EP0958585A1 - Vorrichtung zum sammeln von flüssigkeiten - Google Patents

Vorrichtung zum sammeln von flüssigkeiten

Info

Publication number
EP0958585A1
EP0958585A1 EP98907881A EP98907881A EP0958585A1 EP 0958585 A1 EP0958585 A1 EP 0958585A1 EP 98907881 A EP98907881 A EP 98907881A EP 98907881 A EP98907881 A EP 98907881A EP 0958585 A1 EP0958585 A1 EP 0958585A1
Authority
EP
European Patent Office
Prior art keywords
power supply
supply device
pulse tube
regenerator
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98907881A
Other languages
English (en)
French (fr)
Other versions
EP0958585B1 (de
Inventor
Florian Steinmeyer
Hans-Peter KRÄMER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0958585A1 publication Critical patent/EP0958585A1/de
Application granted granted Critical
Publication of EP0958585B1 publication Critical patent/EP0958585B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1419Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Definitions

  • the invention relates to a power supply device with at least one electrical line running between a higher temperature level and a lower temperature level, which is connected at its low-temperature end to a cooled electrical device.
  • a power supply device is e.g. from the journal "Cryogenics", Vol. 25, 1985, rare 94 to 110.
  • One of the main problems in the design of cryogenic systems is the efficient introduction of relatively large currents into superconducting or semiconducting devices, such as are provided for example for generating a magnetic field or for limiting a short-circuit current or for transforming a voltage or transmitting a current.
  • the greatest thermal leak in an insulated cryocontainer is often caused by the at least one electrical conductor of the power supply device, which is between a higher temperature level, in particular at room temperature of about 300 K, and a lower temperature level of, for example, 77 K, the temperature of the liquid nitrogen LN 2 , runs on which the electrical device can be located. If the electrical line of the power supply device running between these temperature levels cannot be constructed with little loss and the resulting heat loss is not effectively dissipated, only the cooling effort can be technical or question the economic sense of the entire system.
  • Line-cooled power supply devices are generally only cooled by heat conduction from a cold end. If the dimensions are optimized so that the sum of Joule 's losses of the metal of the line with a specific resistance p (T) and through the heat transport determined by the temperature-dependent thermal conductivity ⁇ (T) is minimal, then the specific loss is ie the heat input per unit current, for copper about 43 W / kA when considering a single electrical line (cf. the magazine “IEEE
  • the enthalpy of a vaporized coolant for example of LN 2 at 77 K or of liquid helium LHe of 4.2 K, is used to dissipate the heat loss introduced in countercurrent. This enables the specific loss between 300 K and 77 K to be reduced to approximately 25 W / kA, with approximately 0.56 liters of LN 2 evaporating per hour, kiloampere and power supply line.
  • the amount of heat introduced into a cryostat dictates the service life of the cryogenic system after which it is necessary to refill it, or the size of a cooling unit if no cooling liquids are used. the. What is also important for a user is how high is the required power at room temperature that must be provided for cooling. This power is used, for example, in a compressor in a cooling unit or in the production of the liquid coolant.
  • the object of the present invention is to design a power supply device with the features mentioned at the outset in such a way that the cryotechnical outlay required for it is reduced.
  • a pulse tube cooler is therefore an integral part of the device. This takes advantage of the fact that the cold head of such a pulse tube cooler is a simple component without mechanically moving parts compared to cold heads of conventional cryocoolers, which work according to the Gifford-McMahon principle, for example, which is advantageously inexpensive to manufacture and that can be isolated from high voltages due to the lack of further electrical drives.
  • the power supply device thus represents an intermediate form between a line and exhaust-cooled power supply that does not require a flowing liquid coolant and thereby causes a comparatively lower heat input compared to a line-cooled power supply. It thus combines the advantages of the two conventional types of power supply.
  • FIG. 1 shows a first embodiment of a spring feed device according to the invention
  • parts of a cold head 3 of a pulse tube cooler are used to conduct the electrical power between a warmer side, in particular at room temperature RT, and a colder side, for example at low temperature TT of 77 K LN 2 side.
  • the cold head 3 projects at least with its colder part into the vacuum space V of a vacuum vessel 4 or a cryostat.
  • the interior of a (bath) cryostat can also be provided with the cold head or cold head part.
  • the cold head has a regenerator 6 and a pulse tube 7, which are connected to one another at their low-temperature ends via an overflow line 15.
  • the power line forms the cladding tube 6a of the regenerator 6 and / or the cladding tube 7a of the pulse tube 7 in a coaxial or parallel construction. Either regenerator and
  • the pulse tube must be electrically insulated from one another and form two electrical lines which are at different potential, as is assumed in the exemplary embodiment shown. Or these parts can also be connected in parallel.
  • 8a and 8b also denote the power connections at the warmer temperature level RT, 9a and 9b the corresponding power connections at the lower temperature level TT, with 10 an installation opening for the cold head 3 in the vacuum or cryostat vessel 4 11 an insulating mounting flange holding the cold head 3 on its warmer side, which is used for a vacuum or gas-tight sealing device of the installation opening 10, with 13 a gas inlet and / or outlet on the regenerator, with 14 a gas inlet and / or outlet on the pulse tube, with 15 the, for example, electrically insulating overflow line between the regenerator and the pulse tube, and with 16 a connection for a thermal busbar.
  • An external power supply unit located at room temperature RT is to be connected to the power connections 8a and 8b, while a cooled electrical device, which is generally to be kept at the low temperature TT, is connected to the power connections 9a and 9b.
  • the electrical device can be, in particular, a cable, a current limiter, a magnetic field winding or parts of an electronic system, each with superconducting material.
  • LHe cooling technology can generally be used for classic super conductor materials such as Nb 3 Sn or NbTi and for metal oxide superconductor materials with a high transition temperature such as Y-Ba-Cu-0- or (Bi, Pb) -Sr-Ca Cu-0 type in general an LN 2 cooling technology can be provided.
  • the electrical device can also have normal-conducting or semiconducting parts to be cooled and need not necessarily be at exactly the temperature level TT.
  • FIG. 2 of a power supply device designated by 22 differs from that
  • Embodiment according to Figure 1 in that its cold head 23 of a pulse tube cooler is used only by means of its regenerator 26 to carry current.
  • the regenerator contains as a current-carrying part a metallic body in the form of, for example, a tightly rolled metal net 26b packed in its cladding tube 26a.
  • a porous one can be used Sintered metal granules or a bundle of thin wires or at least one thin, rolled or folded sheet metal strip or a number of profiled sheets are used.
  • These metallic bodies are electrically contacted at the warm and cold ends, for example by soldering, welding or pressing.
  • a bundle of thin wires is particularly suitable for introducing alternating current, since the wire thickness can be adapted to the skin depth.
  • the heat conduction in the regenerator is greatly increased compared to a stack of fine wire nets, so that this embodiment is preferably only considered for comparatively large currents.
  • electrical insulation is advantageously provided by dielectrics, e.g. Plastics and / or ceramics guaranteed.
  • dielectrics e.g. Plastics and / or ceramics
  • sapphire, BeO or aluminum nitride are also preferably used, which advantageously have a high thermal conductivity.
  • Radiation shields or electrical or magnetic devices can be thermally coupled.
  • Electrical isolation between a compressor with possibly electrical valve train and the power supply device can e.g. by an insulating connecting tube, which can be made of plastic, fiber-reinforced plastic or ceramic, for example.
  • pulse tube coolers used for a power supply device according to the invention are known per se
  • Embodiments assumed see, for example, "Cryocoolers 8", Plenum Press, New York, 1994, pages 345 to 410; or “ ⁇ dvances in Cryogenic Engineering", Vol. 35, Plenum Press, New York, 1990, pages 1191 to 1205; or "INFO PHYS TECH” of the VDI Technology Center, No. 6 / Febr. 1996, with the title: “Pulse tube cooler: New refrigeration machines for superconducting technology and cryoelectronics", 4 pages; or US 5, 335, 505 A).
  • Such a pulse tube cooler has a cold head 33 according to FIG.
  • This cold head has two tubes which are connected to one another, one tube is designed as a so-called regenerator 36 and contains in its interior a body which stores the gas heat periodically, for example in the form of stacked tubes This body is used for power conduction in the embodiment of a power supply device 22 according to the invention according to Figure 2.
  • the other tube is a so-called pulse tube 37, which only has heat exchangers formed at its warm and cold ends, for example, by fine copper meshes 38 or 39 and is otherwise hollow, both n Not necessarily tubular parts 36 and 37 are connected at their low-temperature ends TT by means of an overflow channel 40 for a coolant.
  • a first supply line 41 serves to supply the regenerator 36 with a generally uncooled, in particular at room temperature RT working gas, for example He gas, pulsating under high pressure via the valve train 42a at a frequency, for example between 2 Hz and 50 Hz.
  • working gas is also discharged again via the supply line 41 by means of a valve drive 42b.
  • the pulse tube 37 can be be connected to a second supply line via a connecting channel (not shown in the figure), which depending on the design of the pulse tube cooler leads to a further valve train (not shown in the figure) or to a buffer volume of the working gas of, for example, a few liters (see Figure 5) to 7).
  • FIG. 3 also shows a compressor 43 which is connected to the first connecting line 41 by means of an outgoing line 41a with a (high-pressure) valve 42a for the working gas under high pressure and a return line 41b with a (low-pressure) valve 42b for the working gas is connected under low pressure.
  • a compressor 43 which is connected to the first connecting line 41 by means of an outgoing line 41a with a (high-pressure) valve 42a for the working gas under high pressure and a return line 41b with a (low-pressure) valve 42b for the working gas is connected under low pressure.
  • the regenerator 36 and the pulse tube 37 are arranged spatially parallel or, if appropriate, also spatially one behind the other
  • the embodiment of the cold head 45 of another known pulse tube cooler shown in FIG. 4 is a concentric (coaxial) arrangement of pulse tube 47 and this surrounding regenerator 46 is provided.
  • the working gas is conveyed by means of a pump device 48 with working pistons 48a.
  • FIGS. 5 to 7 show embodiments of corresponding phase shifters at the warm end of the pulse tube, a cold head 33 according to FIG. 3 being used as a basis.
  • a buffer volume 51 with throttle 52 is provided for this.
  • a second inlet can take place from the warmer regenerator side via a line 53 with a nozzle 54.
  • a corresponding phase shifter can also be formed with four valves 42a, 42b, 55a and 55b.
  • power supply devices according to the invention can also be based on two-stage and multi-stage variants of pulse tube coolers (cf., for example, magazine “Cryogenics", vol. 34, 1994, pages 259 to 262).
  • FIGS. 1 and 2 Design features of the power supply device 2 according to FIG. 1 and the power supply device 22 according to FIG. 2 can be combined, so that the electrical current then flows both within the regenerator and via its cladding tube. All variants can also be designed coaxially and in parallel, with one, two or more power lines with different potentials being conceivable in a cold head. A plurality of power supply devices can also be operated on one compressor. If a cooling stage is not sufficient for a specific application, two-stage or multi-stage versions can also be built up by adding the warmer end of another, colder one at the cold end of the warmer stage
  • a corresponding arrangement can be regarded as a thermal series connection of several cold heads.
  • the power supply device 2 uses the electrical conductivity of the cladding tubes 6a and 7a of the regenerator 6 and pulse tube 7, which are comparatively massive anyway in order to withstand a working pressure of typically 20 bar helium gas.
  • a stainless steel tube of 1 mm wall thickness, 20 mm diameter and
  • 200 mm in length optimally transmit a current of 32 A, the losses compared to a power supply device which is only indirectly cooled with a pulse tube cooler being reduced to one third when loaded with the nominal current. In the de-energized state there is no additional heat leak at all.
  • larger wall thicknesses or materials with higher specific conductivity, such as brass or bronze or copper are advantageously used.
  • a further reduction in losses results from the countercurrent cooling effect in the regenerator 6 and pulse tube 7, which is achieved by the cold working gas.
  • further improvements can be made, for example, in tubes with a variable cross-section or additional heat exchangers at different heights in the pulse tube.
  • Measures to enlarge the surface including can be provided for example by special ribs or by roughening or sintering the inner surfaces with a porous metal.
  • the savings are particularly great, since an optimized regenerator 26 has a large surface area anyway, so that the cooling by the cold working gas is particularly thermodynamically effective.
  • the integrated cooled power supply device also works cryotechnically good-naturedly, since it does not need to introduce a warm end piece into a cryostat system, which has to be coupled to a cold reservoir only with considerable design effort. 3.
  • the cooling capacity of the pulse tube cooler can be optimally adapted to the losses of the power supply device. This makes it possible to save losses that often occur due to the necessary over-dimensioning of the cooler.
  • cryostat losses for example due to heat radiation
  • further cryostat losses can be compensated for without further cooling unit or replenishment of cryogenic liquids.
  • an economical adaptation to the power requirements of a given cryosystem is also possible through a modular design in which several power supply devices are connected to a common compressor with a valve train.
  • Conventional power supply devices that are optimized for a " certain rated current can be at the warm end dew or even freeze when the joule to be dissipated in an undercurrent is reduced. There is a risk for high-voltage power supplies that the flashover resistance is reduced.
  • this effect can be counteracted in a simple manner by a corresponding reduction in the cooling capacity.
  • the operating frequency of the valve train or of the piston, which generates a periodic helium pressure wave is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Die Stromzuführungsvorrichtung (2) enthält eine zwischen einem höheren Temperaturniveau (RT) und einem tieferen Temperaturniveau (TT) verlaufende elektrische Leitung, an deren tieftemperaturseitigem Ende eine gekühlte elektrische, insbesondere supraleitende Einrichtung angeschlossen ist. Die elektrische Leitung soll zumindest teilweise von wenigstens einem Teil (6a, 7a) eines einen Regenerator (6) und eine Pulsröhre (7) aufweisenden Kaltkopfes (3) eines Pulsröhrenkühlers gebildet sein.

Description

Beschreibung
Stromzuführungsvorrichtung für eine gekühlte elektrische Einrichtung
Die Erfindung bezieht sich auf eine Stromzuführungsvorrichtung mit wenigstens einer zwischen einem höheren Temperaturniveau und einem tieferen Temperaturniveau verlaufenden elektrischen Leitung, die an ihrem tieftemperaturseitigen Ende mit einer gekühlten elektrischen Einrichtung verbunden ist. Eine derartige Stromzuführungsvorrichtung geht z.B. aus der Zeitschrift „Cryogenics" , Vol . 25, 1985, Sel ten 94 bis 110 hervor .
Eines der Hauptprobleme bei der Konstruktion kryogener Systeme ist eine effiziente Einleitung verhältnismäßig großer Ströme in supraleitende oder halbleitende Einrichtungen, wie sie z.B. zu einer Magnetfelderzeugung oder zu einer Kurz- schlußstrombegrenzung oder zu einer Spannungstransformation oder zu einer Stromübertragung vorgesehen werden. Häufig wird das größte Wärmeleck in einem isolierten Kryobehälter von dem mindestens einen elektrischen Leiter der Stromzuführungsvorrichtung verursacht, der zwischen einem höheren Temperaturniveau, insbesondere bei Raumtemperatur von etwa 300 K, und ei- nem tieferen Temperaturniveau von z.B. 77 K, der Temperatur des flüssigen Stickstoffs LN2, verläuft, auf dem sich die elektrische Einrichtung befinden kann. Sofern die zwischen diesen Temperaturniveaus verlaufende elektrische Leitung der Stromzuführungsvorrichtung nicht verlustarm konstruiert wer- den kann und die entstehende Verlustwärme nicht effektiv abgeführt wird, kann allein der Kühlaufwand den technischen oder wirtschaftlichen Sinn des gesamten Systems in Frage stellen.
Bei der Auslegung von bekannten Stromzuführungsvorrichtungen unterscheidet man insbesondere zwischen leitungsgekuhlten und abgasgekühlten Bauformen. Leitungsgekühlte Stromzuführungs- vorrichtungen werden im allgemeinen nur durch Wärmeleitung von einem kalten Ende her gekühlt. Optimiert man die Dimensionen so, daß die Summe aus Joule' sehen Verlusten des Me- talls der Leitung mit einem spezifischen Widerstand p(T) und durch den durch die temperaturabhängige Wärmeleitfähigkeit λ(T) bestimmten Wärmetransport minimal ist, dann beträgt der spezifische Verlust, d.h. die Wärmeeinleitung pro Einheitsstrom, für Kupfer etwa 43 W/kA bei Betrachtung einer einzigen elektrischen Leitung (vgl. die Zeitschrift „IEEE
Transactlons on Magnetics" , Vol . MAG-13 , No . 1 , 1977, Sel ten 690 bis 693) .
Bei abgasgekühlten Stromzuführungsvorrichtungen wird die Ent- halpie eines verdampften Kühlmittels, z.B. von LN2 bei 77 K oder von flüssigem Helium LHe von 4,2 K, dazu genutzt, die eingeleitete Verlustwärme im Gegenstrom abzuführen. Dadurch kann man den spezifischen Verlust zwischen 300 K und 77 K auf etwa 25 W/kA reduzieren, wobei pro Stunde, Kiloampere und Stromzuführungsleitung etwa 0,56 Liter LN2 verdampfen.
Die in einen Kryostaten eingeleitete Wärmemenge diktiert bei einem gegebenen Kühlmittelvorrat die Standzeit des kryogenen Systems, nach der ein Auffüllen nötig ist, oder die Größe ei- nes Kühlaggregats, wenn keine Kühlflüssigkeiten benutzt wer- den. Für einen Anwender ist zudem von Bedeutung, wie hoch die nötige Leistung bei Raumtemperatur ist, die zur Kühlung bereitgestellt werden muß. Diese Leistung wird z.B. in einem Kompressor eines Kühlaggregats oder bei der Herstellung des flüssigen Kühlmittels verbraucht.
Je nach konkreter Anwendung sind eine Vielzahl von Ausführungsformen für Stromzuführungsvorrichtungen bekannt (vgl . die eingangs genannte Literaturstelle) . In der Regel kommt für die zwischen den verschiedenen Temperaturniveaus verlaufende elektrische Leitung als Material Kupfer oder Messing zum Einsatz. Bei leitungsgekuhlten Stromzuführungsvorrichtungen wird zudem das kalte Ende häufig gut wärmeleitend, aber elektrisch isolierend mit der kalten Seite eines insbesondere nach dem Gifford-McMahon-Prinzip arbeitenden Refrigerators verbunden. Bei abgasgekühlten Stromzuführungsvorrichtungen wird zumindest ein großer Teil des verdampften Kühlmittels an der elektrischen Leitung entlanggeführt, die eine möglichst große Oberfläche haben sollte, damit ein effektiver Wärmeaus- tausch stattfindet.
Aufgabe der vorliegenden Erfindung ist es, eine Stromzuführungseinrichtung mit den eingangs genannten Merkmalen dahingehend auszugestalten, daß der für sie erforderliche kryo- technische Aufwand vermindert ist.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zumindest ein Teilstück der elektrischen Leitung von wenigstens einem Teil eines einen Regenerator und eine Pulsröhre aufwei- senden Kaltkopfes eines Pulsröhrenkühlers gebildet ist. Bei der erfindungsgemäßen Stromzuführungsvorrichtung ist also ein Pulsröhrenkühler integraler Bestandteil der Vorrichtung. Dabei wird ausgenutzt, daß der Kaltkopf eines solchen Puls- röhrenkühlers verglichen mit Kaltköpfen herkömmlicher Kryo- kühler, die z.B. nach dem Gifford-McMahon-Prinzip arbeiten, ein einfaches Bauteil ohne mechanisch bewegte Teile ist, das in vorteilhafter Weise preiswert zu fertigen ist und das durch Fehlen weiterer elektrischer Antriebe gegen hohe Spannungen isolierbar ist. Die erfindungsgemäße Stromzuführungs- Vorrichtung stellt somit wärmetechnisch eine Zwischenform zwischen einer leitungs- und abgasgekühlten Stromzuführung dar, die ohne ein strömendes flüssiges Kühlmittel auskommt und dabei eine gegenüber einer leitungsgekuhlten Stromzuführung eine vergleichsweise geringere Wärmeeinleitung verur- sacht. Sie vereint somit die Vorteile der beiden herkömmlichen Bauformen von Stromzuführungen.
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Stromzuführungsvorrichtung gehen aus den abhängigen Ansprüchen her- vor.
Zur weiteren Erläuterung der Erfindung und deren Weiterbildungen wird nachfolgend auf die Zeichnung Bezug genommen. Dabei zeigen jeweils schematisch als Längsschnitt deren Figur 1 eine erste Ausführungsform einer erfindungsgemäßen S romzuführungsvorrichtung, deren Figur 2 eine weitere Ausführungsform einer solchen
Stromzuführungsvorrichtung und deren Figuren 3 bis 7 verschiedene Ausführungsformen bekannter Pulsröhrenkühler. In den Figuren sind sich entsprechende Teile mit denselben Bezugszeichen versehen.
Bei der in Figur 1 gezeigten, allgemein mit 2 bezeichneten Ausführungsform einer Stromzuführungsvorrichtung nach der Erfindung erfolgt über Teile eines Kaltkopfes 3 eines Pulsröhrenkühlers die elektrische Stromleitung zwischen einer wärmeren, insbesondere auf Raumtemperatur RT befindlichen Seite und einer kälteren, z.B. auf Tieftemperatur TT von 77 K des LN2 befindlichen Seite. Der Kaltkopf 3 ragt dabei zumindest mit seinem kälteren Teil in den Vakuumraum V eines Vakuumgefäßes 4 bzw. eines Kryostaten hinein. Statt des Vakuumraums eines Vakuumgefäßes kann auch der Innenraum eines (Bad-) Kryostaten mit dem Kaltkopf bzw. Kaltkopfteil versehen werden. Der Kaltkopf weist einen Regenerator 6 und eine Pulsröhre 7 auf, die an ihren tieftemperaturseitigen Enden über eine Überströmleitung 15 miteinander verbunden sind. Die Stromleitung bildet dabei das Hüllrohr 6a des Regenerators 6 und/oder das Hüllrohr 7a der Pulsröhre 7 in einer koaxialen oder pa- rallelen Bauweise. Dabei können entweder Regenerator und
Pulsröhre gegeneinander elektrisch isoliert sein und zwei auf unterschiedlichem Potential befindliche elektrische Leitungen bilden, wie gemäß dem dargestellten Ausführungsbeispiel angenommen ist. Oder diese Teile können auch parallelgeschaltet sein. In der Figur sind ferner bezeichnet mit 8a und 8b die Stromanschlüsse auf dem wärmeren Temperaturniveau RT, mit 9a und 9b die entsprechenden Stromanschlüsse auf dem tieferen Temperaturniveau TT, mit 10 eine Einbauöffnung für den Kalt- kopf 3 in dem Vakuum- oder Kryostatengefäß 4, mit 11 ein den Kaltkopf 3 an seiner wärmeren Seite haltenden, isolierenden Montageflansch, der für eine Vakuum- oder gasdichte Abdich- tung der Einbauöffnung 10 sorgt, mit 13 ein Gaseinlaß und/oder -auslaß an dem Regenerator, mit 14 ein Gaseinlaß und/oder -auslaß an der Pulsröhre, mit 15 die beispielsweise elektrisch isolierende Überströmleitung zwischen dem Regene- rator und dem Pulsrohr sowie mit 16 ein Anschluß für eine thermische Sammelschiene . An den Stromanschlüssen 8a und 8b ist beispielsweise eine externe, auf Raumtemperatur RT befindliche Stromversorgungseinheit anzuschließen, während mit den Stromanschlüssen 9a und 9b eine gekühlte, im allgemeinen auf der Tieftemperatur TT zu haltende elektrische Einrichtung verbunden ist. Bei der elektrischen Einrichtung kann es sich insbesondere um ein Kabel, einen Strombegrenzer, eine Magnet- feldwicklung oder Teile einer Elektronik jeweils mit supraleitendem Material handeln. Dabei können für klassische Su- praleitermaterialien wie z.B. Nb3Sn oder NbTi im allgemeinen eine LHe-Kühltechnik und für metalloxidische Supraleitermaterialien mit hoher Sprungtemperatur wie z.B. vom Y-Ba-Cu-0- oder vom (Bi, Pb) -Sr-Ca-Cu-0-Typ im allgemeinen eine LN2- Kühltechnik vorgesehen sein. Die elektrische Einrichtung kann jedoch auch zu kühlende normalleitende oder halbleitende Teile aufweisen und braucht nicht unbedingt auf exakt dem Temperaturniveau TT zu liegen.
Die in Figur 2 gezeigte Ausführungsform einer mit 22 bezeich- neten Stromzuführungsvorrichtung unterscheidet sich von der
Ausführungsform nach Figur 1 dadurch, daß ihr Kaltkopf 23 eines Pulsröhrenkühlers nur mittels seines Regenerators 26 zur Stromführung genutzt wird. Der Regenerator enthält dabei als stromführenden Teil einen metallischen Körper in Form von z.B. einem in sein Hüllrohr 26a gepacktes, eng gerolltes Metallnetz 26b. Statt des Metallnetzes kann auch ein poröser Körper aus gesinterten Metallkörnchen oder ein Bündel dünner Drähte oder mindestens ein dünner, gerollter oder gefalteter Blechstreifen oder eine Anzahl von Profilblechen dienen. Diese metallischen Körper sind am warmen und am kalten Ende z.B. durch Einlöten, -schweißen oder -pressen elektrisch kontaktiert. Ein Bündel dünner Drähte eignet sich besonders gut für eine Einleitung von Wechselstrom, da die Drahtdicke der Skintiefe angepaßt werden kann. Bei der Ausführungsform nach Figur 2 wird jedoch gegenüber einem Stapel feiner Drahtnetze die Wärmeleitung im Regenerator stark erhöht, so daß diese Ausführungsform vorzugsweise nur für vergleichsweise große Ströme in Betracht gezogen wird.
Bei den Stromzuführungsvorrichtungen gemäß der Erfindung, wie sie aus den Figuren 1 und 2 hervorgehen, wird eine elektrische Isolation vorteilhaft durch Dielektrika, z.B. Kunststoffe und/oder Keramik, gewährleistet. Am tieftemperaturseitigen Ende kommen bevorzugt auch Saphir, BeO oder Aluminiumnitrid zum Einsatz, die vorteilhaft eine hohe Wärmeleitfähigkeit be- sitzen. Dadurch können auch weitere zu kühlende Bauteile, z.B. Strahlungsschilde oder elektrische oder magnetische Apparate thermisch angekoppelt werden. Eine Potentialtrennung zwischen einem Kompressor mit möglicherweise elektrischem Ventiltrieb und der Stromzuführungsvorrichtung kann z.B. durch ein isolierendes Verbindungsrohr, das beispielsweise aus Kunststoff, faserverstärktem Kunststoff oder Keramik bestehen kann, erreicht werden.
Bei den für eine erfindungsgemäße Stromzuführungsvorrichtung eingesetzten Pulsröhrenkühlern wird von an sich bekannten
Ausführungsformen ausgegangen (vgl. z.B. „Cryocoolers 8", Plenum Press, New York, 1994 , Sei ten 345 bis 410 ; oder „Ädvances in Cryogenic Engineering" , Vol . 35, Plenum Press, New York, 1990, Sei ten 1191 bis 1205; oder „INFO PHYS TECH" des VDI -Technologiezentrums, Nr. 6/Febr. 1996, mi t dem Ti tel : „Pulsröhrenkühler : Neue Käl temaschinen für die Supralei tungs - technik und Kryoelektronik", 4 Sei ten; oder die US 5, 335, 505 A) . Ein solcher Pulsröhrenkühler weist gemäß Figur 3 einen Kaltkopf 33 auf, der zumindest mit seinem kälteren Teil im allgemeinen von einem Isoliervakuum umgeben ist. Dieser Kalt- köpf besitzt zwei untereinander verbundene Röhren. Eine Röhre ist als ein sogenannter Regenerator 36 gestaltet und enthält in ihrem Inneren einen die Gaswärme periodisch zwischenspeichernden Körper z.B. in Form von gestapelten Metallnetzen 36a kleiner Maschenweite. Dieser Körper wird bei der Ausführungs- form einer erfindungsgemäßen Stromzuführungsvorrichtung 22 nach Figur 2 zur Stromleitung herangezogen. Demgegenüber stellt die andere Röhre eine sogenannte Pulsröhre 37 dar, welche lediglich an ihrem warmen und kalten Ende jeweils z.B. durch feine Kupfernetze gebildete Wärmetauscher 38 bzw. 39 aufweist und ansonsten hohl ist. Die beiden nicht unbedingt rohrförmig gestalteten Teile 36 und 37 sind an ihren auf Tieftemperatur TT liegenden Enden mittels eines Überströmkanals 40 für ein Kühlmittel verbunden. Eine erste Versorgungsleitung 41 dient dazu, dem Regenerator 36 ein im allgemeinen ungekühltes, insbesondere auf Raumtemperatur RT befindliches Arbeitsgas, beispielsweise He-Gas, unter Hochdruck über den Ventiltrieb 42a pulsierend mit einer Frequenz beispielsweise zwischen 2 Hz und 50 Hz zuzuführen. Während einer Niederdruckphase des Pulsröhrenkühlers wird mittels eines Ventil- triebs 42b über die Versorgungsleitung 41 auch Arbeitsgas wieder abgeführt. Die Pulsröhre 37 kann an ihrem raumtempera- turseitigen Ende über einen in der Figur nicht dargestellten Verbindungskanal an eine zweite Versorgungsleitung angeschlossen sein, die je nach Bauart des Pulsröhrenkühlers zu einem weiteren, in der Figur nicht dargestellten Ventiltrieb oder zu einem Puffervolumen des Arbeitsgases von beispielsweise einigen Litern Größe führt (vgl. Figuren 5 bis 7) . Die Figur 3 zeigt ferner einen Kompressor 43, der an die erste Verbindungsleitung 41 mittels einer Hinleitung 41a mit darin angeordnetem (Hochdruck-) Ventil 42a für das Arbeitsgas unter hohem Druck und einer Rückleitung 41b mit darin angeordnetem (Niederdruck-) Ventil 42b für das Arbeitsgas unter niedrigem Druck angeschlossen ist .
Während bei der in Figur 3 gezeigten Ausführungsform des Kaltkopfes 33 eines bekannten Pulsröhrenkühlers Regenerator 36 und Pulsröhre 37 räumlich parallel oder gegebenenfalls auch räumlich hintereinander angeordnet sind, ist bei der in Figur 4 gezeigten Ausführungsform des Kaltkopfes 45 eines weiteren bekannten Pulsröhrenkühlers eine konzentrische (koaxiale) Anordnung von Pulsröhre 47 und diese umschließendem Regenerator 46 vorgesehen. Bei dieser Ausführungsform wird das Arbeitsgas mittels einer Pumpvorrichtung 48 mit Arbeitskolben 48a gefördert.
Bei allen diesen Ausführungsformen von bekannten Pulsröhrenkühlern wird periodisch eine durch den Arbeitskolben 48a oder durch den Kompressor 43 mit Ventiltrieb erzeugte Druckwelle eingelassen, die im Regenerator 36 bzw. 46 vorgekühlt wird und in der Pulsröhre 37 bzw. 47 so entspannt wird, daß eine nutzbare Kälteleistung entsteht. Das entspannte, kalte Gas kühlt dann beim Ausströmen aus der Pulsröhre den Regenerator. Ausführungsformen von entsprechenden Phasenschiebern am warmen Ende der Pulsröhre zeigen die Figuren 5 bis 7, wobei ein Kaltkopf 33 gemäß Figur 3 zugrundegelegt ist. Nach Figur 5 ist hierzu ein Puffervolumen 51 mit Drossel 52 vorgesehen. Zusätzlich kann gemäß Figur 6 ein zweiter Einlaß von der wärmeren Regeneratorseite her über eine Leitung 53 mit Düse 54 erfolgen. Nach Figur 7 kann ein entsprechender Phasenschieber auch mit vier Ventilen 42a, 42b, 55a und 55b gebildet werden.
Darüber hinaus lassen sich erfindungsgemäßen Stromzuführungs- vorrichtungen auch zwei- und mehrstufige Varianten von Puls- röhrenkühlern zugrundelegen (vgl. z.B. Zeitschrift „Cryogenics", Vol . 34 , 1994 , Sei ten 259 bis 262) .
Selbstverständlich sind auch andere Ausführungsformen von erfindungsgemäßen Stromzuführungsvorrichtungen als die in den Figuren 1 und 2 gezeigten denkbar: So können z.B. Gestaltungsmerkmale der Stromzuführungsvorrichtung 2 nach Figur 1 und der Stromzuführungsvorrichtung 22 nach Figur 2 kombiniert werden, so daß dann der elektrische Strom sowohl innerhalb des Regenerators als auch über dessen Hüllrohr fließt. Alle Varianten können auch koaxial wie auch parallel ausgeführt sein, wobei ein, zwei oder mehrere Stromleitungen mit unter- schiedlichen Potentialen in einem Kaltkopf denkbar sind. Es können auch mehrere Stromzuführungsvorrichtungen an einem Kompressor betrieben werden. Sofern eine Kühlstufe für eine bestimmte Anwendung nicht ausreicht, können auch zwei- oder mehrstufige Versionen aufgebaut werden, indem am kalten Ende der wärmeren Stufe das wärmere Ende einer weiteren, kälteren
Stufe angeschlossen wird. Eine entsprechende Anordnung kann als thermische Hintereinanderschaltung von mehreren Kaltköpfen angesehen werden.
it der erfindungsgemäßen Integration von mindestens einem Kaltkopf eines Pulsröhrenkühlers in eine Stromzuführungsvorrichtung werden gegenüber bekannten Ausführungsformen eine Reihe bedeutender Vorteile erzielt :
1. Die Wärmeverluste sind im Vergleich zu einer leitungsgekuhlten Stromzuführungsvorrichtung deutlich reduziert. Die Stromzuführungsvorrichtung 2 nach Figur 1 nutzt nämlich die elektrische Leitfähigkeit der Hüllrohre 6a und 7a von Regenerator 6 und Pulsröhre 7, die ohnehin vergleichsweise massiv sind, um einem Arbeitsdruck von typischerweise 20 bar Heliumgas standzuhalten. Beispielsweise kann ein Edel- Stahlrohr von 1 mm Wandstärke, 20 mm Durchmesser und
200 mm Länge einen Strom von 32 A optimal übertragen, wobei die Verluste gegenüber einer mit einem Pulsröhrenkühler nur indirekt gekühlten Stromzuführungsvorrichtung bei Belastung mit dem Nennstrom auf ein Drittel reduziert sind. Im stromlosen Zustand ergibt sich überhaupt kein zusätzliches Wärmeleck. Bei großen Strömen werden vorteilhaft größere Wandstärken bzw. Materialien höherer spezifischer Leitfähigkeit wie z.B. Messing oder Bronze oder Kupfer eingesetzt. Eine weitere Verlustreduktion ergibt sich durch den Gegenstromkühleffekt in Regenerator 6 und Pulsröhre 7, der durch das kalte Arbeitsgas erreicht wird. Um diesen Effekt noch zu erhöhen, können gegebenenfalls weitere Verbesserungen angebracht werden, die z.B. in Rohren mit variablem Querschnitt oder zusätzlichen Wärmetauschern auf verschiedenen Höhen in der Pulsröhre bestehen. Auch können Maßnahmen zur Vergrößerung der Oberfläche, bei- spielsweise durch besondere Rippen oder durch eine Aufrauhung oder eine Besinterung der Innenflächen mit einem porösen Metall vorgesehen werden. Bei der Stromzuführungs- vorrichtung 22 nach Figur 2 ist die Ersparnis besonders groß, da ein optimierter Regenerator 26 ohnehin eine große Oberfläche aufweist, so daß die Kühlung durch das kalte Arbeitsgas thermodynamisch besonders effektiv ist. 2. Da bei der Stromzuführungsvorrichtung der Kaltkopf kein separates Bauteil darstellt, ergeben sich entsprechende Kosteneinsparungen. Die integriert gekühlte Stromzuführungsvorrichtung arbeitet zudem kryotechnisch gutmütig, da sie kein warmes Endstück in ein Kryostatsystem einzubringen braucht, das erst mit beträchtlichem konstruktiven Aufwand an ein Kältereservoir angekoppelt werden muß. 3. Durch gemeinsame Auslegung der Stromzuführungsvorrichtung und des Pulsröhrenkühlers kann die Kühlleistung des Puls- röhrenkühlers optimal an die Verluste der Stromzuführungs- vorrichtung angepaßt werden. Dadurch lassen sich Verluste einsparen, die häufig durch die erforderliche Überdimen- sionierung des Kühlers auftreten.
4. Sofern die Kühlleistung am kalten Ende auf z.B. 77 K groß genug gewählt wird, können weitere Kryostatverluste z.B. aufgrund einer Wärmeeinstrahlung ohne weitere Kühleinheit oder Nachschub von Kryoflüssigkeiten ausgeglichen werden. 5. Durch den einfachen Aufbau ist eine ökonomische Anpassung an den Strombedarf eines gegebenen Kryosystems auch durch eine modulare Bauweise möglich, bei der mehrere Stromzuführungsvorrichtungen an einen gemeinsamen Kompressor mit Ventiltrieb angeschlossen werden. 6. Herkömmliche Stromzuführungsvorrichtungen, die für einen " bestimmten Nennstrom optimiert sind, können am warmen Ende betauen oder sogar vereisen, wenn bei einem Unterstrom die abzuführende Joule' sehe Wärme reduziert ist. Dabei besteht für Hochspannungs-Stromzuführungen die Gefahr, daß sich die Überschlagsfestigkeit verringert. Bei der integriert gekühlten Stromzuführungsvorrichtung nach der Erfindung kann diesem Effekt durch eine entsprechende Reduktion der Kühlleistung auf einfache Weise entgegengewirkt werden. Dazu wird z.B. die Betriebsfrequenz des Ventiltriebs oder des Kolbens, der eine periodische Heliumdruckwelle er- zeugt, gesenkt.

Claims

Patentansprüche
1. Stromzuführungsvorrichtung mit wenigstens einer zwischen -einem höheren Temperaturniveau und einem tieferen Temperatur- niveau verlaufenden elektrischen Leitung, die an ihrem tief- temperaturseitigen Ende mit einer gekühlten elektrischen Einrichtung verbunden ist, d a d u r c h g e k e n n z e i c h n e t , daß zumindest ein Teilstück der elektrischen Leitung von wenigstens einem Teil (6a, 7a, 26b) eines einen Regenerator (6, 26) und eine Pulsröhre (7, 27) aufweisenden Kaltkopfes (3, 23) eines Pulsröhrenkühlers gebildet ist .
2. Stromzuführungsvorrichtung nach Anspruch 1, d a - d u r c h g e k e n n z e i c h n e t , daß ein Hüllrohr (6a) des Regenerators (6) und/oder ein Hüllrohr (7a) der Pulsröhre (7) als Leitungsteilstück vorgesehen ist.
3. Stromzuführungsvorrichtung nach Anspruch 1 oder 2, d a - d u r c h g e k e n n z e i c h n e t , daß ein metallischer Körper (26b) im Inneren eines Hüllrohres (26a) des Regenerators (26) als Leitungsteilstück vorgesehen ist.
4. Stromzuführungsvorrichtung nach Anspruch 3, d a - d u r c h g e k e n n z e i c h n e t , daß der metallische Körper (26b) ein Metallnetz oder ein Sinterkörper oder ein Drahtbündel oder mindestens ein Blechstreifen ist.
5. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß mit dem Regenerator (6) und der Pulsröhre (7) zwei verschiedene, gegenseitig isolierte Leitungsteilstücke gebildet sind.
6. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß mit dem Regenerator (6) und der Pulsröhre (7) zwei elektrisch parallelgeschaltete Leitungsteilstücke gebildet sind.
7. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 6, g e k e n n z e i c h n e t durch eine räumlich parallele Anordnung von Regenerator (6) und Pulsröhre (7) .
8. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis 6, g e k e n n z e i c h n e t durch eine räumlich kon- zentrische Anordnung von Regenerator und Pulsröhre.
9. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis
8, d a d u r c h g e k e n n z e i c h n e t , daß der Kaltkopf mehrstufig ausgebildet ist.
10. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis
9, d a d u r c h g e k e n n z e i c h n e t , daß der Kaltkopf (3, 23) zumindest mit seinem kälteren Teil in den Vakuumraum (V) eines Vakuumgefäßes (4) oder in den Innenraum eines Kryostaten hineinragt.
11. Stromzuführungsvorrichtung nach einem der Ansprüche 1 bis
10, g e k e n n z e i c h n e t durch einen elektrischen Anschluß an eine supraleitende Einrichtung.
EP98907881A 1997-02-07 1998-02-02 Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung Expired - Lifetime EP0958585B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19704485 1997-02-07
DE19704485A DE19704485C2 (de) 1997-02-07 1997-02-07 Stromzuführungsvorrichtung für eine gekühlte elektrische Einrichtung
PCT/DE1998/000285 WO1998035365A1 (de) 1997-02-07 1998-02-02 Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung

Publications (2)

Publication Number Publication Date
EP0958585A1 true EP0958585A1 (de) 1999-11-24
EP0958585B1 EP0958585B1 (de) 2003-05-21

Family

ID=7819479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98907881A Expired - Lifetime EP0958585B1 (de) 1997-02-07 1998-02-02 Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung

Country Status (5)

Country Link
US (1) US6112527A (de)
EP (1) EP0958585B1 (de)
JP (1) JP3898231B2 (de)
DE (2) DE19704485C2 (de)
WO (1) WO1998035365A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6286318B1 (en) 1999-02-02 2001-09-11 American Superconductor Corporation Pulse tube refrigerator and current lead
WO2000057530A1 (de) * 1999-03-18 2000-09-28 Siemens Aktiengesellschaft Anordnung mit leistungselektronik für tieftemperatursysteme
WO2001001048A1 (de) * 1999-06-24 2001-01-04 Csp Cryogenic Spectrometers Gmbh Kühlvorrichtung
DE29911071U1 (de) * 1999-06-24 2000-12-14 Csp Cryogenic Spectrometers Gm Kühlvorrichtung
EP1063482A1 (de) * 1999-06-24 2000-12-27 CSP Cryogenic Spectrometers GmbH Kühlvorrichtung
EP1072851A1 (de) * 1999-07-29 2001-01-31 CSP Cryogenic Spectrometers GmbH Kühlvorrichtung
DE10035859A1 (de) * 2000-07-24 2002-02-07 Abb Research Ltd Wechselstrom-Durchführung
JP4799757B2 (ja) * 2001-04-26 2011-10-26 九州電力株式会社 超電導磁石
JPWO2003001127A1 (ja) * 2001-06-21 2004-10-14 エア・ウォーター株式会社 蓄冷型冷凍機
JP4799770B2 (ja) * 2001-07-09 2011-10-26 九州電力株式会社 超電導磁石
GB0125189D0 (en) * 2001-10-19 2001-12-12 Oxford Magnet Tech A pulse tube refrigerator
US6698224B2 (en) * 2001-11-07 2004-03-02 Hitachi Kokusai Electric Inc. Electronic apparatus having at least two electronic parts operating at different temperatures
US7174721B2 (en) * 2004-03-26 2007-02-13 Mitchell Matthew P Cooling load enclosed in pulse tube cooler
JP5095417B2 (ja) * 2005-01-13 2012-12-12 住友重機械工業株式会社 入力電力が低減された極低温冷凍機
JP5241414B2 (ja) * 2008-09-30 2013-07-17 三洋電機株式会社 画像表示装置
JP5202220B2 (ja) * 2008-09-30 2013-06-05 三洋電機株式会社 画像表示装置
US20180096018A1 (en) 2016-09-30 2018-04-05 Microsoft Technology Licensing, Llc Reducing processing for comparing large metadata sets

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6910446U (de) * 1969-03-14 1970-01-29 Friedrich Wilhelm D Burmeister Trog fuer foerderschnecken zum austragen von fluessigkeiten oder schlaemmen, insbesondere aus sedimentationsbecken von wasseraufbereitungsanlagen
US3654377A (en) * 1969-12-15 1972-04-04 Gen Electric Electrical leads for cryogenic devices
JPS5735384A (en) * 1980-07-04 1982-02-25 Japan Atom Energy Res Inst Large current lead wire for superconductive device
DE3743033A1 (de) * 1987-12-18 1989-06-29 Asea Brown Boveri Magnetsystem
US5335505A (en) * 1992-05-25 1994-08-09 Kabushiki Kaisha Toshiba Pulse tube refrigerator
FR2701157B1 (fr) * 1993-02-04 1995-03-31 Alsthom Cge Alcatel Liaison d'alimentation pour bobine supraconductrice.
FR2713405B1 (fr) * 1993-12-03 1996-01-19 Gec Alsthom Electromec Module d'amenée de courant pour l'alimentation d'une charge électrique supraconductrice à basse température critique.
US5735127A (en) * 1995-06-28 1998-04-07 Wisconsin Alumni Research Foundation Cryogenic cooling apparatus with voltage isolation
DE19648253C2 (de) * 1996-11-22 2002-04-04 Siemens Ag Pulsröhrenkühler und Verwendung desselben
JP3398300B2 (ja) * 1997-05-28 2003-04-21 京セラ株式会社 電子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9835365A1 *

Also Published As

Publication number Publication date
EP0958585B1 (de) 2003-05-21
DE19704485A1 (de) 1998-08-20
US6112527A (en) 2000-09-05
DE19704485C2 (de) 1998-11-19
JP2001510551A (ja) 2001-07-31
DE59808460D1 (de) 2003-06-26
JP3898231B2 (ja) 2007-03-28
WO1998035365A1 (de) 1998-08-13

Similar Documents

Publication Publication Date Title
EP0958585B1 (de) Stromzuführungsvorrichtung für eine gekühlte elektrische einrichtung
DE19914778B4 (de) Supraleitende Magnetvorrichtung
EP1504458B1 (de) Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit
EP1206667B1 (de) Supraleitungseinrichtung mit einer kälteeinheit für eine rotierende, supraleitende wicklung
EP1311785B1 (de) Kryostat für elektrische apparate wie supraleitende strombegrenzer und elektrische maschinen wie transformatoren, motoren, generatoren und elektrische magnete mit supraleitender wicklung
EP1970921B1 (de) Stromzuführung mit Hochtemperatursupraleitern für supraleitende Magnete in einem Kryostaten
WO2003012803A2 (de) Einrichtung zur rekondensation von tiefsiedenden gasen mit einem kryogenerator des aus einem flüssiggas-behälter verdampfenden gases
DE102004061869A1 (de) Einrichtung der Supraleitungstechnik
EP0865595B1 (de) Tieftemperatur-refrigerator mit einem kaltkopf, sowie verwendung dieses refrigerators
EP1504516B1 (de) Supraleitungseinrichtung mit thermisch an eine rotierende supraleitende wicklung angekoppeltem kaltkopf einer kälteeinheit
EP1742234B1 (de) Unterkühlte Horizontalkryostatanordnung
DE10211568B4 (de) Kälteanlage für zu kühlende Teile einer Einrichtung
EP3611528A1 (de) Kryostatanordnung mit supraleitendem magnetspulensystem mit thermischer verankerung der befestigungsstruktur
DE102014224363A1 (de) Vorrichtung der Supraleitungstechnik mitSpuleneinrichtungen und Kühlvorrichtung sowie damitausgestattetes Fahrzeug
DE4223145C2 (de) Stromzuführungsvorrichtung für eine auf Tieftemperatur zu haltende, insbesondere supraleitende Einrichtung
DE19813211C2 (de) Supraleitende Einrichtung mit Leitern aus Hoch-T¶c¶-Supraleitermaterial
EP3861573B1 (de) Supraleitende strombegrenzereinrichtung mit stromzuführung
DE102015202638A1 (de) Stromzuführung für eine supraleitende Spuleneinrichtung
DE102018213598A1 (de) Supraleitende Stromzuführung
DE10032368A1 (de) Supraleitungseinrichtung mit einer resistiven Strombegrenzereinheit unter Verwendung von Hoch-T¶c¶-Supraleitermaterial
DE10211363A1 (de) Supraleitungseinrichtung mit einem thermisch an eine rotierende, supraleitende Wicklung angekoppelten Kaltkopf einer Kälteeinheit mit Thermosyphoneffekt
EP4139943A1 (de) Stromzuführung und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 20020626

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59808460

Country of ref document: DE

Date of ref document: 20030626

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110224

Year of fee payment: 14

Ref country code: SE

Payment date: 20110208

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110418

Year of fee payment: 14

Ref country code: CH

Payment date: 20110510

Year of fee payment: 14

Ref country code: GB

Payment date: 20110210

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110223

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120203

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59808460

Country of ref document: DE

Effective date: 20120901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120901