EP0958585B1 - Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung - Google Patents

Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung Download PDF

Info

Publication number
EP0958585B1
EP0958585B1 EP98907881A EP98907881A EP0958585B1 EP 0958585 B1 EP0958585 B1 EP 0958585B1 EP 98907881 A EP98907881 A EP 98907881A EP 98907881 A EP98907881 A EP 98907881A EP 0958585 B1 EP0958585 B1 EP 0958585B1
Authority
EP
European Patent Office
Prior art keywords
power supply
regenerator
pulse tube
supply apparatus
cold head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98907881A
Other languages
English (en)
French (fr)
Other versions
EP0958585A1 (de
Inventor
Florian Steinmeyer
Hans-Peter KRÄMER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0958585A1 publication Critical patent/EP0958585A1/de
Application granted granted Critical
Publication of EP0958585B1 publication Critical patent/EP0958585B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1419Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Definitions

  • the invention relates to a power supply device with at least one between a higher temperature level and a lower temperature level electrical Pipe at its low-temperature end connected to a cooled electrical device and thermally coupled to a cold head of a pulse tube cooler which has a regenerator and a pulse tube.
  • a power supply device is e.g. from "Advances in Cryogenic Engineering ", Vol. 41, 1996, pages 1443 until 1447.
  • cryogenic systems One of the main problems in the design of cryogenic systems is the efficient introduction of relatively large currents into superconducting or semiconducting devices, such as are provided, for example, for magnetic field generation or for short-circuit current limitation or for voltage transformation or for current transmission.
  • the greatest thermal leak in an insulated cryocontainer is often caused by the at least one electrical conductor of the power supply device, which is between a higher temperature level, in particular at room temperature of about 300 K, and a lower temperature level of, for example, 77 K, the temperature of the liquid nitrogen LN 2 . runs on which the electrical device can be located. If the electrical line of the power supply device running between these temperature levels cannot be constructed with little loss and the resulting heat loss is not effectively dissipated, the cooling effort alone can question the technical or economic meaning of the entire system.
  • Line cooled power supplies are generally cooled only by conduction from a cold end. If you optimize the dimensions so that the sum of the Joule losses of the metal of the line with a specific resistance ⁇ (T) and due to the heat transport determined by the temperature-dependent thermal conductivity ⁇ (T) is minimal, then the specific loss is, that is Heat input per unit current, for copper about 43 W / kA when considering a single electrical line (see the magazine "IEEE Transactions on Magnetics", Vol. MAG-13, No. 1, 1977, pages 690 to 693).
  • the enthalpy of a vaporized coolant for example of LN 2 at 77 K or of liquid helium LHe of 4.2 K, is used to dissipate the heat loss introduced in countercurrent. This enables the specific loss between 300 K and 77 K to be reduced to approximately 25 W / kA, with approximately 0.56 liters of LN 2 evaporating per hour, kiloampere and power supply line.
  • the amount of heat introduced into a cryostat dictates given a coolant supply, the service life of the cryogenic System that requires replenishment, or the size of one Cooling unit if no cooling liquids are used. It is also important for a user how high the necessary power at room temperature is provided for cooling must become. This service is e.g. in one Compressor of a cooling unit or in the manufacture of the liquid coolant consumed.
  • the object of the present invention is based on this State of the art an improved power supply device with reduced heat loss, reduced space requirements and to provide a simpler structure.
  • a pulse tube cooler integral part of the device. It takes advantage of the fact that the cold head of such a pulse tube cooler compared to cold heads of conventional cryocoolers, e.g. work according to the Gifford-McMahon principle, is a simple component with no mechanically moving parts is advantageously inexpensive to manufacture and that due to the lack of further electrical drives against high voltages is isolable.
  • the power supply device according to the invention thus represents an intermediate form in terms of heat technology between a line and exhaust-cooled power supply that does not require a flowing liquid coolant and one in relation to a line-cooled power supply causes a comparatively lower heat input. It thus combines the advantages of the two conventional ones Types of power supply.
  • parts of a cold head 3 of a pulse tube cooler are used to conduct the electrical power between a warmer side, in particular at room temperature RT, and a colder side, for example at low temperature TT of 77 K LN 2 side.
  • the cold head 3 projects at least with its colder part into the vacuum space V of a vacuum vessel 4 or a cryostat.
  • the interior of a (bath) cryostat can also be provided with the cold head or cold head part.
  • the cold head has a regenerator 6 and a pulse tube 7, which are connected to one another at their low-temperature ends via an overflow line 15.
  • the power line forms the cladding tube 6a of the regenerator 6 and / or the cladding tube 7a of the pulse tube 7 in a coaxial or parallel design.
  • either the regenerator and the pulse tube can be electrically insulated from one another and form two electrical lines which are at different potential, as is assumed in the exemplary embodiment shown. Or these parts can also be connected in parallel.
  • 8a and 8b also denote the power connections at the warmer temperature level RT, 9a and 9b the corresponding power connections at the lower temperature level TT, with 10 an installation opening for the cold head 3 in the vacuum or cryostat vessel 4, with 11 the cold head 3 on its warmer side, insulating mounting flange, which ensures a vacuum or gas-tight seal of the installation opening 10, with 13 a gas inlet and / or outlet on the regenerator, with 14 a gas inlet and / or outlet on the pulse tube , with 15 the, for example, electrically insulating overflow line between the regenerator and the pulse tube, and with 16 a connection for a thermal busbar.
  • An external power supply unit located at room temperature RT is to be connected to the power connections 8a and 8b, while a cooled electrical device, which is generally to be kept at the low temperature TT, is connected to the power connections 9a and 9b.
  • the electrical device can be, in particular, a cable, a current limiter, a magnetic field winding or parts of electronics, each with superconducting material.
  • LHe cooling technology can generally be used for classic superconductor materials such as Nb 3 Sn or NbTi and for metal oxide superconductor materials with a high transition temperature such as Y-Ba-Cu-O or (Bi, Pb) -Sr-Ca-Cu-O- Typically an LN 2 cooling technology can be provided.
  • the electrical device can also have normal-conducting or semiconducting parts to be cooled and need not necessarily be at exactly the temperature level TT.
  • the embodiment shown in Figure 2 of a designated 22 Power supply device differs from that Embodiment according to Figure 1 in that its cold head 23 one Pulse tube cooler only by means of its regenerator 26 Power supply is used.
  • the regenerator contains as current-carrying part in the form of a metallic body e.g. a tightly rolled metal net packed in its cladding tube 26a 26b.
  • a porous one can also be used Sintered metal granule body or a bundle of thinner Wires or at least a thin, rolled or folded one Serve metal strips or a number of profile sheets.
  • This metallic bodies are on the warm and cold end e.g. electrically contacted by soldering, welding or pressing.
  • a bundle of thin wires is particularly suitable for an introduction of alternating current, since the wire thickness is the skin depth can be adjusted.
  • 2 is compared to a stack of fine wire nets the heat conduction in the regenerator is greatly increased, so that this Embodiment preferably only for comparatively large Currents is considered.
  • an electrical Isolation advantageous by dielectric, e.g. plastics and / or ceramics.
  • dielectric e.g. plastics and / or ceramics.
  • BeO or aluminum nitride are also preferred to use, which advantageously have a high thermal conductivity.
  • Radiation shields or electrical or magnetic apparatus be thermally coupled.
  • a separation of potentials between a compressor with possibly electrical Valve train and the power supply device can e.g. through an insulating connecting pipe, for example made of plastic, fiber-reinforced plastic or ceramic can be reached.
  • the pulse tube coolers used for a power supply device are based on embodiments known per se (cf., for example, "Cryocoolers 8 ", Plenum Press, New York, 1994, pages 345 to 410; or "Advances in Cryogenic Engineering", vol. 35, plenum Press, New York, 1990, pages 1191 to 1205; or "INFO PHYS TECH” of the VDI Technology Center, No. 6 / February 1996, with the title: “Pulse tube cooler: New refrigeration machines for superconductivity and cryoelectronics", 4 pages; or US 5,335,505 A ).
  • Such a pulse tube cooler has, according to FIG.
  • a cold head 33 which is generally surrounded by an insulating vacuum, at least with its colder part.
  • This cold head has two tubes connected to each other.
  • a tube is designed as a so-called regenerator 36 and contains in its interior a body which stores the gas heat periodically, for example in the form of stacked metal meshes 36a with a small mesh size.
  • this body is used for power conduction.
  • the other tube represents a so-called pulse tube 37, which only has heat exchangers 38 or 39 formed at each of its warm and cold ends, for example formed by fine copper networks, and is otherwise hollow.
  • a first supply line 41 serves to supply the regenerator 36 with a generally uncooled, in particular at room temperature RT working gas, for example He gas, under high pressure via the valve train 42a pulsating at a frequency, for example between 2 Hz and 50 Hz.
  • working gas is also discharged again via the supply line 41 by means of a valve drive 42b.
  • the pulse tube 37 can be connected at its room temperature end via a connecting channel (not shown in the figure) to a second supply line which, depending on the design of the pulse tube cooler, leads to a further valve train (not shown in the figure) or to a buffer volume of the working gas, for example a few liters in size leads (see Figures 5 to 7).
  • FIG. 3 also shows a compressor 43 which is connected to the first connecting line 41 by means of an outgoing line 41a with a (high-pressure) valve 42a for the working gas under high pressure and a return line 41b with a (low-pressure) valve 42b for the working gas is connected under low pressure.
  • Embodiments of corresponding phase shifters on the warm 5 to 7 show the end of the pulse tube, with a Cold head 33 according to FIG. 3 is used as a basis.
  • a buffer volume 51 with throttle 52 is provided for this purpose.
  • a corresponding phase shifter can be used also be formed with four valves 42a, 42b, 55a and 55b.
  • current supply devices according to the invention can also be based on two-stage and multi-stage variants of pulse tube coolers (cf., for example, magazine “Cryogenics", vol. 34, 1994, pages 259 to 262 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

Die Erfindung bezieht sich auf eine Stromzuführungsvorrichtung mit wenigstens einer zwischen einem höheren Temperaturniveau und einem tieferen Temperaturniveau verlaufenden elektrischen Leitung, die an ihrem tieftemperaturseitigen Ende mit einer gekühlten elektrischen Einrichtung verbunden und thermisch an einen Kaltkopf eines Pulsröhrenkühlers angekoppelt ist, der einen Regenerator und eine Pulsröhre aufweist. Eine derartige Stromzuführungsvorrichtung geht z.B. aus "Advances in Cryogenic Engineering", Vol. 41, 1996, Seiten 1443 bis 1447 hervor.
Eines der Hauptprobleme bei der Konstruktion kryogener Systeme ist eine effiziente Einleitung verhältnismäßig großer Ströme in supraleitende oder halbleitende Einrichtungen, wie sie z.B. zu einer Magnetfelderzeugung oder zu einer Kurzschlußstrombegrenzung oder zu einer Spannungstransformation oder zu einer Stromübertragung vorgesehen werden. Häufig wird das größte Wärmeleck in einem isolierten Kryobehälter von dem mindestens einen elektrischen Leiter der Stromzuführungsvorrichtung verursacht, der zwischen einem höheren Temperaturniveau, insbesondere bei Raumtemperatur von etwa 300 K, und einem tieferen Temperaturniveau von z.B. 77 K, der Temperatur des flüssigen Stickstoffs LN2, verläuft, auf dem sich die elektrische Einrichtung befinden kann. Sofern die zwischen diesen Temperaturniveaus verlaufende elektrische Leitung der Stromzuführungsvorrichtung nicht verlustarm konstruiert werden kann und die entstehende Verlustwärme nicht effektiv abgeführt wird, kann allein der Kühlaufwand den technischen oder wirtschaftlichen Sinn des gesamten Systems in Frage stellen.
Bei der Auslegung von bekannten Stromzuführungsvorrichtungen unterscheidet man insbesondere zwischen leitungsgekühlten und abgasgekühlten Bauformen. Leitungsgekühlte Stromzuführungsvorrichtungen werden im allgemeinen nur durch Wärmeleitung von einem kalten Ende her gekühlt. Optimiert man die Dimensionen so, daß die Summe aus Joule'schen Verlusten des Metalls der Leitung mit einem spezifischen Widerstand ρ(T) und durch den durch die temperaturabhängige Wärmeleitfähigkeit λ(T) bestimmten Wärmetransport minimal ist, dann beträgt der spezifische Verlust, d.h. die Wärmeeinleitung pro Einheitsstrom, für Kupfer etwa 43 W/kA bei Betrachtung einer einzigen elektrischen Leitung (vgl. die Zeitschrift "IEEE Transactions on Magnetics", Vol. MAG-13, No. 1, 1977, Seiten 690 bis 693).
Bei abgasgekühlten Stromzuführungsvorrichtungen wird die Enthalpie eines verdampften Kühlmittels, z.B. von LN2 bei 77 K oder von flüssigem Helium LHe von 4,2 K, dazu genutzt, die eingeleitete Verlustwärme im Gegenstrom abzuführen. Dadurch kann man den spezifischen Verlust zwischen 300 K und 77 K auf etwa 25 W/kA reduzieren, wobei pro Stunde, Kiloampere und Stromzuführungsleitung etwa 0,56 Liter LN2 verdampfen.
Die in einen Kryostaten eingeleitete Wärmemenge diktiert bei einem gegebenen Kühlmittelvorrat die Standzeit des kryogenen Systems, nach der ein Auffüllen nötig ist, oder die Größe eines Kühlaggregats, wenn keine Kühlflüssigkeiten benutzt werden. Für einen Anwender ist zudem von Bedeutung, wie hoch die nötige Leistung bei Raumtemperatur ist, die zur Kühlung bereitgestellt werden muß. Diese Leistung wird z.B. in einem Kompressor eines Kühlaggregats oder bei der Herstellung des flüssigen Kühlmittels verbraucht.
Je nach konkreter Anwendung sind eine Vielzahl von Ausführungsformen für Stromzuführungsvorrichtungen bekannt (vgl. die Literaturstelle "Cryogenics", Vol. 25, 1985, Seiten 94 bis 110). In der Regel kommt für die zwischen den verschiedenen Temperaturniveaus verlaufende elektrische Leitung als Material Kupfer oder Messing zum Einsatz. Bei leitungsgekühlten Stromzuführungsvorrichtungen wird zudem das kalte Ende häufig gut wärmeleitend, aber elektrisch isolierend mit der kalten Seite eines insbesondere nach dem Gifford-McMahon-Prinzip arbeitenden Refrigerators verbunden. Bei abgasgekühlten Stromzuführungsvorrichtungen wird zumindest ein großer Teil des verdampften Kühlmittels an der elektrischen Leitung entlanggeführt, die eine möglichst große Oberfläche haben sollte, damit ein effektiver Wärmeaustausch stattfindet.
Aus der erwähnten Veröffentlichung "Advances in Cryogenic Engineering" ist eine Stromzuführungsvorrichtung mit den eingangs genannten Merkmalen zu entnehmen. Zu einer effizienten Kühlung ihrer elektrischen Leitungen ist ein Kaltkopf eines Pulsröhrenkühlers im oberen, wärmeren Bereich eines Kryostaten zwischen den elektrischen Leitungen angeordnet. Der Pulsröhrenkühler ist mit den Stromleitungen über eine Kupferbrücke gut wärmeleitend verbunden, wobei die erforderliche Isolierung zwischen den Leitungen durch den Kaltkopf selbst hergestellt wird. Ein solcher Aufbau ist entsprechend aufwendig.
Aufgabe der vorliegenden Erfindung ist es, ausgehend von diesem Stand der Technik eine verbesserte Stromzuführungseinrichtung mit reduzierten Wärmeverlusten, reduziertem Platzbedarf und einfacherem Aufbau anzugeben.
Diese Aufgabe wird erfindungsgemäß mit den in Anspruch 1 angegebenen Maßnahmen gelöst. Demgemäß soll bei einer Stromzuführungsvorrichtung mit den eingangs genannten Merkmalen zumindest ein Teilstück der elektrischen Leitung von wenigstens einem Teil des Kaltkopfes gebildet sein.
Bei der erfindungsgemäßen Stromzuführungsvorrichtung ist also ein Pulsröhrenkühler integraler Bestandteil der Vorrichtung. Dabei wird ausgenutzt, daß der Kaltkopf eines solchen Pulsröhrenkühlers verglichen mit Kaltköpfen herkömmlicher Kryokühler, die z.B. nach dem Gifford-McMahon-Prinzip arbeiten, ein einfaches Bauteil ohne mechanisch bewegte Teile ist, das in vorteilhafter Weise preiswert zu fertigen ist und das durch Fehlen weiterer elektrischer Antriebe gegen hohe Spannungen isolierbar ist. Die erfindungsgemäße Stromzuführungsvorrichtung stellt somit wärmetechnisch eine Zwischenform zwischen einer leitungs- und abgasgekühlten Stromzuführung dar, die ohne ein strömendes flüssiges Kühlmittel auskommt und dabei eine gegenüber einer leitungsgekühlten Stromzuführung eine vergleichsweise geringere Wärmeeinleitung verursacht. Sie vereint somit die Vorteile der beiden herkömmlichen Bauformen von Stromzuführungen.
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Stromzuführungsvorrichtung gehen aus den abhängigen Ansprüchen hervor.
Zur weiteren Erläuterung der Erfindung und deren Weiterbildungen wird nachfolgend auf die Zeichnung Bezug genommen. Dabei zeigen jeweils schematisch als Längsschnitt
deren Figur 1
eine erste Ausführungsform einer erfindungsgemäßen Stromzuführungsvorrichtung,
deren Figur 2
eine weitere Ausführungsform einer solchen Stromzuführungsvorrichtung
und
deren Figuren 3 bis 7
verschiedene Ausführungsformen bekannter Pulsröhrenkühler.
In den Figuren sind sich entsprechende Teile mit denselben Bezugszeichen versehen.
Bei der in Figur 1 gezeigten, allgemein mit 2 bezeichneten Ausführungsform einer Stromzuführungsvorrichtung nach der Erfindung erfolgt über Teile eines Kaltkopfes 3 eines Pulsröhrenkühlers die elektrische Stromleitung zwischen einer wärmeren, insbesondere auf Raumtemperatur RT befindlichen Seite und einer kälteren, z.B. auf Tieftemperatur TT von 77 K des LN2 befindlichen Seite. Der Kaltkopf 3 ragt dabei zumindest mit seinem kälteren Teil in den Vakuumraum V eines Vakuumgefäßes 4 bzw. eines Kryostaten hinein. Statt des Vakuumraums eines Vakuumgefäßes kann auch der Innenraum eines (Bad-)Kryostaten mit dem Kaltkopf bzw. Kaltkopfteil versehen werden. Der Kaltkopf weist einen Regenerator 6 und eine Pulsröhre 7 auf, die an ihren tieftemperaturseitigen Enden über eine Überströmleitung 15 miteinander verbunden sind. Die Stromleitung bildet dabei das Hüllrohr 6a des Regenerators 6 und/oder das Hüllrohr 7a der Pulsröhre 7 in einer koaxialen oder parallelen Bauweise. Dabei können entweder Regenerator und Pulsröhre gegeneinander elektrisch isoliert sein und zwei auf unterschiedlichem Potential befindliche elektrische Leitungen bilden, wie gemäß dem dargestellten Ausführungsbeispiel angenommen ist. Oder diese Teile können auch parallelgeschaltet sein. In der Figur sind ferner bezeichnet mit 8a und 8b die Stromanschlüsse auf dem wärmeren Temperaturniveau RT, mit 9a und 9b die entsprechenden Stromanschlüsse auf dem tieferen Temperaturniveau TT, mit 10 eine Einbauöffnung für den Kaltkopf 3 in dem Vakuum- oder Kryostatengefäß 4, mit 11 ein den Kaltkopf 3 an seiner wärmeren Seite haltenden, isolierenden Montageflansch, der für eine vakuum- oder gasdichte Abdichtung der Einbauöffnung 10 sorgt, mit 13 ein Gaseinlaß und/oder -auslaß an dem Regenerator, mit 14 ein Gaseinlaß und/oder -auslaß an der Pulsröhre, mit 15 die beispielsweise elektrisch isolierende Überströmleitung zwischen dem Regenerator und dem Pulsrohr sowie mit 16 ein Anschluß für eine thermische Sammelschiene. An den Stromanschlüssen 8a und 8b ist beispielsweise eine externe, auf Raumtemperatur RT befindliche Stromversorgungseinheit anzuschließen, während mit den Stromanschlüssen 9a und 9b eine gekühlte, im allgemeinen auf der Tieftemperatur TT zu haltende elektrische Einrichtung verbunden ist. Bei der elektrischen Einrichtung kann es sich insbesondere um ein Kabel, einen Strombegrenzer, eine Magnetfeldwicklung oder Teile einer Elektronik jeweils mit supraleitendem Material handeln. Dabei können für klassische Supraleitermaterialien wie z.B. Nb3Sn oder NbTi im allgemeinen eine LHe-Kühltechnik und für metalloxidische Supraleitermaterialien mit hoher Sprungtemperatur wie z.B. vom Y-Ba-Cu-Ooder vom (Bi,Pb)-Sr-Ca-Cu-O-Typ im allgemeinen eine LN2-Kühltechnik vorgesehen sein. Die elektrische Einrichtung kann jedoch auch zu kühlende normalleitende oder halbleitende Teile aufweisen und braucht nicht unbedingt auf exakt dem Temperaturniveau TT zu liegen.
Die in Figur 2 gezeigte Ausführungsform einer mit 22 bezeichneten Stromzuführungsvorrichtung unterscheidet sich von der Ausführungsform nach Figur 1 dadurch, daß ihr Kaltkopf 23 eines Pulsröhrenkühlers nur mittels seines Regenerators 26 zur Stromführung genutzt wird. Der Regenerator enthält dabei als stromführenden Teil einen metallischen Körper in Form von z.B. einem in sein Hüllrohr 26a gepacktes, eng gerolltes Metallnetz 26b. Statt des Metallnetzes kann auch ein poröser Körper aus gesinterten Metallkörnchen oder ein Bündel dünner Drähte oder mindestens ein dünner, gerollter oder gefalteter Blechstreifen oder eine Anzahl von Profilblechen dienen. Diese metallischen Körper sind am warmen und am kalten Ende z.B. durch Einlöten, -schweißen oder -pressen elektrisch kontaktiert. Ein Bündel dünner Drähte eignet sich besonders gut für eine Einleitung von Wechselstrom, da die Drahtdicke der Skintiefe angepaßt werden kann. Bei der Ausführungsform nach Figur 2 wird jedoch gegenüber einem Stapel feiner Drahtnetze die Wärmeleitung im Regenerator stark erhöht, so daß diese Ausführungsform vorzugsweise nur für vergleichsweise große Ströme in Betracht gezogen wird.
Bei den Stromzuführungsvorrichtungen gemäß der Erfindung, wie sie aus den Figuren 1 und 2 hervorgehen, wird eine elektrische Isolation vorteilhaft durch Dielektrika, z.B. Kunststoffe und/oder Keramik, gewährleistet. Am tieftemperaturseitigen Ende kommen bevorzugt auch Saphir, BeO oder Aluminiumnitrid zum Einsatz, die vorteilhaft eine hohe Wärmeleitfähigkeit besitzen. Dadurch können auch weitere zu kühlende Bauteile, z.B. Strahlungsschilde oder elektrische oder magnetische Apparate thermisch angekoppelt werden. Eine Potentialtrennung zwischen einem Kompressor mit möglicherweise elektrischem Ventiltrieb und der Stromzuführungsvorrichtung kann z.B. durch ein isolierendes Verbindungsrohr, das beispielsweise aus Kunststoff, faserverstärktem Kunststoff oder Keramik bestehen kann, erreicht werden.
Bei den für eine erfindungsgemäße Stromzuführungsvorrichtung eingesetzten Pulsröhrenkühlern wird von an sich bekannten Ausführungsformen ausgegangen (vgl. z.B. "Cryocoolers 8", Plenum Press, New York, 1994, Seiten 345 bis 410; oder "Advances in Cryogenic Engineering", Vol. 35, Plenum Press, New York, 1990, Seiten 1191 bis 1205; oder "INFO PHYS TECH" des VDI-Technologiezentrums, Nr. 6/Febr. 1996, mit dem Titel: "Pulsröhrenkühler: Neue Kältemaschinen für die Supraleitungstechnik und Kryoelektronik", 4 Seiten; oder die US 5,335,505 A). Ein solcher Pulsröhrenkühler weist gemäß Figur 3 einen Kaltkopf 33 auf, der zumindest mit seinem kälteren Teil im allgemeinen von einem Isoliervakuum umgeben ist. Dieser Kaltkopf besitzt zwei untereinander verbundene Röhren. Eine Röhre ist als ein sogenannter Regenerator 36 gestaltet und enthält in ihrem Inneren einen die Gaswärme periodisch zwischenspeichernden Körper z.B. in Form von gestapelten Metallnetzen 36a kleiner Maschenweite. Dieser Körper wird bei der Ausführungsform einer erfindungsgemäßen Stromzuführungsvorrichtung 22 nach Figur 2 zur Stromleitung herangezogen. Demgegenüber stellt die andere Röhre eine sogenannte Pulsröhre 37 dar, welche lediglich an ihrem warmen und kalten Ende jeweils z.B. durch feine Kupfernetze gebildete Wärmetauscher 38 bzw. 39 aufweist und ansonsten hohl ist. Die beiden nicht unbedingt rohrförmig gestalteten Teile 36 und 37 sind an ihren auf Tieftemperatur TT liegenden Enden mittels eines Überströmkanals 40 für ein Kühlmittel verbunden. Eine erste Versorgungsleitung 41 dient dazu, dem Regenerator 36 ein im allgemeinen ungekühltes, insbesondere auf Raumtemperatur RT befindliches Arbeitsgas, beispielsweise He-Gas, unter Hochdruck über den Ventiltrieb 42a pulsierend mit einer Frequenz beispielsweise zwischen 2 Hz und 50 Hz zuzuführen. Während einer Niederdruckphase des Pulsröhrenkühlers wird mittels eines Ventiltriebs 42b über die Versorgungsleitung 41 auch Arbeitsgas wieder abgeführt. Die Pulsröhre 37 kann an ihrem raumtemperaturseitigen Ende über einen in der Figur nicht dargestellten Verbindungskanal an eine zweite Versorgungsleitung angeschlossen sein, die je nach Bauart des Pulsröhrenkühlers zu einem weiteren, in der Figur nicht dargestellten Ventiltrieb oder zu einem Puffervolumen des Arbeitsgases von beispielsweise einigen Litern Größe führt (vgl. Figuren 5 bis 7). Die Figur 3 zeigt ferner einen Kompressor 43, der an die erste Verbindungsleitung 41 mittels einer Hinleitung 41a mit darin angeordnetem (Hochdruck-)Ventil 42a für das Arbeitsgas unter hohem Druck und einer Rückleitung 41b mit darin angeordnetem (Niederdruck-)Ventil 42b für das Arbeitsgas unter niedrigem Druck angeschlossen ist.
Während bei der in Figur 3 gezeigten Ausführungsform des Kaltkopfes 33 eines bekannten Pulsröhrenkühlers Regenerator 36 und Pulsröhre 37 räumlich parallel oder gegebenenfalls auch räumlich hintereinander angeordnet sind, ist bei der in Figur 4 gezeigten Ausführungsform des Kaltkopfes 45 eines weiteren bekannten Pulsröhrenkühlers eine konzentrische (koaxiale) Anordnung von Pulsröhre 47 und diese umschließendem Regenerator 46 vorgesehen. Bei dieser Ausführungsform wird das Arbeitsgas mittels einer Pumpvorrichtung 48 mit Arbeitskolben 48a gefördert.
Bei allen diesen Ausführungsformen von bekannten Pulsröhrenkühlern wird periodisch eine durch den Arbeitskolben 48a oder durch den Kompressor 43 mit Ventiltrieb erzeugte Druckwelle eingelassen, die im Regenerator 36 bzw. 46 vorgekühlt wird und in der Pulsröhre 37 bzw. 47 so entspannt wird, daß eine nutzbare Kälteleistung entsteht. Das entspannte, kalte Gas kühlt dann beim Ausströmen aus der Pulsröhre den Regenerator.
Ausführungsformen von entsprechenden Phasenschiebern am warmen Ende der Pulsröhre zeigen die Figuren 5 bis 7, wobei ein Kaltkopf 33 gemäß Figur 3 zugrundegelegt ist. Nach Figur 5 ist hierzu ein Puffervolumen 51 mit Drossel 52 vorgesehen. Zusätzlich kann gemäß Figur 6 ein zweiter Einlaß von der wärmeren Regeneratorseite her über eine Leitung 53 mit Düse 54 erfolgen. Nach Figur 7 kann ein entsprechender Phasenschieber auch mit vier Ventilen 42a, 42b, 55a und 55b gebildet werden.
Darüber hinaus lassen sich erfindungsgemäßen Stromzuführungsvorrichtungen auch zwei- und mehrstufige Varianten von Pulsröhrenkühlern zugrundelegen (vgl. z.B. Zeitschrift "Cryogenics", Vol. 34, 1994, Seiten 259 bis 262).
Selbstverständlich sind auch andere Ausführungsformen von erfindungsgemäßen Stromzuführungsvorrichtungen als die in den Figuren 1 und 2 gezeigten denkbar: So können z.B. Gestaltungsmerkmale der Stromzuführungsvorrichtung 2 nach Figur 1 und der Stromzuführungsvorrichtung 22 nach Figur 2 kombiniert werden, so daß dann der elektrische Strom sowohl innerhalb des Regenerators als auch über dessen Hüllrohr fließt. Alle Varianten können auch koaxial wie auch parallel ausgeführt sein, wobei ein, zwei oder mehrere Stromleitungen mit unterschiedlichen Potentialen in einem Kaltkopf denkbar sind. Es können auch mehrere Stromzuführungsvorrichtungen an einem Kompressor betrieben werden. Sofern eine Kühlstufe für eine bestimmte Anwendung nicht ausreicht, können auch zwei- oder mehrstufige Versionen aufgebaut werden, indem am kalten Ende der wärmeren Stufe das wärmere Ende einer weiteren, kälteren Stufe angeschlossen wird. Eine entsprechende Anordnung kann als thermische Hintereinanderschaltung von mehreren Kaltköpfen angesehen werden.
Mit der erfindungsgemäßen Integration von mindestens einem Kaltkopf eines Pulsröhrenkühlers in eine Stromzuführungsvorrichtung werden gegenüber bekannten Ausführungsformen eine Reihe bedeutender Vorteile erzielt:
  • 1. Die Wärmeverluste sind im Vergleich zu einer leitungsgekühlten Stromzuführungsvorrichtung deutlich reduziert. Die Stromzuführungsvorrichtung 2 nach Figur 1 nutzt nämlich die elektrische Leitfähigkeit der Hüllrohre 6a und 7a von Regenerator 6 und Pulsröhre 7, die ohnehin vergleichsweise massiv sind, um einem Arbeitsdruck von typischerweise 20 bar Heliumgas standzuhalten. Beispielsweise kann ein Edelstahlrohr von 1 mm Wandstärke, 20 mm Durchmesser und 200 mm Länge einen Strom von 32 A optimal übertragen, wobei die Verluste gegenüber einer mit einem Pulsröhrenkühler nur indirekt gekühlten Stromzuführungsvorrichtung bei Belastung mit dem Nennstrom auf ein Drittel reduziert sind. Im stromlosen Zustand ergibt sich überhaupt kein zusätzliches Wärmeleck. Bei großen Strömen werden vorteilhaft größere Wandstärken bzw. Materialien höherer spezifischer Leitfähigkeit wie z.B. Messing oder Bronze oder Kupfer eingesetzt. Eine weitere Verlustreduktion ergibt sich durch den Gegenstromkühleffekt in Regenerator 6 und Pulsröhre 7, der durch das kalte Arbeitsgas erreicht wird. Um diesen Effekt noch zu erhöhen, können gegebenenfalls weitere Verbesserungen angebracht werden, die z.B. in Rohren mit variablem Querschnitt oder zusätzlichen Wärmetauschern auf verschiedenen Höhen in der Pulsröhre bestehen. Auch können Maßnahmen zur Vergrößerung der Oberfläche, beispielsweise durch besondere Rippen oder durch eine Aufrauhung oder eine Besinterung der Innenflächen mit einem porösen Metall vorgesehen werden. Bei der Stromzuführungsvorrichtung 22 nach Figur 2 ist die Ersparnis besonders groß, da ein optimierter Regenerator 26 ohnehin eine große Oberfläche aufweist, so daß die Kühlung durch das kalte Arbeitsgas thermodynamisch besonders effektiv ist.
  • 2. Da bei der Stromzuführungsvorrichtung der Kaltkopf kein separates Bauteil darstellt, ergeben sich entsprechende Kosteneinsparungen. Die integriert gekühlte Stromzuführungsvorrichtung arbeitet zudem kryotechnisch gutmütig, da sie kein warmes Endstück in ein Kryostatsystem einzubringen braucht, das erst mit beträchtlichem konstruktiven Aufwand an ein Kältereservoir angekoppelt werden muß.
  • 3. Durch gemeinsame Auslegung der Stromzuführungsvorrichtung und des Pulsröhrenkühlers kann die Kühlleistung des Pulsröhrenkühlers optimal an die Verluste der Stromzuführungsvorrichtung angepaßt werden. Dadurch lassen sich Verluste einsparen, die häufig durch die erforderliche Überdimensionierung des Kühlers auftreten.
  • 4. Sofern die Kühlleistung am kalten Ende auf z.B. 77 K groß genug gewählt wird, können weitere Kryostatverluste z.B. aufgrund einer Wärmeeinstrahlung ohne weitere Kühleinheit oder Nachschub von Kryoflüssigkeiten ausgeglichen werden.
  • 5. Durch den einfachen Aufbau ist eine ökonomische Anpassung an den Strombedarf eines gegebenen Kryosystems auch durch eine modulare Bauweise möglich, bei der mehrere Stromzuführungsvorrichtungen an einen gemeinsamen Kompressor mit Ventiltrieb angeschlossen werden.
  • 6. Herkömmliche Stromzuführungsvorrichtungen, die für einen bestimmten Nennstrom optimiert sind, können am warmen Ende betauen oder sogar vereisen, wenn bei einem Unterstrom die abzuführende Joule'sche Wärme reduziert ist. Dabei besteht für Hochspannungs-Stromzuführungen die Gefahr, daß sich die Überschlagsfestigkeit verringert. Bei der integriert gekühlten Stromzuführungsvorrichtung nach der Erfindung kann diesem Effekt durch eine entsprechende Reduktion der Kühlleistung auf einfache Weise entgegengewirkt werden. Dazu wird z.B. die Betriebsfrequenz des Ventiltriebs oder des Kolbens, der eine periodische Heliumdruckwelle erzeugt, gesenkt.
  • Claims (11)

    1. Stromzuführungsvorrichtung (2, 22) mit wenigstens einer zwischen einem höheren Temperaturniveau (RT) und einem tieferen Temperaturniveau (TT) verlaufenden elektrischen Leitung, die an ihrem tieftemperaturseitigen Ende mit einer gekühlten elektrischen Einrichtung verbunden und thermisch an einen Kaltkopf (3, 23) eines Pulsröhrenkühlers angekoppelt ist, der einen Regenerator (6, 26) und eine Pulsröhre (7, 27) aufweist, dadurch gekennzeichnet, daß zumindest ein Teilstück der elektrischen Leitung von wenigstens einem Teil (6a, 7a, 26b) des Kaltkopfes (3, 23) gebildet ist.
    2. Stromzuführungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß ein Hüllrohr (6a) des Regenerators (6) und/oder ein Hüllrohr (7a) der Pulsröhre (7) als Leitungsteilstück vorgesehen ist.
    3. Stromzuführungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein metallischer Körper (26b) im Inneren eines Hüllrohres (26a) des Regenerators (26) als Leitungsteilstück vorgesehen ist.
    4. Stromzuführungsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der metallische Körper (26b) ein Metallnetz oder ein Sinterkörper oder ein Drahtbündel oder mindestens ein Blechstreifen ist.
    5. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mit dem Regenerator (6) und der Pulsröhre (7) zwei verschiedene, gegenseitig isolierte Leitungsteilstücke gebildet sind.
    6. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mit dem Regenerator (6) und der Pulsröhre (7) zwei elektrisch parallelgeschaltete Leitungsteilstücke gebildet sind.
    7. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 6, gekennzeichnet durch eine räumlich parallele Anordnung von Regenerator (6) und Pulsröhre (7).
    8. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 6, gekennzeichnet durch eine räumlich konzentrische Anordnung von Regenerator und Pulsröhre.
    9. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Kaltkopf mehrstufig ausgebildet ist.
    10. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Kaltkopf (3, 23) zumindest mit seinem kälteren Teil in den Vakuumraum (V) eines Vakuumgefäßes (4) oder in den Innenraum eines Kryostaten hineinragt.
    11. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 10, gekennzeichnet durch einen elektrischen Anschluß an eine supraleitende Einrichtung.
    EP98907881A 1997-02-07 1998-02-02 Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung Expired - Lifetime EP0958585B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19704485 1997-02-07
    DE19704485A DE19704485C2 (de) 1997-02-07 1997-02-07 Stromzuführungsvorrichtung für eine gekühlte elektrische Einrichtung
    PCT/DE1998/000285 WO1998035365A1 (de) 1997-02-07 1998-02-02 Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung

    Publications (2)

    Publication Number Publication Date
    EP0958585A1 EP0958585A1 (de) 1999-11-24
    EP0958585B1 true EP0958585B1 (de) 2003-05-21

    Family

    ID=7819479

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98907881A Expired - Lifetime EP0958585B1 (de) 1997-02-07 1998-02-02 Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung

    Country Status (5)

    Country Link
    US (1) US6112527A (de)
    EP (1) EP0958585B1 (de)
    JP (1) JP3898231B2 (de)
    DE (2) DE19704485C2 (de)
    WO (1) WO1998035365A1 (de)

    Families Citing this family (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6286318B1 (en) 1999-02-02 2001-09-11 American Superconductor Corporation Pulse tube refrigerator and current lead
    WO2000057530A1 (de) * 1999-03-18 2000-09-28 Siemens Aktiengesellschaft Anordnung mit leistungselektronik für tieftemperatursysteme
    EP1063482A1 (de) * 1999-06-24 2000-12-27 CSP Cryogenic Spectrometers GmbH Kühlvorrichtung
    DE29911071U1 (de) * 1999-06-24 2000-12-14 Csp Cryogenic Spectrometers Gm Kühlvorrichtung
    WO2001001048A1 (de) * 1999-06-24 2001-01-04 Csp Cryogenic Spectrometers Gmbh Kühlvorrichtung
    EP1072851A1 (de) * 1999-07-29 2001-01-31 CSP Cryogenic Spectrometers GmbH Kühlvorrichtung
    DE10035859A1 (de) * 2000-07-24 2002-02-07 Abb Research Ltd Wechselstrom-Durchführung
    JP4799757B2 (ja) * 2001-04-26 2011-10-26 九州電力株式会社 超電導磁石
    JPWO2003001127A1 (ja) * 2001-06-21 2004-10-14 エア・ウォーター株式会社 蓄冷型冷凍機
    JP4799770B2 (ja) * 2001-07-09 2011-10-26 九州電力株式会社 超電導磁石
    GB0125189D0 (en) * 2001-10-19 2001-12-12 Oxford Magnet Tech A pulse tube refrigerator
    US6698224B2 (en) * 2001-11-07 2004-03-02 Hitachi Kokusai Electric Inc. Electronic apparatus having at least two electronic parts operating at different temperatures
    US7174721B2 (en) * 2004-03-26 2007-02-13 Mitchell Matthew P Cooling load enclosed in pulse tube cooler
    CN101080600B (zh) * 2005-01-13 2010-05-05 住友重机械工业株式会社 输入功率减小的低温制冷机
    JP5241414B2 (ja) * 2008-09-30 2013-07-17 三洋電機株式会社 画像表示装置
    JP5202220B2 (ja) * 2008-09-30 2013-06-05 三洋電機株式会社 画像表示装置
    US20180096018A1 (en) 2016-09-30 2018-04-05 Microsoft Technology Licensing, Llc Reducing processing for comparing large metadata sets

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE6910446U (de) * 1969-03-14 1970-01-29 Friedrich Wilhelm D Burmeister Trog fuer foerderschnecken zum austragen von fluessigkeiten oder schlaemmen, insbesondere aus sedimentationsbecken von wasseraufbereitungsanlagen
    US3654377A (en) * 1969-12-15 1972-04-04 Gen Electric Electrical leads for cryogenic devices
    JPS5735384A (en) * 1980-07-04 1982-02-25 Japan Atom Energy Res Inst Large current lead wire for superconductive device
    DE3743033A1 (de) * 1987-12-18 1989-06-29 Asea Brown Boveri Magnetsystem
    US5335505A (en) * 1992-05-25 1994-08-09 Kabushiki Kaisha Toshiba Pulse tube refrigerator
    FR2701157B1 (fr) * 1993-02-04 1995-03-31 Alsthom Cge Alcatel Liaison d'alimentation pour bobine supraconductrice.
    FR2713405B1 (fr) * 1993-12-03 1996-01-19 Gec Alsthom Electromec Module d'amenée de courant pour l'alimentation d'une charge électrique supraconductrice à basse température critique.
    US5735127A (en) * 1995-06-28 1998-04-07 Wisconsin Alumni Research Foundation Cryogenic cooling apparatus with voltage isolation
    DE19648253C2 (de) * 1996-11-22 2002-04-04 Siemens Ag Pulsröhrenkühler und Verwendung desselben
    JP3398300B2 (ja) * 1997-05-28 2003-04-21 京セラ株式会社 電子装置

    Also Published As

    Publication number Publication date
    WO1998035365A1 (de) 1998-08-13
    EP0958585A1 (de) 1999-11-24
    JP2001510551A (ja) 2001-07-31
    US6112527A (en) 2000-09-05
    DE19704485A1 (de) 1998-08-20
    JP3898231B2 (ja) 2007-03-28
    DE59808460D1 (de) 2003-06-26
    DE19704485C2 (de) 1998-11-19

    Similar Documents

    Publication Publication Date Title
    EP0958585B1 (de) Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung
    DE102004061869B4 (de) Einrichtung der Supraleitungstechnik und Magnetresonanzgerät
    EP1504458B1 (de) Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit
    DE102005028414B4 (de) Einrichtung zur Erzeugung eines gepulsten Magnetfelds
    EP1206667B1 (de) Supraleitungseinrichtung mit einer kälteeinheit für eine rotierende, supraleitende wicklung
    DE102007013350B4 (de) Stromzuführung mit Hochtemperatursupraleitern für supraleitende Magnete in einem Kryostaten
    EP1311785B1 (de) Kryostat für elektrische apparate wie supraleitende strombegrenzer und elektrische maschinen wie transformatoren, motoren, generatoren und elektrische magnete mit supraleitender wicklung
    EP1628109A2 (de) Kryostatanordnung
    EP0865595B1 (de) Tieftemperatur-refrigerator mit einem kaltkopf, sowie verwendung dieses refrigerators
    EP1504516B1 (de) Supraleitungseinrichtung mit thermisch an eine rotierende supraleitende wicklung angekoppeltem kaltkopf einer kälteeinheit
    DE10211568B4 (de) Kälteanlage für zu kühlende Teile einer Einrichtung
    DE102018212758A1 (de) Kryostatanordnung mit supraleitendem Magnetspulensystem mit thermischer Verankerung der Befestigungsstruktur
    DE102014224363A1 (de) Vorrichtung der Supraleitungstechnik mitSpuleneinrichtungen und Kühlvorrichtung sowie damitausgestattetes Fahrzeug
    DE4223145C2 (de) Stromzuführungsvorrichtung für eine auf Tieftemperatur zu haltende, insbesondere supraleitende Einrichtung
    DE19813211C2 (de) Supraleitende Einrichtung mit Leitern aus Hoch-T¶c¶-Supraleitermaterial
    DE19954077C1 (de) Tieftemperaturkühlvorrichtung
    DE102015202638A1 (de) Stromzuführung für eine supraleitende Spuleneinrichtung
    EP3861573B1 (de) Supraleitende strombegrenzereinrichtung mit stromzuführung
    DE102018006912A1 (de) Vorrichtung zum Kühlen eines supraleitenden Elements
    DE10032368A1 (de) Supraleitungseinrichtung mit einer resistiven Strombegrenzereinheit unter Verwendung von Hoch-T¶c¶-Supraleitermaterial
    WO2021214213A1 (de) Stromzuführung und verfahren zu ihrer herstellung
    WO2001001048A1 (de) Kühlvorrichtung
    DE19938985A1 (de) Einrichtung der Supraleitungstechnik mit einer rotierenden, supraleitenden Wicklung
    DE1954681C (de) Leitungssystem fur elektrische Leistungsübertragung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990805

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE FR GB IT LI SE

    17Q First examination report despatched

    Effective date: 20020626

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): CH DE FR GB IT LI SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SERVOPATENT GMBH

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59808460

    Country of ref document: DE

    Date of ref document: 20030626

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040224

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080202

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110224

    Year of fee payment: 14

    Ref country code: SE

    Payment date: 20110208

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20110418

    Year of fee payment: 14

    Ref country code: CH

    Payment date: 20110510

    Year of fee payment: 14

    Ref country code: GB

    Payment date: 20110210

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20110223

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20120202

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120229

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120203

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120229

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20121031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120202

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59808460

    Country of ref document: DE

    Effective date: 20120901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120229

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120202

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120901