WO2003075379A2 - Compresseur electrochimique d'hydrogene - Google Patents

Compresseur electrochimique d'hydrogene Download PDF

Info

Publication number
WO2003075379A2
WO2003075379A2 PCT/CA2003/000306 CA0300306W WO03075379A2 WO 2003075379 A2 WO2003075379 A2 WO 2003075379A2 CA 0300306 W CA0300306 W CA 0300306W WO 03075379 A2 WO03075379 A2 WO 03075379A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
cell
plates
mea
compression
Prior art date
Application number
PCT/CA2003/000306
Other languages
English (en)
Other versions
WO2003075379A3 (fr
Inventor
Terrance Y. H. Wong
Francois Girard
Thomas P. K. Vanderhoek
Original Assignee
National Research Council Of Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Council Of Canada filed Critical National Research Council Of Canada
Priority to AU2003208221A priority Critical patent/AU2003208221A1/en
Priority to US10/478,852 priority patent/US20040211679A1/en
Publication of WO2003075379A2 publication Critical patent/WO2003075379A2/fr
Publication of WO2003075379A3 publication Critical patent/WO2003075379A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/025Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form semicylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • H01M8/0278O-rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates to an apparatus and process for electrochemical compression of hydrogen.
  • Fuel cells offer an environmentally friendly method of efficient energy generation, and the use of hydrogen as the fuel of choice is attractive as the conversion to electrical energy is emissions-free, with water and heat being the only by-products.
  • the delivery of hydrogen in gaseous or liquid form or as an absorbed species depends on the fuel cell application, and re-fueling frequency and related autonomy are important factors to consider in the selection of the appropriate mode of fuel storage.
  • gaseous hydrogen is a convenient and common form for storage, usually by pressurized containment for increased energy density.
  • Electrochemical transfer of hydrogen through proton-conductive materials is known, and fundamental studies on single-stage transfer applications can be found reported in the literature. For example, the use of thin perovskite-type oxide proton-conducting ceramics is well documented for single-stage separation of hydrogen from gas mixtures [1-3]. In these applications, the single cell operates at elevated temperatures (500 - 1000 °C) in order to maintain sufficiently high protonic conductivity through the separator. Reports on electrochemical hydrogen compression are scarce and most describe the use of single cells with a polymer electrolyte membrane (PEM), i.e. Nafion®, as the proton-conductive separator and Pt as the electrocatalyst on carbon electrodes (both anode and cathode) [4-7].
  • PEM polymer electrolyte membrane
  • an apparatus and process are provided for pressurizing hydrogen electrochemically.
  • this technology targets the hydrogen supply and gas storage industries as well as the emerging fuel cell industry.
  • high-pressure compression is desired and, more specifically, pressurization up to 12,000 psi is targeted, as this level is deemed necessary by the transportation industry for practical implementation of fuel cell vehicles.
  • an apparatus for compression of hydrogen, comprising a membrane electrolyte cell assembly (MEA), including a proton-conducting electrolyte membrane, an anode on one side of the membrane and a cathode on the other side of the membrane, the anode having an electrochemically active material for oxidizing hydrogen to protons, the cathode having an electrochemically active material for reducing protons to hydrogen, and further comprising next to the anode and cathode, planar gas distribution and support plates sandwiching the MEA, the assembly being held together by end-plates, the end-plates having complementary peripheral grooves for seating an intervening seal between the end-plates and the MEA, the end-plate on the anode side further including a hydrogen supply inlet and the end-plate on the cathode side further including a compressed hydrogen outlet.
  • MEA membrane electrolyte cell assembly
  • a process for the compression of hydrogen by means of the apparatus described in the preceding paragraph, wherein hydrogen is compressed electrochemically by the MEA cell by oxidation of the hydrogen to protons at the anode, which having passed through the membrane to the cathode side are reduced back to hydrogen and discharged under pressure.
