WO2003079024A1 - Filament-rekrutierung fluoreszierender proteine zur analyse und identifikation von protein-protein-interaktionen - Google Patents

Filament-rekrutierung fluoreszierender proteine zur analyse und identifikation von protein-protein-interaktionen Download PDF

Info

Publication number
WO2003079024A1
WO2003079024A1 PCT/EP2003/002707 EP0302707W WO03079024A1 WO 2003079024 A1 WO2003079024 A1 WO 2003079024A1 EP 0302707 W EP0302707 W EP 0302707W WO 03079024 A1 WO03079024 A1 WO 03079024A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
tradd
bait
domain
prey
Prior art date
Application number
PCT/EP2003/002707
Other languages
English (en)
French (fr)
Inventor
Klaus Pfizenmaier
Harald Wajant
Original Assignee
Klaus Pfizenmaier
Harald Wajant
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klaus Pfizenmaier, Harald Wajant filed Critical Klaus Pfizenmaier
Priority to AU2003209735A priority Critical patent/AU2003209735A1/en
Publication of WO2003079024A1 publication Critical patent/WO2003079024A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1055Protein x Protein interaction, e.g. two hybrid selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)

Definitions

  • the present invention relates to a) fusion polypeptides which, as total polypeptide, form multimeric aggregates (eg filaments) and consist of two or more peptide domains of heterologous origin, of which at least one is sufficient for the aggregation of the total polypeptide and m at least one further domain consists of a polypeptide or a polypepti domain (bait polypeptide), the ability of which to interact with other modified or unmodified, already known or as yet unknown polypeptides (Prey domain) are being investigated should, as well as b) non-covalently bound polypeptide complexes forming aggregate (filament), in which one or more polypeptide (s) is / are contained, which mediate multimerization and at least one polypeptide or also fusion Polypeptide of heterologous polypeptide domains (bait polypeptide), the ability of which is modified with other modified or unmodified, already known or as yet unknown ante polypeptides (Prey polypeptide) to interact.
  • the invention is characterized in that the detection of the protein-protein interaction, which is to be investigated or identified, is based on the detection of the Prey polypeptide or of Prey domains-containing polypeptides which are in bait domain containing polymer structures, eg filaments, are recruited.
  • Prey polypeptides are produced in the form of fusion proteins with fluorescent polypeptides (eg DsRED, GFP, YFP, CFP, BFP 1 ), which are produced by recombining DNA technologies can be used, or the Prey polypeptides detected by means of fluorescence-labeled secondary reagents, for example FITC-labeled antibodies.
  • the antibodies can recognize the Prey polypeptide of interest itself or a structure directly or indirectly coupled to it, for example a peptide tag which is introduced by recombinant techniques.
  • the invention is further characterized in that the interaction of bait and prey polypeptides takes place in living cells which have been transfected stably or transiently with corresponding nucleic acid constructs.
  • the described method is also suitable for investigating the interactions mentioned in experimentally transient membrane-permeabilized, but otherwise vital cells, as well as in fixed cells or in cell-free systems.
  • the present invention further relates to nucleic acid sequences on which the polypeptides are based, vectors which contain these nucleic acid sequences according to the invention, cells transfected with nucleic acid sequences or vectors according to the invention, and compositions comprising articles according to the invention.
  • all filament-forming polypeptides or polypeptide domains are suitable for the FIT applications mentioned above and explained in more detail below, which allow filament formation even when they are in the form of fusion proteins with heterologous peptide domains or the recruitment of binding proteins which are considered as Fusion proteins with heterologous polypeptide domains can be expressed without losing their ability to bind to the filament-forming protein.
  • DD Death domain
  • CARD caspase-recruitment domain
  • RAIDD RAIDD
  • RICK caspase-recruitment domain
  • DED domain DED domain
  • filament-forming non-covalently bound polypeptide complexes which contain a bait polypeptide of the type described, examples of which are complexes of TRADD and TRAF1 or TRAF2 or fusion proteins of TRAF1 or TRAF2 or their TRAF Domains with heterologous polypeptide domains
  • all the polypeptides are also suitable as polymerization components of the bait complex which form characteristic structures which can be represented by fluorescence microscopy.
  • bait polypeptides according to the invention which (i) contain a section (1) with a DD, CARD or DED (ii) an N-terminal or C-terminal of section (1) located section (2), which is a peptide linker, and (iii) a section (3), which represents a polypeptide whose protein-protein interaction capabilities are to be analyzed or for which still unknown interaction partners are to be identified.
  • bait polypeptides which (i) contain a section (1) with a polypeptide domain which bind directly or indirectly to filament-forming polypeptide unit, (ii) an N-terminal or Section (2), which is a peptide linker and is located C-terminally from section (1), and (iii) a section (3), which represents a polypeptide, whose protein-protein interaction abilities are analyzed or for which still unknown interaction partners are identified should contain.
  • Prey polypeptides which (i) contain a section (1) which can be detected directly or indirectly by means of fluorescence and also (ii) an N-terminal or C-terminal of section (1) located section (2), which is a peptide linker, and (iii) section (3), which can represent any polypeptide whose protein-protein interaction abilities are to be analyzed.
  • bait polypeptides according to the invention have in their section (1) either an amino acid sequence of a filament-forming polypeptide, a functional variant of a filament-forming polypeptide sequence or a fragment thereof, or an amino acid sequence of a polypeptide, a functional variant of a polypeptide or of a polypeptide fragment that can bind to a filament-forming polypeptide.
  • a functional variant is understood to mean sequences which have at least some, preferably at least 50%, more preferably at least 80% of the native sequence and which differ from the native sequence by, for example, deletion (s), insertion (s) and / or at least one mutation Distinguish sequence.
  • a sequence homology of at least 90, preferably at least 95 and most preferably at least 97% with the corresponding native sequence is preferred.
  • a functional fragment can be N-terminal, C-terminal or intrasequentially shortened native filament-forming polypeptide sequences, in particular certain domains, preferably at least one, more preferably at least one filament-forming domain of the native full-length sequence. Biologically active variants of these fragments are also disclosed according to the invention.
  • Filament-forming polypeptides whose functional variants or fragments contain a CARD, DD or DED domain are preferred.
  • the section (1) of the bait polypeptides is very particularly preferably the DD of RIP (receptor-interacting protein), RAIDD (RIP-associated ICH-1 / CED-3 homologous protein with a death domain) or TRADD (TNF receptor) 1-associated death domain protein), the DED from FLIP (FLICE-inhibitory protein) or Caspase-8, or the CARD from RAIDD, RICK, or E10, or the TRADD-binding TRAF (TNF receptor associated factor) domain from TRAF1, TRAF2 or TRAF3.
  • RIP receptor-interacting protein
  • RAIDD RIP-associated ICH-1 / CED-3 homologous protein with a death domain
  • TRADD TNF receptor 1-associated death domain protein
  • the DED from FLIP (FLICE-inhibitory protein) or Caspase-8
  • CARD from RAIDD, RICK, or E10
  • TRADD-binding TRAF TRAF receptor associated factor
  • Prey polypeptides are very particularly preferably polypeptides or polypeptide domains in the form of fusion proteins with fluorescent proteins such as DsRED, GFP and GFP variants.
  • the linker section (2) between sections (1) and (3) of the bait as well as the prey polypeptides in polypeptide constructs according to the invention, for example, is a flexible connection which preferably has the intrinsic protein-protein interaction properties of the linker connected polypeptide domains are not significantly affected.
  • Prey polypeptides are to be analyzed that interact with multimeric (eg dimeric or trimeric) domains, or in which interaction partners for multimerized bait polypeptides are to be identified from a Prey polypeptide cDNA library Bait polypeptides with linker with intrinsic multimerization properties (for example di-tri- or hexamers) selected.
  • linker with intrinsic multimerization properties (for example di-tri- or hexamers) selected.
  • Such linkers are also used to achieve increased stability of Prey polypeptides that have an intrinsic multimerization tendency.
  • the dimerizing coiled-coil domain of the yeast transcription factor GCN4 is used, for example.
  • a trimerization module (linker type 2b) as a linker can consist, for example, of the coiled-coil structure-forming N-TRAF domain of TRAF proteins.
  • sequences of native polypeptides or fragments of these native polypeptides which are used as linkers in section (2) of a polypeptide according to the invention can also occur in the form of biologically active variants thereof within the meaning of this invention and according to the above definition.
  • a linker can correspond to a native or varied (partial) sequence of all organisms, preferably from vertebrates, in particular from mammals, especially from humans. Also suitable as a linker are, for example, all sequence sections of proteins which generate dimers or multimers by forming super-secondary structures, e.g. "Coiled-coil helices".
  • the present invention furthermore relates to DNA sequences which code for fusion proteins of the aforementioned type according to the invention (nucleic acid constructs) or which contain a region coding for a polypeptide according to the invention.
  • DNA sequences are expressed in expression vectors, the corresponding expression vectors which contain a DNA sequence for the fusion proteins according to the invention also being the subject of the invention.
  • Vectors according to the invention preferably have the ability for expression and / or amplification in a prokaryotic and / or eukaryotic cell.
  • the present invention furthermore includes those host cells which are stable or transiently transfected with DNA sequences (nucleic acid constructs) which code for the fusion proteins according to the invention.
  • host cells which are transfected with expression vectors according to the invention or nucleic acid constructs according to the invention are very particularly preferred, the expression vectors in turn containing DNA sequences which code for the fusion proteins according to the invention.
  • Nucleic acid constructs according to the invention are characterized in that they contain a nucleotide sequence coding for a polypeptide according to one of the preceding claims.
  • the present invention further relates to methods for the expression and detection of polypeptides according to the invention and their possible protein-protein interaction, an expression and detection method according to the invention typically being characterized by (a) providing pairs according to the invention of vectors or nucleic acid constructs which are suitable for encode a filament-forming bait polypeptide or a complex containing a filament-forming bait polypeptide and one or more Prey polypeptides or, Prey polypeptide banks, (b) transfection of cells with according to process step (a) vectors or nucleic acid constructs obtained, (c) cultivation of the cells transfected according to (b), and (d) analysis of the possible protein-protein interaction of polypeptides according to the invention expressed under appropriate conditions due to the recruitment of Prey polypeptides into the Filaments of the host cells containing bait polypeptide and the subsequent fluorescence-technical detection of the prey polypeptides.
