WO2003069026A1 - Compositions pour le traitement d'alliages de magnesium. - Google Patents

Compositions pour le traitement d'alliages de magnesium. Download PDF

Info

Publication number
WO2003069026A1
WO2003069026A1 PCT/FR2003/000313 FR0300313W WO03069026A1 WO 2003069026 A1 WO2003069026 A1 WO 2003069026A1 FR 0300313 W FR0300313 W FR 0300313W WO 03069026 A1 WO03069026 A1 WO 03069026A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
composition
alloy
salt
niobium
Prior art date
Application number
PCT/FR2003/000313
Other languages
English (en)
Inventor
Hélène ARDELEAN
Philippe Marcus
Original Assignee
Universite Pierre Et Marie Curie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Pierre Et Marie Curie filed Critical Universite Pierre Et Marie Curie
Priority to AU2003222352A priority Critical patent/AU2003222352A1/en
Priority to EP03717367A priority patent/EP1474548A1/fr
Priority to CA002471498A priority patent/CA2471498A1/fr
Priority to US10/502,357 priority patent/US7094327B2/en
Publication of WO2003069026A1 publication Critical patent/WO2003069026A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Definitions

  • compositions for the treatment of magnesium alloys are provided.
  • the present invention relates to the treatment of magnesium alloys in order to improve their resistance to corrosion.
  • Magnesium alloys are of great interest because of their lightness.
  • the applications relate in particular to the transport industries (automobile and aeronautics), medical equipment and mobile telephony.
  • One of the weak points of these materials is their sensitivity to corrosion.
  • Corrosion protection can be obtained by depositing a coating or by treating the surface.
  • the protective layers can be produced either by chemical conversion, or by anodization in solutions containing metal salts and metalloids.
  • the inventors have found that, surprisingly, the use of an electrolyte containing a niobium salt in a method of treatment by anodization of a part made of magnesium alloy makes it possible to obtain on the surface of said part, a layer protective and adherent with very low porosity.
  • the present invention relates to a composition for the treatment of magnesium alloys by anodizing, a process for treating magnesium alloys using said composition, as well as the treated alloys obtained.
  • a composition according to the invention for the treatment of a magnesium alloy by anodization is an aqueous solution containing a niobium salt, hydrofluoric acid, and optionally a zirconium salt, the pH of which is maintained at a value between 7 and 10, preferably between 8 and 9.5.
  • the niobium salt can be chosen from oxides and fluorides. Niobium pentoxide is particularly preferred.
  • the treatment composition is supersaturated with niobium pentoxide, corresponding to a concentration of 0.04 mol / l.
  • Niobium pentoxide forms with hydrofluoric acid, fluoroniobate complexes
  • compositions containing a zirconium salt are preferred.
  • the zirconium salt can be chosen from oxides and fluorides. ZrF 4 is particularly preferred.
  • the pH of the solution is controlled by the addition of compounds such as NH 4 0H or an amine (for example hexamethylenetetramine or hexamethylenediamine).
  • compounds such as NH 4 0H or an amine (for example hexamethylenetetramine or hexamethylenediamine).
  • a treatment composition according to the invention may also contain other constituents, in particular other oxidants such as phosphoric acid and boric acid.
  • a composition according to the invention for the treatment of a magnesium alloy contains:
  • a composition according to the invention for the treatment of a magnesium alloy part can be obtained by dissolving the niobium salt with stirring in a solution containing hydrofluoric acid, then successively adding the zirconium salt, the acid phosphoric, then boric acid in the form of an aqueous solution, then the compounds intended to adjust the pH, the various stages being carried out with stirring for a sufficient time to obtain the dissolution of the added compounds.
  • a composition according to the invention can be obtained by a multistage process in which: the niobium pentoxide is dissolved in an aqueous solution of hydrofluoric acid under hot conditions (for example at 50 ° C.) and with stirring for one ten hours the zirconium salt is added and the mixture is left under stirring until the salts are dissolved, phosphoric acid is introduced - boric acid is introduced in the form of an aqueous solution, the pH is adjusted to a value between 8.5 and 9 by addition of a 28% aqueous ammonia solution or an amine such as hexamethylenetetramine or hexamethylenediamine.
  • the process for treating a magnesium alloy according to the invention consists in subjecting said alloy to electrolysis in an electrochemical cell in which it functions as anode (+), characterized in that: the electrochemical cell contains as composition an electrolyte the invention at a temperature between 20 ° C and 40 ° C, an initial voltage is applied to the cell sufficient to create a current density between 1.5 and 2.5 A / dm 2 , then the voltage is gradually increased to a value between 240 and 330 V to maintain the initial current density.