  • Figure 1 is a diagram showing the concept of electrochemical hydrogen compression.
  • Figure 2 is a diagram showing the concept of multi-stage electrochemical hydrogen compression.
  • Figure 3 is a concept diagram showing a cross-sectional view of a multi-stage electrochemical hydrogen compressor with an overall cylindrical configuration.
  • Figure 4 is a diagram showing the design of planar gas distribution and support plates according to the invention with complementary grooves for intervening seals to provide a leak-free seal between the MEA and the plates.
  • Figure 5 is a diagram showing the unassembled view of a single-stage electrochemical hydrogen compressor unit according to the invention.
  • Figure 6 is a schematic circuit design for a two-stage electrochemical hydrogen compressor system according to the invention.
  • Electrochemical compression of hydrogen is accomplished by the application of an electric potential across a proton-conductive polymer electrolyte material separating anode and cathode compartments to effect the transport of hydrogen from one side to the other.
  • the process is based on the following anodic and cathodic reactions:
  • thermodynamic cell potential is represented by the following equation:
  • Ecell - E 0 -E a E, cell ' ⁇ HL -I,n
  • E a anode half-cell potential
  • V E ce ⁇ ° thermodynamic cell reference potential
  • c activity of H 2 at the cathode
  • aH 2 activity of H 2 at the anode
  • thermodynamic property fugacity (f)
  • f the effective pressure when the non-ideality of gases is taken into consideration.
  • Fugacity relates to P by the following equation:
  • is the fugacity coefficient, akin to the activity coefficient ( ⁇ ) in the thermodynamic treatment of non-ideal solutions. Fugacity coefficients have been tabulated for a number of gases and, for hydrogen, ⁇ is essentially 1.0 for pressures up to 1000 psia (68 atm) [9]; at higher pressures, f becomes significant. The applied potential is then determined more accurately from the following equation:
  • ⁇ c cathodic compartment fugacity coefficient
  • ⁇ a anodic compartment fugacity coefficient
  • R se parator resistance across the proton-conductive separator, ohm
  • R c ir c uit resistance of the electrical circuit, ohm
  • the overpotentials of the anode and cathode represent chemical kinetic barriers, i.e. the energy required for electron transfer during the anodic and cathodic electrochemical reactions, and the use of electrocatalysts (e.g. Pt) and/or higher temperatures can reduce these values.
  • electrocatalysts e.g. Pt
  • the ohmic drop across the separator can be minimized, for instance, by the use of thinner materials and, across the circuit, with appropriate electrical materials.
  • thermodynamic work of compression The efficiency (%) of electrochemical hydrogen compression is referenced to the applied voltage and is a measure of the deviation from thermodynamic work:
  • an electrochemical hydrogen compressor is similar to that of a fuel cell, and it is proposed that a multi-stage unit be modeled after a PEM fuel cell stack.
  • Nafion® is employed as the proton-conductive polymer membrane separator with Pt as the electrocatalyst dispersed on carbon to function as the anode and cathode electrodes in the overall membrane- electrode-assembly (MEA).
  • an overall cylindrical multi-cell stack configuration having, for example, hemispherical end-plates 26 provides good mechanical stability.
  • Hydrogen supply inlet 33 is provided in the end-plate on the anode side of the first cell and compressed hydrogen outlet 35 in the other end-plate on the cathode side of the last cell.
  • the plates are connected by tie-bolts 28.
  • the design of a multi-stage unit is as illustrated where electrically non- conductive separators 20 ensure electrical separation of compression stages. It will be appreciated by those skilled in the art that other configurations will also work effectively.
  • graphite support plates 22 could be used sandwiching the MEA's 24, but these require separate charge collectors for good electrical conductivity (cf. copper endplates in a fuel cell stack).
  • porous stainless steel support plates 22 are used, which are positioned adjacent to the MEA 24 with seals (e.g. in the form of an elastomeric o-ring) disposed in grooves 30 to ensure a leak-free seal between the plate and the membrane of the MEA (i.e. the peripheral area outside of the active area).
  • seals e.g. in the form of an elastomeric o-ring
  • grooves 30 to ensure a leak-free seal between the plate and the membrane of the MEA (i.e. the peripheral area outside of the active area).
  • complex serpentine flow fields are not necessary, and access of H 2 to the MEA's is simply achieved by perforating the plates 22 e.g. in a central area 23 of the plate, or by use of sintered frit plates.
  • the sintered metal frit plates are made of a powdered metal material such as stainless steel, which is compressed into the form of a plate. Such material provides a structurally strong, yet porous material to provide for passage of gases to and
  • the high differential pressures are achieved by means of the porous supporting plate 22 on the anode side and its seating in socket 25a.
  • the porous plate maintains contact during pressurization with the active area of the MEA via use of a spring means, including a spring 29 and spring support 31 , (i.e. see Figure 5) for ensuring adequate electrical contact.
  • a spring means including a spring 29 and spring support 31 , (i.e. see Figure 5) for ensuring adequate electrical contact.
  • High-pressure stability is provided because the plates 22 immobilize the MEA during pressurization, such that the membrane does not rupture due to a ballooning effect.
  • Commercially available materials (MEA, stainless steel plating, and seals) are used in the construction of single- and two-stage compressors (see later).
  • proton-conductive membranes examples include sulfonated- polystyrene and the partially fluorinated ionomeric membranes, lonClad R- 1010 and R-4010 (Pall Co.), as these represent more economical alternatives to Nafion.
  • H 2 is the only species of interest, complications of slow membrane deterioration, as reported in fuel cells and attributed to the formation of hydrogen peroxide (from reaction of H 2 with 0 2 ) within the membrane, is not expected to be a problem, and the use of non-fluorinated materials such as sulfonated-polystyrene will suffice in electrochemical compression applications.
  • supporting plates 22 incorporates porosity or perforation characteristics in order to allow sufficient exposure of H 2 to catalytic active sites on the surface of the MEA and, at the same time, permit the plates to give sufficient structural support to the membrane, thus minimizing its deformation under conditions of high-pressure differentials.
  • the design of the supporting plates 22 also incorporates complementary peripheral grooves 30 for disposition of seals, e.g. an elastomeric o-ring to insure a leak-free seal between the MEA and the plates.
  • seals e.g. an elastomeric o-ring to insure a leak-free seal between the MEA and the plates.
  • FIG. 5 shows the unassembled view of a single stage of the working system responsible for establishing proof-of-concept, multi-stage electrochemical compression.
  • This electrochemical compressor unit comprises a membrane- electrode-assembly (MEA) 24 supported by stainless steel sintered frit plates 22a and contained within cylindrical stainless steel housing 26 that make up the anodic and cathodic compartments.
  • the stainless steel housing 26 is a high-pressure filter holder (Fisher Scientific, cat. no. 09-753-13M) adapted for its present use.
  • the membrane-electrode-assembly 24 (Palcan Fuel Cell Co.
  • a spring 29 and spring support 31 are provided on the cathode side. Both the spring and spring support are conveniently made of stainless steel. This spring and spring support arrangement provides for equalization of the force exerted on the MEA by the frit plate on the cathode side of the MEA 24, regardless of the pressure differential across the MEA, such that the MEA can move together, i.e. without separating as a result of the high pressure.
  • H 2 is a small molecule able to permeate through many types of materials, the selection and design of appropriate sealing material is important. Examples include Viton®, Santoprene®, and PTFE.
  • the multi-stage compressor embodiment includes a plurality of PEM cells connected in series, such that the compressed hydrogen from the outlet of a first cell in the series is fed to the hydrogen inlet of the next cell in series, wherein each cell is electrically isolated from the adjacent cell in the series.
  • FIG. 6 The circuit diagram for a two-stage unit connected in series showing the balance-of-plant is illustrated in Figure 6, wherein PG refers to pressure gauges; PCV refers to pressure check valves; CV refers to check valves; FM refers to flow meters; PT refers to pressure transducers; HUM refers to the gas humidifier; HTR refers to the heater; RH refers to the relative humidity ports; and T/C refers to the thermocouple ports.
