WO2003068837A1 - Resines indole, resines epoxy et compositions de resines contenant ces composes - Google Patents

Resines indole, resines epoxy et compositions de resines contenant ces composes Download PDF

Info

Publication number
WO2003068837A1
WO2003068837A1 PCT/JP2003/001380 JP0301380W WO03068837A1 WO 2003068837 A1 WO2003068837 A1 WO 2003068837A1 JP 0301380 W JP0301380 W JP 0301380W WO 03068837 A1 WO03068837 A1 WO 03068837A1
Authority
WO
WIPO (PCT)
Prior art keywords
indole
group
resin
epoxy resin
general formula
Prior art date
Application number
PCT/JP2003/001380
Other languages
English (en)
French (fr)
Inventor
Masashi Kaji
Takashi Yamada
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to DE60320947T priority Critical patent/DE60320947D1/de
Priority to AU2003207209A priority patent/AU2003207209A1/en
Priority to EP03703300A priority patent/EP1475398B1/en
Priority to KR10-2004-7012478A priority patent/KR20040095219A/ko
Priority to US10/504,272 priority patent/US7259213B2/en
Priority to JP2003567961A priority patent/JPWO2003068837A1/ja
Publication of WO2003068837A1 publication Critical patent/WO2003068837A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/506Amines heterocyclic containing only nitrogen as a heteroatom having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention relates to an indole resin useful as an epoxy resin intermediate, a curing agent, and the like.
  • the present invention also relates to an epoxy resin and an epoxy resin composition derived from an indole resin, and a cured product thereof.
  • Epoxy resins have been used in a wide variety of industrial applications, but their required performance has been increasingly sophisticated in recent years.
  • semiconductor encapsulants are a typical field of resins and compositions containing epoxy resin as the main component. With the improvement in the degree of integration of semiconductor elements, the package size is going to be larger and thinner, and mounting As for the method, the shift to surface mounting is progressing, and the development of materials with excellent solder heat resistance is desired.
  • sealing material in addition to low moisture absorption, improvement in adhesiveness / adhesion at the interface between different materials such as lead frames and chips is strongly demanded.
  • circuit board materials in addition to improving solder heat resistance, it is desirable to develop materials that have low hygroscopicity, high heat resistance, and high adhesion, and low dielectric constant from the viewpoint of reducing dielectric loss. ing.
  • epoxy resins with various new structures are being studied from the side of the main epoxy resin. At the same time, studies are being made on curing agents.
  • a method of adding a phosphate ester flame retardant is known.
  • the method using a phosphoric ester-based flame retardant does not have sufficient moisture resistance.
  • phosphoric acid ester is hydrolyzed, and there is a problem that the reliability as an insulating material is reduced.
  • An object of the present invention is to provide an indole resin useful as an intermediate of an epoxy resin. Another object is to provide an indole resin useful as a curing agent for an epoxy resin composition. The other purpose is to use this indole resin and to provide a cured product with excellent moldability and low moisture absorption, heat resistance, adhesion and flame retardancy, etc.
  • the object of the present invention is to provide excellent flame retardancy as well as excellent properties such as moisture resistance, heat resistance, and adhesion to a metal substrate, and are used for lamination, molding, casting, bonding, and the like.
  • the invention is to provide a useful epoxy resins and a manufacturing method thereof (another object is to provide a curing agent and an epoxy resin composition and a cured product using the epoxy resin.
  • the present invention has the following It is an indole resin represented by the general formula I. Is an epoxy resin represented by the following general formula II.
  • X represents a crosslinking group represented by the following general formula (a) or (b), and n represents an integer of 1 to 20.
  • R 2 and R 3 represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms
  • R 4 and R 5 represent a hydrogen atom or a methyl group
  • m represents 1 or 2
  • In the general formula I represents a hydrogen atom, a hydroxyl group, a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a halogen atom.
  • In the general formula II represents a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a glycidyloxy group or a halogen atom, and G represents Indicates a glycidyl group.
  • the present invention is the above-mentioned method for producing an epoxy resin, wherein the indole resin is reacted with epichlorohydrin in the presence of an alkali metal hydroxide.
  • the indole resin of the present invention is represented by the above general formula I
  • the epoxy resin of the present invention is represented by the above general formula II.
  • This epoxy resin is obtained by epoxidizing this indole resin with epichlorohydrin.
  • X and n have a common meaning.
  • n may change slightly due to side reactions and the like.
  • R in the general formula I is an OH group, it is a glycidyl ether group in the general formula II, but in other general groups, R! Have a common meaning.
  • X is a bridging group connecting the indole ring, and is represented by the above general formula (a) or (b).
  • R 2 and R 3 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • the hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, an amyl group and a phenyl group.
  • Preferred examples of the crosslinking group of the general formula (a) include a group represented by —CH (R 2 ) — (where R 2 is H or a hydrocarbon group having 1 to 6 carbon atoms). Specifically, there are a methylene group, an ethylidene group, an isopropylidene group, and a phenylmethylene group.
  • R 4 and R 5 independently represent a hydrogen atom or a methyl group, and m is an integer of 1 or 2.
  • Preferred crosslinks of general formula (b) Examples of the group include a P-xylylene group, an m-xylylene group, a 1,4-bisethylidenephenylene group, a 1,3-bisethylidenephenylene group, and a 1,4-bisisopropylidenephenylene group.
  • Dylene group 1,3-bisisopropylidenephenylene group, 4,4'-Bismethylenebiphenyl group, 3,4'-Bismethylenebiphenyl group, 3,3'-Bismethylenebiphenyl group , 4,4'-bisethylidenebiphenyl group, 3,4'-bisethylidenebiphenyl group, 3,3'-bisethylidenebiphenyl group, 4,4'-bisisopropylidenebiphenyl group, A 3,4′-bisisopropylidenebiphenyl group and a 3,3′-bisisopropylidenebiphenyl group are exemplified.
  • n represents a number from 1 to 20 and preferably ranges from 1 to 5 as an average number of repetitions. .
  • the hydrocarbon group includes a methyl group, an ethyl group, and an n-propyl group.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a vinyl ether group, an isopropoxy group, an aryloxy group, a perparinole ether group, a butoxy group and a phenoxy group, and the halogen atom is F.
  • the indole resin of the present invention is represented by the above general formula I, and n is an integer in a range of 2 to 20, preferably 2 to 15.
  • the indole resin of the present invention may be a single compound in which n is in the range of 2 to 20 or may be a mixture. May be.
  • n is the average number of repetitions (number average) and represents the number of 1 to 20.
  • Preferred indole resins have a softening point in the range of 40 to 200 ° C, preferably 50 to 160 ° C, more preferably 60 to 120 ° C.
  • the softening point refers to a softening point measured based on the ring and ball method of JISK-6911. If it is lower than this, the heat resistance of the cured product decreases when it is mixed with the epoxy resin, and if it is higher than this, the fluidity during molding decreases.
  • the preferred average number of repetitions is determined from the above softening point, but is preferably in the range of 1.2 to 15, more preferably in the range of 1.5 to 10.
  • the indole resin of the present invention has a softening point of 40 to 100 obtained by reacting 0.1 to 0.9 mol of aldehyde with respect to 1 mol of indole in the presence of an acid catalyst. It is also an indole resin in the range of ⁇ 200 ° C.
