolution, so that the resolution of the obtained steering angle is also high. Enhanced. Therefore, since the variable transmission ratio mechanism is controlled based on the steering angle of the high-resolution steering wheel, the operation control performance of the vehicle can be improved.
  • a transmission ratio variable mechanism that varies a transmission ratio by driving a gear ratio variable motor in a steering transmission system that connects the steering wheel and the steered wheels.
  • An assist motor for supplementing a steering force based on a steering torque generated on an output shaft of the transmission ratio variable mechanism, wherein the first motor controller detects a rotation angle 0 pm of the assist motor.
  • Rotation angle detection means for detecting a rotation angle ⁇ ⁇ of the gear ratio variable motor, rotation angle 0 pm detected by the first rotation angle detection means, and the second rotation Steering angle calculating means for obtaining a steering angle of the steering wheel based on the rotation angle ⁇ ⁇ detected by the angle detecting means.
  • the steering angle calculating section calculates the steering angle of the steering wheel based on the steering angle obtained by the steering angle calculating means.
  • Variable transmission ratio The technical feature is to control the mechanism.
  • the handle is determined based on the rotation angle 0 pm detected by the first rotation angle detection means and the rotation angle ⁇ ⁇ detected by the second rotation angle detection means.
  • the steering angle is determined, and the variable transmission ratio mechanism that varies the transmission ratio of the steering transmission system is controlled based on the determined steering angle of the steering wheel.
  • the rotation angle 0 vm used for controlling the variable gear ratio motor and the rotation angle ⁇ ⁇ used for controlling the assist motor ⁇ Since the steering angle of the steering wheel is obtained based on pm, it is possible to obtain the steering angle of the steering wheel without a mechanically or electrically detecting component such as a steering angle sensor. Therefore, since a component for detecting such a steering angle can be eliminated, the number of components can be reduced.
  • the vehicle motion control device is the vehicle motion control device according to claim 3, wherein at least one of the first rotation angle detection unit and the second rotation angle detection unit is decelerated. It is a technical feature that the rotation angle is input via the means. According to the invention set forth in claim 4, since the rotation angle is input to the first and second rotation angle detection means via the deceleration means, the resolution of the input rotation angle can be improved. it can. As a result, the steering angle calculating means described in claim 3 can determine the steering angle of the steering wheel based on the rotation angles ⁇ ⁇ pm and vm vm with high resolution. Is also enhanced. Therefore, since the transmission ratio variable mechanism is controlled based on the steering angle of the handle with high resolution, the motion control performance of the vehicle can be improved. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a vehicle motion control device.
  • FIG. 2 is a functional block diagram showing a vehicle motion control process by EPS_ECU and VGRS_ECU of the vehicle motion control device according to the present embodiment.
  • FIG. 3 is a flowchart showing a flow of a steering angle calculation process by the VGRS_ECU of the vehicle motion control device according to the present embodiment.
  • FIG. 4 is an explanatory diagram showing a schematic configuration of a conventional vehicle motion control device.
  • FIG. 5 is a functional block diagram of a conventional vehicle motion control device. BEST MODE FOR CARRYING OUT THE INVENTION
  • the vehicle motion control device 20 has a function of variably controlling the steering gear ratio according to the vehicle speed by the VGRS control process 40a by the VGRS-ECU 40 and the EPS_ECU.
  • the ECU 30 has a function of assisting the driver in steering by generating an assist force according to the steering state by the EPS control processing 30a by 30.
  • the vehicle speed signal V from the vehicle speed sensor 27 and the steering angle ⁇ h obtained by the calculation process as described later are input to the VGRS_ECU 40, so that the vehicle speed signal V is uniquely determined according to the vehicle speed.
  • a process is performed to determine the rotation angle of the gear ratio variable motor 32 m of the variable gear ratio mechanism 32 from the motor rotation angle map (not shown). Supply to variable gear ratio motor 32 m.
  • the ratio of the output gear to the input gear is changed in real time by the variable gear ratio motor 32m and the reducer 32g according to the vehicle speed.
  • the steering torque signal Tp from the torque sensor 28 and the vehicle speed signal V from the vehicle speed sensor 27 are input to the EPS_ECU 30, so that the EP_ECU 30 is uniquely determined according to the vehicle speed.
  • a process is performed to determine the current command value of the assist motor 24 m of the actuator 24 from the motor current map (not shown), and the motor voltage corresponding to the determined current command value is adjusted by the motor drive circuit by the motor ratio variable motor 3 2 supply to m.
  • the EPS actuator 24 and the EPS-ECU 30 control the driver's steering according to the driver's steering state and vehicle speed detected by the torque sensor 28 and the vehicle speed sensor 27 by the EPS control processing 30a.
  • the assist motor to assist is generated by the assist motor 24m.
  • the EPS-control processing by the EPS-ECU 30 As described above, the EPS-control processing by the EPS-ECU 30.
  • the functional outlines of the VGRS-control processing 40a by the VGRS-ECU 40 and the VGRS-control processing 40a by the VGRS-ECU 30 are the same as the vehicle movement control processing by the vehicle movement control apparatus 100 described above.
  • the vehicle motion control device 20 does not use a steering angle of 0 h detected by a steering angle sensor, but uses VGRS-ECU 40 to calculate and use it in the VGRS control process 40a.
  • the force S differs from the conventional vehicle motion control device 100. That is, as shown in FIGS.
  • the steering angle 0h of the steering wheel 21 is mechanically and electrically detected by the steering angle sensor 26, and the steering angle is detected. While 0 h is used in the VGRS control process 40 a, the vehicle operation control device 20 uses the rotation angle ⁇ and the rotation angle detected by the rotation angle sensor 24 s as shown in FIG. The steering angle ⁇ h of the steering wheel 21 is obtained based on the rotation angle 0vm detected by the sensor 32s, and the VGRS control process 40a is performed based on the obtained steering angle ⁇ h. This makes the steering angle sensor 26 unnecessary.
  • the relationship between the steering angle 0 h of the steering wheel 21, the rotation angle ⁇ of the assist motor 24 m, and the rotation angle 0 vm of the variable gear ratio motor 32 m is expressed by the following equation (1). Is satisfied, the VGRS-ECU 40 executes the arithmetic processing by the equation (2) for obtaining the steering angle 0 h of the steering wheel 21 from the equation (1), thereby obtaining the steering angle 0 h.
  • ⁇ h ⁇ pm / G ⁇ - ⁇ vm / G ⁇ (2)
  • Gv is a gear ratio (unitless number) by the gear ratio variable mechanism 32, and is set by the VGRS control processing 40a.
  • G p is the gear ratio (unitless number) by the EPS actuator 24 and is set by the EPS control processing 30a.
  • the VGRS-ECU 40 performs the calculation according to the equation (2) by a steering angle calculation process that is periodically (for example, every 5 milliseconds) repeatedly executed by a predetermined timer interrupt process or the like. I have.
  • a steering angle calculation process that is periodically (for example, every 5 milliseconds) repeatedly executed by a predetermined timer interrupt process or the like. I have.
  • an outline of the steering angle calculation processing will be described with reference to FIG.
  • step S101 a process of reading data of the rotation angle ⁇ of the assist motor 24m is performed.
  • the data of the rotation angle ⁇ is detected by the rotation angle sensor 24 s and input to the VGRS-ECU 40, and the data is read by taking it in by an appropriate interrupt processing or the like.
  • step S103 a process of reading data of the rotation angle ⁇ of the gear ratio variable motor 32m is performed. Since the data of the rotation angle ⁇ is detected by the rotation angle sensor 32 s and input to the VGRS-ECU 40, the data is read by capturing the data by an appropriate interrupt processing or the like, similarly to the data of the rotation angle ⁇ pm. Is performed.
  • step S105 processing of reading data of the gear ratios Gp and Gv is performed.
  • the gear ratio Gp is obtained by multiplying the gear ratio of the ball screw interposed between the output shaft of the variable gear ratio motor 32m and the rack shaft by the gear ratio of the pinion gear that engages the rack of the rack shaft. Is set by design value or measured value.
  • the gear ratio Gv is set by a parameter determined by the VGRS control process 40a.
  • the gear ratio obtained by multiplying the gear ratio of the ball screw interposed between the output shaft of the assist motor 24m and the rack shaft and the gear ratio of the pinion gear that engages with the rack of the rack shaft is the rotation angle. This corresponds to the reduction ratio of the reduction gear interposed on the input side of the sensor 24 s.
  • step S101, S103, and S105 By executing the reading process in steps S101, S103, and S105, all the parameters necessary for obtaining the steering angle 0h from the above-described equation (2) are completed.
  • the processing for calculating the steering angle ⁇ h is performed according to (2).
  • the steering angle 0h obtained in step S107 is passed to the VGRS control processing 40a, and a series of the main steering angle calculation processing ends.
  • the rotation angle ⁇ of the assist motor 24 m detected by the rotation angle sensor 24 s and the gear ratio variable motor detected by the rotation angle sensor 32 s The steering angle ⁇ h of the steering wheel 21 is obtained based on the rotation angle ⁇ vm of 32 m, and the VGRS control process 40 a of the gear ratio variable mechanism 32 is performed based on the obtained steering angle ⁇ h.
  • the steering wheel is determined based on the rotation angle 0 vm used for the VGRS control processing 40 a of the gear ratio variable mechanism 32 and the rotation angle 0 pm used for the EPS control processing 30 a of the EPS actuator 24 (assist motor 24 m).
  • the steering wheel 21 can be used without the steering angle sensor 26 shown in FIG. Steering angle of 0 h can be obtained. Therefore, since such a steering angle sensor 26 can be eliminated, the number of parts can be reduced.
  • the rotation angle 0 pm of the assist motor 24 m is detected in step S 101, and the gear ratio variable motor 32 m is detected in step S 103.
  • the rotation angle 0 vm is detected, and the steering angle ⁇ h of the steering wheel 21 is obtained based on the rotation angle ⁇ ⁇ and the rotation angle ⁇ ⁇ in step S 107.
  • the VGRS control process 40a of the variable gear ratio mechanism 32 is performed based on the steering angle 0h obtained in step 107. This allows the variable gear ratio mechanism
  • the steering angle ⁇ h of the steering wheel 21 is obtained based on 0 pm, the steering angle ⁇ h of the steering wheel 21 can be obtained without the steering angle sensor 26 shown in FIG. Therefore, since such a steering angle sensor 26 can be eliminated, the number of parts can be reduced.
  • the gear ratio obtained by multiplying the gear ratio by the ball screw interposed between the output shaft of the assist motor 24 m and the rack shaft and the gear ratio by the pinion gear that engages the rack of the rack shaft is Since the rotation angle sensor 24 s functions as a reduction gear interposed on the input side of the rotation angle sensor 24 s, the rotation angle sensor 24 s that detects the rotation angle 0 pm of the assist motor 24 m is connected to the rotation angle sensor 24 s via the reduction gear. The rotation angle ⁇ ⁇ is input. As a result, the resolution of the input rotation angle ⁇ ⁇ can be increased, and in step S 107, the steering angle 0 h of the steering wheel 21 can be obtained based on the high-resolution rotation angle ⁇ ⁇ .
  • the VGRS control process 40a of the variable gear ratio mechanism 32 is performed based on the steering wheel angle ⁇ h of the high-resolution steering wheel 21, thereby improving the vehicle motion control performance.
  • the reducer 32 g of the variable gear ratio mechanism 32 functions as a reducer interposed on the input side of the rotation angle sensor 32 s, the rotation angle ⁇ vm of the variable gear ratio motor 32 m is detected.
  • the rotation angle ⁇ vm is input to the rotation angle sensor 32 s via the speed reducer.
  • the resolution of the input rotation angle of 6 vm can be increased, and in step S107, the steering angle ⁇ h of the steering wheel 21 can be obtained based on the rotation angle ⁇ ⁇ with high resolution.
  • the resolution of the calculated steering angle ⁇ h can be increased. Therefore, the VGRS control process 40a of the variable gear ratio mechanism 32 is performed based on the steering angle 0h of the high-resolution steering wheel 21, so that the motion control performance of the vehicle can be improved.

Description

- 1 - 明 細 書 車両の運動制御方法およぴ車両の運動制御装置
技術分野
本発明は、 車両の運動制御方法および車両の運動制御装置に関する。 背景技術
ステアリングホイール (ハンドル) と操舵輪とを連結する操舵伝達系の途中 にギヤ比可変モータの駆動により伝達比を可変する伝達比可変機構を備えた車 両の運動制御装置として、 例えば第 4図および第 5図に示すように、 ステアリ ングホイール (ハンドル) 2 1、 第 1ステアリングシャフト 2 2、 第 2ステア リングシャフト 2 3、 E P Sァクチユエータ 2 4、 ロッド 2 5、 操舵角センサ 2 6、 車速センサ 2 7、 トルクセンサ 2 8、 EPS— ECU 3 0、 ギヤ比可変機構 3 2、 VGRS— ECU 4 0等から構成される車両運動制御装置 1 0 0がある。 なお、 こ のような 「ステアリングホイール 2 1と操舵輪とを連結する操舵伝達系の途中 に電動モータの駆動により伝達比を可変する伝達比可変機構」 を、 V G R S
(Vriable Gear Ratio System) と称する場合もある。
即ち、 ステアリングホイール 2 1に第 1ステアリングシャフト 2 2の一端が 接続され、 この第 1ステアリングシャフト 2 2の他端側にはギヤ比可変機構 3 2の入力側が接続される。 このギヤ比可変機構 3 2は、 ギヤ比可変モータ 3 2 m、 減速機 3 2 g等から構成されており、 この出力側には第 2ステアリングシ ャフト 2 3の一端側が接続され、第 2ステアリングシャフト 2 3の他端側には、 E P Sァクチユエータ 2 4の入力側が接続される。 E P Sァクチユエータ 2 4 は、 電気式動力舵取装置であり、 図示しないラック ·ピニオンギヤ等により、 第 2ステアリングシャフト 2 3によって入力された回転運動をロッド 2 5の軸 方向運動に変換して出力し得るとともに、 EPS— ECU 3 0により制御されるァシ ストモータ 2 4 mにより操舵状態に応じたアシストカを発生させて運転者によ る操舵をアシストする。 なお、 第 1ステアリングシャフト 2 2の回転角 (操舵 角) は操舵角センサ 2 6により検出されて操舵角信号 6 hとして VGRS_ECU 4 0 に、 また第 2ステアリングシャフト 2 3による操舵トルクはトルクセ サ 2 8 により検出されてトルク信号 T pとして E P S制御処理 3 0 aに、 さらに車両 の速度は車速センサ 2 7により検出されて車速信号 Vとして EPS_ECU 3 0およ び VGRS_ECU 4 0に、 それぞれ入力され得るように構成されている。 また、 ロッ ド 2 5には、 図略の操舵輪が装着されている。
このように構成することによって、 ギヤ比可変機構 3 2および VGRS—ECU 4 0 では、 ギヤ比可変モータ 3 2 mと減速機 3 2 gにより、 入力ギヤに対する出力 ギヤの比を車速に応じてリアルタイムに変更し、 第 1ステアリングシャフト 2 2の操舵角に対する第 2ステアリングシャフト 2 3の出力角の比を可変する。 また、 E P Sァクチユエータ 2 4および EPS_ECU 3 0では、 トルクセンサ 2 8 およぴ車速センサ 2 7により検出した運転者の操舵状態や車速に応じて、 運転 者の操舵をアシストするアシストカをアシストモータ 2 4 mにより発生させる。 これにより、 車速に対応したステアリングギヤ比、 例えば停車時や低速走行 時にはステアリングホイール 2 1の操舵角に対してギヤ比可変機構 3 2の出力 角が大きくなるように設定し、 また高速走行時にはステアリングホイール 2 1 の操舵角に対してギヤ比可変機構 3 2の出力角が小さくなるように設定するこ とが可能となる一方で、 車速に対応した適切なアシストカをアシストモータ 2 4 mにより発生させることが可能となる。
例えば、 車両が停車や低速走行している場合には、 ギヤ比可変機構 3 2によ るステアリングギヤ比が小さく設定されるとともに、 アシストモータ 2 4 mに よるアシストカを高めるので、 軽いステアリング操作でも操舵輸は大きく切れ る。 これにより運転者の操舵を楽にすることができる。 一方、 車両が高速走行 している場合には、 アシストモータ 2 4 mによるアシスト力が低下し、 ギヤ比 可変機構 3 2によるステアリングギヤ比が大きく設定されるので、 ステアリン グ操作が重くなるとともに、 たとえステアリングが大きく切れても操舵輪は小 さく切れるにとどまる。 これにより車両制御の安定性のさらなる向上を期待す ることができる。
しかしながら、 このような車両運動制御装置 1◦ 0によると、 第 5図に示す ように、 アシストモータ 2 4 mの回転角センサ 2 4 sやギヤ比可変モータ 3 2 mの回転角センサ 3 2 sをはじめとして、操舵角センサ 2 6、車速センサ 2 7、 トルクセンサ 2 8等、 数多くのセンサが用いられている。 そのため、 車両運動 制御装置 1 0 0では、 このようなセンサが多用されていることにより、 製品コ ストの増大を招き、さらには故障発生率の低減を妨げているという問題がある。 その一方で、 車両の運動制御性能を考慮すると、 単に分解能の低い廉価なセ ンサに置き換えたり、 センサを削減する等の方策を採った場合には、 検出デー タの粗さから、 E P S制御処理 3 0 aや V G R S制御処理 4 0 aの制御性能を , 低下させたり、 制御自体を不能にするという問題がある。
本発明は、 上述した課題を解決するためになされたものであり、 その目的と するところは、 部品点数を削減し得る車両の運動制御方法おょぴ車両の運動制 御装置を提供することにある。
または、 本発明の別の目的は、 車両の運動制御性能を向上し得る車両の運動 制御方法および車両の運動制御装置を提供することにある。 発明の開示
上記目的を達成するため、 請求の範囲第 1項の車両の運動制御方法では、 ハ ンドルと操舵輪とを連結する操舵伝達系の途中にギヤ比可変モータの駆動によ り伝達比を可変する伝達比可変機構と、 この伝達比可変機構の出力軸に発生す る操舵トルクに基づいて操舵力を補うアシストモータと、 を備えた車両の運動 制御方法であって、 前記アシストモータの回転角 θ ρπιを検出する第 1のステツ プと、 前記ギヤ比可変モータの回転角 0 vmを検出する第 2のステップと、 前記 第 1のステップにより検出した回転角 0 pmおよび前記第 2のステップにより検 出した回転角 Θ vmに基づいて、 前記ハンドルの操舵角を求める第 3のステップ と、 を含み、 前記第 3のステップにより求めた前記ハンドルの操舵角に基づい て、 前記伝達比可変機構の制御を行うことを技術的特徴とする。
請求の範囲第 1項の発明によると、 第 1のステップにより検出した回転角 Θ pmおよぴ第 2のステップにより検出した回転角 θ νηιに基づいてハンドルの操舵 角を求め、 求めたハンドルの操舵角に基づいて、 操舵伝達系の伝達比を可変す る伝達比可変機構の制御を行う。 これにより、 ギヤ比可変モータの制御に用い られる回転角 θ νπιとアシストモータの制御に用いられる回転角 6 pmとに基づい てハンドルの操舵角を求めるため、 操舵角センサ等の機械的、 電気的に操舵角 を検出する部品がなくてもハンドルの操舵角を得ることができる。したがって、 このような操舵角を検出する部品を廃止することができるため、 部品点数を削 減することができる。
また、 請求の範囲第 2項の車両の運動制御方法では、 請求の範囲第 1項にお いて、 前記第 1のステップによる回転角 0 pmの検出おょぴ前記第 2のステップ による回転角 0 vmの検出の少なくとも一方には、 減速手段を介して回転角が入 力されることを技術的特徴とする。
請求の範囲第 2項の発明によると、 回転角 6 pm、 0 vmの検出には、 減速手段 を介して回転角が入力されることから、 入力される回転角 0 pm、 0 vmの分解能 を高めることができる。 これにより、 請求の範囲第 1項に記載の第 3のステツ プでは、 分解能の高い回転角 Θ pm、 Θ vmに基づいてハンドルの操舵角を求める ことができるので、 求めた操舵角の分解能も高められる。 したがって、 高分解 能のハンドルの操舵角に基づいて伝達比可変機構の制御を行うため、 車両の運 動制御性能を向上することができる。
さらに、 請求の範囲第 3項の車両の運動制御装置では、 ハンドルと操舵輪と を連結する操舵伝達系の途中にギヤ比可変モータの駆動により伝達比を可変す る伝達比可変機構と、 この伝達比可変機構の出力軸に発生する操舵トルクに基 づいて操舵力を補うアシストモータと、を備えた車両の運動制御装置であって、 前記アシストモータの回転角 0 pmを検出する第 1の回転角検出手段と、 前記ギ ャ比可変モータの回転角 θ νηιを検出する第 2の回転角検出手段と、 前記第 1の 回転角検出手段により検出した回転角 0 pmおよび前記第 2の回転角検出手段に より検出した回転角 θ νηιに基づいて、 前記ハンドルの操舵角を求める操舵角演 算手段と、 を備え、 前記操舵角演算手段により求めた前記ハンドルの操舵角に 基づいて、 前記伝達比可変機構の制御を行うことを技術的特徴とする。
請求の範囲第 3項の発明によると、 第 1の回転角検出手段に り検出した回 転角 0 pmおよぴ第 2の回転角検出手段により検出した回転角 θ νηιに基づいてハ ンドルの操舵角を求め、 求めたハンドルの操舵角に基づいて、 操舵伝達系の伝 達比を可変する伝達比可変機構の制御を行う。 これにより、 ギヤ比可変モータ の制御に用いられる回転角 0 vmとアシストモータの制御に用いられる回転角 Θ pmとに基づいてハンドルの操舵角を求めるため、 操舵角センサ等の機械的、 電 気的に操舵角を検出する部品がなくてもハンドルの操舵角を得ることができる。 したがって、 このような操舵角を検出する部品を廃止することができるため、 部品点数を削減することができる。
また、 請求の範囲第 4項の車両の運動制御装置は、 請求の範囲第 3項におい て、 前記第 1の回転角検出手段および前記第 2の回転角検出手段の少なくとも —方には、 減速手段を介して回転角が入力されることを技術的特徴とする。 請求の範囲第 4項の発明によると、 第 1、 第 2の回転角検出手段には、 減速 手段を介して回転角が入力されることから、 入力される回転角の分解能を高め ることができる。これにより、請求の範囲第 3項に記載の操舵角演算手段では、 分解能の高い回転角 Θ pm、 Θ vmに基づいてハンドルの操 16角を求めることがで きるので、 求めた操舵角の分解能も高められる。 したがって、 高分解能のハン ドルの操舵角に基づレ、て伝達比可変機構の制御を行うため、 車両の運動制御性 能を向上することができる。 図面の簡単な説明
第 1図は、 車両運動制御装置の構成概要を示す説明図である。
第 2図は、 本実施形態に係る車両運動制御装置の EPS_ECUおよび VGRS_ECUに よる車両運動制御処理を表した機能ブロック図である。
第 3図は、 本実施形態に係る車両運動制御装置の VGRS_ECUによる操舵角演算 処理の流れを示すフローチヤ一トである。
第 4図は、 従来の車両運動制御装置の構成概要を示す説明図である。
第 5図は、 従来の車両運動制御装置による機能プロック図である。 発明を実施するための最良の形態
以下、 本発明の車両の運動制御方法おょぴ車両の運動制御装置を適用した車 両運動制御装置の実施形態について図を参照して説明する。 なお、 本実施形態 に係る車両運動制御装置 2 0は、 前述した車両運動制御装置 1 0 0から操舵角 センサ 2 6を削除しているところ以外は、 機械的構成においては変わるところ がない。 そのため、 第 1図に示す車両運動制御装置 2 0においては、 第 4図に 示す車両運動制御装置 1 00と同一の構成部分に同一符号を付し、 それらの説 明を省略する。
第 2図に示すように、本実施形態に係る車両運動制御装置 20では、 EPS— ECU 30による EP S制御処理 30 aと VGRS_ECU40による VGR S制御処理 40 aとの 2つの処理がそれぞれの ECU (Electronic Control Unit ) によって 行われている。 つまり、 前述したように車両運動制御装置 20は、 VGRS— ECU4 0による VGRS制御処理 40 aによってギヤ比可変機構 3 2によりステアリ ングギヤ比を車両の速度に応じて可変制御する機能を有するとともに、 EPS_ECU 30による EP S制御処理 30 aによつて操舵状態に応じたアシスト力を発生 させて運転者による操舵をアシストする機能を有する。
そのため、 VGRS制御処理 40 aでは、 車速センサ 27による車速信号 V と、 後述するように演算処理により求められる操舵角 Θ hとが VGRS_ECU40に 入力されることにより、 車速に対応して一義的に定められるギヤ比可変機構 3 2のギヤ比可変モータ 32 mの回転角を図略のモータ回転角マップから決定す る処理を行い、 決定した回転角指令値に応じたモータ電圧をモータ駆動回路に よりギヤ比可変モータ 32 mに供給する。 これにより、 ギヤ比可変機構 3 2お よび VGRS_ECU40では、 ギヤ比可変モータ 32mと減速機 32 gによって、 入 力ギヤに対する出力ギヤの比を車速に応じてリアルタイムに変更している。 また、 EP S制御処理 30 aでは、 トルクセンサ 28による操舵トルク信号 T pと車速センサ 27による車速信号 Vとが EPS_ECU 30に入力されることに より、 車速に対応して一義的に定められる EP Sァクチユエータ 24のアシス トモータ 24 mの電流指令値を図略のモータ電流マップから決定する処理を行 レ、、 決定した電流指令値に応じたモータ電圧をモータ駆動回路によりギヤ比可 変モータ 3 2 mに供給する。 これにより、 EP Sァクチユエータ 24および EPS— ECU 30では、 EP S制御処理 30 aにより、 トルクセンサ 28および車 速センサ 2 7により検出した運転者の操舵状態や車速に応じて、 運転者の操舵 をアシストするアシストカをアシストモータ 24mにより発生させている。 このように EPS— ECU 30による EP S制御処理.30 aおよぴ VGRS— ECU 40に よる V G R S制御処理 40 aのそれぞれ機能概要は、 前述した車両運動制御装 置 1 00による車両運動制御処理と基本的に同じではあるが、 本実施形態に係 る車両運動制御装置 20では、 操舵角 0 hを操舵角センサにより検出したもの を用いるのではなく、 VGRS— ECU4 0による演算処理により求め、 それを VGR S制御処理 4 0 aに用いている点力 S、従来の車両運動制御装置 1 0 0と異なる。 即ち、 第 4図、 5に示すように、 車両運動制御装置 1 0 0では、 操舵角セン サ 2 6によりステアリングホイール 2 1の操舵角 0 hを機械的、 電気的に検出 し、 その操舵角 0 hを VGR S制御処理 4 0 aに用いているのに対し、 車両運 動制御装置 2 0では、 第 2図に示すように、 回転角センサ 24 sにより検出し た回転角 θριηと回転角センサ 3 2 sにより検出した回転角 0vmとに基づいて、 ステアリングホイール 2 1の操舵角 Θ hを求め、 求めた操舵角 Θ hに基づいて VGR S制御処理 4 0 aを行っている。 これにより操舵角センサ 2 6を不要と している。
具体的には、 ステアリングホイール 2 1の操舵角 0 hとアシストモータ 24 mの回転角 θρηιとギヤ比可変モータ 3 2 mの回転角 0 vmとの間には、次の式(1) による関係が成り立つため、 この式 (1) からステアリングホイール 2 1の操舵 角 0 hを求める式 (2) による演算処理を、 VGRS一 ECU40により実行することに よって、 当該操舵角 0 hを求めている。
Θ h + Θ vm /G v = Θ pra/G ρ · · · (1)
θ h = θ pm/G ρ - θ vm /G ν · · · (2)
ここで、 Gvはギヤ比可変機構 3 2によるギヤ比 (無単位数) で、 VGR S 制御処理 4 0 aによって設定される。 また G pは E P Sァクチユエータ 2 4に よるギヤ比 (無単位数) で、 E P S制御処理 3 0 aによつて設定される。
本実施形態では、 例えば VGRS— ECU 4 0により、 所定のタィマ割り込み処理等 により定期的 (例えば 5ミリ秒ごと) に繰り返し実行される操舵角演算処理に よってこの式 (2) による演算を行っている。 ここで、 操舵角演算処理の概要を 第 3図に基づいて説明する。
第 3図に示すように、 操舵角演算処理では、 所定の初期化処理の後、 まずス テツプ S 1 0 1により、 アシストモータ 24mの回転角 θρηιのデータを読み込 む処理が行われる。 回転角 θριηのデータは、 回転角センサ 24 sにより検出さ れて VGRS— ECU 40に入力されるので、 それを適当な割り込み処理等により取り 込むことによってデータ読み込みが行われる。 次にステップ S 103により、 ギヤ比可変モータ 32mの回転角 θνηιのデー タを読み込む処理が行われる。 回転角 θνπιのデータは、 回転角センサ 32 sに より検出されて VGRS— ECU40に入力されるので、 回転角 Θ pmのデータと同様、 それを適当な割り込み処理等により取り込むことによつてデータ読み込みが行 われる。
続くステップ S 105では、 ギヤ比 Gp、 Gvのデータを読み込む処理が行 われる。 ギヤ比 Gpは、 ギヤ比可変モータ 32mの出力軸とラック軸との間に 介在するボールねじによるギヤ比と、 このラック軸のラックと嚙合するピニォ ンギヤによるギヤ比とを乗算して得られるもので、 設計値または測定値により 設定される。 またギヤ比 Gvは、 VGRS制御処理 40 aにより決定されるパ ラメータにより設定される。
なお、 アシストモータ 24mの出力軸とラック軸との間に介在するボールね じによるギヤ比と、 このラック軸のラックと嚙合するピエオンギヤによるギヤ 比とを乗算して得られるギヤ比は、 回転角センサ 24 sの入力側に介在する減 速機としての減速比に相当するものである。
ステップ S 101、 S 103、 S 105による読み込み処理を実行すること により、 前述した式 (2) 力 ら操舵角 0 hを求めるために必要なパラメータが全 て揃うので、 続くステップ S 107では、 式 (2) により操舵角 Θ hを算出する 処理が行われる。そして、このステップ S 107により得られた操舵角 0 hが、 VGR S制御処理 40 aに渡されることで、 一連の本操舵角演算処理が終了す る。
以上説明したように、 本実施形態に係る車両運動制御装置 20によると、 回 転角センサ 24 sにより検出したアシストモータ 24 mの回転角 θριηおよび回 転角センサ 32 sにより検出したギヤ比可変モータ 32 mの回転角 θ vmに基づ いてステアリングホイール 21の操舵角 Θ hを求め、 求めた操舵角 Θ hに基づ いて、 ギヤ比可変機構 32の VGRS制御処理 40 aを行う。 これにより、 ギ ャ比可変機構 32の VGRS制御処理 40 aに用いられる回転角 0vmと EP S ァクチユエータ 24 (アシストモータ 24m) の E P S制御処理 30 aに用い られる回転角 0 pmとに基づいてステアリングホイール 21の操舵角 Θ hを求め るため、 第 4図に示す操舵角センサ 26がなくてもステアリングホイール 21 の操舵角 0 hを得ることができる。 したがって、 このような操舵角センサ 2 6 を廃止することができるため、 部品点数を削減することができる。
また、 本実施形態に係る車両運動制御装置 2 0によると、 ステップ S 1 0 1 によりアシストモータ 2 4 mの回転角 0 pmを検出し、 ステップ S 1 0 3により ギヤ比可変モータ 3 2 mの回転角 0 vmを検出し、 ステップ S 1 0 7により回転 角 θ ριηおよび回転角 θ νιηに基づいてステアリングホイール 2 1の操舵角 Θ hを 求める。 そして、 ステップ 1 0 7により求めた操舵角 0 hに基づいて、 ギヤ比 可変機構 3 2の V G R S制御処理 4 0 aを行う。 これにより、 ギヤ比可変機構
3 2の V G R S制御処理 4 0 aに用いられる回転角 0 vmと E P Sァクチユエ一 タ 2 4 (アシストモータ 2 4 m) の E P S制御処理 3 0 aに用いられる回転角
0 pmとに基づいてステアリングホイール 2 1の操舵角 Θ hを求めるため、 第 4 図に示す操舵角センサ 2 6がなくてもステアリングホイール 2 1の操舵角 Θ h を得ることができる。 したがって、 このような操舵角センサ 2 6を廃止するこ とができるため、 部品点数を削減することができる。
さらに、 本実施形態に係る車両運動制御装置 2 0では、 第 4図に示す従来の 車両運動制御装置 1 0 0のように操舵角センサ 2 6の出力を V G R S制御処理
4 0 aに用いることがない。 そのため、 例えば操舵角センサ 2 6に検出角度の 分解能が低レヽものを使用した場合に生じる電流指令値の分解能の低下からギヤ 比可変機構 3 2の制御ループの応答性が下がり、 応答遅れによるステアリング ホイール 2 1の振動等の発生を抑制することができる。
アシストモータ 2 4 mの出力軸とラック軸との間に介在するボールねじによ るギヤ比と、 このラック軸のラックと嚙合するピ-オンギヤによるギヤ比とを 乗算して得られるギヤ比は、 回転角センサ 2 4 sの入力側に介在する減速機と して機能することから、 アシストモータ 2 4 mの回転角 0 pmを検出する回転角 センサ 2 4 sには、当該減速機を介して回転角 θ ρηιが入力される。これにより、 入力される回転角 θ ρηιの分解能を高めることができるので、 ステップ S 1 0 7 では、 分解能の高い回転角 θ ρηιに基づいてステアリングホイール 2 1の操舵角 0 hを求めることができ、 求めた操舵角 Θ hの分 能も高められる。 したがつ て、 高分解能のステアリングホイール 2 1の操舵角 Θ hに基づいてギヤ比可変 機構 3 2の V G R S制御処理 4 0 aを行うため、 車両の運動制御性能を向上す ることができる。
また、 ギヤ比可変機構 3 2の減速機 3 2 gは、 回転角センサ 3 2 sの入力側 に介在する減速機として機能することから、 ギヤ比可変モータ 3 2 mの回転角 Θ vmを検出する回転角センサ 3 2 sには、 当該減速機を介して回転角 Θ vmが入 力される。 これにより、 入力される回転角 6 vmの分解能を高めることができる ので、 ステップ S 1 0 7では、 分解能の高い回転角 θ νηιに基づいてステアリン グホイール 2 1の操舵角 Θ hを求めることができ、 求めた操舵角 Θ hの分解能 も高められる。 したがって、 高分解能のステアリングホイール 2 1の操跎角 0 hに基づいてギヤ比可変機構 3 2の V G R S制御処理 4 0 aを行うため、 車両 の運動制御性能を向上することができる。

Claims

請 求 の 範 囲
1 . ハンドルと操舵輪とを連結する操舵伝達系の途中にギヤ比可変モータの駆 動により伝達比を可変する伝達比可変機構と、 この伝達比可変機構の出力軸に 発生する操舵トルクに基づいて操舵力を捕うアシストモータと、 を備えた車両 の運動制御方法であって、
前記アシストモータの回転角 0 pmを検出する第 1のステップと、
前記ギヤ比可変モータの回転角 θ νιηを検出する第 2のステップと、 前記第 1のステップにより検出した回転角 0 pmおよび前記第 2のステップに より検出した回転角 θ νιηに基づいて、 前記ハンドルの操舵角を求める第 3のス テツプと、 を含み、
前記第 3のステップにより求めた前記ハンドルの操舵角に基づいて、 前記伝 達比可変機構の制御を行うことを特徴とする車両の運動制御方法。
2 . 前記第 1のステップによる回転角 θ ριηの検出おょぴ前記第 2のステップに よる回転角 θ νηιの検出の少なくとも一方には、 減速手段を介して回転角が入力 されることを特徴とする請求の範囲第 1項記載の車両の運動制御方法。
3 . ハンドルと操舵輪とを連結する操舵伝達系の途中にギヤ比可変モータの駆 動により伝達比を可変する伝達比可変機構と、 この伝達比可変機構の出力軸に 発生する操舵トルクに基づいて操舵力を補うアシストモータと、 を備えた車両 の運動制御装置であって、
前記アシストモータの回転角 0 pmを検出する第 1の回転角検出手段と、 前記ギヤ比可変モータの回転角 Θ vmを検出する第 2の回転角検出手段と、 前記第 1の回転角検出手段により検出した回転角 Θ pmおよび前記第 2の回転 角検出手段により検出した回転角 6 vmに基づいて、 前記ハンドルの操舵角を求 める操舵角演算手段と、 を備え、
前記操舵角演算手段により求めた前記ハンドルの操舵角に基づいて、 前記伝 達比可変機構の制御を行うことを特徴とする車両の運動制御装置。
4 . 前記第 1の回転角検出手段および前記第 2の回転角検出手段の少なくとも 一方には、 減速手段を介して回転角が入力されることを特徴とする請求の範囲 第 3項記載の車両の運動制御装置。
PCT/JP2003/005073 2002-04-26 2003-04-21 Procede et dispositif permettant de reguler la maniabilite d'un vehicule WO2003091085A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60316940T DE60316940T2 (de) 2002-04-26 2003-04-21 Verfahren und vorrichtung zur steuerung der manövrierbarkeit eines fahrzeugs
US10/507,374 US7055645B2 (en) 2002-04-26 2003-04-21 Method and device for controlling maneuverability of vehicle
EP03723162A EP1508501B1 (en) 2002-04-26 2003-04-21 Method and device for controlling maneuverability of vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002126716A JP4092389B2 (ja) 2002-04-26 2002-04-26 車両の運動制御方法および車両の運動制御装置
JP2002-126716 2002-04-26

Publications (1)

Publication Number Publication Date
WO2003091085A1 true WO2003091085A1 (fr) 2003-11-06

Family

ID=29267612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005073 WO2003091085A1 (fr) 2002-04-26 2003-04-21 Procede et dispositif permettant de reguler la maniabilite d'un vehicule

Country Status (5)

Country Link
US (1) US7055645B2 (ja)
EP (1) EP1508501B1 (ja)
JP (1) JP4092389B2 (ja)
DE (1) DE60316940T2 (ja)
WO (1) WO2003091085A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525257B2 (ja) * 2003-12-09 2010-08-18 日産自動車株式会社 車両用操舵制御装置
JP4411999B2 (ja) * 2004-02-17 2010-02-10 株式会社ジェイテクト 車両用操舵装置
JP2006151358A (ja) * 2004-10-25 2006-06-15 Denso Corp 車両用前照灯光軸方向自動調整装置
JP4872229B2 (ja) * 2005-03-30 2012-02-08 株式会社ジェイテクト 車両用操舵装置
DE102005059883A1 (de) * 2005-12-15 2007-06-21 Zf Lenksysteme Gmbh Lenksystem für ein Fahrzeug
FR2908725B1 (fr) * 2006-11-21 2008-12-19 Renault Sas Procede et dispositif de commande de la direction d'un vehicule
DE102007000958A1 (de) * 2007-10-02 2009-05-14 Zf Lenksysteme Gmbh Verfahren und Vorrichtung zur Bestimmung einer Lenkwinkelinformation
JP2009096325A (ja) * 2007-10-17 2009-05-07 Honda Motor Co Ltd ステアリング装置の故障検知装置
DE602008002674D1 (de) * 2007-10-19 2010-11-04 Honda Motor Co Ltd Lenksystem
CN101868396B (zh) * 2007-11-19 2013-08-21 丰田自动车株式会社 车辆的转向控制装置
JP4569634B2 (ja) * 2008-01-09 2010-10-27 株式会社デンソー 車両用操舵装置
JP5171487B2 (ja) * 2008-09-02 2013-03-27 本田技研工業株式会社 ステアリング装置
JP5017423B2 (ja) * 2010-06-09 2012-09-05 株式会社デンソー 操舵制御装置
EP3459822B1 (en) * 2016-08-26 2020-01-08 NSK Ltd. Control device for electric power steering device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105103A (ja) * 1991-10-14 1993-04-27 Honda Motor Co Ltd 電動パワーステアリング装置
JPH10315998A (ja) * 1997-05-14 1998-12-02 Toyota Motor Corp 車両用操舵制御装置
JPH111175A (ja) * 1997-06-13 1999-01-06 Toyota Motor Corp 車両用操舵装置
JPH1178945A (ja) * 1997-09-12 1999-03-23 Toyota Motor Corp ステアリング装置
JP2000062632A (ja) * 1998-08-19 2000-02-29 Toyota Motor Corp 車両用操舵装置
US6102151A (en) * 1997-07-24 2000-08-15 Honda Giken Kogyo Kabushiki Kaisha Electric power steering apparatus
JP2001138936A (ja) * 1999-08-27 2001-05-22 Toyota Motor Corp 車両用操舵制御装置
JP2003137125A (ja) * 2001-11-06 2003-05-14 Nissan Motor Co Ltd 舵角比可変装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531712B2 (ja) * 1997-06-04 2004-05-31 トヨタ自動車株式会社 車両用操舵装置
US6926114B2 (en) * 2002-06-03 2005-08-09 Delphi Technologies, Inc. Assist modification in active front steering
JP4067901B2 (ja) * 2002-07-26 2008-03-26 株式会社ジェイテクト 車両用操舵制御システム
JP2004284513A (ja) * 2003-03-24 2004-10-14 Toyoda Mach Works Ltd 操舵系伝達比可変システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105103A (ja) * 1991-10-14 1993-04-27 Honda Motor Co Ltd 電動パワーステアリング装置
JPH10315998A (ja) * 1997-05-14 1998-12-02 Toyota Motor Corp 車両用操舵制御装置
JPH111175A (ja) * 1997-06-13 1999-01-06 Toyota Motor Corp 車両用操舵装置
US6102151A (en) * 1997-07-24 2000-08-15 Honda Giken Kogyo Kabushiki Kaisha Electric power steering apparatus
JPH1178945A (ja) * 1997-09-12 1999-03-23 Toyota Motor Corp ステアリング装置
JP2000062632A (ja) * 1998-08-19 2000-02-29 Toyota Motor Corp 車両用操舵装置
JP2001138936A (ja) * 1999-08-27 2001-05-22 Toyota Motor Corp 車両用操舵制御装置
JP2003137125A (ja) * 2001-11-06 2003-05-14 Nissan Motor Co Ltd 舵角比可変装置

Also Published As

Publication number Publication date
US20050167181A1 (en) 2005-08-04
US7055645B2 (en) 2006-06-06
DE60316940T2 (de) 2008-08-14
EP1508501B1 (en) 2007-10-17
EP1508501A1 (en) 2005-02-23
JP2003320948A (ja) 2003-11-11
JP4092389B2 (ja) 2008-05-28
EP1508501A4 (en) 2006-08-02
DE60316940D1 (de) 2007-11-29

Similar Documents

Publication Publication Date Title
US8229627B2 (en) Vehicle steering apparatus
JPH10217998A (ja) 操舵制御装置
WO2003091085A1 (fr) Procede et dispositif permettant de reguler la maniabilite d'un vehicule
US10850763B2 (en) Steer-by-wire steering system
JP2003276635A (ja) 電動パワーステアリング装置および絶対舵角検出装置
JP4211366B2 (ja) ハンドル操舵状態検出装置
JP4792825B2 (ja) 車両用操舵装置
JP2004338562A (ja) 電動パワーステアリング制御装置
US11685429B2 (en) Steering control device
US20210122413A1 (en) Steering control device
JP4635661B2 (ja) 車両用操舵装置
JP2004042795A (ja) 車両の運動制御方法および車両の運動制御装置
JP2008201205A (ja) 車両用操舵装置
JP6326171B1 (ja) 操舵制御装置、電動パワーステアリング装置
EP3971062B1 (en) Steering control device
JP5975242B2 (ja) 舵角比可変操舵装置
JP4385267B2 (ja) 車両用操舵制御装置
JP4333399B2 (ja) 車両操舵装置
JP3729691B2 (ja) 車両用操舵装置
JP3956706B2 (ja) パワーステアリング装置
CN111497927A (zh) 用于车辆的控制装置
JP2006199149A (ja) 電動パワーステアリング装置
JPH11301509A (ja) 電動パワーステアリング装置
JP2014000930A (ja) 車両の電動パワーステアリング装置
JP2000085603A (ja) 操舵制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003723162

Country of ref document: EP

Ref document number: 10507374

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003723162

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003723162

Country of ref document: EP