WO2003085399A1 - Methode de determination d'une leucemie, d'une preleucemie ou d'une maladie sanguine maligne aleucemique, et methode diagnostique - Google Patents

Methode de determination d'une leucemie, d'une preleucemie ou d'une maladie sanguine maligne aleucemique, et methode diagnostique Download PDF

Info

Publication number
WO2003085399A1
WO2003085399A1 PCT/JP2003/004531 JP0304531W WO03085399A1 WO 2003085399 A1 WO2003085399 A1 WO 2003085399A1 JP 0304531 W JP0304531 W JP 0304531W WO 03085399 A1 WO03085399 A1 WO 03085399A1
Authority
WO
WIPO (PCT)
Prior art keywords
scgf
hematopoietic stem
antibody
leukemia
stem cell
Prior art date
Application number
PCT/JP2003/004531
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Ando
Tomomitsu Hotta
Chie Ito
Hidenao Sato
Akiko Furuya
Kenya Shitara
Seiji Sugimoto
Hiroaki Kohno
Original Assignee
Tokai University
Kyowa Hakko Kogyo Co.,Ltd
Kyowa Medex Co.,Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Kyowa Hakko Kogyo Co.,Ltd, Kyowa Medex Co.,Ltd filed Critical Tokai University
Priority to US10/510,627 priority Critical patent/US7479371B2/en
Priority to CA002481710A priority patent/CA2481710A1/en
Priority to AU2003236028A priority patent/AU2003236028A1/en
Priority to JP2003582535A priority patent/JPWO2003085399A1/ja
Priority to EP03745988A priority patent/EP1496360A4/en
Publication of WO2003085399A1 publication Critical patent/WO2003085399A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57426Specifically defined cancers leukemia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors

Definitions

  • the present invention provides a method for determining leukemia, preleukemia or non-leukemic malignant blood disease, comprising measuring hematopoietic stem cell growth factor (SCGF).
  • SCGF hematopoietic stem cell growth factor
  • hematopoietic stem cell growth factor (SCGF) -reactive antibody as an active ingredient
  • SCGF hematopoietic stem cell growth factor
  • Diagnosis of leukemia, preleukemia and non-leukemic malignancy, or post-treatment diagnosis of leukemia, preleukemia and non-leukemia malignancy may be used to treat leukemia, preleukemia and non-leukemia malignancy. It is important in deciding a policy.
  • the first diagnosis of leukemia is to measure the number of leukocytes in the patient's peripheral blood, and to suspect leukemia if the measured value exceeds the normal value.
  • diseases other than leukemia such as a cold
  • the normal value of the white blood cell count in peripheral blood is as wide as 4,000 to 8,000 // XL, and there is a possibility of false negative. So, more accurate There is a need for a highly diagnostic method for leukemia.
  • One of the treatment methods for the above-mentioned leukemia, pre-leukemia, non-leukemic malignant blood disease, congenital metabolic disease, solid cancer and the like includes hematopoietic stem cell transplantation therapy.
  • Problems of hematopoietic stem cell transplantation therapy include HLA type mismatch between the donor's hematopoietic stem cells and the patient's hematopoietic stem cells, and the transplanted hematopoietic stem cells do not survive due to the patient's physical condition or infection, etc.
  • the effects of hematopoietic stem cell transplantation therapy are not sufficiently obtained, such as delayed stem cell engraftment and the development of graft-versus-host reaction disease (hereinafter referred to as GVHD). May be taken.
  • GVHD graft-versus-host reaction disease
  • G-CSF can be administered to a living body to promote engraftment of hematopoietic stem cells.
  • rejection of the provided hematopoietic stem cells can be suppressed by administering an immunosuppressant to the living body.
  • any of the drugs is administered in excess, side effects may be a concern. Therefore, diagnosing or predicting the status of hematopoietic stem cell engraftment and the onset of GVHD is important in determining treatment strategies.
  • the method of confirming hematopoietic stem cell engraftment after hematopoietic stem cell transplantation is to measure the number of leukocytes and platelets in peripheral blood, and if those measured values increase, it is possible to diagnose that hematopoietic stem cells have engrafted. it can.
  • engraftment of hematopoietic stem cells may require 10 days to one month or more after transplantation, so that the determination of hematopoietic stem cell engraftment can be determined early by measuring the number of leukocytes and platelets in peripheral blood. Can not do.
  • a method for determining the onset of GVHD includes observing skin rashes and the like that appear during the first phase of recovery after hematopoietic stem cell transplantation.
  • determining the onset of GVHD includes observing skin rashes and the like that appear during the first phase of recovery after hematopoietic stem cell transplantation.
  • there is no known simple and accurate method for determining the onset of GVHD includes observing skin rashes and the like that appear during the first phase of recovery after hematopoietic stem cell transplantation.
  • there is no known simple and accurate method for determining the onset of GVHD includes observing skin rashes and the like that appear during the first phase of recovery after hematopoietic stem cell transplantation.
  • predicting the onset of GVHD before the onset of GVHD.
  • SCGF Human hematopoietic stem cell growth factor
  • Antibodies that recognize SCGF include SCGF obtained by genetic recombination, and polyclonal antibodies and cells prepared using immunoglobulins from the 6th to 25th residues from the N-terminus of SCGF. Monoclonal antibodies prepared using SCGF partially purified from the culture supernatant or SCGF obtained by genetic recombination as an immunogen are known [WO98 / 08859].
  • the monoclonal antibody has a neutralizing activity
  • SCGF obtained by the genetic recombination method reacts with SCGF obtained by the genetic recombination method in ELISA
  • SCGF obtained by genetic recombination can be detected by Western blotting using a polyclonal antibody prepared using a partial peptide from residues 6 to 25 from the N-terminus as an immunogen. It has been reported.
  • SCGF gene expression was high in the kidney and low in the heart, and no expression was found in the brain, placenta, lung, liver, skeletal muscle, and kidney [Proc. Natl. Acad. Sci. USA, 94, 7577 (1997)], abundant in spleen, thymus, cecum, bone marrow, fetal liver, and low in peripheral blood [Biochem. Biophys. Res. Comm., 249, 124 (1998)].
  • SCGF is expressed in bone marrow, proliferating cartilage, and periosteum as a result of in situ hybridization in normal neonatal mice [The Hematology Journal, 2, 307 (2001)] ].
  • SCGF gene expression was observed in bone marrow cell lines (HT60, KPB-M15), mononuclear cell lines ( ⁇ ⁇ 1, U_937), erythroid cell lines (HEL), and fibroblast cell lines (NHF).
  • B cell line U266B1, IM-9
  • T cell line MOLT-4
  • erythroid cell line K562
  • epithelial cancer cell line HeLaS3, A431
  • melanoma cell line Boes;
  • SCGF protein As described above, the existence, function, and disease-related relationship of SCGF protein in body fluids and tissues such as serum and plasma of animals including humans has not been clarified.
  • An object of the present invention is to determine leukemia, proleukemia or non-leukemic malignant blood disease, distinguish leukemia from preleukemia or non-leukemic malignant blood disease, distinguish aplastic anemia from myelodysplastic syndrome, and obtain hematopoietic stem cells.
  • the present invention relates to the following (1) to (20).
  • a method for determining leukemia, preleukemia or non-leukemic malignant blood disease which comprises measuring hematopoietic stem cell growth factor (SCGF) in a biological sample.
  • SCGF hematopoietic stem cell growth factor
  • a method for distinguishing leukemia from pre-leukemia or non-leukemic malignant blood disease comprising measuring hematopoietic stem cell growth factor (SCGF) in a biological sample.
  • SCGF hematopoietic stem cell growth factor
  • a method for distinguishing between aplastic anemia and myelodysplastic syndrome which comprises measuring hematopoietic stem cell growth factor (SCGF) in a biological sample.
  • SCGF hematopoietic stem cell growth factor
  • a method for determining hematopoietic stem cell engraftment status after hematopoietic stem cell transplantation comprising measuring hematopoietic stem cell growth factor (SCGF) in a biological sample.
  • SCGF hematopoietic stem cell growth factor
  • a method for determining graft-versus-host reaction disease comprising quantifying hematopoietic stem cell growth factor (SCGF) in a biological sample.
  • SCGF hematopoietic stem cell growth factor
  • the antibody is an antibody selected from a polyclonal antibody and a monoclonal antibody.
  • Monoclonal antibody that recognizes the region represented by the amino acid sequence at positions 6 to 28 of SEQ ID NO: 1, and recognizes the region represented by the amino acid sequence at positions 29 to 59 (9) The method according to (9) above, wherein the monoclonal antibody is selected from the group consisting of a monoclonal antibody that recognizes and a monoclonal antibody that recognizes the region represented by the amino acid sequence at positions 60 to 302.
  • a diagnostic agent for leukemia, pre-leukemia or non-leukemic malignant blood disease comprising an antibody reactive with hematopoietic stem cell growth factor (SCGF) as an active ingredient.
  • SCGF hematopoietic stem cell growth factor
  • a diagnostic agent for graft-versus-host reaction disease comprising an antibody reactive with hematopoietic stem cell growth factor (SCGF) as an active ingredient.
  • SCGF hematopoietic stem cell growth factor
  • Monoclonal monoclonal antibody that recognizes the region indicated by the amino acid sequence at positions 6 to 28 of SEQ ID NO: 1; amino acid sequence at positions 29 to 59
  • the monoclonal antibody according to the above (14) which is a monoclonal antibody selected from the group consisting of a monoclonal antibody recognizing the indicated region and a monoclonal antibody recognizing the region indicated by the 60th to 302nd amino acid sequences. Diagnostics.
  • Leukemia pre-leukemia or non-leukemic malignant blood disease, hematopoietic stem cell engraftment after hematopoietic stem cell transplantation, or graft-versus-host reaction disease, including antibodies that react with hematopoietic stem cell growth factor (SCGF) Diagnostic kit.
  • SCGF hematopoietic stem cell growth factor
  • a monoclonal antibody which recognizes the region represented by the amino acid sequence at positions 29 to 59 of SEQ ID NO: 1.
  • FIG. 1 is a diagram showing the reactivity of a monoclonal antibody to a human SCGF partial peptide (compound 1) (binding ELISA) o
  • FIG. 2 shows the results of SDS-PAGE and Western blotting of purified human SCGF protein.
  • Lanes 1 and 2 show molecular weight markers and SDS-PAGE analysis of purified human SCGF protein.
  • Lanes 3, 4, and 5 show the results of Western blotting of purified human SCGF protein using KM2142, KM2804, and KM2945, respectively.
  • FIG. 3 shows the reactivity of the monoclonal antibody to human SCGF protein expressed in CHO cells (binding ELISA).
  • FIG. 4 shows the reactivity of the monoclonal antibody to SDS-denatured human SCGF protein (CH ⁇ cell expression) (binding ELISA).
  • FIG. 5 shows the reactivity of the monoclonal antibody to human and mouse SCGF protein (C HO cell expression).
  • FIG. 6 is a view showing a quantification curve of human SCGF protein by sandwich ELISA using a monoclonal antibody.
  • FIG. 7 shows SCGF concentrations in serum of patients with various blood diseases.
  • the horizontal solid line shows the median value of various blood disease groups, and the horizontal dotted line shows the cut-off value (18.2 ng / mL) obtained from the healthy subject group.
  • FIG. 8 is a graph showing the difference between the onset and non-onset of GVHD depending on the SCGF concentration in the serum of a hematopoietic stem cell transplant patient.
  • the horizontal solid line shows the median value of each group.
  • FIG. 9 is a graph showing the relationship between the SCGF concentration in the serum of a hematopoietic stem cell transplant patient and the detection sensitivity of a patient with GVHD and the specificity of a non-patient.
  • Parable Sensitivity
  • Specificity
  • Vertical dotted lines indicate provisional cutoff values.
  • FIG. 10 is a graph showing the difference between engraftment delay and non-delay depending on the SCGF concentration in the serum of a hematopoietic stem cell transplant patient.
  • the horizontal solid line shows the median value of each group.
  • FIG. 11 is a graph showing the relationship between the SCGF concentration in the serum of a hematopoietic stem cell transplant patient and the detection sensitivity of hematopoietic stem cell engraftment delayed cases and the specificity of non-delayed cases.
  • the present invention relates to a method for determining leukemia, preleukemia or non-leukemic malignant blood disease.
  • Leukemia includes any type of hematopoietic cells such as hematopoietic cells or other immature cells that have become tumors.Acute lymphocytic leukemia
  • ALL acute myeloid leukemia
  • AML acute myeloid leukemia
  • CML chronic myeloid leukemia
  • Pre-leukemia includes any type of hematopoietic cells in which mature cells, such as lymphocytes, have become tumors. Examples include myelodysplastic syndromes (hereinafter referred to as MDS). Can be
  • Non-leukemic malignant blood diseases include lymphoma and myeloma.
  • Lymphomas include Hodgkin's lymphoma and non-Hodgkin's lymphoma (hereinafter referred to as NHL).
  • Myeloma includes multiple myeloma (hereinafter referred to as MM).
  • SCGF concentrations in biological samples of patients with leukemia, preleukemia and non-leukemic malignant hematological diseases are significantly higher than SCGF concentrations in biological samples of healthy individuals. Therefore, a cut-off value is set for the SCGF concentration, SCGF in the collected biological sample is quantified, and if the SCGF concentration is higher than the cut-off value, leukemia, pre-leukemia, or non-leukemic malignant hematologic disease is determined. Can be determined.
  • the cutoff value is a value determined when a target disease group and a non-disease group are determined by focusing on a certain substance.
  • the cutoff value is a value determined when a target disease group and a non-disease group are determined by focusing on a certain substance.
  • the target disease or non-disease if it is below the cutoff value, it is negative, if it is above the cutoff value, it is positive, or if it is below the cutoff value, it is positive, if it is above the cutoff value. If the disease is judged to be negative, the disease can be determined (Masami Kanai, edited by Clinical Laboratory Methods, Kanbara Publishing Co., Ltd.).
  • Indices used to evaluate the clinical usefulness of the power-off value include sensitivity and specificity.
  • a certain population was judged using the cutoff value, and among the sick patients, a (true positive) was determined to be positive, and b (false negative) was determined to be a sick patient and judged negative. ), C (false positive) when the judgment is positive despite not being a diseased patient, and d (true negative) when the judgment is negative without the diseased patient, a / (a The value expressed by + b) can be expressed as sensitivity (true positive rate), and the value expressed by ⁇ / (c + d) can be expressed as specificity (true negative rate).
  • the distribution of measured values between the target disease group and the non-disease group usually partially overlaps. Therefore, increasing or decreasing the cutoff value changes sensitivity and specificity. Lowering the cutoff value increases sensitivity, but decreases specificity. Increasing the cutoff value decreases sensitivity but increases specificity. As a judgment method, it is preferable that both the sensitivity and the specificity have high values. In addition, a judgment method in which the values of sensitivity and specificity do not exceed 50% is not considered useful.
  • the cut-off value can be set by setting the cut-off value at either end from the center, including 95% of the distribution of the non-diseased group, or by setting the normal distribution to the non-diseased group. If indicated, mean + 2 times standard deviation (SD) Alternatively, there is a method of setting an average value of 1 2 SD as a cutoff value.
  • a sensitivity of 89.5% and a specificity of 70% can be used when the power-off value is set to 15.0 ng / mL. If the cut-off value is set to 13.0 ng / mL, it can be determined based on 100% sensitivity and 60% specificity. If the cut-off value is set to the average value + 18.2 ng / mL of 2 SD based on the SCGF concentration of a healthy person, it can be determined with a sensitivity of 89.5% and a specificity of 100%. The cut-off value was 95% sensitivity and 100% specificity for leukemia and 76.9% sensitivity and 100% specificity for non-leukemic malignant blood disease. Can be determined based on 100% sensitivity and 100% specificity.
  • the biological sample may be any such as blood, urine, cerebrospinal fluid, and puncture fluid, but preferably blood.
  • blood examples include whole blood, plasma, serum, hemolyzed blood, and intracellular fluid, and preferably serum or plasma.
  • the present invention relates to a method for distinguishing leukemia from pre-leukemia or non-leukemic malignant blood disease.
  • the SCGF concentration in the biological sample of leukemia patients is significantly higher than the SCGF concentration in the biological sample of patients with pre-leukemia or non-leukemic malignant blood. Therefore, after a leukemia, pre-leukemia, or non-leukemic malignant hematological disease is determined by the above-described method, a cutoff value is further determined for determining leukemia, and the SCGF concentration in the collected biological sample is reduced to the cutoff value. If the value is higher than this value, it can be determined that the disease is leukemia, and if the value is lower, it can be determined that the disease is pre-leukemia or non-leukemic malignant blood disease.
  • the cut-off value When distinguishing leukemia from pre-leukemia or non-leukemic malignant blood disease, When the cut-off value is set at 23.8 ng / mL, the sensitivity can be determined with 85% sensitivity and 69.2% specificity. When the cut-off value is set to 32.8 ng / mL from the mean of non-leukemic malignant blood disease patients + 2 SD, the sensitivity is 80 ° /. Can be determined based on the specificity of 100%.
  • the present invention relates to a method for distinguishing aplastic anemia from myelodysplastic syndrome.
  • Aplastic anemia and myelodysplastic syndrome are conditions characterized by abnormalities in the number and morphology of leukocytes in bone marrow and peripheral blood, and it has been difficult to distinguish between the two diseases.
  • SCGF levels in patients with myelodysplastic syndrome are significantly higher than SCGF levels in the blood of healthy individuals, but SCGF levels in blood of patients with aplastic anemia remain the same as in healthy individuals.
  • the SCGF concentration in the blood of patients with myelodysplastic syndrome is significantly higher than the SCGF concentration in the blood of patients with aplastic anemia, and by measuring the SCGF concentration in both blood, it is possible to distinguish between aplastic anemia and myelodysplastic syndrome can do.
  • a patient with aplastic anemia and a patient with myelodysplastic syndrome can be distinguished by 100% sensitivity and 100% specificity.
  • the reference value is set to 15.6 ng / mL or more: L8.6 ng / mL, patients with aplastic anemia and patients with myelodysplastic syndrome can be distinguished by 100% sensitivity and 100% specificity.
  • the present invention also relates to a method for determining a delay in hematopoietic stem cell engraftment after hematopoietic stem cell transplantation.
  • hematopoietic stem cell transplantation Any method of hematopoietic stem cell transplantation may be used as long as hematopoietic stem cells are transplanted. Examples include bone marrow transplantation, umbilical cord blood transplantation, and peripheral blood stem cell transplantation. Can be
  • the period from hematopoietic stem cell transplantation to hematopoietic stem cell engraftment is classified into the following four periods based on the peripheral blood count of the patient.
  • a preconditioning period in which a large amount of an anticancer agent or the like is administered an abrastic period in which the blood cell count has decreased after transplantation, and a recovery condition in which the blood cell count has recovered after transplantation.
  • a stable phase in which hematopoietic stem cells engraft after transplantation is classified into the following four periods based on the peripheral blood count of the patient.
  • the SCGF concentration in the biological sample during the preconditioning period and the plastic stage of the patient who underwent hematopoietic stem cell transplantation was higher than the SCGF concentration in the biological sample of the patient with delayed hematopoietic stem cell engraftment. Is higher than SCGF concentration in biological samples of patients who do not delay engraftment. Therefore, the SCGF concentration at each stage is measured, and the SCGF concentration at which the engraftment of hematopoietic stem cells is judged to be delayed is determined as the power cut-off value, and the SCGF concentration is lower than the power cut-off value. No delay in engraftment was observed, and it can be determined that engraftment delay occurs when the SCGF concentration is higher than the cutoff value.
  • a cut-off value of 9.5 ng / mL is set to a sensitivity of 75% and a specificity of 67%.
  • the to-off value is 12 ng / mL, it can be determined with a sensitivity of 75% and a specificity of 63%.
  • the present invention relates to a method for determining the onset of GVHD.
  • SCGF levels in biological samples during the plastic and recovery phases of patients undergoing hematopoietic stem cell transplantation are higher in patients with GVHD than in those without GVHD. Therefore, SCGF concentration is measured at each stage, and GVHD may develop at each stage. If the SCGF concentration is lower than the power-off value, there is no risk of developing GVHD, but if the SCGF concentration is higher than the power-off value, It can be determined that GVHD may occur.
  • the cutoff value is set to, for example, 5 ng / mL, with a sensitivity of 87% and a specificity of 57%. If the cut-off value is set to, for example, 10 ng / mL, the sensitivity is 87% and the specificity is 63%, and in the recovery phase, if the cut-off value is set to, for example, 15 ng / mL, the sensitivity is 87% and the specificity is 63%.
  • a non-onset patient can be determined.
  • SCGF hematopoietic stem cell growth factor
  • Immunological assays include antigen-antibody reactions such as the immunoassay method, the immunoblotting method, the agglutination reaction, the complement fixation reaction, the hemolysis reaction, the sedimentation reaction, the gold colloid method, the chromatographic method, and the immunostaining method. Any method may be included as long as it utilizes the method, but preferably the Imnoassy method is used.
  • Examples of the molecular biological measurement method include an RT-PCR method, a Northern blotting method, an in situ hybridization method, and the like.
  • the immunoassay method is a method for detecting or quantifying an antibody or an antigen using variously labeled antigens or antibodies.
  • the radioimmunoassay RIA
  • EIA or ELISA enzyme immunodetection Methods
  • FIA fluorescent immunodetection
  • luminescent immunoassay luminescent immunoassay
  • TIA cytochemical detection
  • LAPIA LAPIA
  • PCIA flow cytometry
  • radiolabel used in the radioimmunoassay any known radioisotope (enzyme immunoassay, edited by Eiji Ishikawa et al, Enzyme Immunoassay) can be used.
  • enzyme immunoassay edited by Eiji Ishikawa et al, Enzyme Immunoassay
  • 32p, 125 L 1311 and the like can be used.
  • any known enzyme enzyme immunoassay, edited by Eiji Ishikawa et al., Medical Shoin
  • enzyme immunoassay edited by Eiji Ishikawa et al., Medical Shoin
  • alkaline phosphatase peroxidase
  • luciferase and the like can be used.
  • enzyme immunoassay measures and detects substances produced by the action of enzymes.
  • the method of measuring the absorbance of a substance having an absorption maximum in the ultraviolet or visible region measures the generated fluorescent substance
  • a variety of measurement methods can be used, such as a method of measuring fluorescence intensity and a method of measuring emission intensity of generated substances.
  • a substrate of the alkaline phosphatase which generates a substance having an absorption maximum in the ultraviolet or visible part by the action of an alkaline phosphatase may be used.
  • 4-nitrophenyl phosphoric acid and the like can be mentioned.
  • 4-12-Trophenyl phosphate is converted to 4-nitrophenol by alkaline phosphatase.
  • the substrate of the lipophosphatase which generates luminescence by the action of lipophosphatase include, for example, 3- (2′-spiroadamantane) —4-methoxy-4- (3′—phosphoryloxine) phene.
  • Disodium salt (CD P-Stra TM ), 3- ⁇ 4- methoxyspiro [1, 2, _ dioxen-1, 3, 2, 1 (5, - black port) Bok Rishikuro [3. 3. I 3 '7] decane] - 4 Iru ⁇ phenylene Lephosphate 'disodium salt (CSPD TM ), [10-methyl-9 (10H) -acridinylidene] phenoxymethylphosphate' ninatridium salt (Lumigen TM APS-5), etc. Is mentioned.
  • Amp1iQ manufactured by Dako
  • NAD PH NAD PH
  • any known luminescent substance [Bioluminescence and Chemiluminescence, edited by Kazuhiro Imai, Hirokawa Shoten; Clinical Laboratory 42 (1998)] can be used.
  • acridinium ester, mouth fins and the like can be used.
  • any known fluorescence by Akira Kawao, fluorescent antibody method, manufactured by Soft Science
  • FITC FITC
  • RITC RITC
  • Examples of the measurement method in the Imnoassay method include a competitive method and a sandwich method [Immunologically Irradiated 5th Edition (Nankodo)] and the like, and preferably a sandwich method.
  • the target substance in the sample and the first antibody, which are bound in the antigen-antibody reaction are reacted with the second antibody (secondary antibody) simultaneously or separately, and the target substances in the sample are separated into the same or different substances.
  • second antibody second antibody
  • the second antibody (secondary antibody) is added to the complex of the target substance and the first antibody in the sample bound by the antigen-antibody reaction. After reacting and washing away components such as secondary antibodies that did not participate in the reaction in the measurement system, the target substance in the sample present in the reaction system was detected or detected. Is a method of quantification.
  • Examples of the solid phase used in the sandwich method include a polyvinyl chloride microplate and a polystyrene microplate.
  • any of a polyclonal antibody and a monoclonal antibody may be used, and antibody fragments such as Fab, Fab ', and F (ab) 2 may be used.
  • the combination of the primary antibody and the secondary antibody used in the sandwich method may be any combination of antibodies recognizing different epitopes, but it is preferable that at least one is a monoclonal antibody.
  • the monoclonal antibody used in the sandwich method of the present invention include: a monoclonal antibody that recognizes the region represented by the amino acid sequence at positions 6 to 28 of SEQ ID NO: 1, an amino acid sequence at positions 29 to 59 of SEQ ID NO: 1 And a monoclonal antibody recognizing the region shown by the 60th to 302nd amino acid sequence of SEQ ID NO: 1.
  • the monoclonal antibody recognizing the region represented by the amino acid sequence at positions 6 to 28 of SEQ ID NO: 1 is a monoclonal antibody produced by Hybridoma KM2142 [The Hematology Journal, 2, 307 (2001)]. KM2142.
  • a monoclonal antibody that recognizes the region represented by the amino acid sequence at positions 29 to 59 in SEQ ID NO: 1 includes the monoclonal antibody KM2804 produced by Hypridoma KM2804.
  • Monoclonal antibodies that recognize the region represented by the amino acid sequence at positions 60 to 30 in SEQ ID NO: 1 include monoclonal antibody KM2945 produced by hybridoma KM2945.
  • Hybridoma KM2142 that produces monoclonal antibody KM2142, Hybridoma KM2804, which produces the noclonal antibody KM2804, and Hypri-Doma KM2945, which produces the monoclonal antibody KM2945, were obtained from the National Institute of Advanced Industrial Science and Technology (AIST) on February 26, 2002 (Ibaraki FERM BP-7922, FERM BP-7923, and FERM BP-7924 have been deposited at Tsukuba East 1-chome, 1-chome, Chuo No. 6), respectively. These monoclonal antibodies have different sites for recognizing SCGF. The sandwich method can be performed by combining these monoclonal antibodies.
  • a preferred combination of monoclonal antibodies is a monoclonal antibody that recognizes the region represented by the amino acid sequence at positions 6 to 28 of SEQ ID NO: 1, specifically, hybridoma KM2142 [The Hematology Journal, 2, 307]. (2001)] and a monoclonal antibody that recognizes the region represented by the amino acid sequence at positions 29 to 59 in SEQ ID NO: 1, specifically, hybridoma KM2804 (FERM BP-7923). Combination with the monoclonal antibody KM2804 produced by the company.
  • the above-mentioned anti-SCGF antibody (primary antibody) is adsorbed and immobilized on the surface of a suitable immobilization carrier.
  • a suitable immobilization carrier for immobilization of the primary antibody, for example, the antibody is diluted in an appropriate buffer, for example, a phosphate buffer, a borate buffer, a carbonate buffer, etc.
  • the reaction can be carried out at 37 ° C for 30 minutes or more.
  • the protein binding ability on the surface of the immobilized carrier is blocked.
  • the free binding groups on the surface of the immobilization carrier are contacted with a blocking buffer.
  • blocking buffer for example, a buffer containing 1 to 10% of serum albumin and 10 to 30% of Block Ace (manufactured by Snow Brand Milk Products), for example, Phosphate buffer, borate buffer, carbonate buffer and the like.
  • the blocking treatment can be performed by reacting at 4 to 37 ° C for 30 minutes or more.
  • the biological sample may be diluted with a buffer, a phosphate buffer, a borate buffer, a carbonate buffer or the like containing a protein such as, for example, 0.01 to 1% of serum albumin, if necessary.
  • the contact between the primary antibody and the biological sample can be performed by reacting at 4 to 37 ° C for 30 minutes or more.
  • buffer solution containing a surfactant such as T Wee n20 optionally, for example, phosphate buffer, borate buffer, washed several times with carbonate buffer and the like.
  • the SCGF present in the biological sample specifically binds to the previously immobilized anti-SCGF antibody, thereby being immobilized on the immobilization carrier via the anti-SCGF antibody.
  • the SCGF-immobilized carrier is brought into contact with a solution containing a secondary antibody.
  • the secondary antibody may be any anti-SCGF antibody having a different epitope from the primary antibody.
  • the secondary antibody can be labeled in advance with the above-mentioned label if necessary.
  • the carrier may be washed several times using a buffer containing a surfactant such as Tween20, if necessary, such as a phosphate buffer, a borate buffer, or a carbonate buffer. Wash.
  • a surfactant such as Tween20
  • the secondary antibody binds to the immobilized carrier via the previously bound primary antibody and SCGF, and the amount of the secondary antibody reflects the amount of SCGF in the biological sample.
  • the secondary antibody immobilized as described above can be measured according to the label of the secondary antibody.
  • use a tertiary antibody specific to the secondary antibody can be labeled by various methods, and the label of the tertiary antibody can be detected or measured.
  • the amount of the bound secondary antibody is measured, a calibration curve is prepared using a standard substance, and the amount of SCGF in the biological sample can be measured.
  • the calibration curve can be obtained by preparing a solution containing human SCGF protein having a known concentration as a standard substance, prepared by serially diluting the solution at several points, and performing the above-described sandwich method together with the biological sample.
  • Antibodies to SCGF contained in the diagnostic agent for leukemia, preleukemia or non-leukemic malignant hematologic disease of the present invention a diagnostic agent for delaying hematopoietic stem cell engraftment after hematopoietic stem cell transplantation, and a diagnostic agent for GVHD onset, Any antibody that reacts with SCGF may be used, such as a polyclonal antibody, a monoclonal antibody, or an antibody fragment, but a monoclonal antibody is preferably used.
  • Monoclonal antibodies include a monoclonal antibody that recognizes the region represented by the amino acid sequence at positions 6 to 28 of SEQ ID NO: 1, and a monoclonal antibody that recognizes the region represented by the amino acid sequence at positions 29 to 59 of SEQ ID NO: 1. Antibodies and monoclonal antibodies that recognize the region represented by the amino acid sequence at positions 60 to 302 of SEQ ID NO: 1 are exemplified.
  • the kit of the present invention is composed of a combination of instruments or reagents. If a kit contains essentially the same or substantially the same as a part of each component described below, Even if the configuration or form is different, it is included in the kit of the present invention.
  • Reagents include antibodies that react with SCGF.If necessary, diluent of biological sample, antibody-immobilized solid phase, reaction buffer, washing solution, labeled secondary antibody or its antibody fragment, or labeled substance It also includes detection reagents and standard substances such as SCGF.
  • diluent for the biological sample examples include an aqueous solution containing a protein such as BSA or casein in a surfactant or a buffer.
  • the antibody-immobilized solid phase a material obtained by immobilizing the fantai or the antibody fragment of the present invention on a material obtained by shaping various polymer materials to suit the intended use is used. Tubes, beads, plates, fine particles such as latex, sticky materials, etc. are used as shapes, and materials are polystyrene, polycarbonate, polyvinyl toluene, polypropylene, polyethylene, polyvinyl chloride, nylon, and polymethacrylate. , Gelatin, agarose, cellulose, polymer materials such as polyethylene terephthalate, glass, ceramics and metals.
  • the antibody can be prepared by a known method such as a physical method and a chemical method, or a combination thereof, for immobilizing the antibody. For example, a polystyrene 96-well immunoassay microphone plate with a hydrophobic solid phase of an antibody or the like may be mentioned.
  • the reaction buffer may be any as long as it provides a solvent environment for the binding reaction between the antibody in the antibody-immobilized solid phase and the antigen in the biological sample.
  • Surfactant, buffer, BSA And protein such as casein, preservatives, stabilizers, reaction accelerators and the like.
  • Examples of the washing solution include tris phosphate (trishydroxymethylaminomethane), buffers such as a kind of good buffer such as HEPES and M0PS, etc., Tween 20, Tween 40, Tween 60, and Tween. 8 0,
  • Detergents such as Triton X-705, salts such as NaC1, KC1 and ammonium sulfate, proteins such as BSA and casein, preservatives such as sodium azide, guanidine hydrochloride, urea sodium Examples include a liquid containing at least one of a denaturant such as dodecyl sulfate and a stabilizer such as polyethylene glycol, carboxymethyl cellulose, dextran sulfate, and chondroitin sulfate.
  • a denaturant such as dodecyl sulfate
  • a stabilizer such as polyethylene glycol, carboxymethyl cellulose, dextran sulfate, and chondroitin sulfate.
  • Labeled secondary antibodies or antibody fragments thereof include, for example, horseradish peroxidase (HRP), horseradish peroxidase, and i3-galactosidase in the antibody or antibody fragment of the present invention.
  • HRP horseradish peroxidase
  • i3-galactosidase in the antibody or antibody fragment of the present invention.
  • Labeled enzymes for labeling such as, a buffer, a mixture of proteins such as BSA and casein, and preservatives are used.
  • the detection reagent for the labeled substance is a substrate for absorption measurement such as tetramethylbenzidine or orthophenylenediamine, or hydroxyphenylhydrazine.
  • a fluorescent substrate such as hydroxyphenylpropionate / hydroxyphenylacetic acid or a luminescent substrate such as luminol is alkaline phosphatase
  • a substrate for measuring absorbance such as 4-nitrophenylphosphate, 4-methylbenverifyryl Fluorescent substrates such as phosphors and the like can be mentioned.
  • the standard substance include SCGF which can be prepared by the method described in WO98 / 08869, peptides containing two types of antibodies used in kits, such as peptides.
  • the present invention also provides a monoclonal antibody recognizing the region represented by the amino acid sequence at positions 29 to 59 in SEQ ID NO: 1 and the amino acid sequence at position 60 to 302 described in SEQ ID NO: 1. It relates to a monoclonal antibody that recognizes a region.
  • a monoclonal antibody that recognizes the region represented by the amino acid sequence at positions 29 to 59 in SEQ ID NO: 1 there is a monoclonal antibody KM2804 produced by hybridoma KM2804 (FERM BP-7923).
  • a monoclonal antibody that recognizes the region represented by the amino acid sequence at positions 60 to 30 in SEQ ID NO: 1 there is a monoclonal antibody KM2945 produced by hybridoma KM2945 (FERM BP-7924).
  • the monoclonal antibody used in the present invention it can be produced by a known method for producing a monoclonal antibody.
  • the antigen includes a human SCGF protein obtained by introducing an expression vector containing a cDNA encoding human SCGF into E. coli, yeast, insect cells, animal cells, etc., and a human SCGF partial sequence obtained by peptide synthesis. Synthetic peptides are examples.
  • a protein partial sequence of about 5 to 30 residues is selected.
  • a partial sequence present on the surface of the protein in a three-dimensional structure is there.
  • the ⁇ -terminal and C-terminal of the protein are often present on the protein surface.
  • information on the secondary structure of proteins can also be referred to.
  • a portion having a turn structure or a random coil structure Can be considered suitable as antigen peptides.
  • the partial peptide thus selected does not always serve as an antigen for establishing the desired antibody.
  • a partial cysteine is added to the end of the partial peptide to crosslink with the protein.
  • the N-terminal of the peptide is acetylated and the C-terminal is amidated as necessary.
  • Partial peptides can be synthesized by general liquid-phase and solid-phase peptide synthesis methods and methods of appropriately combining them, or a method analogous thereto [International Journal of Peptide Enr. Floors 'Residenta (International Journal of Peptide Protein Research), 35, 161-214 (1990), Solid-Phase Peptide Synthesis J, Methods' in. Enzymology I Vol. 289 (Methods in Enzymology, vol. 289), edited by Gregg B. Fields, Academic Press, (1997), "Applied Synthesis Protocol”. (Peptide Synthesis Protocols) ", Method'in'Molecular'biology 1 Volume 35 (Methods in Molecular Biology, vol. 35), edited by Michael W. Pennington, Ben M. Dunn, edited by Humana Press ), (1994)].
  • an automatic peptide synthesizer can be used. Peptide synthesis by the peptide synthesizer is performed on a peptide synthesizer manufactured by Shimadzu Corporation, a peptide synthesizer manufactured by Advanced 'ChemTech In (USA, hereinafter abbreviated as ACT), or a commercially available peptide synthesizer. It can be carried out according to the respective synthesis programs, using N «-Fmoc-amino acid or No; -Boc-amino acid or the like having an appropriately protected side chain.
  • Protected amino acids and carrier resins used as raw materials are manufactured by ABI, Shimadzu, Kokusan Chemical Co., Ltd., NovaBiochem Co., Ltd., Watanabe Chemical Co., Ltd., ACT, AnaSpec Inc., or It can be obtained from Peptide Research Institute, etc.
  • Immunization is achieved by administering the antigen subcutaneously, intravenously, or intraperitoneally to the animal with an appropriate adjuvant (eg, complete freund's adjuvant, aluminum hydroxide gel and pertussis vaccine, etc.).
  • an appropriate adjuvant eg, complete freund's adjuvant, aluminum hydroxide gel and pertussis vaccine, etc.
  • a conjugate is prepared with a carrier protein such as BSA (pserum albumin) or KLH (Keyhole Limpet Hemocyanin) and used as an immunogen.
  • the administration of the antigen is performed 3 to 10 times every 1 to 2 weeks after the first administration.
  • Blood is collected from the fundus venous plexus 3 to 7 days after each administration, and the serum reacts with the antigen Is examined by enzyme immunoassay [Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory, 1988].
  • a mouse, rat, or hamster whose serum shows a sufficient antibody titer against the antigen used for immunization is provided as a source of antibody-producing cells.
  • spleens are excised from immunized mice, rats or hamsters 3 to 7 days after the final administration of the antigenic substance, and splenocytes are collected.
  • the spleen is shredded in a MEM medium (manufactured by Nissui Pharmaceutical Co., Ltd.), loosened with forceps, centrifuged (1, 200 rpm, 5 minutes), the supernatant is discarded, and tris-ammonium chloride buffer (pH 7.65) is added. Treat for ⁇ 2 minutes to remove red blood cells, wash three times with MEM medium and provide as fusion splenocytes.
  • myeloma cells cell lines obtained from mice are used.
  • myeloma cell line P3-X63Ag8-Ul (P3-Ul) [Current Topics in Microbiology and Immunology, 18: 1-7 (1978)]
  • P3-NSl / l -Ag41 (NS-l) [European J. Immunology, 6: 511-519 (1976)]
  • SP2 / 0-Agl4 (SP-2) [Nature, 276: 269-270 (1978)]
  • P3-X63 ' Ag8653 (653) J.
  • a medium supplemented with fetal calf serum (FCS) (hereinafter referred to as a normal medium) and a medium supplemented with 8-azaguanine (15 g / mL)], but normal 3 to 4 days before cell fusion
  • FCS fetal calf serum
  • 8-azaguanine 15 g / mL
  • the antigen or cells expressing the antigen are coated on a 96-well plate, and the hybridoma culture supernatant or the purified antibody obtained by the above method is reacted as the primary antibody.
  • the second antibody is an antibody obtained by labeling an antibody capable of recognizing the immunoglobulin of the first antibody with biotin, an enzyme, a chemiluminescent substance, a radiation compound, or the like. Specifically, if a mouse is used for preparing the hybridoma, an antibody capable of recognizing mouse immunoglobulin is used as the second antibody. After the reaction, a reaction according to the substance labeled with the second antibody is performed, and the antibody is selected as a hybridoma that produces a monoclonal antibody that specifically reacts with the antigen.
  • Pristane-treated [0.5 mL of 2,6,10,14-tetramethylpyrene decane (Pristane) was intraperitoneally administered and bred for 2 weeks] to 8-10 week old mice or nude mice. ).
  • the anti-human SCGF monoclonal antibody-producing hybridoma cells obtained in 2) are injected intraperitoneally from 2 ⁇ 10 6 to 5 ⁇ 10 7 cells / animal. Hypridoma develops ascites cancer in 10-21 days.
  • Trp L-tryptophan
  • Trt Trityl
  • Fmoc-Arg (Pmc) -OH N ⁇ -9-fluorenylmethyloxycarbonyl -Ng-2,2,5,7,8-pentamethylc-mouth-6-sulfonyl -L_arginine
  • Fmoc-Gln (Trt) -OH N ⁇ -9-fluorenylmethyloxycarbonyl - ⁇ ⁇ - Trityl-L-glutamine
  • Mass spectrometry was performed by the FAB-MS method using JEOL JMS-HX110A or by the MALDI-TOFMS method using a mass spectrometer REFLEX manufactured by Bull Power Co., Ltd. went.
  • Amino acid analysis was performed by the method of Cohen, SA [Analytical Biochemistry, 222, 19 (1994)].
  • Hydrolysis was performed in hydrochloric acid vapor at 110 ° C. for 20 hours, and the amino acid composition of the hydrolyzate was analyzed using a Waters AccQ-Tag amino acid analyzer (manufactured by Waters).
  • Fmoc-Cys (Trt) 14 mg bound carrier resin (H-Cys (Trt) -2-ClTrt resin resin, manufactured by Novapichem) 30 mg was placed in a reaction vessel of an automatic synthesizer (Shimadzu), and 600 L After adding DMF and stirring for 3 minutes to discharge the solution, the following operation was performed according to the synthesis program of Shimadzu Corporation.
  • step (c) After the steps (a) and (b), a condensation reaction is performed in step (c) using Fmoc-Ala'OH, and after the washing step (d), Fmoc-Ala-Leu-Cys ( (Trt) was synthesized on the support.
  • step (c) Fmoc-Glu (OtBu) -OH, Fmoc-Arg (Pmc) -OH, Fmoc-Glu (OtBu) -OH, Fmoc-Arg (Pmc) -OH, Fmoc-Glu (OtBu) -OH, Fmoc-Glu (OtBu) -OH, Fmoc-Glu (OtBu) -OH, Fmoc-Gln (Trt) -OH, Fmoc-Ala-OH, Fmoc-GlyOH> Fmoc-Gly-OH Fmoc-Trp (Boc ) -OH, Fmoc-Gly-OH, Fmoc-GlyOH, Fmoc-Glu (OtBu) -OH, Fmoc-Trp-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Trp-OH, Fmoc-Glu (OtBu)
  • TFA 82.5%) containing 2-methylindole at a concentration of 5 mg / inL, thioazole (5%), water (5%), ethyl methyl sulfide (3%), 1 mL of a mixed solution consisting of 1,2-ethanedithiol (2.5%) and thiophenol (2%) was added, and the mixture was allowed to stand at room temperature for 6 hours to remove the side-chain protecting groups and to cut out the peptide from the resin.
  • the human SCGF partial peptide obtained in Example 1 (1) was conjugated with KLH (manufactured by Calbiochem) by the following method in order to enhance immunogenicity, and used as an immunogen. That is, KLH is dissolved in PBS to adjust to 10 mg / mL, 1/10 volume of 25 mg / mL MBS (manufactured by Nacalai Tesque) is added dropwise, and the mixture is stirred and reacted for 30 minutes. 2.5 mg of KLH-MB obtained by removing free MBS using a gel filtration column such as a Sephadex G-25 column equilibrated with PBS in advance was dissolved in 0.1 mol / L sodium phosphate buffer (pH 7.0). The mixture was mixed with 1 mg of the peptide and allowed to react with stirring at room temperature for 3 hours. After the reaction, the solution was dialyzed against PBS.
  • KLH manufactured by Calbiochem
  • Example 1 100 zg of the peptide-KLH conjugate prepared in Example 1 (2) was administered to a 5-week-old female rat (SD) together with 2 mg of aluminum gel and 1 ⁇ 10 9 cells of pertussis vaccine (Chiba Prefectural Serum Institute). After 100 weeks, 100 [ig] conjugate was administered once a week for a total of four times. Blood was collected from the fundus venous plexus, and its serum antibody titer was examined by the enzyme immunoassay described in (4) below, and the spleen was extracted 3 days after the last immunization from a rat showing a sufficient antibody titer.
  • the spleen is shredded in a MEM medium (manufactured by Nissui Pharmaceutical Co., Ltd.), loosened with forceps, centrifuged (1,200 rpm, 5 minutes), the supernatant is discarded, and tris-ammonium chloride buffer (pH 7.65)
  • MEM medium manufactured by Nissui Pharmaceutical Co., Ltd.
  • the cells were treated for 1-2 minutes to remove red blood cells, washed three times with MEM medium, and used for cell fusion.
  • the human SCGF partial peptide obtained in Example 1 (1) conjugated with thyroglobulin (hereinafter abbreviated as THY) was used as the bovine for Atsushi.
  • the preparation method was as described in Example 1 (2), except that SMCC (manufactured by Sigma) was used as the crosslinking agent instead of MBS.
  • SMCC manufactured by Sigma
  • 96-hole EIA The conjugate prepared as described above was dispensed at 10 zg / mL, 50 ⁇ L / well into a plate for use (manufactured by Grainer Co., Ltd.) and allowed to stand at 4 ° C for adsorption.
  • 1%: 68 ⁇ 88 was added in 100 1 ⁇ / hole and allowed to react at room temperature for 1 hour to block the remaining active groups.
  • 1% BSA-PBS was discarded, and the immunized mouse antiserum, culture supernatant of anti-human SCGF monoclonal antibody or purified monoclonal antibody was dispensed at 50 L / well and reacted for 2 hours.
  • peroxidase-labeled ⁇ heron anti-rat immunoglobulin manufactured by Dako was added at 50 iL / well at room temperature and reacted for 1 hour at room temperature.
  • ABTS substrate solution [2.2-Azinobis (3-E) [Tilbenzothiazole-6-sulfonic acid] ammonium]
  • the absorbance at OD 415 nm was measured with a plate reader (E-max; manufactured by Molecular Devices).
  • the 8-azaguanine-resistant mouse myeloma cell line P3-U1 was cultured in a normal medium, and cells of 2 ⁇ 10 7 or more were secured at the time of cell fusion and used as a parent strain for cell fusion.
  • the monoclonal antibody is IgM, salt out with 50% ammonium sulfate, dialyze against PBS supplemented with 0.5M sodium chloride, and apply to the column of Cell Open Fine GSL2000 (Seikagaku Corporation) (Bed Polymer 750mL). The mixture was passed through the column at a flow rate of 15 mL / hour to collect the IgM fraction, which was used as a purified monoclonal antibody.
  • the monoclonal antibody was IgG, it was purified by a caprylic acid precipitation method [Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory (1988)] to obtain a purified monoclonal antibody.
  • the antibody subclass was determined by enzyme immunoassay using a subcluster typing kit (Table 1). (table 1 )
  • the reactivity of the anti-human SCGF monoclonal antibody selected in Example 1 (6) with the human SCGF partial peptide (compound 1) was examined by the enzyme immunoassay shown in (4).
  • As the control peptide a peptide consisting of the amino acid sequence at positions 140 to 156 of SEQ ID NO: 1, which is a SCGF partial peptide different from compound 1, was used.
  • the anti-human SCGF monoclonal antibody (KM2141 to 2145) specifically reacted with compound 1, but did not react with the control peptide.
  • HindlllZKpnl-treated fragment of animal cell expression vector PAGE210 (WO96 / 34016) and DNA encoding SCGF protein [Mio et.al., BBRC 249, 124-130 (1998)] were ligated to obtain human SCGF.
  • Plasmid was introduced into animal cells by the electroporation method [Miyaji et al., Cytotechnology, 3, 133-140 (1990)] according to Miyachi et al. 4 g of pAGE-SCGF-a was introduced into 4 ⁇ 10 6 CHO cells lacking the dhfr gene [Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77, 4216-4220 (1980)]. Transfer the cells to 10 mL of MEMa2000_dFCS (5) medium.
  • the cells were centrifuged to obtain a culture supernatant sample.
  • Anti-rat immunoglobulin 1.3 g / L was shaken at room temperature for 60 minutes in a solution diluted to 1 / 1,000 with PBS. After washing twice with a PBS buffer containing 0.05% tween20 for 5 minutes and once with a PBS buffer for 5 minutes, detection was performed by the luminescence method (ECL Western blotting detection reagents, Amersham Pharmacia Biotech). went.
  • Ammonium sulfate was added to the above-mentioned partially purified fraction of zinc zinc oxide matrix to obtain a final concentration of 65%, stirred, and allowed to stand at 4 ° C for 2 hours.
  • the precipitate obtained by centrifugation at 18,800 X for 30 minutes was dissolved in 10 mmol / L Tris-HCl buffer (pH 7.0) and equilibrated with the same Tris-HCl buffer.
  • MonoQ HR 5/5 column (Amersham Pharmacia Biotech) was added to the product. After washing thoroughly with the same buffer, elution was performed with a linear gradient of 0 to 1 niol / L sodium chloride.
  • the first step zinc chelate chromatography
  • Ammonium sulfate was added to the above roughly purified fraction of zinc chelate chromatograph to obtain a final concentration of 50%, stirred, and allowed to stand at 4 ° C for 2 hours.
  • the precipitate obtained by centrifugation at 18,800 g for 30 minutes was dissolved in lOmmol / L Tris-HCl buffer (pH 7.0), and the MonoQ HR 10/10 column (Amersham Pharmacia Biotech) equilibrated with the same Tris-HCl buffer ). After thorough washing with the same buffer, elution was performed with a linear gradient of 0 to 1 mol / L sodium chloride. SDS-PAGE was performed using a part of the eluted fraction, and a fraction containing a crossing band of about 45 kDa was collected by Western plotting with KM2142 shown in (2) above.
  • Step 3 S-400 gel filtration chromatography
  • N-terminal amino acid sequence analysis of human SCGF protein JP03 / 04531 The N-terminal amino acid sequence of the purified human SCGF protein obtained in Example 2 (3) was determined according to a conventional method of protein chemistry. The fraction containing the purified human SCGF protein was subjected to SDS-PAGE and then electrically transferred to a PVDF membrane (ProBlott, Applied Biosystems) according to the method of silver staining (lane 2 in Fig. 2) or P. Matsudaira. . The transferred membrane was stained with Coomassie blue and had apparent molecular weights of 45 kDa (Fig. 2, lane 2, non-A), 41 kDa (Fig. 2, lane 2, non-B), 34 kDa (Fig.
  • the amino acid sequence was determined using a gas-phase protein sequencer (PPSQ-10, Shimadzu Corporation) according to the method recommended by the manufacturer.
  • PPSQ-10 gas-phase protein sequencer
  • the obtained amino acid sequence is the first amino acid residue, the 29th amino acid residue, and the 60 amino acid residues from the N-terminal of the amino acid sequence of SCGF described in SEQ ID NO: 1.
  • the amino acid sequence was identical to the base sequence.
  • the SCGF protein with an N-terminal 28 residue deletion with an apparent molecular weight of about 41 kDa shown in lane 2 in Fig. 2 is called ⁇ 28, and the SCGF protein with an N-terminal 59 residue deletion of about 34 kDa is called 959. Name.
  • Example 2 100 g of CHO cell-expressing human SCGF protein (SCGF, mixture of ⁇ 28 and ⁇ 59 SCGF) obtained in Example 2 (3) was mixed with 100 mg of aluminum gel and pertussis vaccine (Chiba Prefectural Serum Institute) 1 ⁇ The cells were administered to 6-week-old female mice (Balb) together with 10 9 cells, and after 2 weeks, 100 g of human SCGF protein was administered once a week for a total of three times.
  • SCGF CHO cell-expressing human SCGF protein obtained in Example 2 (3) was mixed with 100 mg of aluminum gel and pertussis vaccine (Chiba Prefectural Serum Institute) 1 ⁇
  • Alb 6-week-old female mice
  • 100 g of human SCGF protein was administered once a week for a total of three times.
  • Blood was collected from the fundus venous plexus, and its serum antibody titer was determined by enzyme-linked immunosorbent assay as described in Example 1 (4) (however, CHO cell-expressed human SCGF protein was used as the antigen for the assay, and 1% BSA-PBS was used as the control antigen). Used) and the sandwich ELISA method shown below Three days after the last immunization, the spleen was removed from a mouse that showed a sufficient antibody titer as examined in 1.
  • the anti-human SCGF monoclonal antibody KM2142 obtained in Example 1 was dispensed into a 96-well EIA plate (manufactured by Glyna) at 10 ⁇ g / mL and 50 L / well at 4 ° C. It was left to absorb overnight. After washing, 1% BSA-PBS was added at 100 / iL / well and allowed to react at room temperature for 1 hour to block the remaining active groups. 1% BSA-PBS was discarded, and CHO cell-expressed human SCGF protein diluted at 5 g / mL with 1% BSA-PBS was dispensed at 50 L / well and reacted at room temperature for 2 hours.
  • 1% BSA-PBS was dispensed in 50 L / well and reacted similarly.
  • the culture supernatant of the immunized mouse antiserum obtained in (1) above was dispensed at 50 L / well and allowed to react for 2 hours.
  • peroxidase-labeled anti-mouse immunoglobulin rat serum protein absorbed; manufactured by Caltag
  • Example 3 Cell fusion of the mouse spleen cells obtained in Example 3 (1) and the myeloma cells obtained in (3) was performed in the same manner as in Example 1 (6).
  • the resulting cell suspension plates for 96-well culture into 100 pL / well portions dispensed, in 5% C0 2 incubator one, 10 to 14 days at 37 ° C, and cultured.
  • This culture The supernatant was examined by the sandwich ELISA method described in Example 3 (2), and the wells that reacted with the human SCGF protein and did not react with the control 1% BSA-PBS were selected, and then replaced with HT medium and normal medium. This was repeated twice to establish anti-human SCGF monoclonal antibody producing hybridomas KM2801, KM2802, KM2803 and KM2804.
  • Example 3 The hybridoma strain obtained in Example 3 (4) was intraperitoneally administered to nude female mice in the same manner as in Example 1 (7), and a purified monoclonal antibody was obtained from the obtained ascites.
  • the antibody subclass was determined by enzyme immunoassay using subcluster ipin. Kit. The results are shown in Table 2.
  • Example 4 The reactivity of the human SCGF monoclonal antibody obtained in Example 3 (4) with the CHO cell-expressed human SCGF protein was examined by the enzyme immunoassay described in Example 1 (4). As shown in Figure 3, anti-human SCGF monoclonal antibodies (KM2801, KM2802, KM2803, and KM2804) specifically reacted with CHO cell-expressed human SCGF protein and reacted with control 1% BSA-PBS. Did not.
  • Example 4 Production of anti-human SCGF monoclonal antibody using SDS-denatured human SCGF protein (CHO cell expression)
  • the CHO cell-expressing human SCGF protein obtained in Example 2 (3) was denatured with SDS (sodium lauryl sulfate; manufactured by Nacalai Tesque) to prepare an immunogen. That is, 5% SDS-PBS was prepared, 1/9 amount was added to human SCGF protein expressing CHO cells, and the mixture was boiled at 100 ° C for 5 minutes to obtain SDS-denatured human SCGF protein.
  • SDS sodium lauryl sulfate
  • Example 4 (1) 100 g of the SDS-denatured human SCGF protein obtained in Example 4 (1) was administered to a 6-week-old female mouse (Balb / c) together with 2 mg of aluminum gel and 1 ⁇ 109 cells of pertussis vaccine (Chiba Prefectural Serum Institute). Two weeks later, 100 zg of SDS-denatured human SCGF protein was administered once a week for a total of three times. Blood was collected from the fundus venous plexus, and its serum antibody titer was determined by the enzyme immunoassay described in Example 1 (4) (however, SDS-denatured human SCGF protein was used as an antigen for atssay, and 1% BSA-PBS was used as a control antigen). The spleen was removed 3 days after the last immunization from the mouse that showed a sufficient antibody titer.
  • Example 4 Cell fusion between the TJP03 / 04531 cells and the myeloma cells obtained in (3) was performed.
  • the resulting cell suspension was dispensed by 100 ⁇ L / well to the plate for a 96-well culture, in 5% C0 2 incubator primary, 10 at 37 ° C: L4_nichikan and cultured.
  • the culture supernatant was examined by the enzyme immunoassay described in Example 1 (4) .Select wells that reacted with SDS-denatured human SCGF protein and did not react with the control 1% BSA-PBS.
  • the medium was replaced with a normal medium, and cloning was repeated twice to establish hybridomas KM2941, KM2942, KM2943 KM2944 and KM2945 producing anti-human SCGF monoclonal antibody.
  • Example 4 The hybridoma strain obtained in Example 4 (4) was administered intraperitoneally to nude female mice in the same manner as in Example 1 (7), and a purified monoclonal antibody was obtained from the ascites obtained.
  • the antibody subclass was determined by enzyme immunoassay using a subcluster typing kit. The results are shown in Table 3.
  • Anti-SCGF monoclonal antibody KM2142 was prepared using a partial peptide (compound 1) corresponding to the 6th to 25th residues from the N-terminal of the amino acid sequence of SCGF shown in SEQ ID NO: 1 as an antigen. It is an antibody derived from a hybridoma. The anti-SCGF monoclonal antibody KM2142 was also shown to have reactivity to SCGF protein. In addition, the anti-SCGF monoclonal antibody KM2142 was reactive with both human and mouse SCGF proteins.
  • Anti-SCGF monoclonal antibody KM2804 is a hybridoma-derived antibody prepared using CHO cell-expressed human SCGF as an antigen.
  • the anti-SCGF monoclonal antibody KM2804 reacted only with human SCGF and did not show cross-reactivity with mouse SCGF.
  • Anti-SCGF monoclonal antibody KM2945 is a hybridoma-derived antibody prepared using SDS-modified SCGF protein (CHO cell expression) as an antigen.
  • the anti-SCGF monoclonal antibody KM2945 was also shown to have reactivity to native SCGF protein. Also, anti-SCGF The monoclonal antibody KM2945 did not show cross-reactivity to mouse SCGF.
  • Example 2 Using the CHO cell-expressed human SCGF protein obtained in Example 2 (3), the reactivity of the anti-human SCGF monoclonal antibodies KM2804 and KM2945 prepared in Examples 3 and 4 in Western plotting was examined.
  • the sample transferred to the PVDF membrane in the same manner as in Example 2 (2) was shaken in a blocking solution at room temperature for 30 minutes, and then shaken at room temperature for 60 minutes with an anti-SCGF monoclonal antibody diluted to 1 mg / mL with a blocking solution.
  • the transfer membrane was further washed twice with PBS buffer containing 0.05% tween20 for 5 minutes and once with PBS buffer for 5 minutes, and then diluted with PBS to 1 / 1,000 peroxidase labeling.
  • the mixture was shaken at room temperature for 60 minutes in an anti-mouse IgG antibody (Amersham Pharmacia Biotech) solution. After washing twice with a PBS buffer containing 0.05% tween 20 for 5 minutes and once with a PBS buffer for 5 minutes, detection was performed by the ECL luminescence method described above.
  • Lanes 3, 4, and 5 in FIG. 2 show the results of Western blotting of purified human SCGF protein using KM2142, KM2804, and KM2945, respectively.
  • KM2804 is an N-terminal 59-residue deleted SCGF protein. It is not reactive with 59-body, but is a full-length SCGF and N-terminal 28-residue deleted SCGF protein. The body was reactive.
  • KM2945 was reactive with both full-length SCGF and deletions.
  • Example 6 Human SCGF quantification system
  • the anti-human SCGF monoclonal antibody KM2142 obtained in Example 1 was labeled with biotin by the following method.
  • the purified KM2142 antibody obtained in Example 1 was diluted to 1 mg / mL with PBS, and 1/4 volume of 0.5 mol / L carbonate buffer (pH PC Garan 31
  • the anti-human SCGF monoclonal antibody KM2804 obtained in Example 3 was dispensed into a 96-well plate for EIA (manufactured by Glyna) at 5 xg / niL, 50 IJ well at 4 ° C. ⁇ ⁇ Leave it and let it adsorb. After washing, 1% BSA-PBS was added at 100 L / well and reacted at room temperature for 1 hour to block the remaining active groups.
  • Example 2 1% BSA-PBS was discarded, and the CHO cell-expressing human SCGF protein obtained in Example 2 (4) was diluted with serum diluent (manufactured by Kyowa Medex) from 17.5 ng / mL to 14-point dilution in a 2-fold dilution series.
  • serum diluent manufactured by Kyowa Medex
  • After washing with tween-PBS add the biotin-labeled KM2142 obtained above (diluted to 0.2 ig / mL with BSA-PBS) at 50 L / well, react at room temperature for 2 hours, and wash with tween-PBS.
  • alkaline phosphatase-labeled avidin (manufactured by Zymed) was added at a dilution of 32,000-fold at 50 ⁇ L / well, and the mixture was reacted at room temperature for 1 hour. After washing with tween-PBS, the color was developed using AmpliQ (manufactured by DAKO) and the absorbance at OD 490 nm was measured with a plate reader (E-max; manufactured by Molecular Devices). As a result, as shown in FIG. 6, it was possible to quantify human SCGF protein in the range of 0.04 to 2.0 ng / mL using this quantification system.
  • Example 7 Serum SCGF concentration in leukemia, preleukemia patients and non-leukemic malignant blood diseases
  • the SCGF concentration in the serum of leukemia, preleukemia patients and non-leukemic malignant hematological diseases from which informative consent was obtained was measured by the method of Example 6.
  • the serum SCGF concentration was measured in 10 healthy male and female healthy subjects with normal blood cell test values.
  • Fig. 7 shows the results. After confirming that the distribution of values for healthy subjects shows a normal distribution, the mean and standard deviation (SD) are calculated from this group, and the mean + 2 SD value is distinguished from normal and abnormal Set to reference value.
  • AML Acute myeloid leukemia
  • ALL acute lymphocytic leukemia
  • CML chronic myelogenous leukemia
  • MDS myelodysplastic syndrome
  • NHL non-Hodgkin's lymphoma
  • MM multiple bone marrow
  • Non-Hodgkin's lymphoma (NHL), multiple myeloma (MM), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), Compared to chronic myelogenous leukemia (CML), the SCGF concentration in F blood of non-Hodgkin's leukemia patients such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myeloid leukemia (CML)
  • AML acute myeloid leukemia
  • ALL acute lymphoblastic leukemia
  • CML chronic myeloid leukemia
  • SCGF concentration in F blood of non-Hodgkin's leukemia patients such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myeloid leukemia (CML)
  • SCGF concentrations could be used to distinguish leukemia from pre-leukemia and non-leukemic malignant hemat
  • Serum SCGF concentration in 15 patients who developed GVHD and 8 patients who did not develop GVHD out of 23 patients who received hematopoietic stem cell transplantation from leukemia and preleukemia patients who obtained informed consent The measurement was performed for each stage by using.
  • Figure 8 shows the results.
  • SCGF levels in patients undergoing hematopoietic stem cell transplantation were significantly higher during the recovery phase and the stable phase than during the preconditioning phase and the plastic phase.
  • the SCGF concentration of hematopoietic stem cell transplant patients was measured, the cut-off value was determined, and it was examined whether it was possible to determine the cases of delayed hematopoietic stem cell engraftment and non-delayed cases by comparing the cut-off value and the values of individual patients.
  • the results are shown in FIG.
  • the cutoff value is set to, for example, 9.5 ng / mL, and the sensitivity is 75% and the specificity is 67% .
  • the cutoff value is set to 12 ng / mL, and the sensitivity is 75%. With a specificity of 63%, it was possible to discriminate between cases with delayed hematopoietic stem cell engraftment and cases without delay.
  • Example 10 Expression of SCGF in peripheral blood cells of leukemia patients
  • RNAl ⁇ g was treated with DNasel (GIBCO), and reverse-transcribed using Superscript First-Strand Synthesis System for RT-PCR (GIBCO) to prepare First-Sti'and DNA.
  • GIBCO Superscript First-Strand Synthesis System for RT-PCR
  • the prepared First-Strand DNA was designated as type I, and oligo DNA having the nucleotide sequences of SEQ ID NOS: 8 and 9 and SEQ ID NOs: 10 and 11 was designated as a primer, respectively.
  • the present invention provides a method for determining leukemia, preleukemia, or non-leukemic malignant blood disease using an antibody that reacts with SCGF, determining hematopoietic stem cell survival delay after hematopoietic stem cell transplantation, and determining graft-versus-host reaction disease And a diagnostic agent and a diagnostic kit thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hospice & Palliative Care (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

明 細 書 白血病、 前白血病または非白血病性悪性血液疾患の判定方法及び診断薬 技術分野
本発明は、 造血幹細胞増殖因子 (SCGF) を測定することを特徴とす る、 白血病、 前白血病または非白血病性悪性血液疾患を判定する方法、 白血病と、 前白血病または非白血病性悪性血液疾患とを判別する方法、 再生不良性貧血と骨髄異形成症候群とを判別する方法、 造血幹細胞移植 後の造血幹細胞の生着の状態を判定する方法、 または移植片対宿主反応 病を判定する方法に関する。 また、 造血幹細胞増殖因子 (SCGF) に反 応する抗体を有効成分として含有してなる白血病、 前白血病または非白 血病性悪性血液疾患、 造血幹細胞移植後の造血幹細胞の生着状態または 移植片対宿主反応病の診断薬および診断キッ トに関する。 背景技術
白血病、 前白血病および非白血病性悪性血液疾患の診断、 または白血 病、前白血病および非白血病性悪性血液疾患の治療後の診断は、白血病、 前白血病および非白血病性悪性血液疾患を治療するための方針を決定す るのに重要である。
白血病の初発の診断としては、 患者の末梢血中の白血球数を測定し、 計測値が正常値を上回る場合に白血病の発生を疑う方法があげられる。 しかしながら、 風邪などの白血病以外の疾患であっても、 体内の免疫反 応の亢進により白血球数は増大するので、 白血球数の測定だけでは、 擬 陽性の可能性がある。 また、 末梢血中の白血球数の正常値は、 4,000〜 8,000個/ / X Lと幅が広く、 擬陰性の可能性がある。 そこで、 より確度の 高い白血病の診断方法が求められている。
白血病再発の診断方法としては、 WT- 1遺伝子の RT-PCRによる検出 がある [臨床病理 ,155(2000)、 Blood, 84, 3071 (1994)、 日本特許第 3 1 2 2 7 7 1号]。 しかしながら、 該診断方法は操作が煩雑であるとと もに、 特殊な装置を必要としている。
また、 上述の白血病、 前白血病および非白血病性悪性血液疾患、 先天 性代謝疾患、 固形癌等の治療方法の一つとして、 造血幹細胞移植療法が あげられる。 造血幹細胞移植療法の問題点としては、 提供者の造血幹細 胞と患者の造血幹細胞との H L Aタイプの不適合、 患者側の体調や感染 症等などにより、 移植した造血幹細胞が生着しない、 造血幹細胞の生着 が遅延する、 移植片対宿主反応病 (以下、 GVHDと称する) を発症する など、 造血幹細胞移植治療の効果が十分に得られないことがあげられ、 最悪の場合、 死の転帰をとることもある。
造血幹細胞の生着遅延に対しては、 G-CSFを生体内に投与することに より、 造血幹細胞の生着を促進させることができる。 また、 GVHDに対 しては、 免疫抑制剤を生体内に投与することにより、 提供された造血幹 細胞の拒絶反応を抑制させることができる。 しかしながら、 いずれの薬 剤も過剰に投与した場合には、 副作用が懸念される。 そのため、 造血幹 細胞の生着状態、 GVHD発症を診断あるいは予知することは治療方針の 決定に重要である。
造血幹細胞移植後の造血幹細胞の生着を確認する方法としては、 末梢 血中の白血球数や血小板数を測定し、 それらの測定値が上昇すれば造血 幹細胞が生着したことを診断することができる。 しかしながら、 造血幹 細胞の生着は、 移植後 10 日から 1 ヶ月以上を要する事もあるため、 末 梢血中の白血球数や血小板数を測定することでは早期に造血幹細胞の生 着を判断することができない。 GVHD発症の判定方法としては、 造血幹細胞移植後のリカバリ一期に 現れる皮膚の発疹等を観察することがあげられる。 しかしながら、 簡便 で確度の高い GVHD発症の判定方法は知られていない。 さらに GVHD 発症以前に GVHDの発症を予知する方法は知られていない。
ヒト造血幹細胞増殖因子 (Stem Cell Growth Factor; 以下、 SCGF と略記する) は、 配列番号 1または配列番号 2のアミノ酸配列を有する タンパク質である [ WO98/08859 Proc. Natl. Acad. Sci. USA, 94, 7577 (1997)、 Biochem. Biophys. Res. Comm., 249, 124 (1998)]。
SCGF を認識する抗体としては、 遺伝子組換え法により得られた SCGF, ならびに SCGFの N末端から 6残基目から 2 5残基目までの部 分べプチドを免疫原として調製したポリクローナル抗体および細胞培養 上清から部分精製された SCGFや遺伝子組換え法により得られた SCGF を免疫原と して調製したモノ ク ローナル抗体が知 られている [WO98/08859]。 該モノクローナル抗体が中和活性を有すること、 また 遺伝子組換え法により得られた SCGFを免疫原として調製したポリクロ —ナル抗体が ELISAで遺伝子組換え法により得られた SCGFと反応す ること、 SCGFの N末端から 6残基目から 2 5残基目までの部分べプチ ドを免疫原として調製したポリクローナル抗体を用いたウェスタンプロ ッティングにより遺伝子組換え法により得られた SCGFを検出できるこ とが報告されている。
また、 SCGFの N末端から 6残基目から 2 5残基目までの部分べプチ ドを免疫原とした抗 SCGFモノクローナル抗体 KM2142 が報告されて いる [The Hematology Journal, 2, 307 (2001)]。
ヒト正常組織に対してノーザンプロッティングを行った結果、 SCGF 遺伝子の発現は腎臓に多く、 心臓に少なく、 脳、 胎盤、 肺、 肝臓、 骨格 筋、 脬臓では発現が見られないこと [ Proc. Natl. Acad. Sci. USA, 94, 7577 (1997)]、 脾臓、 胸腺、 盲腸、 骨髄、 胎児肝に多く、 末梢血に少な いこと [Biochem. Biophys. Res. Comm., 249, 124 (1998)] が知られて いる。 また、 正常新生児マウスにインサイテュハイブリダィゼ一シヨン を行った結果、 骨髄、 増殖軟骨、 骨膜付近に SCGFが発現していること が報告されている [The Hematology Journal, 2, 307 (2001)]。
さらに、骨髄細胞株(HT60、 KPB-M15),単核球細胞株 (ΤΗΡ·1、 U_937)、 赤芽球細胞株 (HEL)、 繊維芽細胞株 (NHF)で SCGF遺伝子の発現が見ら れるが、 B細胞株 (U266B1、 IM-9)、 T細胞株 (MOLT- 4)、 赤芽球細胞株 (K562)、 上皮系癌細胞株(HeLaS3、 A431)、 メラノーマ細胞株(Bowes;)、 アデノウイルス形質転換胎生腎臓細胞株 (293)、繊維芽細胞株 (CCD-SLu) では、 SCGF 遺伝子の発現が見られないことが報告されている [ Pro Natl. Acad. Sci. USA, 94, 7577 (1997)]。
しかし、 正常及び血液疾患の、 或いは造血幹細胞移植を受けたヒトを 含む動物の末梢血、 骨髄中の血球細胞での SCGFの mRNA量の差異に 関する報告は無い。
組織や細胞の mRNA とコードされるタンパク質の量との相関は低く (相関係数 = 0.48) [Electrophoresis, 18, 533 (1997)] , SCG の mRNA 量から SCGF蛋白質量を推定する事も困難である。
以上のように、 ヒトを含む動物の血清、 血漿などの体液および組織中 の SCGF蛋白質の存在、 機能、 疾患との関係については明らかにされて いない。
本発明の目的は、 白血病、 前白血病または非白血病性悪性血液疾患の 判定、 白血病と前白血病または非白血病性悪性血液疾患との判別、 再生 不良性貧血と骨髄異形成症候群との判別、 造血幹細胞移植後の造血幹細 胞の生着状態および GVHDを判定する方法、 および白血病、 前白血病ま たは非白血病性悪性血液疾患、 造血幹細胞移植後の造血幹細胞の生着状 態および GVHDの診断薬ならびに診断キッ トを提供することにある。 発明の開示
本発明は以下 ( 1 ) 〜 ( 2 0 ) に関する。
( 1 ) 生体試料中の造血幹細胞増殖因子 (SCGF) を測定すること を特徴とする、 白血病、 前白血病または非白血病性悪性血液疾患を判定 する方法。
( 2 ) 生体試料中の造血幹細胞増殖因子 (SCGF) を測定すること を特徴とする、 白血病と、 前白血病または非白血病性悪性血液疾患とを 判別する方法。
( 3) 生体試料中の造血幹細胞増殖因子 (SCGF) を測定すること を特徴とする、 再生不良性貧血と骨髄異形成症候群とを判別する方法。
(4) 生体試料中の造血幹細胞増殖因子 (SCGF) を測定すること を特徴とする、 造血幹細胞移植後の造血幹細胞の生着の状態を判定する 方法。
( 5) 生体試料中の造血幹細胞増殖因子 (SCGF) を定量すること を特徴とする、 移植片対宿主反応病を判定する方法。
( 6 ) 判定または判別する方法が、 免疫学的測定方法である、 上記 ( 1 ) 〜 ( 5 ) のいずれか 1項に記載の方法。
( 7) 免疫学的測定方法が、 サンドイッチ法である、 上記 ( 6) 項 に記載の方法。
( 8) サンドイッチ法が、 造血幹細胞増殖因子 (SCGF) の異なる ェピトープに反応する 2種類の抗体を用いることを特徴とする、 上記 (7 ) 記載の方法。
( 9 ) 抗体が、 ポリクローナル抗体およびモノクローナル抗体から 選ばれる抗体である上記 ( 8) 記載の方法。 ( 1 0) モノクローナル抗体が、 配列番号 1の 6〜2 8番目のアミ ノ酸配列で示された領域を認識するモノクローナル抗体、 2 9〜 5 9番 目のアミノ酸配列で示された領域を認識するモノクローナル抗体および 6 0〜 3 0 2番目のアミノ酸配列で示された領域を認識するモノクロ一 ナル抗体からなる群から選ばれるモノクローナル抗体である、 上記( 9 ) 記載の方法。
( 1 1 ) 造血幹細胞増殖因子 (SCGF) に反応する抗体を有効成分 として含有してなる白血病、 前白血病または非白血病性悪性血液疾患の 診断薬。
( 1 2 ) 造血幹細胞増殖因子 (SCGF) に反応する抗体を有効成分 として含有してなる造血幹細胞移植後の造血幹細胞の生着状態の診断薬 <
( 1 3 ) 造血幹細胞増殖因子 (SCGF) に反応する抗体を有効成分 として含有してなる移植片対宿主反応病の診断薬。
( 1 4) 抗体が、 ポリクローナル抗体およびモノクローナル抗体か ら選ばれる抗体である上記 ( 1 1 ) 〜 ( 1 3) のいずれか 1項に記載の 診断薬。
( 1 5) モノク口一ナル抗体が、 配列番号 1の 6〜2 8番目のアミ ノ酸配列で示された領域を認識するモノク口一ナル抗体、 2 9〜 5 9番 目のアミノ酸配列で示された領域を認識するモノクローナル抗体および 6 0〜 3 0 2番目のアミノ酸配列で示された領域を認識するモノクロ一 ナル抗体からなる群から選ばれるモノクローナル抗体である、 上記 ( 1 4) 記載の診断薬。
( 1 6 ) 造血幹細胞増殖因子 (SCGF) に反応する抗体を含む、 白 血病、 前白血病あるいは非白血病性悪性血液疾患、 造血幹細胞移植後の 造血幹細胞の生着状態または移植片対宿主反応病の診断用キッ ト。
( 1 7 ) 造血幹細胞増殖因子 (SCGF) を含む、 上記 ( 1 6 ) 記載 の診断用キッ ト。
( 1 8) 配列番号 1の 2 9〜 5 9番目のアミノ酸配列で示された領 域を認識するモノクローナル抗体。
( 1 9) 配列番号 1記載の 6 0〜 3 0 2番目のアミノ酸配列で示さ れた領域を認識するモノクローナル抗体。
( 2 0) 上記 ( 1 8 ) または ( 1 9) 項に記載のモノクロ一ナル抗 体を生産するハイプリ ド一マ。 図面の簡単な説明
第 1図は、モノクロ一ナル抗体のヒト SCGF部分べプチド(化合物 1 ) に対する反応性を示す図である (バインディング E L I S A)o
第 2図は、 精製ヒト SCGFタンパク質の SDS-PAGE とウェスタンブ 口ッティング結果を示す。 レーン 1および 2は分子量マ一カーと精製ヒ ト SCGFタンパク質の SDS-PAGEパ夕一ンを示す。 レーン 3、 4、 5 はそれぞれ KM2142、 KM2804、 KM2945を用いた精製ヒト SCGFタン パク質のウェスタンブロッテイング結果を示す図である。
1:分子量マーカ一のレーン
2:精製 SCGFを解析し、 銀染色したレーン
3:抗 SCGF抗体 KM2142を用いてウェスタンブロッティングしたレ一ン 4:抗 SCGF抗体 KM2804を用いてウェスタンブロッティングしたレ一ン 5:抗 SCGF抗体 KM2945を用いてウェスタンブロッティングしたレーン A:SCGFタンパク質の分子量を示す。
B:N末端 28残基欠失 SCGF夕ンパク質 Δ28体の分子量を示す。
C:N末端 59残基欠失 SCGF夕ンパク質 Δ 59体の分子量を示す。
第 3図は、 モノクローナル抗体の、 C HO細胞発現ヒト SCGF蛋白に 対する反応性を示す図である (バインディング E L I S A)。 第 4図は、 モノクローナル抗体の、 S D S変性ヒト SCGF蛋白 (C H 〇細胞発現) に対する反応性を示す図である (バインディング E L I S A ) o
第 5図は、 モノクローナル抗体の、 ヒトおよびマウス SCGF蛋白 (C H O細胞発現) に対する反応性を示す。 (バインディング E L I S A ) 第 6図は、 モノクローナル抗体を用いたサンドイッチ E L I S Aによ るヒト SCGF蛋白の定量曲線を示す図である。
第 7図は、 各種血液疾患患者血清中 SCGF濃度を示す。 横実線は各種 血液疾患群の中央値を、 横点線は健常人群から求めたカツ トオフ値 (18.2ng/mL)を示す図である。
* : Normal (健常人群) あるいは AA (再生不良性貧血群) との有意差 ρ<0·05、
# : NHL (非ホジキンリンパ腫) との有意差 P<0.05、 $ : MM (多 発性骨髄腫) との有意差 p<0.05
第 8図は、 造血幹細胞移植患者血清中 SCGF濃度による GVHD発症 および非発症の差を示す図である。 横実線は各群の中央値を示す。
* : GVHD非発症例との有意差 p<0.05、
# : プレーコンディショニング期との有意差 p<0.05、
$ : ァプラスチック期との有意差 p<0.05、
& : リカバリー期との有意差 p<0.05
第 9図は、 造血幹細胞移植患者血清中 SCGF濃度と GVHD発症患者 の検出感度、 非発症患者の特異度との関係を示す図である。 譬 : 感度、 〇 : 特異度、 縦点線は仮のカッ トオフ値を示す。
第 1 0図は、 造血幹細胞移植患者血清中 SCGF濃度による生着遅延お よび非遅延の差を示す図である。 横実線は各群の中央値を示す。
# : プレーコンディショニング期との有意差 p<0.05、 $ : ァプラスチック期との有意差 p<0.05、
& : リカバリー期との有意差 p<0.05
第 1 1図は、 造血幹細胞移植患者血清中 SCGF濃度と造血幹細胞生着 遅延例の検出感度、 非遅延例の特異度との関係を示す図である。 參 : 感 度、 〇 : 特異度、 縦点線は仮のカッ トオフ値を示す。 発明を実施するための最良の形態
本発明は、 白血病、 前白血病または非白血病性悪性血液疾患を判定す る方法に関する。
白血病としては、 造血系細胞のうち造血細胞などの未熟な細胞が腫瘍 化されたものであればいかなるものも包含するが、 急性リンパ性白血病
(以下、 ALL と称する)、 急性骨髄性白血病 (以下、 AML と称する)、 慢性骨髄性白血病 (以下、 CMLと称する) などがあげられる。
前白血病としては、 造血系細胞のうちリンパ球などの成熟な細胞が腫 瘍化されたものであればいかなるものも包含されるが、 骨髄異形性症候 群 (以下、 MDSと称する) などがあげられる。
非白血病性悪性血液疾患としてリンパ腫や骨髄腫などがあげられる。 リンパ腫としては、 ホジキンリンパ腫や非ホジキンリンパ腫 (以下、 NHLと称する) などがあげられる。
骨髄腫としては、 多発性骨髄腫 (以下、 MMと称する) などがあげら れる。
白血病、 前白血病および非白血病性悪性血液疾患患者の生体試料中に 含まれる SCGF濃度は、健常人の生体試料中に含まれる SCGF濃度に比 ベて有意に上昇している。 したがって、 SCGF濃度にカッ トオフ値を設 けて、 採取した生体試料中の SCGFを定量し、 SCGF濃度がカッ トオフ 値より高い場合に白血病、 前白血病または非白血病性悪性血液疾患であ ると判定することができる。
カッ トオフ値とは、 ある物質に着目して目的とする疾患群と非疾患群 とを判定する場合に定める値をいう。 目的とする疾患と非疾患とを判定 する場合に、 カッ トオフ値以下であれば陰性、 カッ トオフ値以上であれ ば陽性として、 またはカッ トオフ値以下であれば陽性、 カッ トオフ値以 上であれば陰性として疾患を判定することができる (金井正光編、 臨床 検査法提要 金原出版株式会社)。
力ットオフ値の臨床的有用性を評価する目的で用いられる指標として は、 感度と特異度があげられる。
ある母集団をカッ トオフ値を用いて判定し、 疾病患者のうち、 判定で 陽性とされたものを a (真陽性)、疾病患者でありながら判定で陰性とさ れたものを b (偽陰性)、 疾病患者でないにも関わらず判定で陽性とされ たものを c (偽陽性)、 疾病患者でなく判定で陰性とされたものを d (真 陰性) と表したときに、 a / ( a + b )で表される値を感度(真陽性率)、 ά / ( c + d ) で表される値を特異度 (真陰性率) として表すことがで さる。
目的とする疾患群と非疾患群との測定値の分布は通常、一部重複する。 したがって、 カッ トオフ値を上下させることにより、 感度と特異度は変 化する。 カッ トオフ値を下げることにより感度は高くなるが、 特異度は 低下し、 カッ トオフ値を上げることにより感度は低くなるが、 特異度は 上がる。 判定方法としては、 感度と特異度の両者の値が高いほうが好ま しい。 また、 感度と特異度の値が 5 0 %を超えない判定方法は、 有用と は認、められない。
力ッ トオフ値を設定する方法としては、 非疾患群の分布の 9 5 %を含 む、中央からの両端のいずれかの値をカツトオフ値として設定する方法、 非疾患群の分布が正規分布を示す場合、平均値 + 2倍の標準偏差(S D ) または平均値一 2 S Dをカツ トオフ値として設定する方法などがあげら れる。
白血病、 前白血病または非白血病性悪性血液疾患であるか否かを判定 する場合、力ッ トオフ値を 15.0ng/mLに設定した場合には、感度 89.5%、 特異度 70%で判定することができ、 カッ トオフ値を 13.0ng/mL に設定 した場合には、 感度 100%、 特異度 60%で判定することができる。 健常 人の SCGF濃度よりカツ トオフ値を平均値 + 2 S Dの 18.2ng/mL に設 定すると、 感度 89.5%、 特異度 100%で判定することができる。 また、 このカッ トオフ値で白血病であるか否かを感度 95 %、 特異度 100%で、 非白血病性悪性血液疾患であるか否かを感度 76.9%、 特異度 100%、 さ らに前白血病であるか否かを感度 100%、特異度 100%で判定することが できる。
生体試料としては、 血液、 尿、 髄液、 穿刺液などいかなるものでもよ いが、 好ましくは血液があげられる。 血液としては、 全血、 血漿、 血清、 血球溶血液、 血球内液などがあげられるが、 好ましくは血清または血漿 があげられる。
本発明は、 白血病と、 前白血病または非白血病性悪性血液疾患とを判 別する方法に関する。
白血病患者の生体試料中に含まれる SCGF濃度は、 前白血病または非 白血病性悪性血液患者の生体試料中に含まれる SCGF濃度に比べて有意 に上昇している。 したがって、 上述の方法で白血病、 前白血病または非 白血病性悪性血液疾患と判定されたのち、 さらに白血病と判定される力 ッ トオフ値を設けて、 採取した生体試料中の SCGF濃度がそのカツ トォ フ値よりも高い場合には、 白血病、 低い場合は前白血病または非白血病 性悪性血液疾患であると判断することができる。
白血病と、前白血病または非白血病性悪性血液疾患とを判別する場合、 カッ トオフ値を 23.8ng/mL に設定した場合には、 感度 85%、 特異度 69.2%で判別することができる。 また、 カッ トオフ値を非白血病性悪性 血液疾患患者の平均値 + 2 S Dから 32.8ng/mLに設定した場合には、感 度 80°/。、 特異度 100%で判別することができる。
本発明は、 再生不良性貧血と骨髄異形性症候群とを判別する方法に関 する。
再生不良性貧血と骨髄異形性症候群は、 骨髄および末梢血において白 血球の数や形態に異常が生じるのを特徴とする病態で、 二つの疾患の判 別は難しいとされてきた。
骨髄異形性症候群患者の SCGF 濃度は健常人の血液中に含まれる SCGF濃度に比べ有意に上昇しているが、 再生不良性貧血患者の血液中 SCGF濃度は健常人と変わらない。 骨髄異形性症候群患者の血中 SCGF 濃度は再生不良性貧血患者の血中 SCGF濃度より有意に高く、 両者の血 中 SCGF濃度を測定することで、 再生不良性貧血か骨髄異形成症候群か と判別することができる。
そこで、 白血球の異常が見られる患者のうち、 再生不良性貧血患者と 骨髄異形性症候群患者を判別する場合、 再生不良性貧血患者の SCGF濃 度よりカッ トオフ値 (平均値 + 2SD=16.6ng/mL) を設定し、 該カッ トォ フ値によって判断すると、 感度 100%、 特異度 100%で再生不良性貧血患 者と骨髄異形性症候群患者とを判別することができる。 さらに基準値を 15.6ng/mL〜: L8.6ng/mLに設定すれば、 感度 100%、 特異度 100%で再生 不良性貧血患者と骨髄異形性症候群患者とを判別することができる。
また、 本発明は、 造血幹細胞移植後の造血幹細胞の生着の遅延を判定 する方法に関する。
造血幹細胞移植としては、 造血幹細胞を移植する方法であればいかな るものでもよいが、 骨髄移植、 臍帯血移植、 末梢血幹細胞移植等があげ られる。
造血幹細胞移植から造血幹細胞の生着までの期間は、 患者の末梢血の 血球数を基準として以下にあげる 4つの時期に分類される。 すなわち、 移植前で、 抗癌剤などを大量投与した状態にあるプレーコンディショニ ング期、 移植を行った後に血球数が減少した状態にあるアブラスチック 期、 移植後に血球数が回復した状態にあるリカバリ一期、 および移植後 に造血幹細胞が生着するスティブル期である。
造血幹細胞移植を行った患者のプレーコンディショニング期およびァ プラスチック期での生体試料中に含まれる SCGF濃度は、 造血幹細胞の 生着が遅延する患者の生体試料中に含まれる SCGF濃度のほうが造血幹 細胞の生着が遅延しない患者の生体試料中に含まれる SCGF濃度に比べ て高い。 したがって、 それぞれの時期の SCGF濃度を測定し、 造血幹細 胞の生着が遅延するおそれがあると判断される SCGF濃度を力ットオフ 値として定め、 SCGF濃度が力ッ トオフ値より低い値の場合には生着の 遅延は見られず、 SCGF濃度がカッ トオフ値より高い値の場合には生着 の遅延が起こると判定することができる。
造血幹細胞の生着遅延を判定するには、 プレーコンディショニング期 の場合は、 例えばカッ トオフ値を 9.5ng/mL に定めることにより感度 75%、 特異度 67%で、 ァプラスチック期の場合は、 カッ トオフ値を 12ng/mL に定めることにより感度 75%、 特異度 63%で判定することが できる。
さらに、 本発明は GVHDの発症を判定する方法に関する。
造血幹細胞移植を行つた患者のァプラスチック期およびリカバリー期 での生体試料中に含まれる SCGF濃度は、 GVHDを発症する患者のほう が、 GVHDを発症しない患者に比べて高い。 したがって、 それぞれの時 期の SCGF濃度を測定し、 それぞれの時期で GVHD を発症するおそれ があると判定されるカツ トオフ値を定め、 SCGF濃度が力ッ トオフ値よ り低い値の場合には GVHDが発症するおそれはないが、 SCGF濃度が力 ッ トオフ値より高い値の場合には GVHD が発症するおそれがあると判 断することができる。
造血幹細胞移植後の GVHDの発症を判定するには、プレーコンディシ ョニング期においては、 カッ トオフ値を例えば 5ng/mLに定めることに より感度 87%、 特異度 57%で、 ァプラスチック期においてはカツ トオフ 値を例えば 10ng/mLに定めることで感度 87%、 特異度 63%で、 リカバ リー期ではカツトオフ値を例えば 15ng/mL に定めることで感度 87%、 特異度 63%で、 GVHD発症患者と非発症患者とを判定することができる。 生体試料中の造血幹細胞増殖因子 (以下、 SCGFと称す) を測定する 方法としては、 免疫学的測定法、 分子生物学的測定法などいかなる方法 でもよいが、 好ましくは免疫学的測定法があげられる。
免疫学的測定法としては、 ィムノアッセィ法、 ィムノブロッテイング 法、 凝集反応、 補体結合反応、 溶血反応、 沈降反応、 金コロイ ド法、 ク ロマトグラフィ一法、 免疫染色法など抗原抗体反応を利用した方法であ ればいかなるものも包含されるが、 好ましくはィムノアッセィ法があげ られる。
分子生物学的測定法としては、 RT-PCR法、 ノーザンブロッテイング 法、 in situハイブリダィゼ一シヨン法等があげられる。
ィムノアツセィ法は、 各種標識を施した抗原または抗体を用いて、 抗 体または抗原を検出或いは定量する方法であり、 抗原または抗体の標識 方法に応じて、 放射免疫検出法 (RIA)、 酵素免疫検出法 (EIA または ELISA )、 蛍光免疫検出法 (FIA)、 発光免疫検出法 (luminescent immunoassay)、 物理化学的検出法 (TIA, LAPIA, PCIA)、 フローサ ィ トメ トリ一などがあげられるが、 好ましくは酵素免疫検出法があげら れる。
放射免疫検出法で用いる放射性標識体としては、 任意の公知 (石川榮 次ら編、 酵素免疫測定法、 医学書院) の放射性同位元素を用いることが できる。 例えば、 32p、 125L 1311等を用いることができる。
酵素免疫検出法で用いる酵素標識体としては、 任意の公知 (石川榮次 ら編、 酵素免疫測定法、 医学書院) の酵素を用いることができる。 例え ば、 アルカリフォスファターゼ、 ペルォキシダーゼ、 ルシフェラ一ゼ等 を用いることができる。
さらに酵素免疫測定法は酵素の作用により生成した物質を測定する ことにより、 測定 ·検出を行うが、 紫外部または可視部に吸収極大を有 する物質の吸光度を測定する方法、 生成した蛍光物質の蛍光強度を測定 する方法、 生成した物質の発光強度を測定する方法など多様な測定方法 をとることが出来る。 例えば酵素標識体としてアル力リフォスファタ一 ゼを用いる場合は、 アル力リホスファタ一ゼ作用により紫外部または可 視部に吸収極大を有する物質を生成するようなアル力リ性ホスファタ一 ゼの基質としては、 例えば 4—ニトロフエ二ルリン酸等が挙げられる。 4一二トロフエニルリン酸はアルカリホスファタ一ゼにより 4—ニトロ フエノールに変換される。 アル力リホスファタ一ゼ作用により発光を生 成するようなアル力リホスファタ一ゼの基質としては、例えば 3 - ( 2 ' ースピロアダマンタン) — 4—メトキシ— 4— ( 3 ' —ホスホリルォキ シン)フエ二ルー 1 , 2—ジォキセタン ·ニナトリウム塩(AMP PD)、 2—クロロー 5— { 4—メ トキシスピロ [ 1 , 2—ジォキセタン一 3, 2, 一 ( .5 ' クロ口) 卜リシクロ [ 3. 3. I 3' 7] デカン] 一 4—ィ ル} フエニル ホスフェート .ニナトリウム塩(CD P— S t a r TM)、 3— { 4ーメ トキシスピロ [ 1, 2 _ジォキセ夕ン一 3 , 2, 一 ( 5, —クロ口) 卜リシクロ [ 3. 3. I 3' 7] デカン] — 4ーィル } フエ二 ル ホスフェート 'ニナトリウム塩 (C S P DTM)、 [ 1 0—メチルー 9 ( 1 0 H) 一ァクリジニルイデン] フエノキシメチルリン酸 'ニナトリ ゥム塩 (L um i g e n TM A P S— 5 ) 等が挙げられる。 また、 アル カリホスファタ一ゼの作用により色素を生成する試薬として、 アルカリ ホスファタ一ゼの基質である NAD PHを含有する酵素サイクリング反 応試薬 Amp 1 i Q (ダコ社製) が挙げられる。
発光免疫検出法で用いる発光標識体としては、 任意の公知 [今井一洋 編、 生物発光と化学発光、 廣川書店 ; 臨床検査 42(1998)] の発光体を 用いることができる。 例えば、 ァクリジニゥムエステル、 口フィン等を 用いることができる。
蛍光免疫検出法で用いる蛍光標識体としては、任意の公知(川生明著、 蛍光抗体法、 ソフ トサイエンス社製) の蛍光を用いることができる。 例 えば、 FITC、 RITC等を用いることができる。
ィムノアッセィ法における測定方法としては、 競合法、 サンドイッチ 法 [免疫学ィラス トレイテッ ド 第 5版 (南光堂)] 等があげられるが、' 好ましくはサンドィツチ法があげられる。
サンドィツチ法は、 抗原抗体反応で結合した試料中の目的物質と第一 の抗体に、 第二の抗体 (二次抗体) を同時に、 または別々に反応させ、 試料中の目的物質を同一または別々の抗体で検出または定量する方法で ある。 多くの場合、 測定操作中に試料中の非反応のサンプル成分や測定 系成分を洗浄する工程を含む。 例えば、 固相に第一の抗体 (一次抗体) を固定した後、 測定したい試料を第一の試料と接触させる。 試料中の非 反応のサンプル成分を洗浄し、 反応系から除去した後、 抗原抗体反応で 結合した試料中の目的物質と第一の抗体の複合体に、 第二の抗体 (二次 抗体) を反応させ、 測定系中の反応に関与しなかった第二次抗体などの 成分を洗浄除去した後、 反応系に存在する試料中の目的物質を検出また は定量する方法である。
サンドイッチ法に用いる固相としては、 ポリ塩化ビニル製マイクロ夕 イタ一プレート、 ポリスチレン製マイクロタイ夕一プレート等があげら れる。
サンドィツチ法に用いる抗体としては、 ポリクロ一ナル抗体、 モノク 口一ナル抗体のいずれを用いてもよく、 Fab、 Fab'、 F(ab)2などの抗体 フラグメントを用いてもよい。
サンドィツチ法で用いる一次抗体と二次抗体の組み合わせとしては、 異なるェピト一プを認識する抗体の組み合わせであればいかなるもので もよいが、少なくとも 1つがモノクローナル抗体であることが好ましい。 本発明のサンドィツチ法で用いられるモノクローナル抗体としては、 配列番号 1の 6〜2 8番目のアミノ酸配列で示された領域を認識するモ ノクローナル抗体、 配列番号 1の 2 9〜5 9番目のアミノ酸配列で示さ れた領域を認識するモノクローナル抗体、 配列番号 1の 6 0〜 3 0 2番 目のアミノ酸配列で示された領域を認識するモノクローナル抗体などが あげられる。
配列番号 1の 6〜 2 8番目のアミノ酸配列で示された領域を認識する モノ ク ローナル抗体と しては、 ハィ ブリ ドーマ KM2142 [ The Hematology Journal, 2, 307 (2001)] が生産するモノクローナル抗体 KM2142があげられる。 配列番号 1の 2 9〜5 9番目のアミノ酸配列で 示された領域を認識するモノクローナル抗体としては、 ハイプリ ドーマ KM2804が生産するモノク口一ナル抗体 KM2804があげられる。配列番 号 1記載の 6 0〜3 0 2番目のアミノ酸配列で示された領域を認識する モノクローナル抗体としては、ハイブリ ド一マ KM2945が生産するモノ クロ一ナル抗体 KM2945があげられる。
モノク口一ナル抗体 KM2142を生産するハイブリ ドーマ KM2142、モ ノクローナル抗体 KM2804を生産するハイブリ ドーマ KM2804,モノク 口一ナル抗体 KM2945 を生産するハイプリ ドーマ KM2945 は、 平成 1 4年 2月 2 6 日付けで独立行政法人産業技術総合研究所 特許生物寄託 センタ一(茨城県つくば巿東 1丁目 1番地 中央第 6 )に FERM BP-7922, FERM BP-7923および FERM BP-7924としてそれぞれ寄託されている: 上述のモノクローナル抗体は SCGFを認識する部位がそれぞれ異なる ので、 これらのモノク口一ナル抗体を組み合わせてサンドィツチ法を行 うことができる。 好ましいモノクローナル抗体の組み合わせとしては、 配列番号 1の 6〜 2 8番目のアミノ酸配列で示された領域を認識するモ ノ ク ローナル抗体、 具体的にはハイ ブリ ドーマ KM2142 [ The Hematology Journal, 2, 307 (2001)] が生産するモノクローナル抗体 KM2142と、 配列番号 1記載の 2 9〜 5 9番目のアミノ酸配列で示され た領域を認識するモノクローナル抗体、 具体的にはハイプリ ドーマ KM2804(FERM BP-7923)が生産するモノク口一ナル抗体 KM2804との 組み合わせがあげられる。
本発明のサンドィツチ法による SCGFを検出または定量する方法の具 体例を以下に示す。
まず、 適当な固定担体の表面に上述の抗 SCGF抗体 (一次抗体) を吸 着固定する。 一次抗体の固定は、 例えば、 当該抗体を適当な緩衝液、 例 えばリン酸緩衝液、 ホウ酸緩衝液、 炭酸緩衝液等に希釈した後、 これを 固定担体の表面に接触させ、そして 4〜37°Cにて 30分間以上反応させる ことなどにより行うことができる。
次に、 固定担体表面の蛋白質結合能をブロックする。 例えば、 固定担 体表面上の遊離結合基をブロッキング緩衝液と接触させる。
ブロッキング緩衝液としては、 例えば 1〜10%のゥシ血清アルブミン、 10〜30%ブロックエース (雪印乳業社製) を含有する緩衝液、 例えば、 リン酸緩衝液、 ホウ酸緩衝液、 炭酸緩衝液等があげられる。
ブロッキング処理は、 4〜37°Cにて 30分間以上反応させることにより 行うことができる。
次に、 一次抗体を生体試料と接触させる。 生体試料は必要に応じて、 例えば 0.01〜 1%のゥシ血清アルブミンなどの蛋白質を含有する緩衝液、 リン酸緩衝液、 ホウ酸緩衝液、 炭酸緩衝液等で希釈してもよい。
一次抗体と生体試料との接触は、 4〜37°Cにて 30分間以上反応させる ことにより行うことができる。
接触させた後、 必要に応じて TWeen20 等の界面活性剤を含有する緩 衝液、 例えばリン酸緩衝液、 ホウ酸緩衝液、 炭酸緩衝液等を用いて数回 洗浄する。
このとき、 生体試料中に存在する SCGFが、 あらかじめ固定されてい る抗 SCGF抗体と特異的に結合することにより、抗 SCGF抗体を介して 固定担体に固定される。
次に、 SCGFが固定された前記担体を、 二次抗体を含有する溶液と接 触させる。
二次抗体としては、 一次抗体とェピト一プの異なる抗 SCGF抗体であ ればいかなるものでもよい。 また、 二次抗体は必要に応じて、 前述の標 識体で予め標識しておくことができる。
未吸着の二次抗体を除去するには、 必要に応じて Tween20 等の界面 活性剤を含有する緩衝液、 例えばリン酸緩衝液、 ホウ酸緩衝液、 炭酸緩 衝液等を用いて担体を数回洗浄する。 これにより該二次抗体は、 あらか じめ結合されている一次抗体及び SCGF を介して、 固定担体に結合し、 二次抗体の結合量が生体試料中の SCGFの量を反映することになる。 上記のようにして固定された二次抗体は、 二次抗体の標識体に応じて 測定することができる。 また、 二次抗体に対して特異的な三次抗体を用 い、 該三次抗体を種々の方法により標識しておき、 三次抗体の標識を検 出または測定することもできる。
上記のようにして、 結合された二次抗体の量を測定し、 標準物質を用 いて検量線を作成し、生体試料中の SCGFの量を測定することができる。 検量線は、 標準物質として濃度が既知であるヒト SCGF蛋白質を含む 溶液を数点段階希釈したものを準備し、 生体試料とともに上述のサンド イッチ法を行うことにより得られる。
本発明の白血病、 前白血病または非白血病性悪性血液疾患の診断薬、 造血幹細胞移植後の造血幹細胞の生着遅延の診斬薬、および GVHD発症 の診断薬に含有される SCGFに対する抗体としては、 SCGFに反応する 抗体であれば、 ポリクロ一ナル抗体、 モノクローナル抗体あるいは抗体 フラグメントなどいかなるものでもよいが、 好ましくはモノクロ一ナル 抗体が用いられる。
モノクローナル抗体としては、 配列番号 1の 6〜 2 8番目のアミノ酸 配列で示された領域を認識するモノクローナル抗体、 配列番号 1の 2 9 〜 5 9番目のアミノ酸配列で示された領域を認識するモノクローナル抗 体、 配列番号 1の 6 0〜 3 0 2番目のアミノ酸配列で示された領域を認 識するモノクローナル抗体があげられる。
配列番号 1の 6〜 2 8番目のアミノ酸配列で示された領域を認識する モノ ク ローナル抗体と しては、 ノ、イ ブリ ドーマ KM2142(FERM BP-7922)が生産するモノクローナル抗体 KM2142 があげられる。 配列 番号 1の 2 9〜 5 9番目のアミノ酸配列で示された領域を認識するモノ クロ一ナル抗体としては、 ハイブリ ドーマ KM2804(FERM BP-7923)が 生産するモノクローナル抗体 KM2804があげられる。配列番号 1の 6 0 〜 3 0 2番目のアミノ酸配列で示された領域を認識するモノク口一ナル 抗体としては、 ハイブリ ドーマ KM2945(FERM BP-7924)が生産するモ ノクローナル抗体 KM2945があげられる。
本発明のキッ トとしては、 機器または試薬の組み合わせにより構成さ れるが、 以下に述べる各構成要素と本質的に同一、 またはその一部と本 質的に同一な物質が含まれていれば、構成または形態が異なっていても、 本発明のキッ トに包含される。
試薬としては SCGFに反応する抗体を含み、 また、 必要に応じ、 生体 試料の希釈液、 抗体固定化固相、 反応緩衝液'、 洗浄液、 標識された二次 抗体またはその抗体断片、 標識体の検出用試薬、 SCGFなどの標準物質 なども含まれる。
生体試料の希釈液としては、 界面活性剤、 緩衝剤などに B S Aやカゼ インなどのタンパク質を含む水溶液などがあげられる。
抗体固定化固相としては、 各種高分子素材を用途に合うように整形し た素材に、本発明の枋体または抗体断片を固相化したものが用いられる。 形状としてはチューブ、 ビーズ、 プレート、 ラテックスなどの微粒子、 スティ ック等が、 素材としてはポリスチレン、 ポリ力一ポネ一ト、 ポリ ビニルトルエン、 ポリプロピレン、 ポリエチレン、 ポリ塩化ビニル、 ナ ィロン、 ポリメタクリレート、 ゼラチン、 ァガロース、 セルロース、 ポ リエチレンテレフ夕レート等の高分子素材、 ガラス、 セラミックスや金 属等があげられる。 抗体の固相化の方法としては物理的方法と化学的方 法またはこれらの併用等公知の方法により調製することができる。 例え ば、 ポリスチレン製 9 6ゥエルの免疫測定用マイク口夕一プレートに抗 体等を疎水固相化したものがあげられる。
反応緩衝液は、 抗体固定化固相の抗体と生体試料中の抗原とが結合反 応をする際の溶媒環境を提供するものであればいかなるものでもよいが. 界面活性剤、 緩衝剤、 B S Aやカゼインなどの蛋白質、 防腐剤、 安定化 剤、 反応促進剤等があげられる。 洗浄液としては、 リン酸ゃトリス (トリスヒ ドロキシメチルアミノメ タン) 、 H E P E Sや M 0 P Sなどのグッ ドバッファ一類などの緩衝剤 などに、 ツイーン 2 0、 ツイーン 4 0、 ツイ一ン 6 0、 ツイーン 8 0、
T
トリ トン X— 7 0 5などの界面活性剤、 N a C 1、 K C 1や硫酸ァ ンモニゥムなどの塩、 B S Aやカゼインなどの蛋白質、 アジ化ナトリウ ムなどの防腐剤、 塩酸グァニジン、 尿素ゃソディウムドデシルサルフエ 一卜などの変性剤、 ポリエチレングリコール、 カルボキシメチルセル口 ース、 デキス トラン硫酸、 コンドロイチン硫酸などの安定化剤の少なく とも 1種類を含む液があげられる。 具体的には、 0. 1 5mo l ZL塩 化ナトリウム、 0. 0 5 %ツイ一ン 2 0および p H 7. 4の 1 0 mm o 1 ZLリン酸緩衝液からなるツイ一ン P B S、 0. 1 5mo l ZL塩化 ナトリウム、 0. 0 5 %ツイ一ン 2 0および ρ Η 7. 4の 1 0mm o l /L トリスー塩酸緩衝液 ( p H 7. 4) からなるツイ一ン T B Sなど があげられる。
標識された二次抗体またはその抗体断片としては、 本発明の抗体また は抗体断片に西洋ヮサビペルォキシダ一ゼ (HRP)、 ゥシ小腸アル力リ フォスファタ一ゼ、 i3 _ガラク トシダ一ゼなどの標識用酵素をラベルし たもの、 緩衝剤、 B S Aやカゼインなどのタンパク質、 防腐剤などを混 合したものが用いられる。
標識体の検出用試薬としては前記の標識用酵素に応じて、 例えば西洋 ヮサピペルォキシダーゼであれば、 テ卜ラメチルベンジジンやオル卜フ ェニレンジアミンなどの吸光測定用基質、 ヒ ドロキシフエニルヒ ドロキ シフエ二ルプロピオン酸ゃヒ ドロキシフエニル酢酸などの蛍光基質、 ル ミノールなどの発光基質が、 アルカリフォスファターゼであれば、 4一 ニトロフエニルフォスフェートなどの吸光度測定用基質、 4—メチルゥ ンべリフエリルフォスフエ一卜などの蛍光基質等があげられる。 標準物質としては、 WO98/08869 に記載の方法によ り調製できる SCGF、 キッ 卜に用いられる 2種類の抗体のェピトープを含有するぺプ チドなどがあげられる。
本発明は、 また、 配列番号 1記載の 2 9〜 5 9番目のアミノ酸配列で 示された領域を認識するモノクローナル抗体および配列番号 1記載の 6 0〜 3 0 2番目のアミノ酸配列で示された領域を認識するモノクロ一ナ ル抗体に関する。
配列番号 1記載の 2 9〜 5 9番目のアミノ酸配列で示された領域を認 識するモノクローナル抗体としては、 ハイプリ ドーマ KM2804(FERM BP-7923)が生産するモノクローナル钪体 KM2804 があげられる。 配列 番号 1記載の 6 0〜 3 0 2番目のアミノ酸配列で示された領域を認識す るモノクローナル抗体としては、 ハイブリ ドーマ KM2945 ( FERM BP-7924) が生産するモノクローナル抗体 KM2945があげられる。
本発明に用いられるモノクローナル坊体の製造方法としては、 公知の モノクローナル抗体の製造方法により製造することができる。
以下に、 本発明に用いるモノクローナル抗体の製造方法を詳細に説明 する。
( 1 ) 抗原の調製
抗原としては、 ヒト SCGFをコードする cDNAを含む発現ベクターを 大腸菌、 酵母、 昆虫細胞、 動物細胞等に導入して得られたヒト SCGF蛋 白質、 ぺプチド合成により得られたヒト SCGF部分配列を有する合成べ プチドなどがあげられる。
抗原用部分べプチドとしては、 5〜30残基程度の蛋白質部分配列が選 択される。 変性していない天然の構造を有している状態の該蛋白質を認 識する抗体を取得するためには、 立体構造上蛋白質の表面に存在してい る部分配列を抗原べプチドとして選択する必要がある。 Kyteと Doolittle の方法 [ジャーナル · ォブ · モレキュラー ·バイオロジー (Journal of Molecular Biology) , 157, 105- 132 (1982)] などにより、 親水性の高い 部分配列を予測することで、 立体構造上蛋白質表面に存在する部分を推 測することができる。 即ち、 一般的に親水性の低い部分は立体構造上蛋 白質の内部に存在する場合が多く、 親水性の高い部分は蛋白質表面に存 在する場合が多いためである。 また、 蛋白質の Ν末端、 C末端は蛋白質 表面に存在する場合が多い。 さらに、 蛋白質の二次構造情報も参考にで きる。 Chou-Fasman の方法 [アドバンセズ · イン ·ェンザィモロジ一 (Advances in Enzymology), 47, 45- 147 (1978)] などによりアミノ酸配 列から予測した蛋白質二次構造において、 ターン構造やランダムコイル 構造を有する部分が抗原用べプチドとして適していると考えることがで きる。 しかしながら、 このように選択した部分ペプチドが目的通りの抗 体を確立する抗原となるとは限らない。
部分べプチドには、 蛋白質と架橋するためにシスティンを末端に付加 する。 蛋白質の内部配列を選択した場合には、 必要に応じペプチドの N 末端はァセチル化、 C末端はアミ ド化する。
部分べプチドは一般的な液相、 固相べプチド合成法およびそれらを適 宜組み合わせる方法、 またはそれらに準じる方法によって合成すること ができる [インターナショナル · ジャーナル · ォブ · ぺプタイ ド · アン r · フロアつ ノ ' リサ一ナ (International Journal of Peptide Protein Research), 35, 161-214 (1990)、 「ソリッ ド—フェーズ ·ぺプタイ ド · シ ンセシス(Solid-Phase Peptide Synthesis) J , メソッズ ' イン · ェンザ ィモロジ一 第 289卷(Methods in Enzymology, vol. 289) ,グレッダ · Β · フィールズ(Gregg B. Fields)編,アカデミック · プレス(Academic Press), (1997)、 「ぺプタイ ド · シンセシス · プロ トコール(Peptide Synthesis Protocols)」 , メソッズ 'イン 'モレキュラー 'バイオロジー 1 第 35巻(Methods in Molecular Biology, vol. 35) ,マイケル · W ·ぺニン トン(Michael W. Pennington) ,ベン · M · ダン(Ben M. Dunn) 編,ヒュ 一マナ ' プレス(Humana Press), (1994)]。
また、 自動ペプチド合成機を用いることもできる。 ペプチド合成機に よるペプチドの合成は、 島津製作所製ペプチド合成機、 アドバンスド ' ケムテック社 (Advanced ChemTech In , USA、 以後 ACT社と略称す る) 製ペプチド合成機等の市販のペプチド合成機上で、 適当に側鎖を保 護した N « -Fmoc-アミノ酸あるいは N o; -Boc-アミノ酸等を用い、 それ ぞれの合成プログラムに従って実施することができる。 原料となる保護 アミノ酸および担体樹脂は、 ABI 社、 島津製作所、 国産化学 (株)、 ノ バビオケム社 (NovaBiochem)、 渡辺化学 (株)、 ACT 社、 アナスぺッ ク社 (AnaSpec Inc.) , またはペプチド研究所 (株) 等から入手するこ とができる。
( 2 ) 動物の免疫と抗体産生細胞の調製
3 〜 2 0週令のマウス、 ラッ トまたはハムス夕一に (1) で調製した 抗原を免疫して、 その動物の脾、 リンパ節、 末梢血中の抗体産生細胞を 採取する。
免疫は、 動物の皮下あるいは静脈内あるいは腹腔内に、 適当なアジュ バント [例えば、 フロインドの完全アジュバント (complete freund's adjuvant) や水酸化アルミニウムゲルと百日咳菌ワクチンなど] ととも に抗原を投与することにより行う。抗原が部分べプチドである場合には、 B S A (ゥシ血清アルブミン)や K L H ( Keyhole Limpet Hemocyanin) などのキャリア蛋白質とコンジュゲートを作製し、 これを免疫原として 用いる。
抗原の投与は、 1回目の投与の後 1 〜 2週間おきに 3 〜 1 0回行う。 各投与後 3 〜 7日目に眼底静脈叢より採血し、 その血清が抗原と反応す ることを酵素免疫測定法 [Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory, 1988] などで調べる。 免疫に用いた抗原に 対し、 その血清が十分な抗体価を示したマウス、 ラッ トまたはハムスタ 一を抗体産生細胞の供給源として提供する。
抗体産生細胞と骨髄腫細胞の融合に供するにあたって、 抗原物質の最 終投与後 3〜7 日目に、 免疫したマウス、 ラッ トまたはハムスターより 脾臓を摘出し、 脾細胞を採取する。 脾臓を MEM培地 (日水製薬社製) 中で細断し、 ピンセットでほぐし、 遠心分離 (l,200rpm、 5分間) した 後、 上清を捨て、 トリスー塩化アンモニゥム緩衝液 (pH 7.65)で 1〜 2分 間処理し赤血球を除去し、 MEM培地で 3回洗浄して融合用脾細胞とし て提供する。
( 3) 骨髄腫細胞の調製
骨髄腫細胞としては、 マウスから得られた株化細胞を使用する。 たと えば、 8—ァザグァニン耐性マウス (BAL BZc由来) 骨髄腫細胞株 P3-X63Ag8-Ul(P3-Ul) [ Current Topics in Microbiology and Immunology, 18:1-7 (1978)]、 P3-NSl/l-Ag41 (NS-l) [European J. Immunology, 6: 511-519 (1976)]、 SP2/0-Agl4(SP-2) [Nature, 276: 269-270 (1978)]、 P3-X63'Ag8653(653) [J. Immunology, 123:1548-1550 (1979)]、 P3-X63-Ag8(X63) [Nature, 256:495.497 (1975)] などが用い られる。 これらの細胞株は、 8—ァザグァニン培地 [R P M I _ 1 6 4 0培地にダル夕ミン (1.5mmol/L)、 2一メルカプ卜エタノール (5X10 mol/L)、 ジェンタマイシン (10 g/mL) および牛胎児血清(FCS)を加え た培地 (以下、 正常培地という。) に、 さらに 8—ァザグァニン (15 g/mL) を加えた培地] で継代するが、 細胞融合の 3〜4日前に正常培地 に継代し、 融合当日 2 X 1 07個以上の細胞数を確保する。
(4) 細胞融合 ( 2 ) で免疫した抗体産生細胞と ( 3 ) で得られた骨髄腫細胞を M E M培地または P B S (リン酸ニナトリウム 1.83g、 リン酸一カリウム 0.21g、 食塩 7.65g、 蒸留水 1 リッ トル、 pH 7.2) でよく洗浄し、 細胞数 が、 抗体産生細胞: 骨髄腫細胞 = 5〜 1 0 : 1になるよう混合し、 遠心 分離 (l,200rpm、 5分間) した後、 上清を捨て、 沈澱した細胞群をよく ほぐした後、 攪拌しながら、 37°Cで、 ポリエチレングライコ一ルー 1,000 (PEG- 1,000) 2g、 MEM2mLおよびジメチルスルホキシド 0.7mLの混 液 0.2〜lmL/108抗体産生細胞を加え、 1〜2分間毎に MEM培地 l〜2mL を数回加えた後、 MEM培地を加えて全量が 50mLになるようにする。 遠心分離 (900rpm、 5分間) 後、 上清を捨て、 ゆるやかに細胞をほぐし た後、 メスピペッ トによる吸込み、 吹出しでゆるやかに細胞を H A T培 地 [正常培地にヒポキサンチン(10-½iol/L)、チミジン(1.5 X 10-5mol/L) およびアミノプテリン (4 X 10-7mol/L) を加えた培地] lOOmL中に懸濁 する。 この懸濁液を 96穴培養用プレートに 100 L/穴ずつ分注し、 5% C02インキュベータ一中、 37°Cで 7〜14日間培養する。
培養後、 培養上清の一部をとり下記に述べる酵素免疫測定法などによ り、 ヒト SCGFに反応し、 ヒト SCGFを含まない抗原に反応しないもの を選択する。ついで、限界希釈法によりクロ一ニングを 2回繰り返し [ 1 回目は、 HT 培地 (HAT 培地からアミノプテリンを除いた培地)、 2回 目は、正常培地を使用する]、安定して強い抗体価の認められたものを抗 ヒト SCGFモノク口一ナル抗体産生ハイプリ ドーマ株として選択する。 酵素免疫測定法
抗原あるいは抗原を発現した細胞などを 96 ゥエルプレートにコート し、 ハイプリ ドーマ培養上清もしくは上述の方法で得られる精製抗体を 第一抗体として反応させる。
第一抗体反応後、 プレートを洗浄して第二抗体を添加する。 第二抗体とは、 第一抗体のィムノグロブリンを認識できる抗体を、 ビ ォチン、 酵素、 化学発光物質あるいは放射線化合物等で標識した抗体で ある。具体的にはハイプリ ドーマ作製の際にマウスを用いたのであれば、 第二抗体としては、マウスィムノグロプリンを認識できる抗体を用いる。 反応後、 第二抗体を標識した物質に応じた反応を行い、 抗原に特異的 に反応するモノクローナル抗体を生産するハイプリ ド一マとして選択す る。
( 5 ) モノクローナル抗体の調製
プリスタン処理 [ 2,6, 10, 14-テ卜ラメチルペン夕デカン (Pristane) 0.5mLを腹腔内投与し、 2週間飼育する] した 8〜 1 0週令のマウスま たはヌードマウスに、 (4 ) で得られた抗ヒト SCGF モノクロ一ナル抗 体産生ハイプリ ドーマ細胞 2 X 106〜5 X 107細胞/匹を腹腔内注射する。 10- 21 日でハイプリ ドーマは腹水癌化する。このマウスから腹水を採取 し、 遠心分離 (3,000rpm、 5分間) して固形分を除去後、 40〜50 %硫酸 アンモニゥムで塩析した後、 力プリル酸沈殿法、 D E A E—セファロー スカラム、 プロティン A —カラムあるいはゲル濾過カラムによる精製を 行い、 IgGあるいは、 IgM画分を集め、精製モノクローナル抗体とする。 抗体のサブクラスの決定は、 サブクラスタイピングキッ トを用いて酵 素免疫測定法により行う。 蛋白量の定量は、 ローリ一法および 280nm での吸光度より算出する。
[実施例]
実施例 1 . ヒト SCGF部分べプチドを用いた抗ヒト SCGFモノクロ一ナ ル抗体の作製
( 1 ) ヒト SCGF部分ペプチドの合成
ヒト SCGF蛋白配列を解析し、 親水性の高い部分、 N末端、 C末端、 二次構造上ターン構造、 ランダムコイル構造を有する部分の中から、 抗 原として適当と考えられる部分配列として、 化合物 l(SCGF- l)を選択し た。
(略号について)
本発明において使用したアミノ酸およびその保護基に関する略号は、 生化学命名 に 関す る IUPAC-IUB 委員会 ( IUPAC-IUB Joint Commission on Biochemical Nomenclatureノ の勧告 [ d―口ヒアノ * ジャーナル · ォブ · ノ ィオケミス ト リ ー ( European Journal of Biochemistry) , 138卷, 9頁 (1984 年)] に従った。
以下の略号は、 特に断わらない限り対応する下記のアミノ酸を表す。
Ala: L-ァラニン
Arg: L-アルギニン
Cys: L システィン
Gin: L-グルタミン
Glu: L-ダル夕ミン酸
Glx: L-グルタミン酸
Gly: グリシン
Leu: L-ロイシン
Trp : L-トリプトファン
以下の略号は、 対応する下記のアミノ酸の保護基および側鎖保護アミ ノ酸を表す。
Fmoc: 9-フルォレニルメチルォキシカルボニル
tBu: t -ブチル
Trt: トリチル
Boc: t-ブチルォキシカルボニル
Pmc: 2, 2, 5, 7, 8-ペンタメチルクロマン- 6·スルフォニル
Fmoc-Arg(Pmc)-OH: N α -9-フルォレニルメチルォキシカルボニル -Ng-2, 2,5,7, 8-ペンタメチルク口マン- 6-スルフォニル -L_アルギニン Fmoc-Gln(Trt)-OH: N α -9-フルォレニルメチルォキシカルボニル -Ν ε -トリチル -L-グルタミン
Fmoc-Glu(OtBu)-OH: N «— 9—フルォレニルメチルォキシカルポ ニル -L-グルタミン酸- τ _t-ブチルエステル
Fmoc-Trp(Boc)-OH: N (¾ ·9·フルォレニルメチルォキシカルポニル
-Nind-t-ブチルォキシカルポニル -L-トリプトファン
以下の略号は、 対応する下記の反応溶媒、 反応試薬等を表す。
PyBOP: ベンゾトリアゾール -1-ィルォキシトリピロリジノホスフ ォニゥムへキサフルォロホスフェート
HOBt: N-ヒドロキシベンゾトリアゾール
NMM: N-メチルモルホリン
DMF: N,N-ジメチルホルムアミ ド
TFA: トリフルォロ酢酸
以下の実施例において、 化合物の理化学的性質は次の方法により測定 した。
質量分析は、 日本電子 JMS-HX110Aを用い FAB-MS法により、 もし くはブル力一社製質量分析装置 REFLEXを用い MALDI-TOFMS法によ り行った。 行った。 アミノ酸分析は、 コ一ェン (Cohen, S. A.) らの方 法 [アナリティカル · バイオケミス トリー (Analytical Biochemistry), 222, 19 (1994)] により行った。 加水分解は塩酸蒸気中 110°Cで 20時間 行い、加水分解物のアミノ酸組成はウォーターズ ·アキュ ·タグ(Waters AccQ-Tag) アミノ酸分析計 (Waters社製) を用い分析した。 ①化合物 1 (SCGF- 1) (配列番号 4 ) ( Ac-Arg-Glu-Trp-Glu-GlyGly-Trp -Gly-Gly-Ala-Gln-Glu-Glu-Glu-Arg-Gl -Arg-Glu-Ala-Leu-Cys-OH) の P03 04531 合成
Fmoc-Cys(Trt) 14 mol が結合した担体樹脂 ( H-Cys(Trt)-2-ClTrt resin樹脂、 ノバピオケム社製) 30mgを自動合成機 (島津製作所) の反 応容器に入れ、 600 Lの DMFを加えて 3分間攪拌し溶液を排出した後、 島津製作所の合成プログラムに従い次の操作を行った。
(a) 30%ピペリジン- DMF溶液 900 Lを加えて混合物を 4分間攪拌し、 該溶液を排出し、 この操作をもう 1回繰り返した。
(b) 担体樹脂を 900 z Lの DMFで 1分間洗浄し、 該溶液を排出し、 この 操作を 5回繰り返した。
(c) Fmoc-Leu-OH (141 z mol), PyBOP (141 /2 mol), HOBtl水和物(141 mol)および NMM(212 t mol)を DMF (494 L)中で 3分間攪拌し、 得 られた溶液を樹脂に加えて混合物を 30分間攪拌し、 溶液を排出した。 (d) 担体樹脂を 900 Lの DMFで 1分間洗浄後溶液を排出し、 これを 5 回繰り返した。
こうして、 Fmoc-Leu-Cys(Trt) が担体上に合成された。
次に、 (a) (b) の工程の後、 (c) の工程で Fmoc-Ala'OH を用いて縮合 反応を行い、 (d) の洗浄工程を経て、 Fmoc-Ala- Leu-Cys(Trt) が担体上 に合成された。
以下、工程 (c) において、 Fmoc-Glu(OtBu)-OH、 Fmoc-Arg(Pmc)-OH、 Fmoc-Glu(OtBu)-OH , Fmoc-Arg(Pmc)-OH、 Fmoc-Glu(OtBu)-OH , Fmoc-Glu(OtBu)-OH 、 Fmoc-Glu(OtBu)-OH 、 Fmoc-Gln(Trt)-OH 、 Fmoc-Ala-OH , Fmoc-GlyOH > Fmoc-Gly-OH Fmoc-Trp(Boc)-OH、 Fmoc-Gly-OH, Fmoc-GlyOH, Fmoc-Glu(OtBu)-OH, Fmoc-Trp-OH、 Fmoc-Glu(OtBu)-OH, Fmoc-Arg(Pmc)-OH を順次用いて、 (a)〜(d) を 繰り返した後、 (a) (b) の脱保護、 洗浄工程を経て、 メタノール、 ブチル エーテルで順次洗浄し、 減圧下 12 時間乾燥して、 N末端が無保護であ 1 り側鎖が保護されたペプチドの結合した担体樹脂を得た。 次に得られた 担体樹脂に対し次の ( 〜(g) の操作を行った。
(e) 担体樹脂を 800;½ Lの DMFで 1分間洗浄し、 該溶液を排出し、 この 操作を 3回繰り返した。
(f) 無水酢酸 (282^ mol) 及び DMF(500^ L) を樹脂に加えて混合物を 2時間攪拌し、 溶液を排出した。
(g) 担体樹脂を 800 Lの DMFで 1分間洗浄し、 該溶液を排出し、 こ の操作を 3回繰り返した。
この後、 メタノール、 ブチルエーテルで順次洗浄し、 減圧下 12 時間 乾燥して、 N末端がァセチル化された側鎖保護ペプチドの結合した担体 樹脂を得た。 これに、 5mg/inLの濃度で 2-メチルインド一ルを含む TFA (82.5%)、 チオア二ソ一ル (5%)、 水 (5%)、 ェチルメチルスルフィ ド (3%)、 1,2-エタンジチオール (2.5%) およびチオフエノ一ル (2%) か らなる混合溶液 lmL を加えて室温で 6時間放置し、 側鎖保護基を除去 するとともに樹脂よりペプチドを切り出した。 樹脂を濾別後、 得られた 溶液にエーテル約 10mL を加え、 生成した沈澱を遠心分離およびデカ ンテーシヨンにより回収し、 粗ペプチドとして 44.6mgを取得した。 こ の粗生成物全量をジチォスレイ トールおよび DMFからなる混合溶液に 溶解し、 逆相カラム (資生堂製、 CAPCELL PAK C18 30mmI.D. X 250mm) を用いた HPLC で精製した。 0.1% TFA水溶液に、 TFA O.1% を含む 90% ァセトニトリル水溶液を加えていく直線濃度勾配法で溶出 し、 220nm で検出し、 化合物 1 を含む画分を得た。 この画分を凍結乾 燥して、 化合物 1を 1.6mg 得た。
質量分析 [TOFMS] ; m/z = 2520.7 (M+H+)
アミノ酸分析; Glx 7.6 (8), Gly 4.0 (4), Arg 2.9 (3), Ala 2.2 (2), Leu
1.2 (1), Cys 1.7 (1) ( 2 ) 免疫原の調製
実施例 1 ( 1 ) で得られたヒト SCGF部分ペプチドは、 免疫原性を高 める目的で以下の方法で KLH (カルビオケム社製) とのコンジュゲート を作製し、 免疫原とした。 すなわち、 KLHを PBSに溶解して 10mg/mL に調整し、 1/10 容量の 25mg/mLMBS (ナカライテスク社製) を滴下し て 30分間撹拌反応させる。 あらかじめ PBSで平衡化したセフアデック ス G-25カラムなどのゲルろ過カラムでフリーの MBSを除いて得られた KLH-MB 2.5mgを O.lmol/Lリン酸ナトリウムバッファ一 (pH 7.0) に 溶解したペプチド lmg と混合し、 室温で 3時間、 攙拌反応させた。 反 応後、 PBSで透析した。
( 3 ) 動物の免疫と抗体産生細胞の調製
実施例 1 (2) で調製したペプチド- KLHコンジュゲート 100 zg を アルミニウムゲル 2mg および百日咳ワクチン(千葉県血清研究所製) 1 X109細胞とともに 5週令雌ラッ ト (SD) に投与し、 2週間後より 100 [i g のコンジュゲ一トを 1週間に 1回、 計 4回投与した。 眼底静脈叢よ り採血し、その血清抗体価を以下の(4)に示す酵素免疫測定法で調べ、 十分な抗体価を示したラッ トから最終免疫 3 日後に脾臓を摘出した。 脾臓を MEM培地(日水製薬社製)中で細断し、 ピンセッ トでほぐし、 遠心分離 (l,200rpm、 5分間) した後、 上清を捨て、 トリスー塩化アン モニゥム緩衝液 (pH 7.65) で 1〜2分間処理し赤血球を除去し、 MEM 培地で 3回洗浄し、 細胞融合に用いた。
(4) 酵素免疫測定法 (バインディング E L I S A)
アツセィ用の坊原には実施例 1 ( 1 ) で得られたヒト SCGF部分ぺプ チドをサイログロブリン (以下、 THY と略す。) とコンジュゲートした ものを用いた。 作製方法は実施例 1 ( 2) に記した通りであるが、 架橋 剤には MBS の代わりに SMCC (シグマ社製) を用いた。 96 穴の EIA 用プレート (グライナ一社製) に、 上述のように調製したコンジユゲー トを 10 zg/mL, 50^L/穴で分注し、 4 °Cでー晚放置して吸着させた。 洗 浄後、 1%:68 ^88を 100 1^/穴で加ぇ、 室温 1時間反応させて残って いる活性基をブロックした。 1% BSA-PBSを捨て、被免疫マウス抗血清、 抗ヒト SCGFモノクローナル抗体の培養上清もしくは精製モノクローナ ル抗体を 50 L/穴で分注し 2時間反応させた。 tween-PBS で洗浄後、 ペルォキシダーゼ標識ゥサギ抗ラッ トイムノグロブリン (ダコ社製) を 50 iL/穴で加えて室温、 1時間反応させ、 tweeirPBS で洗浄後 ABTS 基質液 [2.2-アジノビス (3-ェチルベンゾチアゾール -6-スルホン酸) ァ ンモニゥム] を用いて発色させ OD415nmの吸光度をプレートリーダ一 (E-max;Molecular Devices社製) にて測定した。
( 5) マウス骨髄腫細胞の調製
8—ァザグァニン耐性マウス骨髄腫細胞株 P3-U1 を正常培地で培養 し、 細胞融合時に 2X107以上の細胞を確保し、 細胞融合に親株として供 した。
( 6 ) ハイプリ ドーマの作製
実施例 1 ( 3) で得られたラッ ト脾細胞と ( 5) で得られた骨髄腫細 胞とを 1 0 : 1になるよう混合し、 遠心分離 (l,200rpm、 5分間) した 後、 上清を捨て、沈澱した細胞群をよくほぐした後、攪拌しながら、 37°C で、 ポリエチレングライコール— 1,000 (PEG-1,000) 2g、 MEM培地 2mL およびジメチルスルホキシド 0.7mLの混液 0.2〜 lmL/ΙΟ8ラッ ト 脾細胞を加え、 1〜2分間毎に MEM培地 l〜2mLを数回加えた後、 ME M培地を加えて全量が 50mL になるようにした。 遠心分離 (900rpm、 5分間) 後、 上清を捨て、 ゆるやかに細胞をほぐした後、 メスピペッ ト による吸込み、 吸出しでゆるやかに細胞を HAT培地 100mL中に懸濁し た。 03 04531 この懸濁液を 96 穴培養用プレートに 100 z L/穴ずつ分注し、 5%C02 インキュベータ一中、 37でで 10〜: 14 日間、 培養した。 この培養上清を 実施例 1 ( 4 ) に記載した酵素免疫測定法で調べ、 ヒト SCGF部分ぺプ チド (化合物 1 ) に反応して、 別の SCGF部分ペプチドである配列番号 1 の 140〜: 156番目のアミノ酸配列からなるぺプチドに反応しない穴を 選び、 さらに HT培地と正常培地に換え、 2回クロ一ニングを繰り返し て、 抗ヒト SCGF モノクローナル抗体産生八ィブリ ドーマ KM2141、 KM2142、 KM2143 KM2144, KM2145を確立した。
( 7 ) モノクローナル抗体の精製
プリスタン処理した 8週令ヌ一ド雌マウス (Balb/c ) に実施例 1 ( 6 ) で得られたハイプリ ド一マ株を 5〜20 X 106細胞/匹それぞれ腹腔内注射 した。 10〜21 日後に、 ハイプリ ドーマは腹水癌化した。 腹水のたまった マウスから、 腹水を採取 (l〜8mL/匹) し、 遠心分離 (3,000rpm、 5分 間) して固形分を除去した。 モノクローナル抗体が IgMのときは、 50% 硫酸アンモニゥムにて塩析し、 塩化ナトリウム 0.5Mを添加した PBSで 透析後、 セル口ファイン GSL2000 (生化学工業社製) (ベットポリュ一 ム 750mL) のカラムに流速 15mL/時で通塔し IgM画分を集め、 精製モ ノク口一ナル抗体とした。 モノクローナル抗体が IgGのときは、 カプリ ル酸沈殿法 [Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)] により精製し、 精製モノクローナル抗体とした。 抗体のサブクラスはサブクラスタイピングキッ トを用いて酵素免疫 測定法により行い決定した (表 1 )。 (表 1 )
Figure imgf000038_0001
( 8 ) ヒト SCGF部分ペプチドとの反応性 (酵素免疫測定法)
実施例 1 ( 6 ) で選択された抗ヒト SCGFモノクローナル抗体のヒト SCGF部分ペプチド (化合物 1 ) との反応性を (4 ) に示した酵素免疫 測定法にて調べた。 コントロールペプチドとしては、 化合物 1 とは異な る SCGF部分べプチドである配列番号 1の 140〜: 156番目のアミノ酸配 列からなるペプチドを用いた。 第 1図に示すように、 抗ヒト SCGFモノ ク口一ナル抗体(KM2141〜2145)は化合物 1に特異的に反応し、 コント ロールペプチドには反応しなかった。
実施例 2 . 動物細胞を用いたヒト SCGFの発現と精製
( 1 ) ヒト SCGF 発現用プラスミ ド pAGE-SCGFひの構築およびヒト SCGFの動物細胞での発現
動物細胞用発現ベクター PAGE210 (WO96/34016) の HindlllZKpnl 処理断片と SCGF夕ンパク質をコードする DNA[ Mio et.al., BBRC 249, 124- 130 (1998)] とを連結することにより、 ヒト SCGF発現べクタ一 pAGE-SCGF o;を構築した。
動物細胞へのプラスミ ドの導入は宮地等の方法に従いエレク トロポレ ―ション法 [Miyaji et al., Cytotechnology, 3, 133- 140 (1990)] により 行った。 4 gの pAGE-SCGF-aを 4 X 106個の dhfr遺伝子欠損 CHO細 胞株 [Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77, 4216-4220 (1980) ] へ導入した。 この細胞を 10mL の MEMa2000_dFCS(5)培地 [ dFCS を 5%、 7.5% NaHC03 を 1/40 量、 200mL グルタミン溶液 ( GIBCO/BRL 社製) を 3%、 ペニシリ ン · ス トレプトマイシン溶液 ( GIBCO/BRL社製、 5,000単位/ mLペニシリンおよび 5,000 mg/mLス トレプトマイシン含有) を 0.5%含む MEM a2000培地 (GIBCO/BRL社 製)] に懸濁し、 10cmプレート (IWAKI社製) に入れ、 37°Cの C02ィ ンキュベータ一中で 24時間培養した。 ハイグロマイシン (GIBCO/BRL 社製) を終濃度 0.3 mg/mLになるよう添加し、 さらに 1〜2週間培養し た。 形質転換細胞がコンフルェントになった時点で回収し、 ハイグロマ イ シ ン を 0.3mg/mL、 methotrexate ( MTX ) を 50nmol/L 含む MEMa2000-dFCS(5)培地に 1〜 2 X 106細胞/ mL になるように懸濁し、 F75フラスコ (Greiner社製) に 2 mL分注した。 1〜 2週間の培養後、 50nmol/L MTX耐性の細胞を 0.3 mg/mLハイグロマイシン、 200nmol/L MTX含有 MEMa2000-dFCS(5)培地に 1〜2ズ105細胞/1211^になるように 懸濁し、 F75フラスコ (Greiner社製) に 2mL分注した。 1〜2週間の 培養後、 200nmol/L MTX耐性の細胞を得た。 この 200 nmol/L MTX耐 性細胞を下記に示す培地 1 ) および培地 2 ) を用いて、 2 Lのローラー ボトル (Greiner社製) で 37°C、 80回転/分で培養を行った。
培地 1 ) 無血清 Ex-cell 301 培地 (JRH Biosciences社製)
培地 2 ) 10mg/Lの aprotinin ( Sigma社製) を含む無血清 Ex-cell 301 培地
約 5 日間の培養後、 細胞を遠心分離し、 培養上清サンプルを得た。
( 2 )モノクローナル抗体 KM2142を用いたウェスタンブロッティング による培養上清中の SCGF夕ンパク質の存在確認
実施例 1で得られた抗ヒト SCGFモノク口一ナル抗体 KM2142 を用 いたウエスタンブロッテイングにより、 前記 ( 1 ) で得られた培養上清 中の SCGF夕ンパク質の存在を、 以下の方法により確認した。 後述 ( 3 ) および ( 4 ) の SCGFタンパク質のクロマトグラフィーに よる精製における各精製画分を SDS-PAGEで分離後、 R Matsudairaの 方法 [J.B. C. 262, 10035- 10038 (1987)] に従って PVDF膜 (Immobilon Transfer Membranes, ミリポア社製) へ電気的に転写した。 転写膜は ブロッキング溶液 [ 1% BSAを含む PBSバッファ一(137mmol/L NaCl, 2.7mmol/L KCl, 9.6 mmol/L Na2HP04/KH2P04 (pH 7.2) ) ] 中で 30分 間振盪した後、ブロッキング溶液で lmg/mLに希釈した抗 SCGFモノク 口一ナル抗体を含む溶液中で室温 60 分間振盪した.。 該転写膜はさらに 0.05% tween20を含む PBSバッファ一で 5分間洗浄を 2回、 PBSバッ ファーでの 5分間洗浄を 1回実施した後、 パ一ォキシダ一ゼで標識され た抗ラッ ト IgG抗体 (anti-rat immunoglobulin 1.3g/L, DAKO社製) を PBS で 1/1,000 に希釈した溶液中で室温 60 分間振盪した。 0.05% tween20を含む PBSバッファ一で 5分間洗浄を 2回、 PBSバッファー での 5 分間洗浄を 1回実施した後、 発光法 (ECL Western blotting detection reagents, アマシャム フアルマシア バイオテク社製) によ り検出を行った。
( 3 ) CHO細胞培養上清からのヒト SCGFタンパク質の精製
実施例 3に記載する抗ヒト SCGFモノクローナル抗体の作製を行うた めに、 上記 ( 1 ) の培地 1 ) の培養条件で得た CHO細胞培養上清から 以下の 2段階のクロマトグラフィ一によつて精製ヒト SCGFタンパク質 を取得した。
第 1段階: 亜鉛キレートクロマ卜グラフィ一
Zn2+イオンで飽和させた Chelating Sepharose Fast Flow担体 (アマ シャム フアルマシア バイォテク社製) を 2.5 cm φ X 20 cmのカラム (BioRad社製) に 11 cmの高さまで充填し、 0.5mol/L塩化ナトリウム を含む 20 mmol/L りん酸ナトリウム緩衝液 (pH 7.1) で平衡化した。 これに上記 ( 1 ) で得た CHO細胞培養上清 2.4Lを添加し、 同緩衝液で 十分に洗浄後、 0〜100 mmol/L ヒスチジン直線濃度勾配で溶出した。 溶 出画分の一部を用いて SDS-PAGE を行い、 上記 ( 2 ) で示したモノク ローナル抗体 KM2142 によるウエスタンブロッテイングで交差する約 45kDaのバンドを含む画分を回収した。
第 2段階: MonoQ陰イオン交換クロマトグラフィー
上記亜鉛キレ一トク口マトグラフィ一粗精製画分に終濃度 65%とな るように硫酸アンモニゥムを添加して撹拌後、 4°Cで 2 時間放置した。 18,800 X で 30分間遠心分離して得られた沈澱を 10mmol/L トリス塩 酸緩衝液 (pH 7.0)に溶解し、 同トリス塩酸緩衝液で平衡化した MonoQ HR 5/5 カラム (アマシャム フアルマシア バイオテク社製) に添加し た。 同緩衝液で十分洗浄後、 0〜1 niol/L 塩化ナトリウム直線濃度勾配 で溶出した。 溶出画分の一部を用いて SDS-PAGE を行い、 上記 ( 2 ) で示したモノク口一ナル抗体 KM2142 によるウェスタンブロッテイン グで交差する約 45kDaのバンドを含む画分を回収した(第 2図のレーン 2 )。
( 4 ) CHO培養上清からのヒ卜 SCGFタンパク質の高純度精製 実施例 6に記載するヒト SCGF定量系で用いるヒト SCGFタンパク質 標準品は、 上記 ( 1 ) の培地 2 ) の培養条件で得た CHO 細胞培養上清 から以下の 3段階のクロマトグラフィーにより精製し、 取得した。
第 1段階:亜鉛キレ一卜クロマトグラフィー
Zn2+イオンで飽和させた Chelating Sepharose Fast Flow担体 (アマ シャム フアルマシア バイオテク社製) を 5.0cm X 20cm のカラム (BioRad社製) に 14.5cmの高さまで充填し、 0.5mol/L 塩化ナトリウ ムを含む 20nmiol/L りん酸ナトリウム緩衝液 (pH 7.1) で平衡化した。 これに上記 ( 1 ) で得た CHO細胞培養上清 12Lを添加し、 同緩衝液で 十分に洗浄後、 0〜100mmol/L ヒスチジン直線濃度勾配で溶出した。 溶 出画分の一部を用いて SDS-PAGEを行い、 上記 ( 2 ) で示した KM2142 によるウェスタンブロッテイングで交差する約 45kDa のバンドを含む 画分を回収した。
第 2段階: MonoQ陰イオン交換クロマトグラフィー
上記亜鉛キレートク口マトグラフィー粗精製画分に終濃度 50%とな るように硫酸アンモニゥムを添加して撹拌後、 4°Cで 2 時間放置した。 18,800 gで 30分間遠心分離して得られた沈澱を lOmmol/L トリス塩酸 緩衝液 (pH 7.0)に溶解し、 同トリス塩酸緩衝液で平衡化した MonoQ HR 10/10 カラム(アマシャム フアルマシア バイオテク社製)に添加した。 同緩衝液で十分洗浄後、 0〜1 mol/L 塩化ナトリウム直線濃度勾配で溶 出した。 溶出画分の一部を用いて SDS-PAGE を行い、 上記 ( 2 ) で示 した KM2142によるウェスタンプロッティングで交差する約 45kDaの バンドを含む画分を回収した。
第 3段階: S-400ゲルろ過クロマトグラフィ一
Sephacryl S-400 HR担体 (アマシャム フアルマシア バイオテク社 製) を XK50/60カラム (アマシャム フアルマシア バイオテク社製) に 51.5cmの高さまで充填したカラムと XK50/100カラム (アマシャム フ アルマシア バイォテク社製)に 93cmの高さまで充填したカラムを直列 に連結し、 PBSバッファーで十分平衡化した。 これに上記 MonoQ陰ィ オン交換クロマトグラフィー精製画分 28mLを添加し、6mL/分の流速で PBS ノ ッファーにより溶出した。 溶出画分の一部を用いて SDS-PAGE を行い、 上記 ( 2 ) で示したモノクローナル抗体 KM2142によるウェス 夕ンブロッテイングで交差する約 45kDa のバンドを含む画分を回収し た。
( 5 ) ヒト SCGFタンパク質の N末端アミノ酸配列解析 JP03/04531 実施例 2 ( 3 ) で得られた精製ヒト SCGF夕ンパク質の N末端アミノ 酸配列はタンパク質化学の常法に従い決定した。 精製ヒト SCGFタンパ ク質を含む画分を SDS-PAGE 後、 銀染色 (第 2図レーン 2 ) あるいは P. Matsudairaの方法に従って PVDF膜(ProBlott、 アプライ ド バイオ システムズ社製) へ電気的に転写した。 転写した膜はクマジープルー染 色し、 見かけ上分子量が 45kDa (第 2図レーン 2、 ノ ンド A)、 41kDa (第 2図レーン 2、 ノ ンド B)、 34kDa (第 2図レーン 2 、 ϊ%ノ、 ド C) の 各バンドを切り出し、 気相プロテインシーケンサー (PPSQ-10、 島津製 作所) を用いてメーカ一推奨の方法によりアミノ酸配列を決定した。 得 られたアミノ酸配列は配列番号 5、 6 、 7に記載したように、 配列番号 1に記載した SCGFのアミノ酸配列の N末端から 1アミノ酸残基目、 2 9アミノ酸残基目、 6 0アミノ酸残基目からのアミノ酸配列にそれぞれ 一致した。 以下、 第 2図レーン 2に示した見かけ分子量約 41kDa の N 末端 2 8残基欠失 SCGFタンパク質を△ 2 8体、 約 34kDaの N末端 5 9残基欠失 SCGFタンパク質を Δ 5 9体と称する。
実施例 3 . CHO細胞発現ヒト SCGF蛋白質を用いた抗ヒト SCGFモノ クローナル抗体の作製
( 1 ) 動物の免疫と抗体産生細胞の調製
実施例 2 ( 3 )で得られた CHO細胞発現ヒト SCGFタンパク質(SCGF、 Δ 28体、 △ 59体の SCGF混合物) 100 gをアルミニウムゲル 2mgお よび百日咳ワクチン (千葉県血清研究所製) 1 X 109細胞とともに 6週 令雌マウス (Balbん) に投与し、 2週間後より 100 gのヒト SCGF蛋 白を 1週間に 1回、 計 3回投与した。 眼底静脈叢より採血し、 その血清 抗体価を実施例 1 ( 4 ) で示した酵素免疫測定法 (ただしアツセィ用の 抗原には CHO細胞発現ヒト SCGFタンパク質、 コントロール抗原とし て 1 % BSA— PBSを用いた。)および以下に示すサンドイッチ ELISA法 1 で調べ、 十分な抗体価を示したマウスから最終免疫 3 日後に脾臓を摘出 した。
抗体産生細胞の調製は実施例 1 ( 3) と同様に行った。
( 2 ) サンドイッチ ELISA法
96穴の EIAプレート (グライナ一社製) に実施例 1で得られた抗ヒ ト SCGFモノク口一ナル抗体 KM2142を 10 ^ g/mL、 50 L/穴で分注し、 4°Cで一晩放置して吸着させた。 洗浄後、 1%BSA-PBS を 100/iL/穴で 加え、 室温 1 時間反応させて残っている活性基をブロックした。 1% BSA-PBSを捨て、 CHO細胞発現ヒト SCGFタンパク質を 5 g/mLで 1 %BSA-PBS希釈したものを 50 L/穴で分注し、 室温 2時間反応させ た。 対象として 1%BSA-PBS を 50 L/穴分注し、 同様に反応させた。 tween-PBSで洗浄後、 上記 ( 1 ) で得られた被免疫マウス抗血清の培養 上清を 50 L/穴で分注し、 2時間反応させた。 tween-PBS で洗浄後、 ペルォキシダーゼ標識抗マウスィムノグロプリン (ラッ ト血清蛋白吸収 ずみ; カルタグ社製) を 50 L/穴で加えて室温で 1時間反応させた。 tween-PBSで洗浄後、 ABTS基質液 [ 2. 2—アジノビス ( 3—ェチル ベンゾチアゾールー 6—スルホン酸) アンモニゥム] を用いて発色させ OD415nm の吸光度をプレートリーダ一 (Emax;Molecular Devices 社 製) にて測定した。
( 3) マウス骨髄腫細胞の調製
実施例 1 ( 5) と同様に調製を行った。
( 4 ) 八イブリ ドーマの作製
実施例 1 ( 6) と同様に実施例 3 ( 1 )で得られたマウス脾細胞と( 3 ) で得られた骨髄腫細胞との細胞融合を行った。
得られた細胞懸濁液を 96穴培養用プレートに 100pL/穴ずつ分注し、 5%C02インキュベータ一中、 37°Cで 10〜14日間、 培養した。 この培養 上清を実施例 3 ( 2) に記載したサンドイッチ ELISA 法で調べ、 ヒト SCGF蛋白質に反応してコン卜ロールである 1%BSA-PBSに反応しない 穴を選び、 さらに HT培地と正常培地に換え、 2回クロ一ニングを繰り 返して、抗ヒト SCGFモノクローナル抗体産生ハイプリ ド一マ KM2801、 KM2802, KM2803および KM2804を確立した。
( 5) モノクローナル抗体の精製
実施例 1 ( 7 ) と同様に実施例 3 (4) で得られたハイブリ ド一マ株 をヌード雌マウスに腹腔内投与を行い、 得られた腹水より精製モノク口 ーナル抗体を取得した。
抗体のサブクラスはサブクラスタイピン.グキッ トを用いて酵素免疫 測定法により行い、 決定した。 その結果を表 2に示す。
(表 2 )
Figure imgf000045_0001
( 6 ) CHO細胞発現ヒ卜 SCGFタンパク質との反応性 (酵素免疫測定 法)
実施例 3 (4) で得られた扰ヒト SCGFモノクローナル抗体の CHO 細胞発現ヒト SCGF蛋白質との反応性を実施例 1 (4) に示した酵素免 疫測定法にて調べた。 第 3図に示すように、 抗ヒト SCGFモノクローナ ル抗体 (KM2801、 KM2802、 KM2803および KM2804) は CHO細胞 発現ヒ ト SCGF タンパク質に特異的に反応し、 コントロールの 1 % BSA-PBSには反応しなかった。 実施例 4. SDS変性ヒト SCGFタンパク質 (CHO細胞発現) を用いた 抗ヒト SCGFモノクロ一ナル抗体の作製
実施例 3記載の未変性ヒト SCGF蛋白質を免疫原に用いた場合には、 △ 5 9体に反応するモノクローナル抗体は得られなかった。 そこで、 △ 5 9体に反応するモノク口一ナル抗体を作製するため、 SDS変性 SCGF を免疫原に用いてハイプリ ドーマの作製を試みた。
( 1 ) 免疫原の調製
実施例 2 ( 3 )で得られた CHO細胞発現ヒト SCGF夕ンパク質を SDS (ラウリル硫酸ナトリウム ; ナカライテスク社製) を加えて変性させた ものを作製し、 免疫原とした。 すなわち 5 %SDS-PBSを調製し、 CHO 細胞発現ヒト SCGF夕ンパク質に 9分の 1量加え、 100°Cで 5分間煮沸 したものを SDS変性ヒト SCGFタンパク質とした。
( 2) 動物の免疫と抗体産生細胞の調製
実施例 4 ( 1 ) で得られた SDS変性ヒト SCGFタンパク質 100 gを アルミニウムゲル 2mgおよび百日咳ワクチン (千葉県血清研究所製) 1 X109細胞とともに 6週令雌マウス (Balb/c) に投与し、 2週間後より 100 zgの SDS変性ヒト SCGFタンパク質を 1週間に 1回、 計 3回投与 した。 眼底静脈叢より採血し、 その血清抗体価を実施例 1 (4) で示し た酵素免疫測定法 (ただしアツセィ用の抗原には SDS 変性ヒト SCGF 蛋白質、 コントロール抗原として 1 %BSA-PBSを用いた。) で調べ、 十 分な抗体価を示したマウスから最終免疫 3 日後に脾臓を摘出した。
抗体産生細胞の調製は実施例 1 ( 3) に記載の方法と同様に行った。
( 3) マウス骨髄腫細胞の調製
実施例 1 ( 5) に記載の方法と同様の調製を行った。
( 4 ) ハイブリ ド一マの作製 '
実施例 1 ( 6 ) と同様にして、 実施例 4 ( 2) で得られたマウス脾細 TJP03/04531 胞と ( 3 ) で得られた骨髄腫細胞との細胞融合を行った。
得られた細胞懸濁液を 96穴培養用プレートに 100 ^L/穴ずつ分注し、 5% C02インキュベータ一中、 37°Cで 10〜: L4日間、 培養した。 この培養 上清を実施例 1 (4) で示した酵素免疫測定法で調べ、 SDS 変性ヒ卜 SCGF 蛋白に反応してコントロールである 1 %BSA-PBS に反応しない 穴を選び、 さらに HT培地と正常培地に換え、 2回クローニングを繰り 返して抗ヒト SCGFモノク口一ナル抗体産生ハイブリ ドーマ KM2941、 KM2942、 KM2943 KM2944および KM2945を確立した。
( 5) モノクローナル抗体の精製
実施例 1 ( 7) と同様に実施例 4 (4) で得られたハイプリ ドーマ株 をヌード雌マウスの腹腔内投与を行い、 得られた腹水より精製モノク口 —ナル抗体を取得した。
抗体のサブクラスはサブクラスタイピングキッ トを用いて酵素免疫 測定法により行い、 決定した。 その結果を表 3に示す。
(表 3)
Figure imgf000047_0001
( 6) SDS変性ヒト SCGFタンパク質との反応性 (酵素免疫測定法) 実施例 4 (4) で得られた抗ヒト SCGF モノクローナル抗体の SDS 変性ヒト SCGFタンパク質との反応性を実施例 1 (4) に示した酵素免 疫測定法にて調べた。 第 4図に示すように、 抗ヒト SCGFモノク口一ナ ル抗体 (KM2941、 KM2942、 KM2943、 KM2944 および KM2945) は P T/JP03/04531
SDS変性ヒ卜 SCGF夕ンパク質に特異的に反応し、コントロールの 1 % BSA-PBSには反応しなかった。
実施例 5 . 抗ヒト SCGFモノクローナル抗体の反応性の検討
( 1 ) ヒトおよびマウス SCGF夕ンパク質に対する反応性
実施例 1 、 3および 4で作製された抗ヒト SCGFモノクローナル抗体 のヒトおよびマウス SCGFタンパク質に対する反応性を酵素免疫測定法 (バインディング ELISA) で検討した。 マウス SCGF タンパク質は実 施例 2記載の方法に準じて作製した。
アツセィ用の抗原として CHO細胞発現ヒトおよびマウス SCGFタン パク質を用い、 実施例 1 ( 4 ) に記載の方法により行った。 結果を第 5 図に示す。
抗 SCGFモノク口一ナル抗体 KM2142は配列番号 1に示す SCGFの アミノ酸配列の N末端から 6残基目から 2 5残基目までに相当する部分 ペプチド (化合物 1 ) を抗原に用いて作製されたハイブリ ド一マ由来の 抗体である。抗 SCGFモノク口一ナル抗体 KM2142は、 SCGF夕ンパク 質に対する反応性をも有していることが示された。 また、 抗 SCGFモノ クローナル抗体 KM2142 はヒトおよびマウス SCGF 夕ンパク質の両方 に反応性を有していた。
抗 SCGFモノク口一ナル抗体 KM2804は CHO細胞発現ヒト SCGFを 抗原に用いて作製したハイプリ ドーマ由来の抗体である。 抗 SCGFモノ ク口一ナル抗体 KM2804はヒト SCGFにのみ反応し、 マウス SCGFに 対する交叉反応性は示さなかった。
抗 SCGFモノク口一ナル抗体 KM2945は SDS変性 SCGF夕ンパク質 ( CHO細胞発現)を抗原に用いて作製したハイプリ ドーマ由来の抗体で ある。 抗 SCGFモノクロ一ナル抗体 KM2945は、 未変性の SCGFタン パク質に対する反応性をも有していることが示された。 また、 抗 SCGF モノクロ一ナル抗体 KM2945 はマウス SCGF に対する交叉反応性は示 さなかった。
( 2 ) ウエスタンブロッテイング
実施例 2 ( 3 ) で得られた CHO細胞発現ヒト SCGFタンパク質を用 い、 実施例 3および 4で作製された抗ヒト SCGF モノクローナル抗体 KM2804 および KM2945 のウエスタンプロッティングにおける反応性 を検討した。
実施例 2 ( 2 ) と同様に PVDF膜に転写したサンプルを、 ブロッキン グ溶液中で室温 30分間振盪後、 ブロッキング溶液で lmg/mLに希釈し た抗 SCGFモノクローナル抗体で室温 60分間振盪した。 転写膜はさら に 0.05% tween20を含む PBSバッファーで 5分間洗浄を 2回、 PBSノ ッファ一での 5分間洗浄を 1回実施した後、 PBSで 1/1,000に希釈した パーォキシダーゼ標識抗マウス IgG抗体 (アマシャム フアルマシア バ ィォテク社製) 溶液中で室温 60分間振盪した。 0.05% tween20を含む PBS Λッファ一で 5分間洗浄を 2回、 PBSバッファーでの 5分間洗浄 を 1回実施した後、 上述の ECL発光法により検出した。
第 2 図におけるレーン 3 、 4、 5はそれぞれ KM2142、 KM2804、 KM2945を用いた精製ヒト SCGFタンパク質のウェスタンブロッティン グ結果を示す。 KM2804は N末端 5 9残基欠失 SCGF夕ンパク質であ る△ 5 9体には反応性を有していないが、全長 SCGFおよび N末端 2 8 残基欠失 SCGFタンパク質である△ 2 8体には反応性を有していた。 ま た、 KM2945は全長 SCGFおよび欠失体のいずれも反応性を有していた。 実施例 6 . ヒト SCGF定量系
実施例 1で得られた抗ヒト SCGFモノク口一ナル抗体 KM2142 を以 下の方法によりピオチン標識した。実施例 1で得られた KM2142精製抗 体を PBSで lmg/mLに希釈し、 1/4容量の 0.5mol/L炭酸バッファー(pH PC画蘭 31
9.2 ) を加えた。 さらにバッファーと同量の NHS-Lc-Biotin ( lmg/mL にジメチルホルムアミ ドにて溶解; ピアス社製) を攪拌下滴下した。 3 時間、 室温で攪拌反応を行った後、 PBSで一晩透析したものをピオチン 標識 KM2142として用いた。
96 穴の EIA用プレ一ト (グライナ一社製) に、 実施例 3で得られた 抗ヒト SCGFモノク口一ナル抗体 KM2804を 5 x g/niL、 50 IJ穴で分 注し、 4°Cでー晚放置して吸着させた。 洗浄後、 1%BSA-PBSを 100 L/ 穴で加え、 室温 1時間反応させて残っている活性基をブロックした。 1%BSA-PBSを捨て、実施例 2 ( 4 )で得られた CHO細胞発現ヒト SCGF タンパク質を血清希釈液 (協和メデヅクス社製) で 17.5ng/mLから 2倍 希釈系列で 14点希釈したものを 50 ii L /穴で分注し室温で 2時間反応さ せた。 tween-PBSで洗浄後、 上記で得られたピオチン標識 KM2142 ( 0.2 i g/mLに BSA-PBSにて希釈) を 50 L/穴で加えて室温、 2時間反応 させ、 tween-PBSで洗浄後、 さらにアルカリフォスファタ一ゼ標識アビ ジン (ザィメッド社製) を 32, 000倍希釈で 50 ^ L/穴で加えて室温、 1 時間反応させた。 tween-PBSで洗浄後、 AmpliQ ( DAKO社製) を用い て発色させ OD490nmの吸光度をプレートリーダ一( E -max; Molecular Devices 社製) にて測定した。 その結果、 第 6図に示すように、 本定量 系によりヒト SCGFタンパク質を 0.04〜2.0ng/mLの範囲で定量するこ とが可能であった。
実施例 7 . 白血病、 前白血病患者および非白血病性悪性血液疾患の血清 SCGF濃度
インフォ一ムドコンセントを得た白血病、 前白血病患者および非白血 病性悪性血液疾患の血清中の S CGF濃度を実施例 6の方法で測定した。 また血球検査値が正常値を示す男女 10 名の健常人を対象例として同じ く血清中の SCGF濃度を測定した。 その結果を第 7図に示す。 健常人の値の分布が正規分布を示すことを確認した後、 この群より平 均値とスタンダードデビエーシヨン (S D) を計算し、 平均値 + 2 S D の値を正常と異常とを区別する基準値に設定した。この基準値をもとに、 白血病、 前白血病患者および非白血病性悪性血液疾患の値を正常 · 異常 に分別し、白血病、前白血病患者および非白血病性悪性血液疾患が SCGF 測定値で検出可能か否かを確認した。 その結果を表 4に示す。
(表 4)
患者数 陽性者数 陽性率(¾;)
A L 100.0
A 7 6 85.7
C M 6 6 100.0 D S 5 5 100.0 N Hし 7 6 85.7
M M 6 4 66.7 A A 7 0 0.0 力ッ ト才フ値は健常人の平均値 + 2SD=18.2ng/mL
とした。 健常人群に比較し、 急性骨髄性白血病 (AML)、 急性リンパ性白血病 (ALL), 慢性骨髄性白血病 (CML)、 骨髄異形成症候群 (MDS)、 非ホ ジキンリンパ腫 (NHL)、 多発性骨髄腫 (MM) の患者の中央値は有意に 高く、 SCGF測定値がこれら疾患で有意に上昇していることが示された (第 7図)。
また健常人の値から定めた力ッ 卜オフ値を用いて白血病、 前白血病患 者および非白血病性悪性血液疾患を高い感度で検出できることが示され た (表 4)。 一方、 同じ血液疾患でありながら、 再生不良性貧血 (AA) 1 患者の値は健常人との有意差が観察されず、 またカツ トオフ値を用いて もこの疾患を検出出来なかった。
血液細胞数の異常を伴う疾患である非ホジキンリンパ腫 (NHL)、 多 発性骨髄腫(MM)、骨髄異形成症候群(MDS)、急性骨髄性白血病(AML)、 急性リンパ性白血病 (ALL)、 慢性骨髄性白血病 (CML) を比較すると、 急性骨髄性白血病 (AML)、 急性リンパ性白血病 (ALL)、 慢性骨髄性白 血病 (CML) などの白血病患者の F血液中 SCGF濃度は、 非ホジキンリ ンパ腫 (NHL)、 多発性骨髄腫 (MM)、 骨髄異形成症候群 (MDS) などの 他の前白血病や非白血病性悪性血液疾患患者の血液中 SCGF濃度に比較 して有意に高く、 血液中 SCGF濃度は白血病と前白血病や非白血病性悪 性血液疾患との判別に利用可能であった。 また、 判別診断の難しい AA 患者と MDS患者を比較してみると、 MDS患者血中 SCGF濃度は AA患 者のそれと比較して有意に高く、 両者を血中 SCGF濃度で判別診断する ことが可能であった。
実施例 8 . 造血幹細胞移植後 GVHD発症と SCGF濃度
インフォ一ムドコンセントを得た白血病および前白血病患者で造血幹 細胞移植を受けた 23例の内、 GVHDを発症した例 15例、 発症しなかつ た例 8例の血清中 SCGF濃度を実施例 6の方法を用いて各ステージ毎に 測定した。 その結果を第 8図に示す。
造血幹細胞移植を受けた患者の SCGF濃度はプレーコンディショニン グ期ゃァプラスチック期に比べ、 リカバリー期ゃスティブル期の方が有 意に高値を示した。
造血幹細胞移植を受けた患者のうち、 GVHDを発症した症例は発症し なかつた例に比べ、 ァプラスチック期およびリカバリ一期において有意 に血清中 SCGF濃度が高いので、血清中の SCGF濃度を測定することに よって、 GVHD発症を判定可能であった。 さらにカッ トオフ値を定めて GVHD 発症例と非発症例とを判定でき ないかを検討した。 その結果を第 9図に示す。 プレーコンディショニン グ期においては、 力ッ トオフ値を例えば 5ng/mLに定めることにより感 度 87%、 特異度 57%で、 ァプラスチック期においてはカッ トオフ値を 10ng/mL に定めることで感度 87%、 特異度 63%で、 リカバリー期では カッ トオフ値を 15ng/mLに定めることで感度 87%、 特異度 63%で、 そ れぞれ SCGF濃度を測定し、 これを診断に用いなかった時に比べて有意 (p<0.05)に GVHD発症例と非発症例とを判別 GVHD可能であった。 実施例 9 . 移植造血幹細胞の生着と血清 SCGF濃度
インフォームドコンセントを得た血液疾患患者で造血幹細胞移植を受 けた 23例のうち、 生着が遅延した例 4例、 遅延しなかつた例 19例の血 清中 SCGF濃度を実施例 6の方法を用いて各ステージ毎に測定した。 結 果を第 1 0図に示す。
生着非遅延例では、リカバリ一期およびスティブル期の SCGF濃度は、 プレーコンディショニング期に比して有意に上昇した。 一方、 生着遅延 例では、 これらの期においても有意な上昇は観察されなかった。
そこで、 造血幹細胞移植患者の SCGF濃度を測定し、 そのカッ トオフ 値を定めてその値と個々患者の値比較から造血幹細胞生着遅延例と非遅 延例を判定できないかを検討した。 その結果を第 1 1図に示す。 プレー コンディショニング期においては、 カットオフ値を例えば 9.5ng/mL に 定めることにより感度 75%、 特異度 67%で、 ァプラスチック期において は力ッ トオフ値を 12ng/mLに定めることで感度 75%、 特異度 63%で、 造血幹細胞生着遅延例と非遅延例とを判別することが可能であった。 実施例 1 0 . 白血病患者の末梢血細胞における SCGFの発現
インフォ一ムドコンセントを得た種々の白血病患者の末梢血細胞を Uneasy Mini Kit (Qiagen 社製)を用い、 プロトコールにしたがって全 P03 04531
UNA を抽出し、 全 RNAl ^ gを DNasel (GIBCO 社製)処理し、 Superscript First-Strand Synthesis Systemfor RT-PCR (GIBCO社製) を用いて逆転写し、 First-Sti'and DNA を調製した。 Taq Polymerase (TaKaRa社製)を用い、 調製した First-Strand DNAを铸型とし、 配列番 号 8および 9ならびに配列番号 1 0および 1 1の塩基配列を有するオリ ゴ DNAをプライマ一として、 それぞれ、 ヒト G3PDH、 SCGF遺伝子の 検出を検討したところ、 G3PDH の検出量がほぼ同等となる条件下で、 健常人 1人では、 SCGFの発現を検出できなかったが、 急性リンパ性白 血病 (ALL) 2例中 1例、 急性骨髄性白血病 (AML) 2例中 2例で SCGF の発現が検出された。 産業上の利用可能性
本発明は、 SCGFに反応する抗体を用いた、 白血病、 前白血病または 非白血病性悪性血液疾患を判定する方法、 造血幹細胞移植後の造血幹細 胞生着遅延および移植片対宿主反応病を判定する方法、 およびそれらの 診断薬ならびに診断キッ トを提供する。

Claims

請 求 の 範 囲
1 . 生体試料中の造血幹細胞増殖因子 (SCGF) を測定することを特徴 とする、 白血病、 前白血病または非白血病性悪性血液疾患を判定する方 法。
2 . 生体試料中の造血幹細胞増殖因子 (SCGF) を測定することを特徴 とする、 白血病と、 前白血病または非白血病性悪性血液疾患とを判別す る方法。
3 . 生体試料中の造血幹細胞増殖因子 (SCGF) を測定することを特徴 とする、 再生不良性貧血と骨髄異形成症候群とを判別する方法。
4 . 生体試料中の造血幹細胞増殖因子 (SCGF) を測定することを特徴 とする、 造血幹細胞移植後の造血幹細胞の生着の状態を判定する方法。
5 . 生体試料中の造血幹細胞増殖因子 (SCGF) を定量することを特徴 とする、 移植片対宿主反応病を判定する方法。
6 . 判定または判別する方法が、 免疫学的測定方法である、 請求項 1〜 5のいずれか 1項に記載の方法。
7 .免疫学的測定方法が、サンドィツチ法である、請求項 6記載の方法。
8 . サンドイッチ法が、 造血幹細胞増殖因子 (SCGF) の異なるェピト —プに反応する 2種類の抗体を用いることを特徴とする、 請求項 7記載 の方法。
9 . 抗体が、 ポリクローナル抗体およびモノクローナル抗体から選ばれ る抗体である請求項 8記載の方法。
1 0 . モノクローナル抗体が、 配列番号 1の 6〜 2 8番目のアミノ酸配 列で示された領域を認識するモノクローナル抗体、 2 9〜 5 9番目のァ ミノ酸配列で示された領域を認識するモノク口一ナル抗体および 6 0〜
3 0 2番目のアミノ酸配列で示された領域を認識するモノク口一ナル抗 体からなる群から選ばれるモノクローナル抗体である、 請求項 9記載の 方法。
1 1 . 造血幹細胞増殖因子 (SCGF) に反応する抗体を有効成分として 含有してなる白血病、前白血病または非白血病性悪性血液疾患の診断薬。
1 2 . 造血幹細胞増殖因子 (SCGF) に反応する抗体を有効成分として 含有してなる造血幹細胞移植後の造血幹細胞の生着状態の診断薬。
1 3 . 造血幹細胞増殖因子 (SCGF) に反応する抗体を有効成分として 含有してなる移植片対宿主反応病の診断薬。
1 4 . 抗体が、 ポリクロ一ナル抗体およびモノクローナル抗体から選ば れる抗体である請求項 1 1〜 1 3のいずれか 1項に記載の診断薬。
1 5 . モノクローナル抗体が、 配列番号 1の 6〜 2 8番目のアミノ酸配 列で示された領域を認識するモノクローナル抗体、 2 9〜 5 9番目のァ ミノ酸配列で示された領域を認識するモノク口一ナル抗体および 6 0〜 3 0 2番目のアミノ酸配列で示された領域を認識するモノクローナル抗 体からなる群から選ばれるモノクローナル抗体である、 請求項 1 4記載 の診断薬。
1 6 . 造血幹細胞増殖因子 (SCGF) に反応する抗体を含む、 白血病、 前白血病あるいは非白血病性悪性血液疾患、 造血幹細胞移植後の造血幹 細胞の生着状態または移植片対宿主反応病の診断用キット。
1 7 . 造血幹細胞増殖因子 (SCGF) を含む、 請求項 1 6記載の診断用 キッ ト。
1 8 . 配列番号 1の 2 9〜 5 9番目のアミノ酸配列で示された領域を認 識するモノクローナル抗体。
1 9 . 配列番号 1記載の 6 0〜 3 0 2番目のアミノ酸配列で示された領 域を認識するモノクローナル抗体。
2 0 . 請求項 1 8または請求項 1 9記載のモノクローナル抗体を生産す るハイプリ ド一マ。
PCT/JP2003/004531 2002-04-09 2003-04-09 Methode de determination d'une leucemie, d'une preleucemie ou d'une maladie sanguine maligne aleucemique, et methode diagnostique WO2003085399A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/510,627 US7479371B2 (en) 2002-04-09 2003-04-09 Method of judging leukemia, pre-leukemia or aleukemic malignant blood disease and diagnostic therefor
CA002481710A CA2481710A1 (en) 2002-04-09 2003-04-09 Method of judging leukemia, pre-leukemia or aleukemic malignant blood disease and diagnostic therefor
AU2003236028A AU2003236028A1 (en) 2002-04-09 2003-04-09 Method of judging leukemia, pre-leukemia or aleukemic malignant blood disease and diagnostic therefor
JP2003582535A JPWO2003085399A1 (ja) 2002-04-09 2003-04-09 白血病、前白血病または非白血病性悪性血液疾患の判定方法及び診断薬
EP03745988A EP1496360A4 (en) 2002-04-09 2003-04-09 METHOD OF DETERMINING LEUKEMIA, PRELEUGEEMY OR ALEUCEMIC MALIGNANT BLOOD DISEASE, AND DIAGNOSTIC METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-106786 2002-04-09
JP2002106786 2002-04-09

Publications (1)

Publication Number Publication Date
WO2003085399A1 true WO2003085399A1 (fr) 2003-10-16

Family

ID=28786442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004531 WO2003085399A1 (fr) 2002-04-09 2003-04-09 Methode de determination d'une leucemie, d'une preleucemie ou d'une maladie sanguine maligne aleucemique, et methode diagnostique

Country Status (8)

Country Link
US (1) US7479371B2 (ja)
EP (1) EP1496360A4 (ja)
JP (1) JPWO2003085399A1 (ja)
KR (1) KR20050027211A (ja)
CN (1) CN1646910A (ja)
AU (1) AU2003236028A1 (ja)
CA (1) CA2481710A1 (ja)
WO (1) WO2003085399A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471393A (zh) * 2012-06-14 2015-03-25 鹿特丹伊拉斯姆斯大学医疗中心 用于检测微小残留病的方法、试剂以及试剂盒
US10126292B2 (en) 2014-03-31 2018-11-13 Sysmex Corporation Blood analyzer

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533998B2 (en) 2008-07-18 2020-01-14 Bio-Rad Laboratories, Inc. Enzyme quantification
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
US20060078893A1 (en) * 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307428D0 (en) * 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
US20050221339A1 (en) * 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
JP2009536313A (ja) 2006-01-11 2009-10-08 レインダンス テクノロジーズ, インコーポレイテッド ナノリアクターの形成および制御において使用するマイクロ流体デバイスおよび方法
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
EP2021113A2 (en) 2006-05-11 2009-02-11 Raindance Technologies, Inc. Microfluidic devices
US9012390B2 (en) 2006-08-07 2015-04-21 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US8772046B2 (en) 2007-02-06 2014-07-08 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US8592221B2 (en) 2007-04-19 2013-11-26 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
CN101250526B (zh) * 2007-12-26 2010-06-02 暨南大学 苯致再生障碍性贫血相关抗原特异TCR Vα19亚家族的Y基因序列
WO2009084525A1 (ja) * 2007-12-28 2009-07-09 National University Corporation Hokkaido University 白血病細胞の検出方法
EP4047367A1 (en) 2008-07-18 2022-08-24 Bio-Rad Laboratories, Inc. Method for detecting target analytes with droplet libraries
US12038438B2 (en) 2008-07-18 2024-07-16 Bio-Rad Laboratories, Inc. Enzyme quantification
WO2010111231A1 (en) 2009-03-23 2010-09-30 Raindance Technologies, Inc. Manipulation of microfluidic droplets
US10520500B2 (en) 2009-10-09 2019-12-31 Abdeslam El Harrak Labelled silica-based nanomaterial with enhanced properties and uses thereof
EP2517025B1 (en) 2009-12-23 2019-11-27 Bio-Rad Laboratories, Inc. Methods for reducing the exchange of molecules between droplets
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
WO2011100604A2 (en) 2010-02-12 2011-08-18 Raindance Technologies, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
WO2012045012A2 (en) 2010-09-30 2012-04-05 Raindance Technologies, Inc. Sandwich assays in droplets
EP3859011A1 (en) 2011-02-11 2021-08-04 Bio-Rad Laboratories, Inc. Methods for forming mixed droplets
EP2675819B1 (en) 2011-02-18 2020-04-08 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
US20130210659A1 (en) 2012-02-10 2013-08-15 Andrew Watson Molecular diagnostic screening assay
EP2844768B1 (en) 2012-04-30 2019-03-13 Raindance Technologies, Inc. Digital analyte analysis
EP2986762B1 (en) 2013-04-19 2019-11-06 Bio-Rad Laboratories, Inc. Digital analyte analysis
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
WO2015103367A1 (en) 2013-12-31 2015-07-09 Raindance Technologies, Inc. System and method for detection of rna species
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
CN105424929B (zh) * 2015-11-24 2017-08-08 四川夹金山逢春养殖科技有限公司 一种铜绿假单胞菌抗体检测试剂盒及检测方法
CN106872686B (zh) * 2017-02-16 2019-04-05 广东顺德工业设计研究院(广东顺德创新设计研究院) 时间分辨荧光微球标记肌红蛋白抗体的保存液
US10998178B2 (en) 2017-08-28 2021-05-04 Purdue Research Foundation Systems and methods for sample analysis using swabs
CN111198271B (zh) * 2018-11-16 2023-04-28 山东泽济生物科技有限公司 一种用于甘油醛-3-磷酸脱氢酶检测的化学发光酶联免疫试剂盒
CN111476754B (zh) * 2020-02-28 2022-12-09 中国人民解放军陆军军医大学第二附属医院 一种骨髓细胞影像人工智能辅助分级诊断系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008869A1 (fr) * 1996-08-27 1998-03-05 Kyowa Hakko Kogyo Co., Ltd. Facteur de croissance des cellules souches hematopoietiques (scgf)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648596A1 (de) 1996-11-23 1998-05-28 Teves Gmbh Alfred Vefahren zum Betreiben einer blockiergeschützten Kraftfahrzeugbremnsanlage
FR2771750A1 (fr) 1997-12-03 1999-06-04 Univ Nice Sophia Antipolis Clonage, expression et caracterisation de l'adnc codant pour un polypeptide lvbl et application au diagnostic et au traitement d'infection virale
CA2395443A1 (en) 1999-12-23 2001-07-26 Hyseq, Inc. Methods and materials relating to stem cell growth factor-like poypeptides and polynucleotides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008869A1 (fr) * 1996-08-27 1998-03-05 Kyowa Hakko Kogyo Co., Ltd. Facteur de croissance des cellules souches hematopoietiques (scgf)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PERRIN ET AL.: "Expression of LSLCL, a new C-type lectin is closely restricted in bone marrow to immature neutrophils", C.R. ACAD. PARIS, SCIENCES DE LA VIE, vol. 324, no. 12, 2001, pages 1125 - 1132, XP004327080 *
See also references of EP1496360A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471393A (zh) * 2012-06-14 2015-03-25 鹿特丹伊拉斯姆斯大学医疗中心 用于检测微小残留病的方法、试剂以及试剂盒
CN104471393B (zh) * 2012-06-14 2017-07-07 鹿特丹伊拉斯姆斯大学医疗中心 用于检测微小残留病的方法、试剂以及试剂盒
US10126292B2 (en) 2014-03-31 2018-11-13 Sysmex Corporation Blood analyzer

Also Published As

Publication number Publication date
EP1496360A1 (en) 2005-01-12
KR20050027211A (ko) 2005-03-18
CA2481710A1 (en) 2003-10-16
CN1646910A (zh) 2005-07-27
AU2003236028A1 (en) 2003-10-20
EP1496360A4 (en) 2007-06-27
US20060084122A1 (en) 2006-04-20
US7479371B2 (en) 2009-01-20
JPWO2003085399A1 (ja) 2005-08-11

Similar Documents

Publication Publication Date Title
WO2003085399A1 (fr) Methode de determination d&#39;une leucemie, d&#39;une preleucemie ou d&#39;une maladie sanguine maligne aleucemique, et methode diagnostique
JP5424331B2 (ja) 肝疾患診断用バイオマーカー
WO2001036977A2 (en) Identification of disease markers involving mass-based-separation
EP1891108A1 (en) Psp94 diagnostic reagents and assays
US20040009164A1 (en) PSP94 diagnostic reagents and assays
JP3623985B2 (ja) 抗ld78ポリペプチドモノクローン抗体
EP1213302B1 (en) Specific antibody directed to active but not inactive hepatocyte growth factor activator (HGFA)
CN113727995A (zh) 检测癌的方法和检测试剂
JP6407990B2 (ja) アウグリン免疫学的検定
JP4838436B2 (ja) 抗ヒト肝性トリグリセリドリパーゼ抗体
JP4829961B2 (ja) プロスタシン部分ペプチド及び抗プロスタシン抗体
JP2018138520A (ja) 抗ミッドカインモノクローナル抗体及びそれを用いた免疫学的測定キット
WO1997045451A1 (fr) Anticorps anti-lect2 humains, cellules le produisant et ses procede et materiel de dosage
JP4608570B2 (ja) 新規なモノクローナル抗体及びニックβ2グリコプロテインIの免疫学的分析方法
EP2527361B1 (en) Biomarkers for in vitro prognosis and diagnosis of graft and transplant rejection
EP1262492A1 (en) Antibody to hepatocyte growth factor activator inhibitor-1 and use thereof
JP2008048738A (ja) 活性型肝細胞増殖因子アクティベーターに対する特異的抗体とその使用法
JP2007119390A (ja) 大腸癌患者の予後を予測する方法
JP2001215227A (ja) Rcas1の免疫学的測定方法及び測定用キット、抗rcas1抗体の免疫学的測定方法及び測定用キット、並びにrcas1受容体の免疫学的測定方法
JP2004231535A (ja) p53遺伝子産物に対する自己抗体を検出するための免疫測定用試薬

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003582535

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2481710

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020047016144

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038080362

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003745988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003236028

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2003745988

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047016144

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006084122

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10510627

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10510627

Country of ref document: US