  • the substitution position of the bridging group X connecting the indole ring to the indole ring is not particularly limited, and the hydrogen atoms at the 1- to 7-positions of the indole ring are the bridging group. It may be substituted to have a linked structure.
  • H of> NH when substituted with a hydrogen atom at the 1-position of the indole ring, H of> NH does not appear. It is not necessary that all of the hydrogen atoms at the 1-position of the indole ring remain, but if all of the hydrogen atoms at the 1-position are substituted, they may act as a hardening agent for the indole resin of the present invention.
  • the probability is 1/7, and at least 50% or more of the 1st hydrogen atoms remain.
  • the remaining amount of H in> NH can be estimated by NMR measurement.
  • the indole resin of the present invention comprises an indole and the above-mentioned general formula ( a ) or
  • crosslinking agent that provides a crosslinking group represented by (b) can do.
  • a crosslinking agent that provides a crosslinking group represented by (b) can do.
  • a crosslinking agent the following general formula (C) or
  • R 2 to R 5 and m have the same meaning as those of the general formulas (a) and (b), and Y represents a hydroxyl group, a halogen, or an alkoxy group having 1 to 6 carbon atoms)
  • Examples of the crosslinking agent that provides the crosslinking group represented by the general formula (a) include aldehydes or ketones represented by the above formula (c).
  • R 2 and R 3 have the meaning described in the general formula (a).
  • Specific examples include formaldehyde, acetate aldehyde, propyl aldehyde, butyl aldehyde, amino phenol aldehyde, benzaldehyde, and acetone, with formaldehyde being preferred.
  • Preferred form forms of formaldehyde for use in the reaction include formalin aqueous solution, norformaldehyde, and trioxane.
  • Examples of the crosslinking agent that provides the crosslinking group represented by the general formula (b) include an aromatic crosslinking agent represented by the above formula (d).
  • R 4 and R 5 have the meaning described in the general formula (b).
  • the amount of the c- crosslinking agent which is preferably exemplified by xylylendalcol, an alkyl ether thereof, a xylylene link, is 0.1 to 0.9 mol per mol of the indole. But preferably in the range of 0.2 to 0.8 mole. this The molecular weight of the oligomer can be adjusted by changing the molar ratio.
  • the indole resin having a desired number of repetitions ⁇ can be separated by a method such as column chromatography, liquid chromatography, GPC, or solvent separation.
  • an indole compound having a substituent other than indole can be used as the indole which is an essential component in the monomer used to obtain the indole resin of the present invention.
  • substituent include a group represented by the above formula (excluding H).
  • halogen atom include F, Cl, and Br
  • alkoxy group include a methoxy group, an ethoxy group, a bier ether group, an isopropoxy group, an aryloxy group, a propargyl ether group, a butoxy group, A phenoxy group.
  • various indole compounds having one or more substituents and indole can be used, mono-C 3 alkylindole or indole is preferable.
  • phenols can coexist in addition to the indole.
  • examples of phenols include alkylphenols such as phenol, cresols, and xylenols.
  • examples include bisphenols such as enanols, naphthols / naphthalenes, naphthalene diols, bisphenols A and bisphenol F, or polyfunctional phenolic compounds such as phenolic phenolic and phenolic aralkyl resins.
  • the indole skeleton in the indole resin is used.
  • the content of the above phenols is usually 50 wt% or less, preferably 30 wt% or less, but there is no particular limitation.
  • a resin in which phenols are a part of a resin component and an indole resin in which a phenol resin is mixed are obtained. 'In this case, the amount of the aldehyde used is within the above range with respect to the total of 1 mol of the indole and the phenol compound.
  • the reaction for synthesizing the indole resin can be performed in the presence of an acid catalyst.
  • the acid catalyst can be appropriately selected from well-known inorganic acids and organic acids.
  • mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid
  • organic acids such as formic acid, oxalic acid, trifluoroacetic acid, P-toluenesulfonic acid, dimethyl sulfate, and getyl sulfate
  • zinc chloride aluminum chloride
  • Examples thereof include Lewis acids such as iron chloride and boron trifluoride, and solid acids such as ion exchange resin, activated clay, silica-alumina and zeolite.
  • This reaction is usually carried out at 10 to 250 ° C for 1 to 20 hours.
  • anololecols such as methanol, ethanol, propanol, butanol, ethyleneglycolone, methylcellosonolebu, etinoleserosonolebu, etc., and aceton, methinoleethylketone, methanol Ketones such as chiliisobutynoletone, dimethylethyl ether, getinoleether, diisopropyl Athenoles such as norethene, tetrahydrofuran, and dioxane; and aromatic compounds such as benzene, tonolen, benzene, and dichlorobenzene can be used as the solvent.
  • unreacted indole remains in the obtained indole resin in some cases.
  • Unreacted remaining indoles are usually removed from the system by a method such as reduced pressure distillation or solvent resolution. It is desirable that the amount of unreacted indole remaining in the indole resin is small, usually 5% by weight or less, preferably 3% by weight or less, more preferably 1% by weight or less. . If the amount of the remaining indole is large, it may volatilize during the production of the molded product, degrade the molding workability, and may cause voids in the molded product. Also, the flame retardancy of the molded product is reduced.
  • the indole resin of the present invention is used as an epoxy resin intermediate, and can be mixed with another resin to form a resin composition.
  • this can be a component of the phenolic resin composition or the epoxy resin composition.
  • an indole resin by reacting an indole resin with an alkyl halide compound, an alkenyl halide compound, an ephalohydrin compound, etc., a part or a part of the hydrogen atoms of> NH in the indole resin is obtained.
  • a modified indole resin in which all are substituted with an alkyl group, an alkyl group, a glycidyl group or the like can also be used.
  • the indole resin of the present invention is also excellent as an epoxy resin curing agent, it can be used as an epoxy resin curing agent.
  • the content of the indole resin is 10%. It is in the range of 2 to 200 parts by weight and preferably in the range of 5 to 100 parts by weight with respect to 0 parts by weight. More preferably, it is in the range of 10 to 80 parts by weight. If the amount is less than this, the modifying effects such as low hygroscopicity, heat resistance, adhesion and flame retardancy are small, and if it is more than this, the viscosity is increased and the moldability is reduced.
  • phenolic resin refers to any resin having at least two phenolic hydroxyl groups in one molecule. Examples thereof include bisphenol A, bisphenol F, bisphenol A, bisphenol A, and bisphenol A. 4'-biphenolone-2,2'-biphenolone, hydroquinone, resonolecin, divalent phenols such as naphthalene diene, or tris (4-hydroxyphenol) methane, 1, 1 , 2,2-Tetrakis (4-hydroxyphenolene) ethane, phenenoleno borax, o-creso / reno borak, naphtho / reno borak, poly buerfenol There are three or more phenols represented.
  • polyhydric phenolic compounds synthesized by the reaction with a crosslinking agent esized by the reaction
  • the softening point of the phenolic resin is usually from 40 to 200 ° C, preferably from 60 to 150 ° C. If lower than this, the epoxy resin will harden The heat resistance of the cured product obtained by using it as an agent decreases. If it is higher than this, the miscibility with the indole resin decreases.
  • the phenolic resin composition is melt-mixed in which the phenolic resin or the indole resin is uniformly mixed by stirring or kneading at a temperature equal to or higher than the softening point of one of the phenolic resin and the indole resin.
  • the two can be obtained by a method such as a solution mixing method in which both are dissolved in a solvent to be mixed and uniformly mixed by stirring, kneading, or the like.
  • Solvents used in the solution mixing method include, for example, alcohols such as methanol, ethanol, propanol, porcine, ethylene glycol / re, meth / resero sonolebu, technore cello sonolebu, etc., acetone, methinole Ketones such as ethynolektone and methynoleisobutyl ketone, dimethinoleether, getyl ethereone, diisopropinoleatenole, ethereols such as tetrahydrofuran and dioxane, benzene, tonolene, xylene, Aromatic solvents such as benzene and dichlorobenzene can be exemplified.
  • an epoxy resin, an inorganic filler, another phenol resin, and other additives can be blended.
  • This phenolic resin composition can be used as a phenolic resin cured product by using it together with a curing agent generally used for a phenolic resin molding material such as hexamethyltetralamine. It can also be used as an epoxy resin curing agent.
  • the epoxy resin composition is obtained by mixing the indole resin of the present invention with an epoxy resin, the epoxy resin composition contains at least an epoxy resin and a curing agent, and the indole resin is used as a part or all of the curing agent. Is blended.
  • the amount of the indole resin is usually 2 to 100 parts by weight of the epoxy resin. It is 200 parts by weight, preferably in the range of 5 to 80 parts by weight. If the amount is less than this, the effect of improving low moisture absorption, adhesion and flame retardancy is small, and if it is more than this, there is a problem that moldability and strength of the cured product are reduced.
  • the amount of the indole resin is usually determined in consideration of the equilibrium of> NH group in the indole resin and the epoxy group in the epoxy resin. Mix.
  • the equivalent ratio of the epoxy resin and the hardener is usually in the range of 0.2 to 5.0, preferably in the range of 0.5 to 2.0. Regardless of whether it is larger or smaller, the curability of the epoxy resin composition is reduced, and the heat resistance, mechanical strength, etc. of the cured product are also reduced.
  • a curing agent other than the indole resin of the present invention can be used in combination as a curing agent.
  • the compounding amount of the other curing agent is generally in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight, based on 100 parts by weight of the epoxy resin. It is determined within the range specified. If the amount of the indole resin is less than this, the effect of improving low moisture absorption, adhesion and flame retardancy is small, and if it is more than this, there is a problem that the moldability and the strength of the cured product decrease.
  • any of those generally known as curing agents for epoxy resins can be used, and dicyandiamide, acid anhydrides, polyhydric phenols, aromatics and aliphatics can be used.
  • dicyandiamide, acid anhydrides, polyhydric phenols, aromatics and aliphatics can be used.
  • a polyvalent phenol as a curing agent in a field requiring high electrical insulation such as a semiconductor sealing material.
  • Examples of the acid anhydride curing agent include phthalic anhydride and tetrahydroanhydride. Phthalic acid, Methyltetrahydrophthalic anhydride, Hexahydrophthalophthalic anhydride, Methylhexahydrophthalic anhydride, Methylhymic anhydride, Dodecylsuccinic anhydride, Nadic anhydride, Trimeric anhydride Acids and the like.
  • Examples of polyvalent phenols include bisphenol A, bisphenol A, F, bisphenol A, phenololenobisphenol, 4,4'-biphenol, 2,2'-biphenol, and hydroxy.
  • Divalent phenols such as quinone, resonoresin, and naphthalene diol, or tris (4-hydroxyphenol) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane
  • tri- or higher-valent phenols represented by, for example, phenolic phenolics, o-cresenolenovolacs, naphtophenolic phenolics and polybutylphenols.
  • polyhydric phenolic compounds synthesized with a condensing agent such as daricol.
  • the above-mentioned phenol resin composition of the present invention can also be blended.
  • amines examples include 4,4'-diaminodiphenylemethane, 4,4'-diaminodiphenyl-norrepronone, 4,4'-diaminodiphenylenolenoleshon, and in-hue.
  • Aromatic amines such as rendiamine, p-xylylenediamine, ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine
  • One or two or more of these curing agents are mixed in the epoxy resin composition. It can be used in combination.
  • the epoxy resin used in the epoxy resin composition is selected from those having two or more epoxy groups in one molecule.
  • bisphenol / le A bisphenol F, bisphenol S, phenololeno, 4,4'-biphenol, 2,2'-phenol, tetrabromobisphenol A, nodroquinone, lesnoresin, etc.
  • Dihydric phenols, or nopolazoles such as tris (4-hydroxyphenyl) methane, 1,1,2,2-tetrax (4-hydroxyphenyl) ethane, phenol, cresol and naphthol And darcidyl ether compounds of trivalent or more phenolic compounds such as alkenyl resins such as phenolic resins, phenols, cresols, and naphthols.
  • These epoxy resins can be used alone or in combination of two or more.
  • the epoxy resin composition contains an oligomer or a polymer such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene coumarone resin, and phenoxy resin.
  • the material may be appropriately compounded as another modifier.
  • the amount added is usually in the range of 2 to 30 parts by weight based on 100 parts by weight of the epoxy resin.
  • additives such as an inorganic filler, a pigment, a difficulty agent, a thixotropic agent, a coupling agent, and a fluidity improver can be added to the epoxy resin composition.
  • the inorganic filler include spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder or Myriki, talc, calcium carbonate, alumina, hydrated alumina, etc.
  • the preferred amount is 70 wt% or more, and more preferably 80 wt% or more.
  • the pigment include an organic or inorganic extender, a scaly pigment, and the like.
  • the thixotropic agent include silicones, castor oils, aliphatic amides, oxidized polyethylene waxes, and organic bentonites.
  • a known curing accelerator can be used in the epoxy resin composition, if necessary.
  • examples include amines, imidazoles, organic phosphines, Lewis acids, and the like.
  • 1,8-diazabicyclo (5,4,0) indene-7 triethylenediamine Tertiary amines such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-pheninole-4-methinolay midazono, 2-heptadecinole midazo, tributyl phosphine, methinoresif enole phosphine, triphenyl enole phosphine, diphenyl enole phosphine, Organic phosphines such as blue phosphine, tetraphenylphosphonium 'tetrafluorophenol, Tetra
  • a release agent such as carnauba wax and ⁇ wax
  • a force-applying agent such as ⁇ -daricoxypropyltrimethoxysilane
  • a coloring agent such as carbon black
  • a difficulty such as antimony trioxide. Flame retardant, silicon oil And a low-stressing agent such as calcium stearate.
  • This epoxy resin composition can be used for ordinary epoxy resin composition applications such as semiconductor encapsulant applications.
  • a solvent is removed after impregnating a fibrous material such as glass cloth, nonwoven fabric of polyester, nonwoven fabric of polyester such as liquid crystal polymer, and the solvent is removed.
  • a laminate can be obtained by applying the composition on a sheet-like material such as a copper foil, a stainless steel foil, a polyimide film, and a polyester film.
  • the epoxy resin represented by the above general formula II of the present invention can be produced by reacting the indole resin represented by the general formula I with epichlorohydrin. This reaction of reacting the indole resin with epichlorohydrin can be carried out in the same manner as a usual epoxidation reaction.
  • the epoxy resin in which is a glycidyloxy group can be similarly produced using the hydroxyindole resin in which R i is OH in the above general formula I as a raw material.
  • the solution is dissolved in the presence of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide to form a 20 to 15
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • the reaction may be carried out at 0 ° C, preferably within the range of 30 to 80 ° C, for 1 to 10 hours.
  • the amount of the alkali metal hydroxide used is based on 1 mol of the total amount of hydroxyl groups and NH groups of the indole resin.
  • the range is 0.8 to 1.2 monoles, preferably 0.9 to 1.0 mole.
  • epichlorohydrin is used in excess of the total amount of hydroxyl groups and N—H groups in the indole resin, but usually, the total amount of hydroxyl groups and N—H groups in the indole resin is 1 mol. Is 1.5 to 30 moles, and preferably 2 to 15 moles.
  • the excess epichlorohydrin is distilled off, and the residue is dissolved in a solvent such as toluene or methylisobutylketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off.
  • a solvent such as toluene or methylisobutylketone
  • the epoxy resin composition containing the epoxy resin of the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent, wherein an epoxy resin represented by the above general formula II is an essential component as an epoxy resin component. It has been blended. 'As the curing agent when the epoxy resin represented by the above general formula II is an essential component, any of those generally known as curing agents for epoxy resins can be used. Examples include dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines, and the like. It is also possible to use an indole resin represented by the general formula I as a curing agent.
  • the epoxy resin composition may contain another type of epoxy resin as the epoxy resin component in addition to the epoxy resin of the present invention represented by the general formula I.
  • Specific examples of the epoxy resin include the same as those described in the section of the epoxy resin composition containing the indole resin represented by the general formula I, and the above description is referred to.
  • the compounding amount of the epoxy resin represented by the general formula II is in the range of 5 to 100%, preferably 60 to 100% in the whole epoxy resin. Good.
  • the epoxy resin composition of the present invention contains oligomers or polymer compounds such as polyesters, polyamides, polyimides, polyethers, poly, urethanes, petroleum resins, indene malon resins, and phenoxy resins. Or an additive such as an inorganic filler, a pigment, a difficulty agent, a thixotropic agent, a coupling agent, or a fluidity improver.
  • oligomers or polymer compounds such as polyesters, polyamides, polyimides, polyethers, poly, urethanes, petroleum resins, indene malon resins, and phenoxy resins.
  • an additive such as an inorganic filler, a pigment, a difficulty agent, a thixotropic agent, a coupling agent, or a fluidity improver.
  • release agents such as carnauba wax and OP wax, coupling agents such as glycidoxypropyltrimethoxysilane, coloring agents such as car pump black ', and difficulties such as antimony trioxide.
  • Flame retardants, low stress agents such as silicon oil, and lubricants such as calcium stearate can be used.
  • a known curing accelerator can be used.
  • examples include amines, imidazoles, organic phosphines, noreic acid, and the like.
  • the amount of addition is usually in the range of 0.2 to 5 parts by weight based on 100 parts by weight of the epoxy resin.
  • fillers and pigments are the same as those described in the section of the epoxy resin composition containing the indole resin represented by the general formula I, and the above description is referred to.
  • FIG. 1 is an infrared absorption (IR) spectrum of indole resin A of the present invention
  • FIG. 2 is an H-NMR spectrum of indone resin A
  • FIG. 3 shows the IR spectrum of the epoxy resin A of the present invention
  • FIG. 4 shows the H-NMR spectrum of the epoxy resin A.
  • the obtained resin A has a softening point of 123 ° C and a melt viscosity at 150 ° C of 0. 24 Pa-s.
  • the amount of the residual monomer determined by GPC measurement was 0.1 wt%.
  • Fig. 1 shows the infrared absorption spectrum and Fig. 2 shows the H-NMR spectrum.
  • the viscosity was measured using an ICI cone-plate viscometer, and the softening point was measured by a ring and ball method in accordance with JIS-6911.
  • the GPC measurement conditions were as follows: instrument; HLC-82A (manufactured by Toso Corporation), column: three TS KG EL 200 000 X and one TS KG EL 400 000 X (all The solvent was Tetrahydrofuran, the flow rate was 1 ml / min, the temperature was 38 ° C, the detector was R R, and the standard curve was a polystyrene standard solution.
  • the softening point of this resin was 104 ° C, and the melt viscosity at 150 ° C was 0.8 Pa ⁇ s.
  • the residual monomer amount determined by GPC measurement was 0.2 wt%.
  • Example 4 The reaction was carried out in the same manner as in Example 1 except that 33.5 g of 92% paraformaldehyde was used to obtain 198 g of indole resin C.
  • the softening point of this resin was 93 ° C., and the melt viscosity at 150 ° C. was 7.0 Pa ′s.
  • the residual monomer amount determined by GPC measurement was 0.3 wt%.
  • Example 4 Example 4
  • the residual monomer amount determined by GPC measurement was 0.2 wt%.
  • the compound of 3, 4% and n4 was 7.7%.
  • O-Cresol novolac type epoxy resin (OCNE; epoxy equivalent: 200, softening point: 70 ° C) as the epoxy resin component; and the indole resin obtained in Examples 1-4 as the curing agent (OCN; Resins A, B, C, D), the phenolic resin composition (PRC-A) obtained in Example 5, phenol novolak (curing agent A; ⁇ ⁇ 1 equivalent 103, softening point 82 ° C ), Phenol aralkyl resin (curing agent B; manufactured by Mitsui Chemicals, XL-225-LL, OH equivalent: 172, softening point: 74 ° C), and silica (average) Particle size, 22 ⁇ m) and triphenylphosphine as a curing accelerator were kneaded in the composition shown in Table 1 to obtain an epoxy resin composition.
  • molding was performed at 175 ° C
  • post-curing was performed at 175 ° C for 12 hours, and a cured
  • the glass transition point (Tg) was determined by a thermomechanical measuring device under the condition of a heating rate of 10 ° C / min.
  • the water absorption is the value obtained when a disk with a diameter of 50 and a thickness of 3 dragons is molded using this epoxy resin composition and moisture is absorbed at 13 ° C, 3 atm, and 96 hr after post cure.
  • Adhesion was evaluated by using an epoxy resin composition, compression molding at 175 ° C on copper foil, performing boss cure at 175 ° C for 12 hours, and measuring the peel strength.
  • Flame retardancy was determined by molding a 1/16 inch thick test specimen, evaluated according to UL 94 V-0 standard, and expressing the total burning time of five test specimens. Table 1 shows the composition and Table 2 shows the measurement results. table 1
  • the epoxy resin A had a softening point of 8.8 ° C., a melt viscosity of 1.08 Pa ′s, and an epoxy equivalent of 220.
  • the n of the epoxy resin read from the GPC chart was generated by the ring-opening reaction of the epoxy group. Sometimes counting, it is understood to be the number obtained by subtracting 1 from the number of indole rings in the compound.
  • Fig. 3 shows the IR spectrum of this resin
  • Fig. 4 shows its H-NMR spectrum.
  • Example 19 100 g of the indole dimer obtained in Example 15 was dissolved in 700 g of epichlorohydrin and 140 g of diglyme. Then, 90.6% sodium hydroxide (80.6 g) and pure water (5.0 Og) were added, and the mixture was heated to 120 ° C and reacted for 10 hours. During this time, water generated by the reaction was removed from the system. After completion of the reaction, the salt formed by filtration was removed, and after washing with water, epichlorohydrin was distilled off to obtain 87 g of epoxy resin B.
  • the epoxy resin B had a softening point of 45 ° C., a melt viscosity of 0.037 Pa ⁇ s, and an epoxy equivalent of 216.
  • Example 19 100 g of the indole dimer obtained in Example 15 was dissolved in 700 g of epichlorohydrin and 140 g of diglyme. Then, 90.6% sodium hydroxide (80.6 g) and pure water (5.0 Og) were added
  • Examples 20 to 25, Comparative Examples 3 to 5 As epoxy resin components, epoxy resins A, B and C, o-cresol novolak type epoxy resins synthesized in Examples 17 to 19 (epoxy resin D; Nippon Kayaku, EOCN-1020-65) Epoxy equivalent 200, hydrolyzable chlorine 400ppm, softening point 65 ° C), biphenyl type epoxy resin (epoxy resin E; made of Yuka Shell Epoxy, YX4000HK) epoxy equivalent 195, hydrolyzable chlorine 450ppm, melting point 105 ° Indole resin E synthesized in Example 14 and phenol nopolak (curing agent C; manufactured by Gunei Chemical Co., PSM-4261; OH equivalent 103; softening point 80 °) C), 1-naphthol aralkyl resin (hardener D; Nippon Steel Chemical Co., Ltd., SN-475; OH equivalent 210, softening point 77 ° C) was used.
  • an epoxy resin composition was obtained with the composition shown in Table 3 using spherical silica (average particle size 18 / im) as a filler and triphenylphosphine as a curing accelerator.
  • the numerical values in the table indicate parts by weight in the formulation.
  • the coefficient of linear expansion was measured at a heating rate of 10 ° C / min using a thermomechanical measuring device.
  • the water absorption was defined as the weight change rate after moisture absorption for 100 hours at 85 ° C and 85% RH using a circular test piece having a diameter of 50 mm and a thickness of 3 mm. .
  • Adhesive strength was determined by pressing a molded product of 25 mm x 12.5 mm x 0.5 mm between two copper plates at 17'5 ° C with a compression molding machine and at 180 ° C. After performing boss cure for 2 hours, evaluation was performed by obtaining tensile shear strength. Other measurements were performed under the same measurement conditions as in Examples 6 to 13. Table 3
  • the indole resin of the present invention is useful as an epoxy resin intermediate or a curing agent, and when applied to an epoxy resin composition, has excellent high heat resistance and moisture resistance. It gives a cured product with excellent flame retardancy and high adhesion to different materials, and can be suitably used for applications such as sealing of electrical and electronic components and circuit board materials. Further, a cured product obtained by curing the epoxy resin composition using the epoxy resin of the present invention has excellent properties such as flame retardancy, high adhesiveness, moisture resistance, and heat resistance. It can be suitably used for applications such as casting and bonding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 ィンドール樹脂、 エポキシ樹脂及ぴこれらの樹脂を含む樹脂組成物 技術分野 本発明は、 エポキシ樹脂の中間体、 硬化剤等と して有用なイ ン ドール 樹脂に関するものである。 また、 本発明は、 イ ン ドール樹脂から誘導さ れるエポキシ樹脂及びエポキシ樹脂組成物並びにその硬化物に関するも のである。 背景技術 エポキシ樹脂は工業的に幅広い用途で使用されてきているが、 その要 求性能は近年ますます高度化している。 例えば、 エポキシ樹脂を主剤と する樹脂,組成物の代表的分野に半導体封止材料があるが、 半導体素子の 集積度の向上に伴い、 パッケージサイズは大面積化、 薄型化に向かう と ともに、 実装方式も表面実装化への移行が進展しており、 半田耐熱性に 優れた材料の開発が望まれている。 従って、 封止材料と しては、 低吸湿 化に加え、 リードフ レーム、 チップ等の異種材料界面での接着性 · 密着 性の向上が強く求められている。 回路基板材料においても同様に、 半田 耐熱性向上の観点から低吸湿性、 高耐熱性、 高密着性の向上に加え、 誘 電損失低減の観点から低誘電性に優れた材料の開発が望まれている。 ま た、 最近では、 環境負荷低減の観点から、 ハロゲン系難燃剤排除の動き があり、 より難燃性に優れた硬化剤が求められている。
これらの要求に対応するため、 主剤となるエポキシ樹脂側から、 様々 な新規構造のエポキシ樹脂が検討されている。 それと併せて硬化剤につ いての検討もなされている。
ベース樹脂と しては、 耐湿性、 耐熱性、 金属基材との接着性等の向上 が強く求められている。 '
しかしながら、 従来のエポキシ樹脂には、 これらの要求を満足するも のは未だ知られていない。 例えば、 周知のビスフエノール型エポキシ樹 脂は、 常温で液状であり、 作業性に優れていることや、 硬化剤、 添加剤 等との混合が容易であることから広く使用されているが、 耐熱性、 耐湿 性の点で問題がある。 また、 耐熱性を改良したものと して、 ノポラ ック 型エポキシ樹脂が知られているが、 耐湿性、 接着性等に問題がある。 更 には、 主骨格が炭化水素のみで構成される従来のエポキシ樹脂では、 難 燃性を全く もたない。
ハ口ゲン系難燃剤を用いることなく難燃性を向上させるための方策と して、 リ ン酸エステル系の難燃剤を添加する方法が知られている。 しか し、 リ ン酸エステル系の難燃剤を用いる方法では、 耐湿性が十分ではな い。 また、 高温、 多湿な環境下ではリ ン酸エステルが加水分解を起こし. 絶縁材料と しての信頼性を低下させる問題があった。
また、 エポキシ樹脂硬化剤についても検討されている。 その一例と し て、 ナフタ レン系樹脂が知られており、 特開平 5 — 1 0 9 9 3 4 5号公 報にはナフ トールァラルキル樹脂を半導体封止材へ応用することが示さ れている。 伹し、 ナフ トールァラルキル樹脂は、 低吸湿性、 低熱膨張性 等に優れるものの、 硬化性に劣る欠点があった。 また、 特開平 1 1 一 1 4 0 1 6 6号公報にはビフヱニル構造を有する硬化剤が提案され、 難燃 性向上に有効であることが記載されているが、 硬化性に劣る欠点があつ た。 更に、 ナフタレン系樹脂、 ビフエニル系樹脂ともに、 炭化水素のみ で構成される主骨格を有することから、 難燃性の発現に十分ではなかつ た。 ' 発明の開示 本発明の目的は、 エポキシ樹脂の中間体と して有用なインドール樹脂 を提供することにある。 他の目的は、 エポキシ樹脂組成物の硬化剤等に 有用なイ ン ドール樹脂を提供することにある。 他の目的は、 このイ ン ド ール樹脂を含み、 優れた成形性を有すると ともに、 低吸湿性、 耐熱性、 密着性及び難燃性等に優れた硬化物を与える電気 ■ 電子部品類の封止、 回路基板材料等に有用なエポキシ樹脂組成物を提供すること、 及びその 硬化物を提供することにある。 また、 他の目的は、 エポキシ樹脂の硬化 剤等に有用なこのイ ン ドール樹脂を含むフ ノ ール樹脂組成物を提供す ることにある。
また、 本発明の目的は、 難燃性に優れると ともに、 耐湿性、 耐熱性、 金属基材との接着性等にも優れた性能を有し、 積層、 成形、 注型、 接着 等の用途に有用なエポキシ樹脂及びその製造方法を提供することにある ( 他の目的は、 硬化剤及びこのエポキシ樹脂を用いたエポキシ樹脂組成物 及びその硬化物を提供することにある。 本発明は、 下記一般式 Iで表されるイ ン ドール樹脂である。 また、 本発 明は、 下記一般式 IIで表されるェポキシ樹脂である。
Figure imgf000006_0001
Figure imgf000006_0002
一般式 I及び IIにお.いて、 Xは下記一般式 ( a ) 又は ( b ) で表される 架橋基を示し、 nは 1〜 2 0の整数を示す。
R3 ( a )
Figure imgf000006_0003
(但し、 R 2、 R3は水素原子又は炭素数 1〜 6の炭化水素基を示し、 R4、 R 5は水素原子又はメチル基を示し、 mは 1又は 2を示す)
また、 一般式 Iにおいて、 は水素原子、 水酸基、 炭素数 1〜 8の炭 化水素基、 炭素数 1 〜 6のアルコキシ基又はハロゲン原子を示す。 一般 式 IIにおいて、 は水素原子、 炭素数 1 ~ 8の炭化水素基、 炭素数 1〜 6のアルコキシ基、 グリシジルォキシ基又はハロゲン原子を示し、 Gは グリシジル基を示す。
また、 本発明は、 このイ ン ドール樹脂を、 アルカ リ金属水酸化物の存 在下でェピク ロ ヒ ドリ ンと反応させることを特徴とする前記のエポキシ 樹脂の製造方法である。 本発明のィンドール樹脂は上記一般式 Iで表され、 本発明のエポキシ樹 脂は上記一般式 IIで表される。 このエポキシ樹脂は、 このインドール樹脂 をェピクロロ ヒ ドリ ンでエポキシ化することにより得られる。 したがつ て、 一般式 I及び IIにおいて、 X及び nは共通の意味を有する。 しかし、 エポキシ化反応の際、 副反応等によ り、 nが多少変化する場合がある。 また、 一般式 Iの R が O H基である場合は、 一般式 IIではこれがグリシジ ルエーテル基となるが、 その他の基の場合は、 一般式 I及び IIにおいて、 R!は共通の意味を有する。
一般式 I及び IIにおいて、 Xはインドール環を連結する架橋基であり、 上 記一般式 ( a ) 又は ( b ) で表される。 一般式 ( a ) において、 R 2、 R 3は独立して水素原子又は炭素数 1〜 6の炭化水素基を示す。 ここで、 炭 化水素基としては、 メチル基、 ェチル基、 n —プロピル基、 イソプロピ ル基、 ブチル基、 アミル基、 フエニル基等が挙げられる。
一般式 ( a ) の好ましい架橋基と しては、 -CH(R2)- (ここで、 R2は H又 は炭素数 1〜 6の炭化水素基) で表される基が挙げられる。 具体的には. メチレン基、 ェチリデン基、 イソプロピリデン基、 フエ-ルメチレン基 がある。
また、 一般式 ( b ) において、 R 4、 R 5は独立して水素原子又はメチ ル基を表し、 mは 1又は 2の整数である。 一般式 ( b ) の好ましい架橋 基と しては、 P-キシリ レン基、 m-キシリ レン基、 1 ,4-ビスェチリデンフエ 二レン基、 1,3 -ビスェチリ デンフエ二レン基、 1,4-ビスイ ソプロ ピリ デン フエ二レン基、 1 ,3 -ビスイ ソプロ ピリデンフエ二レン基、 4, 4'-ビスメ チレ ンビフエ二ノレ基、 3 , 4'-ビスメチレンビフエ二ノレ基、 3,3 '-ビスメチレンビフ エニル基、 4,4'-ビスェチリデンビフエニル基、 3, 4'-ビスェチリ デンビフエ ル基、 3, 3 '-ビスェチリデンビフエニル基、 4,4'-ビスイ ソプロ ピリデンビ フエ二ノレ基、 3 , 4'-ビスイ ソプロピリデンビフエ-ノレ基、 3 , 3 '-ビスイソプロ ピリデンビフエニル基が例示される。
nは 1〜 2 0の数を示すが、 好ま しく は平均の繰返し数と して、 1〜 5の範囲である。 .
上記一般式 I及び IIにおいて、 は水素原子、 炭素数 1〜8、 好ま しく は 1〜 7の炭化水素基、 炭素数 1〜 6 のアルコキシ基、 水酸基 (一般式 II の場合は、 グリ シジルォキシ基) 又はハロゲン原子を示す。
ここで、 炭化水素基と しては、 メチル基、 ェチル基、 n—プロ ピル基. イ ソプロ ピル基、 ァリル基、 プロパルギル基、 プチル基、 n—ァミル基 s e c —ア ミ ノレ基、 t e r t 一ア ミ ノレ基、 シク ロへキシル基、 フエ二ノレ 基、 ベンジル基等が挙げられる。 アルコキシ基と してはメ トキシ基、 ェ トキシ基、 ビニルエーテル基、 イ ソプロポキシ基、 ァリルォキシ基、 プ 口パルギノレエーテル基、 ブ トキシ基、 フエノキシ基が挙げられ、 ハロゲ ン原子と しては F、 C 1、 B r等が例示される。 本発明のイ ン ドール樹脂は、 上記一般式 Iで表され、 nは 2〜 2 0、 好 ま しく は 2〜 1 5 の範囲の整数である。 本発明のイ ン ドール樹脂は、 n が 2〜 2 0の範囲にある単一の化合物であっても良いし、 混合物であつ ても良い。 また、 インドール樹脂の軟化点が 4 0〜 2 0 0 °Cの範囲であ る場合は、 nは平均の繰返し数 (数平均) であり 1〜 2 0の数を示す。 好ましいインドール樹脂の軟化点は、 4 0〜 2 0 0 °C、 好ましくは 5 0 〜 1 6 0 °C、 更に好ましく は 6 0〜 1 2 0 °Cの範囲である。 こ こで、 軟 化点とは、 J I S K - 6 9 1 1の環球法に基づき測定される軟化点を指す。 これよ り低いと、 これをエポキシ樹脂に配合したとき、 硬化物の耐熱性 が低下し、 これより高いと成形時の流動性が低下する。 この場合の、 好 ましい平均の繰返し数は、 上記軟化点から決定されるが、 好ましく は 1 . 2〜 1 5の範囲、 より好ましくは 1 . 5〜 1 0の範囲である。 また、 本 発明のイ ン ドール樹脂は、 イ ン ドール類 1 モルに対して、 0 . 1〜 0 . 9 モルのアルデヒ ド類を酸触媒の存在下に反応させて得られる軟化点が 4 0〜 2 0 0 °Cの範囲のィンドール樹脂でもある。
上記一般式 Iにおいて、 ィン ドール環を繋ぐ架橋基 Xのィ ンドール環に 対する置換位置は、 特に限定するのもではなく、 イ ン ドール環の 1位〜 7位の水素原子が架橋基で置換されて連結した構造をと り得る。 一般式 I においてィンドール環の 1位の水素原子と置換した場合、 >NHの Hは表れ ない。 インドール環の 1位の水素原子の全部が残存している必要はない が、 すべての 1位の水素原子が置換されていると、 本発明のイ ン ドール 樹脂の硬.化剤と しての機能が発現されないため、 1 0 %以上残存するこ とが好ましい。 通常の製法であれば、 確率的に 1/7であり、 少なく とも 5 0 %以上の 1位の水素原子が残存している。 なお、 >NHの Hの残存量は、 N M R測定で見積もることが可能である。
本発明のイ ン ドール樹脂は、 イ ン ドール類と、 前記一般式 ( a ) 又は
( b ) で表される架橋基を与える架橋剤とを反応させることにより合成 する こ と ができ る。 かかる架橋剤 と しては、 下記一般式 ( C ) 又は
( d ) で表される架橋剤がある。
Figure imgf000010_0001
(伹し、 R 2〜R5及び mは一般式 ( a ) 及び ( b ) のそれと同じ意味を 有し、 Yは水酸基、 ハロゲン又は炭素数 1〜 6のアルコキシ基示す)
一般式 ( a ) で表される架橋基を与える架橋剤と しては上記式 ( c ) で表されるアルデヒ ド類又はケ トン類がある。 ここで、 R2及び R3は一般 式 ( a ) で説明した意味を有する。 具体的には、 ホルムアルデヒ ド、 ァ セ トァノレデヒ ド、 プロ ピルアルデヒ ド、 プチルアルデヒ ド、 アミノレァノレ デヒ ド、 ベンズアルデヒ ド、 アセ トン等が挙げられるが、 ホルムアルデ ヒ ドが好ま しい。 反応に用いる際の好ま しいホルムアルデヒ ドの原料形 態と しては、 ホルマリ ン水溶液、 ノ ラホルムアルデヒ ド、 ト リオキサン 等が挙げられる。
一般式 ( b ) で表される架橋基を与える架橋剤と しては、 上記式 ( d ) で表される芳香族架橋剤がある。 こ こ で、 R4及び R5は一般式 ( b ) で説明した意味を有する。 具体的には、 キシリ レンダリ コール、 そのアルキルエーテル、 キシリ レンク 口 ライ ド等が好ま しく挙げられる c 架橋剤の使用量は、 イ ン ドール類 1モルに対して、 0. 1〜 0. 9モ ルの範囲であるが、 好ま しく は 0. 2〜 0. 8モルの範囲である。 この モル比を変化させることによ りオリ ゴマーの分子量を調整するこ とがで きる。 これよ り小さいと合成の際、 未反応のイ ン ドール類が多く なり 、 ィン ドール樹脂の生産性が低下する と と もに、 合成されたイン ドール樹 脂の軟化点又は分子量が低く なり 、 エポキシ樹脂硬化剤と して使用した 場合の硬化物の耐熱性が低下する。 また、 これよ り大きいとイ ン ドール 樹脂の軟化点が高く なり 、 場合によ り合成の際にィンドール樹脂がゲル 化する こ とがある。 なお、 所望の繰返し数 ηを有するイ ン ドール樹脂は、 カラムク ロマ トグラフィー、 液体ク ロマ トグラフィー、 G P C、 溶剤分 割等の方法によ り分離可能である。
本発明のイ ン ドール樹脂を得るために使用するモノマー中の必須成分 であるイ ン ドール類と しては、 イ ン ドール以外に置換基を有するイ ン ド ール化合物が使用できる。 ここで、 置換基と しては、 前記 で表される 基 (Hを除く) がある。 ハロゲン原子と しては F、 C l 、 B r 等があり、 アルコキシ基と してはメ トキシ基、 エ トキシ基、 ビエルエーテル基、 ィ ソプロポキシ基、 ァリルォキシ基、 プロパルギルエーテル基、 プ トキシ 基、 フエノキシ基が挙げられる。 また、 炭化水素基と してほメチル基、 ェチル基、 ビ ル基、 ェチン基、 イ ソプロ ピル基、 ァリル基、 プロパル ギル基、 ブチル基、 アミル基、 フエニル基、 ベンジル基等が挙げられる c これら、 置換基を 1以上有する種々のイ ン ドール類化合物及びィ ン ドー ノレを用いることができるが、 好ま しく はモノ C 3アルキルィン ドール又 はイ ン ドールである。
本発'明のィン ドール樹脂を得るために使用するモノマー中には、 ィン ドール類以外にフヱノール類が共存させることができる。 フエノール類 と しては、 フエノール、 ク レゾール類、 キシレノール類等のアルキルフ エノーノレ類、 ナフ トー/レ類、 ナフタ レンジオール類、 ビスフエノーノレ A、 ビスフエノ ール F等の ビスフエノール類、 あるいはフエノ ールノ ボラ ッ ク、 フエノ ールァラルキル樹脂等の多官能性フェノ "ル化合物が例示さ れる。 これらのモノマー類は、 1種又は 2種以上を混合して用いること ができるが、 インドール樹脂を含有して得られる硬化物の物性面からは、 イ ン ドール樹脂中のイ ン ドール類骨格の含有率が高いほどよく、 上記フ ェノール類の添加量は、 通常、 5 0 wt %以下、 好ましく は 3 0 wt %以下 であるが、 特に制約はない。 フエノール類を共存させた場合、 一般式 Iで 表されるィン ドール樹脂 他に、 フエノール類が樹脂構成成分の一部と なった樹脂及びフエノール樹脂が混在したィンドール樹脂が得られる。 ' また、 この場合のアルデヒ ド類の使用量は、 インドール類とフエノール 化合物の合計 1 モルに対して、 上記の範囲とする。
このイ ン ドール樹脂を合成する反応は酸触媒の存在下に行う ことがで きる。 この酸触媒と しては、 周知の無機酸、 有機酸より適宜選択するこ とができる。 例えば、 塩酸、 硫酸、 燐酸等の鉱酸や、 ギ酸、 シユウ酸、 ト リ フルォロ酢酸、 P - トルエンスルホン酸、 ジメチル硫酸、 ジェチル硫 酸等の有機酸や、 塩化亜鉛、 塩化アルミ -ゥム、 塩化鉄、 三フッ化ホウ 素等のルイ ス酸あるいは、 イオン交換樹脂、 活性白土、 シリカ-アルミナ. ゼォライ ト等の固体酸等が挙げられる。
また、 この反応は通常、 1 0〜 2 5 0 °Cで 1 〜 2 0時間行われる。 更 に、 反応の際には、 メ タ ノール、 エタ ノール、 プロ パノール、 ブタ ノー ル、 エチレングリ コーノレ、 メ チルセロ ソノレブ、 ェチノレセロ ソノレブ等のァ ノレコール類や、 アセ ト ン、 メ チノレエチルケ ト ン、 メ チルイ ソブチノレケ ト ン等のケ ト ン類、 ジメ チルエーテノレ、 ジェチノレエーテル、 ジイ ソプロ ピ ノレエーテノレ、 テ トラヒ ドロフラン、 ジォキサン等のエーテノレ類、 ベンゼ ン、 トノレェン、 クロ口ベンゼン、 ジクロロベンゼン等の芳香族化合物等 を溶媒と して使用することができる。
反応終了後、 場合によ り、 得られたインドール樹脂中には、 未反応の インドール類が残存する。 未反応の残存したインドール類は、 通常、 減 圧蒸留、 あるいは溶剤分割等の方法により系外に除去される。 イ ン ドー ル樹脂中に残存する未反応のィン ドール類の量は少ない方が望ましく、 通常は、 5重量%以下であり、 好ましく は 3重量%以下、 更に好ましく は 1重量%以下である。 残存するインドール類の量が多いと、 成形物を 作成する際に揮発し、 成形作業性を低下させると ともに成形物のボイ ド の原因になることがある。 また、 成形物の難燃性も低下する。 本発明のィンドール樹脂は、 エポキシ樹脂中間体と して使用される他. これを他の樹脂に配合して樹脂組成物とすることができる。 好ましく は. これをフ ノール樹脂組成物又はエポキシ樹脂組成物の一成分とするこ とができる。 その他、 ィン ドール樹脂にハ口ゲン化アルキル化合物、 ハ 口ゲン化アルケニル化合物、 ェピハロヒ ドリ ン化合物等を反応させるこ とによ り、 イ ン ドール樹脂中の >NHの水素原子の一部又は全部をアルキ ル基、 ァルケエル基、 グリシジル基等に置換した変性イ ン ドール樹脂と することもできる。 本発明のインドール樹脂は、 エポキシ樹脂硬化剤と しても優れるため、 エポキシ樹脂硬化剤として使用できる。 本発明のィンドール樹脂をフエノール樹脂に配合してフエノール樹脂 組成物とする場合は、 イ ン ドール樹脂の含有率は、 フ ノール樹脂 1 0 0重量部に対し、 2〜 2 0 0重量部の範囲であり 、 好ま しく は 5〜 1 0 0重量部の範囲である。 また、 更に好ま しく は 1 0〜8 0重量部の範囲 である。 これよ り少ないと低吸湿性、 耐熱性、 密着性及び難燃性等の改 質効果が小さく 、 これよ り多いと粘度が高く なり成形性が低下する。
フヱノール樹脂と しては、 1分子中にフ ノール性水酸基を 2個以.上 有する もの全てを指し、 例えば、 ビスフエノール A、 ビスフエノール F、 ビスフエノーノレ S、 フノレオレンビスフエノーノレ、 4, 4 ' -ビフエノーノレ- 2 , 2 ' -ビフエノーノレ、 ハイ ドロキノ ン、 レゾノレシン、 ナフタ レンジ才 ール等の 2価のフエノール類、 あるいは、 ト リ ス ( 4 -ヒ ドロキシフエ - ル) メ タン、 1, 1 , 2 , 2 -テ ト ラキス ( 4 -ヒ ドロキシフエ二ノレ) エタ ン、 フエノ ーノレノ ボラ ッ ク、 o -ク レゾ一/レノ ボラ ック、 ナフ トー/レノ ボ ラ ック、 ポリ ビュルフエノール等に代表される 3価以上のフエノール類 がある。 更には、 フエノ ール類、 ナフ トール類又はビスフエノール A、 ビスフエノ ーノレ F、 ビスフエノ ーノレ S、 フノレオレンビスフエ ノーノレ、 4 , 4 ' -ビフエノーノレ、 2, 2 , -ビフエノーノレ、 ハイ ドロキノ ン、 レゾノレシ ン、 ナフタ レンジォ一ル等の 2価のフエノール類と、 ホルムアルデヒ ド, ァセ トァノレデヒ ド、 ベンズアルデヒ ド、 p -ヒ ドロキシベンズァノレデヒ ド. p -キシリ レングリ コール、 p -キシリ レングリ コ一ノレジメチノレエーテノレ、 4, 4 , -ジメ トキシメチルビフエニル、 4, 4 , -ジメ トキシメ チ /レジフ ェニノレエーテノレ、 ジビエルベンゼン類、 ジビニノレビフエニル類、 ジビ- ルナフタ レ ン類等の架橋剤との反応により合成される多価フエノール性 化合物等がある。
フエノール樹脂の軟化点は、 通常、 4 0〜 2 0 0 °Cであり、 好ま しく は 6 0〜 1 5 0 °Cの範囲である。 これよ り低いと、 エポキシ樹脂の硬化 剤と して使用して得られた硬化物の耐熱性が低下する。 これよ り 高いと、 ィンドール樹脂との混合性が低下する。
フ ノール樹脂組成物は、 フ ノール樹脂又はィ ン ドール樹脂のいず れか一方の軟化点以上の温度で、 撹袢、 混練等によ り均一に混合する溶 融混合法と、 それぞれを溶解する溶媒に両者を溶解させて、 .撹袢、 混練 等により均一に混合する溶液混合法等の方法で得ることができる。 溶液 混合法に用いる溶媒と しては、 例えばメタノール、 エタノール、 プロパ ノーノレ、 ブタ ノーノレ、 エチレングリ コー/レ、 メ チ /レセ ロ ソノレブ、 工チノレ セロ ソノレブ等のアルコーノレ類、 アセ ト ン、 メチノレエチノレケ ト ン、 メ チノレ イ ソブチルケ トン等のケ トン類、 ジメチノレエーテル、 ジェチルエーテノレ、 ジイ ソプロ ピノレエーテノレ、 テ ト ラ ヒ ドロ フラ ン、 ジォキサン等のエーテ ノレ類、 ベンゼン、 トノレェン、 キシレン、 ク ロ 口ベンゼン、 ジク ロ ロベン ゼン等の芳香族系溶媒などを挙げることができる。 なお、 この組成物を 得る際に、 エポキシ樹脂、 無機充填材、 他のフエノール樹脂、 その他の 添加剤を配合することもできる。
このフエノール樹脂組成物は、 へキサメチルテ トラ ミ ン等のフエノー ル樹脂成形材料に一般的に用いる硬化剤と併用することによ り、 フエノ ール樹脂硬化物とするこ とができる。 また、 エポキシ樹脂硬化剤等と し ても使用できる。 本発明のイ ン ドール樹脂をエポキシ樹脂に配合したエポキシ樹脂組成 物である場合は、 少なく と もエポキシ樹脂及び硬化剤を含むものである が、 硬化剤の一部又は全部と してこのイ ン ドール樹脂を配合する。 イ ン ドール樹脂の配合量は、 通常、 エポキシ樹脂 1 0 0重量部に対して 2 ~ 2 0 0重量部であり、 好ましくは 5〜 8 0重量部の範囲である。 これよ り少ないと低吸湿性、 密着性及び難燃性向上の効果が小さく、 これよ り 多いと成形性及び硬化物の強度が低下する問題がある。
硬化剤の全量と して本発明のイ ン ドール樹脂を用いる場合、 通常、 ィ ンドール樹脂の配合量は、 イ ンドール樹脂中の >NH基とエポキシ樹脂中 のエポキシ基の当量バラ ンスを考慮して配合する。 エポキシ樹脂及び硬 化剤の当量比は、 通常、 0 . 2〜 5 . 0の範囲であり、 好ましく は 0 . 5〜 2 . 0の範囲である。 これよ り大きく ても小さくても、 エポキシ樹 脂組成物の硬化性が低下するとともに、 硬化物の耐熱性、 力学強度等が 低下する。
このエポキシ樹脂組成物は、 硬化剤と して本発明のィンドール樹脂以 外の硬化剤を併用することができる。 その他の硬化剤の配合量は、 イン ドール樹脂の配合量が、 通常、 エポキシ樹脂 1 0 0重量部に対して 2〜 2 0 0重量部、 好ましく は 5〜 8 0重量部の範囲が保たれる範囲内で決 定される。 イ ン ドール樹脂の配合量がこれよ り少ないと低吸湿性、 密着 性及び難燃性向上の効果が小さく、 これより多いと成形性及び硬化物の 強度が低下する問題がある。
ィン ドール樹脂以外の硬化剤と しては、 一般にエポキシ樹脂の硬化剤 と して知られているものはすべて使用でき、 ジシアンジアミ ド、 酸無水 物類、 多価フエノール類、 芳香族及び脂肪族ァミ ン類等がある。 これら の中でも、 半導体封止材等の高い電気絶縁性が要求される分野において は、 多価フエノール類を硬化剤と して用いることが好ましい。 以下に、 硬化剤の具体例を示す。
酸無水物硬化剤と しては、 例えば、 無水フタル酸、 テ トラヒ ドロ無水 フタル酸、 メチルテ トラヒ ドロ無水フタル酸、 へキサヒ ドロ無水フタノレ 酸、 メチルへキサヒ ドロ無水フタル酸、 メチル無水ハイ ミ ック酸、 無水 ドデシ二ルコハク酸、 無水ナジック酸、 無水ト リ メ リ ッ ト酸等がある。 多価フエノール類と しては、 例えば、 ビスフエノール A、 ビスフエノ 一ノレ F、 ビスフエノーノレ S、 フノレオレンビスフエノール、 4,4'-ビフエ ノ 一ノレ、 2,2'-ビフエノ ール、 ハイ ドロ キノ ン、 .レゾノレシン、 ナフタ レンジ オール等の 2価のフエノール類、 あるいは、 ト リ ス (4-ヒ ドロキシフエ 二ノレ) メ タン、 1 , 1 , 2, 2-テ トラキス (4-ヒ ドロキシフエニル) ェタン、 フ エノーノレノボラ ック、 o -ク レゾーノレノボラック、 ナフ トーノレノボラ ック - ポリ ビュルフエノール等に代表される 3価以上のフエノール類がある。 更には、 フエノール類、 ナフ トール類又は、 ビスフエノール A、 ビス フ エ ノ ーノレ F、 ビスフエノ ール S、 フノレオレンビスフエノーノレ、 4,4'-ビフ エ ノ ーノレ、 2,2'-ビフエノ ール、 ハイ ドロキノ ン、 レゾルシン、 ナフタ レ ンジオール等の 2価のフエノ ール類と、 ホルムァルデヒ ド、 ァセ トアル デヒ ド、 ベンズアルデヒ ド、 P -ヒ ドロキシベンズアルデヒ ド、 P -キシリ レ ンダリ コール等の縮合剤とによ り合成される多価フ エ'ノール性化合物 等がある。 また、 前記の本発明のフ ノール樹脂組成物を配合するこ と もできる。
ァミ ン類と しては、 4,4'-ジァミノジフエエルメ タン、 4,4'-ジァミノジフ ェ -ノレプロ ノ ン、 4,4'-ジアミ ノ ジフエニノレスノレホン、 in -フエ二 レンジァ ミ ン、 p -キシリ レンジァミ ン等の芳香族ァミ ン類、 エチレンジァミン、 へキサメチレンジァミ ン、 ジエチレン ト リアミ ン、 ト リエチレンテ トラ
·、ン等の脂肪族アミン類がある。
このエポキシ樹脂組成物には、 これら硬化剤の 1種又は 2種以上を混 合して用いることができる。
このエポキシ樹脂組成物に使用されるエポキシ樹脂と しては、 1分子 中にエポキシ基を 2個以上有するもの中から選択される。 たとえば、 ビ ス フエ ノ ー/レ A、 ビスフエノーノレ F、 ビスフエ ノ ーノレ S、 フノレオレンビ ス フエノーノレ、 4, 4'-ビフエノーノレ、 2,2 ' -ビフエノーノレ、 テ トラブロモビ スフエノーノレ A、 ノヽィ ドロ キノ ン、 レゾノレシン等の 2価のフエノーノレ類、 あるいは、 ト リ ス ( 4 -ヒ ドロキシフエニル) メタン、 1 , 1 ,2,2-テ トラキス ( 4-ヒ ドロキシフエニル) ェタン、 フエノーノレ、 ク レゾール、 ナフ トー ル等のノポラ ック樹脂、 フエノール、 ク レゾール、 ナフ トール等のァラ ルキル樹脂等の 3価以上のフェノール性化合物のダルシジルエーテル化 物等がある。 これらのエポキシ樹脂は 1種又は 2種以上を混合して用い ることができる。
更に、 このエポキシ樹脂組成物中には、 ポリエステル、 ポリ アミ ド、 ポリ イ ミ ド、 ポリエーテル、 ポリ ウレタン、 石油樹脂、 インデン樹脂、 インデン ' クマロン樹脂、 フエノキシ樹脂等のオリ ゴマー又は高分子化 合物を他の改質剤等と して適宜配合してもよい。 添加量は、 通常、 ェポ キシ樹脂 1 0 0重量部に対して、 2〜 3 0重量部の範囲である。
また、 このエポキシ樹脂組成物には、 無機充填剤、 顔料、 難然剤、 揺 変性付与剤、 カ ップリ ング剤、 流動性向上剤等の添加剤を配合できる。 無機充填剤と しては、 例えば、 球状あるいは、 破碎状の溶融シリ カ、 結 晶シリ カ等のシリカ粉末、 アルミナ粉末、 ガラス粉末又はマイ力、 タル ク、 炭酸カルシウム、 アルミナ、 水和アルミナ等が挙げられ、 半導体封 止材に用いる場合の好ましい配合量は 7 0 wt%以上であり、 更に好ま しく は 8 0 wt%以上である。 顔料と しては、 有機系又は、 無機系の体質顔料、 鱗片状顔料等がある。 揺変性付与剤と しては、 シリ コン系、 ヒマシ油系、 脂肪族アマイ ドヮ ッ タス、 酸化ポリエチレンワックス、 有機ベン トナイ ト系等を挙げるこ と ができる。
更に、 このエポキシ樹脂組成物には必要に応じて、 公知の硬化促進剤 を用いることができる。 例を挙げれば、 アミ ン類、 イ ミダゾール類、 有 機ホスフィ ン類、 ルイス酸等があり、 具体的には、 1, 8-ジァザビシク ロ ( 5 , 4 , 0) ゥンデセン- 7、 ト リエチレンジァミ ン、 ベンジルジメチルァ ミ ン、 ト リ エタノールァミ ン、 ジメチルアミ ノエタノール、 ト リ ス (ジ メチルア ミ ノ メチル) フエノールなどの三級ァ ミ ン、 2-メチルイ ミ ダゾ ール、 2-フ エニノレイ ミダゾ一ノレ、 2-フエ二ノレ- 4-メ チノレイ ミダゾーノレ、 2-へ プタデシノレィ ミダゾー などのイ ミダゾール類、 ト リブチルホスフィ ン、 メ チノレジフ エ二ノレホス フィ ン、 ト リ フエ二ノレホス フ ィ ン、 ジフ エニノレホ スフイ ン、 ブェ-ルホスフィ ンなどの有機ホスフィ ン類、 テ トラフエ二 ルホスホニゥム ' テ トラフエ二ノレボレー ト、 テ トラフェニルホスホニゥ ム ■ ェチルト リ フエニルボレー ト、 テ トラプチルホスホニゥム · テ トラ ブチルボレー トなどのテ トラ置換ホスホユウム ' テ トラ置換ボレー ト、 2-ェチル -4-メチノレイ ミ ダゾ一ノレ · テ トラフエニノレポレー ト、 Ν-メチルモ ルホリ ン ■ テ トラフェニルボレー トなどのテ トラフエ二ルポロン塩など がある。 添加量と しては、 通常、 エポキシ樹脂 1 0 0重量部に対して、 0 . 2〜 5重量部の範囲である。
更に必要に応じて、 カルナバワックス、 Ο Ρワックス等の離型剤、 Τ - ダリ シ ドキシプロ ピル ト リ メ トキシシラン等の力 ップリ ング剤、 カーボ ンブラ ック等の着色剤、 三酸化アンチモン等の難燃剤、 シリ コンオイル 等の低応力化剤、 ステアリ ン酸カルシウム等の滑剤等を配合できる。
このエポキシ樹脂組成物は、 半導体封止剤の用途など通常のエポキシ 樹脂組成物の用途に使用できる'。 特に、 有機溶剤の溶解させたワニス状 態と した後に、 ガラスク ロス、 ァラ ミ ド不織布、 液晶ポリマー等のポリ エステル不織布、 等の繊維状物に含浸させた後に溶剤除去を行い、 プリ プレダとすることができる。 また、 場合によ り銅箔、 ステンレス箔、 ポ リイ ミ ドフィルム、 ポリ エステルフィルム等のシー ト状物上に塗布する ことにより積層物とすることができる。
このエポキシ樹脂組成物を加熱硬化させれば、 エポキシ樹脂硬化物と するこ とができ、 この硬化物は低吸湿性、 高耐熱性、 密着性、 難燃性等 の点で優れたものとなる。 本発明の上記一般式 IIで表されるエポキシ樹脂は、 一般式 Iで表される ィン ドール樹脂をェピク ロルヒ ドリ ンと反応させることによ り製造する ことができる。 このイン ドール樹脂とェピク ロルヒ ドリ ンとを反応させ る反応は、 通常のエポキシ化反応と同様に行う ことができる。 なお、 がグリ シジルォキシ基であるエポキシ樹脂は、 上記一般式 Iにおいて、 R i が OHである ヒ ドロキシイ ン ドール樹脂を原料と して同様に製造すること ができる。
例えば、 上記イン ドール樹脂を過剰のェピク ロルヒ ドリ ンに溶解した 後、 水酸化ナ ト リ ゥム、 水酸化カ リ ゥム等のアルカ リ金属水酸化物の存 在下に、 2 0〜 1 5 0 °C、 好ま しく は、 3 0〜 8 0 °じの範囲で 1 ~ 1 0 時間反応させる方法が挙げられる。 この際のアルカ リ金属水酸化物の使 用量は、 インドール樹脂の水酸基及び N— H基の合計量 1モルに対して、 0 . 8〜 1 . 2 モノレ、 好ま しく は、 0 . 9〜 1 . 0 モルの範囲である。 また、 ェピクロルヒ ドリ ンはイ ン ドール樹脂中の水酸基及び N— H基の合 計量に対して過剰に用いられるが、 通常、 イ ン ドール樹脂中の水酸基及 ぴ N—H基の合計量 1 モルに対して、 1 . 5〜 3 0モル、 好ましく は、 2 〜 1 5モルの範囲である。 反応終了後、 過剰のェピク ロルヒ ドリ ンを留 去し、 残留物を トルエン、 メチルイ ソプチルケ ト ン等の溶剤に溶解し、 濾過し、 水洗して無機塩を除去し、 次いで溶剤を留去するこ とによ り 目 的のエポキシ樹脂を得ることができる。 本発明のエポキシ樹脂を配合したエポキシ樹脂組成物は、 エポキシ樹 脂及び硬化剤よ り なるエポキシ樹脂組成物であって、 エポキシ樹脂成分 と して上記一般式 IIで表ざれるエポキシ樹脂を必須成分と して配合したも のである。 ' 上記一般式 IIで表されるエポキシ樹脂を必須成分とする場合の硬化剤と しては、 一般にエポキシ樹脂の硬化剤と して知られているものはすべて 使用できる。 例えば、 ジシアンジア ミ ド、 多価フエノール類、 酸無水物 類、 芳香族及ぴ脂肪族ァミ ン類等がある。 一般式 Iで表されるイ ン ドール 樹脂を硬化剤と して使用することもよい。
多価フ ノール類、 酸無水物類、 芳香族及び脂肪族ァミ ン類の具体例 は、 一般式 Iで表されるィン ドール樹脂を配合したエポキシ樹脂組成物の 項で説明したと同様なものが挙げられるので、 前記記載が参照される。
また、 このエポキシ樹脂組成物中には、 エポキシ樹脂成分と して、 一 般式 Iで表される本発明のエポキシ樹脂以外に別種のエポキシ樹脂を配合 してもよい。 かかるエポキシ樹脂の具体例は、 一般式 Iで表されるインドール樹脂を 配合したエポキシ樹脂組成物の項で説明したと同様なものが挙げられる ので、 前記記載が参照される。
そして、 このエポキシ樹脂組成物の場合、 一般.式 IIで表されるエポキシ 樹脂の配合量はエポキシ樹脂全体中、 5〜 1 0 0 %、 好ま しく は 6 0〜 1 0 0 %の範囲であることがよい。
また、 本発明のエポキシ樹脂組成物中には、 ポリエステル、 ポリ アミ ド、 ポリ イ ミ ド、 ポリエーテル、 ポリ,ウレタン、 石油樹脂、 イ ンデンク マロン樹脂、 フ ノキシ樹脂等のオリ ゴマー又は高分子化合物を適宜配 合してもよいし、 無機充填剤、 顔料、 難然剤、 揺変性付与剤、 カ ツプリ ング剤、 流動性向上剤等の添加剤を配合してもよい。
更に必要に応じて、 カルナバワ ックス、 O Pワックス等の離型剤、 Ί 一グリ シ ドキシプロ ピル ト リ メ トキシシラン等のカ ップリ ング剤、 カー ポンプラ ック'等の着色剤、 三酸化アンチモン等の難燃剤、 シリ コンオイ ル等の低応力化剤、 ステアリ ン酸カルシウム等の滑剤等を使用できる。
また、 必要に応じて、 公知の硬化促進剤を用いることができる。 例を 挙げれば、 アミ ン類、 イ ミダゾール類、 有機ホスフ ィ ン類、 ノレイ ス酸等 がある。 添加量と しては、 通常、 エポキシ樹脂 1 0 0重量部に対して、 0 . 2から 5重量部の範囲である。
かかる充填剤や顔料等の具体例は、 一般式 Iで表されるインドール樹脂 を配合したエポキシ樹脂組成物の項で説明したと同様なものが挙げられ るので、 前記記載が参照される。
この樹脂組成物を硬化させて得られる硬化物は、 このエポキシ樹脂組 成物を注型、 圧縮成形、 トランスファー成形等の方法によ り 、 成形加工 して得ることができる。 この際の温度は通常、 1 2 0〜 2 2 0 °Cの範囲 である。 図面の簡単な説明 図 1 は本発明のイ ン.ドール樹脂 Aの赤外吸収 (IR) スペク トル、.図 2 はィンドーノレ樹脂 Aの H— NMRスぺク トルである。 図 3は本発明のェポ キシ樹脂 Aの IRスぺク トル、 図 4 はエポキシ樹脂 Aの H—NMRスぺク ト ノレである。 発明を実施するための最良の形態 以下、 本発明の実施例を示す。 実施例中、 %は重量%であり、 部は重 量部である。 実施例 1
撹拌機、 冷却管、 窒素導入管のついた 5 0 0 ml、 3 ロセパラブルフラ ス コに、 イ ン ドーノレ 2 0 0 g、 9 2 %パラホゾレムァノレデヒ ド 2 2 . 3 g、 及びしゆ う酸 4 . O gを仕込み、 窒素を導入しながら 9 0 °Cに加熱し溶解 させた。 その後、 撹拌しながら 1 5 0 °Cに昇温し 5時間反応させた。 こ の間、 反応によ り生成する水は系外.に除いた。 その後、 減圧下、 2 0 0 °Cに昇温し、 縮合水及び未反応イ ン ドールを除去し、 イ ン ドール樹脂 A 1 9 0 gを得た。
得られた樹脂 Aの軟化点は 1 2 3 °C、 1 5 0 °Cにおける溶融粘度は 0 . 2 4 Pa - sであった。 G P C測定によ り求めた残存モノマ一量は 0. 1 wt%であった。 G P Cチャートから読み取った各ピークの割合は、 一般 式 Iにおける n = 1の化合物が 4 5. 0 %、 n = 2.の化合物が 3 0. 2 %、 n = 3 の化合物が 1 3. 7 %、 n ≥ 4の化合物が 1 0. 1 %であった。 赤外吸収スぺク トルを図 1に、 H— NMRスぺク トルを図 2に示す。
ここで、 粘度は I C I コーンプレー ト型粘度計を用い、 軟化点は J I S -6 9 1 1に従い環球法で測定した。 また、 G P C測定条件は、 装 置 ; H L C-8 2 A (東ソ一社製) 、 カラム ; T S K-G E L 2 0 0 0 X 3 本及び T S K-G E L 4 0 0 0 X 1本 (いずれも東ソ一社製) 、 溶媒 ; テ トラヒ ドロフラ ン、 流量 ; 1 ml/min、 温度 ; 3 8 °C、 検出器 ; R Γであ り、 検量線にはポリ スチレン標準液を使用した。 赤外吸収スペク トルは K B r錠剤成形法により求め、 H— NMRスペク トルは、 装置 ; J NM- G X 4 0 0、 日本電子 (株) 製) を用い、 ジメチルスルホキシ ド— d 6 中で測定した。 実施例 2
9 2 %パラホルムアルデヒ ド 2 7. 9 gを用いた他は、 実施例 1 と同様 に反応を行い、 イ ン ドール樹脂 B 1 9 4 gを得た。
この樹脂の軟化点は 1 0 4 °C、 1 5 0 °Cにおける溶融粘度は 0 . 8 Pa■ sであった。 G P C測定により求めた残存モノマー量は 0. 2 wt%で あった。 G P Cチャートから読み取った各ピークの割合は、 式 Iにおける 11 = 1 の化合物カ 3 6. 3 %、 n = 2の化合物が 3 0. 0 %、 n = 3の 化合物が 1 5. 8 %、 n≥ 4の化合物が 1 7. 1 %であった。 実施例 3
9 2 %パラホルムアルデヒ ド 3 3 . 5 gを用いた他は、 実施例 1 と同様 に反応を行い、 イ ン ドール樹脂 C 1 9 8 gを得た。 この樹脂の軟化点は 9 3 °C、 1 5 0 °Cにおける溶融粘度は 7 . 0 Pa ' sであった。 G P C測定に より求めた残存モノマー量は 0. 3 wt%であった。 各ピークの割合は、 n = l の化合物が 2 4 . 8 %、 n = 2の化合物力 2 8 . 0 %、 n = 3の 化合物が 1 7. 9 %、 n≥ 4の化合物が 2 9. 1 %であった。 実施例 4
撹拌機、 冷却管、 窒素導入管のついた 5 0 0 ml、 3 ロセパラブルフラ スコに、 イ ン ドーゾレ 2 0 0 g、 p —キシリ レンジクロライ ド 7 5 gを仕込 み、 窒素を導入しながら 9 0 °Cに加熱し溶解させた。 その後、 撹拌しな がら 1 2 0 °Cに昇温し 4時間反応させた。 この間、 反応によ り生成する 塩酸は系外に除いた。 その後、 減圧下、 2 0 0 °Cに昇温し未反応イン ド ールを除去し茶褐色のインドール樹脂 D、 1 2 8 gを得た。 この樹脂 Dの 軟化点は 9 0 °C、 1 5 0 °Cにおける溶融粘度は 0. 3 Pa · sであった。
G P C測定により求めた残存モノマー量は 0 . 2 wt%であった。 G P Cチヤ一トから読み取った各ピークの割合は、 式 Iにおける n = 1 の化合 物力 S 5 1 . 4 %、 n = 2の化合物力 S 2 7 . 3 %、 n = 3の化合物;^ 1 3 , 4 %、 n 4の化合物が 7. 7 %であった。 実施例 5
1 5 0 °Cに溶融させた 1 0 0 gのフエノールノボラック (軟化点 6 0 °C 〇^[当量 1 0 5 ) 中に、 実施例 1で得たィンドール樹脂 1 0 0 gを加え、 均一に溶融させてフヱノール樹脂組成物 A2 0 0 gを得た。 このフエノー ル樹脂組成物の軟化点は 9 7。C、 1 5 0°Cでの溶融粘度は 4. 6 Pa - sで めつ 7こ。 実施例 6〜 1 3及び比較例 1 ~ 2
エポキシ樹脂成分と して o -ク レゾールノボラ ック型エポキシ樹脂 (OCNE;エポキシ当量 2 0 0、 軟化点 7 0 °C) 、 硬化剤と して実施例 1〜 4で得たイ ン ドール樹脂 (樹脂 A、 B、 C、 D) 、 実施例 5で得た フエノール樹脂組成物 (PRC-A) 、 フエノールノボラ ッ ク (硬化剤 A ; 〇^1当量 1 0 3、 軟化点 8 2°C) 、 フエノールァラルキル樹脂 (硬化剤 B ; 三井化学社製、 X L - 2 2 5 -L L、 OH当量 1 7 2、 軟化点 7 4 °C ) を用い、 充填剤と してシリ カ (平均粒径、 2 2 μ m) 、 硬化促進剤と し て ト リ フヱニルホスフィ ンを表 1に示す配合で混練しエポキシ樹脂組成 物を得た。 このエポキシ樹脂組成物を用いて 1 7 5 °Cにて成形し、 1 7 5 °Cにて 1 2時間ポス トキュアを行い、 硬化物試験片を得た後、 各種物 性測定に供した。
ガラス転移点(Tg)は、 熱機械測定装置により、 昇温速度 1 0 °C/分の 条件で求めた。 吸水率は、 本エポキシ樹脂組成物を用いて、 直径 5 0匪 厚さ 3龍の円盤を成形し、 ポス トキュア後 1 3 3 °C、 3 atm、 9 6 hr吸湿 させたときのものである。 接着性の評価は、 エポキシ樹脂組成物を用い て、 銅箔上に 1 7 5 °Cにて圧縮成形後、 1 7 5 °Cにて 1 2時間ボス トキ ユアを行い、 ピール強度を測定した。 難燃性は、 厚さ 1 / 1 6イ ンチの 試験片を成形し、 U L 9 4 V-0規格によって評価し、 5本の試験片での 合計の燃焼時間で表した。 配合組成を表 1に、 測定結果を表 2に示す。 表 1
Figure imgf000027_0001
表 2
Figure imgf000027_0002
実施例 1 4
撹拌機、 冷却管、 窒素導入管のついた 5 0 0 mlの 3 ロセパラブルフラ ス コに、 イ ン ドール 2 0 0 g 9 2 0ラホルムアルデヒ ド 1 6 . 7 g及 びしゅう酸 2. 2 gを仕込み、 窒素を導入しながら 9 0 °Cに加熱し溶解さ せた。 その後、 撹拌しながら 1 5 0 °Cに昇温し 5時間反応させた。 この 間、 反応により生成する水は系外に除いた。 その後、 減圧下、 2 0 0 °C に昇温し、 縮合水及び未反応インドールを除去し、 インドール樹脂 E 1 3 0gを得た。 このイ ン ドール樹脂 Eの軟化点は 8 4 °C、 1 5 0°Cにおけ る溶融粘度は 0. 0 8 Pa■ sであった。 G P C測定により求めたイ ン ド ール 2量体の含有量が 5 8. 2 %、 3量体が 2 8. 1 %、 4量体が 8. 9 %、 5量体以上の化合物が 4. 6 %であった。 残存モノ マー量は 0. 1 w t %であった。 実施例 1 5
撹拌機、 冷却管、 窒素導入管のついた 5 0 0 mlの 3 ロセパラブルフラ ス コに、 イ ン ドール 3 5 l g、 メタノール 1 0 O gを仕込み、 窒素を導入 しながら 8 0 °Cに加熱し溶解させた。 その後、 撹拌しながら 3 7 %ホル ムアルデヒ ド溶液 2 5. Ogを滴下し、 1 5 0 °Cまで昇温し 7時間反応さ せた。 この間、 反応により生成する水は系外に除いた。 その後、 減圧下- 2 0 0 °Cに昇温し、 縮合水及び未反応イ ン ドールを除去し、 イ ン ドール 2量体からなるイ ン ドール樹脂 F 7 0 gを得た。 イ ソプロピルアルコール にて再結晶を行った後のイ ン ドール榭脂 Fの融点は 1 5 9〜 1 6 1 °C、 G P C'測定により求めた n =lのインドール 2量体の含有量は 9 8. 0 %で あった。 実施例 1 6
撹拌機、 冷却管、 窒素導入管のついた 5 0 0 ml、 3 ロセパラブルフラ ス コに、 イ ン ドーノレ 2 0 0 g、 p—キシリ レンジク ロ ライ ド 9 O gを仕込 み、 窒素を導入しながら 9 0 °Cに加熱し溶解させた。 その後、 撹拌しな がら 1 2 0 °Cに昇温し 4時間反応させた。 この間、 反応によ り生成する 塩酸は系外に除いた。 その後、 減圧下、 2 0 0 °Cに昇温し未反応インド ールを除去し茶褐色のイ ン ドール樹脂 G1 5 3 gを得た。
この樹脂 Gの軟化点は 9 8 °C、 1 5 0 °Cにおける溶融粘度は 0. 8 4 Pa■ sであった。 G P C測定により求めた残存モノマー量は 0. 1 wt%で あった。 G P Cチャートから読み取った各ピークの割合は、 n = lの化 合物が 4 0. 1 %、 n = 2の化合物が 2 3 . 3 %、 n = 3の化合物が 1 4. 5 %、 ' n 4の化合物が 1 3. 6 %であった。 実施例 1. 7
実施例 1 4で得たィ ン ドール樹脂 E 1 0 0gをェピク ロノレヒ ドリ ン 7 0 0 gに溶解し、 更に塩化べンジルト リェチルアンモユウム 1 8. 3 gを加 えた。 その後、 撹拌しながら 2 5 °Cにて 4 8 %水酸化カリ ゥム水溶液 4 7 0 gを 3時間かけて滴下し、 滴下終了後更に 1時間反応を継続した。 反 応終了後、 濾過により生成した塩を除き、 更に水洗したのちェピクロル ヒ ドリ ンを留去し、 エポキシ樹脂 1 2 5 gを得た (エポキシ樹脂 A) 。 このエポキシ樹脂 Aの軟化点は 8 8 °C、 溶融粘度は 1 . 0 8 Pa ' s、 ェ ポキシ当量は 2 2 0であった。 また、 このエポキシ樹脂 Aの G P Cチヤ ー トから読み取った各ピークの割合は、 n == 1 の化合物が 3 8. 1 %、 n = 2の化合物が 2 4. 8 % , n = 3の化合物が 1 6. 2 %、 n 4の 化合物が 2 0. 9 %であった。 なお、 この G P Cチャ^ "トから読み取つ たエポキシ樹脂の nは、 エポキシ基の開環反応により生じ.た重合物も同 時にカウン トするため、 化合物中のインドール環の数から 1 を差し引い た数ィ直と理解される。 この樹脂の IRスぺク トルを図 3に、 H—NMRスぺ ク トノレを図 4に示す。 実施例 1 8
実施例 1 5で得たイ ン ドール 2量体 1 0 0 gをェピク ロルヒ ドリ ン 7 0 0 g、 ジグライム 1 4 0 gに溶解させた。 その後、 9 9 %水酸化ナト リ ウ ム 8 0 . 6 g、 純水 5 . O gを加え、 1 2 0 °Cまで昇温し 1 0時間反応さ せた。 この間、 反応により生成する水は系外に除いた。 反応終了後、 濾 過により生成した塩を除き、 更に水洗したのちェピク ロルヒ ドリ ンを留 去し、 エポキシ樹脂 B 8 7 gを得た。 このエポキシ樹脂 Bの軟化点は 4 5 °C、 溶融粘度は 0 . 0 3 7 Pa · s、 エポキシ当量は 2 1 6であった。 実施例 1 9
実施例 1 6 で得たィン ドール樹脂 G 1 0 0 gをェピク ロルヒ ドリ ン 7 0 0 gに溶解し、 更に塩化ベンジル ト リエチルアンモニゥム 3 gを加えた。 その後、 撹拌しながら 2 5 °Cにて 4 8 %水酸化ナト リ ゥム水溶液 1 5 0 g を 3時間かけて滴下し、 滴下終了後更に 1時間反応を継続した。 反応終 了後、 濾過によ り生成した塩を除き、 更に水洗したのちェピクロルヒ ド リ ンを留去し、 エポキシ樹脂 C 1 2 6 gを得た。 このエポキシ樹脂 Cの軟 化点は 7 4 °C、 溶融粘度は 0 . 3 1 Pa■ s、 エポキシ当量は 2 3 0であつ た。 実施例 2 0〜 2 5、 比較例 3〜 5 ェポキシ樹脂成分と して、 実施例 1 7から 1 9で合成したェポキシ樹 脂 A、 B及び C、 o -クレゾ一ルノボラック型エポキシ樹脂 (エポキシ樹 脂 D ; 日本化薬製、 EOCN-1020-65 ; エポキシ当量 200、 加水分解性塩素 400ppm、 軟化点 65°C) 、 ビフエ-ル型エポキシ樹脂 (エポキシ樹脂 E ; 油化シェルエポキシ製、 YX4000HK; エポキシ当量 195、 加水分解性塩素 450ppm, 融点 105°C) を用い、 硬化剤成分と して、 実施例 1 4で合成し たイ ン ドール樹脂 E、 フエノ ールノポラック (硬化剤 C ; 群栄化学製、 PSM-4261 ; OH当量 103、 軟化点 80°C) 、 1 —ナフ トールァラルキル型樹 脂 (硬化剤 D ; 新日鐡化学製、 SN-475 ; OH当量 210、 軟化点 77°C) を用 いた。 更に、 充填剤と して球状シリ カ (平均粒径 18/i m) 、 硬化促進剤 と して ト リ フエニルホスフィンを用い、 表 3に示す配合でエポキシ樹脂 組成物を得た。 表中の数値は配合における重量部を示す。
このエポキシ樹脂組成物を用いて 1 7 5 °Cで成形し、 更に 1 8 0でに て 1 2時間ボス トキユアを行い、 硬化物試験片を得た後、 各種物性測定 に供した。 結果を表 4に示す。
なお、 線膨張係数の測定は、 熱機械測定装置を用いて 1 0 °C/分の昇 温速度で求めた。 また吸水率は、 直径 5 0 mm、 厚さ 3 mmの円形の試験 片を用いて、 8 5 °C、 8 5 % R Hの条件で 1 0 0時間吸湿させた後の重 量変化率と した。 接着強度は、 銅板 2枚の間に 2 5 mm X 1 2. 5 mm X 0. 5 mmの成形物を圧縮成形機により 1 7' 5 °Cで成形し、 1 8 0 °C にて 1 2時間ボス トキュアを行った後、 引張剪断強度を求めることによ り評価した。 その他の測定は、 実施例 6〜 1 3の測定条件と同様にして 行った。 表 3
Figure imgf000032_0001
=1) すべての試験片において 自 消せずに炎が試験片上端まで到達 産業上の利用可能性 本発明のィンドール樹脂は、 エポキシ樹脂の中間体や硬化剤と して有 用であり、 エポキシ樹脂組成物に応用した場合、 優れた高耐熱性、 耐湿 性を有すると ともに、 難燃性及び異種材料との高密着性に優れた硬化物 を与え、 電気 · 電子部品類の封止、 回路基板材料等の用途に好適に使用 することが可能である。 また、 本発明のエポキシ樹脂を用いたエポキシ 樹脂組成物を硬化して得られる硬化物は、 難燃性、 高接着性、 耐湿性、 及び耐熱性に優れた性能を有し、 積層、 成形、 注型、 接着等の用途に好 適に使用することができる。

Claims

請求の範囲
( 1 ) 下記一般式 Iで表されるイ ン ドール樹脂,
Figure imgf000034_0001
I
(但し、 は水素原子、 水酸基、 炭素数 1〜 8の炭化水素基、 炭素数 1 〜 6のアルコキシ基又はハロゲン原子を示し、 Xは下記一般式 ( a ) 又 は (b ) で表される架橋基を示し、 nは 1〜 2 0の整数を示す)
Figure imgf000034_0002
Figure imgf000034_0003
( b )
(但し、 R 2、 R3は水素原子又は炭素数 1〜 6の炭化水素基を示し、 R4、 R5は水素原子又はメチル基を示し、 mは 1又は 2を示す。 )
( 2 ) イ ン ドール類 1モルに対して、 0. 1〜 0. 9モルの下記一般 式 ( c ) 又は ( d ) で表される架橋剤を酸触媒の存在下に反応させて得 られる請求の範囲 1に記载のィンドール樹脂。
Figure imgf000035_0001
(但し、 R 2、 R3は水素原子又は炭素数 1〜 6の炭化水素基を示し、 R4、 R5は水素原子又はメチル基を示し、 Yは水酸基、 ハロゲン又は炭素数 1 〜 6のアルコキシ基を示し、 mは 1又は 2を示す)
( 3 ) イ ン ドール樹脂の軟化点が 4 0〜 2 0 0 °Cである請求の範囲 2 に記载のィンドール樹脂。
( 4 ) フ エ ノ ール^合物を 5 0 wt%未満含み、 イ ン ドーノレ類を 5 0 wt%以上含む芳香族原料を、 ィ ン ドール類とフ ノール化合物の合計 1 モルに対して、 0. 1〜 0. 9モルの架橋剤を酸触媒の存在下に反応さ せることを特徴とする軟化点が 4 0〜 2 0 0 °Cのィンドール樹脂の製造 方法。
( 5 ) 下記一般式 Iで表されるィンドール樹脂
Figure imgf000035_0002
(伹し、 は水素原子、 水酸基、 炭素数 1〜 8の炭化水素基、 炭素数 1 〜 6のアルコキシ基又はハロゲン原子を示し、 Xは下記一般式 ( a ) 又 は ( b ) で表される架橋基を示し、 nは 1〜 2 0の整数を示す)
Figure imgf000036_0001
Figure imgf000036_0002
(伹し、 R 2、 R3は水素原子又は炭素数 1〜 6の炭化水素基を示し、 R4、 R 5は水素原子又はメチル基を示し、 mは 1又は 2を示す) を、 アルカリ 金属水酸化物の存在下でェピクロ ヒ ドリ ンと反応させることによって得 られる下記一般式 IIで表されるエポキシ樹脂。
II
Figure imgf000036_0003
(但し、 は水素原子、 炭素数 1〜 8の炭化水素基、 炭素数 1 〜 6のァ ルコキシ基、 グリシジルォキシ基又はハロゲン原子を示し、 Xは下記一 般式 ( a ) 又は下記一般式 (b ) で表される架橋基を示し、 nは 1〜 2 0の整数を示し、 Gはグリシジル基を示す)
Figure imgf000036_0004
Figure imgf000036_0005
(伹し、 R 2、 R3は水素原子又は炭素数 1〜 6の炭化水素基を示し、 R4、 R 5は水素原子又はメチル基を示し、 mは 1又は 2を示す)
( 6 ) エポキシ樹脂及び硬化剤を必須成分と して配合してなるェポキ シ樹脂組成物において、 請求の範囲 5記載のエポキシ樹脂をエポキシ樹 脂の一部又は全部と して配合してなるエポキシ樹脂組成物。
( 7 ) 請求の範囲 6に記載のエポキシ樹脂組成物を硬化してなる硬化 物。
( 8 ) 請求の範囲 1 に記載のインドール樹脂を、 エポキシ樹脂の硬化 剤と して使用することを特徴とする樹脂用硬化剤。
( 9 ) 請求の範囲 1記載のィンドール樹脂 2〜 1 0 0重量部に対し、 フ ェノール樹脂又はエポキシ樹脂 1 0 0重量部を配合してなる樹脂組成物 (
( 1 0 ) 請求の範囲 9に記載の樹脂組成物を硬化してなる硬化物。
PCT/JP2003/001380 2002-02-12 2003-02-10 Resines indole, resines epoxy et compositions de resines contenant ces composes WO2003068837A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60320947T DE60320947D1 (de) 2002-02-12 2003-02-10 Indolharze, epoxidharze und diese enthaltende harzzusammensetzungen
AU2003207209A AU2003207209A1 (en) 2002-02-12 2003-02-10 Indole resins, epoxy resins and resin compositions containing the same
EP03703300A EP1475398B1 (en) 2002-02-12 2003-02-10 Indole resins, epoxy resins and resin compositions containing the same
KR10-2004-7012478A KR20040095219A (ko) 2002-02-12 2003-02-10 인돌 수지, 에폭시 수지 및 이를 함유하는 수지 조성물
US10/504,272 US7259213B2 (en) 2002-02-12 2003-02-10 Indole resins epoxy resins and resin compositions containing the same
JP2003567961A JPWO2003068837A1 (ja) 2002-02-12 2003-02-10 インドール樹脂、エポキシ樹脂及びこれらの樹脂を含む樹脂組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002034302 2002-02-12
JP2002-34302 2002-02-12
JP2002327080 2002-11-11
JP2002-327080 2002-11-11

Publications (1)

Publication Number Publication Date
WO2003068837A1 true WO2003068837A1 (fr) 2003-08-21

Family

ID=27736478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001380 WO2003068837A1 (fr) 2002-02-12 2003-02-10 Resines indole, resines epoxy et compositions de resines contenant ces composes

Country Status (9)

Country Link
US (1) US7259213B2 (ja)
EP (1) EP1475398B1 (ja)
JP (1) JPWO2003068837A1 (ja)
KR (1) KR20040095219A (ja)
CN (1) CN1283682C (ja)
AT (1) ATE395332T1 (ja)
AU (1) AU2003207209A1 (ja)
DE (1) DE60320947D1 (ja)
WO (1) WO2003068837A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043524A1 (ja) * 2004-10-21 2006-04-27 Nippon Steel Chemical Co., Ltd. インドール骨格含有樹脂、インドール骨格含有エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2006117790A (ja) * 2004-10-21 2006-05-11 Nippon Steel Chem Co Ltd インドール骨格含有樹脂、エポキシ樹脂組成物及びその硬化物
JP2006249420A (ja) * 2005-02-08 2006-09-21 Nippon Steel Chem Co Ltd インドール骨格含有エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2008133472A (ja) * 2007-11-22 2008-06-12 Jfe Chemical Corp 高分子化合物の製造方法および高分子化合物並びに発光材料
WO2013146670A1 (ja) * 2012-03-27 2013-10-03 日産化学工業株式会社 フェニルインドール含有ノボラック樹脂を含むレジスト下層膜形成組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090291291A1 (en) * 2006-06-23 2009-11-26 Avery Dennison Corporation Flame retardant pressure sensitive adhesive
KR101852460B1 (ko) 2015-12-16 2018-04-26 삼성에스디아이 주식회사 중합체, 유기막 조성물, 및 패턴형성방법
CN106519583B (zh) * 2016-12-06 2018-08-07 新誉集团有限公司 一种无卤阻燃手糊成型环氧树脂组合物及其制备方法
KR102126045B1 (ko) * 2017-07-21 2020-06-23 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
JP7154194B2 (ja) * 2019-07-02 2022-10-17 サンスター技研株式会社 低温硬化性組成物
KR102101275B1 (ko) * 2019-10-10 2020-05-15 로움하이텍 주식회사 신규 중합체 및 이를 포함하는 반도체 제조용 레지스트 하층막 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109934A (ja) * 1991-10-16 1993-04-30 Nippon Steel Chem Co Ltd 半導体封止用樹脂組成物
JPH08193110A (ja) * 1995-01-13 1996-07-30 Nippon Kayaku Co Ltd ノボラック型樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JPH1160665A (ja) * 1997-08-22 1999-03-02 Nippon Kayaku Co Ltd ノボラック型樹脂、エポキシ樹脂、エポキシ樹脂組成物およびその硬化物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205424A (en) * 1981-06-11 1982-12-16 Kanegafuchi Chem Ind Co Ltd Polyphenylene ether copolymer
JPH11140166A (ja) 1997-11-11 1999-05-25 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
US6204274B1 (en) * 1998-04-29 2001-03-20 American Home Products Corporation Indolyl derivatives as serotonergic agents
JP4401478B2 (ja) * 1999-07-12 2010-01-20 新日鐵化学株式会社 新規な芳香族オリゴマー、それを含むエポキシ樹脂組成物及びその硬化物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109934A (ja) * 1991-10-16 1993-04-30 Nippon Steel Chem Co Ltd 半導体封止用樹脂組成物
JPH08193110A (ja) * 1995-01-13 1996-07-30 Nippon Kayaku Co Ltd ノボラック型樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JPH1160665A (ja) * 1997-08-22 1999-03-02 Nippon Kayaku Co Ltd ノボラック型樹脂、エポキシ樹脂、エポキシ樹脂組成物およびその硬化物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BERGMAN J.: "Condensation of indole and formaldehyde in the presence pf air and sensitizers", TETRAHEDRON, vol. 26, no. 13, July 1970 (1970-07-01), pages 3353 - 3355, XP002952900 *
BLOCHAM JASON ET AL.: "Synthesis and solid state structures of N, N'-linked carbazoles and indoles", TETRAHEDRON, vol. 58, no. 19, May 2002 (2002-05-01), pages 3709 - 3720, XP004350394 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043524A1 (ja) * 2004-10-21 2006-04-27 Nippon Steel Chemical Co., Ltd. インドール骨格含有樹脂、インドール骨格含有エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2006117790A (ja) * 2004-10-21 2006-05-11 Nippon Steel Chem Co Ltd インドール骨格含有樹脂、エポキシ樹脂組成物及びその硬化物
JP2006249420A (ja) * 2005-02-08 2006-09-21 Nippon Steel Chem Co Ltd インドール骨格含有エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2008133472A (ja) * 2007-11-22 2008-06-12 Jfe Chemical Corp 高分子化合物の製造方法および高分子化合物並びに発光材料
WO2013146670A1 (ja) * 2012-03-27 2013-10-03 日産化学工業株式会社 フェニルインドール含有ノボラック樹脂を含むレジスト下層膜形成組成物
US8993215B2 (en) 2012-03-27 2015-03-31 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition containing phenylindole-containing novolac resin
JPWO2013146670A1 (ja) * 2012-03-27 2015-12-14 日産化学工業株式会社 フェニルインドール含有ノボラック樹脂を含むレジスト下層膜形成組成物

Also Published As

Publication number Publication date
JPWO2003068837A1 (ja) 2005-06-02
US20050131167A1 (en) 2005-06-16
DE60320947D1 (de) 2008-06-26
CN1283682C (zh) 2006-11-08
EP1475398A1 (en) 2004-11-10
AU2003207209A1 (en) 2003-09-04
ATE395332T1 (de) 2008-05-15
KR20040095219A (ko) 2004-11-12
US7259213B2 (en) 2007-08-21
EP1475398B1 (en) 2008-05-14
EP1475398A4 (en) 2005-12-28
CN1630673A (zh) 2005-06-22

Similar Documents

Publication Publication Date Title
JP5320130B2 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
JP5931234B2 (ja) エポキシ樹脂組成物の製造方法
JP5000191B2 (ja) カルバゾール骨格含有樹脂、カルバゾール骨格含有エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5548562B2 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
WO2003068837A1 (fr) Resines indole, resines epoxy et compositions de resines contenant ces composes
WO2013125620A1 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
KR100724996B1 (ko) 에폭시 수지, 그 제조방법, 에폭시 수지 조성물 및 경화물
JP5734603B2 (ja) フェノール性樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及び硬化物
JP4188022B2 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造法、それらを用いたエポキシ樹脂組成物及び硬化物
JP2007297538A (ja) インドール骨格含有樹脂、インドール骨格含有エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2004123859A (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造法、それらを用いたエポキシ樹脂組成物及び硬化物
JP2010235823A (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2001114863A (ja) エポキシ樹脂組成物及びその硬化物
JP4667753B2 (ja) エポキシ樹脂の製造方法、エポキシ樹脂組成物及び硬化物
WO2006043524A1 (ja) インドール骨格含有樹脂、インドール骨格含有エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2004346115A (ja) エポキシ樹脂、エポキシ樹脂組成物及び硬化物
JP2008231071A (ja) 新規多価ヒドロキシ化合物並びにエポキシ樹脂組成物及びその硬化物
JP7158228B2 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
JP2007297539A (ja) エポキシ樹脂組成物及び硬化物
JP2006117790A (ja) インドール骨格含有樹脂、エポキシ樹脂組成物及びその硬化物
JP4813201B2 (ja) インドール骨格含有エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP3978094B2 (ja) ヒドロキシ化合物、エポキシ樹脂、その製造方法、エポキシ樹脂組成物及び硬化物
JP2023118158A (ja) ジヒドロキシ樹脂、エポキシ樹脂、その製造方法、及びエポキシ樹脂組成物並びに硬化物
JP2023004199A (ja) エポキシ樹脂、その製造方法、ジヒドロキシ化合物、それらを用いたエポキシ樹脂組成物及び硬化物
WO2008114766A1 (ja) 新規多価ヒドロキシ化合物、該化合物の製造方法、該化合物を用いたエポキシ樹脂並びにエポキシ樹脂組成物及びその硬化物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003567961

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003703300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038037688

Country of ref document: CN

Ref document number: 1020047012478

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003703300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10504272

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003703300

Country of ref document: EP