  • the detection of the protein-protein interaction is based on the fact that the bait and prey polypeptide can only be detected in filament
  • fusion proteins or protein complexes with filament-forming properties (bait polypeptides / Bait-polypeptide complexes) are made available, which allow protein-protein interactions to be detected at the cellular level in living cells, in that the recruitment of interacting proteins or peptide domains (Prey polypeptides) into these filaments, for example microscopically using fluorescence tech techniques (use of fluorescent fusion proteins, antibody staining) is detected.
  • the Prey polypeptide-dependent "coloring" of the bait polypeptide-containing filaments is thus indicative of the presence of a direct or, in some cases also indirect, protein-protein interaction between the bait domain of the bait polypeptide and the prey domain of the Prey polypeptide.
  • Figure 1 shows filament-forming fusion proteins from filament-forming polypeptide domains (TRADD, AS 185-328; RIP, AS 558-671; RAIDD, AS 85-199 and 1- 120; RICK, AS 361-540; E10, complete protein; FLIP , AS 1-202; Caspase 8, AS 1-260) and a heterologous polypeptide domain which itself has no filament-forming properties.
  • filament-forming polypeptide domains TRADD, AS 185-328; RIP, AS 558-671; RAIDD, AS 85-199 and 1- 120; RICK, AS 361-540; E10, complete protein; FLIP , AS 1-202; Caspase 8, AS 1-260
  • fluorescent proteins FFP, YFP
  • polypeptide domains are used which are to be analyzed with regard to their protein-protein interaction possibilities and which do not themselves fluoresce.
  • FIG. 2 shows an example of the recruitment of various Prey polypeptides (Sentrin-GFP, clAP1-GFP, IKK1-GFP, IKK2-GFP, NEMO-GFP) into the filaments of a bait-protein complex that consists of TRADD and TRAF1.
  • the cellular distribution of the Prey polypeptide in the absence of the bait complex or one of its components is also shown. Since the filament-forming TRADD polypeptide and TRAF1 interact naturally with each other, it is in this case for the analysis of protein-protein interactions of TRAF1 with Prey- Polypeptides do not need to use a heterologous bait fusion polypeptide from the filament-forming domain of TRADD and TRAF1.
  • FIG. 3 shows an example of the recruitment of various Prey polypeptides (TRAF4-GFP, TRAF4-TD-YFP) into the filaments of the bait protein TRAF4-TRADD-DD, which consists of TRAF4 and the filament-forming death domain (DD) from TRADD.
  • TRAF4-TRADD-DD which consists of TRAF4 and the filament-forming death domain (DD) from TRADD.
  • the cellular distribution of the Prey polypeptides in the absence of the bait fusion protein is also shown.
  • the Prey proteins do not bind to the filament-forming TRADD death domain alone (data not shown).
  • FIG. 4 shows an example of the recruitment of the Prey polypeptide TRAF2-GFP into the filaments of the bait fusion protein TRAF2-NT-TRADD-DD, which consists of the N-terminal domain of TRAF2 and the filament-forming death domain (DD) of TRADD.
  • the cellular distribution of the Prey polypeptide in the absence of the bait fusion protein is also shown.
  • the Prey protein does not bind to the filament-forming TRADD death domain alone (data not shown).
  • FIG. 5 shows an example of the FIT analysis of the interaction of the IKK complex with a number of potential binding proteins.
  • Expression plasmids for the specified GFP fusion proteins (Prey polypeptides) were each co-transfected with an expression plasmid which codes for the filament-forming bait fusion protein IKK ⁇ -TRADD-DD.
  • IKK ⁇ -TRADD-DD is a fusion protein made up of the framework component IKK ⁇ of the IKK complex, which itself does not form any filaments, and the filament-forming death domain (DD) from TRADD. This fusion protein alone forms filaments with high efficiency as shown in (A) by antibody staining with a TRADD-specific antibody and a Cy5-labeled secondary antibody by means of confocal microscopy.
  • GFP fusion proteins that do not themselves form filaments now bind directly or indirectly to IKK ⁇ -TRADD-DD, this can be demonstrated by microscopic detection of fluorescent filaments (shown in (B) by way of example for TRAF1-GFP, the GFP fusion protein of a naturally occurring cleavage product from TRAF1 (TRAF1-TD-GFP) as well as IKK1-GFP, IKK2-GFP and IKK ⁇ -GFP). For quantification, about 80-120 GFP fusion protein-expressing cells were detected for the presence of fluorescent filaments examined (C). It is known that IKK1, IKK2 and IKK ⁇ (also called NEMO) form a stable complex in which several IKK ⁇ molecules can be found in particular.
  • the FIT analysis found recruitment of IKK1-GFP, IKK2-GFP and IKK ⁇ -GFP into the IKK ⁇ -TRADD-DD filaments in 95-100% of the transfected cells.
  • the interactions of the IKK ⁇ -TRADD-DD filaments with the kinases NIK and TAK found in this FIT experiment is also in agreement with literature data.
  • the interaction of the IKK ⁇ -TRADD-DD filaments with TRAF3, TRAF4 and TRAF1 and in particular the TRAF1 cleavage product TRAF1-TD are new findings.
  • all GFP fusion proteins were also co-transfected and analyzed with the filament-forming domain DD alone. Fluorescent filaments could never be found with the GFP fusion proteins used. It should be noted that the entire TRAF1 binds poorly to the IKK complex than the TRAF1 fragment (TRAF1-TD-GFP) resulting from protease processing.
  • FIG. 6 shows an example of how the FIT principle can be used for in vivo analysis of the kinetic properties of protein-protein interactions.
  • the filament-forming fusion protein IKK ⁇ -TRADD-DD already presented in FIG. 5 was co-transfected with TRAF1-GFP (filled symbols) and TRAF1-TD-GFP (open symbols).
  • the fusion proteins were made as follows:
  • cDNA for human TRAF6 was amplified with primers 1 and 2 by means of proof-reading PCR.
  • a Bgl2- in the 5 'end of the amplicons was Interface and a Sac2 interface inserted into the 3 'end.
  • the TRAF6 cDNA was inserted into the pEGFP-N1 vector cut with Bgl2 and Sac2.
  • the construct pEGFP-N1-TRAF6-GFP thus obtained codes for a TRAF6 fusion protein with C-terminal GFP.
  • cDNA for the AS 169-312 + stop codon of human TRADD (TRADD (169-312) was amplified with primers 3 and 4 by means of proof-reading PCR. The PCR introduced a Sac2 interface in the 5 'end of the amplicons and a Not1 interface in the 3' end. After digestion with Sac2 and Not1, the TRADD (169-312) cDNA was inserted into the pEGFP-N1-TRAF6-GFP plasmid cut with Sac2 and Not1. The GFP cDNA fragment resulting from the Sac2 / Not1 digestion of the pEGFP-N1-TRAF6-GFP plasmid was previously removed. The plasmid pEGFP-N1-TRAF6-TRADD-DD obtained in this way codes for a TRAF6 protein, followed by some linker-encoded AS and DD of the TRADD protein at the C-terminal.
  • Plasmid amplified The PCR introduced a HindS interface in the 5 'end of the amplicons and an EcoR1 interface in the 3' end. After digestion with Hind3 and EcoR1, the myc-TRADD cDNA was inserted into the pcDNA3.1 vector cut with Hind3 and EcoR1. The construct pcDNA3.1-myc-TRADD-DD obtained in this way codes for an N-terminal myc-tagged TRADD fragment which contains the DD of the molecule.
  • cDNA for AS 1-277 of human caspase-8 were amplified with primers 9 and 10 by means of proof-reading PCR from Kym1 total RNA by RT-PCR.
  • a BamH1 cleavage site was inserted into the 5 'end of the amplicons and an EcoR5 cleavage site was inserted into the 3' end by the PCR.
  • cDNA for AS 286-461 of human TNF-R2 were amplified with primers 7 and 8 by means of proof-reading PCR from total Kym1 RNA by RT-PCR.
  • the PCR introduced an EcoR5 interface in the 5 'end of the amplicons and a Not1 interface in the 3' end.
  • the TNF-R2 cDNA fragment was inserted into the pcDNA3.1-myc-Caspase-8 (1-277) plasmid cut with EcoR5 and Not1.
  • pcDNA3.1-myc-caspase-8 (1-277) -TNFR2 (cyt) obtained in this way codes for an N-terminal myc-tagged fusion protein from a caspase-8 fragment following the myc-tag which comprises the DED of the molecule includes some linker-encoded AS and a C-terminal fragment that encodes the cytoplasmic domain of TNF-R2.
  • TRAF4-TRADD-DD 1. cDNA for human TRAF4 was amplified with primers 11 and 12 by means of proof-reading PCR. The PCR inserted a BamH1 interface in the 5 'end of the amplicons and a Sac2 interface in the 3' end. After digestion with BamH1 and Sac2, the TRAF4-CDNA was inserted into the pEGFP-N1 vector cut with Bgl2 and Sac2. The construct pEGFP-N1-TRAF4-GFP thus obtained codes for a TRAF4 fusion protein with a C-terminal GFP and a linker located between TRAF4 and GFP.
  • cDNA for the AS 169-312 + stop codon of human TRADD was amplified with primers 3 and 4 by means of proof-reading PCR.
  • the PCR introduced a Sac2 interface in the 5 'end of the amplicons and a Not1 interface in the 3' end.
  • the TRADD (169-312) cDNA was inserted into the pEGFP-N1-TRAF4-GFP plasmid cut with Sac2 and Not1.
  • the GFP cDNA fragment resulting from the Sac2 / Not1 digestion of the pEGFP-N1-TRAF4-GFP piasmids had previously been removed.
  • the construct pEGFP-N1-TRAF4-TRADD-DD obtained in this way codes for a TRAF4 protein, some linker-encoded AS which the C-terminally follows the DD of the TRADD protein.
  • cDNA for the N-terminal 272 amino acids of human TRAF2 (TRAF2-NT) was amplified with primers 13 and 14 by means of proof-reading PCR. The PCR inserted a BamH1 interface in the 5 'end of the amplicons and a Sac2 interface in the 3' end. After digestion with BamH1 and Sac2, the TRAF2-NT cDNA was inserted into the pEGFP-N1 vector cut with Bgl2 and Sac2. The construct pEGFP-N1-TRAF2-NT-GFP thus obtained codes for a C-terminal fusion protein of the N-terminal 180 amino acids of the TRAF2 protein with GFP.
  • cDNA for the AS 169-312 + stop codon of human TRADD was obtained from the TRAF6-TRADD-DD construct by restriction digestion with Sac2 and Not1. After digesting the piasmid pEGFP-N1-TRAF2-NT-GFP with Sac2 and Not1 the TRADD (169-312) cDNA fragment was inserted into it. The GFP cDNA fragment resulting from the Sac2 / Not1 digestion of the pEGFP-N1-TRAF2-NT-GFP plasmid was previously removed. The plasmid pEGFP-N1-TRAF2-NT-TRADD-DD obtained in this way codes for a fusion protein consisting of the 272 N-terminal amino acids of the TRAF2 protein, some
  • cDNA for the entire coding region of human IKKD (also called NEMO) was amplified with primers 15 and 16 by means of proof-reading PCR.
  • the PCR inserted a BamH1 site in the 5 'end of the amplicons and a Sac2 site in the 3' end.
  • the IKKD cDNA was inserted into the pEGFP-N1 vector cut with Bgl2 and Sac2.
  • the construct pEGFP-N1-IKKD-GFP thus obtained codes for a C-terminal fusion protein of the IKKD protein with GFP.
  • cDNA for the AS 169-312 + stop codon of human TRADD was obtained from the TRAF6-TRADD-DD construct by restriction digestion with Sac2 and Not1. After digesting the piasmid pEGFP-N1-IKKD-GFP with Sac2 and
  • TRADD 169-312
  • TRADD 169-312
  • GFP cDNA fragment resulting from the Sac2 / Not1 digestion of the pEGFP-N1-IKKD-GFP plasmid was previously removed.
  • the plasmid pEGFP-N1-IKKD-TRADD-DD thus obtained codes for a fusion protein consisting of the complete IKKD protein, some linker-encoded AS and the DD of the
  • Primer 2 5 'CGG CTC GAG TTA CCG CGG GAG ATC CTC CAG GTC AGT TTA GTC 3'
  • Primer 3 5 'ACA CAT CCG CGG GGT GGC GAC GGG GAG GTC GCT TCG 3'
  • Primer 4 5 'TTT ATA GCG GCC GCA GGT CTA GGC CAG GCC GCC ATT GGG 3'
  • Primer 10 5 'CCG GAT ATC CCT GTC CCT AAT GCT GTG AAG TTT GGG 3'

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Gegenstand der Erfindung sind Bait-Fusionsproteine/komplexe mit Aggregat-, beispielsweise Filament-bildenden Eigenschaften und Prey-Proteine, die einen fluoreszenztechnischen Nachweis nach Rekrutierung in Bait-Strukturen erlauben. Die kombinierte Anwendung dieser Peptide erlaubt die 'optische' Analyse bereits bekannter Protein-Protein-Interaktion, inklusive der Identifikation von Modulatoren dieser Interaktion z.B. niedermolekularer nicht-proteinogener Substanzen, aber auch die Identifikation neuer Interaktionspartner aus einer Prey-Polypeptid-Genbibliothek.

Description

FILAMENT-REKRUTIERUNG FLUORESZIERENDER PROTEINE ZUR ANALYSE UND IDENTIFIKATION VON PROTEIN-PROTEIN-INTERAKTIONEN
Die vorliegende Erfindung betrifft a) Fusions-Polypeptide, welche als Gesamt- Polypeptid multimere Aggregate (z.B. Filamente) bilden und aus zwei oder mehr Peptid-Domänen heterologer Herkunft bestehen, von denen mindestens eine für die AggregaWFilament-Bildung des Gesamt-Polypeptids hinreichend ist und m destens eine weitere Domäne aus einem Polypeptid bzw. einer Polypepti Domäne (Bait-Polypeptid) besteht, dessen/deren Fähigkeit mit anderen mod zierten oder nicht-modifizierten, bereits bekannten oder noch unbekannten Poly- peptiden (Prey-Domäne) zu interagieren untersucht werden soll, sowie b) Aggre- gat- (Filament) bildende, nicht-kovalent gebundene Polypeptid-Komplexe, in denen ein oder mehrere Polypeptid(e) enthalten ist/sind, welche die Multimerisie- rung vermitteln sowie mindestens ein Polypeptid oder auch Fusions-Polypeptid heterologer Polypeptid-Domänen (Bait-Polypeptid), dessen Fähigkeit mit anderen modifizierten oder nicht-modifizierten, bereits bekannten oder noch unbekannten Polypeptiden (Prey-Polypeptid) zu interagieren untersucht werden soll. Die Erfindung zeichnet sich dabei dadurch aus, daß der Nachweis der Protein- Protein-Interaktion, die untersucht bzw, identifiziert werden soll, auf der Detektion des Prey-Polypeptids bzw. von Prey-Domänen-enthaltenden Polypeptiden beruht, die in Bait-Domäne-enthaltende polymere Strukturen, z.B. Filamente, rekrutiert werden. Um diese Protein-Protein-Interaktion-indizierende Rekrutierung detektie- ren zu können, werden Prey-Polypeptide in Form von Fusionsproteinen mit fluoreszierenden Polypeptiden (z.B DsRED, GFP, YFP, CFP, BFP1), die durch re- kombinante DNA-Technologien hergestellt werden können, verwendet, oder die Prey-Polypeptide mittels Fluoreszenz-markierter sekundärer Reagenzien z.B. FITC-markierter Antikörper nachgewiesen. Die Antikörper können dabei das interessierende Prey-Polypeptid selbst oder eine daran direkt oder indirekt gekoppelte Struktur erkennen, z.B. einen Peptid-Tag, der durch rekombinante Techniken eingeführt wird. Die Erfindung zeichnet sich weiterhin dadurch aus, daß die Interaktion von Bait- und Prey-Polypeptiden in lebenden Zellen erfolgt, die stabil oder transient mit entsprechenden Nukleinsäure-Konstrukten transfiziert wurden. Das beschriebene Verfahren ist weiterhin geeignet, die genannten Wechselwirkungen in experimentell transient membran-permeabilisierten, aber ansonst vitalen Zellen, sowie in fixierten Zellen oder auch in zellfreien Systemen zu untersuchen.
Weiterhin betrifft die vorliegende Erfindung, den Polypeptiden zugrundeliegende Nukleinsäuresequenzen, Vektoren, die diese erfindungsgemäßen Nukleinsäure- sequenzen enthalten, mit erfindungsgemäßen Nukleinsäuresequenzen oder Vektoren transfizierte Zellen, und Zusammensetzungen, enthaltend erfindungsgemäße Gegenstände.
Für die oben genannten und später näher ausgeführten FIT-Anwendungen sind prinzipiell alle filamentbildenden Polypeptide oder Polypeptid-Domänen geeignet, die eine Filamentbildung auch dann erlauben, wenn sie in Form von Fusionsproteinen mit heterologen Peptid-Domänen vorliegen oder die Rekrutierung von Bindeproteinen erlauben, die als Fusionsproteine mit heterologen Polypeptid- Domänen exprimiert werden können, ohne daß ihre Bindefähigkeit an das fila- mentbildende Protein verloren geht. Beispiele hierfür sind manche Mitglieder der „death domain" (DD)-Proteinfamilie (z.B. TRADD), manche „caspase-recruitment domain" (CARD)-Domäne enthaltenden Proteine (z.B. RAIDD und RICK) oder manche Polypeptide mit einer „death effector domain" DED-Domäne (z.B. Caspa- se-8, FLIP). Desweiteren sind auch filamentbildende nicht-kovalent gebundene Polypeptid-Komplexe geeignet, die ein Bait-Polypeptid der beschriebenen Art enthalten. Beispiele hierfür sind Komplexe aus TRADD und TRAF1 oder TRAF2 oder Fusionsproteine von TRAF1 oder TRAF2 oder deren TRAF-Domänen mit heterologen Polypeptid-Domänen. Weiterhin sind auch alle die Polypeptide als Polymerisierungskomponente des Bait-Komplexes geeignet, die fluoreszenzmik- roskopisch darstellbare charakteristische Strukturen ausbilden.
Damit werden in einer ersten Ausführungsform der vorliegenden Erfindung erfindungsgemäß Bait-Polypeptide zur Verfügung gestellt, die (i) einen Abschnitt (1) mit einer DD, CARD oder DED enthalten (ii) einen N-terminal oder C-terminal von Abschnitt (1) gelegenen Abschnitt (2), welcher ein Peptidlinker ist, und (iii) einen Abschnitt (3), welcher ein Polypeptid repräsentiert dessen Protein-Protein- Interaktionsfähigkeiten analysiert werden sollen bzw. für welches noch unbekannte Interaktionspartner identifiziert werden sollen. In einer weiteren Ausführungsform werden Bait-Polypeptide zur Verfügung gestellt, die (i) einen Abschnitt (1) mit einer Polypeptid-Domäne, die direkt oder indirekt an filamentbildende Poly- peptid-Einheit binden, enthalten, (ii) einen N-terminal oder C-terminal von Abschnitt (1) gelegenen Abschnitt (2), welcher ein Peptidlinker ist, und (iii) einen Abschnitt (3), welcher ein Polypeptid repräsentiert, dessen Protein-Protein- Interaktionsfähigkeiten analysiert bzw. für welches noch unbekannte Interaktionspartner identifiziert werden sollen, enthalten.
Desweiteren werden in einer ersten Ausführungsform der vorliegenden Erfindung erfindungsgemäß Prey-Polypeptide zur Verfügung gestellt, die (i) einen Abschnitt (1) enthalten, der mittels Fluoreszenz direkt oder indirekt nachgewiesen werden kann und zudem (ii) einen N-terminal oder C-terminal von Abschnitt (1) gelegenen Abschnitt (2) enthalten, welcher ein Peptidlinker ist, und (iii) einen Abschnitt (3), welcher jegliches Polypeptid repräsentierten kann dessen Protein-Protein- Interaktionsfähigkeiten analysiert werden soll. In einer bevorzugten Ausführungsform weisen erfindungsgemäße Bait- Polypeptide in ihrem Abschnitt (1) entweder eine Aminosäuresequenz eines filamentbildenden Polypeptids, eine funktioneile Variante einer filamentbildenden Polypeptid-Sequenz oder ein Fragment hiervon auf, oder eine Aminosäurese- quenz eines Polypeptids, einer funktionellen Variante eines Polypeptids oder eines Polypeptid-Fragments, das an ein filamentbildendes Polypeptid binden kann. Unter einer funktioneilen Variante werden Sequenzen verstanden, die zumindest tw., vorzugsweise mindestens 50%, stärker bevorzugt mindestens 80 % der nativen Sequenz aufweisen und sich durch bspw. Deletion(en), lnsertion(en) und/oder mindestens eine Mutation von der nativen Sequenz unterscheiden. Hierbei ist eine Sequenzhomologie von mindestens 90, vorzugsweise mindestens 95 und am stärksten bevorzugt mindestens 97 % mit der entsprechenden nativen Sequenz bevorzugt. Bei einem funktionellen Fragment kann es sich um N- Terminal, C-terminal oder intrasequentiell verkürzte native filamentbildende Poly- peptid-Sequenzen handeln, insbesondere um gewisse Domänen, vorzugsweise mindestens eine, stärker bevorzugt mindestens eine filamentbildende Domäne der nativen Vollängen-Sequenz. Auch biologisch aktive Varianten dieser Fragmente werden erfindungsgemäß mitoffenbart.
Bevorzugt sind dabei solche filamentbildende Polypeptide, deren funktioneile Va- rianten oder Fragmente eine CARD, DD oder DED Domäne enthalten.
Ganz besonders bevorzugt ist als Abschnitt (1) der Bait-Polypeptide die DD von RIP (Rezeptor-interacting protein), RAIDD (RIP-associated ICH-1/CED-3 homolo- gous protein with a death domain) oder TRADD (TNF receptor 1-associated death domain protein), die DED von FLIP (FLICE-inhibitory protein) oder Caspase-8, oder die CARD von RAIDD, RICK, oder E10, oder die TRADD bindende TRAF (TNF receptor associated factor)-Domäne von TRAF1, TRAF2 oderTRAF3.
Als Prey-Polypeptide sind ganz besonders bevorzugt Polypeptide oder Polypeptid-Domänen in Form von Fusionsproteinen mit fluoreszierenden Proteinen wie DsRED, GFP und GFP-Varianten. Der Linkerabschnitt (2) zwischen den Abschnitten (1) und (3) der Bait- wie auch der Prey-Polypeptide stellt sich bei erfindungsgemäßen Polypeptidkonstrukten bspw. als eine flexible Verbindung dar, die vorzugsweise die intrinsischen Protein- Protein-Interaktionseigenschaften der durch diesen Linker verbundenen Polypep- tid-Domänen nicht wesentlich beeinflußt. In Spezialfälleή, in denen Prey- Polypeptide analysiert werden sollen, die mit multimeren (z.B. dimeren oder trime- ren) Domänen interagieren, oder in denen aus einer Prey-Polypeptid-cDNA- Bibliothek Interaktionspartner für multimerisierte Bait-Polypeptide identifiziert werden sollen, werden vorzugsweise Bait-Polypeptide mit Linker mit intrinsischen Multimerisierungseigenschaften (bspw. Di.- Tri- oder Hexamere) gewählt. Solche Linker werden auch verwendet, um eine erhöhte Stabilität von Prey-Polypeptiden zu erreichen, die eine intrinsische Multimerisierungs-Tendenz aufweisen. Im Falle eines Linkers der als Dimerisierungsmodul (Linkertyp 2a) wirkt, wird beispielsweise die dimerisierende coiled-coil Domäne des Hefe Transkriptionsfaktors GCN4 verwendet.
Ein Trimerisierungsmodul (Linkertyp 2b) als Linker kann bspw. aus der coiled-coil Strukturen bildenden N-TRAF Domäne von TRAF-Proteinen bestehen.
In jedem Fall können die Sequenzen von nativen Polypeptiden oder Fragmenten dieser nativen Polypeptide, die als Linker in Abschnitt (2) eines erfindungsgemä- ßem Polypeptids zum Einsatz kommen, auch in Form biologisch aktiver Varianten derselben im Sinne dieser Erfindung und nach obiger Definition auftreten.
Alternativ sind in Abschnitt (2) andere, natürlich vorkommende oder synthetisch hergestellte Linker-Peptide denkbar. Grundsätzlich kann ein Linker einer nativen oder variierten (Teil)sequenz aller Organismen, vorzugsweise aus Vertebraten, insbesondere aus Säugetieren, vor allem aus dem Menschen, entsprechen. Ferner sind als Linker bspw. alle Sequenzabschnitte von Proteinen geeignet, die durch Ausbildung von Supersekundärstrukturen Di- oder Multimere generieren, z.B. "Coiled-Coil-Helices".
Offenbart werden im Rahmen der vorliegenden Erfindung auch alle sich aus den erfindungsgemäßen Konstrukten durch spezifische Linkerwahl (2) ergebenden Di- oder Multimere, auf die sich die Gesamtoffenbarung zu erfindungsgemäßen Kon- strukten inhaltsgleich bezieht. Insoweit fällt ein Di- oder Multimer von erfindungsgemäßen Polypeptiden nach Maßgabe der vorliegenden Offenbarung immer unter den weiteren Begriff „erfindungsgemäßes Polypeptid".
Ein weiterer Gegenstand der vorliegenden Erfindung sind DNA-Sequenzen, die für Fusionsproteine der vorgenannten erfindungsgemäßen Art kodieren (Nuklein- säurekonstrukte) oder einen solchen für ein erfindungsgemäßes Polypeptid kodierenden Bereich enthalten. Derartige DNA-Sequenzen werden in Expressionsvektoren exprimiert, wobei auch die entsprechenden Expressionsvektoren, die eine DNA-Sequenz für die erfindungsgemäßen Fusionsproteine enthalten, Gegenstand der Erfindung sind. Vorzugsweise'besitzen erfindungsgemäße Vektoren die Fähigkeit zur Expression und/oder Amplifikation in einer prokaryontischen und/oder eukaryontischen Zelle.
Weiterhin gehören zur vorliegenden Erfindung solche Wirtszellen, die mit DNA- Sequenzen (Nukleinsäurekonstrukte), die für die erfindungsgemäßen Fusionsproteine kodieren, stabil oder transient transfiziert sind. Ganz besonders bevorzugt sind in diesem Zusammenhang Wirtszellen, die mit erfindungsgemäßen Expressionsvektoren oder erfindungsgemäßen Nukleinsäurekonstrukten transfiziert sind, wobei die Expressionsvektoren wiederum DNA-Sequenzen enthalten, die für die erfindungsgemäßen Fusionsproteine kodieren. Erfindungsgemäße Nukleinsäurekonstrukte sind dadurch gekennzeichnet, dass sie eine Nukleotidsequenz, kodierend für ein Polypeptid nach einem der vorgenannten Ansprüche, enthalten.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Verfahren zur Expression und Detektion von erfindungsgemäßen Polypeptiden und deren eventueller Protein-Protein-Interaktion, wobei ein erfindungsgemäßes Expressions- und De- tektionsverfahren typischerweise gekennzeichnet ist durch (a) Bereitstellen erfindungsgemäßer Paare von Vektoren oder Nukleinsäurekonstrukten, die für ein filamentbildendes Bait-Polypeptid oder einen ein filamentbildenden Bait- Polypeptid-enthaltenden Komplex kodieren sowie einem oder mehreren Prey- Polypeptiden bzw, Prey-Polypeptid-Banken, (b) Transfektion von Zellen mit ge- maß Verfahrensschritt (a) erhaltenen Vektoren oder Nukleinsäurekonstrukten, (c) Kultivierung der gemäß (b) transfizierten Zellen, und (d) Analyse der möglichen Protein-Protein-Interaktion von unter entsprechenden Bedingungen exprimierten erfindungsgemäßen Polypeptiden aufgrund der Rekrutierung von Prey- Polypeptiden in die Bait-Polypeptid enthaltenden Filamente der Wirtszellen und dem anschließenden Fluoreszenz-technischem Nachweis der Prey-Polypeptide. Der Nachweis der Protein-Protein-Interaktion beruht dabei darauf, daß nur im Fall einer vorliegenden Interaktion von Bait- und Prey-Polypeptid letzteres in Filamen- ten detektiert werden kann. Die Expression der Fusionsproteine erfolgt hierbei typischerweise durch folgende Vorgehensweisen:
1. transiente Kotransfektion eines Vektors kodierend für ein Bait-Polypeptid oder mehreren Vektoren kodierend für die Komponenten eines filamentbildenden Bait- Polypeptid-enthaltenden Komplexes sowie eines ödere mehreren Vektoren, der/die für Prey-Polypeptide kodieren nach dem Stand der Technik in geeigneten Expressionssystemen.
2. Transfektion eines oder mehrer Vektoren kodierend für ein Prey-Polypeptid in Zellen die stabil ein Bait-Polypeptid oder die Komponenten eines filamentbildenden Bait-Polypeptid-enthaltenden Komplexes exprimieren.
3. Transfektion eines oder mehrer Vektoren kodierend für ein Bait-Polypeptid oder mehreren Vektoren kodierend für die Komponenten eines filamentbildenden Bait- Polypeptid-enthaltenden Komplexes in Zellen, die stabil ein Prey-Polypeptid exprimieren.
4. Transfektion eines oder mehrer Vektoren kodierend für ein Bait-Polypeptid oder mehreren Vektoren kodierend für die Komponenten eines filamentbildenden Bait- Polypeptid-enthaltenden Komplexes in einen Pool von Zellen, die jeweils stabil ein oder wenige von Zelle zu Zelle jedoch oft verschiedene Prey-Polypeptide exprimieren (Prey-Polypeptid Library).
Zusammenfassend ist festzustellen, dass erfindungsgemäß Fusionsproteine (bzw. Proteinkomplexe) mit filamentbildenden Eigenschaften (Bait-Polypeptide / Bait-Polypeptid-Komplexe) zur Verfügung gestellt werden, die es erlauben Protein-Protein-Interaktionen auf zellulärer Ebene in lebenden Zellen nachzuweisen, dadurch daß die Rekrutierung interagierender Proteine oder Peptid-Domänen (Prey-Polypeptide) in diese Filamente z.B. mikroskopisch durch Fluoreszenztech- niken (Verwendung von fluoreszierenden Fusionsproteinen, Antikörperfärbung) nachgewiesen wird. Die Prey-Polypeptid-abhängige „Färbung" der Bait- Polypeptid-enthaltenden Filamente ist somit indikativ für das Vorhandensein einer direkten oder, in Einzefällen auch indirekten Protein-Protein-Interaktion zwischen der Bait-Domäne des Bait-Polypeptids und der Prey-Domäne des Prey- Polypeptids.
Die vorliegende Erfindung wird durch die nachfolgenden Figuren näher erläutert.
Figur 1 zeigt filamentbildende Fusionsproteine aus filamentbildenden Polypeptid- Domänen (TRADD, AS 185-328; RIP, AS 558-671; RAIDD, AS 85-199 bzw. 1- 120; RICK, AS 361-540; E10, komplettes Protein; FLIP, AS 1-202; Caspase 8, AS 1-260) und einer heterologen Polypeptiddomäne, die selbst keine filamentbildenden Eigenschaften, besitzt. Um eine einfache Visualisierung der filamentbildenden heterologen Fusionsproteine zu ermöglichen, wurde in diesen Beispielen fluoreszierende Proteine (GFP, YFP) als Fusionspartner der filamentbildenden Poly- peptid-Domäne verwendet. In praktischen Anwendungen werden jedoch anstatt der fluoreszierenden Proteine, solche Polypeptid-Domänen verwendet, die hinsichtlich ihrer Protein-Protein-Interaktions-Möglichkeiten analysiert werden sollen und die selbst nicht fluoreszieren.
Figur 2 zeigt beispielhaft die Rekrutierung verschiedener Prey-Polypeptide (Sentrin-GFP, clAP1-GFP, IKK1-GFP, IKK2-GFP, NEMO-GFP) in die Filamente eines Bait-Proteinkomplexes, der aus TRADD und TRAF1 besteht. Die zelluläre Verteilung des Prey-Polypeptids in der Abwesenheit des Bait-Komplexes oder eines seiner Komponenten ist gleichfalls gezeigt. Da das filamentbildende TRADD Polypeptid und TRAF1 natürlicher Weise miteinander interagieren, ist es in diesem Fall für die Analyse von Protein-Protein-Interaktionen von TRAF1 mit Prey- Polypeptiden nicht notwendig, ein heterologes Bait-Fusionspolypeptid aus der filamentbildenden Domäne von TRADD und TRAF1 zu verwenden.
Figur 3 zeigt beispielhaft die Rekrutierung verschiedener Prey-Polypeptide (TRAF4-GFP, TRAF4-TD-YFP) in die Filamente des Bait-Fusipnsproteins TRAF4- TRADD-DD, das aus TRAF4 und der filamentbildenden Todesdomäne (DD) von TRADD besteht. Die zelluläre Verteilung der Prey-Polypeptide in der Abwesenheit des Bait-Fusionsprotein ist gleichfalls gezeigt. Die Prey-Proteine binden dabei nicht an die filamentbildende TRADD-Todesdomäne allein (Daten nicht gezeigt).
Figur 4 zeigt beispielhaft die Rekrutierung des Prey-Polypeptids TRAF2-GFP in die Filamente des Bait-Fusionsproteins TRAF2-NT-TRADD-DD, das aus der N- terminalen Domäne von TRAF2 und der filamentbildenden Todesdomäne (DD) von TRADD besteht. Die zelluläre Verteilung des Prey-Polypeptids in der Abwesenheit des Bait-Fusionsprotein ist gleichfalls gezeigt. Das Prey-Protein bindet dabei nicht an die filamentbildende TRADD-Todesdomäne allein (Daten nicht ge- zeigt).
Figur 5 zeigt die beispielhaft die FIT-Analyse der Interaktion des IKK-Komplexes mit einer Reihe potentieller Bindeproteine. Expressionsplasmide für die angegebenen GFP-Fusionsproteine (Prey-Polypeptide) wurden jeweils einem Expressi- onsplasmid, das für das filamentbildende Bait-Fusionsprotein IKKγ-TRADD-DD kodiert, kotransfiziert. IKKγ-TRADD-DD ist ein Fusionsprotein aus der Gerüstkomponente IKKγ des IKK-Komplexes, der selbst keine Filamente bildet, und der filamentbildenden Todesdomäne (DD) von TRADD. Dieses Fusionsprotein allein bildet mit hoher Effizienz Filamente wie in (A) durch Antikörperfärbung mit einem TRADD-spezifischen Antikörper und einem Cy5-markiertem Sekundär-Antikörper mittels konfokaler Mikroskopie gezeigt ist. Binden nun GFP-Fusionsproteine, die selbst keine Filamente bilden, direkt oder indirekt an IKKγ-TRADD-DD, ist dies durch mikroskopischen Nachweis fluoreszierender Filamente nachweisbar (in (B) beispielhaft gezeigt für TRAF1 -GFP, dem GFP-Fusionsprotein eines natürlich vorkommenden Spaltprodukts von TRAF1 (TRAF1-TD-GFP) sowie IKK1-GFP, IKK2- GFP und IKKγ-GFP). Zur Quantifizierung wurden ca. 80-120 GFP-Fusionsprotein exprimierende Zellen auf die Anwesenheit von fluoreszierenden Filamenten hin untersucht (C). Es ist bekannt, daß IKK1, IKK2 und IKKγ (auch NEMO genannt) einen stabilen Komplex bildenden, in dem insbesondere mehrere IKKγ Moleküle zu finden sind. In guter Übereinstimmung damit, findet sich in der FIT-Analyse in 95-100 % der transfizierten Zellen eine Rekrutierung von IKK1- GFP, IKK2-GFP und IKKγ-GFP in die IKKγ-TRADD-DD Filamente. Die in diesem FIT-Experiment gefundenen Interaktionen der IKKγ-TRADD-DD Filamente mit den Kinasen NIK und TAK ist gleichfalls in Übereinstimmung mit Literaturdaten. Die Interaktion der IKKγ-TRADD-DD Filamente mit TRAF3, TRAF4 sowie TRAF1 und insbesondere dem TRAF1 -Spaltprodukt TRAF1-TD stellen neue Befunde dar. Um die Spezifität einer Bindung an den interessierenden IKKγ Teil des filamentbildenden Fusionsproteins zu kontrollieren, wurden alle GFP-Fusionsproteine auch mit der filamentbildenden Domäne DD allein kotransfiziert und analysiert. Hierbei konnten mit den verwendeten GFP-Fusionsproteinen in keinem Fall fluoreszierende Filamente gefunden werden. Es ist zu beachten, daß das gesamte TRAF1 schlechter an den IKK-Komplex bindet als das durch Protease-Prozessierung entstehende TRAF1 -Fragment (TRAF1-TD-GFP).
Figur 6 zeigt beispielhaft wie das FIT-Prinzip zur in vivo Analyse der kinetischen Eigenschaften von Protein-Protein-Interaktionen genutzt werden kann. Das in Fi- gur 5 bereits vorgestellte filamentbildende Fusionsprotein IKKγ-TRADD-DD wurde mit TRAF1-GFP (gefüllte Symbole) und TRAF1-TD-GFP (offene Symbole) kotransfiziert. (A) Zur Analyse der Dissoziation der GFP-Fusionsproteine aus IKK- Komplex-Filamenten wurden transfizierte Zellen in einem Gebiet (Region B), das die gesamte Zelle mit Ausnahme eines IKKγ-TRADD-DD-GFP-Fusionsprotein Filaments umfaßt, mit hoher Laserleistung gebleicht und die zeitliche Abnahme der Filamentfluoreszenz bestimmt (FLIP (Fluoreszenz loss of photobleaching)- Analyse, Region M) (oberes Panel). Diese Analysen wurden an mehreren Zellen durchgeführt. Die Auswertung der Daten zeigt, daß beide GFP-Fusionsproteine mit gleicher Kinetik von den IKK-Komplex-Filamenten dissoziieren (unteres Pa- nel). (B) Da die Assoziationskinetik eines Proteins von seiner Konzentration abhängig ist, wurden für die Analyse des Assoziationverhaltens von TRAF1-GFP und TRAF1-TD-GFP an den IKK-Komplex, IKKγ-TRADD-DD-GFP-Fusionsprotein Filamente untersucht, die die gleiche Fluoreszenz-Intensität aufwiesen. Es wurde nun ein definierter Bereich des Filaments (Region M) mit hoher Laserleistung gebleicht und anschließend die zeitliche Zunahme der Filamentfluoreszenz in diesem Bereich bestimmt (FRAP (Fluorescence recovery after photobleaching)- Analyse) (oberes Panel). Diese Analysen wurden gleichfalls an mehreren Zellen durchgeführt. Die Datenauswertung (unteres Panel) zeigt, daß das prozessierte TRAF1 -Fragment wesentlich schneller an die IKKγ-DD Filamente assoziierte als das komplette TRAF1 -Molekül. Da bei gleicher Dissoziationskonstante eine höhere Assoziationsratenkonstante eine höhere Affinität bedingt, erklären diese Mes- sungen sehr gut den in Figur 5 gezeigten Befund, daß das TRAF1-TD-GFP- Fusionsprotein besser als TRAF1-GFP an die IKKγ-TRADD-DD Filamente bindet.
Konstrukt (A): TRAF6-TRADD-DD
NH2-[TRAF6]-[2AS-Linker]-[TRADD(169-312)]-COOH
Konstrukt (B): Myc-TRADD-DD-TNF-R2(cyt)
NH2-[myc-tag]-[2AS-Linker]-ITRADD(169-312)H2AS-Linker]-[TNF-R2(286-461 )]- COOH
Konstrukt (C): yc-Caspase-8(1-277)-TNF-R2(cyt)
NH2-[myc-tag]-[2AS-Linker]-[Caspase-8(1-277)]-[4AS-ünker]-[TNF-R2(286-461)]- COOH
Konstrukt (D): TRAF4-TRADD-DD NH2-[TRAF4]-[2AS-Linker]-[TRADD(169-312)]-COOH
Konstrukt (E): TRAF2-NT-TRADD-DD
NH2-[TRAF6]-[2AS-Linker]-[TRADD(169-312)]-COOH
Konstrukt (F): IKKγ-TRADD-DD
NH2-[IKKγH2AS-Linker]-[TRADD(169-312)]-COOH Die vorliegende Erfindung wird durch die nachfolgenden Ausführungsbeispiele näher erläutert.
Beispiel 1
Koexpression bzw. einzelne Expression erfindungsgemäßer Bait- und Prey- Polypeptide
Beispiel 2
Expression des erfindungsgemäßen Bait-Komplexes aus TRADD und TRAF1
Beispiel 3, 4 und 5 Expression des erfindungsgemäßen Bait-Fusionsproteine TRAF4-TRADD-DD, TRAF2-NT-TRADD-DD und IKKγ-TRADD-DD sowie Rekrutierung von entsprechenden Prey-Proteinen.
Beispiel 6 Analyse der kinetischen Eigenschaften der Interaktion von IKKγ-TRADD-DD mit TRAF1 und TRAF1-TD mit Hilfe von GFP-Fusionsproteinen.
Beispiel 7
Konstruktion der erfindungsgemäßen Polypeptide TRAF2-NT-TRADD-DD, TRAF4-TRADD-DD, TRAF6-TRADD-DD, Myc-TRADD-DD-TNF-R2(cyt), Myc- Caspase-8-TNF-R2(cyt) und IKKγ-TRADD-DD.
Die Fusionsproteine wurden, wie folgt, hergestellt:
TRAF6-TRADD-DD:
1. cDNA für humanes TRAF6 wurde mit den Primern 1 und 2 mittels proof-reading PCR amplifiziert. Durch die PCR wurden im 5'-Ende der Amplicons eine Bgl2- Schnittstelle und in das 3'-Ende eine Sac2-Schnittstelle eingeführt. Nach Verdau mit Bgl2 und Sac2 wurde die TRAF6-cDNA in den mit Bgl2 und Sac2 geschnittenen pEGFP-N1 Vektor eingefügt. Das so erhaltene Konstrukt pEGFP- N1-TRAF6-GFP kodiert für ein TRAF6 Fusionsprotein mit C-terminalem GFP.
2. cDNA für die AS 169-312 + Stopkodon des humanen TRADD (TRADD(169- 312)) wurde mit den Primern 3 und 4 mittels proof-reading PCR amplifiziert. Durch die PCR wurden im 5'-Ende der Amplicons eine Sac2-Schnittstelle und in das 3'-Ende eine Not1 -Schnittstelle eingeführt. Nach Verdau mit Sac2 und Not1 wurde die TRADD(169-312) cDNA in das mit Sac2 und Not1 geschnittenen pEGFP-N1-TRAF6-GFP Plasmid eingefügt. Das durch den Sac2/Not1- Verdau des pEGFP-N1-TRAF6-GFP Plasmids anfallende GFP-cDNA- Fragment wurde zuvor entfernt. Das so erhaltenen Plasmid pEGFP-N1- TRAF6-TRADD-DD kodiert für ein TRAF6-Protein, an das C-terminal einige Linker-kodierte AS sowie DD des TRADD Proteins folgt.
Myc-TRADD-DD-TNF-R2(cyt):
1. cDNA für die N-terminal myc (mit Start-ATG)-getaggten AS 195-312 des humanen TRADD wurden mit den Primern 5 und 6 mittels proof-reading PCR aus einem ein entsprechendes myc-getaggtes TRADD-Fragment kodierendem
Plasmid amplifiziert. Durch die PCR wurden im 5'-Ende der Amplicons eine HindS-Schnittstelle und in das 3'-Ende eine EcoR1 -Schnittstelle eingeführt. Nach Verdau mit Hind3 und EcoR1 wurde die myc-TRADD-cDNA in den mit Hind3 und EcoR1 geschnittenen pcDNA3.1 Vektor eingefügt. Das so erhalte- nen Konstrukt pcDNA3.1-myc-TRADD-DD kodiert für ein N-terminales myc- getaggtes TRADD-Fragment, das die DD des Moleküls beinhaltet.
2. cDNA für die AS 286-461des humanen TNF-R2 wurden mit den Primern 7 und 8 mittels proof-reading PCR aus Kym1-Gesamt-RNA durch RT-PCR amplifi- ziert. Durch die PCR wurden im 5'-Ende der Amplicons eine EcoR1-
Schnittstelle und in das 3'-Ende eine Not1 -Schnittstelle eingeführt. Nach Verdau mit EcoR1 und Not1 wurde die TNF-R2-cDNA-Fragment in das mit EcoR1 und Not1 geschnittenen pcDNA3.1-myc-TRADD-DD Plasmid eingefügt. Das so erhaltenen Konstrukt pcDNA3.1-myc-TRADD-DD-TNFR2(cyt) kodiert für ein N-terminales myc-getaggtes Fusionsprotein, aus einem auf den myc-tag folgenden TRADD-Fragment, das die DD des Moleküls beinhaltet, einigen Lin- ker-kodierten AS und einem C-terminalen Fragment, das für die zytoplasmati- sche Domäne des TNF-R2 kodiert.
Myc-Caspase-8(1-277)-TNF-R2(cyt):
1. cDNA für die AS 1-277 der humanen Caspase-8 wurden mit den Primern 9 und 10 mittels proof-reading PCR aus Kym1-Gesamt-RNA durch RT-PCR amplifiziert. Durch die PCR wurden im 5'-Ende der Amplicons eine BamH1- Schnittstelle und in das 3'-Ende eine EcoR5-Schnittstelle eingeführt. Nach Verdau mit BamH1 und EcoR5 wurde das Caspase-8-cDNA-Fragment in den mit BamH1 und EcoRδ geschnittenen pcDNA3.1-myc-TRADD-DD Vektor klo- niert, aus dem durch diesen Verdau gleichzeitig das TRADD-Fragment dele- tiert wurde. Das so erhaltenen Konstrukt pcDNA3.1-myc-Caspase-8(1-277) kodiert für ein N-terminal, myc-getaggtes Caspase-8 Fragment, das u.a. die DED des Moleküls enthält.
2. cDNA für die AS 286-461 des humanen TNF-R2 wurden mit den Primern 7 und 8 mittels proof-reading PCR aus Kym1-Gesamt-RNA durch RT-PCR amplifiziert. Durch die PCR wurden im 5'-Ende der Amplicons eine EcoR5- Schnittstelle und in das 3'-Ende eine Not1 -Schnittstelle eingeführt. Nach Verdau mit EcoRδ und Not1 wurde die TNF-R2-cDNA-Fragment in das mit EcoR5 und Not1 geschnittenen pcDNA3.1-myc-Caspase-8(1-277) Plasmid eingefügt.
Das so erhaltenen Konstrukt pcDNA3.1-myc-Caspase-8(1-277)-TNFR2(cyt) kodiert für ein N-terminales myc-getaggtes Fusionsprotein aus einem auf den myc-tag folgenden Caspase-8-Fragment, das die DED des Moleküls beinhaltet, einigen Linker-kodierten AS und einem C-terminalen Fragment, das für die zytoplasmatische Domäne des TNF-R2 kodiert.
TRAF4-TRADD-DD: 1. cDNA für humanes TRAF4 wurde mit den Primern 11 und 12 mittels proof- reading PCR amplifiziert. Durch die PCR wurden im 5'-Ende der Amplicons eine BamH1 -Schnittstelle und in das 3'-Ende eine Sac2-Schnittstelle eingeführt. Nach Verdau mit BamH1 und Sac2 wurde die TRAF4-CDNA in den mit Bgl2 und Sac2 geschnittenen pEGFP-N1 Vektor eingefügt. Das so erhaltene Konstrukt pEGFP-N1-TRAF4-GFP kodiert für ein TRAF4 Fusionsprotein mit C- terminalem GFP und einer zwischen TRAF4 und GFP liegenden Linker.
2. cDNA für die AS 169-312 + Stopkodon des humanen TRADD wurde mit den Primern 3 und 4 mittels proof-reading PCR amplifiziert. Durch die PCR wurden im 5'-Ende der Amplicons eine Sac2-Schnittstelle und in das 3'-Ende eine Not1 -Schnittstelle eingeführt. Nach Verdau mit Sac2 und Not1 wurde die TRADD(169-312) cDNA in das mit Sac2 und Not1 geschnittene pEGFP-N1- TRAF4-GFP Plasmid eingefügt. Das durch den Sac2/Not1 -Verdau des pEGFP-N1-TRAF4-GFP Piasmids anfallende GFP-cDNA-Fragment wurde zuvor entfernt. Das so erhaltenen Konstrukt pEGFP-N1-TRAF4-TRADD-DD kodiert für ein TRAF4-Protein, einigen Linker-kodierten AS auf die C-terminal die DD des TRADD Proteins folgt.
TRAF2-NT-TRADD-DD
1. cDNA für die N-terminalen 272 Aminosäuren des humanen TRAF2 (TRAF2- NT) wurde mit den Primern 13 und 14 mittels proof-reading PCR amplifiziert. Durch die PCR wurden im 5'-Ende der Amplicons eine BamH1 -Schnittstelle und in das 3'-Ende eine Sac2-Schnittstelle eingeführt. Nach Verdau mit BamH1 und Sac2 wurde die TRAF2-NT-cDNA in den mit Bgl2 und Sac2 geschnittenen pEGFP-N1 Vektor eingefügt. Das so erhaltene Konstrukt pEGFP- N1-TRAF2-NT-GFP kodiert für ein C-terminales Fusionsprotein der N- terminalen 180 Aminosäuren des TRAF2-Proteins mit GFP.
2. cDNA für die AS 169-312 + Stopkodon des humanen TRADD wurde aus dem Komnstrukt TRAF6-TRADD-DD durch Restriktionsverdau mit Sac2 und Not1 gewonnen. Nach Verdau des Piasmids pEGFP-N1-TRAF2-NT-GFP mit Sac2 und Not1 wurde das TRADD(169-312) cDNA-Fragment in dieses eingefügt. Das durch den Sac2/Not1 -Verdau des pEGFP-N1-TRAF2-NT-GFP Plasmid anfallende GFP-cDNA-Fragment wurde zuvor entfernt. Das so erhaltenen Plasmid pEGFP-N1-TRAF2-NT-TRADD-DD kodiert für ein Fusionsprotein be- stehend aus den 272 N-terminalen Aminosäuren des TRAF2-Proteins, einigen
Linker-kodierten AS sowie der DD des TRADD Proteins.
IKKγ-TRADD-DD
1. cDNA für die gesamte kodierende Region des humanen IKKD (auch NEMO genannt) wurde mit den Primern 15 und 16 mittels proof-reading PCR amplifiziert. Durch die PCR wurden im 5'-Ende der Amplicons eine BamH1- Schnittstelle und in das 3'-Ende eine Sac2-Schnittstelle eingeführt. Nach Verdau mit BamH1 und Sac2 wurde die IKKD-cDNA in den mit Bgl2 und Sac2 geschnittenen pEGFP-N1 Vektor eingefügt. Das so erhaltene Konstrukt pEGFP- N1-IKKD-GFP kodiert für ein C-terminales Fusionsprotein des IKKD-Proteins mit GFP.
2. cDNA für die AS 169-312 + Stopkodon des humanen TRADD wurde aus dem Komnstrukt TRAF6-TRADD-DD durch Restriktionsverdau mit Sac2 und Not1 gewonnen. Nach Verdau des Piasmids pEGFP-N1-IKKD-GFP mit Sac2 und
Not1 wurde das TRADD(169-312) cDNA-Fragment in dieses eingefügt. Das durch den Sac2/Not1 -Verdau des pEGFP-N1-IKKD-GFP Plasmid anfallende GFP-cDNA-Fragment wurde zuvor entfernt. Das so erhaltenen Plasmid pEGFP-N1-IKKD-TRADD-DD kodiert für ein Fusionsprotein bestehend aus dem kompletten IKKD-Protein, einigen Linker-kodierten AS sowie der DD des
TRADD Proteins.
Alle Klonierungs- und PCR-Amplifikationsschritte erfolgten nach üblichen Standardprozeduren mit den nachfolgenden Primern. Alle Konstrukte wurden zur Veri- fikation der cDNA-Sequenz sequenziert. Die Aminosäure-Numerierung und cDNA Sequenzverifikation erfolgte aufgrund der in der Genbank abgelegten und öffentlich zugänglichen Informationen (humanes TRAF2, Accession-No: U12597; hu- manes TRAF4, Accession-No: X80200; humanes TRAF6, Accession-No: U78798; humanes TRADD, Accession-No: L41690; humanen TNF-R2, Accession-No: M55994; humane Caspase-8, Accession-No: NM001228, human IKKγ (NEMO), Accession-No.: NM003639).
Primer 1 :
5' GAC CAC AGA TCT GTT ACT ATG AGT CTG CTA AAC TGT G 3'
Primer 2: 5' CGG CTC GAG TTA CCG CGG GAG ATC CTC CAG GTC AGT TTA GTC 3' Primer 3: 5' ACA CAT CCG CGG GGT GGC GAC GGG GAG GTC GCT TCG 3'
Primer 4: 5' TTT ATA GCG GCC GCA GGT CTA GGC CAG GCC GCC ATT GGG 3'
Primer 5:
5' CCC AAG CTT GTC AAC ATG GCA TCA ATG CAG AAG CTG ATC 3'
Primer 6:
5' CCG GAA TTC GGC CAG GCC GCC ATT GGG ATC GGT 3'
Primer 7:
5' CCG GAT ATC GAA TTC CAG GTG AAA AAG AAG CCC TTG TGC 3'
Primer 8:
5' AAA TAT GCG GCC GCA CAG CCC ACA CCG GCC TGG TTA ACT 3'
Primer 9: 5' CGC GGG ATC CCC ATG GAC TTC AGC AGA AAT CTT TAT GAT 3'
Primer 10: 5' CCG GAT ATC CCT GTC CCT AAT GCT GTG AAG TTT GGG 3'
Primer 11
5' CAC GGA TCC CCC GCC ATG CCT GGC TTC GAC TAG 3'
Primer 12
5' CGG CTC CAG TTA CCG CGG GCT GAG GAT CTT CCG GGG CAG TTC 3'
Primer 13 5' CGG GAT CCT CTC ATG GCT GCA GCT AGC GTG ACC CCC CCT GGC 3'
Primer 14
5' TCC CCG CGG GCACCT CTG CAG GAG CTCTGA CCC 3'
Primer 15
5' CGG GAT CCT TGG ATG AAT AGG CAC CTC TGG AAG 3'
Primer 16
5' TCC CCG CGG CTC AAT GCA CTC CAT GAC ATG TAT CTG 3'
1 Verwendete Abkürzungen:
CARD caspase-recruitment domain
CFP cyan fluorescent protein clAP cellular inhibitor of apoptosis
DD death domain
DED death effector domain"
DsRED Discosom sp. Red
FADD Fas-associated protein with death domain
FIT Filament-based Interaction Trap
FITC Fluorescein Isothiocyanat
FLICE FADD-like ICE
FLIP FLICE inhibitory protein
GFP green fluorescent protein
IKK inhibitor of kappaB kinase
NEMO NF-kappaB essential Modulator
RAIDD RIP-associated ICH-1/CED-3-homologous protein with a death domain
RICK RIP-like mteracting CLARP kinase
RIP receptor interacting protein
TD TRAF domain
TNF Tumor-Nekrose-Faktor
TRADD TNF receptor-1 associated protein with death domain
TRAF TNF receptor associated factor
YFP yellow fluorescent protein

Claims

Ansprüche
1. Verfahren zur Detektion und Analyse von Protein-Protein Wechselwirkun- gen, zur molekularen Identifikation neuer Protein Interaktionspartner sowie zum „Screening" von Wirkstoffen, die mit Protein-Protein Wechselwirkungen interferieren. Das Verfahren kann in lebenden oder permeabilisierten oder fixierten Zellen oder zellfrei durchgeführt werden.
2. Verfahren nach Anspruch (1), wobei eine Protein-Protein Wechselwirkung fluoreszensmikroskopisch dadurch sichtbar gemacht wird, dass einer der
Interaktionspartner 1.) die intrinsische Eigenschaft der Polymerisierung und der morphologisch charakteristischen Aggregatbildung hat sowie 2.) eine weitere Domäne (Bait-Domäne genannt) aufweist, die spezifische Wechselwirkungen mit heterologen Proteinen eingeht; der andere Interaktions- partner (Prey-Protein genannt) ist ein im Prinzip lösliches Protein, welches nur aufgrund seiner Wechselwirkung mit der Bait- Domäne des multimeri- sierten Proteins als polymeres Aggregat nachweisbar wird. Durch Fluoreszenzmarkierung des löslichen Prey-Proteins wird bei Anwesenheit eines Bait-Domäne enthaltenden Proteins/Proteinkomplexes eine Zustandsände- rung von löslichem Protein hin zu einer für das Bait-Protein typischen mikroskopisch sichtbaren Struktur.
3. Verfahren nach Anspruch 1und 2, wobei die Bait-Domäne eine intrinsische Eigenschaft eines natürlichen, polymeren Proteins darstellt oder aber durch Standard gentechnische Verfahren ein künstliches Fusionsprotein beste- hend aus einer Polymerisierungsdomäne- und einer Bait-Domäne hergestellt wird unter Erhaltung einer charakteristischen makromolekularen Struktur (Beispielsweise Filamente).
4. Verfahren nach Anspruch 1-3, wobei der Prey-Protein genannte Interaktionspartner entweder als Fusionsprotein mit einer der spektralen Varianten des Green Fluorescent Proteins (GFP) oder anderer Fluoreszenzproteine exprimiert wird oder durch chemische Konjugation mit niedermolekularen Fluorochromen (z.B. FITC, Cy3, Cy5) nach dem Stand der Technik fluo- reszenzmarkiert wird, oder durch Prey-spezifische fluoreszenzmarkierte Antikörper detektiert wird.
5. Automatisierte Verfahren nach Anspruch 1-4 zum Screening von Gen- Expressionsbibliotheken zur Identifikation neuer Proteinwechselwirkungen.
6. Automatisierte Verfahren nach Anspruch 1-4 zur Target Identifikation bzw. Validierung von pharmazeutischen Wirkstoffen.
7. Automatisierte Verfahren nach Anspruch 1-4 zum Hoch-Durchsatz- Wirkstoff Screening.
PCT/EP2003/002707 2002-03-15 2003-03-14 Filament-rekrutierung fluoreszierender proteine zur analyse und identifikation von protein-protein-interaktionen WO2003079024A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003209735A AU2003209735A1 (en) 2002-03-15 2003-03-14 Filament-recruiting fluorescent proteins for the analysis and identification of protein-protein-interactions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002111653 DE10211653A1 (de) 2002-03-15 2002-03-15 Filament-Rekrutierung fluoreszierender Proteine zur Analyse und Identifikation von Protein-Protein-Interaktionen: FIT (Filament-based Interaction Trap) analysis
DE10211653.9 2002-03-15

Publications (1)

Publication Number Publication Date
WO2003079024A1 true WO2003079024A1 (de) 2003-09-25

Family

ID=27797824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/002707 WO2003079024A1 (de) 2002-03-15 2003-03-14 Filament-rekrutierung fluoreszierender proteine zur analyse und identifikation von protein-protein-interaktionen

Country Status (3)

Country Link
AU (1) AU2003209735A1 (de)
DE (1) DE10211653A1 (de)
WO (1) WO2003079024A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060483A2 (en) * 2006-11-10 2008-05-22 Cellumen, Inc. Protein-protein interaction biosensors and methods of use thereof
EP2210104A1 (de) * 2007-11-01 2010-07-28 The Arizona Board Of Regents On Behalf Of The University of Arizona Zellfreie verfahren zum nachweis von protein-ligand-wechselwirkungen
US8114615B2 (en) 2006-05-17 2012-02-14 Cernostics, Inc. Method for automated tissue analysis
US10018631B2 (en) 2011-03-17 2018-07-10 Cernostics, Inc. Systems and compositions for diagnosing Barrett's esophagus and methods of using the same
CN108780098A (zh) * 2016-01-06 2018-11-09 剑桥企业有限公司 基于化学动力学识别新型蛋白质聚集抑制剂的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013069A1 (en) * 1997-09-09 1999-03-18 The University Of British Columbia Repressed trans-activator system for characterization of protein-protein interactions
WO2001087919A2 (en) * 2000-05-12 2001-11-22 Yale University Methods of detecting interactions between proteins, peptides or libraries thereof using fusion proteins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013069A1 (en) * 1997-09-09 1999-03-18 The University Of British Columbia Repressed trans-activator system for characterization of protein-protein interactions
WO2001087919A2 (en) * 2000-05-12 2001-11-22 Yale University Methods of detecting interactions between proteins, peptides or libraries thereof using fusion proteins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KRAFT T ET AL: "COUPLING OF CREATINE KINASE TO GLYCOLYTIC ENZYMES AT THE SARCOMERIC I-BAND A SKELETAL MUSCLE: A BIOCHEMICAL STUDY IN SITU", JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, CHAPMAN, LONDON, GB, vol. 21, no. 7, 2000, pages 691 - 703, XP009010737, ISSN: 0142-4319 *
REMY I ET AL: "CLONAL SELECTION AND IN VIVO QUANTITATION OF PROTEIN INTERACTONS WITH PROTEIN-FRAGMENT COMPLEMENTATION ASSAYS", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 96, no. 10, 11 May 1999 (1999-05-11), pages 5394 - 5399, XP001008795, ISSN: 0027-8424 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114615B2 (en) 2006-05-17 2012-02-14 Cernostics, Inc. Method for automated tissue analysis
US8597899B2 (en) 2006-05-17 2013-12-03 Cernostics, Inc. Method for automated tissue analysis
WO2008060483A2 (en) * 2006-11-10 2008-05-22 Cellumen, Inc. Protein-protein interaction biosensors and methods of use thereof
WO2008060483A3 (en) * 2006-11-10 2008-10-16 Cellumen Inc Protein-protein interaction biosensors and methods of use thereof
EP2210104A1 (de) * 2007-11-01 2010-07-28 The Arizona Board Of Regents On Behalf Of The University of Arizona Zellfreie verfahren zum nachweis von protein-ligand-wechselwirkungen
EP2210104A4 (de) * 2007-11-01 2011-02-23 Univ Arizona State Zellfreie verfahren zum nachweis von protein-ligand-wechselwirkungen
US8241860B2 (en) 2007-11-01 2012-08-14 The Arizona Board Of Regents Of Behalf Of The University Of Arizona Cell free methods for detecting protein-ligand binding
US10018631B2 (en) 2011-03-17 2018-07-10 Cernostics, Inc. Systems and compositions for diagnosing Barrett's esophagus and methods of using the same
CN108780098A (zh) * 2016-01-06 2018-11-09 剑桥企业有限公司 基于化学动力学识别新型蛋白质聚集抑制剂的方法
CN108780098B (zh) * 2016-01-06 2021-12-17 剑桥企业有限公司 基于化学动力学识别新型蛋白质聚集抑制剂的方法

Also Published As

Publication number Publication date
AU2003209735A1 (en) 2003-09-29
DE10211653A1 (de) 2003-10-02

Similar Documents

Publication Publication Date Title
DE69635653T2 (de) Peptide als vektoren zur intrazellulären adressierung von aktiven molekülen
DE69936103T2 (de) Fusionsproteine bestehend aus proteingerüst und bibliotheken von zufälligen peptiden
WO2002083906A1 (de) Mhc-tetramere
EP0875567A2 (de) Myc-bindende Zinkfinger-Proteine, ihre Herstellung und ihre Verwendung
DE69832908T2 (de) Verfahren zum Inkorporieren von Aminosäureanalogen durch Verwendung von einem hypertonischen Wachstumsmedium
DE60319817T2 (de) Genetisch-enkodierte Bioindikatoren von Kalziumionen
EP1537142B1 (de) Akap18 delta, eine neue spleissvariante eines proteinkinase a-ankerproteins und verwendung dieser
WO2003079024A1 (de) Filament-rekrutierung fluoreszierender proteine zur analyse und identifikation von protein-protein-interaktionen
DE10247014A1 (de) MHC-Multimere
DE69832299T2 (de) Einkettige polypeptide enthaltend troponin i und troponin c
DE60031414T2 (de) Einkettige polypeptide enthaltend n-terminale troponin i fragmente und troponin c
EP0969284A1 (de) Untersuchung von Wechselwirkungen zwischen zellulären Molekülen und deren Lokalisation in Zellen
EP3049530A2 (de) Verfahren und vorrichtung zur zellfreien proteinsynthese in gegenwart eines caspase-inhibitors
EP1007968B1 (de) Verfahren und kit zur identifizierung von wechselwirkungen zwischen proteinen bzw. peptiden
EP2513305B1 (de) Sekretionssystem auf basis einer hydrophobin-signalsequenz aus trichoderma reesei
EP1068233B1 (de) Transkriptionsfaktoren und deren verwendung
AT511130A2 (de) Polypeptidmaterial mit flexiblen Poreneigenschaften
EP1298440B1 (de) Funktionelles Screening für Transkriptionsfaktoren
WO2004016649A2 (de) Verfahren zur herstellung eines künstlichen polypeptids und nach diesem verfahren hergestelltes künstliches protein
DE10036342C2 (de) Verfahren zur Bestimmung räumlicher Abstände in Polymeren oder Komplexen von Polymeren mit Hilfe von Gemischen von Cross-Linker Molekülen
DE10233082A1 (de) Fluoreszierendes Protein
DE19829005C2 (de) Verfahren zum Transport molekularer Substanz in vorgegebene Bereiche eukaryontischer Zellen
DE102009058169B4 (de) Protein oder Polypeptid zur Bindung an Tubulin und/oder Mikrotubulistrukturen
DE19738710A1 (de) Verwendung von TIRC7 zur Herstellung von Mitteln zur Inhibition der Immunantwort
DE19840875A1 (de) Mittel zur Diagnose und zur Therapie von Tumorerkrankungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP