WO2003076386A2 - Katalysatoren und verfahren zur herstellung von aminen - Google Patents

Katalysatoren und verfahren zur herstellung von aminen Download PDF

Info

Publication number
WO2003076386A2
WO2003076386A2 PCT/EP2003/002335 EP0302335W WO03076386A2 WO 2003076386 A2 WO2003076386 A2 WO 2003076386A2 EP 0302335 W EP0302335 W EP 0302335W WO 03076386 A2 WO03076386 A2 WO 03076386A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
calculated
hydrogen
oxygen
catalyst
Prior art date
Application number
PCT/EP2003/002335
Other languages
English (en)
French (fr)
Other versions
WO2003076386A3 (de
Inventor
Till Gerlach
Frank Funke
Johann-Peter Melder
Stefan Iselborn
Martin Rudloff
Michael Hüllmann
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU2003215639A priority Critical patent/AU2003215639A1/en
Priority to US10/507,602 priority patent/US7183438B2/en
Priority to AT03743852T priority patent/ATE442198T1/de
Priority to CA2478858A priority patent/CA2478858C/en
Priority to DE50311896T priority patent/DE50311896D1/de
Priority to JP2003574608A priority patent/JP4541706B2/ja
Priority to CN038060019A priority patent/CN1642638B/zh
Priority to EP03743852A priority patent/EP1487573B1/de
Publication of WO2003076386A2 publication Critical patent/WO2003076386A2/de
Publication of WO2003076386A3 publication Critical patent/WO2003076386A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/90Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/023Preparation; Separation; Stabilisation; Use of additives

Definitions

  • the present invention relates to new alkali metal and alkali metal-free catalysts containing zirconium, copper, cobalt and nickel and the use of these catalysts in processes for the preparation of amines by reacting primary or secondary alcohols, aldehydes or ketones at elevated temperature and pressure with hydrogen and Nitrogen compounds selected from the group ammonia, primary and secondary amines.
  • EP-Al-382 049 discloses catalysts which contain oxygen-containing zirconium, copper, cobalt and nickel compounds and processes for the hydrogenative amination of alcohols.
  • the preferred zirconium oxide content of these catalysts is 70 to 80% by weight (loc. Cit .: page 2, last paragraph; page 3, 3rd paragraph; examples). Although these catalysts are notable for good activity and selectivity, they have service lives that can be improved.
  • Catalysts containing copper, nickel and / or cobalt, zirconium and / or aluminum oxide for the catalytic amination of alcohols in the gas phase with ammonia or primary amines and hydrogen are known from EP-A2-514 692 (BASF AG).
  • the atomic ratio of nickel to copper in these catalysts must be 0.1 to 1.0, preferably 0.2 to 0.5 (cf. loc. Cit .: Example 1), since otherwise in the amination of By-products which reduce the yield of alcohols occur to an increased extent (loc. Cit .: Examples 6 and 12).
  • Aluminum oxide loc. Cit .: Examples 1 to 5 and 7 to 11 is preferably used as the carrier.
  • Catalysts containing nickel, copper, zirconium oxide and molybdenum oxide are known from EP-Al-696 572 and EP-A-697 395 (both BASF AG) for the catalytic amination of alcohols with nitrogen compounds and hydrogen. Although high sales are achieved with these catalysts, by-products (e.g. ethylamine) can form which themselves or their secondary products interfere with the work-up.
  • EP-Al-696 572 and EP-A-697 395 both BASF AG
  • EP-A2-905 122 (BASF AG) describes a process for the preparation of amines from alcohols and nitrogen compounds using a catalyst, the catalytically active composition of which is acidic. Contains compounds of zirconium, copper and nickel and no compounds of cobalt or molybdenum containing oxygen.
  • EP-A-1 035 106 (BASF AG) relates to the use of catalysts containing oxygen-containing compounds of zirconium, copper and nickel for the production of amines by aminating hydrogenation of aldehydes or ketones.
  • EP-Al-963 975 and EP-A2-1 106 600 (both BASF AG) describe processes for the preparation of amines from alcohols or aldehydes or ketones and nitrogen compounds using a catalyst whose catalytically active composition is 22-40% by weight. (or 22-45% by weight) oxygen-containing compounds of zirconium, 1-30% by weight of oxygen-containing compounds of copper and in each case 15-50% by weight (or 5-50% by weight) of oxygen-containing compounds of nickel and cobalt.
  • reaction mechanism of the amination of primary or secondary alcohols is assumed to be that the alcohol is first dehydrated at a metal center to the corresponding aldehyde.
  • copper as a dehydrogenation component is probably special importance. If aldehydes are used for the amination, this step is omitted.
  • the aldehyde formed or used can be aminated by reaction with ammonia or primary or secondary A with elimination of water and subsequent hydrogenation. This condensation of the aldehyde with the above. Nitrogen compound is presumably catalyzed by acidic centers of the catalyst. In an undesirable side reaction, the aldehyde can also be decarbonylated, i.e. that the aldehyde function is split off as CO. The decarbonylation or methanization probably takes place at a metallic center. The CO is hydrogenated to methane on the hydrogenation catalyst so that the methane formation indicates the extent of the decarbonylation. Decarbonylation creates the undesired by-products mentioned above, e.g. Methoxyethanol or methoxyethylair n.
  • the desired condensation of the aldehyde with ammonia or primary or secondary amine and the undesired decarbonylation of the aldehyde are parallel reactions, of which the desired condensation is acid-catalyzed, while the undesired decarbonylation is catalyzed by metallic centers.
  • the object of the present invention was to improve the economics of previous processes for the hydrogenative amination of aldehydes or ketones and the amination of alcohols and to remedy the disadvantages of the prior art, in particular the abovementioned disadvantages. It should catalysts are found to be produced industrially in a simple manner and which permit the above amination with high conversion, high yield, selectivity, catalyst lifetime with simultaneously high mechanical stability of the catalyst molding and low, runaway l perform. Accordingly, the catalysts should have high activity and, under the reaction conditions, high chemical and mechanical stability.
  • catalysts were found whose catalytically active mass before treatment with hydrogen 22 to 40 wt .-% oxygenated compounds of zirconium, calculated as
  • alkali metal 1 wt .-% alkali metal (M), calculated as alkali metal oxide (M0), and their advantageous use for the production of Amines by reacting primary or secondary alcohols, aldehydes or ketones at elevated temperature and pressure with hydrogen and nitrogen compounds, selected from the group consisting of ammonia, primary and secondary amines.
  • the alkali metal content can e.g. can be influenced by the duration of the washing of the filter cake resulting from the production of the catalyst, a prolonged washing time leading to a reduced alkali metal content.
  • the catalysts are preferably used in the process according to the invention in the form of catalysts which consist only of catalytically active composition and optionally a shaping aid (such as, for example, graphite or stearic acid), that is to say none if the catalyst is used as shaped body contain other catalytically inactive accompanying substances.
  • a shaping aid such as, for example, graphite or stearic acid
  • the catalytically active composition can be introduced into the reaction vessel as powder or as grit or, preferably after grinding, mixing with molding aids, molding and tempering, as shaped catalyst bodies - for example as tablets, spheres, rings, extrudates (e.g. strands). be introduced into the reactor.
  • concentration data in% by weight of the components of the catalyst relate to the catalytically active mass of the catalyst prepared before the treatment with hydrogen.
  • the catalytically active mass of the catalyst is defined as the sum of the masses of the catalytically active constituents and, before the treatment with hydrogen, essentially contains the catalytically active constituents of oxygen-containing compounds of zirconium, copper, nickel and cobalt.
  • the sum of the abovementioned catalytically active constituents, calculated as Zr0 2 , CuO, NiO and CoO, in the catalytically active composition before the treatment with hydrogen is usually 70 to 100% by weight, preferably 80 to 100% by weight, particularly preferably 90 to 100% by weight, in particular 95 to 100% by weight, very particularly preferably> 99 to 100% by weight.
  • the oxygen-containing compounds of nickel, cobalt and copper, each calculated as NiO, CoO and CuO, are generally in total from 31 to 78% by weight, preferably 44 to 75% by weight, particularly preferably 55 to 75 % By weight, contained in the catalytically active composition (before the treatment with hydrogen), the molar ratio of nickel to copper being greater than 1.
  • the content of alkali metal M, calculated as alkali metal oxide M 2 0, in the catalytically active composition of the catalysts according to the invention before the treatment with hydrogen is less than 1% by weight, preferably less than 0.5% by weight, particularly preferably less than 0 , 35% by weight, in particular less than 0.2% by weight.
  • the alkali metals M are Li, Na, K, Rb and / or Cs, in particular Na and / or K, very particularly Na.
  • the catalysts of the invention contain in their catalytically active mass before treatment with hydrogen
  • alkali metal M calculated as alkali metal oxide M 2 0th
  • the preparation of the catalysts can be obtained, for example, by peptizing powdery mixtures of the hydroxides, carbonates, oxides and / or other salts of the components with water and then extruding and tempering (heat treatment) the mass obtained in this way.
  • precipitation methods are used to prepare the catalysts according to the invention.
  • they can be obtained by co-precipitating the nickel, cobalt and copper components from an aqueous salt solution containing these elements using bases in the presence of a slurry of a sparingly soluble, oxygen-containing zirconium compound and then washing, drying and calcining the resultant Precipitate can be obtained.
  • zirconium dioxide, zirconium oxide hydrate, zirconium phosphates, borates and silicates can be used as sparingly soluble, oxygen-containing zirconium compounds.
  • the slurries of the sparingly soluble zirconium compounds can be prepared by suspending fine-grained powders of these compounds in water with vigorous stirring. These slurries are advantageously obtained by precipitating the sparingly soluble zirconium compounds from aqueous zirconium salt solutions using bases.
  • the catalysts of the invention are preferably prepared by co-precipitation (mixed precipitation) of all of their components.
  • an aqueous salt solution containing the catalyst components is expediently mixed with an aqueous base, for example sodium carbonate, sodium hydroxide, potassium carbonate or potassium hydroxide, while warm and with stirring, until the precipitation is complete.
  • an aqueous base for example sodium carbonate, sodium hydroxide, potassium carbonate or potassium hydroxide
  • alkali-metal-free bases such as ammonia, ammonium carbonate, bicarbonate, ammonium carbamate, ammonium oxalate, ammonium malonate, urotropin, urea, etc.
  • the type of salts used is generally not critical: since this procedure primarily depends on the water solubility of the salts, one criterion is their good water solubility, which is required to prepare these relatively highly concentrated salt solutions. It is taken for granted that when selecting the salts of the individual components, only salts with such anions are naturally chosen that do not lead to disruptions, either by causing undesired precipitation or by complicating or preventing the precipitation by complex formation.
  • the precipitates obtained in these precipitation reactions are generally chemically non-uniform and exist among other things. from mixtures of oxides, hydrated oxides, hydroxides, carbonates and insoluble and basic salts of the metals used. It can prove beneficial for the filterability of the precipitates if they are aged, i.e. if you leave them for some time after the precipitation, if necessary in heat or with air being passed through.
  • the precipitates obtained by these precipitation processes are processed as usual to give the catalysts of the invention.
  • First the precipitates are washed.
  • the alkali metal content which may have been added by the (mineral) base possibly used as a precipitant, can be influenced by the duration of the washing process and the temperature and amount of the washing water. In general, the length of the wash time or the increase in the temperature of the wash water will decrease the alkali metal content.
  • the precipitate is generally dried at 80 to 200 ° C., preferably at 100 to 150 ° C., and then calcined.
  • the calcination is generally carried out at temperatures between 300 and 800 ° C., preferably at 400 to 600 ° C., in particular at 450 to 550 ° C.
  • the catalyst is expediently conditioned, be it by adjusting it to a certain particle size by grinding or by mixing it with shaping aids such as graphite or stearic acid, compressing and tempering it using a tablet press ( heat treated).
  • the tempering temperatures generally correspond to the temperatures during the calcination.
  • the catalysts prepared in this way contain the catalytically active metals in the form of a mixture of their oxygen-containing compounds, ie in particular as oxides and mixed oxides. 5
  • the low-alkali metal or alkali metal-free zirconium-copper-nickel-cobalt catalysts according to the invention can also be prepared according to the processes described in the older DE application No. 10142635.6 of August 31, 2001, to which reference is expressly made here.
  • the catalysts produced can be stored as such. Before they are used as catalysts for the hydrogenative amination of alcohols, aldehydes or ketones, they are
  • the catalysts are generally initially at 150 to
  • the mechanical stability can be determined by measuring the so-called lateral compressive strength.
  • the shaped catalyst body for. B. the catalyst tablet, between two parallel plates with increasing force, this load z. B. on the shell side of catalyst tablets can take place until a breakage of the shaped catalyst body occurs.
  • the force registered when the shaped catalyst body breaks is the lateral compressive strength.
  • R 2 are hydrogen, C 2 o-alkyl, C 3 2 cycloalkyl, aryl,
  • R 3 , R 4 are hydrogen, alkyl, such as C 200 alkyl, cycloalkyl, such as C 3 _i 2 cycloalkyl, hydroxyalkyl, such as C 20 hydroxylalkyl, aminoalkyl, such as C 2 o-aminoalkyl, hydroxyalkylaminoalkyl, such as C 1 - 20 - hydroxyalkylaminoalkyl, alkoxyalkyl, such as C 2 - 3 o-alkoxyalkyl, dialkylaminoalkyl, such as C 3 - 3 o-dialkylaminoalkyl,
  • Alkylaminoalkyl such as C 2 - 3 o _ alkylaminoalkyl, R 5 - (0CR e R 7 CR 8 R 9 ) n - (OCR 6 R 7 ), aryl, heteroaryl, aralkyl, such as C- 2 o-aralkyl, heteroarylalkyl, such as C 4 _ 20- heteroarylalkyl, alkylaryl, such as C_ 2 o-alkylaryl, alkyl heteroaryl, such as C 4 _ 2 o-alkyl heteroaryl and Y- (CH 2 ) m _ NR 5 - (CH 2 ) q or together (CH 2 ) ⁇ -X- (CH 2 ) In or
  • R 5 , R 10 are hydrogen, C 4 alkyl, C 4 o-alkylphenyl,
  • R 6 , R 7 , R 8 , R 9 are hydrogen, methyl or ethyl
  • n is an integer from 1 to 30 and
  • the process according to the invention is therefore preferably used for the preparation of the amines I by using primary or secondary alcohols of the formula II
  • R 1 , R 2 , R 3 and R 4 have the meanings given above.
  • the reaction can also take place intramolecularly in a corresponding amino alcohol, amino ketone or amino aldehyde.
  • the process according to the invention is also preferably used in the production of cyclic amines of the formula IV
  • R 11 and R 12 are hydrogen, C x - to C 2 o-alkyl, C 3 - to C 2 -cycloalkyl, aryl, heteroaryl, C 7 - to Co ⁇ aralkyl and C to C 2 Q-alkylaryl,
  • Z is CH 2 , CHR 5 , 0, NR 5 or NCH 2 CH 2 OH and
  • R 1 , R 6 , R 7 have the meanings given above,
  • alkyl preferably C 14 alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n- Pentyl, iso-pentyl, sec.-pentyl, neo-pentyl, 1,2-dimethylpropyl, n-hexyl, iso-hexyl, sec.-hexyl, n-heptyl, iso-heptyl, cyclohexylmethyl, n-octyl, iso-octyl, 2-ethylhexyl, n-decyl, 2-n-propyl-n-heptyl, n-tridecyl, 2-n-butyl-n-nonyl and 3-n-butyl-n-nonyl, particularly preferably
  • C. — 20-hydroxyalkyl preferably C 8 -hydroxyalkyl, particularly preferably C 4 -hydroxyalkyl, such as hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxy-n-propyl, 2-hydroxy-n-propyl, 3rd -Hydroxy-n-propyl and 1-hydroxymethyl-ethyl,
  • Ci-s-aminoalkyl such as aminomethyl, 2-aminoethyl, 2-amino-l, 1-dimethylethyl, -amino-n-propyl, 3-amino-n-propyl, 4-amino-n butyl, 5-amino-n-pentyl, N- (aminoethyl) aminoethyl and N- (aminoethyl) aminomethyl,
  • C 2 _20-hydroxyalkylaminoalkyl preferably C 3 - 8 -hydroxyalkylaminoalkyl, such as (2-hydroxyethylamino) methyl, 2- (2-hydroxyethylamino) ethyl and 3- (2-hydroxyethylamino) propyl,
  • C 2 - 30 alkoxyalkyl preferably C 2 _ 2 o-alkoxyalkyl, particularly preferably C 2 - 8 alkoxyalkyl, such as methoxymethyl, ethoxymethyl, n-propoxymethyl, iso-propoxymethyl, n-butoxymethyl, iso-butoxymethyl, sec. -Butoxymethyl, tert.
  • C 3 _ 3 o-dialkylcaiainoalkyl preferably C 3 _ o-dialkylaminoalkyl, particularly preferably C 3 - ⁇ o- N, N-dialkylaminoalkyl, such as N, N-dimethylaminomethyl, 2- (N, N-dibutylamino) methyl, 2nd - (N, N-Dimethylamino) ethyl, 2- (N, N-diethylamino) ethyl, 2- (N, N-dibutylamino) ethyl, 2- (N, N-di-n-propylamino) ethyl and 2- (N, N-di-isopropylamino) ethyl, (R 5 ) 2 N- (CH 2 ) q ,
  • C 2 - 3 o-alkylaminoalkyl preferably C_ 2 o-alkylaminoalkyl, particularly preferably Cs-s-alkylaminoalkyl, such as methylaminomethyl,
  • C 4 _ 20 heteroarylalkyl such as pyrid-2-yl-methyl, furan-2-yl-methyl, pyrrol-3-yl-methyl and imidazole-2-yl-methyl,
  • C 4 _ 2 o-alkyl heteroaryl such as 2-methyl-3-pyridinyl, 4, 5-dimethyl-imidazol-2-yl, 3-methyl-2-furanyl and 5-methyl-2-pyrazinyl,
  • Heteroaryl such as 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, pyrazinyl, pyrrol-3-yl, imidazol-2-yl, 2-furanyl and 3-furanyl,
  • C 3 _i 2 cycloalkyl preferably C 3 _ 8 cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cycloocytyl, particularly preferably cyclopentyl, cyclohexyl and cyclooc- tyl,
  • Aryl such as phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl and 9-anthryl, preferably phenyl, 1-naphthyl and 2-naphthyl, particularly preferably phenyl,
  • C_i 2 alkylphenyl such as 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2, 4-dimethylphenyl, 2, 5-dimethylphenyl, 2, 6-dimethylphenyl, 3, 4- Dimethylphenyl, 3, 5-dimethylphenyl, 2,3,4-trimethylphenyl, 2, 3, 5-trimethylphenyl, 2, 3, 6-trimethylphenyl, 2, 4, 6-trimethylphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2-n-propylphenyl, 3-n-propylphenyl and 4-n-propylphenyl,
  • C 7 _ 2 o-aralkyl preferably C 7 _ 2 -phenylalkyl, such as benzyl, p-methoxybenzyl, 3, 4-dimethoxybenzyl, 1-phenethyl, 2-phenethyl,
  • C ⁇ _ 2 o-alkyl preferably C ⁇ _ 8 alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert.
  • n-pentyl iso-pentyl, sec.-pentyl, neo-pentyl, 1,2-dimethylpropyl, n-hexyl, iso-hexyl, sec.-hexyl, n-heptyl, iso-heptyl, n -Octyl, iso-octyl, particularly preferably C ⁇ _ 4 alkyl such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and tert. -Butyl,
  • R 1 and R 2 together form a - (CH 2 ) j -X- (CH) k - group, such as - (CH 2 ) 3 -, - (CH 2 ) 4 -, - (CH 2 ) 5 -.
  • C ⁇ - 4 alkyl such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and tert.
  • Butyl preferably methyl and ethyl, particularly preferably methyl,
  • C 7 - 4 o-alkylphenyl such as 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2, 4-dimethylphenyl, 2, 5-dimethylphenyl, 2,6-dimethylphenyl, 3, 4-dimethylphenyl, 3 , 5-Dirnethylphenyl, 2-, 3-, 4-nonylphenyl, 2-, 3-, 4-decylphenyl, 2,3-, 2,4-, 2,5-, 3,4-, 3,5-dinonylphenyl , 2,3-, 2,4-, 2,5-, 3,4- and 3,5-didecylphenyl,
  • N (R 10 ) 2 preferably NH 2 and N (CH 3 ) 2 .
  • alkylaminoalkyl preferably C 2 -i 6 alkylaminoalkyl, such as metal thylaminomethyl, methylaminoethyl, ethylaminomethyl, ethyl and iso-aminoethyl Propyla inoethyl,
  • C 3 _ 2 o-dialkylaminoalkyl preferably C 3 _i 6 -dialkylaminoalkyl, such as dimethylaminomethyl, dimethylaminoethyl, diethylaminoethyl, di-n-propylaminoethyl and di-iso-propylaminoethyl,
  • j, 1 an integer from 1 to 4, such as 1, 2, 3 and 4, preferably 2 and 3, particularly preferably 2,
  • an integer from 1 to 4 such as 1, 2, 3 and 4, preferably 2, 3 and 4, particularly preferably 2 and 3,
  • an integer from 1 to 10 preferably an integer from 1 to 8 such as 1, 2, 3, 4, 5, 6, 7 or 8, particularly preferably an integer from 1 to 6.
  • the alcohols can be straight-chain, branched or cyclic. Secondary alcohols are aminated as well as primary alcohols. There are practically no restrictions on the carbon number of the aminatable alcohols.
  • the alcohols can also carry substituents which are inert under the conditions of the hydrogenating amination, for example alkoxy, alkenyloxy, alkylamino or dialkylamino groups. If polyhydric alcohols are to be aminated, it is possible to obtain amino alcohols, cyclic amines or multiply aminated products by controlling the reaction conditions.
  • 1,4-diols leads to l-amino-4-hydroxy, 1, 4-diamino compounds or to five-membered rings with a nitrogen atom (pyrrolidines).
  • 1,6-diols leads to l-amino-6-hydroxy, 1, 6-diamino compounds or to seven-membered rings with a nitrogen atom (hexamethylenimines).
  • ADG H 2 N-CH 2 CH 2 -0-CH 2 CH 2 -0H
  • diaminodiglycol or, particularly preferably, morpholine.
  • piperazine is particularly preferably obtained from diethanolamine.
  • N- (2-hydroxyethyl) piperazine can be obtained from triethanolamine.
  • the following alcohols are preferably aminated, for example:
  • Particularly preferred alcohols are methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, tert. -Butanol, fatty alcohols, ethylene glycol, diethylene glycol, 2- (2-dimethylaminoethoxy) ethanol, N-methyldiethanolamine and 2- (2-dimethylaminoethoxy) ethanol.
  • ketones which can be used in the process according to the invention.
  • the aliphatic ketones can be straight-chain, branched or cyclic, the ketones can contain heteroatoms. There are practically no restrictions on the carbon number of the activatable ketones.
  • the ketones can also carry substituents which are inert under the conditions of the hydrogenating amination, for example alkoxy, alkenyloxy, alkylamino or dialkylamino groups. If polyvalent ketones are to be aminated, it is possible to obtain aminoketones, amino alcohols, cyclic amines or multiply aminated products by controlling the reaction conditions.
  • ketones are preferably hydrogenated by amination:
  • aldehydes which can be used in the process according to the invention.
  • the aliphatic aldehydes can be straight-chain, branched or cyclic, the aldehydes can contain heteroatoms. There are practically no restrictions on the carbon number of the aminatable aldehydes.
  • the aldehydes can also tuenten wear which are inert under the conditions of the hydrogenating amination, for example alkoxy, alkenyloxy, alkylamino or dialkylamino groups. If polyvalent aldehydes or ketoaldehydes are to be aminated, it is possible to obtain amino alcohols, cyclic amines or multiply aminated products by controlling the reaction conditions.
  • aldehydes are preferably hydrogenated by amination:
  • Ammonia as well as primary or secondary, aliphatic or cycloaliphatic or aromatic amines can be used as aminating agents in the hydrogenating amination of alcohols, aldehydes or ketones in the presence of hydrogen.
  • the alcoholic hydroxyl group or the aldehyde group or the keto group is first converted into the primary amino groups (-NH 2 ).
  • the primary amine formed in this way can react with further alcohol or aldehyde or ketone to give the corresponding secondary amine, and these in turn can react with further alcohol or aldehyde or ketone to give the corresponding, preferably symmetrical, tertiary amine.
  • reaction conditions used - pressure, temperature, reaction time (catalyst load) - primary, secondary or tertiary amines can be prepared in this way, as desired.
  • cyclic amines such as pyrrolidines, piperidines, hexamethyleneimines, piperazines and morpholines can be prepared from polyhydric alcohols or di- or oligoaldehydes or di- or oligoketones or ketoaldehydes by intramolecular hydrogenating amination.
  • primary or secondary amines can be used as aminating agents.
  • aminating agents are preferably used for the preparation of asymmetrically substituted di- or trialkylamines, such as ethyldiisopropylamine and ethyldicyclohexylamine.
  • di- or trialkylamines such as ethyldiisopropylamine and ethyldicyclohexylamine.
  • mono- and dialkylamines are used as aminating agents: methylamine, dimethyla in, ethylamine, diethylamine, n-propylamine, di-n-propyl-amine, iso-propylamine, di-isopropyl-amine, isopropylethylamine, n-butylamine ,. .Di-n-butylamine, s-butylamine ,.
  • the aminating agent can be used in stoichiometric, sub- or over-stoichiometric amounts.
  • the amine is preferably used in an approximately stoichiometric amount or slightly above stoichiometric amount per mole of alcoholic hydroxyl group, aldehyde group or keto group.
  • Ammonia in particular is generally used in a 1.5 to 250-fold, preferably 2 to 100-fold, in particular 2 to 10-fold molar excess per mol of alcoholic hydroxyl group, aldehyde group or keto group to be reacted.
  • T he inventive method can be carried out batchwise or preferably continuously carried out as follows, wherein the catalyst is preferably disposed as a fixed bed in the reactor.
  • the embodiment as a fluidized bed reaction with catalyst material in a swirling and swirling motion is also possible.
  • the amination of the primary or secondary alcohol groups, aldehyde groups or keto groups of the starting material can be carried out in the liquid phase or in the gas phase.
  • the fixed bed process in the gas phase is preferred.
  • the starting materials are passed simultaneously in the liquid phase at pressures of generally 5 to 30 MPa (50-300 bar), preferably 5 to 25 MPa, particularly preferably 15 to 25 MPa, and temperatures of generally 80 to 300 ° C, preferably 120 to 270 ° C, particularly preferably 130 to 250 ° C, especially 170 to 230 ° C, including hydrogen over the catalyst, which is usually in a preferably from the outside heated fixed bed reactor is located. Both a trickle mode and a swamp mode are possible.
  • the catalyst loading is generally in the range from 0.05 to 5, preferably 0.1 to 2, particularly preferably 0.2 to 0.6, kg of alcohol, aldehyde or ketone per liter of catalyst (bed volume) and hour.
  • the starting materials can be diluted with a suitable solvent, such as tetrahydrofuran, dioxane, N-methylpyrrolidone or ethylene glycol dimethyl ether. It is expedient to heat the reactants before they are fed into the reaction vessel, preferably to the reaction temperature.
  • the gaseous starting materials are in a gas stream chosen to be sufficiently large for evaporation, preferably hydrogen, at pressures of generally 0.1 to 40 MPa (1 to 400 bar), preferably 0.1 to 10 MPa, particularly preferably 0.1 to 5 MPa, passed over the catalyst in the presence of hydrogen.
  • the temperatures for the amination of alcohols are generally 80 to 300 ° C., preferably 120 to 270 ° C., particularly preferably 160 to 250 ° C.
  • the reaction temperatures in the hydrogenating amination of aldehydes and ketones are generally from 80 to 300 ° C., preferably from 100 to 250 ° C. It is possible for the fixed catalyst bed to flow from above as well as from below.
  • the required gas flow is preferably obtained by a cycle gas procedure.
  • the catalyst loading is generally in the range from 0.01 to 2, preferably 0.05 to 0.5, kg of alcohol, aldehyde or ketone per liter of catalyst (bed volume) and hour.
  • the hydrogen is generally added to the reaction in an amount of 5 to 400 1, preferably in an amount of 50 to 200 1 per mole of alcohol, aldehyde or ketone component, the Liter figures were converted to normal conditions (STP).
  • the amination of aldehydes or ketones differs from the amination of alcohols in that at least stoichiometric amounts of hydrogen must be present in the amination of aldehydes and ketones.
  • the pressure in the reaction vessel which results from the sum of the partial pressures of the aminating agent, the alcohol, aldehyde or ketone and the reaction products formed and, if appropriate, the solvent used at the temperatures indicated, is expediently obtained by injecting hydrogen to the desired reaction pressure elevated.
  • the excess aminating agent can be circulated together with the hydrogen.
  • the catalyst is arranged as a fixed bed, it may be advantageous for the selectivity of the reaction to mix the shaped catalyst bodies in the reactor with inert fillers, to "dilute" them, so to speak.
  • the proportion of fillers in such catalyst preparations can be 20 to 80, in particular 30 to 60 and in particular 40 to 50 parts by volume.
  • the water of reaction formed in the course of the reaction does not generally have a disruptive effect on the degree of conversion, the reaction rate, the selectivity and the catalyst life and is therefore expediently not used until Workup of the reaction product removed from this, for. B. by distillation.
  • the excess aminating agent and the hydrogen are removed and the amination products obtained are purified by distillation or rectification, liquid extraction or crystallization.
  • the excess aminating agent and the hydrogen are advantageously returned to the reaction zone.
  • the amines obtainable according to the invention are suitable, inter alia, as intermediates in the production of fuel additives (US Pat. No. 3,275,554; DE-A-21 25 039 and DE-A-36 11 230), surfactants, pharmaceuticals and crop protection agents and also vulcanization accelerators.
  • an aqueous solution of nickel nitrate, copper nitrate, cobalt nitrate and zirconium acetate was added simultaneously with a 20% aqueous sodium carbonate solution in a stirred vessel at a temperature of 70 ° C in such a way that the pH measured with a glass electrode was in one Range of 6.0 to 7.0 was maintained.
  • the concentration of the metal salts in the metal salt solution was adjusted so that finally a catalyst with a weight ratio of NiO / CoO / CuO / Zr0 2 of 1/1 / 0.393 / 1.179 resulted.
  • the mixture was stirred for a further hour at 70 ° C. and then the pH was increased to 7.4 by adding a little sodium carbonate solution.
  • the suspension obtained was filtered and the filter cake washed with deionized water. Through different washing times, i.e. Residence times of the wash water on the filter cake, or catalysts with different sodium contents resulting from different amounts of wash water.
  • the filter cake was then dried at a temperature of 200 ° C. in a drying cabinet or a spray dryer.
  • the hydroxide / carbonate mixture obtained in this way was then heated at a temperature of 400 ° C. for a period of 2 hours.
  • the catalyst powders AI to A5 thus obtained had the composition:
  • Ni calculated as NiO
  • Co calculated as CoO
  • A5 (not according to the invention): 27.69% by weight of Ni, calculated as NiO, 27.69% by weight of Co, calculated as CoO, 25 10.88% by weight of Cu, calculated as CuO, 32.64% by weight % Zr, calculated as Zr0 2 , 1.10% by weight Na, calculated as Na 2 0.
  • the alkali metal content was determined by atomic spectrometry. 30
  • the lower analytical detection limit for alkali metals in this method was 0.01% by weight.
  • the catalyst powders were each mixed with 3% by weight of graphite and shaped into 5 ⁇ 3 mm tablets.
  • the tablets were re-calcined in a muffle furnace at 400 ° C. for 2 h.
  • the catalyst was heated in a hydrogen / nitrogen flow to temperatures between 100 and 200 ° C. This temperature was maintained until all exotherms resulting from the exothermic reduction in the reduction furnace and followed by 5 thermocouples along the furnace tube had subsided. The mixture was then heated to a final temperature of 80 ° C. and this temperature was maintained for 6 h. The catalyst was cooled to room temperature under a stream of nitrogen and then passivated with a dilute stream of oxygen. During the 10 passivation, care was taken to ensure that the temperature in the reactor did not rise above 50 ° C. at any point.
  • the two catalysts A2 and A5 were compared with the same diglycol conversion.
  • catalyst A2 Na content: 0.12%
  • the catalyst A5 Na content: 1.10% had to be operated at a reaction temperature of 200 ° C.
  • Catalyst A2 showed a higher overall selectivity for the two desired products (morpholine and aminodiglycol).
  • ADG aminodiglycol (H 2 N (CH 2 ) 2 0 (CH 2 ) 2 OH)
  • MeOEtOH 2-methoxyethanol
  • MeOEtNH2 2-methoxyethylamine
  • Example A which was prepared analogously to the above rule in Example A, carried out (bottom procedure).
  • the catalyst was reduced / passivated installed.
  • the reactor was flushed 3 times with 40 bar N. After a leak test at 200 bar N 2 , the pressure was reduced to 120 bar.
  • the cycle gas compressor was put into operation with 1000 Nm.3 / h N 2 and ammonia wetting was started at ambient temperature. At a temperature of approx. 120 ° C, the ammonia feed was shut off briefly, a further rise in temperature up to a maximum of 183 ° C being observed. After cooling, the amount of ammonia was gradually adjusted to the target value for the synthesis of 250 kg / h and heated to 190 ° C. During the ammonia run, H 2 metering was started and the pressure was raised to 200 bar. The following parameters were set here.
  • Cat. Catalyst load in kg (alcohol + aldehyde) per liter of catalyst and per hour.
  • s + t AZ stands for amine number with respect to alkylated secondary and tertiary amines.
  • the AZ is determined by an acid-base titration using a known method.
  • the base is explicitly titrated with HCl).
  • the AZ is the measure of the degree of amination.
  • AC stands for acetylation number.
  • the sample is reacted at room temperature with a acetylation mixture consisting of acetic anhydride (ESA), glacial acetic acid and pyridine.
  • ESA acetic anhydride
  • the base reacts with ESA to form the amide.
  • the remaining excess ESA is reacted with H 2 O to acetic acid, which in turn titrates back with NaOH).
  • the AC is used to determine the total potential of functional groups in the product. With the AZ the corresponding share thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Katalysatoren, deren katalytisch aktive Masse vor der Behandlung mit Wasserstoff 22 bis 40 Gew.-% sauerstoffhaltige Verbindungen des Zirkoniums, berechnet als ZrO2,1 bis 30 Gew.-% sauerstoffhaltige Verbindungen des Kupfers, berechnet als CuO,15 bis 50 Gew.-% sauerstoffhaltige Verbindungen des Nickels, berechnet als NiO, wobei das Molverhältnis von Nickel zu Kupfer größer 1 ist,15 bis 50 Gew.-% sauerstoffhaltige Verbindungen des Kobalts, berechnet als CoO, und weniger als 1 Gew.-% Alkalimetall, berechnet als Alkalimetalloxid, enthält,undVerfahren zur Herstellung von Aminen durch Umsetzung von primären oder sekundären Alkoholen, Aldehyden oder Ketonen bei erhöhter Temperatur und erhöhtem Druck mit Wasserstoff und Stickstoffverbindungen, ausgewählt aus der Gruppe Ammoniak, primäre und sekundäre Amine, in Gegenwart dieser Katalysatoren.

Description

Katalysatoren und Verfahren zur Herstellung von Aminen
Beschreibung
Die vorliegende Erfindung betrifft neue alkalimetallärme und al- kalimetallfreie Katalysatoren enthaltend Zirkonium, Kupfer, Kobalt und Nickel sowie die Verwendung dieser Katalysatoren in Verfahren zur Herstellung von Aminen durch Umsetzung von primären oder sekundären Alkoholen, Aldehyden oder Ketonen bei erhöhter Temperatur und erhöhtem Druck mit Wasserstoff und Stickstoffverbindungen, ausgewählt aus der Gruppe Ammoniak, primäre und sekundäre Amine.
Aus der EP-Al-382 049 (BASF AG) sind Katalysatoren, die sauerstoffhaltige Zirkonium-, Kupfer-, Kobalt- und Nickelverbindungen enthalten, und Verfahren zur hydrierenden Aminierung von Alkoholen bekannt. Der bevorzugte Zirkoniumoxidgehalt dieser Katalysatoren beträgt 70 bis 80 Gew.-% (loc. cit.: Seite 2, letzter Ab- satz; Seite 3, 3. Absatz; Beispiele). Diese Katalysatoren zeichnen sich zwar durch eine gute Aktivität und Selektivität aus, besitzen allerdings verbesserungswürdige Standzeiten.
Aus der EP-A2-514 692 (BASF AG) sind Kupfer-, Nickel- und/oder Kobalt-, Zirkonium- und/oder Aluminiumoxid enthaltende Katalysatoren zur katalytischen Aminierung von Alkoholen in der Gasphase mit Ammoniak oder primären Aminen und Wasserstoff bekannt.
Diese Patentanmeldung lehrt, dass bei diesen Katalysatoren das Atomverhältnis von Nickel zu Kupfer 0,1 bis 1,0, bevorzugt 0,2 bis 0,5 (vergl. loc. cit.: Beispiel 1) betragen muss, da ansonsten bei der Aminierung von Alkoholen in erhöhtem Maße ausbeutemindernde Nebenprodukte auftreten (loc. cit.: Beispiele 6 und 12). Als Träger wird bevorzugt Aluminiumoxid (loc. cit.: Bei- spiele 1 bis 5 und 7 bis 11) verwendet.
Aus der EP-Al-696 572 und der EP-A-697 395 (beide BASF AG) sind Nickel-, Kupfer-, Zirkoniumoxid und Molybdänoxid enthaltende Katalysatoren zur katalytischen Aminierung von Alkoholen mit Stick- Stoffverbindungen und Wasserstoff bekannt. Mit diesen Katalysatoren werden zwar hohe Umsätze erzielt, aber es können sich Nebenprodukte (z.B. Ethylamin) bilden, die selbst bzw. deren Folgeprodukte in der Aufarbeitung stören.
EP-A2-905 122 (BASF AG) beschreibt ein Verfahren zur Herstellung von Aminen aus Alkoholen und Stickstoffverbindungen unter Verwendung eines Katalysators, dessen katalytisch aktive Masse sauer- Stoffhaltige Verbindungen des Zirkoniums, Kupfers und Nickels und keine sauerstoffhaltigen Verbindungen des Kobalts oder Molybdäns enthält.
EP-A-1 035 106 (BASF AG) betrifft die Verwendung von Katalysatoren enthaltend sauerstoffhaltige Verbindungen des Zirkoniums, Kupfers und Nickels zur Herstellung von Aminen durch aminierende Hydrierung von Aldehyden oder Ketonen.
EP-Al-963 975 und EP-A2-1 106 600 (beide BASF AG) beschreiben Verfahren zur Herstellung von Aminen aus Alkoholen bzw. Aldehyden oder Ketonen und StickstoffVerbindungen unter Verwendung eines Katalysators, dessen katalytisch aktive Masse 22-40 Gew.-% (bzw. 22-45 Gew.-%) sauerstoffhaltige Verbindungen des Zirkoniums, 1-30 Gew.-% sauerstoff altige Verbindungen des Kupfers und jeweils 15-50 Gew.-% (bzw. 5-50 Gew.-%) sauerstoffhaltige Verbindungen des Nickels und Kobalts enthält.
Beim Einsatz der sehr aktiven Katalysatoren der EP-Al-963 975 und EP-A2-1 106 600 kann es bei höheren Temperaturen zu verstärkten Decarbonylierungen der gegebenenfalls intermediär entstandenen Carbonylfunktion kommen. Die Bildung von Methan durch Hydrierung von Kohlenmonoxid (CO) führt aufgrund der großen freiwerdenden Hydrierwärme zu einer "Durchgehgefahr", d.h. einem unkontrollier- tem Temperaturanstieg im Reaktor. Wird CO durch Amine abgefangen, kommt es zur Bildung von Methylnebenkomponenten. Bei der Aminierung von Diethylenglykol kommt es beispielsweise verstärkt zur Bildung von unerwünschtem Methoxyethanol bzw. Methoxyethylamin.
Schema:
Figure imgf000003_0001
HiN ^ "* H0^\/ \ + CO →» CH4
Indikatoren für Decarbonylierung
Als Reaktionsmechanismus der Aminierung von primären oder sekun- dären Alkoholen wird angenommen, dass der Alkohol zunächst an einem Metallzentrum zum entsprechenden Aldehyd dehydriert wird. Hierbei kommt dem Kupfer als Dehydrierko ponente vermutlich be- sondere Bedeutung zu. Werden Aldehyde zur Aminierung eingesetzt, entfällt dieser Schritt.
Der gebildete bzw. eingesetzte Aldehyd kann durch Reaktion mit Ammoniak oder primärem oder sekundärem A in unter Wasserabspaltung und anschließender Hydrierung aminiert werden. Diese Kondensation des Aldehyds mit der o.g. StickstoffVerbindung wird vermutlich durch saure Zentren des Katalysators katalysiert. In einer unerwünschten Nebenreaktion kann der Aldehyd aber auch decarbonyliert werden, d.h. dass die Aldehydfunktion als CO abgespalten wird. Die Decarbonylierung bzw. Methanisierung findet vermutlich an einem metallischen Zentrum statt. Das CO wird an dem Hydrierkatalysator zu Methan hydriert, so dass die Methanbildung das Ausmaß der Decarbonylierung anzeigt. Durch die Decarbo- nylierung entstehen die oben erwähnten unerwünschten Nebenprodukte wie z.B. Methoxyethanol oder Methoxyethylair n.
Es handelt sich bei der erwünschten Kondensation des Aldehyds mit Ammoniak oder primärem oder sekundärem Amin und bei der uner- wünschten Decarbonylierung des Aldehyds um Parallelreaktionen, von denen die erwünschte Kondensation säurekatalysiert ist, während die unerwünschte Decarbonylierung durch metallische Zentren katalysiert ist.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, die Wirtschaftlichkeit bisheriger Verfahren zur hydrierenden Aminierung von Aldehyden oder Ketonen und der Aminierung von Alkoholen zu verbessern und den Nachteilen des Stands der Technik, insbesondere den o.g. Nachteilen, abzuhelfen. Es sollten Katalysatoren gefunden werden, die technisch in einfacher Weise herzustellen sind und die es erlauben, die o.g. Aminierungen mit hohem Umsatz, hoher Ausbeute, Selektivität, Katalysatorstandzeit bei gleichzeitig hoher mechanischer Stabilität des Katalysatorformkörpers und geringer ,Durchgehgefahr l , durchzuführen. Die Katalysatoren sol- len demnach eine hohe Aktivität und unter den Reaktionsbedingungen eine hohe chemische und mechanische Stabilität aufweisen.
Dementsprechend wurden Katalysatoren gefunden, deren katalytisch aktive Masse vor der Behandlung mit Wasserstoff 22 bis 40 Gew.-% sauerstoffhaltigen Verbindungen des Zirkoniums, berechnet als
Zr02, 1 bis 30 Gew.-% sauerstoffhaltige Verbindungen des Kupfers, berechnet als CuO, 15 bis 50 Gew.-% sauerstoffhaltige Verbindungen des Nickels, berechnet als NiO, wobei das Molverhältnis von Nickel zu Kupfer größer 1 ist, 15 bis 50 Gew.-% sauerstoffhaltige Verbindungen des Kobalts, berechnet als CoO, und weniger als
1 Gew.-% Alkalimetall (M) , berechnet als Alkalimetalloxid (M0) , enthält sowie deren vorteilhafte Verwendung zur Herstellung von Aminen durch Umsetzung von primären oder sekundären Alkoholen, Aldehyden oder Ketonen bei erhöhter Temperatur und erhöhtem Druck mit Wasserstoff und StickstoffVerbindungen, ausgewählt aus der Gruppe Ammoniak, primäre und sekundäre Amine.
Des weiteren wurde ein verbessertes Verfahren zur Herstellung von Aminen durch Umsetzung von primären oder sekundären Alkoholen, Aldehyden oder Ketonen bei erhöhter Temperatur und erhöhtem Druck mit Wasserstoff und Stickstoffverbindungen, ausgewählt aus der Gruppe Ammoniak, primäre und sekundäre Amine, in Gegenwart eines Katalysators, gefunden, welches dadurch gekennzeichnet ist, dass man die oben genannten erfindungsgemäßen Katalysatoren einsetzt. Erfindungsgemäß wurde erkannt, dass die Aktivität des Katalysators zur Aminierung von primären oder sekundären Alkoholen, Alde- hyden oder Ketonen in Gegenwart von H2, z.B. die Aminierung von Diethylenglykol mit Ammoniak zu Aminodiglykol und Morpholin, mit abnehmendem Alkalimetall-Gehalt, z.B. Natrium-Gehalt, der Zirkonium-Kupfer-Nickel-Kobalt-Katalysatoren zunimmt.
Gleichzeitig nimmt das Ausmaß der unerwünschten Decarbonylie- rungsreaktion ab.
Eine besonders geringe Tendenz zur unerwünschten Decarbonylierung wurde an Katalysatoren beobachtet, die weniger als 0,5 Gew.-%, insbesondere weniger als 0,35 Gew.-%, ganz besonders weniger als 0,2 Gew.-%, Alkalimetall, jeweils berechnet als Alkalimetalloxid, enthalten.
Der Alkalimetall-Gehalt kann z.B. durch die Dauer der Waschung des bei der Herstellung des Katalysators anfallenden Filterkuchens beeinflusst werden, wobei eine verlängerte Waschzeit zu einem verringerten Alkalimetall-Gehalt führt.
Im allgemeinen werden im erfindungsgemäßen Verfahren die Kataly- satoren bevorzugt in Form von Katalysatoren eingesetzt, die nur aus katalytisch aktiver Masse und gegebenenfalls einem Verformungshilfsmittel (wie z. B. Graphit oder Stearinsäure), falls der Katalysator als Formkörper eingesetzt wird, bestehen, also keine weiteren katalytisch inaktiven Begleitstoffe enthalten.
Die katalytisch aktive Masse kann nach Mahlung als Pulver oder als Splitt in das Reaktionsgefäß eingebracht oder bevorzugt, nach Mahlung, Vermischung mit Formhilfsmitteln, Formung und Temperung, als Katalysatorformkörper — beispielsweise als Tabletten, Kugeln, Ringe, Extrudate (z. B. Stränge) — in den Reaktor eingebracht werden. Die Konzentrationsangaben (in Gew.-%) der Komponenten des Katalysators beziehen sich jeweils — falls nicht anders angegeben — auf die katalytisch aktive Masse des hergestellten Katalysators vor der Behandlung mit Wasserstoff.
Die katalytisch aktive Masse des Katalysators ist als die Summe der Massen der katalytisch aktiven Bestandteile definiert und enthält, vor der Behandlung mit Wasserstoff, im wesentlichen die katalytisch aktiven Bestandteile sauerstoffhaltige Verbindungen des Zirkoniums, Kupfers, Nickels und Kobalts.
Die Summe der o.g. katalytisch aktiven Bestandteile, berechnet als Zr02, CuO, NiO und CoO, in der katalytisch aktive Masse vor der Behandlung mit Wasserstoff beträgt üblicherweise 70 bis 100 Gew.-%, bevorzugt 80 bis 100 Gew.-%, besonders bevorzugt 90 bis 100 Gew.-%, insbesondere 95 bis 100 Gew.-%, ganz besonders bevorzugt >99 bis 100 Gew.-%.
Die Sauerstoffhaltigen Verbindungen des Nickels, Kobalts und Kup- fers, jeweils berechnet als NiO, CoO und CuO, sind im allgemeinen insgesamt in Mengen von 31 bis 78 Gew.-%, bevorzugt 44 bis 75 Gew.-%, besonders bevorzugt 55 bis 75 Gew.-%, in der katalytisch aktiven Masse (vor der Behandlung mit Wasserstoff) enthalten, wobei das Molverhältnis von Nickel zu Kupfer größer 1 ist.
Der Gehalt der katalytisch aktiven Masse der erfindungsgemäßen Katalysatoren vor der Behandlung mit Wasserstoff an Alkalimetall M, berechnet als Alkalimetalloxid M20, beträgt weniger als 1 Gew.-%, bevorzugt weniger als 0,5 Gew.-%, besonders bevorzugt weniger als 0,35 Gew.-%, insbesondere weniger als 0,2 Gew.-%.
Bei den Alkalimetallen M handelt es sich um Li, Na, K, Rb und/ oder Cs, insbesondere um Na und/oder K, ganz besonders um Na.
Die erfindungsgemäßen Katalysatoren enthalten in ihrer katalytisch aktiven Masse vor der Behandlung mit Wasserstoff
22 bis 40 Gew.-%, bevorzugt 25 bis 40 Gew.-%, besonders bevorzugt 25 bis 35 Gew.-%, sauerstoffhaltige Verbindungen des Zirkoniums, berechnet als Zr0 ,
1 bis 30 Gew.-%, bevorzugt 2 bis 25 Gew.-%, besonders bevorzugt 5 bis 15 Gew.-%, sauerstoffhaltige Verbindungen des Kupfers, berechnet als CuO, 15 bis 50 Gew.-%, bevorzugt 21 bis 45 Gew.-%, besonders bevorzugt 25 bis 40 Gew.-%, sauerstoffhaltige Verbindungen des Nickels, berechnet als NiO, wobei das Molverhältnis von Nickel zu Kupfer größer 1, bevorzugt größer 1,2, besonders bevorzugt 1,8 bis 8,5, ist,
15 bis 50 Gew.-%, bevorzugt 21 bis 45 Gew.-%, besonders bevorzugt 25 bis 40 Gew.-%, sauerstoffhaltige Verbindungen des Kobalts, berechnet als CoO,
und weniger als 1 Gew.-%, bevorzugt weniger als 0,5 Gew.- , besonders bevorzugt weniger als 0,35 Gew.-%, insbesondere weniger als 0,2 Gew.-%, Alkalimetall M, berechnet als Alkalimetalloxid M20.
Zur- Herstellung der Katalysatoren sind verschiedenerlei Verfahrensweisen möglich. Sie sind beispielsweise durch Peptisieren pulvriger Mischungen der Hydroxide, Carbonate, Oxide und/oder anderer Salze der Komponenten mit Wasser und nachfolgendes Extru- dieren und Tempern (Wärmebehandlung) der so erhaltenen Masse erhältlich.
Im allgemeinen werden zur Herstellung der erfindungsgemäßen Katalysatoren jedoch Fällungsmethoden angewandt. So können sie bei- spielsweise durch eine gemeinsame Fällung der Nickel-, Kobalt- und Kupferkomponenten aus einer diese Elemente enthaltenden, wässrigen Salzlösung mittels Basen in Gegenwart einer Aufschläm- mung einer schwerlöslichen, sauerstoffhaltigen Zirkoniumverbindung und anschließendes Waschen, Trocknen und Calcinieren des er- haltenen Präzipitats erhalten werden. Als schwerlösliche, sauerstoffhaltige Zirkoniumverbindungen können beispielsweise Zirkoniumdioxid, Zirkoniumoxidhydrat, Zirkoniumphosphate, -borate und - Silikate Verwendung finden. Die Aufschlämmungen der schwerlöslichen Zirkoniumverbindungen können durch Suspendieren feinkörniger Pulver dieser Verbindungen in Wasser unter kräftigem Rühren hergestellt werden. Vorteilhaft werden diese Aufschlämmungen durch Ausfällen der schwerlöslichen Zirkoniumverbindungen aus wässrigen Zirkoniumsalzlösungen mittels Basen erhalten.
Bevorzugt werden die erfindungsgemäßen Katalysatoren über eine gemeinsame Fällung (Mischfällung) aller ihrer Komponenten hergestellt. Dazu wird zweckmäßigerweise eine die Katalysatorkomponenten enthaltende, wässrige Salzlösung in der Wärme und unter Rühren so lange mit einer wässrigen Base, - beispielsweise Natriu - carbonat, Natriumhydroxid, Kaliumcarbonat oder Kaliumhydroxid - versetzt, bis die Fällung vollständig ist. Es kann auch mit Alkalimetall-freien Basen wie Ammoniak, Ammoniumcarbonat, At oniumby- drogencarbonat, Ammoniumcarbamat, Ammoniumoxalat, Ammoniummalo- nat, Urotropin, Harnstoff, etc. gearbeitet werden. Die Art der verwendeten Salze ist im allgemeinen nicht kritisch: Da es bei dieser Vorgehensweise vornehmlich auf die Wasserlöslichkeit der Salze ankommt, ist ein Kriterium ihre zur Herstellung dieser verhältnismäßig stark konzentrierten Salzlösungen erforderliche, gute Wasserlöslichkeit. Es wird als selbstverständlich erachtet, dass bei der Auswahl der Salze der einzelnen Komponenten natürlich nur Salze mit solchen Anionen gewählt werden, die nicht zu Störungen führen, sei es, indem sie unerwünschte Fällungen verursachen oder indem sie durch Komplexbildung die Fällung erschweren oder verhindern.
Die bei diesen Fällungsreaktionen erhaltenen Niederschläge sind im allgemeinen chemisch uneinheitlich und bestehen u.a. aus Mischungen der Oxide, Oxidhydrate, Hydroxide, Carbonate und unlöslichen und basischen Salze der eingesetzten Metalle. Es kann sich für die Filtrierbarkeit der Niederschläge als günstig erweisen, wenn sie gealtert werden, d.h. wenn man sie noch einige Zeit nach der Fällung, gegebenenfalls in Wärme oder unter Durchleiten von Luft, sich selbst überlässt.
Die nach diesen Fällungsverfahren erhaltenen Niederschläge werden zu den erfindungsgemäßen Katalysatoren wie üblich weiterverarbei- tet. Zunächst werden die Niederschläge gewaschen. Über die Dauer des Waschvorgangs und über die Temperatur und Menge des Waschwassers kann der Gehalt an Alkalimetall, das durch die als Fällungsmittel eventuell verwendete (Mineral)base zugeführt wurde, beein- flusst werden. Im Allgemeinen wird durch Verlängerung der Wasch- zeit oder Erhöhung der Temperatur des Waschwassers der Gehalt an Alkalimetall abnehmen. Nach dem Waschen wird das Fällgut im allgemeinen bei 80 bis 200°C, vorzugsweise bei 100 bis 150°C, getrocknet und danach calciniert. Die Calcinierung wird im allgemeinen bei Temperaturen zwischen 300 und 800°C, vorzugsweise bei 400 bis 600°C, insbesondere bei 450 bis 550°C ausgeführt.
Nach der Calcinierung wird der Katalysator zweckmäßigerweise kon- ditioniert, sei es, dass man ihn durch Vermählen auf eine bestimmte Korngröße einstellt oder dass man ihn nach seiner Vermah- lung mit Formhilfsmitteln wie Graphit oder Stearinsäure vermischt, mittels einer Tablettenpresse zu Formungen verpresst und tempert (wärmebehandelt) . Die Tempertemperaturen entsprechen dabei im allgemeinen den Temperaturen bei der Calcinierung. Die auf diese Weise hergestellten Katalysatoren enthalten die katalytisch aktiven Metalle in Form eines Gemisches ihrer sauer- sto fhaltigen Verbindungen, d.h. insbesondere als Oxide und Mischoxide. 5
Der Herstellung der erfindungsgemäßen alkalimetallarmen oder al- kalimetallfreien Zirkonium-Kupfer-Nickel-Kobalt-Katalysatoren kann auch entsprechend nach den in der älteren DE-Anmeldung Nr. 10142635.6 vom 31.08.01 beschriebenen Verfahren, auf die hier 10 ausdrücklich Bezug genommen wird, erfolgen.
Die hergestellten Katalysatoren können als solche gelagert werden. Vor ihrem Einsatz als Katalysatoren zur hydrierenden Aminierung von Alkoholen, Aldehyden oder Ketonen werden sie üblicher-
15 weise durch Behandlung mit Wasserstoff vorreduziert. Sie können jedoch auch ohne Vorreduktion eingesetzt werden, wobei sie dann unter den Bedingungen der hydrierenden Aminierung durch den im Reaktor vorhandenen Wasserstoff reduziert werden. Zur Vorreduktion werden die Katalysatoren im allgemeinen zunächst bei 150 bis
20 200°C über einen Zeitraum von 12 bis 20 Stunden einer Stickstoff- Wasserstoff-Atmosphäre ausgesetzt und anschließend noch bis zu ca. 24 Stunden bei 200 bis 400°C in einer Wasserstoffatmosphäre behandelt. Bei dieser Vorreduktion wird ein Teil der in den Katalysatoren vorliegenden sauerstoffhaltigen Metallverbindungen zu
25 den entsprechenden Metallen reduziert, so dass diese gemeinsam mit den verschiedenartigen Sauerstoffverbindungen in der aktiven Form des Katalysators vorliegen.
Ein weiterer Vorteil der erfindungsgemäßen Katalysatoren ist de- 30 ren mechanische Stabilität, d.h. deren Härte. Die mechanische Stabilität kann durch die Messung der sogenannten Seitendruckfestigkeit bestimmt werden. Hierzu wird der Katalysatorformkörper, z. B. die Katalysatortablette, zwischen zwei parallelen Platten mit zunehmender Kraft belastet, wobei diese Belastung z. B. auf 5 der Mantelseite von Katalysatortabletten erfolgen kann, bis ein Bruch des Katalysatorformkörpers eintritt. Die beim Bruch des Katalysatorformkörpers registrierte Kraft ist die Seitendruckfestigkeit.
0 Amine der Formel I
Figure imgf000009_0001
in der R1, R2 Wasserstoff, Cι--2o-Alkyl, C32-Cycloalkyl, Aryl,
C7_ o-Aralkyl und C_ o-Alkylaryl oder gemeinsam (CH2)j-X-(CH2) ,
R3, R4 Wasserstoff, Alkyl, wie Cι-200-Alkyl, Cycloalkyl, wie C3_i2-Cycloalkyl, Hydroxyalkyl, wie Cι-20-Hy- droxyalkyl, Aminoalkyl, wie Cι_2o-Aminoalkyl, Hy- droxyalkylaminoalkyl , wie C1--20- Hydroxyalkylami- noalkyl, Alkoxyalkyl, wie C2-3o-Alkoxyalkyl, Dialkylaminoalkyl, wie C3--3o-Dialkylaminoalkyl,
Alkylaminoalkyl , wie C2--3o_Alkylaminoalkyl, R5- (0CReR7CR8R9) n- (OCR6R7) , Aryl , Heteroaryl , Aralkyl, wie C-2o-Aralkyl, Heteroarylalkyl , wie C4_20-Heteroarylalkyl, Alkylaryl, wie C_2o-Alky- laryl, Alkylheteroaryl , wie C4_2o-Alkylheteroaryl und Y- (CH2)m_NR5- (CH2) q oder gerneinsam (CH2)ι-X-(CH2)In oder
R2 und R4 gemeinsam (CH2)ι-X- (CH2)m,
R5, R10 Wasserstoff, Cι-4-Alkyl, C_4o-Alkylphenyl ,
R6, R7, R8, R9 Wasserstoff, Methyl oder Ethyl,
X CH2, CHR5, Sauerstoff (0), Schwefel (S) oder NR5,
Y N(R10)2/ Hydroxy, C2-20-Alkylaminoalkyl oder
C3-20~Dialkylaminoalkyl ,
n eine ganze Zahl von 1 bis 30 und
j, k, 1, m, q eine ganze Zahl von 1 bis 4,
bedeuten, sind wirtschaftlich von besonderem Interesse.
Das erfindungsgemäße Verfahren findet daher bevorzugt zur Herstellung der Amine I Anwendung, indem man primäre oder sekundäre Alkohole der Formel II
R3
HO—C— Rt (II) .
H
oder Aldehyde oder Ketone der Formel VI bzw. VII
Figure imgf000011_0001
VI VII mit Stickstoffverbindungen der Formel III
R\
N—H (HI), / R2
wobei R1, R2, R3 und R4 die oben genannten Bedeutungen haben, umsetzt.
Wie aus den Definitionen für die Reste R2 und R4 hervorgeht, kann die Umsetzung auch intramolekular in einem entsprechenden Amino- alkohol, Aminoketon oder Aminoaldehyd erfolgen.
Zur Herstellung des Amins I wird demnach rein formal ein Wasser- stoffatom des Amins III durch den Alkylrest R4(R3)CH- unter Freisetzung von einem Moläquivalent Wasser ersetzt.
Das erfindungsgemäße Verfahren findet auch bevorzugt Anwendung bei der Herstellung von zyklischen Aminen der Formel IV
Figure imgf000011_0002
in der
R11 und R12 Wasserstoff, Cx- bis C2o-Alkyl, C3- bis Cι2-Cy- cloalkyl, Aryl, Heteroaryl, C7- bis Co~Aralkyl und C- bis C2Q-Alkylaryl,
Z CH2, CHR5, 0, NR5 oder NCH2CH2OH bedeuten und
R1, R6, R7 die oben genannten Bedeutungen haben,
durch Umsetzung von Alkoholen der Formel V
Figure imgf000011_0003
mit Ammoniak oder primären Aminen der Formel VI
R1-NH2 (VI) .
Die Substituenten R1 bis R12, die Variablen X, Y, Z und die Indizes j, k, 1, m, n und q in den Verbindungen I, II, III, IV, V und VI haben unabhängig voneinander folgende Bedeutungen:
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R«-, R12:
Wasserstoff (H) ,
R3, R4:
- C]_200-Alkyl, bevorzugt Cι-14-Alkyl, wie Methyl, Ethyl, n-Pro- pyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethyl- propyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, Cyclohexylmethyl , n-Octyl, iso-Octyl, 2-Ethylhexyl, n-Decyl, 2-n-Propyl-n-heptyl, n-Tridecyl, 2-n-Butyl-n-nonyl und 3-n- Butyl-n-nonyl, besonders bevorzugt iso-Propyl, 2-Ethylhexyl, n-Decyl, 2-n-Propyl-n-heptyl, n-Tridecyl, 2-n-Butyl-n-nonyl und 3-n-Butyl-n-nonyl sowie bevorzugt C4o-2θθ- lkyl, wie Poly- butyl, Polyisobutyl, Polypropyl, Polyisopropyl und Polyethyl, besonders bevorzugt Polybutyl und Polyisobutyl,
C.—20-Hydroxyalkyl, bevorzugt Cι-8-Hydroxyalkyl, besonders bevorzugt Cι-4-Hydroxyalkyl , wie Hydroxymethyl, 1-Hydroxyethyl , 2-Hydroxyethyl, 1-Hydroxy-n-propyl, 2-Hydroxy-n-propyl, 3-Hy- droxy-n-propyl und 1-Hydroxy-methyl-ethyl ,
Cι_2o-Aminoalkyl, bevorzugt Ci-s-Aminoalkyl, wie Aminomethyl, 2-Aminoethyl, 2-Amino-l, 1-dimethylethyl, -Amino-n-propyl, 3-Amino-n-propyl , 4-Amino-n-butyl, 5-Amino-n-pentyl, N- (Ami- noethyl) aminoethyl und N- (Aminoethyl) aminomethyl,
- C2_20-Hydroxyalkylaminoalkyl, bevorzugt C3-8-Hydroxyalkylamino- alkyl, wie (2-Hydroxyethylamino)methyl, 2- (2-Hydroxyethyla- mino) ethyl und 3- (2-Hydroxyethylamino) propyl ,
C2-30-Alkoxyalkyl, bevorzugt C2_2o-Alkoxyalkyl, besonders bevorzugt C2-8-Alkoxyalkyl, wie Methoxymethyl , Ethoxymethyl , n- Propoxymethyl, iso-Propoxymethyl, n-Butoxymethyl, iso-Butoxy- methyl, sec . -Butoxymethyl , tert . -Butoxymethyl , 1-Methoxy- ethyl und 2-Methoxyethyl, besonders bevorzugt C2- bis C4-Alko- xyalkyl, wie Methoxymethyl, Ethoxymethyl, n-Propoxymethyl, iso-Propoxymethyl, n-Butoxymethyl, iso-Butoxymethyl, sec.-Bu- toxymethyl, tert . -Butoxymethyl , 1-Methoxyethyl und 2-Methoxy- ethyl ,
R5- (OCR6R7CR8R9) n- (OCR6R7) , bevorzugt R5- (OCHR7CHR9) n- (OCR6R7) , besonders bevorzugt R5-(OCH2CHR9)n- (OCR6R7) ,
C3_3o-Dialkylcäiainoalkyl, bevorzugt C3_ o-Dialkylaminoalkyl, besonders bevorzugt C3-ιo- N,N-Dialkylaminoalkyl, wie N,N-Dime- thylaminomethyl, 2- (N,N-Dibutylamino)methyl, 2- (N,N-Dimethyl- amino) ethyl, 2- (N,N-Diethylamino) ethyl, 2- (N,N-Dibutyl- amino) ethyl, 2- (N,N-Di-n-propylamino) ethyl und 2- (N,N-Di-iso- propylamino) ethyl, (R5) 2N- (CH2) q,
C2-3o-Alkylaminoalkyl, bevorzugt C_2o-Alkylaminoalkyl, beson- ders bevorzugt Cs-s-Alkylaminoalkyl , wie Methylaminomethyl,
Methylaminoethyl, Ethylaminomethyl , Ethylaminoethyl und iso- Propylaminoethyl , (R5)HN- (CH2)q,
Y-(CH2)m-NR5-(CH2) q'
C4_20-Heteroarylalkyl , wie Pyrid-2-yl-methyl , Furan-2-yl-me- thyl , Pyrrol-3-yl-methyl und Imidazol-2-yl-methyl ,
C4_2o-Alkylheteroaryl , wie 2-Methyl-3-pyridinyl , 4 , 5-Dimethyl- imidazol-2-yl, 3-Methyl-2-furanyl und 5-Methyl-2-pyrazinyl,
Heteroaryl , wie 2-Pyridinyl , 3-Pyridinyl , 4-Pyridinyl , Pyra- zinyl , Pyrrol-3-yl , Imidazol-2-yl , 2-Furanyl und 3-Furanyl ,
Rl, R2 , R3 , R4 :
C3_i2-Cycloalkyl, bevorzugt C3_8-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooc- tyl, besonders bevorzugt Cyclopentyl, Cyclohexyl und Cyclooc- tyl,
Aryl, wie Phenyl, 1-Naphthyl, 2-Naphthyl, 1-Anthryl, 2-Ant- hryl und 9-Anthryl, bevorzugt Phenyl, 1-Naphthyl und 2-Naph- thyl, besonders bevorzugt Phenyl,
C7-20-Alkylaryl, bevorzugt C_i2-Alkylphenyl, wie 2-Methylphe- nyl , 3-Methylphenyl , 4-Methylphenyl, 2 , 4-Dimethylphenyl , 2 , 5-Dimethylphenyl , 2 , 6-Dimethylphenyl, 3 , 4-Dimethylphenyl , 3, 5-Dimethylphenyl, 2,3,4-Trimethylphenyl, 2, 3, 5-Trimethyl- phenyl, 2 , 3 , 6-Trimethylphenyl, 2, 4, 6-Trimethylphenyl, 2-Ethylphenyl, 3-Ethylphenyl, 4-Ethylphenyl , 2-n-Propylphe- nyl, 3-n-Propylphenyl und 4-n-Propylphenyl ,
- C7_2o-Aralkyl, bevorzugt C72-Phenylalkyl , wie Benzyl, p-Me- thoxybenzyl, 3, 4-Dimethoxybenzyl, 1-Phenethyl, 2-Phenethyl,
1-Phenyl-propyl, 2-Phenylpropyl, 3-Phenyl-propyl, 1-Phenyl- butyl, 2-Phenyl-butyl, 3-Phenyl-butyl und 4-Phenyl-butyl , besonders bevorzugt Benzyl, 1-Phenethyl und 2-Phenethyl,
- R3 und R4 oder R2 und R4 gemeinsam eine - (CH2) ι~X- (CH2)m-
Gruppe, , wie -(CH2)3-, -(CH2)4-, -(CH2)5-. -(CH2)6-, -(CH2)7-, -(CH2)-0-(CH2)2-, -(CH2)-NR5-(CH2)2-. -(CH2)2-0-(CH2)2-, -(CH2)2-NR5-(CH2)2-, -CH2-0-(CH2)3-, -CH2-NR5- (CH2) 3-,
Rl, R2:
- Cι_2o-Alkyl, bevorzugt Cχ_8-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec. -Butyl, tert. -Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethyl- propyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, iso-Octyl, besonders bevorzugt Cι_4-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl und tert . -Butyl ,
- R1 und R2 gemeinsam eine - (CH2) j-X- (CH )k- Gruppe, wie -(CH2)3-, -(CH2)4-, -(CH2)5-. -(CH2)6-, -(CH2)7-, -(CH2)-0-(CH2)2-, -(CH2)-NR5-(CH2)2- - (CH2) 2-0- (CH2) 2-, -(CH2)2-NR5-(CH2)2-, -CH2-0-(CH2)3-, -CH2-NR5- (CH2) 3-,
R5, RIO..
Cι-4-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec. -Butyl und tert. -Butyl, bevorzugt Methyl und Ethyl, besonders bevorzugt Methyl,
C7-4o-Alkylphenyl, wie 2-Methylphenyl, 3-Methylphenyl, 4-Me- thylphenyl, 2 , 4-Dimethylphenyl, 2, 5-Dimethylphenyl, 2,6-Dime- thylphenyl, 3 , 4-Dimethylphenyl, 3,5-Dirnethylphenyl, 2-, 3-, 4-Nonylphenyl , 2-, 3-, 4-Decylphenyl , 2,3-, 2,4-, 2,5-, 3,4-, 3,5-Dinonylphenyl, 2,3-, 2,4-, 2,5-, 3,4- und 3 , 5-Didecylphe- nyl,
R6, R7, RS, R9:
- Methyl oder Ethyl, bevorzugt Methyl, RU , Rl2 :
Ci- bis C2o_Alkyl, C3- bis Cι2-Cycloalkyl , Aryl, Heteroaryl, C7- bis C2o-Aralkyl und C7- bis C2o-Alkylaryl, jeweils wie oben definiert, X:
CH2, CHR5, Sauerstoff (0), Schwefel (S) oder NR5, bevorzugt CH2 und 0,
Y:
N(R10)2, bevorzugt NH2 und N(CH3)2.
- Hydroxy (OH) ,
- C2-20-Alkylaminoalkyl, bevorzugt C2-i6-Alkylaminoalkyl, wie Me- thylaminomethyl , Methylaminoethyl, Ethylaminomethyl, Ethyl- aminoethyl und iso-Propyla inoethyl,
C3_2o-Dialkylaminoalkyl, bevorzugt C3_i6-Dialkylaminoalkyl , wie Dimethylaminomethyl , Dimethylaminoethyl , Diethylaminoethyl, Di-n-propylaminoethyl und Di-iso-propylaminoethyl,
Z:
CH2, CHR5, 0, NR5 oder NCH2CH2OH,
j, 1: eine ganze Zahl von 1 bis 4 wie 1, 2, 3 und 4, bevorzugt 2 und 3 , besonders bevorzugt 2 ,
k, , q:
eine ganze Zahl von 1 bis 4 wie 1, 2, 3 und 4, bevorzugt 2, 3 und 4, besonders bevorzugt 2 und 3,
n:
eine ganze Zahl von 1 bis 10, bevorzugt eine ganze Zahl von 1 bis 8 wie 1, 2, 3, 4, 5, 6, 7 oder 8, besonders bevorzugt eine ganze Zahl von 1 bis 6.
Als Alkohole eignen sich praktisch alle primären und sekundären Alkohole mit aliphatischer OH-Funktion. Die Alkohole können ge- radkettig, verzweigt oder zyklisch sein. Sekundäre Alkohole wer- den ebenso aminiert wie primäre Alkohole. Hinsichtlich der Kohlenstoffzahl der aminierbaren Alkohole gibt es praktisch keine Beschränkungen. Die Alkohole können ferner Substituenten tragen, welche sich unter den Bedingungen der hydrierenden Aminierung inert verhalten, beispielsweise Alkoxy-, Alkenyloxy-, Alkylamino- oder Dialkylaminogruppen. Sollen mehrwertige Alkohole aminiert werden, so hat man es über die Steuerung der Reaktionsbedingungen in der Hand, Aminoalkohole, zyklische Amine oder mehrfach ami- nierte Produkte zu erhalten.
Die Aminierung von 1,4-Diolen führt je nach Wahl der Reaktionsbedingungen zu l-Amino-4-hydroxy-, 1 , 4-Diamino-Verbindungen oder zu fünfgliedrigen Ringen mit einem Stickstoffatom (Pyrrolidinen) .
Die Aminierung von 1,6-Diolen führt je nach Wahl der Reaktionsbedingungen zu l-Amino-6-hydroxy-, 1, 6-Diamino-Verbindungen oder zu siebengliedrigen Ringen mit einem Stickstoffatom (Hexamethyleni- minen) .
Die Aminierung von 1,5-Diolen führt je nach Wahl der Reaktionsbedingungen zu l-Amino-5-hydroxy-, 1, 5-Diamino-Verbindungen oder zu sechsgliedrigen Ringen mit einem Stickstoffatom (Piperidinen) . Aus Diglykol kann demnach durch Aminierung mit NH3 Monoaminodigly- kol (= ADG = H2N-CH2CH2-0-CH2CH2-0H) , Diaminodiglykol oder beson- ders bevorzugt Morpholin erhalten werden. Aus Diethanolamin wird entsprechend besonders bevorzugt Piperazin erhalten. Aus Trietha- nolamin kann N- (2-Hydroxyethyl) -piperazin erhalten werden.
Bevorzugt werden beispielsweise die folgenden Alkohole aminiert:
Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, iso-Buta- nol, n-Pentanol, n-Hexanol, 2-Ethylhexanol, Tridecanol, Steary- lalkohol, Palmitylalkohol, Cyclobutanol, Cyclopentanol , Cyclohe- xanol, Benzylalkohol, 2-Phenyl-ethanol, 2- (p-Methoxyphenyl) etha- nol, 2- (3 , -Dimethoxyphenyl) ethanol, 1-Phenyl-3-butanol, Ethano- lamin, n-Propanolamin, Isopropanolamin, 2-Amino-l-propanol, 1-Me- thoxy-2-propanol, 3-Amino-2,2-dimethyl-l-propanol, n-Pentanolamin (l-Amino-5-pentanol) , n-Hexanolamin (l-Amino-6-hexanol) , Ethano- lamin, Diethanolamin, Triethanolamin, N-AIkyldiethanolamine, Dii- sopropanolamin, 3- (2-Hydroxyethylamino)propan-l-ol, 2-(N,N-Dime- thylamino) ethanol, 2- (N,N-Diethylamino) ethanol, 2- (N,N-Di-n-pro- pyl mino) ethanol, 2- (N,N-Di-iso-propylamino) ethanol, 2-(N,N-Di- n-butylamino) ethanol, 2- (N,N-Di-iso-butylamino) ethanol, 2- (N,N-Di-sec.-butylamino) ethanol, 2- (N,N-Di-tert .-butyla- mino)ethanol, 3-(N,N-Dimethylamino)propanol, 3- (N,N-Diethyla- mino)propanol, 3- (N,N-Di-n-propylamino)propanol, 3- (N,N-Di-iso- propylamino)propanol, 3- (N,N-Di-n-butylamino)propanol, 3-(N,N-Di- iso-butylamino)propanol, 3- ( ,N-Di-sec. -butyl mino)propanol, 3- (N,N-Di-tert .-butylamino)propanol, l-Dimethylamino-pentanol-4, l-Diethylamino-pentanol-4, Ethylenglykol, 1,2-Propylenglykol, 1, 3-Propylenglykol, Diglykol, 1,4-Butandiol, 1, 5-Pentandiol, 1, 6-Hexandiol, 2,2-Bis t4-hydroxycyclohexyl]propan, Methoxyetha- nol, Propoxyethanol , Butoxyethanol, Polyisobutylalkohole, Poly- propylalkohole, Polyethylenglykolether, Polypropylenglykolether und Polybutylenglykolether. Die letztgenannten Polyalkylenglykol- ether werden bei der erfindungsgemäßen Umsetzung durch Umwandlung ihrer freien' Hydroxylgruppen zu den entsprechenden Aminen umgewandelt .
Besonders bevorzugte Alkohole sind Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol, sek.-Butanol, tert . -Butanol , Fettalkohole, Ethylenglykol, Diethylenglykol, 2- (2-Dimethylamino-ethoxy) ethanol, N-Methyldiethanolamin und 2- (2-Dimethylaminoethoxy) ethanol.
Als im erfindungsgemäßen Verfahren einsetzbare Ketone eignen sich praktisch alle aliphatischen und aromatischen Ketone. Die alipha- tischen Ketone können geradkettig, verzweigt oder zyklisch sein, die Ketone können Heteroatome enthalten. Hinsichtlich der Kohlenstoffzahl der a inierbaren Ketone gibt es praktisch keine Beschränkungen. Die Ketone können ferner Substituenten tragen, welche sich unter den Bedingungen der hydrierenden Aminierung inert verhalten, beispielsweise Alkoxy-, Alkenyloxy-, Alkylamino- oder Dialkylaminogruppen. Sollen mehrwertige Ketone aminiert werden, so hat man es über die Steuerung der Reaktionsbedingungen in der Hand, Aminoketone, Aminoalkohole, cyclische Amine oder mehrfach aminierte Produkte zu erhalten.
Bevorzugt werden beispielsweise die folgenden Ketone aminierend hydriert :
Aceton, Ethyl ethylketon, Methylvinylketon, Isobutylmethylketon, 3-Methylbutan-2-on, Diethylketon, Tetralon, Acetophenon, p-Me- thyl-acetophenon, p-Methoxy-acetophenon, m-Methoxy-acetophenon, 1-Acetyl-naphthalin, 2-Acetyl-naphthalin, 1-Phenyl-3-butanon, Cy- clobutanon, Cyclopentanon, Cyclopentenon, Cyclohexanon, Cyclohe- xenon, 2 , 6-Dimethylcyclohexanon, Cycloheptanon, Cyclododecanon, Acetylaceton, Methylglyoxal und Benzophenon.
Als im erfindungsgemäßen Verfahren einsetzbare Aldehyde eignen sich praktisch alle aliphatischen und aromatischen Aldehyde. Die aliphatischen Aldehyde können geradkettig, verzweigt oder zyk- lisch sein, die Aldehyde können Heteroatome enthalten. Hinsichtlich der Kohlenstoffzahl der aminierbaren Aldehyde gibt es praktisch keine Beschränkungen. Die Aldehyde können ferner Substi- tuenten tragen, welche sich unter den Bedingungen der hydrierenden Aminierung inert verhalten, beispielsweise Alkoxy-, Alkenyl- oxy-, Alkylamino- oder Dialkylaminogruppen. Sollen mehrwertige Aldehyde oder Ketoaldehyde aminiert werden, so hat man es über die Steuerung der Reaktionsbedingungen in der Hand, Aminoalko- hole, cyclische Amine oder mehrfach aminierte Produkte zu erhalten.
Bevorzugt werden beispielsweise die folgenden Aldehyde aminierend hydriert:
Formaldehyd, Acetaldehyd, Propionaldehyd, n-Butyraldehyd, Isobu- tyraldehyd, Pivalinaldehyd, n-Pentanal, n-Hexanal, 2-Ethylhexa- nal, 2-Methylpentanal, 3-Methylpent nal, 4-Methylpentanal, Glyoxal, Benzaldehyd, p-Methoxybenzaldehyd, p-Methylbenzaldehyd, Phenylacetaldehyd, (p-Methoxy-phenyl) acetaldehyd, (3 , 4-Dimethoxy- phenyl) acetaldehyd, 4-Formyltetrahydropyran, 3- Formyltetrahydro- furan, 5-Formylvaleronitril, Citronellal, Acrolein, Methacrolein, Ethylacrolein, Citral, Crotonaldehyd, 3-Methoxypropionaldehyd, 3-Aminopropionaldehyd, Hydroxypivalinaldehyd, Dimethylolpropio- naldehyd, Dimethylolbutyraldehyd, Furfural, Glyoxal, Glutaralde- hyd sowie hydroformylierte Oligomere und Polymere, wie z. B. hy- droformyliertes Polyisobuten (Polyisobutenaldehyd) oder durch Metathese von 1-Penten und Cyclopenten erhaltenes und hydroformy- liertes Oligomer.
Als Aminierungsmittel bei der hydrierenden Aminierung von Alkoholen, Aldehyden oder Ketonen in Gegenwart von Wasserstoff können sowohl Ammoniak als auch primäre oder sekundäre, aliphatische oder cycloaliphatische oder aromatische Amine eingesetzt werden.
Bei Verwendung von Ammoniak als Aminierungsmittel wird die alkoholische Hydroxylgruppe bzw. die Aldehydgruppe bzw. die Keto- gruppe zunächst in die primäre Aminogruppen (-NH2) umgewandelt. Das so gebildete primäre Amin können mit weiterem Alkohol bzw. Aldehyd bzw. Keton zu dem entsprechenden sekundären Amin und diese wiederum mit weiterem Alkohol bzw. Aldehyd bzw. Keton zu dem entsprechenden, vorzugsweise symmetrischen, tertiären Amin reagieren. Je nach Zusammensetzung des Reaktionsansatzes oder des Eduktstroms (bei kontinuierlicher Fahrweise) und je nach den angewandten Reaktionsbedingungen - Druck, Temperatur, Reaktionszeit (Katalysatorbelastung) - lassen sich auf diese Weise je nach Wunsch bevorzugt primäre, sekundäre oder tertiäre Amine darstellen. Aus mehrwertigen Alkoholen bzw. Di- oder Oligoaldehyden bzw. Dioder Oligoketonen bzw. Ketoaldehyden lassen sich auf diese Weise durch intramolekulare hydrierende Aminierung zyklische Amine wie z.B. Pyrrolidine, Piperidine, Hexamethylenimine, Piperazine und Morpholine herstellen.
Ebenso wie Ammoniak lassen sich primäre oder sekundäre Amine als Aminierungs ittel verwenden.
Bevorzugt werden diese Aminierungsmittel zur Herstellung unsymmetrisch substituierter Di- oder Trialkylamine, wie Ethyldiisopro- pylamin und Ethyldicyclohexylamin verwendet. Beispielsweise werden die folgenden Mono- und Dialkylamine als Aminierungsmittel verwendet: Methylamin, Dimethyla in, Ethylamin, Diethylamin, n- Propylamin, Di-n-propyl-amin, iso-Propylamin, Di-isopropyl-amin, Isopropylethylamin, n-Butylamin,..Di-n-Butylamin, s-Butylamin,. Di- s-Butylamin, iso-Butylamin, n-Pentylamin, s-Pentylamin, iso-Pen- tylamin, n-Hexylamin, s-Hexylamin, iso-Hexyla in, Cyclohexylamin, Anilin, Toluidin, Piperidin, Morpholin und Pyrrolidin.
Das Aminierungsmittel kann bezüglich der zu aminierenden alkoholischen Hydroxylgruppe bzw. Aldehydgruppe bzw. Ketogruppe in stö- chiometrischen, unter- oder überstöchiometrischen Mengen eingesetzt werden.
Bevorzugt wird im Falle der Aminierung von Alkoholen, Aldehyden oder Ketonen mit primären oder sekundären Aminen das Amin in ca. stöchiometrischer Menge oder geringfügig überstöchiometrischer Menge pro Mol zu aminierender alkoholischer Hydroxylgruppe, Alde- hydgruppe oder Ketogruppe eingesetzt.
Speziell Ammoniak wird im allgemeinen mit einem 1,5 bis 250-fa- chen, bevorzugt 2 bis 100-fachen, insbesondere 2 bis 10-fachen molaren Überschuss pro Mol umzusetzender alkoholischer Hydroxyl- gruppe, Aldehydgruppe oder Ketogruppe eingesetzt.
Höhere Überschüsse sowohl an Ammoniak als auch an primären oder sekundären Aminen sind möglich.
Das erfindungsgemäße Verfahren lässt sich diskontinuierlich oder bevorzugt kontinuierlich wie folgt durchführen, wobei der Katalysator bevorzugt als Festbett im Reaktor angeordnet ist.
Die Ausführungsform als Wirbelbettreaktion mit in auf- und abwir- belnder Bewegung befindlichem Katalysatormaterial ist jedoch ebenfalls möglich. Die Aminierung der primären oder sekundären Alkoholgruppen, Aldehydgruppen oder Ketogruppen des Edukts kann in der Flüssigphase oder in der Gasphase durchgeführt werden. Bevorzugt ist das Festbettverfahren in der Gasphase.
Beim Arbeiten in der Flüssigphase leitet man die Edukte (Alkohol, Aldehyd oder Keton plus Ammoniak oder Amin) simultan in flüssiger Phase bei Drücken von im allgemeinen 5 bis 30 MPa (50-300 bar) , bevorzugt 5 bis 25 MPa, besonders bevorzugt 15 bis 25 MPa, und Temperaturen von im allgemeinen 80 bis 300°C, bevorzugt 120 bis 270°C, besonders bevorzugt 130 bis 250°C, insbesondere 170 bis 230°C, inklusive Wasserstoff über den Katalysator, der sich üblicherweise in einem bevorzugt von außen beheizten Festbettreaktor befindet. Es ist dabei sowohl eine Rieselfahrweise als auch eine Sumpffahrweise möglich. Die Katalysatorbelastung liegt im allgemeinen im Bereich von 0,05 bis 5, bevorzugt 0,1 bis 2, besonders bevorzugt 0,2 bis 0,6, kg Alkohol, Aldehyd oder Keton pro Liter Katalysator (Schüttvolumen) und Stunde. Gegebenenfalls kann eine Verdünnung der Edukte mit einem geeigneten Lösungsmittel, wie Te- trahydrofuran, Dioxan, N-Methylpyrrolidon oder Ethylenglykoldime- thylether, erfolgen. Es ist zweckmäßig, die Reaktanden bereits vor der Zuführung in das Reaktionsgefäß zu erwärmen, und zwar bevorzugt auf die Reaktionstemperatur.
Beim Arbeiten in der Gasphase werden die gasförmigen Edukte (Alkohol, Aldehyd oder Keton plus Ammoniak oder Amin) in einem zur Verdampfung ausreichend groß gewählten Gasstrom, bevorzugt Wasserstoff, bei Drücken von im allgemeinen 0,1 bis 40 MPa (1 bis 400 bar), bevorzugt 0,1 bis 10 MPa, besonders bevorzugt 0,1 bis 5 MPa, in Gegenwart von Wasserstoff über den Katalysator geleitet. Die Temperaturen für die Aminierung von Alkoholen betragen im allgemeinen 80 bis 300°C, bevorzugt 120 bis 270°C, besonders bevorzugt 160 bis 250°C. Die Reaktionstemperaturen bei der hydrie- ' renden Aminierung von Aldehyden und Ketonen betragen im allgemei- nen bei 80 bis 300°C, bevorzugt bei 100 bis 250°C. Es ist dabei sowohl eine Anströmung des Katalysatorfestbetts von oben als auch von unten möglich. Den erforderlichen Gasstrom erhält man bevorzugt durch eine Kreisgasfahrweise.
Die Katalysatorbelastung liegt im allgemeinen im Bereich von 0,01 bis 2, bevorzugt 0,05 bis 0,5, kg Alkohol, Aldehyd oder Keton pro Liter Katalysator (Schüttvolumen) und Stunde.
Der Wasserstoff wird der Reaktion im allgemeinen in einer Menge von 5 bis 400 1, bevorzugt in einer Menge von 50 bis 200 1 pro Mol Alkohol-, Aldehyd- oder Ketonkomponente zugeführt, wobei die Literangaben jeweils auf Normalbedingungen umgerechnet wurden (S.T.P.) .
Die Aminierung von Aldehyden bzw. Ketonen unterscheidet sich in der Durchführung von der Aminierung von Alkoholen dadurch, dass bei der Aminierung von Aldehyden und Ketonen mindestens stöchio- metrische Mengen an Wasserstoff vorhanden sein müssen.
Sowohl beim Arbeiten in der Flüssigphase als auch beim Arbeiten in der Gasphase ist die Anwendung höherer Temperaturen und höherer Gesamtdrücke möglich. Der Druck im Reaktionsgefäß, welcher sich aus der Summe der Partialdrücke des Aminierungsmittels, des Alkohols, Aldehyds bzw. Ketons und der gebildeten Reaktionsprodukte sowie ggf. des mitverwendeten Lösungsmittels bei den ange- gebenen Temperaturen ergibt, wird zweckmäßigerweise durch Aufpressen von Wasserstoff auf den gewünschten Reaktionsdruck erhöht.
Sowohl beim kontinuierlichen Arbeiten in der Flüssigphase als auch beim kontinuierlichen Arbeiten in der Gasphase kann das überschüssige Aminierungsmittel zusammen mit dem Wasserstoff im Kreis geführt werden.
Ist der Katalysator als Festbett angeordnet, kann es für die Se- lektivität der Reaktion vorteilhaft sein, die Katalysatorformkörper im Reaktor mit inerten Füllkörpern zu vermischen, sie sozusagen zu "verdünnen" . Der Anteil der Füllkörper in solchen Katalysatorzubereitungen kann 20 bis 80, besonders 30 bis 60 und insbesondere 40 bis 50 Volumenteile betragen.
Das im Zuge der Umsetzung gebildete Reaktionswasser (jeweils ein Mol pro Mol umgesetzte Al oholgruppe, Aldehydgruppe bzw. Ketogruppe) wirkt sich im allgemeinen auf den Umsetzungsgrad, die Reaktionsgeschwindigkeit, die Selektivität und die Katalysator- Standzeit nicht störend aus und wird deshalb zweckmäßigerweise erst bei der Aufarbeitung des Reaktionsproduktes aus diesem entfernt, z. B. destillativ.
Aus dem Reaktionsaustrag werden, nachdem dieser zweckmäßigerweise entspannt worden ist, das überschüssige Aminierungsmittel und der Wasserstoff entfernt und die erhaltenen Aminierungsprodukte durch Destillation bzw. Rektifikation, Flüssigextraktion oder Kristallisation gereinigt. Das überschüssige Aminierungsmittel und der Wasserstoff werden vorteilhaft wieder in die Reaktionszone zu- rückgeführt. Das gleiche gilt für die eventuell nicht vollständig umgesetzte Alkohol-, Aldehyd- bzw. Ketonkomponente. Die erfindungsgemäß erhältlichen Amine eignen sich u. a. als Zwischenprodukte bei der Herstellung von Kraftstoffadditiven (US-A-3,275,554; DE-A-21 25 039 und DE-A-36 11 230), Tensiden, Arznei- und Pflanzenschutzmitteln sowie von Vulkanisationsbe- schleunigem.
Beispiele
A) Herstellung von Zirkonium-Kupfer-Nickel-Kobalt-Katalysatoren mit Natriumgehalten von 0,11 bis 1,1 Gew.-%, berechnet als Natriumoxid
Zur Fällung wurde in einem konstanten Strom eine wässrige Lösung aus Nickelnitrat, Kupfernitrat, Kobaltnitrat und Zirkoniumacetat gleichzeitig mit einer 20 %igen wässrigen Natriumcarbonatlösung in ein Rührgefäß bei einer Temperatur von 70°C so zugegeben, dass der mit einer Glaselektrode gemessene pH-Wert in einem Bereich von 6,0 bis 7,0 aufrechterhalten wurde. Die Konzentration der Metallsalze in der Metallsalzlösung wurde so eingestellt, dass rechnerisch schließlich ein Katalysator mit einem Gewichtsverhältnis von NiO / CoO / CuO / Zr02 von 1 / 1 / 0,393 / 1,179 resultierte. Nach erfolgter Zugabe der Metallsalzlösung und der Natriumcarbonatlösung wurde noch eine Stunde bei 70°C nachgerührt und anschließend wurde der pH-Wert durch Zugabe von etwas Natri- umcarbonatlösung auf einen Wert von 7,4 erhöht.
Die erhaltene Suspension wurde filtriert und der Filterkuchen mit vollentsalztem Wasser gewaschen. Durch unterschiedliche Waschzeiten, d.h. Verweilzeiten des Waschwassers am Filterkuchen, bezie- hungsweise durch unterschiedliche Mengen an Waschwasser resultierten Katalysatoren mit unterschiedlichen Natriumgehalten. Danach wurde der Filterkuchen bei einer Temperatur von 200°C in einem Trockenschrank oder einem Sprühtrockner getrocknet. Das auf diese Weise erhaltene Hydroxidcarbonatgemisch wurde nun bei einer Temperatur von 400°C über einen Zeitraum von 2 Stunden getempert.
Die so erhaltenen Katalysatorpulver AI bis A5 hatten die Zusammensetzung:
AI:
27,97 Gew.-% Ni, berechnet als NiO,
27,97 Gew.-% Co, berechnet als CoO,
10,99 Gew.-% Cu, berechnet als CuO,
32,96 Gew.-% Zr, berechnet als Zr02/ 0,11 Gew.-% Na, berechnet als Na20. A2 :
27,97 Gew.-% Ni, berechnet als NiO,
27.97 Gew.-% Co, berechnet als CoO,
10.98 Gew.-% Cu, berechnet als CuO, 5 32,96 Gew.-% Zr, berechnet als Zr02,
0,12 Gew.-% Na, berechnet als Na20.
A3:
27.96 Gew.-% Ni, berechnet als NiO, 10 27,96 Gew.-% Co, berechnet als CoO,
10.99 Gew.-% Cu, berechnet als CuO, 32,95 Gew.-% Zr, berechnet als Zr0 , 0,14 Gew.-% Na, berechnet als Na20.
15 A4:
27,91 Gew.-% Ni, berechnet als NiO,
27,91 Gew.-% Co, berechnet als CoO,
10.97 Gew.-% Cu, berechnet als CuO, 32,89 Gew.-% Zr, berechnet als Zrθ2,
20 0,32 Gew.-% Na, berechnet als Na20.
A5 (nicht erfindungsgemäß) : 27,69 Gew.-% Ni, berechnet als NiO, 27,69 Gew.-% Co, berechnet als CoO, 25 10,88 Gew.-% Cu, berechnet als CuO, 32,64 Gew.-% Zr, berechnet als Zr02, 1,10 Gew.-% Na, berechnet als Na20.
Der Alkalimetallgehalt wurde durch Atomspektrometrie bestimmt. 30 Die untere analytische Nachweisgrenze für Alkalimetalle bei dieser Methode lag bei 0,01 Gew. -% .
Die Katalysatorpulver wurden jeweils mit 3 Gew.-% Graphit vermischt und zu 5 x 3 mm-Tabletten verformt.
35
Auf diese Art wurden fünf verschiedene Katalysatoren AI bis A5 hergestellt, deren katalytisch aktive Masse Na-Gehalte von 0,11 Gew.-% bis 1,1 Gew.-%, jeweils berechnet als Natriumoxid (Naθ) , aufwiesen. 0
Nach erfolgter Tablettierung wurden die Tabletten jeweils für 2 h bei 400°C in einem Muffelofen nachcalcinier .
Vor Einbau des jeweiligen Katalysators in den Testreaktor wurde 5 er reduziert und anschließend passiviert: Zur Reduktion wurde der Katalysator in einem Wasserstoff/Stickstoffström auf Temperaturen zwischen 100 und 200°C aufgeheizt. Diese Temperatur wurde gehalten, bis alle Exothermien, die durch die exotherme Reduktion im Reduktionsofen entstehen und durch 5 Thermoelemente entlang des Ofenrohres verfolgt wurden, abgeklungen waren. Anschließend wurde auf eine Endtemperatur von 80°C aufgeheizt und diese Temperatur für 6 h gehalten. Der Katalysator wurde unter einem Stickstoffstrom auf Raumtemperatur abgekühlt und dann mit einem verdünnten Sauerstoffström passiviert. Bei der 10 Passivierung wurde darauf geachtet, dass die Temperatur im Reaktor an keiner Stelle über 50°C anstieg.
B) Hydrierende Aminierungen unter Verwendung von Katalysatoren gemäß A)
15
Beispiel 1
Herstellung von Morpholin durch hydrierende Aminierung von Digly- kol
20
Allgemeine Arbeitsvorschrift:
In einen kontinuierlich betriebenen Hochdruckreaktor (Sumpffahrweise) wurden 100 cm3 Katalysator A eingebaut. Nach Verschließen
25 des Reaktors wurden 20 Nl/h (Nl = Normliter = auf Normalbedingungen umgerechnetes Volumen) Wasserstoff über den Katalysator gefahren. Der Druck wurde auf 50 bar eingestellt. Anschließend wurde die Temperatur mit 2°C/Min. auf 180°C angehoben. Der Druck wurde danach auf 200 bar nachgeregelt. Schließlich wurden Diethy-
30 lenglykol (60 g/h, 0,57 mol/h) und Ammoniak (60 g/h, 3,53 mol/h) zugefahren (Belastung: 0,6 kg Diethylenglykol / [lκatalysator • h] ) . Die Reaktionstemperatur wurde zunächst 16 h auf 200°C gehalten. Dabei erfuhr der Katalysator die vollständige Aktivierung. Anschließend wurde die Reaktionstemperatur auf 180°C abgesenkt. Aus
35 dem Reaktionsaustrag wurde nach dessen Entspannung überschüssiges Ammoniak abdestilliert.
Analytik : GC-Flächenprozentanalytik. Proben 1:10 mit Wasser verdünnt. 30 m RTX-5 Amine, 0,32 mm, 1,5 um, Temperaturprogramm: 40 80°C/4 Min., dann mit 10°C/Min. auf 280°C, dann 280°C/5 Min.
Gemäß dieser allgemeinen Arbeitsvorschrift wurden die Katalysatoren mit unterschiedlichen Natriumgehalten AI bis A5 eingesetzt.
45 Die Ergebnisse sind in den folgenden Abbildungen 1 und 2 dargestellt. Es ist zu erkennen, dass der bei einer Reaktionstemperatur von 180°C erzielte Umsatz und damit die Katalysatorproduktivität mit abnehmendem Na-Gehalt der Katalysatoren A5 bis AI deutlich steigt (Abbildung 1) . Die Katalysatoren sind also mit abnehmendem Na-Ge- halt aktiver.
Weiterhin sinkt die - umsatzabhängige - Selektivität zur unerwünschten Decarbonylierung (Indikatoren: 2-Methoxyethanol und 2-Methoxyethylamin) mit abnehmendem Na-Gehalt (Abbildung 2) .
Beispiel 2
Herstellung von Morpholin durch hydrierende Aminierung von Digly- kol
Nach der allgemeinen Versuchsvorschrift gemäß Beispiel 1 wurden die zwei Katalysatoren A2 und A5 bei gleichem Diglykolumsatz verglichen. Dazu wurde Katalysator A2 (Na-Gehalt: 0,12 %) bei einer Reaktionstemperatur von 190°C gefahren. Um den gleichen Umsatz (bezogen auf Diethylenglykol) zu erreichen, musste der Katalysator A5 (Na-Gehalt: 1,10 %) bei einer Reaktionstemperatur von 200°C gefahren werden.
Die Ergebnisse sind in der folgenden Tabelle zusammengestellt.
Katalysator A2 zeigte eine höhere Gesamtselektivität zu den beiden Wunschprodukten (Morpholin und Aminodiglykol) . Die Bildung von Methoxyethanol und Methoxyethylamin, jeweils Indikatoren für unerwünschte Nebenreaktionen, war bei Katalysator A2 um den Fak- tor 4 geringer als bei Katalysator A5.
Figure imgf000025_0001
S = Selektivität (bezogen auf umgesetztes Diglykol MOR = Morpholin
ADG = Aminodiglykol (H2N(CH2)20 (CH2) 2OH) MeOEtOH = 2-Methoxyethanol MeOEtNH2 = 2-Methoxyethylamin Beispiel 3
Aminierung von hydroformyliertem Polyisobuten
Figure imgf000026_0001
Molmasse: 1000
Die Versuche wurden in einem 1 m3-Rohrreaktor an einem Katalysator mit der Zusammensetzung
28,0 Gew.-% Ni, berechnet als NiO,
28,0 Gew.-% Co, berechnet als CoO,
11,0 Gew.-% Cu, berechnet als CuO,
32,99 Gew.-% Zr, berechnet als Zr02, 0,01 Gew.-% Na, berechnet als N2θ,
der analog der obigen Vorschrift in Beispiel A hergestellt wurde, durchgeführt (Sumpffahrweise) . Der Katalysator wurde reduziert/ passiviert eingebaut.
Zunächst wurde der Reaktor 3 x mit 40 bar N gespült. Nach einer Dichtheitsprüfung bei 200 bar N2, wurde auf 120 bar entspannt. Der Kreisgaskompressor wurde mit 1000 Nm.3/h N2 in Betrieb genommen und bei Umgebungstemperatur wurde mit der Ammoniakbenetzung begonnen. Bei einer Temperatur von ca. 120°C wurde der Ammoniakzulauf kurz abgestellt, wobei ein weiterer Temperaturanstieg bis auf maximal 183°C beobachtet wurde. Nach Abkühlung wurde die Ammoniakmenge stufenweise auf den Zielwert für die Synthese von 250 kg/h eingestellt und auf 190°C aufgeheizt. Während der Ammoniakfahrt wurde mit H2-Zudosierung angefangen und auf 200 bar aufgepresst. Hierbei wurden folgende Parameter eingestellt.
Figure imgf000026_0002
Die Ergebnisse sind in der folgenden Tabelle aufgeführt.
Figure imgf000027_0001
Erklärung der Abkürzungen:
Kat. Bei. = Katalysatorbelastung in kg (Alkohol + Aldehyd) pro Liter Katalysator und pro Stunde.
Nirv3 = Normkubikmeter = auf Normalbedingungen umgerechnetes Volumen.
s+t AZ steht für Aminzahl bezüglich alkylierter sekundärer und tertiärer Amine.
(Die AZ wird nach bekannter Methode durch eine Säure-Base-Titration ermittelt. Explizit wird die Base mit HCl titriert) . Die AZ gilt als Maß des Aminierungsgrades .
AC steht für Acetylierungszahl .
(Zur Ermittlung der AC wird nach bekannter Methode die Probe mit einem Acetylierungsgemisch, bestehend aus Essigsäureanhydrid (ESA) , Eisessig und Pyridin, bei Raumtemperatur umgesetzt.
In den vorliegenden Fällen reagiert die Base mit ESA zum Amid. Der Rest-Überschuss ESA wird mit H2O zur Essigsäure umgesetzt, die wiederum mit NaOH zurücktitriert) . Mit der AC bestimmt man das Gesamtpotential an funktionellen Gruppen des Produktes . Mit der AZ den entsprechenden A inanteil daraus .

Claims

Patentansprüche
1. Verfahren zur Herstellung von Aminen durch Umsetzung von pri- mären oder sekundären Alkoholen, Aldehyden oder Ketonen bei erhöhter Temperatur und erhöhtem Druck mit Wasserstoff und Stickstoffverbindungen, ausgewählt aus der Gruppe Ammoniak, primäre und sekundäre Amine, in Gegenwart eines Katalysators, dadurch gekennzeichnet, dass die katalytisch aktive Masse des Katalysators vor der Behandlung mit Wasserstoff
22 bis 40 Gew.-% sauerstoffhaltige Verbindungen des Zirkoniums, berechnet als ZrÜ2,
1 bis 30 Gew.-% sauerstoffhaltige Verbindungen des Kupfers, berechnet als CuO,
15 bis 50 Gew.-% sauerstoffhaltige Verbindungen des Nickels, berechnet als NiO, wobei das Molverhältnis von Nickel zu Kup- fer größer 1 ist,
15 bis 50 Gew.-% sauerstoffhaltige Verbindungen des Kobalts, berechnet als CoO,
und weniger als 1 Gew.-% Alkalimetall, berechnet als Alkalimetalloxid, enthält.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die katalytisch aktive Masse des Katalysators vor der Behandlung mit Wasserstoff weniger als 0,5 Gew.-% Alkalimetall, berechnet als Alkalimetalloxid, enthält.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die katalytisch aktive Masse des Katalysators vor der Behandlung mit Wasserstoff weniger als 0,35 Gew.-% Alkalimetall, berechnet als Alkalimetalloxid, enthält.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die katalytisch aktive Masse des Katalysators vor der Behandlung mit Wasserstoff weniger als 0,2 Gew.-% Alkalimetall, berechnet als Alkalimetalloxid, enthält.
Zeichn.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die katalytisch aktive Masse des Katalysators vor der Behandlung mit Wasserstoff
25 bis 40 Gew.-% sauerstoffhaltige Verbindungen des Zirkoniums, berechnet als Zr02,
2 bis 25 Gew.-% sauerstoffhaltige Verbindungen des Kupfers, berechnet als CuO,
21 bis 45 Gew.-% sauerstoffhaltige Verbindungen des Nickels, berechnet als NiO, wobei das Molverhältnis von Nickel zu Kupfer größer 1 ist, und
21 bis 45 Gew.-% sauerstoffhaltige Verbindungen des Kobalts, berechnet als CoO, enthält.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man die Umsetzung bei Temperaturen von 80 bis 300°C durchführt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man die Umsetzung in der Flüssigphase bei Drücken von 5 bis 30 MPa oder in der Gasphase bei Drücken von 0,1 bis 40 MPa durchführt.
8. Verfahren nach einem der Ansprüche 1 bis 7 zur Herstellung Aminen der Formel I
Figure imgf000030_0001
in der
R1, R2 Wasserstoff, Cι_o-Alkyl, C32-Cycloalkyl,
Aryl, C_2o-Aralkyl und C7_2o-Alkylaryl oder gemeinsam (CH2) -j-X- (CH2)k,
R3, R4 Wasserstoff, Alkyl, wie Cι_2oo-Alkyl, Cycloalkyl, wie C3_1-Cycloalkyl, Hydroxyalkyl , wie Cι-2o-Hydroxyalkyl, Aminoalkyl, wie Cι-2o-Aminoalkyl, Hydroxyalkylaminoalkyl , wie Cι-20- Hydroxyalkylaminoalkyl, Alkoxyalkyl, wie C_3o-Alkoxyalkyl, Dialkylaminoalkyl , wie
C3-3o-Dialkylaminoalkyl, Alkylaminoalkyl, wie C2_3o-Alkylaminoalkyl , R5- (OCR6R7CR8R9)n- (0CR6R7) , Aryl, Heteroaryl, Aralkyl, wie C-2o-Aralkyl, Heteroarylalkyl, wie C4_2o-Heteroarylalkyl, Alkylaryl, wie C_2o-Alkylaryl, Alkylheteroaryl, wie C_20-Alkylheteroaryl und Y-(CH2)m-NR5- (CH2) q oder gemeinsam (CH ) χ-X- (CH2)m oder
R2 und R4 gemeinsam (CH2) ι-X- (CH2)m,
R5, R10 Wasserstoff, Cι_4-Alkyl, C7_4o-Alkylphenyl,
R6, R7, R8, R9 Wasserstoff, Methyl oder Ethyl,
X CH2, CHR5, Sauerstoff (0), Schwefel (S) oder NR5 ,
Y N(R10)2, Hydroxy, C2-20-Alkylaminoalkyl oder
C3-2o_Dialkylaminoalkyl,
n eine ganze Zahl von 1 bis 30 und
j, k, 1, m, q eine ganze Zahl von 1 bis 4
bedeuten, durch Umsetzung von primären oder sekundären Alko- holen der Formel II
R3
HO—C— Ri (II) ,
H
oder Aldehyden oder Ketonen der Formel VI bzw. VII
Figure imgf000031_0001
VI VII mit Stickstoffverbindungen der Formel III
Ri
N—H (III) . /
R2
9. Katalysatoren wie in einem der Ansprüche 1 bis 5 definiert.
0. Verwendung von Katalysatoren gemäß Anspruch 9 zur Herstellung von Aminen durch Umsetzung von primären oder sekundären Alkoholen, Aldehyden oder Ketonen bei erhöhter Temperatur und erhöhtem Druck mit Wasserstoff und Stickstoffverbindungen, ausgewählt aus der Gruppe Ammoniak, primäre und sekundäre Amine.
PCT/EP2003/002335 2002-03-14 2003-03-07 Katalysatoren und verfahren zur herstellung von aminen WO2003076386A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2003215639A AU2003215639A1 (en) 2002-03-14 2003-03-07 Catalysts and method for the production of amines
US10/507,602 US7183438B2 (en) 2002-03-14 2003-03-07 Catalysts and method for the production of amines
AT03743852T ATE442198T1 (de) 2002-03-14 2003-03-07 Katalysatoren und verfahren zur herstellung von aminen
CA2478858A CA2478858C (en) 2002-03-14 2003-03-07 Catalysts and method for the production of amines
DE50311896T DE50311896D1 (de) 2002-03-14 2003-03-07 Katalysatoren und verfahren zur herstellung von aminen
JP2003574608A JP4541706B2 (ja) 2002-03-14 2003-03-07 触媒及びアミンの製造法
CN038060019A CN1642638B (zh) 2002-03-14 2003-03-07 用于制备胺的催化剂和方法
EP03743852A EP1487573B1 (de) 2002-03-14 2003-03-07 Katalysatoren und verfahren zur herstellung von aminen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10211101.4 2002-03-14
DE10211101A DE10211101A1 (de) 2002-03-14 2002-03-14 Katalysatoren und Verfahren zur Herstellung von Aminen

Publications (2)

Publication Number Publication Date
WO2003076386A2 true WO2003076386A2 (de) 2003-09-18
WO2003076386A3 WO2003076386A3 (de) 2004-04-08

Family

ID=27771252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/002335 WO2003076386A2 (de) 2002-03-14 2003-03-07 Katalysatoren und verfahren zur herstellung von aminen

Country Status (10)

Country Link
US (1) US7183438B2 (de)
EP (1) EP1487573B1 (de)
JP (1) JP4541706B2 (de)
KR (1) KR100970037B1 (de)
CN (1) CN1642638B (de)
AT (1) ATE442198T1 (de)
AU (1) AU2003215639A1 (de)
CA (1) CA2478858C (de)
DE (2) DE10211101A1 (de)
WO (1) WO2003076386A2 (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036496A1 (de) * 2005-09-30 2007-04-05 Basf Se Verfahren zur herstellung von aminodiglykol (adg) und morpholin
WO2007135970A1 (ja) 2006-05-19 2007-11-29 Eisai R & D Management Co., Ltd. ヘテロ環系-シンナミド誘導体
WO2008013213A1 (fr) 2006-07-28 2008-01-31 Eisai R & D Management Co., Ltd. Promédicament d'un composé cinnamide
WO2008037659A1 (de) * 2006-09-28 2008-04-03 Basf Se Verfahren zur herstellung von 2,2'-aminoethoxyethanol in elektro-qualität
CN100395229C (zh) * 2005-03-04 2008-06-18 江西盾牌化工有限公司 低压法合成3-戊胺的工艺
US7615665B2 (en) 2005-09-30 2009-11-10 Basf Se Method for producing ethylene amines
US7635790B2 (en) 2006-02-14 2009-12-22 Basf Se Method for producing ethylene amines and ethanol amines by the hydrogenating amination of monoethylene glycol and ammonia in the presence of a catalyst
US7696384B2 (en) 2005-09-30 2010-04-13 Basf Se Process for producing ethyleneamines
US7700806B2 (en) 2006-02-14 2010-04-20 Basf Aktiengesellschaft Method for producing ethylene amines ethanol amines from monoethylene glycol (MEG)
US7750189B2 (en) 2006-07-14 2010-07-06 Basf Se Method for producing an amine
US7754922B2 (en) 2006-07-14 2010-07-13 Basf Se Process for preparing amines and zirconium dioxide- and nickel-containing catalysts for use therein
US7919655B2 (en) 2006-07-14 2011-04-05 Basf Se Method for producing an amine
WO2011067199A1 (de) 2009-12-03 2011-06-09 Basf Se Katalysator und verfahren zur herstellung eines amins
WO2011067200A1 (de) 2009-12-03 2011-06-09 Basf Se Katalysator und verfahren zur herstellung eines amins
WO2011082994A1 (de) 2009-12-17 2011-07-14 Basf Se Umsetzung von glykolaldehyd mit einem aminierungsmittel
US8063252B2 (en) 2006-07-14 2011-11-22 Basf Se Process for preparing amines and zirconium dioxide- and nickel-containing catalysts for use therein
US8197646B2 (en) 2006-09-28 2012-06-12 Basf Se Processes for continuous fractional distillation of mixtures comprising morpholine, monoaminodiglycol, ammonia and water
US8246793B2 (en) 2006-09-28 2012-08-21 Basf Se Method for the continuous separation of mixtures comprising morpholine (MO), monoaminodiglycol (ADG), ammonia and water by means of distillation
US8268995B2 (en) 2007-12-21 2012-09-18 Basf Se Processes for preparing amines and catalysts for use therein
US8278489B2 (en) 2007-12-21 2012-10-02 Basf Se Method for producing an amine
US8293945B2 (en) 2007-12-21 2012-10-23 Basf Se Method for producing an amine
US8293075B2 (en) 2006-09-28 2012-10-23 Basf Se Method for the continuous separation by distillation of mixtures that contain morphonline (MO), monoaminodiglycol (ADG), ammonia and water by means of distillation
US8324430B2 (en) 2007-12-21 2012-12-04 Basf Se Processes for preparing amines and catalysts for use therein
US8461391B2 (en) 2008-05-13 2013-06-11 Basf Se Method for producing N,N-substituted-1,3-propandiamines
EP2885269B1 (de) 2012-08-17 2016-09-14 OXEA GmbH Kontinuierliches verfahren zur herstellung primärer aliphatischer amine aus aldehyden

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8918073B2 (en) 2002-03-28 2014-12-23 Telecommunication Systems, Inc. Wireless telecommunications location based services scheme selection
US20080126535A1 (en) 2006-11-28 2008-05-29 Yinjun Zhu User plane location services over session initiation protocol (SIP)
DE102004033556A1 (de) * 2004-07-09 2006-02-16 Basf Ag Katalysatorformkörper und Verfahren zur Hydrierung von Carbonylverbindungen
DE102005029932A1 (de) 2005-06-28 2007-01-11 Clariant Produkte (Deutschland) Gmbh Verfahren zur Herstellung von Polyetheraminen
JP4989888B2 (ja) * 2005-12-28 2012-08-01 花王株式会社 含窒素化合物の製造方法
US8208605B2 (en) 2006-05-04 2012-06-26 Telecommunication Systems, Inc. Extended efficient usage of emergency services keys
CN101489673A (zh) * 2006-07-14 2009-07-22 巴斯夫欧洲公司 生产胺的方法
CN101484105B (zh) * 2006-07-20 2012-04-18 Sca卫生产品股份公司 用于形成气流成网吸收芯体的设备和方法
DE102006036220A1 (de) 2006-08-03 2008-02-07 Clariant International Limited Polyetheramin-Makromonomere mit zwei benachbarten Hydroxylgruppen und ihre Verwendung zur Herstellung von Polyurethanen
KR100738232B1 (ko) * 2006-08-18 2007-07-12 한국화학연구원 혼합 금속 산화물 촉매의 제조 방법 및 상기 촉매를 사용한장쇄 지방족 삼차 아민의 제조방법
CN101522607B (zh) 2006-12-06 2014-03-12 科莱恩金融(Bvi)有限公司 聚醚胺的制备方法
JP5315679B2 (ja) * 2007-11-30 2013-10-16 三菱化学株式会社 フラン化合物の製造方法
CN101874026B (zh) * 2007-11-30 2012-11-21 三菱化学株式会社 呋喃化合物的制备方法
JP5375054B2 (ja) * 2007-11-30 2013-12-25 三菱化学株式会社 フラン化合物の製造方法
WO2009080512A1 (de) * 2007-12-21 2009-07-02 Basf Se Einstufige reduktive aminierung
JP5750367B2 (ja) * 2010-12-27 2015-07-22 花王株式会社 3級アミンの製造方法
BR112013016515B1 (pt) 2010-12-27 2019-02-05 Kao Corporation processo para produção de amina terciária
WO2012141762A1 (en) 2011-02-25 2012-10-18 Telecommunication Systems, Inc. Mobile internet protocol (ip) location
DE102012014395B3 (de) * 2012-07-13 2013-08-22 Oxea Gmbh Isononylamine ausgehend von 2-Ethylhexanol, Verfahren zu ihrer Herstellung sowie ihre Verwendung
CN103480380B (zh) * 2013-09-03 2015-04-22 万华化学集团股份有限公司 一种用于固定床苯胺精馏残渣资源化利用的催化剂及其制备方法
CN106866435A (zh) * 2017-03-01 2017-06-20 无锡阿科力科技股份有限公司 一种含有桥环结构的聚醚胺及其制备方法
WO2021247177A1 (en) 2020-06-05 2021-12-09 SCION Holdings LLC Alcohols production
US12054455B2 (en) 2020-06-05 2024-08-06 SCION Holdings LLC Branched alcohols
US20230278947A1 (en) 2020-09-25 2023-09-07 Kao Corporation Method for producing tertiary amine composition
US20220194886A1 (en) * 2020-12-17 2022-06-23 SCION Holdings LLC Branched Products
CN114247470B (zh) * 2021-12-31 2024-07-12 南京红宝丽醇胺化学有限公司 催化剂的制备方法及一异丙醇胺的合成方法
WO2023135035A1 (en) 2022-01-14 2023-07-20 Basf Se Method for the manufacture or conversion of alkanolamines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017651A1 (de) * 1977-08-29 1980-10-29 The Dow Chemical Company Verfahren zur Herstellung von Aminen aus Alkoholen, Aldehyden, Ketonen und deren Mischungen und hierbei verwendeter Katalysator
EP0963975A1 (de) * 1998-06-12 1999-12-15 Basf Aktiengesellschaft Verfahren zur Herstellung von Aminen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153581A (en) * 1977-09-01 1979-05-08 The Dow Chemical Company Method of producing amines from alcohols, aldehydes, ketones and mixtures thereof
DE3903367A1 (de) 1989-02-04 1990-08-16 Basf Ag Katalysator und verfahren zur hydrierenden aminierung von alkoholen
DE4116367A1 (de) 1991-05-18 1992-11-19 Basf Ag Verfahren zur herstellung von aminen
DE4428004A1 (de) 1994-08-08 1996-02-15 Basf Ag Verfahren zur Herstellung von Aminen
DE4429547A1 (de) 1994-08-19 1996-02-22 Basf Ag Verfahren zur Herstellung von Aminen
DE19742911A1 (de) * 1997-09-29 1999-04-01 Basf Ag Verfahren zur Herstellung von Aminen
US6075634A (en) 1998-08-05 2000-06-13 Jds Uniphase Corporation, Ubp Gigabit data rate extended range fiber optic communication system and transponder therefor
DE19910960A1 (de) * 1999-03-12 2000-09-14 Basf Ag Verfahren zur Herstellung von Aminen
DE50007278D1 (de) * 1999-12-06 2004-09-09 Basf Ag Verfahren zur Herstellung von Aminen
EP1106601B1 (de) * 1999-12-06 2004-02-25 Basf Aktiengesellschaft Verfahren zur Herstellung von Monoisopropylamin
DE10142635A1 (de) 2001-08-31 2003-03-20 Basf Ag Verfahren zur Herstellung von Isophorondiamin (IPDA, 3-Aminomethyl-3,5,5,-trimethylcyclohexylamin)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017651A1 (de) * 1977-08-29 1980-10-29 The Dow Chemical Company Verfahren zur Herstellung von Aminen aus Alkoholen, Aldehyden, Ketonen und deren Mischungen und hierbei verwendeter Katalysator
EP0963975A1 (de) * 1998-06-12 1999-12-15 Basf Aktiengesellschaft Verfahren zur Herstellung von Aminen

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395229C (zh) * 2005-03-04 2008-06-18 江西盾牌化工有限公司 低压法合成3-戊胺的工艺
WO2007036496A1 (de) * 2005-09-30 2007-04-05 Basf Se Verfahren zur herstellung von aminodiglykol (adg) und morpholin
US7696384B2 (en) 2005-09-30 2010-04-13 Basf Se Process for producing ethyleneamines
US7615665B2 (en) 2005-09-30 2009-11-10 Basf Se Method for producing ethylene amines
US7700806B2 (en) 2006-02-14 2010-04-20 Basf Aktiengesellschaft Method for producing ethylene amines ethanol amines from monoethylene glycol (MEG)
US7635790B2 (en) 2006-02-14 2009-12-22 Basf Se Method for producing ethylene amines and ethanol amines by the hydrogenating amination of monoethylene glycol and ammonia in the presence of a catalyst
WO2007135970A1 (ja) 2006-05-19 2007-11-29 Eisai R & D Management Co., Ltd. ヘテロ環系-シンナミド誘導体
US8765634B2 (en) 2006-07-14 2014-07-01 Basf Se Processes for preparing amines and zirconium dioxide- and nickel-containing catalysts for use therein
US8063252B2 (en) 2006-07-14 2011-11-22 Basf Se Process for preparing amines and zirconium dioxide- and nickel-containing catalysts for use therein
US7750189B2 (en) 2006-07-14 2010-07-06 Basf Se Method for producing an amine
US7754922B2 (en) 2006-07-14 2010-07-13 Basf Se Process for preparing amines and zirconium dioxide- and nickel-containing catalysts for use therein
US7919655B2 (en) 2006-07-14 2011-04-05 Basf Se Method for producing an amine
WO2008013213A1 (fr) 2006-07-28 2008-01-31 Eisai R & D Management Co., Ltd. Promédicament d'un composé cinnamide
US7825281B2 (en) 2006-09-28 2010-11-02 Basf Aktiengesellschaft Method for producing electronic grade 2,2′-aminoethoxyethanol
US8293075B2 (en) 2006-09-28 2012-10-23 Basf Se Method for the continuous separation by distillation of mixtures that contain morphonline (MO), monoaminodiglycol (ADG), ammonia and water by means of distillation
WO2008037659A1 (de) * 2006-09-28 2008-04-03 Basf Se Verfahren zur herstellung von 2,2'-aminoethoxyethanol in elektro-qualität
US8246793B2 (en) 2006-09-28 2012-08-21 Basf Se Method for the continuous separation of mixtures comprising morpholine (MO), monoaminodiglycol (ADG), ammonia and water by means of distillation
US8197646B2 (en) 2006-09-28 2012-06-12 Basf Se Processes for continuous fractional distillation of mixtures comprising morpholine, monoaminodiglycol, ammonia and water
US8293945B2 (en) 2007-12-21 2012-10-23 Basf Se Method for producing an amine
US8268995B2 (en) 2007-12-21 2012-09-18 Basf Se Processes for preparing amines and catalysts for use therein
US8278489B2 (en) 2007-12-21 2012-10-02 Basf Se Method for producing an amine
US8324430B2 (en) 2007-12-21 2012-12-04 Basf Se Processes for preparing amines and catalysts for use therein
US8461391B2 (en) 2008-05-13 2013-06-11 Basf Se Method for producing N,N-substituted-1,3-propandiamines
WO2011067200A1 (de) 2009-12-03 2011-06-09 Basf Se Katalysator und verfahren zur herstellung eines amins
US8318982B2 (en) 2009-12-03 2012-11-27 Basf Se Catalyst and process for preparing an amine
US8487135B2 (en) 2009-12-03 2013-07-16 Basf Se Catalyst and process for preparing an amine
WO2011067199A1 (de) 2009-12-03 2011-06-09 Basf Se Katalysator und verfahren zur herstellung eines amins
WO2011082994A1 (de) 2009-12-17 2011-07-14 Basf Se Umsetzung von glykolaldehyd mit einem aminierungsmittel
EP2885269B1 (de) 2012-08-17 2016-09-14 OXEA GmbH Kontinuierliches verfahren zur herstellung primärer aliphatischer amine aus aldehyden
EP2885269B2 (de) 2012-08-17 2023-07-26 OQ Chemicals GmbH Kontinuierliches verfahren zur herstellung primärer aliphatischer amine aus aldehyden

Also Published As

Publication number Publication date
AU2003215639A8 (en) 2003-09-22
DE50311896D1 (de) 2009-10-22
EP1487573B1 (de) 2009-09-09
CA2478858C (en) 2010-12-14
CN1642638A (zh) 2005-07-20
JP2005527516A (ja) 2005-09-15
DE10211101A1 (de) 2003-09-25
AU2003215639A1 (en) 2003-09-22
ATE442198T1 (de) 2009-09-15
CA2478858A1 (en) 2003-09-18
WO2003076386A3 (de) 2004-04-08
EP1487573A2 (de) 2004-12-22
KR100970037B1 (ko) 2010-07-16
KR20050002855A (ko) 2005-01-10
US7183438B2 (en) 2007-02-27
CN1642638B (zh) 2010-04-28
JP4541706B2 (ja) 2010-09-08
US20050107637A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EP1487573B1 (de) Katalysatoren und verfahren zur herstellung von aminen
EP2043996B1 (de) Verfahren zur herstellung eines amins
EP2043997B1 (de) Verfahren zur herstellung eines amins
EP2225030B1 (de) Verfahren zur herstellung eines amins
EP2225029B1 (de) Verfahren und katalysator zur herstellung eines amins
EP2225027B1 (de) Verfahren zur herstellung eines amins
EP2506965B1 (de) Katalysator und verfahren zur herstellung eines amins
EP2061747B1 (de) Verfahren zur herstellung eines amins
EP2506966B1 (de) Katalysator und verfahren zur herstellung eines amins
DE19859776B4 (de) Verfahren zur Herstellung von Aminen
EP1431271B1 (de) Verfahren zur Herstellung eines Amins
WO2008006754A1 (de) Verfahren zur herstellung eines amins
EP1747187A1 (de) Verfahren zur kontinuierlichen herstellung eines amins
EP2346602A1 (de) Verfahren zur kontinuierlichen herstellung eines amins unter verwendung eines aluminium-kupfer-katalysators
EP2234717A1 (de) Verfahren zur herstellung eines amins
EP2043779A1 (de) Verfahren zur herstellung eines amins
EP2225028A1 (de) Verfahren zur herstellung eines amins
WO2009080514A1 (de) Verfahren zur herstellung eines amins
WO2009080515A1 (de) Verfahren zur herstellung eines amins
WO2006136571A1 (de) Verfahren zur kontinuierlichen herstellung eines amins
WO2008138833A1 (de) Verfahren zur herstellung von aminen
EP2883862A1 (de) Verfahren zur Herstellung von Aminen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003743852

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003574608

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2478858

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020047014350

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038060019

Country of ref document: CN

Ref document number: 10507602

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003743852

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020047014350

Country of ref document: KR