  • PG pressure gauges
  • PCV pressure check valves
  • CV check valves
  • FM flow meters
  • PT pressure transducers
  • HUM the gas humidifier
  • HTR refers to the heater
  • RH refers to the relative humidity ports
  • T/C refers to the thermocouple ports.
  • Separate power supplies are used for each electrochemical compressor unit. The system is purged with nitrogen prior to hydrogen compression. Hydrogen is humidified by HUM101 and initially introduced to the entire system at atmospheric pressure.
  • stage 1 Thereafter, power is applied to the electrochemical compressor unit(s), and the pressure is monitored via PT101 , PT102, and PT103.
  • the system temperature is monitored via thermocouples at all T/C ports.
  • the stages are electrically isolated by use of electrically insulating (e.g. Teflon®) tubing, or by Swagelok dielectric fittings. This provides electrical isolation of stage 1 from stage 2.
  • electrically insulating e.g. Teflon®
  • Figures 7 and 8 show temporal plots for compression from atmospheric pressure (15.9 psia) to approx. 45 and 75 psia hydrogen, respectively.
  • Figures 9 and 10 show corresponding temporal plots of the applied voltages along with the thermodynamic applied potential ( ⁇ E) as determined from equation 4.
  • ⁇ E thermodynamic applied potential
  • Figure 14 shows an example of the pressure change at each stage (unit) from application of electrical power.
  • 45 and 75 psia were chosen as final pressures for the first and second stages, respectively, both stages initially at atmospheric pressure (15.9 psia).
  • a current of 2.4 A was applied galvanostatically to stage 1 and 0.6 A to stage 2.
  • 15.0 mV for stage 1 and
  • 6.9 mV for stage 2.
  • a rization 57 mV (0.6 A) for stage 2).
  • the system temperature was 22.0 °C.
  • the energy consumption for priming the dual-stage compressor to the chosen stage pressures was 400.7 J, as determined using equation 8.
  • Dual-stage compression to higher to pressures has also been carried out.
  • the profile of the applied voltages is shown in Figure 19, and there is good agreement with ⁇ E derived from eq. 4.
  • the applied current was 4.0 A for stage 1 and 2.0 A for stage 2.
  • the equilibrium cell potentials were
  • 53.0 mV for stage 1 and
  • 8.7 mV for stage 2.
  • the electrochemical hydrogen compressor can be applied interfacing: 1) a hydrogen production device (i.e. fuel processor, electrolyzer, etc.) and a fuel cell; 2) a hydrogen production device and a hydrogen storage device; and 3) a hydrogen storage device and a fuel cell.
  • a hydrogen production device i.e. fuel processor, electrolyzer, etc.
  • the compressor can be applied interfacing a hydrogen production device and a hydrogen storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un appareil et un procédé de compression électrochimique d'hydrogène. L'appareil comprend un assemblage de cellules électrolytiques à membrane (MEA), contenant des plaques planes de distribution de gaz prenant les membranes en sandwich, l'assemblage étant maintenu par des plaques d'extrémité, les plaques d'extrémité comportant des rainures supplémentaires périphériques afin de recevoir un joint d'interposition entre ces plaques et la membrane, la plaque d'extrémité du côté anode comprenant, en outre, une entrée d'arrivée d'hydrogène et la plaque d'extrémité du côté cathode comportant une sortie d'hydrogène comprimé. L'invention concerne à la fois des assemblages à cellule unique et à plusieurs cellules. Les assemblages de plusieurs cellules comprennent plusieurs cellules uniques connectées en série, de façon que l'hydrogène comprimé sortant d'une première cellule soit relié à l'hydrogène sortant de la cellule suivante de la série, chaque cellule étant électriquement isolée de la cellule adjacente dans la série. Le procédé consiste à comprimer électrochimiquement l'hydrogène dans ces cellules dans lesquelles des pressions jusqu'à 12000 psi sont atteintes grâce à des assemblages de cellules multiples.
PCT/CA2003/000306 2002-03-07 2003-03-06 Compresseur electrochimique d'hydrogene WO2003075379A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003208221A AU2003208221A1 (en) 2002-03-07 2003-03-06 Electrochemical spefc hydrogen compressor
US10/478,852 US20040211679A1 (en) 2002-03-07 2003-03-06 Electrochemical hydrogen compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36206502P 2002-03-07 2002-03-07
US60/362,065 2002-03-07

Publications (2)

Publication Number Publication Date
WO2003075379A2 true WO2003075379A2 (fr) 2003-09-12
WO2003075379A3 WO2003075379A3 (fr) 2003-11-27

Family

ID=27789143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2003/000306 WO2003075379A2 (fr) 2002-03-07 2003-03-06 Compresseur electrochimique d'hydrogene

Country Status (3)

Country Link
US (1) US20040211679A1 (fr)
AU (1) AU2003208221A1 (fr)
WO (1) WO2003075379A2 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031871A1 (fr) * 2004-09-14 2006-03-23 Honda Motor Co. , Ltd. Procede et dispositif pour separer l'hydrogene
US7601207B2 (en) 2000-09-28 2009-10-13 Proton Energy Systems, Inc. Gas recovery system
WO2010092175A1 (fr) * 2009-02-16 2010-08-19 Hyet Holding B.V. Cellule électrochimique à haute pression différentielle comprenant une membrane spécifique
WO2010093240A1 (fr) 2009-02-16 2010-08-19 Hyet Holding B.V. Système électrique fonctionnant à l'hydrogène et procédé de génération d'énergie
WO2014106699A1 (fr) * 2013-01-07 2014-07-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de production d'hydrogene purifie et dispositif permettant une telle production
WO2014207388A1 (fr) * 2013-06-26 2014-12-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de purification et de compression electrochimique de l'hydrogene a plusieurs etages
WO2015031482A3 (fr) * 2013-08-28 2015-04-23 Nuvera Fuel Cells, Inc. Compresseur électrochimique intégré, et procédé et système de stockage en cascade
US9186624B2 (en) * 2013-06-28 2015-11-17 Nuvera Fuel Cells, Inc. Methods of producing and providing purified gas using an electrochemical cell
EP3306725A1 (fr) * 2016-10-07 2018-04-11 Panasonic Intellectual Property Management Co., Ltd. Couche de diffusion de gaz et pompe à hydrogène électrochimique
WO2019193282A1 (fr) 2018-04-03 2019-10-10 Ergosup Procede et dispositif de compression electrochimique d'hydrogene gazeux
EP3641037A1 (fr) * 2018-10-18 2020-04-22 Panasonic Intellectual Property Management Co., Ltd. Pompe à hydrogène électrochimique
JPWO2021149291A1 (fr) * 2020-01-24 2021-07-29

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193885A1 (en) * 2006-01-30 2007-08-23 H2 Pump Llc Apparatus and methods for electrochemical hydrogen manipulation
US20070227900A1 (en) * 2006-04-04 2007-10-04 H2 Pump Llc Performance enhancement via water management in electrochemical cells
US20070246374A1 (en) * 2006-04-20 2007-10-25 H2 Pump Llc Performance management for integrated hydrogen separation and compression systems
US20070246363A1 (en) * 2006-04-20 2007-10-25 H2 Pump Llc Integrated electrochemical hydrogen compression systems
US20070246373A1 (en) * 2006-04-20 2007-10-25 H2 Pump Llc Integrated electrochemical hydrogen separation systems
US20080121532A1 (en) * 2006-05-03 2008-05-29 H2 Pump Llc Robust voltage management in electrochemical hydrogen cells
WO2008092024A1 (fr) * 2007-01-24 2008-07-31 Treadstone Technologies, Inc. Processeur électrochimique pour traitement de l'hydrogène et la génération de puissance
US8663448B2 (en) * 2008-01-04 2014-03-04 H2 Pump, Llc Hydrogen furnace system and method
GB2519874B (en) * 2008-12-02 2015-06-24 Xergy Inc Electrochemical compressor and refrigeration system
JP5375293B2 (ja) * 2009-04-09 2013-12-25 トヨタ自動車株式会社 カーボンナノチューブの製造方法およびカーボンナノチューブ製造装置
WO2010127270A2 (fr) * 2009-05-01 2010-11-04 Xergy Incorporated Système de transfert thermique électrochimique auto-contenu
US9464822B2 (en) * 2010-02-17 2016-10-11 Xergy Ltd Electrochemical heat transfer system
GB2517587B (en) * 2011-12-21 2018-01-31 Xergy Ltd Electrochemical compression system
US9303818B1 (en) 2012-01-10 2016-04-05 Mainstream Engineering Corporation Dense storage of hydrogen and other gases in fast fabricated, hierarchically structured nanocapillary arrays through adsorption and compression by electrochemical and other means
EP2978876B1 (fr) 2013-03-29 2019-11-13 Atomic Energy of Canada Limited Séparation électrochimique à faible énergie d'isotopes
US20140356744A1 (en) * 2013-05-29 2014-12-04 Mcalister Technologies, Llc Energy storage and conversion with hot carbon deposition
US10011912B2 (en) 2013-08-05 2018-07-03 University Of Yamanashi Hydrogen refining pressure-boosting device
US9806365B2 (en) * 2013-09-09 2017-10-31 University Of South Carolina Methods of purifying a hydrogen gas stream containing hydrogen sulfide impurities
DE102013224062A1 (de) * 2013-11-26 2015-05-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Konditionieren von Wasserstoff
US10508836B2 (en) * 2016-01-11 2019-12-17 Xergy Inc. Furnishing temperature control system employing an electrochemical compressor
US10386084B2 (en) * 2016-03-30 2019-08-20 Xergy Ltd Heat pumps utilizing ionic liquid desiccant
CN105826582B (zh) * 2016-05-20 2019-07-09 厦门大学 一种电化学式的气体压缩装置及压缩方法
EP3509725A4 (fr) * 2016-09-09 2020-06-17 Skyre, Inc. Appareil et procédé de concentration d'isotopes d'hydrogène
JP6887100B2 (ja) 2016-12-26 2021-06-16 パナソニックIpマネジメント株式会社 膜電極接合体および電気化学式水素ポンプ
RU2660695C1 (ru) * 2017-04-17 2018-07-09 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Электрохимический компрессор водорода
RU2656219C1 (ru) * 2017-04-17 2018-06-01 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Коаксиальный электрохимический компрессор водорода
US11710845B2 (en) 2017-11-27 2023-07-25 University Of Maryland, College Park Systems, devices, and methods employing electrochemical processing with oxygen as carrier gas
US11131029B2 (en) 2017-11-27 2021-09-28 University Of Maryland, College Park Systems, devices, and methods employing electrochemical processing of hydrofluoroolefins
FR3079529B1 (fr) 2018-04-03 2024-04-26 Ergosup Procede electrochimique de production d'hydrogene gazeux sous pression par electrolyse puis par depolarisation
FR3079530B1 (fr) 2018-04-03 2024-04-26 Ergosup Procede electrochimique de production d'hydrogene gazeux sous pression par electrolyse puis par conversion electrochimique
JP7162258B2 (ja) * 2018-05-30 2022-10-28 パナソニックIpマネジメント株式会社 水素供給システムおよび水素供給システムの運転方法
JP7249588B2 (ja) * 2018-06-14 2023-03-31 パナソニックIpマネジメント株式会社 電気化学式水素ポンプ
NL2022067B1 (en) * 2018-11-23 2020-06-05 Hyet Holding B V Solid-state compressor and method for providing counter pressure on a solid-state compressor cell stack
KR102258287B1 (ko) * 2019-06-28 2021-05-31 주식회사 에어브릿지 전기화학적 수소 압축기
DE102019215891A1 (de) * 2019-10-16 2021-04-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur elektrochemischen Wasserstoffkomprimierung
CN113383112A (zh) * 2020-01-08 2021-09-10 松下知识产权经营株式会社 压缩装置
AU2021246606A1 (en) * 2020-03-31 2022-11-03 Plug Power Inc. Method and system for electrochemically compressing gaseous hydrogen
US11745891B2 (en) 2020-04-14 2023-09-05 Raytheon Technologies Corporation Aircraft fuel system with electrochemical hydrogen compressor
JP7122548B1 (ja) * 2020-09-25 2022-08-22 パナソニックIpマネジメント株式会社 圧縮装置
US11624117B2 (en) 2021-05-27 2023-04-11 Textron Innovations Inc. Electrochemical compressor architecture
DE102022119198A1 (de) 2022-08-01 2024-02-01 Schaeffler Technologies AG & Co. KG Platte eines Zellenstapels und Verfahren zur Anbringung einer Dichtung an einer Platte

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990412A (en) * 1987-12-04 1991-02-05 The Boeing Company Cryogenic cooling system with precooling stage
WO1997040542A1 (fr) * 1996-04-19 1997-10-30 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Dispositif et procede pour epuration et compression combinees d'hydrogene contenant du co et leur utilisation dans ces installations a piles a combustible
EP0942483A1 (fr) * 1998-03-11 1999-09-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pile à combustible comportant un convertisseur de tension
WO2001037359A2 (fr) * 1999-11-18 2001-05-25 Proton Energy Systems, Inc. Cellule electrochimique a pression differentielle elevee
WO2003021006A1 (fr) * 2001-08-29 2003-03-13 Giner, Inc. Procede et systeme de production d'hydrogene haute pression

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8333388D0 (en) * 1983-12-15 1984-01-25 Raychem Ltd Materials for electrical devices
US5037624A (en) * 1987-03-24 1991-08-06 Advanced Technology Materials Inc. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements
US6756140B1 (en) * 1989-06-12 2004-06-29 Mcalister Roy E. Energy conversion system
US5897962A (en) * 1993-07-16 1999-04-27 Osram Sylvania Inc. Method of making flowable tungsten/copper composite powder
US6203692B1 (en) * 1999-06-10 2001-03-20 Srinivasan Sarangapani Electrochemical purification of chlorine
US6973681B2 (en) * 2002-02-15 2005-12-13 Pentair Pool Products Spa jet mounting assembly and method of installation
US6994929B2 (en) * 2003-01-22 2006-02-07 Proton Energy Systems, Inc. Electrochemical hydrogen compressor for electrochemical cell system and method for controlling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990412A (en) * 1987-12-04 1991-02-05 The Boeing Company Cryogenic cooling system with precooling stage
WO1997040542A1 (fr) * 1996-04-19 1997-10-30 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Dispositif et procede pour epuration et compression combinees d'hydrogene contenant du co et leur utilisation dans ces installations a piles a combustible
EP0942483A1 (fr) * 1998-03-11 1999-09-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pile à combustible comportant un convertisseur de tension
WO2001037359A2 (fr) * 1999-11-18 2001-05-25 Proton Energy Systems, Inc. Cellule electrochimique a pression differentielle elevee
WO2003021006A1 (fr) * 2001-08-29 2003-03-13 Giner, Inc. Procede et systeme de production d'hydrogene haute pression

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Proton energy Systems Announces Operation of first High Pressure Hydrogen Production Cell Stack"[Online] 5 April 2001 (2001-04-05), XP002253127 Retrieved from the Internet: <URL:http://www.evworld.com/databases/show news.cfm?pageid=news050401-03> [retrieved on 2003-09-02] *
B. ROHLAND ET AL: "Electrochemical Hydrogen Compressor" ELECTROCHIMICA ACTA, vol. 43, no. 24, 1998, pages 3841-3846, XP002253126 cited in the application *
STROBEL R ET AL: "The compression of hydrogen in an electrochemical cell based on a PE fuel cell design" JOURNAL OF POWER SOURCES, ELSEVIER SEQUOIA S.A. LAUSANNE, CH, vol. 105, no. 2, 20 March 2002 (2002-03-20), pages 208-215, XP004344342 ISSN: 0378-7753 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601207B2 (en) 2000-09-28 2009-10-13 Proton Energy Systems, Inc. Gas recovery system
US7955491B2 (en) 2004-09-14 2011-06-07 Honda Motor Co., Ltd. Methods, devices, and infrastructure systems for separating, removing, compressing, and generating hydrogen
JP4789946B2 (ja) * 2004-09-14 2011-10-12 本田技研工業株式会社 水素分離方法及び装置
WO2006031871A1 (fr) * 2004-09-14 2006-03-23 Honda Motor Co. , Ltd. Procede et dispositif pour separer l'hydrogene
US9017891B2 (en) 2009-02-16 2015-04-28 Hyet Holding B.V. Hydrogen fed power system and method for generating power
WO2010092175A1 (fr) * 2009-02-16 2010-08-19 Hyet Holding B.V. Cellule électrochimique à haute pression différentielle comprenant une membrane spécifique
WO2010093240A1 (fr) 2009-02-16 2010-08-19 Hyet Holding B.V. Système électrique fonctionnant à l'hydrogène et procédé de génération d'énergie
WO2014106699A1 (fr) * 2013-01-07 2014-07-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de production d'hydrogene purifie et dispositif permettant une telle production
FR3000738A1 (fr) * 2013-01-07 2014-07-11 Commissariat Energie Atomique Procede de production d'hydrogene purifie a partir d'hyrdrocarbures et dispositif permettant une telle production
WO2014207388A1 (fr) * 2013-06-26 2014-12-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de purification et de compression electrochimique de l'hydrogene a plusieurs etages
FR3007669A1 (fr) * 2013-06-26 2015-01-02 Commissariat Energie Atomique Dispositif de purification et de compression electrochimique de l'hydrogene a plusieurs etages
US9186624B2 (en) * 2013-06-28 2015-11-17 Nuvera Fuel Cells, Inc. Methods of producing and providing purified gas using an electrochemical cell
US9574275B2 (en) 2013-06-28 2017-02-21 Nuvera Fuel Cells, LLC Methods of producing and providing purified gas using an electrochemical cell
EP3550653A1 (fr) * 2013-08-28 2019-10-09 Nuvera Fuel Cells, LLC Compresseur électrochimique intégré, et procédé et système de stockage en cascade
JP2016536540A (ja) * 2013-08-28 2016-11-24 ヌヴェラ・フュエル・セルズ・インコーポレーテッド 統合された電気化学的圧縮機ならびにカスケード式の貯蔵方法およびシステム
WO2015031482A3 (fr) * 2013-08-28 2015-04-23 Nuvera Fuel Cells, Inc. Compresseur électrochimique intégré, et procédé et système de stockage en cascade
US10072342B2 (en) 2013-08-28 2018-09-11 Nuvera Fuel Cells, LLC Integrated electrochemical compressor and cascade storage method and system
AU2014312438B2 (en) * 2013-08-28 2018-09-13 Nuvera Fuel Cells, LLC Integrated electrochemical compressor and cascade storage method and system
EP3306725A1 (fr) * 2016-10-07 2018-04-11 Panasonic Intellectual Property Management Co., Ltd. Couche de diffusion de gaz et pompe à hydrogène électrochimique
WO2019193282A1 (fr) 2018-04-03 2019-10-10 Ergosup Procede et dispositif de compression electrochimique d'hydrogene gazeux
EP3641037A1 (fr) * 2018-10-18 2020-04-22 Panasonic Intellectual Property Management Co., Ltd. Pompe à hydrogène électrochimique
CN111082091A (zh) * 2018-10-18 2020-04-28 松下知识产权经营株式会社 电化学式氢泵
US11549187B2 (en) 2018-10-18 2023-01-10 Panasonic Intellectual Property Management Co., Ltd. Electrochemical hydrogen pump
CN111082091B (zh) * 2018-10-18 2024-02-02 松下知识产权经营株式会社 电化学式氢泵
JPWO2021149291A1 (fr) * 2020-01-24 2021-07-29
WO2021149291A1 (fr) * 2020-01-24 2021-07-29 パナソニックIpマネジメント株式会社 Appareil de production d'hydrogene

Also Published As

Publication number Publication date
US20040211679A1 (en) 2004-10-28
AU2003208221A1 (en) 2003-09-16
WO2003075379A3 (fr) 2003-11-27
AU2003208221A8 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
US20040211679A1 (en) Electrochemical hydrogen compressor
US6994929B2 (en) Electrochemical hydrogen compressor for electrochemical cell system and method for controlling
EP3031955B1 (fr) Dispositif d&#39;augmentation de pression de raffinage d&#39;hydrogène
US8282811B2 (en) Method and system for producing high-pressure hydrogen
US8900435B2 (en) Separating gas using ion exchange
US20090035631A1 (en) Electrochemical cell support structure
US20030062268A1 (en) Method and system for producing high-pressure hydrogen
US7951284B2 (en) Electrolysis apparatus, electrochemical reaction membrane apparatus, porous electrical conductor, and production method thereof
JP2019163521A (ja) 電気化学式水素ポンプ
CN113383112A (zh) 压缩装置
US20070026288A1 (en) Electrochemical cell with flow field member
US20050250003A1 (en) Electrochemical cell support structure
CN113383113A (zh) 压缩装置
US20050014037A1 (en) Fuel cell with recombination catalyst
US20210399319A1 (en) Compression apparatus
US11883779B2 (en) Method and system for electrochemically compressing gaseous hydrogen
US20210197120A1 (en) Compression apparatus
US20090181281A1 (en) Electrochemical cell bipolar plate
CN113383114A (zh) 压缩装置
CN214848714U (zh) 电化学式氢气处理系统
CN216947232U (zh) 分离供电式氢气富集提纯加压电化学氢泵系统
US20230227987A1 (en) Compression apparatus
EP4350053A1 (fr) Cellule électrochimique pour pompes à hydrogène et appareil de compression
US20070207368A1 (en) Method and apparatus for electrochemical flow field member
Saeed et al. Advanced Selectively Gas Permeable Anode Flow Field Design for Removal of Carbon Dioxide in a Direct Formic Acid Fuel Cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10478852

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP