WO2003078906A1 - Kälteanlage für zu kühlende teile einer einrichtung - Google Patents

Kälteanlage für zu kühlende teile einer einrichtung Download PDF

Info

Publication number
WO2003078906A1
WO2003078906A1 PCT/DE2003/000619 DE0300619W WO03078906A1 WO 2003078906 A1 WO2003078906 A1 WO 2003078906A1 DE 0300619 W DE0300619 W DE 0300619W WO 03078906 A1 WO03078906 A1 WO 03078906A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
line
parts
vacuum
refrigerant
Prior art date
Application number
PCT/DE2003/000619
Other languages
English (en)
French (fr)
Inventor
Michael Frank
Peter Van Hasselt
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP03714661A priority Critical patent/EP1485660B1/de
Priority to JP2003576874A priority patent/JP3955022B2/ja
Priority to DE50306376T priority patent/DE50306376D1/de
Priority to US10/507,848 priority patent/US7174737B2/en
Publication of WO2003078906A1 publication Critical patent/WO2003078906A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • Refrigeration system for parts of a facility to be cooled
  • the invention relates to a refrigeration system with a cold head, which is thermally coupled to parts of a device to be cooled via a line system for a refrigerant circulating according to a thermosiphon effect.
  • a corresponding refrigeration system can be found in WO 00/13296 A.
  • metal oxide superconductor materials with transition temperatures T c have been known since 1987 of over 77 K. The latter materials are also referred to as high (high) T c superconductor materials or HTS materials.
  • cooling units in the form of so-called cryocoolers with a closed He compressed gas circuit are preferably used in the temperature range mentioned.
  • cryocoolers are in particular of the Gifford-McMahon or Stirling type or are designed as so-called pulse tube coolers.
  • Corresponding cold Units also have the advantage that the cooling capacity is available at the push of a button and the user is spared the handling of cryogenic liquids.
  • a device of superconductivity technology such as a magnetic coil or a transformer winding is only indirectly cooled by heat conduction to a cold head of a refrigerator (cf. e.g. also "Proc. 16 th Int. Cryog. Engng.Conf. [ICEC 16p, Kitakyushu , JP, May 20-24, 1996, Elsevier Science Verlag, 1997, pages 1109 to 1129).
  • a corresponding cooling technology is also provided for the superconducting rotor of an electrical machine which can be gathered from the WO-A document mentioned at the beginning.
  • the rotor contains a winding made of HTS conductors, which can be kept at a desired operating temperature well below 77 K using a cooling unit designed as a cryocooler.
  • the refrigeration unit contains a cold head located outside the rotor. Its colder side is thermally coupled to the winding via neon as a refrigerant, which circulates using a thermophone effect in a line system that has parts that protrude into the rotor up to the winding. In the event of a malfunction in the refrigeration unit, in particular its cold head, in the event of a repair or replacement thereof, the operating state of the winding to be cooled can hardly be maintained.
  • EP 0 696 380 B1 also shows a superconducting magnet of an MRI device which has a refrigeration system for cooling its superconducting winding, which comprises two refrigeration units in the form of cryocoolers.
  • the two cold heads of these cryocoolers are thermally coupled to a solid heat-conducting body, which is in heat-conducting connection with the parts of the winding to be cooled.
  • the cold heads of the two cryocoolers are each housed in their own vacuum space, so that the second can be switched off during operation of one cryocooler and / or is interchangeable.
  • additional heat conduction losses due to a cold head that has possibly been switched off have to be accepted as a rule.
  • the object of the present invention is to design the refrigeration system with the features mentioned at the outset such that when cooling using a refrigerant circulating in line parts using a thermosiphon effect, continuous cooling operation is possible without the risk of significant heat conduction losses the circulating refrigerant is present.
  • At least one further cold head is provided, which is connected in parallel to the first cold head by means of a branching of the line system, line parts of the line system running between the branching and the two cold heads being at least partially poorly heat-conducting.
  • a poorly heat-conducting pipe section is understood here to mean that the heat introduced into the area of the respective cold head by its tubular material is negligibly small in comparison to the available cooling capacity of the head.
  • the refrigeration system designed according to the invention thus comprises several separate areas, in which the recondensation of the refrigerant or one in a thermosiphon line system
  • thermosiphon line system allows, with negligible additional heat input, economical operation at part load, in which not all of them built-in cold heads must be in operation at the same time.
  • This makes it possible, in particular, to replace a cold head, for example for maintenance or repair reasons, while at the same time maintaining the operating temperature on the parts of the superconducting device to be cooled with the aid of the remaining cold head or cold heads.
  • the branched line sections can be designed to be sufficiently flexible, for example in the area of bends, to allow mechanical compensation of temperature-related changes in length, which inevitably occur in cold heads at different temperature levels.
  • the poorly heat-conducting line pieces can preferably each consist at least partially of a poorly heat-conductive metallic material or, if appropriate, even of a plastic material. This not only achieves the desired thermal decoupling of the two cold heads from the parts to be cooled via the wall material of the pipe sections; any stretching problems are also manageable.
  • the device to be cooled can be located in the interior of a vacuum vessel, the cold heads with end parts protruding into the vacuum vessel, to which the line pieces are thermally coupled. An undesired introduction of heat into the area of the device to be cooled can thus be limited.
  • the cold heads can advantageously have cold surfaces at the ends to which end spaces of the line pieces are thermally coupled, in which cooling or condensation of the refrigerant takes place.
  • a refrigerant flow using the desired thermosiphon effect can be stimulated in this way.
  • the end parts of the cold heads can be surrounded by separate (own) vacuum (partial) spaces, in particular to facilitate maintenance or repair interventions, these, for example, in the region of the ends of the cold heads or on the line pieces by means of poorly heat-conductive, vacuum-tight connecting pieces can be separable from the rest of the interior of the vacuum vessel.
  • the system according to the invention is particularly suitable for parts of the device to be cooled which contain superconducting material, preferably high-T 0 superconducting material, which is also to be kept at a temperature below 77K.
  • thermosiphon line systems with different refrigerants can be planned.
  • FIG. 1 shows a first embodiment of a refrigeration system
  • FIG. 2 shows a special further development of this system.
  • corresponding parts are provided with the same reference symbols.
  • the refrigeration system according to the invention can be used wherever there are multiple cold sources for cooling spatially extensive parts of any facility is provided.
  • the parts to be cooled can be metallic or non-metallic, electrically conductive, in particular superconducting, or also non-conductive.
  • the parts to be cooled are a superconducting winding of an electrical machine (see, for example, WO 00/13296 A or US 5,482,919 A) or a superconducting magnet (for example, see US 5,396,206 A or US) 6,246,308 Bl).
  • a refrigeration system indicated in FIG. 1 can preferably be provided for a corresponding application.
  • the refrigeration system is intended to cool parts 3a of a device 3, such as a superconducting magnet, not shown in the figure.
  • the cooling takes place with the aid of a liquid and / or gaseous refrigerant K or working medium such as He, for example, which circulates in a line system 5 using a thermosiphon effect.
  • the line system 5 can therefore also be referred to as a thermosiphon line system.
  • the cooling capacity is provided by two cooling units 7a and 8a, of which only their cold heads 7 and 8 are indicated in the figure.
  • These cold heads are intended to be located essentially outside a vacuum vessel 9, which is used for thermal insulation of the device 3 accommodated in its interior 9a with its parts 3a to be cooled.
  • the cold heads only protrude into the interior 9a of the vessel with thermally highly conductive end parts 7b and 8b, where they form cold surfaces 7c and 8c at their lower ends facing the device 3.
  • thermosiphon line system 5 with a plurality of separate condenser spaces 11a, 12a, in which the refrigerant K can recondense as part of a thermosiphon process.
  • the line pieces 11 and 12 merge at a branch 13 of the line system 5 into a common line part 14, which leads into the area of the device 3 to be cooled.
  • the line pieces 11 and 12 are to be at least partially of poor thermal conductivity. In this way a mutual thermal decoupling of the two cold heads is possible, so that a single condenser space 11a or 12a e.g. can be warmed up to room temperature without significant heat being supplied to the parts to be cooled or to the refrigerant K located in the interior of the line system.
  • the line pieces 11 and 12 can advantageously be designed in such a way that different expansion compensation is also possible.
  • the line pieces 11 and 12 each made of poorly heat-conducting metals such. B. consist of special steels or Cu alloys. Special low-temperature plastic materials, which can also be fiber-reinforced, or ceramic materials may also be considered. Different materials and / or different design forms can also be provided for these line pieces.
  • the line pieces can e.g. Bends, for example spiral shapes, which allow thermal changes in length to compensate.
  • the second one could take over (emergency) cooling after a cooling period, during which time the first one can be warmed up, replaced or repaired without the cooling of the System is affected.
  • the cooling period if maintenance work can be carried out on a cold head without impairing the cooling, it should be possible to separate the vacuum spaces required for thermal insulation, on the one hand, for the thermosiphon line system and, on the other hand, the cold heads. Then each cold head can be removed individually without affecting the thermal insulation of the rest of the thermosiphon line system.
  • a corresponding embodiment is shown in Figure 2.
  • the two end parts 7b and 8b of their cold heads 7 and 8 are advantageously each in a separate vacuum subspace 15a and 15b.
  • thermosiphon line system 5 and the cold heads 7 and 8 are advantageously made as poorly heat-conducting as possible. According to FIG. 2, this connection is made between the warm vacuum vessel 9 and the thermosyhon line system 5, which is cold during operation, in the region of its condenser spaces 11a and 12a.
  • this connection can also be provided directly on the pipe system at other points on the line sections 11 and 12 with a significantly smaller diameter.
  • ⁇ 16 and 17 respectively designated lines, a corresponding separation can, for example, according to the cross-sectionally enlarged end spaces 11a and 12a schedule.
  • a refrigeration system according to the invention can of course also be designed with a plurality of thermosiphon line systems, at least one of which is a parallel connection of must have two cold heads by branching this system.
  • thermosiphon line systems at least one of which is a parallel connection of must have two cold heads by branching this system.
  • Several such systems can be used in parallel with different refrigerants and thus, depending on the requirements of the application, graded working temperatures, eg for pre-cooling, a quasi-continuous thermal coupling or a quasi-continuous thermal coupling due to overlapping working temperature ranges of the refrigerants.
  • graded working temperatures eg for pre-cooling
  • a quasi-continuous thermal coupling or a quasi-continuous thermal coupling due to overlapping working temperature ranges of the refrigerants.
  • condenser rooms with separate condensation areas for the different work equipment or several individual condenser rooms are attached to a cold head or the cold heads.
  • the refrigerant K only consists of a single component, such as He or Ne.
  • mixtures of at least two refrigerant components such as N 2 + Ne with different condensation temperatures can also be provided as refrigerants.
  • the gas with the highest condensation temperature can initially condense and form a closed circuit for heat transfer to the parts of the device to be cooled. After these parts have been pre-cooled to the triple point temperature of this gas, it will freeze out in the region of the condenser spaces, whereupon at least one cold head is cooled down to the condensation temperature of the next gas mixture component.
  • the individual components of the gas mixture can be selected in such a way that it is advantageous to implement quasi-continuous cooling with optimal utilization of the cooling capacity of the respective cold head.
  • the operation of a cold head at a higher temperature at the beginning of the cooling phase leads to a correspondingly higher cooling capacity and thus permits significantly shorter cooling times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

Kälteanlage für zu kühlende Teile einer Einrichtung Die Kälteanlage (2) weist mindestens zwei Kaltköpfe (7, 8) auf, die thermisch an zu kühlende Teile (3a) einer insbesondere supraleitenden Einrichtung (3) über ein Leitungssystem (5) angekoppelt sind, in dem ein Kältemittel (K) nach einem Thermosyphon-Effekt zirkuliert. Mittels einer Verzweigung (13) des Leitungssystems (5) sind die Kaltköpfe (7, 8) parallelgeschaltet, wobei zwischen der Verzweigung (13) und den Kaltköpfen (7, 8) verlaufende Leitungsstücke (11, 12) des Leitungssystems (5) jeweils zumindest teilweise schlechtwärmeleitend ausgebildet sind.

Description

Beschreibung
Kälteanlage für zu kühlende Teile einer Einrichtung
Die Erfindung bezieht sich auf eine Kälteanlage mit einem Kaltkopf, welcher thermisch an zu kühlende Teile einer Einrichtung über ein Leitungssystem für ein nach einem Thermo- syphon-Effekt zirkulierendes Kältemittel angekoppelt ist. Eine entsprechende Kälteanlage ist der WO 00/13296 A zu ent- nehmen .
Neben den seit langem bekannten metallischen Supraleitermaterialien wie z.B. NbTi oder NbSn, die sehr niedrige Sprungtemperaturen Tc besitzen und deshalb auch als Niedrig (Low) - Tc-Supraleitermaterialien oder LTS-Materialien bezeichnet werden, kennt man seit 1987 metalloxidische Supraleitermaterialien mit Sprungtemperaturen Tc von über 77 K. Letztere Materialien werden auch als Hoch (High) -Tc-Supraleitermate- rialien oder HTS-Materialien bezeichnet.
Mit Leitern unter Verwendung solcher HTS-Materialien versucht man, auch supraleitende Wicklungen zu erstellen. Wegen ihrer bislang noch verhältnismäßig geringen Stromtragfähigkeit in Magnetfeldern insbesondere mit Induktionen im Tesla-Bereich werden vielfach die Leiter solcher Wicklungen trotz der an sich hohen Sprungtemperaturen der verwendeten Materialien dennoch auf einem unterhalb von 77 K liegenden Temperaturniveau, beispielsweise zwischen 10 und 50 K gehalten, um so bei Feldstärken von einigen Tesla nennenswerte Ströme tragen zu können.
Zur Kühlung von Wicklungen mit HTS-Leitern kommen in dem genannten Temperaturbereich bevorzugt Kälteeinheiten in Form von sogenannten Kryokühlern mit geschlossenem He- Druckgaskreislauf zum Einsatz. Solche Kryokühler sind insbesondere vom Typ Gifford-McMahon oder Stirling oder sind als sogenannte Pulsröhrenkühler ausgebildet. Entsprechende Kälte- einheiten haben zudem den Vorteil, dass die Kälteleistung quasi auf Knopfdruck zur Verfügung steht und dem Anwender die Handhabung von tiefkalten Flüssigkeiten erspart wird. Bei einer Verwendung solcher Kälteeinheiten wird eine Einrichtung der Supraleitungstechnik wie z.B. eine Magnetspule oder eine Transformatorwicklung nur durch Wärmeleitung zu einem Kaltkopf eines Refrigerators indirekt gekühlt (vgl. z.B. auch „Proc. 16th Int. Cryog. Engng.Conf. [ICEC 16p, Kitakyushu, JP, 20. - 24.05.1996, Verlag Elsevier Science, 1997, Seiten 1109 bis 1129) .
Eine entsprechende Kühltechnik ist auch für den aus der eingangs WO-A-Schrift entnehmbaren supraleitenden Rotor einer elektrischen Maschine vorgesehen. Der Rotor enthält eine Wicklung aus HTS-Leitern, die mittels einer als Kryokühler gestalteten Kälteeinheit auf einer gewünschten Betriebstemperatur deutlich unter 77 K zu halten ist. Die Kälteeinheit enthält einen außerhalb des Rotors befindlichen Kaltkopf. Dessen kältere Seite ist thermisch an die Wicklung über Neon als Kältemittel gekoppelt, das unter Ausnutzung eines Ther o- syphon-Effektes in einem Leitungssystem zirkuliert, welches in den Rotor bis zur Wicklung hineinragende Teile aufweist. Bei einem Störungsfall der Kälteeinheit, insbesondere ihres Kaltkopfes, bei einer Reparatur oder einem Austausch dessel- ben kann jedoch der Betriebszustand der zu kühlenden Wicklung kaum aufrecht erhalten werden.
Aus der EP 0 696 380 Bl geht ferner ein supraleitender Magnet einer MRI-Einrichtung hervor, der zur Kühlung seiner supra- leitenden Wicklung eine Kälteanlage aufweist, die zwei Kälteeinheiten in Form von Kryokühlern umfasst. Die beiden Kaltköpfe dieser Kryokühler sind dabei thermisch an einen massiven Wärmeleitungskörper angekoppelt, der in wärmeleitender Verbindung mit den zu kühlenden Teilen der Wicklung steht. Die Kaltköpfe der beiden Kryokühler sind dabei jeweils in einem eigenen Vakuumraum untergebracht, so dass während des Betriebs des einen Kryokühlers der zweite abschaltbar und/oder austauschbar ist. Wegen der gut wärmeleitend ausgeführten Verbindung mehrerer Kaltköpfe zu den gleichen zu kühlenden Teilen müssen jedoch im Regelfall zusätzliche Wärmeleitungsverluste durch einen eventuell abgeschalteten Kalt- köpf in Kauf genommen werden.
Aufgabe der vorliegenden Erfindung ist es, die Kälteanlage mit den eingangs genannten Merkmalen dahingehend auszugestalten, dass bei einer Kühlung unter Verwendung eines in Lei- tungsteilen unter Ausnutzung eines Thermosyphon-Effektes zirkulierenden Kältemittels einen kontinuierlichen Kühlbetrieb zu ermöglichen, ohne dass die Gefahr von wesentlichen Wärmeleitungsverlusten über das zirkulierende Kältemittel gegeben ist.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass wenigstens ein weiterer Kaltkopf vorgesehen ist, der mittels einer Verzweigung des Leitungssystems zu dem ersten Kaltkopf parallelgeschaltet ist, wobei zwischen der Verzweigung und den beiden Kaltköpfen verlaufende Leitungsstücke des Leitungssystems jeweils zumindest teilweise schlecht-wärmeleitend ausgebildet sind. Unter einem schlecht-wärmeleitenden Leitungsstück sei hierbei verstanden, dass die von seinem rohrförmigen Material verursachte Wärmeeinleitung in den Be- reich des jeweiligen Kaltkopfes vernachlässigbar gering im Vergleich zur verfügbaren Kälteleistung des Kopfes ist.
Die erfindungsgemäß ausgeführte Kälteanlage umfasst also mehrere getrennte Bereiche, an denen in einem Thermosyphon-Lei- tungssystem die Rekondensation des Kältemittels bzw. eines
Arbeitsgases stattfindet. Die damit verbundenen Vorteile sind insbesondere darin zu sehen, dass auf einfache Weise eine thermische Ankopplung entsprechend vieler Kaltköpfe ermöglicht wird. Die hinreichend schlechte Wärmeleitung in den Leitungsstücken des Thermosyphon-Leitungssystems erlaubt dann bei vernachlässigbarer zusätzlicher Wärmeeinleitung auch einen bei Teillast wirtschaftlich Betrieb, bei dem nicht alle eingebauten Kaltköpfe gleichzeitig in Betrieb sein müssen. Damit wird insbesondere ein Austausch eines Kaltkopfes z.B. aus Wartungs- oder Reparaturgründen bei gleichzeitiger Aufrechterhaltung der Betriebstemperatur an den zu kühlenden Teilen der Supraleitungseinrichtung mit Hilfe des oder der verbleibenden Kaltkopfes/Kaltköpfe ermöglicht. Außerdem können wegen der Verzweigung von Leitungsteilen die verzweigten Leitungsstücke hinreichend flexibel gestaltet werden, um z.B. im Bereich von Biegungen einen mechanischen Ausgleich von temperaturbedingten Längenänderungen zu ermöglichen, die sich bei Kaltköpfen auf unterschiedlichen Temperaturniveaus zwangsläufig einstellen.
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Kälteanla- ge gehen aus den abhängigen Ansprüchen hervor.
So können die schlecht-wärmeleitenden Leitungsstücke bevorzugt jeweils zumindest teilweise aus einem schlecht-wärmeleitenden metallischen Werkstoff oder gegebenenfalls sogar aus einem Kunststoffmaterial bestehen. Damit ist nicht nur die gewünschte thermische Entkopplung der beiden Kaltköpfe von den zu kühlenden Teilen über das Wandmaterial der Leitungsstücke zu erreichen; auch eventuelle Dehnungsprobleme sind so beherrschbar .
Ferner kann sich die zu kühlende Einrichtung im Innenraum eines Vakuumgefäßes befinden , wobei die Kaltköpfe mit Endteilen in das Vakuumgefäß hineinragen, an denen die Leitungsstücke thermisch angekoppelt sind. Eine Begrenzung einer un- erwünschten Wärmeeinleitung in den Bereich der zu kühlenden Einrichtung ist so zu erreichen.
Dabei können vorteilhaft die Kaltköpfe endseitige Kaltflächen aufweisen, an die Endräume der Leitungsstücke thermisch an- gekoppelt sind, in denen eine Abkühlung bzw. Kondensation des Kältemittels erfolgt. Ein Kältemittelfluss unter Ausnutzung des gewünschten Thermosyphon-Effektes lässt sich so anfachen. Die Endteile der Kaltköpfe können insbesondere zur Erleichterung von Wartungs-oder Reparatureingriffen an diesen von separaten (eigenen) Vakuum (teil) räumen umgeben sein, wobei die- se z.B. im Bereich der Enden der Kaltköpfe oder an den Leitungsstücken mittels schlecht-wärmeleitender, vakuumdichter Verbindungsstücke gegenüber dem restlichen Innenraum des Vakuumgefäßes abtrennbar sein können.
Besonders geeignet ist die erfindungsgemäße Anlage für zu kühlenden Teile der Einrichtung, die supraleitendes Material, vorzugsweise Hoch-T0-Supraleitermaterial, enthalten, das auch auf einer Temperatur unter 77 K zu halten ist.
Im Hinblick auf eine effektive Abkühlung der zu kühlenden Teile der Einrichtung kann vorteilhaft als Kältemittel ein Gemisch aus mehreren Kältemittelkomponenten mit unterschiedlichen Kondensationstemperaturen vorgesehen werden. Stattdessen oder zusätzlich kann man auch mehrere Thermosyphon-Lei- tungssysteme mit unterschiedlichen Kältemitteln einplanen.
Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Kälteanlage gehen aus den vorstehend nicht angesprochenen abhängigen Ansprüchen hervor.
Nachfolgend werden zwei bevorzugte Ausführungsbeispiele von Kälteanlagen nach der Erfindung für eine insbesondere supraleitende Einrichtung an Hand der Zeichnung noch weiter erläutert. Dabei zeigen jeweils schematisch in einem Längsschnitt deren Figur 1 eine erste Ausführungsform einer Kälteanlage sowie deren Figur 2 eine besondere Weiterbildung dieser Anlage. In den Figuren sind sich entsprechende Teile mit denselben Bezugszeichen versehen.
Die erfindungsgemäße Kälteanlage kann überall dort zum Einsatz kommen, wo mehrere Kältequellen zur Kühlung von auch räumlich ausgedehnten Teilen einer beliebigen Einrichtung vorgesehen wird. Dabei können ihre zu kühlenden Teile metallisch oder nicht-metallisch, elektrisch leitend, insbesondere supraleitend, oder auch nicht-leitend sein. In einem speziellen Anwendungsfall handelt es sich bei den zu kühlenden Teilen um eine supraleitende Wicklung einer elektrischen Maschine (vgl. z.B. die genannten WO 00/13296 A oder die US 5,482,919 A) oder einen supraleitenden Magneten (z.B. vgl. z.B. US 5,396,206 A oder US 6,246,308 Bl).
Ein weiterer Anwendungsfall kann sein, zur Zeitersparnis während einer Abkühlung der zu kühlenden Teile einer Einrichtung zwei Kaltköpfe gleichzeitig zu betreiben, während im normalen Betrieb nur ein Kaltkopf die Betriebstemperatur aufrecht er- hält. Für einen entsprechenden Anwendungsfall kann bevorzugt eine in der Figur 1 angedeutete Kälteanlage vorgesehen werden. Die allgemein mit 2 bezeichnete Kälteanlage soll zur Kühlung von Teilen 3a einer in der Figur nicht näher ausgeführten Einrichtung 3 wie z.B. eines supraleitenden Magneten dienen. Die Kühlung erfolgt mit Hilfe eines flüssigen und/oder gasförmigen Kältemittels K bzw. Arbeitsmediums wie z.B. He, das in einem Leitungssystem 5 unter Ausnutzung eines Thermosyphon-Effektes zirkuliert. Das Leitungssystem 5 kann deshalb auch als Thermosyphon-Leitungssystem bezeichnet wer- den. Die Kälteleistung wird von zwei Kälteeinheiten 7a und 8a erbracht, von denen in der Figur jeweils nur deren Kaltköpfe 7 bzw. 8 angedeutet sind. Diese Kaltköpfe sollen sich dabei im Wesentlichen außerhalb eines Vakuumgefäßes 9 befinden, das zur thermischen Isolation der in seinem Innenraum 9a unterge- brachten Einrichtung 3 mit ihren zu kühlenden Teilen 3a dient. Bei der speziellen Ausführungsform nach Figur 1 ragen die Kaltköpfe nur mit thermisch gut-leitenden Endteilen 7b bzw. 8b in den Innenraum 9a des Gefäßes hinein und bilden dort an ihren unteren, der Einrichtung 3 zugewandten Enden Kaltflächen 7c bzw. 8c aus. Unmittelbar an diese Kaltflächen sind als Kondensorräume 11a bzw. 12a anzusehende Endräume von zwei Leitungsstücken 11 bzw. 12 des Leitungssystems 5 ther- misch angekoppelt. Bei der erfindungsgemäß ausgestalteten Kälteanlage 2 ist also ein Thermosyphon-Leitungssystem 5 mit mehreren getrennten Kondensorräumen 11a, 12a vorhanden, in denen das Kältemittel K im Rahmen eines Thermosyphon-Prozesses rekondensieren kann. Die Leitungsstücke 11 und 12 gehen an einer Verzweigung 13 des Leitungssystems 5 in einen gemeinsamen Leitungsteil 14 über, der in den Bereich der zu kühlenden Einrichtung 3 führt. Man kann so von einer Parallelschaltung der beiden Kaltköpfe 7 und 8 mittels der Verzweigung 13 und der beiden Leitungsstücke 11 und 12 sprechen.
Erfindungsgemäß sollen die Leitungsstücke 11 und 12 zumindest teilweise hinreichend schlecht-wärmeleitend ausgebildet sein. Auf diese Weise ist eine gegenseitige thermische Entkopplung der beiden Kaltköpfe möglich, so dass ein einzelner Kondensorraum 11a oder 12a z.B. bis auf Raumtemperatur aufgewärmt werden kann, ohne dass eine nennenswerte Wärmezufuhr zu den zu kühlenden Teilen bzw. zu dem in dem Inneren des Leitungssystems befindlichen Kältemittel K erfolgt. Dabei lassen sich die Leitungsstücke 11 und 12 vorteilhaft so ausgestalten, dass auch ein unterschiedlicher Dehnungsausgleich ermöglicht ist. Beispielsweise können die Leitungsstücke 11 und 12 jeweils aus schlecht-wärmeleitenden Metallen wie z. B. aus speziellen Stählen oder Cu-Legierungen bestehen. Gegebenenfalls kommen auch besondere tieftemperaturtaugliche Kunststoffmaterialien, die auch faserverstärkt sein können, oder auch keramische Materialien in Frage. Für diese Leitungsstücke lassen sich dabei auch unterschiedliche Materialien und/oder unterschiedliche Gestaltungsformen vorsehen. So können die Lei- tungsstücke z.B. Biegungen, beispielsweise Spiralformen, aufweisen, die thermisch bedingte Längenänderungen auszugleichen gestatten.
Bei einem eventuellen Ausfall eines der Kaltköpfe könnte der zweite nach einer Abkühlungszeit eine (Not-) Kühlung übernehmen, währenddessen man den ersten dann in Ruhe aufwärmen, austauschen bzw. reparieren kann, ohne dass die Kühlung des Systems beeinträchtigt wird. Für diesen Fall der möglichen Ausführung von Wartungsarbeiten an einem Kaltkopf ohne Beeinträchtigung der Kühlung sollten die zur thermischen Isolation im Regelfall erforderlichen Vakuumräume für einerseits das Thermosyphon-Leitungssystem und andererseits die Kaltköpfe voneinander abgetrennt werden können. Dann kann jeder Kaltkopf einzeln demontiert werden, ohne die thermische Isolierung des restlichen Thermosyphon-Leitungssystems zu beeinträchtigen. Ein entsprechendes Ausführungsbeispiel geht aus Figur 2 hervor. Bei der angedeuteten und mit 20 bezeichneten Kälteanlage befinden sich die beiden Endteile 7b und 8b ihrer Kaltköpfe 7 bzw. 8 vorteilhaft jeweils in einem separaten Vakuumteilraum 15a bzw. 15b. Diese Teilräume werden nachfolgend dem Vakuumgefäßes 9 zugerechnet, obwohl sie auch an dieses Gefäß angefügt sein können. Auf alle Fälle sind diese Vakuumteilräume gegenüber dem restlichen, die zu kühlende Einrichtung 3 aufnehmenden Innenraum 9a des Vakuumgefäßes z.B. im Bereich der Kaltflächen 7c bzw. 8c mittels vakuumdichter Verbindungsstücke 16 und 17 abgetrennt. Die erforderliche vaku- umdichte Verbindung zwischen dem Thermosyphon-Leitungssystem 5 und den Kaltköpfen 7 und 8 wird dabei vorteilhaft möglichst schlecht wärmeleitend ausgeführt. Gemäß der Figur 2 ist diese Verbindung zwischen dem warmen Vakuumgefäß 9 und dem im Betrieb kalten Thermosyhon-Leitungssystem 5 im Bereich seiner Kondensorräume 11a und 12a ausgeführt. Gegebenenfalls kann aber auch zur Optimierung der an dieser Kalt-Warm-Verbindung auftretenden thermischen Verluste diese Verbindung direkt an dem Rohrsystem auch an anderen Stellen der Leitungsstücke 11 und 12 bei deutlich kleinerem Durchmesser vorgesehen werden. Wie in der Figur durch gestrichelte, mit 16 λ bzw. 17 bezeichnete Linien angedeutet sein soll, lässt sich eine entsprechende Abtrennung beispielsweise nach den querschnittsmäßig erweiterten Endräumen 11a bzw. 12a einplanen.
Selbstverständlich lässt sich eine erfindungsgemäße Kälteanlage auch mit mehreren Thermosyphon-Leitungssystemen konzipieren, von denen mindestens eines eine Parallelschaltung von zwei Kaltköpfen mittels einer Verzweigung dieses Systems aufweisen muss. Mehrere solcher Systeme können mit unterschiedlichen Kältemitteln und damit je nach Anforderung der Anwendung entsprechend abgestuften Arbeitstemperaturen, z.B. für eine Vorkühlung, eine quasi kontinuierliche thermische An- kopplung oder eine quasi kontinuierliche thermische Ankopp- lung durch überlappende Arbeitstemperaturbereiche der Kältemittel parallel eingesetzt werden. Hierzu werden entweder Kondensorräume mit voneinander getrennten Kondensationsberei- chen für die verschiedenen Arbeitsmittel oder mehrere einzelne Kondensorräume an einem Kaltkopf bzw. den Kaltköpfen angebracht.
Bei den anhand der Figuren erläuterten Ausführungsbeispielen von Kälteanlagen 2 oder 20 wurde ferner davon ausgegangen, dass das Kältemittel K nur aus einer einzigen Komponente wie z.B. He oder Ne besteht. Ebensogut können aber auch als Kältemittel Gemische aus mindestens zwei Kältemittel-Komponenten wie z.B. aus N2+Ne mit unterschiedlichen Kondensationste pe- raturen vorgesehen werden. Dann kann folglich bei einer allmählichen Abkühlung wenigstens eines der Kaltköpfe zunächst das Gas mit der höchsten Kondensationstemperatur kondensieren und einen geschlossenen Kreislauf zur Wärmeübertragung an die zu kühlenden Teile der Einrichtung ausbilden. Nach einer Vor- kühlung dieser Teile bis zur Tripelpunktstemperatur dieses Gases wird dieses im Bereich der Kondensorräume ausfrieren, worauf zumindest ein Kaltkopf bis zur Kondensationstemperatur der nächsten Gasgemischkomponente abgekühlt wird. Die einzelnen Komponenten den Gasgemischs lassen sich dabei so auswäh- len, dass vorteilhaft eine quasi kontinuierliche Abkühlung bei optimaler Ausnutzung der Kälteleistung des jeweiligen Kaltkopfes zu realisieren ist. Der Betrieb eines Kaltkopfes bei einer höheren Temperatur zu Beginn der Abkühlungsphase führt nämlich zu einer entsprechend größeren Kälteleistung und erlaubt damit wesentlich kürzere Abkühlzeiten.

Claims

Patentansprüche
1. Kälteanlage mit einem Kaltkopf, welcher thermisch an zu kühlende Teile einer Einrichtung über ein Leitungssystem für ein nach einem Thermosyphon-Effekt zirkulierendes Kältemittel angekoppelt ist, d a d u r c h g e k e n n z e i c h e t , dass wenigstens ein weiterer Kaltkopf (8) vorgesehen ist, der mittels einer Verzweigung (13) des Leitungssystems (5) zu dem ersten Kaltkopf (7) parallelgeschaltet ist, wobei zwischen der Verzweigung (13) und den beiden Kaltköpfen (7 bzw. 8) verlaufende Leitungsstücke (11 bzw. 12) des Leitungssystems (5) jeweils zumindest teilweise schlecht-wärmeleitend ausgebildet sind.
2. Anlage nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die schlecht-wärmeleitenden Leitungsstücke (11, 12) jeweils zumindest teilweise aus einem schlecht-wärmeleitenden metallischen Werkstoff oder einem Kunststoff bestehen.
3. Anlage nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass die Einrichtung (3) im Innenraum (9a) eines Vakuumgefäßes (9) angeordnet ist und dass die Kaltköpfe (7, 8) mit Endteilen (7b bzw. 8b) in das Vaku- umgefäß (9) hineinragen, an denen die Leitungsstücke (11, 12) thermisch angekoppelt sind.
4. Anlage nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , dass die Kaltköpfe (7, 8) endseitige Kaltflächen (7c bzw. 8c) aufweisen, an die Endräume (11a bzw. 12a) der Leitungsstücke (11, 12) thermisch angekoppelt sind, in denen eine Abkühlung bzw. Kondensation des Kältemittels (K) erfolgt.
5. Anlage nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , dass die Endräume (11a, 12a) querschnittsmäßig erweitert sind.
6. Anlage nach einem der Ansprüche 3 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass zumindest die Endteile (7b, 8b) der Kaltköpfe (7, 8) von separaten Vakuumräumen (15a, 15b) umgeben sind, die mittels schlecht-wärmeleitender, vakuumdichter Verbindungsstücke (16, 17 bzw. 16 λ, 17 ) gegenüber dem Innenraum (9a) des Vakuumgefäßes (9) abgetrennt sind.
7. Anlage nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass sich die Verbindungsstücke (16, 17) zwischen endseitigen Kaltflächen (7c bzw. 8c) der Endteile (7b, 8b) und dem Vakuumgehäuse (9) erstrecken (Figur 1) .
8. Anlage nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass sich die Verbindungsstücke (16 λ, 17 ) zwischen den Leitungsstücken (11, 12) und dem Vakuumgehäuse (9) erstrecken (Figur 2) .
9. Anlage nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die zu kühlenden Teile (3a) der Einrichtung (3) supraleitendes Material enthalten.
10. Anlage nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass das supraleitende Material Hoch-Tc- Supraleitermaterial ist.
11. Anlage nach Anspruch 9 oder 10, d a d u r c h g e - k e n n z e i c h n e t , dass das supraleitende Material auf einer Temperatur unter 77 K zu halten ist.
12. Anlage nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass als Kälte- mittel (K) ein Gemisch aus mehreren Kältemittelkomponenten mit unterschiedlichen Kondensationstemperaturen vorgesehen ist.
13. Anlage nach einem der vorangehenden Ansprüche, g e k e n n z e i c h n e t durch mehrere Thermosyphon- Leitungssysteme .
PCT/DE2003/000619 2002-03-15 2003-02-26 Kälteanlage für zu kühlende teile einer einrichtung WO2003078906A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03714661A EP1485660B1 (de) 2002-03-15 2003-02-26 Kälteanlage für zu kühlende teile einer einrichtung
JP2003576874A JP3955022B2 (ja) 2002-03-15 2003-02-26 冷凍設備
DE50306376T DE50306376D1 (de) 2002-03-15 2003-02-26 Kälteanlage für zu kühlende teile einer einrichtung
US10/507,848 US7174737B2 (en) 2002-03-15 2003-02-26 Refrigeration plant for parts of installation, which are to be chilled

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10211568.0 2002-03-15
DE10211568A DE10211568B4 (de) 2002-03-15 2002-03-15 Kälteanlage für zu kühlende Teile einer Einrichtung

Publications (1)

Publication Number Publication Date
WO2003078906A1 true WO2003078906A1 (de) 2003-09-25

Family

ID=27815671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000619 WO2003078906A1 (de) 2002-03-15 2003-02-26 Kälteanlage für zu kühlende teile einer einrichtung

Country Status (5)

Country Link
US (1) US7174737B2 (de)
EP (1) EP1485660B1 (de)
JP (1) JP3955022B2 (de)
DE (2) DE10211568B4 (de)
WO (1) WO2003078906A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048973A (ja) * 2005-08-10 2007-02-22 Sumitomo Heavy Ind Ltd 冷凍機冷却型超電導磁石装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361885B3 (de) * 2003-12-19 2004-12-09 Siemens Ag Kälteanlage mit einem eine Anschlussfläche für einen Kaltkopf aufweisenden Kondensor
TW200605758A (en) * 2004-07-21 2006-02-01 Metal Ind Res & Dev Ct Closed-loop cycling type heat-dissipation apparatus
DE102005002361B3 (de) * 2005-01-18 2006-06-08 Siemens Ag Kälteanlage eines Gerätes der Supraleitungstechnik mit mehreren Kaltköpfen
DE102006046688B3 (de) 2006-09-29 2008-01-24 Siemens Ag Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
DE102006059139A1 (de) 2006-12-14 2008-06-19 Siemens Ag Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
EP2161758A1 (de) * 2008-09-05 2010-03-10 Flexucell ApS Solarzelle und Verfahren zu dessen Herstellung
US8676282B2 (en) 2010-10-29 2014-03-18 General Electric Company Superconducting magnet coil support with cooling and method for coil-cooling
FR2975176B1 (fr) * 2011-05-09 2016-03-18 Air Liquide Dispositif et procede de refroidissement cryogenique
JP2013144099A (ja) * 2011-12-12 2013-07-25 Toshiba Corp 磁気共鳴イメージング装置
CN109945596B (zh) * 2019-03-05 2024-01-16 中国工程物理研究院激光聚变研究中心 温度梯度型低温环境制备装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862321A (en) * 1987-09-30 1989-08-29 Hitachi, Ltd. Cooling system for heating body
US5396206A (en) 1994-03-14 1995-03-07 General Electric Company Superconducting lead assembly for a cryocooler-cooled superconducting magnet
US5482919A (en) 1993-09-15 1996-01-09 American Superconductor Corporation Superconducting rotor
EP0696380B1 (de) 1994-02-25 1999-07-07 General Electric Company Supraleitender magnet
DE19914778A1 (de) * 1998-03-31 1999-10-07 Toshiba Kawasaki Kk Supraleitende Magnetvorrichtung
US5970720A (en) * 1994-07-15 1999-10-26 Japan Atomic Energy Research Institute Combined refrigerators and detecting system using the same
WO2000013296A1 (en) 1998-08-26 2000-03-09 American Superconductor Corporation Superconductor rotor cooling system
JP2000146333A (ja) * 1998-11-10 2000-05-26 Daikin Ind Ltd 極低温冷凍機のオーバーホール装置およびオーバーホ−ル方法
US6173761B1 (en) * 1996-05-16 2001-01-16 Kabushiki Kaisha Toshiba Cryogenic heat pipe
US6246308B1 (en) 1999-11-09 2001-06-12 General Electric Company Superconductive magnet including a cryocooler coldhead
US6354087B1 (en) * 1998-05-22 2002-03-12 Sumitomo Electric Industries, Ltd Method and apparatus for cooling superconductor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234059A (ja) * 1985-04-10 1986-10-18 Hitachi Ltd 半導体素子の沸謄冷却装置
JPH04159467A (ja) * 1990-10-22 1992-06-02 Sanyo Electric Co Ltd 極低温膨張機
US5333460A (en) * 1992-12-21 1994-08-02 Carrier Corporation Compact and serviceable packaging of a self-contained cryocooler system
US6104934A (en) * 1995-08-09 2000-08-15 Spectral Solutions, Inc. Cryoelectronic receiver front end
US6173577B1 (en) * 1996-08-16 2001-01-16 American Superconductor Corporation Methods and apparatus for cooling systems for cryogenic power conversion electronics
JP3547916B2 (ja) * 1996-09-20 2004-07-28 三洋電機株式会社 クライオポンプ
JPH10282200A (ja) * 1997-04-09 1998-10-23 Aisin Seiki Co Ltd 超電導磁石システムの冷却装置
US5953930A (en) * 1998-03-31 1999-09-21 International Business Machines Corporation Evaporator for use in an extended air cooling system for electronic components
JP2000114609A (ja) * 1998-10-07 2000-04-21 Fujitsu Ltd 断熱槽、恒温槽およびクライオスタット
US6122920A (en) * 1998-12-22 2000-09-26 The United States Of America As Represented By The United States Department Of Energy High specific surface area aerogel cryoadsorber for vacuum pumping applications
US6761212B2 (en) * 2000-05-25 2004-07-13 Liebert Corporation Spiral copper tube and aluminum fin thermosyphon heat exchanger
DE10039964A1 (de) * 2000-08-16 2002-03-07 Siemens Ag Supraleitungseinrichtung mit einer Kälteeinheit zur Kühlung einer rotierenden, supraleitenden Wicklung
US6553773B2 (en) * 2001-05-15 2003-04-29 General Electric Company Cryogenic cooling system for rotor having a high temperature super-conducting field winding
US6536510B2 (en) * 2001-07-10 2003-03-25 Thermal Corp. Thermal bus for cabinets housing high power electronics equipment
US6388882B1 (en) * 2001-07-19 2002-05-14 Thermal Corp. Integrated thermal architecture for thermal management of high power electronics

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862321A (en) * 1987-09-30 1989-08-29 Hitachi, Ltd. Cooling system for heating body
US5482919A (en) 1993-09-15 1996-01-09 American Superconductor Corporation Superconducting rotor
EP0696380B1 (de) 1994-02-25 1999-07-07 General Electric Company Supraleitender magnet
US5396206A (en) 1994-03-14 1995-03-07 General Electric Company Superconducting lead assembly for a cryocooler-cooled superconducting magnet
US5970720A (en) * 1994-07-15 1999-10-26 Japan Atomic Energy Research Institute Combined refrigerators and detecting system using the same
US6173761B1 (en) * 1996-05-16 2001-01-16 Kabushiki Kaisha Toshiba Cryogenic heat pipe
DE19914778A1 (de) * 1998-03-31 1999-10-07 Toshiba Kawasaki Kk Supraleitende Magnetvorrichtung
US6354087B1 (en) * 1998-05-22 2002-03-12 Sumitomo Electric Industries, Ltd Method and apparatus for cooling superconductor
WO2000013296A1 (en) 1998-08-26 2000-03-09 American Superconductor Corporation Superconductor rotor cooling system
JP2000146333A (ja) * 1998-11-10 2000-05-26 Daikin Ind Ltd 極低温冷凍機のオーバーホール装置およびオーバーホ−ル方法
US6246308B1 (en) 1999-11-09 2001-06-12 General Electric Company Superconductive magnet including a cryocooler coldhead

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOJIC M ET AL: "Controlling evaporative three finger thermosyphon", ENERGY CONVERSION AND MANAGEMENT, ELSEVIER SCIENCE PUBLISHERS, OXFORD, GB, vol. 43, no. 5, March 2002 (2002-03-01), pages 709 - 720, XP004331560, ISSN: 0196-8904 *
KITAKYUSHU: "Proc.16th Int.Cryog.Engng.Conf.[ICEC 16]20-24.05.1996", VERLAG ELSEVIER SCIENCE, 1 January 1997 (1997-01-01), JP, pages 1109BIS - 1129
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 08 6 October 2000 (2000-10-06) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048973A (ja) * 2005-08-10 2007-02-22 Sumitomo Heavy Ind Ltd 冷凍機冷却型超電導磁石装置
JP4563281B2 (ja) * 2005-08-10 2010-10-13 住友重機械工業株式会社 冷凍機冷却型超電導磁石装置

Also Published As

Publication number Publication date
US7174737B2 (en) 2007-02-13
DE10211568A1 (de) 2003-10-09
EP1485660A1 (de) 2004-12-15
DE10211568B4 (de) 2004-01-29
JP3955022B2 (ja) 2007-08-08
JP2005521019A (ja) 2005-07-14
US20050150242A1 (en) 2005-07-14
EP1485660B1 (de) 2007-01-24
DE50306376D1 (de) 2007-03-15

Similar Documents

Publication Publication Date Title
EP1504458B1 (de) Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit
EP1655616B1 (de) NMR-Spektrometer mit Refrigeratorkühlung
DE102004060832B3 (de) NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
DE102005028414B4 (de) Einrichtung zur Erzeugung eines gepulsten Magnetfelds
EP2066991B1 (de) Kälteanlage mit einem warmen und einem kalten verbindungselement und einem mit den verbindungselementen verbundenen wärmerohr
DE102005041383B4 (de) NMR-Apparatur mit gemeinsam gekühltem Probenkopf und Kryobehälter und Verfahren zum Betrieb derselben
EP1336236B1 (de) Supraleitungseinrichtung mit einem thermisch an eine rotierende, supraleitende wicklung angekoppelten kaltkopf einer kälteeinheit
DE69838866T2 (de) Verbesserungen in oder mit Bezug auf Kryostatsystemen
EP1206667B1 (de) Supraleitungseinrichtung mit einer kälteeinheit für eine rotierende, supraleitende wicklung
DE10211568B4 (de) Kälteanlage für zu kühlende Teile einer Einrichtung
EP0958585B1 (de) Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung
EP1504516B1 (de) Supraleitungseinrichtung mit thermisch an eine rotierende supraleitende wicklung angekoppeltem kaltkopf einer kälteeinheit
DE102006059139A1 (de) Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
EP1742234B1 (de) Unterkühlte Horizontalkryostatanordnung
DE102005002361B3 (de) Kälteanlage eines Gerätes der Supraleitungstechnik mit mehreren Kaltköpfen
WO2003079522A1 (de) Supraleitungseinrichtung mit einem thermisch an eine rotierende, supraleitende wicklung angekoppelten kaltkopf einer kälteeinheit mit thermosyphoneffekt
EP3467852B1 (de) Magnetanordnung mit kryostat und magnetspulensystem, mit kältespeichern an den stromzuführungen
EP0947849A2 (de) Supraleitende Einrichtung mit Leitern aus Hoch-Tc-Supraleitermaterial
EP3861573B1 (de) Supraleitende strombegrenzereinrichtung mit stromzuführung
DE10211363A1 (de) Supraleitungseinrichtung mit einem thermisch an eine rotierende, supraleitende Wicklung angekoppelten Kaltkopf einer Kälteeinheit mit Thermosyphoneffekt
DE19938985A1 (de) Einrichtung der Supraleitungstechnik mit einer rotierenden, supraleitenden Wicklung
DE102011005685A1 (de) Vorrichtung zur Kühlung eines Bulk-Supraleiters oder einer supraleitenden Spule einer Magnetresonanzeinrichtung, Magnetresonanzeinrichtung und Magnetlager

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003714661

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003576874

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10507848

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003714661

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003714661

Country of ref document: EP