  • the duration of the electrolysis is 5 to 30 min, preferably 15 to 25 min.
  • a direct current source connected in series to an alternating current source, so that the ratio of alternating current / continuous current is about 0.15 to 0.30 .
  • This preliminary treatment may for example consist of a mechanical cleaning using abrasive discs such as SiC discs, followed by degreasing in a hot phosphate and carbonate solution, and pickling in a dilute solution phosphoric acid and hydrofluoric acid or degreasing and pickling.
  • a piece of magnesium alloy, treated according to the process of the present invention has on its surface a hard adherent layer, containing oxides of Zr, Mg and Nb, as well as fluorides of Mg, Zr, phosphates and borates .
  • the porosity of such a layer is significantly lower than the porosity of the layers obtained by the electrolytic treatment methods of the prior art.
  • the low residual porosity can be further reduced by an additional treatment, called clogging.
  • the treatment may consist of an alternation of steps of immersion in a bath and of stay in air, followed by annealing at 75 ° - 150 ° C under oxygen for a few hours.
  • an acidic aqueous solution containing niobium pentoxide, a water-soluble cerium salt and a zirconium salt more particularly a composition which has a pH of between 2, 4 and 6 and which contains from 0.02 to 0.05 mol / 1 of niobium pentoxide, from 1 to 2.5 ml / 1 of hydrofluoric acid, at most 0.1 mole / 1 of zirconium salt, from 0.03 to 0.1 mole / 1 of water-soluble cerium salt.
  • a preferred composition for the sealing bath is as follows: - HF (at 48%) 2.3 ml / 1, - Nb 2 0 5 0.04 mol / 1,
  • the clogging can also be carried out in a Na 2 Si0 3 solution under hot conditions, or with an epoxy / polyamide varnish (sold for example under the name Freitapox®), or with an epoxy / polyamide paint (sold for example under the name Vigor EP ®).
  • the layers thus obtained can serve as a final protective layer or support for a paint.
  • the parts of magnesium alloy treated according to the process of the invention have, compared to an untreated part, an improved resistance to corrosion.
  • the samples were subjected to voltamperometry in an aggressive medium (for example in a 0.5 mol / l solution of Na 2 S0 4 under polarization).
  • the curves representing the variation of the current. as a function of the potential in corrosive medium show a shift in the corrosion potential towards more positive values and a significant reduction in the corrosion and anodic dissolution currents, compared to the untreated alloy.
  • the AZ91D magnesium alloy was treated using the composition obtained above.
  • the AZ91D alloy is a magnesium alloy containing 9% aluminum and 1% zinc.
  • the part to be treated was placed in an electrolysis cell containing the above composition and it was connected to the anode (+).
  • the cathode is made of stainless steel.
  • An increasing potential was then applied between the anode and the cathode up to a value between 240 and 330 V so as to maintain the current density at a value between 1.4 and 2 A / dm 2 .
  • the current is a direct current to which an alternating current is superimposed.
  • the voltage is maintained for a period of 20 min.
  • the treatment solution is stirred and the temperature is maintained in the range 20-40 ° C by cooling.
  • the layer obtained on the surface of the treated part is dense, homogeneous and slightly porous.
  • XPS analysis shows the presence of Zr0 2 , MgF 2 , MgO, Nb 2 0 5 and NbO x F y , phosphates and borates of Mg.
  • the layer has good adhesion to the alloy substrate.
  • the treated alloy part was subjected to voltamperometry and impedance spectroscopy measurements in an aqueous solution containing 0.5 mol / liter of Na 2 S0 4 under polarization.
  • the same measurements were made for the untreated AZ91D alloy, and for the AZ91D alloy treated according to the method of US4,978,432 mentioned previously.
  • the curves obtained show that, for the alloy treated according to the invention, the corrosion and anodic dissolution currents are reduced compared to the untreated alloy and relative to the alloy treated according to the prior art.
  • Example 2 An AZ91D magnesium alloy identical to that used in Example 1 was treated under the conditions described in Example 1, using the above composition, then the treated part was annealed at 150 ° C. Analysis of the coating obtained
  • the layer obtained on the surface of the treated part is dense, homogeneous and slightly porous.
  • XPS analysis shows the presence of MgF 2 , MgO, Nb 2 0 5 and NbO x F y , phosphates and borates.
  • the layer has good adhesion to the alloy substrate.
  • the treated alloy part was subjected to voltamperometry and impedance spectroscopy measurements in an aqueous solution containing 0.5 mol / liter of Na 2 S0 4 under polarization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

L'invention concerne une composition pour le traitement d'alliages de magnésium en vue d'améliorer leur résistance à la corrosion. La composition est une solution aqueuse dont le pH est maintenu à une valeur entre 7 et 10 et qui contient unsel de niobium, de l'acide fluorhydrique, et éventuellement un sel de zirconium, de l'acide phosphorique et de l'acide borique. L'alliage est traité dans une cellule électrochimique dans laquelle il fonctionne comme anode. La cellule contient comme électrolyte une composition selon l'invention à une température entre 20°C et 40°C. On applique à la cellule une tension initiale suffisante pour créer une densité de courant entre 1,5 et 2,5 A/dm2, puis on augmente la tension progressivement jusqu'à une valeur entre 240 et 330 V pour maintenir la densité de courant initiale.

Description

Compositions pour le traitement d'alliages de magnésium
La présente invention concerne le traitement d'alliages de magnésium en vue d'améliorer leur résistance à la corrosion.
Les alliages de magnésium présentent un grand intérêt du fait de leur légèreté. Les applications concernent notamment les industries du transport (automobile et aéronautique) , le matériel médical et la téléphonie mobile. Un des points faibles de ces matériaux est leur sensibilité à la corrosion. La protection contre la corrosion peut être obtenue par dépôt d'un revêtement ou par traitement de la surface. Les couches protectrices peuvent être réalisées soit par conversion chimique, soit par anodisation dans des solutions contenant des sels de métaux et des métalloïdes.
Les traitements d' anodisation ont été effectués dans des cellules électrochimiques dont 1 ' electrolyte contient un peroxyde ou un oxydant puissant tel qu'un chromate, un vanadate ou un permanganate. Un inconvénient de l'utilisation des ces électrolytes réside dans la présence d'ions de métaux de transition parmi lesquels certains se présentent sous forme d'espèces toxiques, par exemple Cr6+. D'autres électrolytes ne contenant pas de métaux de transition ont été proposés. Ainsi, US-4,978,432 décrit 1 ' anodisation de pièces en alliage de magnésium à l'aide d'un electrolyte contenant des anions borate et/ou sulfate introduits sous forme d'acide. La couche protectrice qui se forme à la surface de la pièce d'alliage de magnésium présente cependant une porosité élevée, qui nuit à l'efficacité de la protection.
Les inventeurs ont trouvé que, de manière surprenante, l'utilisation d'un electrolyte contenant un sel de niobium dans un procédé de traitement par anodisation d'une pièce en alliage de magnésium permettait d'obtenir à la surface de ladite pièce, une couche protectrice et adhérente ayant une porosité très faible.
C'est pourquoi la présente invention a pour objet une composition pour le traitement d'alliages de magnésium par anodisation, un procédé de traitement des alliages de magnésium à l'aide de ladite composition, ainsi que les alliages traités obtenus.
Une composition selon l'invention pour le traitement d'un alliage de magnésium par anodisation est une solution aqueuse contenant un sel de niobium, de l'acide fluorhydrique, et éventuellement un sel de zirconium, dont le pH est maintenu à une valeur entre 7 et 10, de préférence entre 8 et 9,5. Le sel de niobium peut être choisi parmi les oxydes et les fluorures. Le pentoxyde de niobium est particulièrement préféré .
Il est préférable que la composition de traitement soit sursaturée en pentoxyde de niobium, correspondant à une concentration de 0,04 mole/1. Le pentoxyde de niobium forme avec l'acide fluorhydrique, des complexes fluoroniobate
(fluoroniobyle) qui décomposent l'eau avec dégagement d'hydrogène en s 'oxydant sur les sites cathodiques en surface. Les ions de magnésium formés sur les sites anodiques réagissent avec les complexes de niobium ou d'autres espèces intermédiaires pour former, sur la surface de l'alliage de magnésium, des mélanges d'oxydes (hydratés) de niobium
(insolubles), d'oxydes de magnésium, éventuellement d'oxydes d'aluminium et d'autres espèces. Les compositions contenant un sel de zirconium sont préférées. Le sel de zirconium peut être choisi parmi les oxydes et les fluorures. ZrF4 est particulièrement préféré.
Le pH de la solution est contrôlé par addition de composés tels que NH40H ou une aminé (par exemple l'hexaméthylènetétramine ou 1 'hexaméthylènediamine) .
Une composition de traitement selon l'invention peut contenir en outre d'autres constituants, notamment d'autres oxydants tels que l'acide phosphorique et l'acide borique.
Dans un mode de réalisation particulier, une composition selon l'invention pour le traitement d'un alliage de magnésium contient :
• de 0,01 à 0,04 mole/1 de pentoxyde de niobium,
• de 20 à 50 ml/1 d'acide fluorhydrique, • jusqu'à 0,04 mole/1 de fluorure de zirconium,
• de 50 à 70 g/1 de H3P04,
• de 30 à 70 g/1 de H3B04.
• la quantité requise d'une solution aqueuse d'ammoniac (NH3) à 28 % pour ajuster le pH à une valeur entre 7 et
10, de préférence entre 8,5 et 9.
Une composition selon l'invention pour le traitement d'une pièce en alliage de magnésium peut être obtenue en dissolvant sous agitation le sel de niobium dans une solution contenant de l'acide fluorhydrique, puis en ajoutant successivement le sel de zirconium, l'acide phosphorique, puis l'acide borique sous forme d'une solution aqueuse, puis les composés destinés à ajuster le pH, les différentes étapes étant effectuées sous agitation pendant une durée suffisante pour obtenir la dissolution des composés ajoutés.
Plus particulièrement, une composition selon l'invention peut être obtenue par un procédé en plusieurs étapes dans lequel : on dissout le pentoxyde de niobium dans une solution aqueuse d'acide fluorhydrique à chaud (par exemple à 50 °C) et sous agitation pendant une dizaine d'heures on ajoute le sel de zirconium et on laisse sous agitation jusqu'à la dissolution des sels on introduit 1 ' acide phosphorique - on introduit l'acide borique sous forme d'une solution aqueuse on ajuste le pH à une valeur entre 8,5 et 9 par addition d'une solution aqueuse d'ammoniac 28 % ou d'une aminé telle que 1 ' hexaméthylènetétramine ou 1 ' hexaméthylènediamine . Le procédé de traitement d'un alliage de magnésium selon l'invention consiste à soumettre ledit alliage à une électrolyse dans une cellule électrochimique dans laquelle il fonctionne comme anode (+) , caractérisé en ce que : la cellule électrochimique contient comme electrolyte une composition selon l'invention à une température entre 20°C et 40°C, on applique à la cellule une tension initiale suffisante pour créer une densité de courant entre 1,5 et 2,5 A/dm2, puis on augmente la tension progressivement jusqu'à une valeur entre 240 et 330 V pour maintenir la densité de courant initiale.
La durée de 1 ' électrolyse est de 5 à 30 min, de préférence de 15 à 25 min.
On utilise de préférence pour l'alimentation électrique de la cellule électrochimique, une source de courant continu reliée en série à une source de courant alternatif, de manière que le rapport Icourant alternatif /Icourant continu soit d'environ 0,15 à 0,30.
Il est souhaitable de soumettre la pièce à protéger à un traitement préliminaire de nettoyage de la surface, avant de l'introduire dans la cellule d' électrolyse . Ce traitement préliminaire peut par exemple consister en un nettoyage mécanique à l'aide de disques abrasifs tels que des disques de SiC, suivi d'un dégraissage dans une solution de phosphate et de carbonate à chaud, et d'un décapage dans une solution diluée d'acide phosphorique et d'acide fluorhydrique ou d'un dégraissage et d'un décapage. Une pièce d'alliage de magnésium, traitée selon le procédé de la présente invention, comporte à sa surface une couche dure adhérente, contenant des oxydes de Zr, Mg et Nb, ainsi que des fluorures de Mg, Zr, des phosphates et des borates . La porosité d'une telle couche est nettement plus faible que la porosité des couches obtenues par les procédés de traitement électrolytique de l'art antérieur. La faible porosité résiduelle peut être diminuée davantage par un traitement complémentaire, dit de colmatage. Le traitement peut consister en une alternance d'étapes d'immersion dans un bain et de séjour à l'air, suivies d'un recuit à 75°- 150°C sous oxygène pendant quelques heures. Il est avantageux d'utiliser, pour le bain de colmatage, une solution aqueuse acide contenant du pentoxyde de niobium, un sel de cérium soluble dans l'eau et un sel de zirconium, plus particulièrement une composition qui a un pH compris entre 2,4 et 6 et qui contient de 0,02 à 0,05 mole/1 de pentoxyde de niobium, de 1 à 2,5 ml/1 d'acide fluorhydrique, au plus 0,1 mole/1 de sel de zirconium, de 0,03 à 0,1 mole/1 de sel de cérium soluble dans l'eau. Une composition préférée pour le bain de colmatage est la suivante : - HF (à 48 %) 2,3 ml/1, - Nb205 0,04 mole/1,
ZrO(N03) ,2H20 0,068 mole/1, Ce(N03)3 βH0 0,068 mole/1, NH4F (97 %) ~ 0,3 mole/1.
Le colmatage peut être effectué également dans une solution de Na2Si03 à chaud, ou avec un vernis époxy/ polyamide (commercialisé par exemple sous la dénomination Freitapox®) , ou avec une peinture époxy/polyamide (commercialisée par exemple sous la dénomination Vigor EP ®) .
Les couches ainsi obtenues peuvent servir de couche de protection finale ou de support pour une peinture.
Les pièces d'alliage de magnésium traitées selon le procédé de l'invention présentent, par rapport à une pièce non traitée, une résistance à la corrosion améliorée. Pour vérifier l'amélioration de la résistance à la corrosion, les échantillons ont été soumis à la voltamperometrie dans un milieu agressif (par exemple dans une solution à 0,5 mole/1 de Na2S04 sous polarisation) . Les courbes représentant la variation du courant . en fonction du potentiel en milieu corrosif montrent un déplacement du potentiel de corrosion vers les valeurs plus positives et une diminution importante des courants de corrosion et de dissolution anodique, par rapport à l'alliage non traité.
La présente invention est décrite plus en détail à l'aide des exemples suivants, auxquels elle n'est cependant pas limitée.
Exemple 1
Préparation d'une composition de traitement
On a introduit dans environ 150 ml d'eau, 34 ml de HF à
48%, puis on a ajouté à chaud 0,025 mole de Nb205 et on a soumis le mélange à agitation pendant environ 10 heures pour dissoudre Nb205. Ensuite, on a ajouté 0,03 mole de ZrF4 sous agitation à chaud, et l'agitation a été maintenue pendant environ 24 heures pour dissoudre totalement ZrF4. Après dissolution complète de ZrF4, on a ajouté 60 g de H3P04, puis 70 g de H3B04 préalablement dissout dans l'eau. Le pH a été ajusté à une valeur de 8,5-9 par addition d'une solution aqueuse d'ammoniac 28 % et on a ajouté la quantité d'eau nécessaire pour obtenir 1 litre de solution.
Traitement d'un alliage
On a traité un alliage de magnésium AZ91D à l'aide de la composition obtenue ci-dessus. L'alliage AZ91D est un alliage de magnésium contenant 9% d'aluminium et 1% de zinc.
La pièce à traiter a été placée dans une cellule d' électrolyse contenant la composition ci-dessus et elle a été reliée à l' anode (+). La cathode est en acier inoxydable. On a ensuite appliqué entre l'anode et la cathode un potentiel croissant jusqu'à une valeur entre 240 et 330 V de manière à maintenir la densité de courant à une valeur entre 1,4 et 2 A/dm2. Le courant est un courant continu auquel on superpose un courant alternatif. La tension est maintenue pendant une durée de 20 min. Durant 1 ' anodisation, on agite la solution de traitement et on maintient la température dans le domaine 20-40 °C par refroidissement.
Analyse du revêtement obtenu
La couche obtenue à la surface de la pièce traité est dense, homogène et faiblement poreuse. L'analyse XPS montre la présence de Zr02, MgF2, MgO, Nb205 et NbOxFy, des phosphates et des borates de Mg. La couche présente une bonne adhérence au substrat d'alliage.
Analyse des performances
La pièce d'alliage traitée a été soumise à des mesures par voltamperometrie et par spectroscopie d'impédance dans une solution aqueuse à 0,5 mole/litre de Na2S04 sous polarisation. A titre de comparaison, on a effectué les mêmes mesures pour l'alliage AZ91D non traité, et pour l'alliage AZ91D traité selon le procédé de US4,978,432 évoqué précédemment. Les courbes obtenues montrent que, pour l'alliage traité selon l'invention, les courants de corrosion et de dissolution anodique sont diminués par rapport à l'alliage non traité et par rapport à l'alliage traité selon l'art antérieur. Ces résultats sont confirmés par la spectroscopie d'impédance.
Exemple 2 Préparation d'une composition de traitement
On a introduit dans environ 150 ml d'eau, 34 ml de HF à 48%, puis on a ajouté à chaud 0,035 mole de Nb205 et on a soumis le mélange à l'agitation magnétique pendant environ 10 heures pour dissoudre Nb20s. Ensuite, on a ajouté 58 g de H3PO4, puis 70 g de H3BO4 préalablement dissout dans l'eau. Le pH a été ajusté à une valeur de 8,5-9 à l'aide d'une solution aqueuse d'ammoniac 28 % et le volume total de la solution a été porté à 1 litre par addition de la quantité appropriée d' eau. Traitement d'un alliage
On a traité un alliage de magnésium AZ91D identique à celui utilisé dans l'exemple 1 dans les conditions décrites dans l'exemple 1, à l'aide de la composition ci-dessus, puis on a soumis la pièces traitée à un recuit à 150°C. Analyse du revêtement obtenu
La couche obtenue à la surface de la pièce traité est dense, homogène et faiblement poreuse. L'analyse XPS montre la présence de MgF2, MgO, Nb205 et NbOxFy, des phosphates et des borates . La couche présente une bonne adhérence au substrat d'alliage.
Analyse des performances
La pièce d'alliage traitée a été soumise à des mesures par voltamperometrie et par spectroscopie d'impédance dans une solution aqueuse à 0,5 mole/litre de Na2S04 sous polarisation.
A titre de comparaison, on a effectué les mêmes mesures pour la pièce traitée selon l'exemple 2 puis soumise à un recuit à 150 °C, pour le même alliage traité selon le procédé de US4,978,432 et soumis à un recuit. Les courbes montrent que, pour l'alliage traité selon l'invention, les courants de corrosion sont diminués par rapport à l'alliage traité selon le procédé de US-4, 978 , 432. Ces résultats sont confirmés par la spectroscopie d'impédance.

Claims

Revendications
1. Composition pour le traitement d'un alliage de magnésium par anodisation, caractérisée en ce qu'elle est constituée par une solution aqueuse contenant un sel de niobium et de l'acide fluorhydrique, dont le pH est maintenu à une valeur entre 7 et 10.
2. Composition selon la revendication 1, caractérisée en ce que le sel de niobium est choisi parmi les oxydes et les fluorures.
3. Composition selon la revendication 1, caractérisée en ce que le sel de niobium est le pentoxyde de niobium.
4. Composition selon la revendication 1, caractérisé en ce qu'elle contient un sel de zirconium.
5. Composition selon la revendication 4, caractérisée en ce que le sel de zirconium est choisi parmi les oxydes et les fluorures.
6. Composition selon la revendication 4, caractérisée en ce que le sel de zirconium est ZrF4.
7. Composition selon la revendication 1, caractérisée en ce que le pH est entre 8 et 9,5.
8. Composition selon la revendication 1, caractérisée en ce qu'elle contient de l'acide phosphorique et/ou de 1 ' acide borique .
9. Composition selon la revendication 3, caractérisée en ce qu'elle est sursaturée en pentoxyde de niobium.
10. Composition selon la revendication 1, caractérisée en ce qu'elle contient en outre NH4OH ou une aminé pour la correction du pH.
11. Composition selon la revendication 1, caractérisée en ce qu'elle contient : de 0,01 à 0,04 mole/1 de pentoxyde de niobium, de 20 à 50 ml/1 d'acide fluorhydrique, jusqu'à 0,04 mole/1 de fluorure de zirconium, de 50 à 70 g/1 de H3P04, • de 30 à 70 g/1 de H3B04.
• la quantité requise d'une solution aqueuse d'ammoniac à 2î % pour ajuster le pH à une valeur entre 7 et 10.
12. Procédé de traitement d'un alliage de magnésium consistant à soumettre ledit alliage à une électrolyse dans une cellule électrochimique dans laquelle il fonctionne comme anode (+) , caractérisé en ce que : - la cellule électrochimique contient comme electrolyte une composition selon l'invention à une température entre 20°C et 40°C, on applique à la cellule une tension initiale suffisante pour créer une densité de courant entre 1,5 et 2,5 A/dm2, puis on augmente la tension progressivement jusqu'à une valeur entre 240 et 330 V pour maintenir la densité de courant initiale.
13. Procédé selon la revendication 12, caractérisé en ce que on utilise pour l'alimentation électrique de la cellu- le électrochimique, une source de courant continu reliée en série à une source de courant alternatif, de manière que le rapport Icourant alternatif/ Icourant continu Sθit d ' en iron 0 , 15 à 0 , 30 .
14. Procédé selon la revendication 12, caractérisé en ce que la durée de 1 ' électrolyse est de 5 à 30 min.
15. Procédé selon la revendication 12, caractérisé en ce qu'au cours d'une étape préliminaire, on soumet la pièce d'alliage à traiter à un nettoyage de la surface.
16. Procédé selon la revendication 15, caractérisé en ce que le nettoyage est un nettoyage mécanique à l'aide de disques abrasifs, suivi d'un dégraissage dans une solution de phosphate et de carbonate à chaud, et d'un décapage dans une solution diluée d'acide phosphorique et d'acide fluor- hydrique, ou un dégraissage suivi d'un décapage.
17. Procécé selon la revendication 12, caractérisé en ce que 1 ' électrolyse est suivie d'un traitement de colmatage.
18. Procédé selon la revendication 17, caractérisé en ce que le traitement de colmatage consiste en une alternance d'étapes d'immersion dans un bain et de séjour à l'air, suivies d'un recuit à 75° - 150 °C sous oxygène pendant quelques heures.
19. Procédé selon la revendication 18, caractérisé en ce que le colmatage est effectuée à l'aide d'une solution aqueuse acide contenant du pentoxyde de niobium, du nitrate de cérium et du nitrate de zirconyle, ou d'une solution aqueuse de Na2Si0 à chaud, ou d'un vernis époxy/polyamide, ou d'une peinture époxy/amine.
PCT/FR2003/000313 2002-02-13 2003-01-31 Compositions pour le traitement d'alliages de magnesium. WO2003069026A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003222352A AU2003222352A1 (en) 2002-02-13 2003-01-31 Compositions for the treatment of magnesium alloys
EP03717367A EP1474548A1 (fr) 2002-02-13 2003-01-31 Compositions pour le traitement d alliages de magnesium.
CA002471498A CA2471498A1 (fr) 2002-02-13 2003-01-31 Compositions pour le traitement d'alliages de magnesium.
US10/502,357 US7094327B2 (en) 2002-02-13 2003-01-31 Compositions for the treatment of magnesium alloys

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0201772A FR2835851B1 (fr) 2002-02-13 2002-02-13 Composition pour le traitement d'alliages de magnesium
FR02/01772 2002-02-13

Publications (1)

Publication Number Publication Date
WO2003069026A1 true WO2003069026A1 (fr) 2003-08-21

Family

ID=27620160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000313 WO2003069026A1 (fr) 2002-02-13 2003-01-31 Compositions pour le traitement d'alliages de magnesium.

Country Status (6)

Country Link
US (1) US7094327B2 (fr)
EP (1) EP1474548A1 (fr)
AU (1) AU2003222352A1 (fr)
CA (1) CA2471498A1 (fr)
FR (1) FR2835851B1 (fr)
WO (1) WO2003069026A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2003218A1 (fr) 2007-06-12 2008-12-17 Yamaha Hatsudoki Kabushiki Kaisha Élément d'alliage de magnésium anodisé, son procédé de production, et transporteur le comportant
CN101705513B (zh) * 2009-11-04 2011-04-20 哈尔滨工业大学(威海) 一种镁合金微弧氧化复合添加剂
WO2013169130A1 (fr) 2012-05-09 2013-11-14 Instituto Superior Tecnico Revêtements hybrides pour une protection améliorée contre la corrosion d'alliages de magnésium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825378B1 (fr) * 2001-05-31 2003-11-28 Univ Paris Curie Composition et procede pour le traitement d'alliages de magnesium
DE10342426A1 (de) * 2003-09-13 2005-04-07 Daimlerchrysler Ag Verfahren zum Korrosionsschutz von Magnesium-Legierungen mittels Inhibitoren im Anodisationsverfahren
US20090278396A1 (en) * 2008-05-12 2009-11-12 Gm Global Technology Operations, Inc. Corrosion isolation of magnesium components
DE102008043970A1 (de) * 2008-11-21 2010-05-27 Biotronik Vi Patent Ag Verfahren zur Herstellung einer korrosionshemmenden Beschichtung auf einem Implantat aus einer biokorrodierbaren Magnesiumlegierung sowie nach dem Verfahren hergestelltes Implantat
TWI477651B (zh) * 2011-01-04 2015-03-21 Hon Hai Prec Ind Co Ltd 鎂合金表面防腐處理方法及其鎂製品
CN103668388B (zh) * 2013-12-27 2016-04-06 浙江苏泊尔股份有限公司 一种耐碱性封闭液和硬质阳极氧化膜的封闭方法
CN104313664B (zh) * 2014-09-30 2017-05-17 扬州大学 一种稀土镁合金制品表面处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031027A (en) * 1975-08-25 1977-06-21 Joseph W. Aidlin Chemical surface coating bath
US4978432A (en) * 1988-03-15 1990-12-18 Electro Chemical Engineering Gmbh Method of producing protective coatings that are resistant to corrosion and wear on magnesium and magnesium alloys

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313333A (ja) * 1988-06-13 1989-12-18 Central Glass Co Ltd 高純度水酸化ニオブまたは水酸化タンタルの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031027A (en) * 1975-08-25 1977-06-21 Joseph W. Aidlin Chemical surface coating bath
US4978432A (en) * 1988-03-15 1990-12-18 Electro Chemical Engineering Gmbh Method of producing protective coatings that are resistant to corrosion and wear on magnesium and magnesium alloys

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2003218A1 (fr) 2007-06-12 2008-12-17 Yamaha Hatsudoki Kabushiki Kaisha Élément d'alliage de magnésium anodisé, son procédé de production, et transporteur le comportant
CN101705513B (zh) * 2009-11-04 2011-04-20 哈尔滨工业大学(威海) 一种镁合金微弧氧化复合添加剂
WO2013169130A1 (fr) 2012-05-09 2013-11-14 Instituto Superior Tecnico Revêtements hybrides pour une protection améliorée contre la corrosion d'alliages de magnésium

Also Published As

Publication number Publication date
US20050072685A1 (en) 2005-04-07
US7094327B2 (en) 2006-08-22
CA2471498A1 (fr) 2003-08-21
FR2835851B1 (fr) 2004-04-23
AU2003222352A1 (en) 2003-09-04
FR2835851A1 (fr) 2003-08-15
EP1474548A1 (fr) 2004-11-10

Similar Documents

Publication Publication Date Title
EP2812462B1 (fr) Procédé de traitement de surface de pièces en alliage d'aluminium ou de magnesium
KR101195458B1 (ko) 금속의 표면처리 방법
US7384901B2 (en) Process for cleaning aluminum and aluminum alloy surfaces with nitric acid and chromic acid-free compositions
KR100397049B1 (ko) 강선에 인산염 피막을 형성하기 위한 방법 및 그 장치
WO2003069026A1 (fr) Compositions pour le traitement d'alliages de magnesium.
EP3467154B1 (fr) Tôle d'acier plaquée sn
US4363708A (en) Process for exposing silicon crystals on the surface of a component of an aluminum alloy of high silicon content
US20030127338A1 (en) Process for brightening aluminum, and use of same
EP1390565B1 (fr) Composition et procede pour le traitement d'alliages de magnesium
RU2096534C1 (ru) Способ получения оптически черных защитных покрытий на вентильных металлах
JP6123116B2 (ja) マグネシウム合金製品の製造方法
FR2559164A1 (fr) Procede pour le traitement de la surface d'une feuille d'aluminium destinee a etre utilisee comme electrode dans des condensateurs electrolytiques
JPH07207467A (ja) アルミニウム合金の表面処理方法
KR101907204B1 (ko) 피처리물의 아노다이징 방법
WO2020079358A1 (fr) Procédé de traitement de surface de pièces en aluminium
JP3916222B2 (ja) マグネシウム合金の表面処理法
CN100381615C (zh) 镁合金表面绿色氧化膜层两步着色方法
US20240133073A1 (en) A process to protect light metal substrates
Bestetti et al. Effect of electrolyte composition on micro-arc anodization of AM60B magnesium alloy
KR20230079724A (ko) 배리어 타입 알루미늄 모재 표면 처리 방법
CN115679430A (zh) 钛铝复合件退膜处理剂及钛铝复合件表面微孔处理方法
HU204230B (en) Process for producing homogenous oxide layer on the surface of products from aluminium and it's alloys
UA5672U (uk) Спосіб нікелювання алюмінієвих сплавів

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2471498

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003717367

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10502357

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003717367

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP