WO2003066695A2 - Siliconkautschuk-pfropfcopolymerisate mit kern-hülle-struktur, schlagzähmodifizierte formmassen und formkörper sowie verfahren zu deren herstellung - Google Patents

Siliconkautschuk-pfropfcopolymerisate mit kern-hülle-struktur, schlagzähmodifizierte formmassen und formkörper sowie verfahren zu deren herstellung Download PDF

Info

Publication number
WO2003066695A2
WO2003066695A2 PCT/EP2003/000267 EP0300267W WO03066695A2 WO 2003066695 A2 WO2003066695 A2 WO 2003066695A2 EP 0300267 W EP0300267 W EP 0300267W WO 03066695 A2 WO03066695 A2 WO 03066695A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicone rubber
graft copolymers
weight
rubber graft
shell
Prior art date
Application number
PCT/EP2003/000267
Other languages
English (en)
French (fr)
Other versions
WO2003066695A3 (de
Inventor
Klaus Schultes
Reiner Müller
Werner Höss
Klaus Albrecht
Original Assignee
Röhm GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Röhm GmbH & Co. KG filed Critical Röhm GmbH & Co. KG
Priority to MXPA04007629A priority Critical patent/MXPA04007629A/es
Priority to AU2003202558A priority patent/AU2003202558A1/en
Priority to US10/501,467 priority patent/US20050124761A1/en
Priority to KR1020047012228A priority patent/KR100854939B1/ko
Priority to JP2003566062A priority patent/JP2005517058A/ja
Priority to EP03701507A priority patent/EP1472297A2/de
Priority to CA002471332A priority patent/CA2471332A1/en
Publication of WO2003066695A2 publication Critical patent/WO2003066695A2/de
Publication of WO2003066695A3 publication Critical patent/WO2003066695A3/de
Priority to US11/970,190 priority patent/US20080305335A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2989Microcapsule with solid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Definitions

  • Silicone rubber graft copolymers with a core-shell structure Silicone rubber graft copolymers with a core-shell structure, impact-modified molding compounds and moldings, and processes for their production
  • the present invention relates to silicone rubber graft copolymers with a core-shell structure and to impact-resistant molding compositions and moldings obtainable therefrom, and to processes for their production
  • Shaped bodies are required for various applications, which must have excellent impact strength even in the cold.
  • this includes components for refrigerators, pipes and automobiles that can be exposed to the cold.
  • plastics are equipped with so-called impact modifiers.
  • Such additives are well known.
  • silicone rubber graft copolymers that have a core-shell structure
  • K / S have been used to improve the impact strength.
  • such modifiers also have a structure that comprises two shells (K / S1 / S2).
  • EP 430 134 discloses the production of modifiers to improve the impact strength of molding compositions.
  • a core consisting of a silicone rubber and an acrylic rubber is grafted with vinyl monomers.
  • the material is also used for the impact modification of molding compounds - however, only polycarbonate (PC) and / or polyester molding compounds are mentioned here.
  • the document US 4,690,986 represents an impact-resistant molding composition which is produced on the basis of a graft copolymer (via emulsion polymerization).
  • the graft copolymer is a K / S product.
  • the core consists of a crosslinking agent (siloxane with methacrylate group connected via several CH 2 groups) and tetrafunctional silane as a crosslinking agent. Both the molding compound and a manufacturing process are described.
  • JP 612,135,462 describes a molding composition which is produced on the basis of a graft copolymer (via emulsion polymerization).
  • the graft copolymer consists of siloxane grafted with vinyl monomers.
  • EP 308 198 discloses a molding compound made of PMMI and grafted polysiloxane.
  • the grafted polysiloxane is produced by grafting monomers and at least one "graft crosslinking agent".
  • the graft crosslinking agent is the crosslinking agent described in US Pat. No. 4,690,986 (siloxane with methacrylate group connected via several CH groups).
  • the tetrafunctional silane is also mentioned as a crosslinking agent in the subclaims.
  • EP 332 188 describes graft copolymers which are similar to those described in EP 430134. These graft copolymers are used to modify
  • Molding compounds used.
  • particles are grafted with styrene and these are used to modify a polyether / polysulfone blend.
  • DE 43 42 ' 048 discloses graft copolymers with a K / S1 / S2 structure.
  • a silicone rubber acts as the core, Sl is predominantly made of acrylates (min. 70%) and for the production of the shell S2 z.
  • B. monomer mixtures are used which contain 50-100% methyl methacrylate.
  • Impact-resistant molding compositions based on the graft copolymers described are also shown in the subclaims, the polymer for the matrix also being very broad here.
  • a molding composition which consists of 20-80% conventional polymers and 80-20% graft copolymers is shown in DE 3839287.
  • the graft copolymer has a K / SI / S2 structure, the core being made of silicone rubber and SI made of acrylate rubber.
  • S2 is produced by redox polymerization (emulsion) of various monomers. As an example, only an impact modified SAN molding compound is listed.
  • the publication WO 99141315 discloses dispersions which contain a mixture of particles consisting of vinyl copolymers and consisting of PMMA-coated silicone rubber. This dispersion can include be used as impact modifiers.
  • EP 492 376 describes graft copolymers which have a K / S or K / S1 / S2 structure.
  • the core and the optional intermediate shell are made of silicone rubber and are more precisely defined - the outer shell is made by emulsion polymerization of various monomers. It is particularly problematic that the addition of large amounts of additives can lead to a deterioration in the mechanical properties of the plastics, so that the total amounts that can be added are very limited.
  • Another object of the invention was that the modifiers and the molding compositions should be inexpensive to manufacture.
  • the invention was based on the object of providing modifiers which lead to a significant improvement in the impact strength of molding compositions over a wide temperature range.
  • Another object of the present invention was to provide impact-resistant and weather-resistant moldings with excellent mechanical properties which have high impact strength from a temperature of -40 ° C. and above.
  • Claim 17 a solution to the underlying problem.
  • Molding compounds equipped with graft copolymers show very good behavior at low temperatures. Very good impact strength values are achieved in particular at temperatures below 0 ° C.
  • Silicone rubber graft copolymers of the present invention can be produced inexpensively.
  • Moldings obtained from the molding compositions according to the present teaching show an excellent modulus of elasticity.
  • special embodiments show a modulus of elasticity according to ISO 527-2 of at least 1500, preferably at least 1600, particularly preferably at least 1700 MPa.
  • moldings according to the invention are very heat-resistant and weather-resistant.
  • the core a) of the silicone rubber graft copolymer according to the invention comprises organosilicon polymer which has the general formula
  • the radicals R are preferably alkyl radicals, such as the methyl, ethyl, n-propyl, isopropyl, n-butyl, sec. - Butyl, amyl, hexyl radical; Alkenyl residues like that
  • Hydrocarbon radicals such as the chloromethyl, 3-chloropropyl, 3-bromopropyl, 3, 3, 3-trifluoropropyl and 5, 5, 5, 4, 4, 3, 3-heptafluoropentyl radical, and the chlorophenyl radical;
  • Mercaptoalkyl radicals such as the 2-mercaptoethyl and 3-mercaptopropyl radical
  • Cyanoalkyl radicals such as the 2-cyanoethyl and 3-cyanopropyl radicals
  • Aminoalkyl radicals such as the 3-aminopropyl radical
  • Acyloxyalkyl radicals such as the 3-acryloxypropyl and 3-methacryloxypropyl radical
  • Hydroxyalkyl radicals such as the hydroxypropyl radical.
  • radicals methyl, ethyl, propyl, phenyl, ethenyl, 3-methacryloxypropyl and 3-mercaptopropyl are particularly preferred, preferably less than 30 mol% of the radicals in the siloxane polymer being ethenyl, 3-methacryloxypropyl or 3-mercaptopropyl groups.
  • the core a) has vinyl groups before the grafting.
  • This group can be bonded directly to an Si atom or via an alkylene radical such as methylene, ethylene, propylene and butylene.
  • the vinyl groups of the core c) according to the invention can be obtained, inter alia, by using organic silicon compounds which have ethenyl, propenyl, butenyl, pentenyl, hexenyl and / or allyl radicals.
  • the content of vinyl groups of the core a) before the grafting is in particular in the range from 0.5 to 10 mol%, preferably 1 to 6 mol% and particularly preferably 2 to 3 mol%.
  • Mol% is understood as the molar proportion of the starting compounds containing vinyl groups, which arithmetically have a vinyl group, in all monomeric organic compounds Silicon compounds that are used to produce the core a).
  • the vinyl groups are distributed inhomogeneously in the silicone core, the proportion in the outer region of the silicone core being higher than in the region of the center of gravity.
  • Preferably 85%, particularly preferably 90% of all vinyl groups are in the outer shell of the silicone core.
  • the organosilicon shell polymer b) preferably consists of dialkylsiloxane units (R 2 Si0 2 / ), where R has the meanings methyl or ethyl.
  • the organic shell c) is composed of polymers which can be obtained by free-radical polymerization of monomers which contain a double bond. Such monomers are well known in the art.
  • 1-alkenes such as 1-hexene, 1-heptene
  • branched alkenes such as vinylcyclohexane, 3, 3-dimethyl-l-propene, 3-methyl-1-diisobutylene, 4-methylpentene-1;
  • Vinyl esters such as vinyl acetate
  • Styrene substituted styrenes with an alkyl substituent in the side chain, such as. B. ⁇ -methylstyrene and ⁇ -ethylstyrene, substituted styrenes with an alkyl substituent on the ring, such as vinyltoluene and p-methylstyrene, halogenated styrenes, such as, for example, monochlorostyrenes, dichlorostyrenes, tribromostyrenes and tetrabromostyrenes; Heterocyclic vinyl compounds, such as 2-vinylpyridine, 3-vinylpyridine, 2-methyl-5-vinylpyridine, 3-ethyl-4-vinylpyridine, 2, 3-dimethyl-5-vinylpyridine, vinylpyrimidine, vinylpiperidine, 9-vinylcarbazole, 3-vinylcarbazole, 4-vinylcarbazole, 1-vinylimidazole, 2-methyl-l-viny
  • (meth) acrylates that.
  • the term (meth) acrylates includes
  • (Meth) acrylates derived from saturated alcohols such as, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, tert. Butyl (meth) acrylate,
  • Aryl (meth) acrylates such as benzyl (meth) acrylate or
  • Phenyl (meth) acrylate where the aryl radicals can in each case be unsubstituted or substituted up to four times;
  • Hydroxylalkyl (meth) acrylates such as 3-hydroxypropy1 (meth) acrylate
  • Glycol di (meth) acrylates such as 1,4-butanediol (meth) acrylate, (meth) acrylates of ether alcohols, such as
  • These monomers can be used individually or as a mixture. Mixtures which contain methacrylates and acrylic acid esters are particularly preferred. These mixtures can be the other monomers comprise, which are copolymerizable with these (meth) acrylates. These monomers are also mentioned previously.
  • the monomers which form the shell polymerize with one another radically more rapidly than with the double bonds in the silicone rubber particles.
  • Copolymerization parameters include in, for example, B. Vollmert, Grundriß der Molecular Chemie, Volume I, Structural Principles Polymer Synthesis I [Polymerization], E. Vollmert-Verlag Düsseldorf 1988, p.114 and following. Since the parameters for the double bonds in the silicone particles are not accessible, the parameters of the monomers belonging to them can be considered.
  • the copolymerization parameters can either be determined, calculated using the corresponding e, Q values or looked up in the literature (see, for example, the sources cited above).
  • the monomers that form the shell polymerize with one another at least twice as fast as with the double bonds in the silicone rubber particles.
  • the preferred methacrylate is methyl methacrylate.
  • Acrylic acid esters comprising 1 to 8 carbons are also preferred. These include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, tert-butyl acrylate, pentyl acrylate, hexyl acrylate and 2-ethylhexyl (meth) acrylate.
  • Mixtures which contain methyl methacrylate and at least one of the abovementioned acrylic acid esters having 1 to 8 carbon atoms are particularly preferred.
  • Mixtures which contain methyl methacrylate and ethyl acrylate are particularly preferred.
  • the ratio of acrylic acid ester to methacrylate can vary widely.
  • the weight ratio of acrylic acid ester to methacrylate of the mixture for producing the shell c) is in the range from 50:50 to 1:99, particularly preferably in the range from 10:90 to 2:98 and very particularly preferably in the range from 5:95 to 3:97 without any limitation.
  • the ratio of the weight of core a) and shell b) to the weight of the shell c) of the silicone rubber graft copolymers is preferably in the range from 90:10 to 20:80, in particular from 80:20 to 30:70 and particularly preferably from 70: 30 to 55:65, without any limitation.
  • the silicone rubber graft copolymers have a
  • the particle size refers to the largest dimension of the particles. In the case of spherical particles, the particle size is given by the particle diameter.
  • the silicone rubber graft copolymers have a monomodal distribution with a polydispersity index of at most 0.4, in particular at most 0.2, without any intention that this should impose a restriction.
  • the particle size can be measured with a
  • Coulter N4 can be measured in water at room temperature (23 ° C). This determination device becomes different with corresponding reference latices
  • Particle size the particle size of which is determined by ultracentrifuge measurements, is checked.
  • the particle size accordingly relates to one determined according to the previously mentioned method
  • the polysiloxane graft base can be produced by the emulsion polymerization process.
  • the radical R ' stands for alkyl radicals with 1 to 6 carbon atoms, aryl radicals or substituted hydrocarbon radicals, methyl, ethyl and propyl radicals are preferred.
  • the remainder R has the meaning previously defined.
  • Suitable emulsifiers are carboxylic acids with 9 to 20 carbon atoms, aliphatic substituted benzenesulfonic acids with at least 6 carbon atoms in the aliphatic substituents, aliphatic substituted naphthalenesulfonic acids with at least 4 carbon atoms in the aliphatic substituents, aliphatic sulfonic acids with at least 6 carbon atoms in the aliphatic radicals, silylalkyl sulfonic acids with at least 6 C atoms in the alkyl substituents, aliphatic substituted diphenyl ether sulfonic acids with at least 6 C atoms in the aliphatic radicals, alkyl hydrogen sulfates with at least 6 C atoms in the alkyl radicals, quaternary ammonium halides or hydroxides. All of the above
  • Acids can be used as such or, if appropriate, in a mixture with their salts. If anionic emulsifiers are used, it is advantageous to use those whose aliphatic substituents contain at least 8 carbon atoms. Aliphatic substituted benzenesulfonic acids are preferred as anionic emulsifiers. If cationic emulsifiers are used, it is advantageous to use halides.
  • the amount of emulsifier to be used is from 0.5 to 20.0% by weight, preferably 1.0 to 3.0% by weight, in each case based on the amount of organosilicon compounds used.
  • the silane or the silane mixture is added in doses.
  • the emulsion polymerization is carried out at a temperature of 30 to 90 ° C, preferably 60 to 85 ° C. According to a preferred aspect of the present invention, the core a) is produced at normal pressure.
  • the pH of the polymerization mixture can fluctuate over a wide range. This value is preferably in the range from 1 to 4, particularly preferably from 2 to 3.
  • the polymerization for the preparation of the graft base can be carried out either in a continuous procedure or in a discontinuous procedure. Of these, batch production is preferred.
  • the residence time in the reactor is generally between 30 and 60 minutes, without this being intended to impose a restriction.
  • the stability of the emulsion In the case of batchwise preparation of the graft base, it is advantageous for the stability of the emulsion to be stirred for a further 0.5 to 5.0 hours after the end of the metering.
  • the alcohol released during the hydrolysis especially in the case of a high proportion of silane of the general formula RSi (OR ') 3 , can be removed by distillation in accordance with a preferred embodiment.
  • Examples of silanes of the general formula R 2 Si (OR ') 2 are dimethyldiethoxysilane or dimethyldimethoxysilane.
  • silanes of the general formula RSi (OR ') 3 are methyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and methacryloxypropyltrimethoxysilane.
  • silanes of the general formula Si (OR ') are tetramethoxysilane or tetraethoxysilane.
  • the graft base is grafted with the organosilicon shell polymer b) before the ethylenically unsaturated monomers are grafted on.
  • This shell b) is also produced by the emulsion polymerization process.
  • the radicals R and R ' have the meanings already mentioned.
  • no further emulsifier is added since the in the Amount of emulsifier present for the stabilization is generally sufficient.
  • the polymerization for grafting on the shell b) is carried out at a temperature of 15 to 90 ° C. and preferably 60 to 85 ° C. This is usually done at normal pressure.
  • the pH of the polymerization mixture is from 1 to 4, preferably from 2 to 3.
  • This reaction step can also be carried out either continuously or batchwise.
  • the residence times in the reactor with continuous display, or the subsequent stirring times in the reactor with discontinuous display depend on the amount of silanes or siloxanes metered in and are preferably from 2 to 6 hours. It is most convenient that
  • Siloxane elastomer sols should be at most 25% by weight, both without and with organosilicon shell polymer b), since otherwise a high increase in viscosity makes further processing of the brine as a graft base difficult. From such brines Coagulation available polysiloxanes show elastomeric properties.
  • a simple method for characterizing the elasticity is to determine the swelling factor analogously to the method specified in US Pat. No. 4,775,712. The swelling factor should have a value> 3.
  • the aforementioned ethylenically unsaturated monomers are grafted onto the polysiloxane graft base, preferably grafted with the organosilicon shell polymer b).
  • the organic monomers are metered in in an amount which is preferably 5 to 95% by weight, particularly preferably 30 to 70% by weight, in each case based on the total weight of the graft copolymer.
  • the grafting is preferably carried out by the emulsion polymerization process in the presence of water-soluble or monomer-soluble
  • Suitable radical initiators are water-soluble peroxo compounds, organic peroxides, hydroperoxides or azo compounds.
  • the preferred initiators include the azo initiators well known in the art, such as AIBN and 1, 1-azobiscyclohexane carbonitrile, and also peroxy compounds, such as methyl ethyl ketone peroxide, acetylacetone peroxide, dilauryl peroxide, and tert. Butyl per-2-ethylhexanoate, ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide,
  • the polymerization of the shell is particularly preferably initiated, for example, with K 2 S 2 0s, KHS0 5 , NaHS0 5 and butyl hydroperoxide.
  • the radical initiators are mixed with a reduction component, so that the polymerization can be carried out at a lower temperature.
  • Such reduction components are well known. These include iron (II) salts such as FeS0 4 , sodium bisulfite, sodium thiosulfate and sodium hydroxymethyl sulfinate (sodium formaldehyde sulfoxylate).
  • iron (II) salts such as FeS0 4 , sodium bisulfite, sodium thiosulfate and sodium hydroxymethyl sulfinate (sodium formaldehyde sulfoxylate).
  • the shell c) has organic polymers which are prepared by radical polymerization at a temperature of at most 65 ° C., the initiator being added to the reaction vessel in at least two portions, an addition being necessary to start the polymerization and a further addition at least 2 minutes, preferably at least 10 minutes and particularly preferably at least 20 minutes after the start of the polymerization.
  • After the start of the polymerization refers to the time at which radical formation takes place in the presence of monomers in an amount that permits polymerization. This point in time depends on the initiator system chosen and the temperature, and inhibitors may also have to be considered.
  • the initiator is added to the reaction vessel in three, in particular four and preferably five or more, portions, the addition taking place after at least 2 minutes, preferably at least 10 minutes and particularly preferably at least 20 minutes.
  • the amount of initiator added during the polymerization is preferably at least as large as the amount of initiator used at the start.
  • the weight ratio of the amount added during the polymerization to the amount of initiator initially added is greater than or equal to 5, in particular greater than or equal to 10 and particularly preferably greater than or equal to 20.
  • the initiator is particularly preferably added continuously to the reaction vessel over a period of at least one hour.
  • continuous means that small amounts are added to the reaction vessel over the entire period, the rate of addition being able to vary.
  • the monomers are likewise added to the reaction vessel batchwise or continuously over a period of at least one hour.
  • both the monomers and the initiator are added to the reaction mixture over a period of at least two hours.
  • the preparation of a mixture comprising monomers and initiator is useful. This mixture is then added to the reaction vessel, preferably over a period of at least one hour, preferably two hours.
  • the concentration of initiator in the reaction vessel is kept less than or equal to 0.05% by weight, preferably less than or equal to 0.03% by weight, based on the entire reaction mixture.
  • Oxidation and reduction components are preferably used in an amount of 0.01 to 4% by weight, preferably 0.02 to 2% by weight, based on the amount of monomer, over the entire course of the reaction.
  • reaction temperatures depend on the type of initiator used and, according to the invention, are at most 65 ° C., preferably 0 to 60 ° C.
  • reaction step too, preferably no further emulsifier is metered in, in addition to the emulsifier added in the first stage.
  • a too high emulsifier concentration can lead to solubilisate-free micelles, which can act as germs for purely organic latex particles.
  • This reaction step can also be carried out continuously or batchwise.
  • the graft copolymers can be isolated from the emulsion by known processes.
  • the particles can be isolated by coagulation of the latices by freezing out, adding salt or adding polar solvents or by spray drying.
  • the particle size can be influenced not only via the emulsifier content, but also via the reaction temperature, the pH and, above all, the composition of the graft copolymers.
  • the average particle size can be varied from 5 to 500 nm.
  • organosilicon shell b) imparts an improved phase connection of the organopolymer shell c) to the organosilicon graft base.
  • the silicone rubber graft copolymers according to the invention can be used to improve the impact resistance of molding compositions.
  • molding compositions are known per se. In general, these inter alia, polyacrylonitriles, polystyrenes, polyethers, polyesters, polycarbonates, 'polyvinyl chloride, styrene-acrylonitrile polymers and poly (meth) acrylates. These polymers can be contained in the molding compositions individually or as a mixture. Of these, molding compositions are preferred which comprise poly (meth) acrylates.
  • Poly (meth) acrylates are known in the art. These polymers are generally obtained by radical polymerization of mixtures which
  • compositions to be polymerized can also have further unsaturated monomers which can be copolymerized with the aforementioned (meth) acrylates.
  • these compounds are used in an amount of 0 to 50% by weight, preferably 0 to 40% by weight and particularly preferably 0 to 20% by weight, based on the weight of the monomers, the comonomers being used individually or can be used as a mixture.
  • Preferred poly (meth) acrylates are obtainable by polymerizing mixtures which have at least 20% by weight, in particular at least 60% by weight and particularly preferably at least 80% by weight, based on the total weight of the monomers to be polymerized, of methyl methacrylate ,
  • poly (meth) acrylates can be used here, which differ, for example, in molecular weight or in the monomer composition.
  • the poly (meth) acrylate molding compositions may contain further polymers in order to modify the properties.
  • these polymers include polyacrylonitriles, polystyrenes, polyethers, polyesters, polycarbonates and polyvinyl chlorides. These polymers can be used individually or as a mixture, and copolymers which can be derived from the abovementioned polymers can also be added to the molding compositions. These include, in particular, styrene-acrylonitrile polymers (SAN), which are preferably added to the molding compositions in an amount of up to 45% by weight.
  • SAN styrene-acrylonitrile polymers
  • Particularly preferred styrene-acrylonitrile polymers can be obtained by polymerizing mixtures which consist of
  • the proportion of poly (meth) acrylates is at least 20% by weight, preferably at least 60% by weight and particularly preferably at least 80% by weight.
  • Such particularly preferred molding compositions are available under the trade name PLEXIGLAS® from Rhausen ⁇ GmbH & Co. KG commercially available.
  • the weight average molecular weight M w of the homopolymers and / or copolymers to be used according to the invention as matrix polymers can vary within wide ranges, the molecular weight usually being matched to the intended use and the processing mode of the molding composition. In general, however, it is in the range between 20,000 and 1,000,000 g / mol, preferably 50,000 to 500,000 g / mol and particularly preferably 80,000 to 300,000 g / mol, without any intention that this should impose a restriction.
  • the molding compositions according to the invention can furthermore contain acrylate rubber modifiers. Surprisingly, an excellent impact resistance behavior can be achieved at room temperature (approx.
  • Such acrylate rubber modifiers are known per se. These are copolymers which have a core-shell structure, the core and the shell having a high proportion of the (meth) acrylates described above.
  • Preferred acrylate rubber modifiers have a structure with two shells, which differ in their composition.
  • Particularly preferred acrylate rubber modifiers have the following structure, among others:
  • Core polymer with a methyl methacrylate content of at least 90% by weight, based on the weight of the core.
  • Shell 1 polymer with a butyl acrylate content of at least 80% by weight, based on the weight of the first shell.
  • Shell 2 polymer with a methyl methacrylate content of at least 90% by weight, based on the weight of the second shell.
  • a preferred acrylate rubber modifier can have the following structure:
  • the ratio of core to shell (s) of the acrylate rubber modifiers can vary within wide ranges.
  • the weight ratio core to shell K / S is preferably in the range from 20:80 to 80:20, preferably from 30:70 to 70:30 to modifiers with one shell or the ratio of core to shell 1 to shell 2 K / S1 / S2 in the range from 10:80:10 to 40:20:40, particularly preferably from 20:60:20 to 30:40:30 for modifiers with two shells.
  • the particle size of the acrylate rubber modifiers is usually in the range from 50 to 1000 nm, preferably 100 to 500 nm and particularly preferably from 150 to 450 nm, without any intention that this should impose a restriction.
  • the weight ratio of silicone rubber graft copolymer is increased Acrylate rubber modifiers in the range from 1:10 to 10: 1, preferably from 4: 6 to 6: 4.
  • Special molding compounds consist of fl) 20 to 95% by weight of (meth) acrylate polymers, f2) 0 to 45% by weight of styrene-acrylonitrile polymers, f3) 5 to 60% by weight of silicone rubber graft copolymers f4) 0 to 60 %
  • impact modifier based on acrylate rubber, in each case based on the weight of the components fl to f4, and customary additives and additives.
  • the molding compositions can contain customary additives of all kinds. These include antistatic agents, antioxidants, mold release agents, flame retardants, lubricants, dyes, flow improvers, fillers, light stabilizers and organic phosphorus compounds such as phosphites or phosphonates, pigments, weathering protection agents and plasticizers.
  • Shaped articles which have excellent notched impact strength values can be obtained from the molding compositions described above by known processes, such as, for example, injection molding or extrusion.
  • shaped bodies obtained in this way can contain a Vicat
  • Softening temperature according to ISO 306 (B50) of at least 85, preferably at least 90 and particularly preferably at least 95 ° C, a notched impact strength KSZ (Izod 180 / leA, 1.8 MPa) according to ISO 180 of at least 3.0 kJ / m 2 at - 20 ° C and at least 2.5 kJ / m 2 at -40 ° C, an elastic modulus according to ISO 527-2 of at least 1500, preferably at least 1600, particularly preferably at least 1700 MPa.
  • the molding composition according to the invention is particularly suitable for the production of mirror housings, spoilers of vehicles, pipes, covers or components for refrigerators.
  • Silicone rubber dispersion without casing c were produced based on the examples described in EP-0 492 376 on pages 5-7.
  • Graft copolymers have a particle size of 67 nm in radius, which is determined with a Coulter N4 device.
  • the particles have a core / shell ratio (K / S) of 60/40.
  • the dispersion is frozen at -20 ° C and thawed after 2 days.
  • the solid is then filtered off and dried at 60 ° C.
  • the strand expansion was determined in accordance with DIN 54811 (1984).
  • the softening temperature is in accordance with DIN ISO 306 (Aug. 1994); Mini Vicat system (16h / 80 ° C) determined.
  • the Izod impact strength is measured in accordance with ISO 180 (1993).
  • the modulus of elasticity is determined according to ISO 527-2. The data thus obtained are set out in Table 1.
  • Example 1 was essentially repeated. However, a mixture of 3 g of sodium persulfate in 50 g of water was used as the initiator, the use of acetic acid and iron (II) sulfate being dispensed with. Furthermore, the temperature of the Reactor set to 80 ° C, after the end of the feed, the temperature is maintained at 80 ° C for 240 minutes.
  • the particles have a core / shell ratio (K / S) of 60/40.
  • Example 1 is essentially repeated, but using a mixture of 761.3 g of methyl methacrylate and 31.7 g of ethyl acrylate as a monomer instead of pure methyl methacrylate.
  • the particles were analyzed analogously to Example 1.
  • the particles' having a size of 72 nm in radius exhibited a core / shell ratio of 60/40.
  • Example 1 According to Example 1, 22.5 g of the particles thus obtained were incorporated in 77.5 g of polymethyl methacrylate molding composition. The values thus obtained are also listed in Table 1. Table 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft Siliconkautschuk-Pfropfcopolymerisate mit Kern-Hülle-Struktur aufweisend mindestens einen Kern a) aus einem siliciumorganischen Polymer, das der allgemeinen Formel (R2SiO2/2)x.(RSiO3/2)y.(SiO4/2)z mit x = 0 bis 99,5 Mol-%, y = 0,5 bis 100 Mol-%, z = 0 bis 50 Mol-% entspricht, wobei R gleiche oder verschiedene Alkyl- oder Alkenyl-Reste mit 1 bis 6 C-Atomen, Aryl-Reste oder substituierte Kohlenwasserstoffreste bedeutet sowie mindestens eine Hülle c) aus einem organischen Polymer, wobei die Siliconkautschuk-Pfropfcopolymerisate dadurch erhältlich sind, dass man die organische Hülle c) durch radikalische Polymerisation bei einer Temperatur von höchstens 65 °C herstellt und den Initiator in mindestens zwei Portionen dem Reaktionsgefäss zugibt, wobei eine weitere Zugabe mindestens 2 Minuten nach Beginn der Polymerisation erfolgt.

Description

Siliconkautschuk-Pfropfcopolymerisate mit Kern-Hülle- Struktur, schlagzäh odifizierte Formmassen und Formkörper sowie Verfahren zu deren Herstellung
Die vorliegende Erfindung betrifft Siliconkautschuk- Pfropfcopolymerisate mit Kern-Hülle-Struktur und hieraus erhältliche schlagzähe Formmassen und Formkörper sowie Verfahren zu deren Herstellung
Für verschiedene Anwendungen werden Formkörper benötigt, die auch bei Kälte eine hervorragende Schlagzähigkeit aufweisen müssen. Beispielsweise gehören hierzu Bauteile für Kühlschränke, Rohre und Automobile, die der Kälte ausgesetzt sein können.
Um diese Eigenschaft zu erzielen werden Kunststoffe mit sogenannten Schlagzähmodifiern ausgestattet. Derartige Additive sind weithin bekannt.
So werden insbesondere Siliconkautschuk- Pfropfcopolymerisate, die eine Kern-Schale-Struktur
(K/S) aufweisen, zur Verbesserung der Schlagzähigkeit eingesetzt. Teilweise haben derartige Modifier auch eine Struktur, die zwei Schalen umfassen (K/S1/S2).
EP 430 134 offenbart die Herstellung von Modifiern zur Verbesserung der Schlagzähigkeit von Formmassen. Hierbei wird ein Kern, bestehend aus einem Silikongummi und einem Acrylkautschuk mit Vinylmonomeren gepfropft. Ferner wird das Material zur Schlagzäh-Modifizierung von Formmassen verwendet - allerdings werden hier nur Polycarbonat (PC) und/oder Polyester Formmassen genannt . Das Dokument US 4,690,986 stellt eine schlagzähe Formmasse dar, die auf Basis eines Pfropfcopolymerisats (über Emulsionspolymerisation) hergestellt wird. Das Pfropfcopolymerisat ist ein K/S - Produkt. Der Kern besteht u. a. aus einem Vernetzungsmittel (Siloxan mit Methacrylatgruppe über mehrere CH2 -Gruppen verbunden) und tetrafunktionellem Silan als Vernetzungsmittel. Beschrieben wird sowohl die Formmasse sowie ein Herstellungsverfahren .
In JP 612,135,462 wird eine Formmasse beschrieben, die auf Basis eines Pfropfcopolymerisats (über Emulsionspolymerisation) hergestellt wird. Das Pfropfcopolymerisat besteht aus mit Vinylmonomeren gepfropftem Siloxan.
EP 308 198 offenbart eine Formmasse aus PMMI und gepfropftem Polysiloxan. Das gepfropfte Polysiloxan wird durch Pfropfung von Monomeren und mindestens einem "Pfropf - Vernetzungsmittel" hergestellt. In den
Unteransprüchen wird deutlich, daß es sich bei dem Pfropf - Vernetzungsmittel um das in US 4,690,986 beschriebene Vernetzungsmittel (Siloxan mit Methacrylatgruppe über mehrere CH Gruppen' verbunden) handelt. Auch wird in den Unteransprüchen das tetrafunktionelle Silan als Vernetzungsmittel erwähnt.
EP 332 188 beschreibt Pfropfcopolymerisate, die den in EP 430134 beschriebenen ähnlich sind. Diese Pfropfcopolymerisate werden zur Modifizierung von
Formmassen verwendet. Im Beispiel werden Partikel mit Styrol gepfropft und diese zur Modifizierung von einem Polyether/Polysulfon - Blend eingesetzt. DE 43 42 ' 048 offenbart Pf opfcopolymerisate mit einem K/Sl /S2-Aufbau. Als Kern fungiert ein Silikonkautschuk, Sl wird überwiegend aus Acrylaten (min. 70 %) hergestellt und zur Herstellung der Schale S2 können z. B. Monomermischungen verwendet werden, die 50-100 % Methylmethacrylat enthalten. In den Unteransprüchen sind auch schlagzähe Formmassen basierend auf den beschriebenen Pfropfcopolymerisaten dargestellt, wobei das Polymer für die Matrix auch hier sehr weit gefaßt ist.
Eine Formmasse, die zu 20-80 % aus herkömmlichen Polymeren und zu 80-20 % aus Pfropfcopolymerisaten besteht, wird in DE 3839287 dargestellt. Das Pfropfcopolymerisat weist K/Sl/S2-Aufbau auf, wobei der Kern aus Silikonkautschuk und Sl aus Acrylatkautschuk aufgebaut ist. S2 wird durch Redox - Polymerisation (Emulsion) von verschiedensten Monomeren hergestellt. Als Beispiel wird nur eine schlagzäh modifizierte SAN-Formmasse aufgeführt.
Die Druckschrift WO 99141315 offenbart Dispersionen, die eine Mischung von Partikeln bestehend aus Vinylcopolymeren und bestehend aus mit PMMA umhüllten Silikonkautschuk beinhalten. Diese Dispersion kann u.a. als Schlagzähmodifier eingesetzt werden.
EP 492 376 beschreibt Pfropfcopolymerisate, die eine K/S bzw. K/S1/S2 Struktur aufweisen. Der Kern und die optionale Zwischenschale bestehen aus Silikonkautschuk und sind genauer definiert - die äußere Schale wird durch Emulsionspolymerisation verschiedenster Monomere hergestellt. Problematisch ist insbesondere, daß der Zusatz von großen Mengen an Additiven zu einer Verschlechterung der mechanischen Eigenschaften der Kunststoffe führen kann, so daß die Mengen die insgesamt zugesetzt werden können sehr begrenzt sind.
Des weiteren werden viele Gegenstände sowohl bei sehr hohen als auch sehr tiefen Temperaturen eingesetzt. Hierzu gehören beispielsweise Automobile, die im Winter in kühlen Regionen bis -40°C ausgesetzt werden. In Wüstenregionen werden diese Fahrzeuge jedoch bei Temperaturen von über 50°C verwendet.
Problematisch an bekannten Schlagzähmodifiern ist jedoch, daß die Verbesserung der Schlagzähigkeitswerte von der Temperatur abhängig ist.
In Anbetracht des hierin angegebenen und diskutierten Standes der Technik war es mithin Aufgabe der vorliegenden Erfindung Modifier anzugeben, mit denen Formmassen auf hervorragende Weise schlagzäh ausgerüstet werden können. Hierbei sollten die Formmassen gute mechanische Eigenschaften aufweisen.
Eine weitere Aufgabe der Erfindung bestand darin, daß die Modifier und die Formmassen kostengünstig herstellbar sein sollten.
Des weiteren lag der Erfindung die Aufgabe zugrunde, Modifier bereitzustellen, die über einen großen Temperaturbereich zu einer deutlichen Verbesserung der Schlagzähigkeit von Formmassen führen.
Darüber hinaus war es mithin Aufgabe der vorliegenden Erfindung, schlagzähe Formmassen zur Verfügung zu stellen, die mit bekannten Formgebungs- verfahren verarbeitet werden können.
Ein weiteres Ziel der vorliegenden Erfindung bestand darin, schlagzähe und witterungsbeständige Formkörper mit hervorragenden mechanischen Eigenschaften bereitzustellen, die eine hohe Schlagzähigkeit ab einer Temparatur von -40 °C und darüber aufweisen.
Gelöst werden diese Aufgaben sowie weitere, die zwar nicht wörtlich genannt werden, sich aber aus den hierin diskutierten Zusammenhängen wie selbstverständlich ableiten lassen oder sich aus diesen zwangsläufig ergeben, durch die in Anspruch 1 beschriebenen Siliconkautschuk-Pfropfcopolymerisate mit Kern-Hülle- Struktur. Zweckmäßige Abwandlungen der erfindungsgemäßen Siliconkautschuk-Pfropfcopolymerisate werden in den auf Anspruch 1 rückbezogenen Unteransprüchen unter Schutz gestellt.
Hinsichtlich des Verfahrens zur Herstellung liefert
Anspruch 17 eine Lösung der zugrundeliegenden Aufgabe.
Die Aufgabe in bezug auf die schlagzähen Formmassen wird durch die in Anspruch 20 beschriebenen Maßnahmen gelöst.
Formkörper werden durch den Gegenstand des Anspruchs 26 bereitgestellt. Zweckmäßige Abwandlungen und erfinderische Weiterbildungen werden jeweils in den auf die Gegenstände rückbezogenen Unteransprüche zur Verfügung gestellt.
Dadurch, daß man die organische Hülle c) eines
Siliconkautschuk-Pfropfcopolymerisats mit Kern-Hülle- Struktur durch radikalische Polymerisation bei einer Temperatur von höchstens 65°C herstellt, wobei man den Initiator in mindestens zwei Portionen dem Reaktionsgefäß zugibt und eine weitere Zugabe mindestens 2 Minuten nach Beginn der Polymerisation erfolgt, wobei das Siliconkautsch.uk- Pfropfcopolymerisate mindestens einen
Kern a) aus einem siliciumorganischen Polymer, das der allgemeinen Formel (R2Si02/ ) x- (RSi03/2) y- (Si0 2) z mit x = 0 bis 99,5 Mol-%, y = 0,5 bis 100 Mol-%, z = 0 bis 50 Mol-% entspricht, wobei R gleiche oder verschiedene Alkyl- oder Alkenyl-Reste mit 1 bis 6 C-Atomen, Aryl-Reste oder substituierte Kohlenwasserstoffreste bedeutet, sowie mindestens eine Hülle c) aus einem organischen Polymer umfaßt, gelingt es Modifier zur Verfügung zu stellen, mit denen die Schlagzähigkeit von Formmassen auf hervorragende Weise verbessert werden kann.
Durch die erfindungsgemäßen Maßnahmen werden u.a. insbesondere folgende Vorteile erzielt:
= Mit den erfindungsgemäßen Siliconkautschuk-
Pfropfcopolymerisaten ausgerüstete Formmassen zeigen ein sehr gutes Verhalten bei tiefen Temperaturen . So werden insbesondere bei Temperaturen von weniger als 0°C sehr gute Schlagzähigkeitswerte erzielt.
=> Siliconkautschuk-Pfropfcopolymerisate der vorliegenden Erfindung können kostengünstig hergestellt werden.
=> Um eine bestimmte Schlagzähigkeit zu erreichen, genügen relativ geringe Mengen an erfindungsgemäßen Siliconkautschuk- Pfropfcopolymerisäten . => Formmassen, die erfindungsgemäße Siliconkautschuk- Pfropfcopolymerisate umfassen, können auf bekannte Weise verarbeitet werden.
=> Formkörper, die aus den Formmassen gemäß der vorliegenden Lehre erhalten wurden, zeigen einen hervorragenden E-Modul . So zeigen besondere Ausführungsformen einen E-Modul gemäß ISO 527-2 von mindestens 1500, bevorzugt mindestens 1600, besonders bevorzugt mindestens 1700 MPa .
=» Erfindungsgemäße Formkörper sind sehr wärmeresistent und witterungsbeständig. Bevorzugte Formkörper erweichen gemäß Vicat (ISO 306 (B50) ) erst oberhalb von 85, bevorzugt oberhalb von 90 und besonders bevorzugt oberhalb von 95°C.
Der Kern a) des erfindungsgemäßen Siliconkautschuk- Pfropfcopolymerisats umfaßt siliciumorganisches Polymer, das der allgemeinen Formel
(R2Si02/2)x- (RSi03 2)y- (Si04/2)2 mit x = 0 bis 99,5 Mol-%, y = 0,5 bis 100 Mol-%, z = 0 bis 50 Mol-% entspricht, wobei R gleiche oder verschiedene Alkyl- oder
Alkenyl-Reste mit 1 bis 6 C-Atomen, Aryl-Reste oder substituierte Kohlenwasserstoffreste bedeutet.
Vorzugsweise sind die Reste R Alkylreste, wie der Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-, sec . - Butyl-, Amyl-, Hexylrest; Alkenylreste, wie der
Ethenyl-, Propenyl-, Butenyl-, Pentenyl-, Hexenyl- und Allylrest; Arylreste, wie der Phenylrest; oder substituierte Kohlenwasserstoffreste .
Beispiele hierfür sind halogenierte
Kohlenwasserstoffreste, wie der Chlormethyl-, 3-Chlorpropyl-, 3-Brompropyl- , 3 , 3 , 3-Trifluorpropyl- und 5, 5, 5, 4, 4, 3, 3-Heptafluor-pentylrest, sowie der Chlorphenylrest; Mercaptoalkylreste, wie der 2-Mercaptoethyl- und 3-Mercaptopropylrest; Cyanoalkylreste, wie der 2-Cyanoethyl- und 3-Cyanopropylrest; Aminoalkylreste, wie der 3-Aminopropylrest; Acyloxyalkylreste, wie der 3-Acryloxypropyl- und 3-Methacryloxypropylrest ; Hydroxyalkylreste, wie der Hydroxypropylrest .
Besonders bevorzugt sind die Reste Methyl, Ethyl, Propyl, Phenyl, Ethenyl, 3-Methacryloxypropyl und 3-Mercaptopropyl, wobei vorzugsweise weniger als 30 Mol% der Reste im Siloxanpolymerisat Ethenyl, 3-Methacryloxypropyl oder 3-Mercaptopropylgruppen sind.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung weist der Kern a) vor der Pfropfung Vinylgruppen auf. Diese Gruppe kann unmittelbar an ein Si-Atom gebunden sein oder über einen Alkylenrest, wie Methylen, Ethylen, Propylen und Butylen.
Dementsprechend können die erfindungsgemäßen Vinylgruppen des Kerns c) unter anderem durch Verwendung von organischen Siliciumverbindungen erhalten werden, die Ethenyl-, Propenyl-, Butenyl-, Pentenyl-, Hexenyl- und/oder Allylreste aufweisen.
Der Gehalt an Vinylgruppen des Kerns a) vor der Pfropfung liegt insbesondere im Bereich von 0,5 bis 10 Mol-%, vorzugsweise 1 bis 6 Mol-% und besonders bevorzugt 2 bis 3 Mol-%. Die Angabe Mol-% versteht sich als molarer Anteil der vinylgruppenhaltigen Ausgangsverbindungen, die rechnerisch eine Vinylgruppe aufweisen, an allen onomeren organischen Siliciumverbindungen, die zur Herstellung des Kerns a) verwendet werden.
Gemäß einer bevorzugten Ausführungsform sind die Vinylgruppen inhomogen im Siliconkern verteilt, wobei der Anteil im äußeren Bereich des Siliconkerns höher ist als im Bereich des Kernschwerpunkts . Vorzugsweise befinden sich 85%, besonders bevorzugt 90% aller Vinylgruppen in der äußeren Schale des Siliconkerns. Diese äußere Schale des Siliconkerns wird durch 40% des Radius gebildet, so daß sich das Volumen der äußeren Schale durch die Formel V= 4π/3*r3 - 4π/3* (0 , 6*r) 3 bestimmt .
Das siliciumorganische Hüllpolymerisat b) besteht vorzugsweise aus Dialkylsiloxanen-Einheiten (R2Si02/ ) , wobei R die Bedeutungen Methyl oder Ethyl hat.
Die organische Hülle c) ist aus Polymeren aufgebaut, die durch radikalische Polymerisation von Monomeren erhältlich sind, die eine Doppelbindung enthalten. Derartige Monomere sind in der Fachwelt weithin bekannt .
Hierzu gehören unter anderem 1-Alkene, wie Hexen-1, Hepten-1; verzweigte Alkene, wie beispielsweise Vinylcyclohexan, 3 , 3-Dimethyl-l-propen, 3-Methyl-1- diisobutylen, 4-Methylpenten-l;
Acrylnitril;
Vinylester, wie Vinylacetat;
Styrol, substituierte Styrole mit einem Alkylsubstituenten in der Seitenkette, wie z. B. α-Methylstyrol und α-Ethylstyrol, substituierte Styrole mit einem Alkylsubstitutenten am Ring, wie Vinyltoluol und p-Methylstyrol, halogenierte Styrole, wie beispielsweise Monochlorstyrole, Dichlorstyrole, Tribromstyrole und Tetrabromstyrole; Heterocyclische Vinylverbindungen, wie 2-Vinylpyridin, 3-Vinylpyridin, 2-Methyl-5-vinylpyridin, 3-Ethyl- 4-vinylpyridin, 2 , 3-Dimethyl-5-vinylpyridin, Vinylpyrimidin, Vinylpiperidin, 9-Vinylcarbazol, 3-Vinylcarbazol, 4-Vinylcarbazol, 1-Vinylimidazol, 2-Methyl-l-vinylimidazol, N-Vinylpyrrolidon, 2-Vinylpyrrolidon, N-Vinylpyrrolidin, 3-Vinylpyrrolidin, N-Vinylcaprolactam, N-Vinylbutyrolactam, Vinyloxolan, Vinylfuran, Vinylthiophen, Vinylthiolan, Vinylthiazole und hydrierte Vinylthiazole, Vinyloxazole und hydrierte Vinyloxazole ;
Vinyl- und Isoprenylether; Maleinsäurederivate, wie beispielsweise Maleinsäureanhydrid, Methylmaleinsäureanhydrid, Maleinimid, Methylmaleinimid; und
Diene, wie beispielsweise Divinylbenzol .
Eine besonders bevorzugte Gruppe von Monomeren stellen
(Meth) acrylate das. Der Ausdruck (Meth) acrylate umfaßt
Methacrylate und Acrylate sowie Mischungen aus beiden.
Diese Monomere sind weithin bekannt. Zu diesen gehören unter anderem
(Meth) acrylate, die sich von gesättigten Alkoholen ableiten, wie beispielsweise Methyl (meth) acrylat, Ethyl (meth) acrylat, Propyl (meth) acrylat, n-Butyl (meth) acrylat, tert . -Butyl (meth) acrylat ,
Pentyl (meth) acrylat und 2-Ethylhexyl (meth) acrylat; (Meth) acrylate, die sich von ungesättigten Alkoholen ableiten, wie z. B. Oleyl (meth) acrylat, 2-Propinyl (meth) crylat, Allyl (meth) acrylat,
Vinyl (meth) acrylat;
Aryl (meth) acrylate, wie Benzyl (meth) acrylat oder
Phenyl (meth) acrylat, wobei die Arylreste jeweils unsubstituiert oder bis zu vierfach substituiert sein können;
Cycloalkyl (meth) acrylate, wie
3-Vinylcyclohexyl (meth) acrylat, Bornyl (meth) acrylat;
Hydroxylalkyl (meth) acrylate, wie 3-Hydroxypropy1 (meth) acrylat,
3 , 4-Dihydroxybutyl (meth) acrylat,
2-Hydroxyethyl (meth) acrylat,
2-Hydroxypropyl (meth) acrylat;
Glycoldi (meth) acrylate, wie 1, 4-Butandiol (meth) acrylat, (Meth) acrylate von Etheralkoholen, wie
Tetrahydrofurfuryl (meth) acrylat,
Vinyloxyethoxyethyl (meth) acrylat;
Amide und Nitrile der (Meth) acrylsäure, wie
N- (3-Dimethylaminopropyl) (meth) acrylamid, N- (Diethylphosphono) (meth) acrylamid, l-Methacryloylamido-2-methyl-2-propanol; schwefelhaltige Methacrylate, wie
Ethylsulfinylethyl (meth) acrylat,
4-Thiocyanatobutyl (meth) acrylat, Ethylsulfonylethyl (meth) acrylat,
Thiocyanatomethyl (meth) acrylat,
Methylsulfinylmethyl (meth) acrylat,
Bis ( (meth) acryloyloxyethyl) sulfid; mehrwertige (Meth) acrylate, wie Trimethyloylpropantri (meth) acrylat .
Diese Monomere können einzeln oder als Mischung verwendet werden. Hierbei sind Mischungen besonders bevorzugt, die Methacrylate und Acrylsäureester enthalten. Diese Mischungen können die weitere Monomere umfassen, die mit diesen (Meth) acrylaten copolymerisierbar sind. Diese Monomere sind ebenfalls zuvor genannt .
Gemäß einem besonderen Aspekt der vorliegenden Erfindung polymerisieren die Monomere, welche die Hülle bilden schneller untereinander radikalisch, als mit den Doppelbindungen in den Silikonkautschukpartikeln.
Zur Bestimmung der Polymerisationsgeschwindigkeiten der verschiedenen Monomere genügt im Rahmen . der vorliegenden Erfindung eine Abschätzung über die Copolymerisationparameter. Diese
Copolymerisationparameter sind u.a. in beispielsweise B. Vollmert, Grundriß der Molekularen Chemie, Band I Strukturprinzipien PolymerSynthesen I [Polymerisation] , E. Vollmert-Verlag Karlsruhe 1988, S.114 und folgende definiert. Da die Parameter für die Doppelbindungen in den Silikonpartikeln nicht zugänglich sind, können die Parameter der hierzu gehörende Monomere betrachtet werden. Die Copolymerisationsparameter können entweder bestimmt, über die entsprechenden e -, Q -Werte berechnet oder in der Literatur nachgeschlagen werden (s. beispielsweise oben genannte Quelle dort zitierte Quellen) .
Gemäß einer bevorzugten Ausführungsform polymerisieren die Monomere, die die Hülle bilden, mindestens doppelt so schnell untereinander als mit den Doppelbindungen in den Silikonkautschukpartikeln.
Das bevorzugte Methacrylat ist Methylmethacrylat . Des weiteren sind Acrylsäureester bevorzugt, die 1 bis 8 Kohlenstoffe umfassen. Hierzu gehören Methylacrylat, Ethylacrylat, Propylacrylat, n-Butylacrylat, tert .-Butylacrylat, Pentylacrylat, Hexylacrylat und 2-Ethylhexyl (meth) acrylat. Besonders bevorzugt sind Mischungen, die Methylmethacrylat und mindestens einen der zuvor genannten Acrylsäureester mit 1 bis 8 Kohlenstoffatome enthalten. Besonders bevorzugt sind Mischungen, die Methylmethacrylat und Ethylacrylat enthalten.
Das Verhältnis von Acrylsäureester zu Methacrylat kann in weiten Bereichen schwanken. Bevorzugt liegt das Gewichtsverhältnis von Acrylsäureester zu Methacrylat der Mischung zur Herstellung der Hülle c) im Bereich von 50:50 bis 1:99, besonders bevorzugt im Bereich von 10:90 bis 2:98 und ganz besonders bevorzugt im Bereich von 5:95 bis 3:97, ohne daß hierdurch eine Beschränkung erfolgen soll.
Das Verhältnis des Gewichts von Kern a) und Hülle b) zum Gewicht der Hülle c) der Siliconkautschuk- Pfropfcopolymerisate liegt vorzugsweise im Bereich von 90:10 bis 20:80, insbesondere von 80:20 bis 30:70 und besonders bevorzugt von 70:30 bis 55:65, ohne daß hierdurch eine Beschränkung erfolgen soll.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung sind die Siliconkautschuk- Pfropfcopolymerisate zusammengesetzt aus 0,05 bis 95 Gew.-%, bezogen auf das Gesamtgewicht des Copolymerisats, eines Kerns a) aus einem siliciumorganischen Polymer, das der allgemeinen Formel (R2Si02 2)x- (RSi03 2)γ- (Si0 2)z mit x = 0 bis 99,5 Mol-%, y = 0,5 bis 100 Mol-%, z = 0 bis 50 Mol-% entspricht, wobei R gleiche oder verschiedene Alkyl- oder Alkenyl-Reste mit 1 bis 6 C-Atomen, Aryl-Reste oder substituierte Kohlenwasserstoffreste bedeutet, 0 bis 94,5 Gew.-%, bezogen auf das Gesamtgewicht des Copolymerisats, einer Polydialkyl.siloxan-Schicht b) und 5 bis 95 Gew.-%, bezogen auf das Gesamtgewicht des Copolymerisats, einer Hülle c) aus organischen Polymeren.
Gemäß einer bevorzugten Ausführungsform weisen die Siliconkautschuk-Pfropfcopolymerisate eine
Teilchengröße im Bereich von 5 bis 500 nm, insbesondere von 10 bis 300 nm und besonders bevorzugt von 30 bis 200 nm auf. Die Teilchengröße bezieht sich auf die größte Ausdehnung der Partikel. Bei sphärischen Partikeln ist die Teilchengröße durch den Partikeldurchmesser gegeben.
Die Siliconkautschuk-Pfropfcopolymerisate haben gemäß einem weiteren Aspekt der vorliegenden Erfindung eine monomodale Verteilung mit einem Polydispersitätsindex von maximal 0,4, insbesondere maximal 0,2, ohne daß hierdurch eine Beschränkung erfolgen soll .
Die Teilchengröße kann mit einem
Teilchengrößenbestimmungsgerät, welches nach dem
Prinzip der Photokorrelationsspektroskopie funktioniert, erhältlich von Fa. Coulter unter den
Handelsnamen Coulter N4 in Wasser bei Raumtemperatur (23 °C) gemessen werden. Dieses Bestimmungsgerät wird mit entsprechenden Bezugslatices unterschiedlicher
Teilchengröße, deren Teilchengröße über Ultrazentrifungenmessungen bestimmt werden, überprüft.
Die Teilchengröße bezieht sich dementsprechend auf einen gemäß dem zuvor genannten Verfahren bestimmten
Mittelwert .
Die Herstellung der Polysiloxan-Pfropfgrundlage kann nach dem Emulsionspolymerisationsverfahren erfolgen. Hierbei werden zu einer bewegten Emulgator/Wasser- Mischung 0,05 bis 95 Gew.-%, bezogen auf das Gesamtgewicht des herzustellenden Pfropfcopolymerisats, ein oder mehrere monomere Silane vom Typ RaSi (OR' ) -a, wobei a = 0, 1 oder 2 ist, zudosiert. Der Rest R' steht für Alkylreste mit 1 bis 6 C-Atomen, Arylreste oder substituierte Kohlenwasserstoffreste, bevorzugt sind Methyl-, Ethyl- und Propylrest. Der Rest R hat die zuvor definierte Bedeutung.
Geeignete Emulgatoren sind Carbonsäuren mit 9 bis 20 C- Atomen, aliphatisch substituierte Benzolsulfonsäuren mit mindestens 6 C-Atomen in den aliphatischen Substituenten, aliphatisch substituierte Naphthalinsulfonsäuren mit mindestens 4 C-Atomen in den aliphatischen Substituenten, aliphatische Sulfonsäuren mit mindestens 6 C-Atomen in den aliphatischen Resten, Silylalkylsulfonsäuren mit mindestens 6 C-Atomen in den Alkylsubstituenten, aliphatisch substituierte Diphenylethersulfonsäuren mit mindestens 6 C-Atomen in den aliphatischen Resten, Alkylhydrogensulfate mit mindestens 6 C-Atomen in den Alkylresten, quarternäre Ammoniumhalogenide oder -hydroxide. Alle genannten
Säuren können als solche Oder gegebenenfalls im Gemisch mit ihren Salzen verwendet werden. Wenn anionische Emulgatoren eingesetzt werden, ist es vorteilhaft, solche zu verwenden, deren aliphatische Substituenten mindestens 8 C-Atome enthalten. Als anionische Emulgatoren sind aliphatisch substituierte Benzolsulfonsäuren bevorzugt. Wenn kationische Emulgatoren benutzt werden, ist es vorteilhaft, Halogenide einzusetzen. Die einzusetzende Menge an Emulgator betragt von 0,5 bis 20,0 Gew.-%, vorzugsweise 1,0 bis 3,0 Gew.-%, jeweils bezogen auf die eingesetzte Menge an Organosiliciu verbindungen. Das Silan bzw. das Silangemisch wird dosiert zugegeben. Die Emulsionspolymerisation wird bei einer Temperatur von 30 bis 90°C, vorzugsweise 60 bis 85°C durchgeführt. Gemäß einem bevorzugten Aspekt der vorliegenden Erfindung erfolgt die Herstellung des Kerns a) bei Normaldruck.
Der pH-Wert der Polymerisationsmischung kann in weiten Bereichen schwanken. Vorzugsweise liegt dieser Wert im Bereich von 1 bis 4, besonders bevorzugt von 2 bis 3.
Die Polymerisation zur Herstellung der Pfropfgrundlage kann sowohl in kontinuierlicher Fahrweise als auch diskontinuierlicher Fahrweise durchgeführt werden. Hiervon ist die diskontinuierliche Herstellung bevorzugt .
Bei kontinuierlicher Fahrweise beträgt die Verweilzeit im Reaktor im allgemeinen zwischen 30 und 60 Minuten, ohne daß hierdurch eine Beschränkung erfolgen soll.
Bei diskontinuierlicher Herstellung der Pfropfgrundlage ist es für die Stabilität der Emulsion vorteilhaft nach Ende der Dosierung noch 0,5 bis 5,0 Stunden nachzurühren . Zur weiteren Verbesserung der Stabilität der Polysiloxan-Emulsion kann der bei der Hydrolyse freigesetzte Alkohol, vor allem bei einem hohen Anteil von Silan der allgemeinen Formel RSi(OR')3, gemäß einer bevorzugten Ausführungsform durch Destillation entfernt werden .
Im ersten Reaktionsschritt besteht die Zusammensetzung der in einer Menge von 0,05 bis 95 Gew.-%, bezogen auf das Gesamtgewicht des Pfropfcopolymerisats, zu dosierenden Silanphase, mit einer oder mehreren Komponenten, aus 0 bis 99,5 Mol% eines Silans der allgemeinen Formel R2Si(OR')2 oder eines Oligomeren der Formel (RSiO)n mit n = 3 bis 8, 0,5 bis 100 Mol% eines Silans der allgemeinen Formel RSi (OR' ) 3 und 0 bis 50 Mol% eines Silans der allgemeinen Formel Si(OR') , wobei sich die Angaben in Mol% jeweils auf die Bruttozusammensetzung der Pfropfgrundlage beziehen.
Beispiele für Silane der allgemeinen Formel R2Si(OR')2 sind Dimethyldiethoxysilan oder Dimethyldimethoxysilan. Beispiele für Oligomere der Formel (R2SiO)n mit n =3 bis 8 sind Octamethylcyclotetrasiloxan oder Hexamethylcyclotrisiloxan.
Beispiele für Silane der allgemeinen Formel RSi(OR')3 sind Methyltrimethoxysilan, Phenyltriethoxysilan, Vinyltrimethoxysilan, 3-Chlorpropyltrimethoxysilan, 3-Mercaptopropyltrimethoxysilan und Methacryloxypropyltrimethoxysilan.
Beispiele für Silane der allgemeinen Formel Si(OR') sind Tetramethoxysilan oder Tetraethoxysilan. In einer bevorzugten Ausführungsform wird die Pfropfgrundlage vor dem Aufpfropfen der ethylenisch ungesättigten Mbnomeren noch mit dem siliciumorganischen Hüllpolymerisat b) gepfropft.
Die Herstellung dieser Hülle b) erfolgt ebenfalls nach dem Emulsionspolymerisationsverfahren. Hierzu werden difunktionelle Silane der allgemeinen Formel R2Si(OR')2 oder niedermolekulare Siloxane der allgemeinen Formel (R2Siθ22) mit n = 3 bis 8 zu der bewegten Emulsion der Pfropfgrundlage zudosiert. Die Rests R und R' haben dabei die bereits genannten Bedeutungen. Vorzugsweise wird kein weiterer Emulgator zugegeben, da die in der Emulsion vorhandene Menge an Emulgator zur Stabilisierung im allgemeinen ausreicht.
Die Polymerisation zur Aufpfropfung der Hülle b) wird bei einer Temperatur von 15 bis 90°C und vorzugsweise 60 bis 85 °C durchgeführt. Hierbei wird üblicherweise bei Normaldruck gearbeitet . Der pH-Wert der Polymerisationsmischung beträgt von 1 bis 4, vorzugsweise von 2 bis 3. Auch dieser Reaktionsschritt kann sowohl kontinuierlich als auch diskontinuierlich erfolgen. Die Verweilzeiten im Reaktor bei kontinuierlicher Darstellung, beziehungsweise die Nachrührzeiten im Reaktor bei diskontinuierlicher Darstellung sind abhängig von der Menge zudosierter Silane bzw. Siloxane und betragen vorzugsweise von 2 bis 6 Stunden. Am zweckmäßigsten ist es, die
Reaktionsschritte zur Herstellung der Pfropfgrundlage a) und des Hüllpolymerisats b) in einem geeigneten Reaktor zu kombinieren und gegebenenfalls zum Schluß den gebildeten Alkohol destillativ zu entfernen.
Die difunktionelle Silane der allgemeinen Formel R2Si(OR')2 oder niedermolekulare Siloxane der allgemeinen Formel (R2Si02 2)n, mit n = 3 bis 8 werden in einer solchen Menge zudosiert, daß der Anteil an siliciu organischem Hüllpolymerisat 0,5 bis 94,5 Gew.-%, vorzugsweise 35 bis 70 Gew.-%, bezogen auf das Gesamtgewicht des Pfropfcopolymerisats', beträgt.
Der Festgehalt der so hergestellten
Siloxanelastomersole sollte, sowohl ohne als auch mit siliciumorganischem Hüllpolymerisat b) , maximal 25 Gew.-% betragen, da sonst ein hoher Anstieg der Viskosität die Weiterverarbeitung der Sole als Pfropfgrundlage erschwert. Aus derartigen Solen durch Koagulation erhältliche Polysiloxane zeigen elastomere Eigenschaften. Eine einfache Methode zur Charakterisierung der Elastizität ist die Bestimmung des Quellfaktors analog der in der US-A 4,775,712 angegebenen Methode. Der Quellfaktor sollte einen Wert > 3 aufweisen.
Im letzten Schritt des Herstellungsverfahrens werden die bereits genannten ethylenisch ungesättigten Monomere auf die, vorzugsweise mit dem siliciumorganischen Hüllpolymerisat b) gepfropfte, Polysiloxanpfropfgrundlage aufgepfropft. Die organischen Monomere werden dazu in einer Menge zudosiert, die vorzugsweise 5 bis 95 Gew.-%, besonders bevorzugt 30 bis 70 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Pfropfcopolymerisats, beträgt.
Die Pfropfung erfolgt vorzugsweise nach dem Emulsionspolymerisationsverfahren in Gegenwart von wasserlöslichen oder monomerlöslichen
Radikalinitiatoren. Geeignete Radikalinitiatoren sind wasserlösliche Peroxoverbindungen, organische Peroxide, Hydroperoxide oder Azoverbindungen.
Zu den bevorzugten Initiatoren gehören unter anderem die in der Fachwelt weithin bekannten Azoinitiatoren, wie AIBN und 1, 1-Azobiscyclohexancarbonitril, sowie Peroxyverbindungen, wie Methylethylketonperoxid, Acetylacetonperoxid, Dilaurylperoxyd, tert . -Butylper-2- ethylhexanoat , Ketonperoxid, Methylisobutylketonperoxid, Cyclohexanonperoxid,
Dibenzoylperoxid, tert . -Butylperoxybenzoat , tert . - Butylperoxyisopropylcarbonat, 2 , 5-Bis (2-ethylhexanoyl- peroxy) -2 , 5-dimethylhexan, tert . -Butylperoxy-2- ethylhexanoat, tert . -Butylperoxy-3 ,5,5- trimethylhexanoat, Dicumylperoxid, 1, 1-Bis (tert. -butylperoxy) cyclohexan, 1, 1-Bis (tert. -butylperoxy) 3,3, 5-trimethylcyclohexan, Cumylhydroperoxid, tert . -Butylhydroperoxid, Bis (4-tert . -butylcyclohexyDperoxydicarbonat, Mischungen von zwei oder mehr der vorgenannten Verbindungen miteinander sowie Mischungen der vorgenannten Verbindungen mit nicht genannten Verbindungen, die ebenfalls Radikale bilden können.
Besonders bevorzugt wird die Polymerisation der Hülle beispielsweise mit K2S20s, KHS05, NaHS05 und Butylhydroperoxid initiiert.
In besonderen Ausführungsformen werden die Radikalinitiatoren mit einer Reduktionskomponente gemischt, so daß die Polymerisation bei geringerer Temperatur durchgeführt werden kann.
Derartige Reduktionskomponenten sind weithin bekannt . Hierzu gehören unter anderem Eisen (II) salze, wie FeS04, Natriumbisulfit, Natriumthiosulfat und Natriumhydroxymethylsulfinat (Natriumfor aldehydsulfoxylat) .
Erfindungsgemäß weist die Hülle c) organische Polymerisate auf, die durch radikalische Polymerisation bei einer Temperatur von höchstens 65°C hergestellt werden, wobei man den Initiator in mindestens zwei Portionen dem Reaktionsgefäß zugibt, wobei eine Zugabe zum Start der Polymerisation notwendig ist und eine weitere Zugabe mindestens 2 Minuten, vorzugsweise mindestens 10 Minuten und besonders bevorzugt mindestens 20 Minuten nach Beginn der Polymerisation erfolgt.
Der Begriff "nach Beginn der Polymerisation" bezieht sich auf den Zeitpunkt, zu dem die Bildung von Radikalen in Gegenwart von Monomeren in einer Menge stattfindet, die eine Polymerisation erlaubt. Dieser Zeitpunkt ist vom gewählten Initiatorsystem und der Temperatur abhängig, wobei gegebenenfalls noch Inhibitoren zu berücksichtigen sind.
In bevorzugten Aus ührungsformen gibt man den Initiator in drei, insbesondere vier und vorzugsweise fünf oder mehr Portionen dem Reaktionsgefäß zu, wobei die Zugabe jeweils nach mindestens 2 Minuten, vorzugsweise mindestens 10 Minuten und besonders bevorzugt mindestens 20 Minuten erfolgt.
Bevorzugt ist die während der Polymerisation als zugegebene Menge an Initiator mindestens so groß, wie die zum Start verwendete Menge an Initiator. In besonderen Ausführungsformen ist das Gewichtsverhältnis von während der Polymerisation zugegebene Menge zur zu Anfang zugegebenen Menge an Initiator größer oder gleich 5, insbesondere größer oder gleich 10 und besonders bevorzugt größer oder gleich 20.
Besonders bevorzugt fügt man den Initiator kontinuierlich über einen Zeitraum von mindestens einer Stunde dem Reaktionsgefäß zu. Kontinuierlich bedeutet im Rahmen der vorliegenden Erfindung, daß über den gesamten Zeitraum geringe Mengen dem Reaktionsgefäß zugegeben werden, wobei die Zugabegeschwindigkeit variieren kann. Hierbei kann es von Vorteil sein, daß man die Monomere ebenfalls batchweise oder kontinuierlich über einen Zeitraum von mindestens einer Stunde dem Reaktionsgefäß zugibt. In. bevorzugten Ausführungsformen werden sowohl die Monomere als auch der Initiator über einen Zeitraum von mindestens zwei Stunden der Reaktionsmischung zugegeben.
Um die Reaktionsführung zu vereinfachen ist die Herstellung einer Mischung, die Monomere und Initiator umfaßt, sinnvoll. Diese Mischung wird anschließend dem Reaktionsgefäß vorzugsweise über einen Zeitraum von mindestens einer Stunde, vorzugsweise zwei Stunden zugegeben.
Gemäß einer besonderen Ausführungsform hält man die Konzentration an Initiator im Reaktionsgefäß kleiner oder gleich 0,05 Gew.-%, vorzugsweise kleiner oder gleich 0,03 Gew.-%, bezogen auf die gesamte Reaktionsmischung.
Oxidations- und Reduktionskomponente werden dabei über den gesamten Reaktionsverlauf vorzugsweise in einer Menge von 0,01 bis 4 Gew.-%, bevorzugt 0,02 bis 2 Gew.-% bezogen auf die Monomermenge, eingesetzt.
Die Reaktionstemperaturen sind abhängig von der Art des verwendeten Initiators und betragen erfindung gemäß höchstens 65 °C, vorzugsweise 0 bis 60 °C.
Vorzugsweise wird auch bei diesem Reaktionsschritt, zusätzlich zu dem in der ersten Stufe zugegebenen Emulgator, kein weiterer Emulgator zudosiert. Eine zu hohe Emulgatorkonzentration kann zu solubilisatfreien Micellen führen, die als Keime für rein organische Latexpartikel fungieren können. Auch dieser Reaktionsschritt kann sowohl kontinuierlich als auch diskontinuierlich durchgeführt werden.
Die Isolierung der Pfropfcopolymerisate aus der Emulsion kann nach bekannten Verfahren erfolgen.
Beispielsweise können die Partikel durch Koagulation der Latices mittels Ausfrieren, Salzzugabe oder Zugabe von polaren Lösungsmitteln oder durch Sprühtrocknung isoliert werden.
Mit der Verfahrensweise kann die Partikelgröße nicht nur über den Emulgatorgehalt, sondern auch über die Reaktionstemperatur, den pH-Wert und vor allem über die Zusammensetzung der Pfropfcopolymerisate beeinflußt werden. Die mittlere Partikelgröße kann dabei von 5 bis 500 nm variiert werden.
Die Einführung einer siliciumorganischen Hülle b) vermittelt eine verbesserte Phasenanbindung der Organopolymerhülle c) an die siliciumorganische Pfropfgrundlage.
Die erfindungsgemäßen Siliconkautschuk- Pfropfcopolymerisate können verwendet werden, um die Schlagzähigkeit von Formmassen zu verbessern. Diese Formmassen sind an sich bekannt. Im allgemeinen enthalten diese unter anderem Polyacrylnitrile, Polystyrole, Polyether, Polyester, Polycarbonate, ' Polyvinylchloride, Styrol-Acrylnitril-Polymere und Poly(meth) acrylate. Diese Polymere können einzeln oder als Mischung in den Formmassen enthalten sein. Hiervon sind Formmassen bevorzugt, die Poly (meth) acrylate umfassen .
Poly (meth) acrylate sind in der Fachwelt bekannt. Diese Polymere werden im allgemeinen durch radikalische Polymerisation von Mischungen erhalten, die
(Meth) acrylate enthalten. Beispiele hierfür wurden zuvor genannt .
Neben den zuvor dargelegten (Meth) acrylaten können die zu polymerisierenden Zusammensetzungen auch weitere ungesättigte Monomere aufweisen, die mit den zuvor genannten (Meth) acrylaten copolymerisierbar sind. Im allgemeinen werden diese Verbindungen in einer Menge von 0 bis 50 Gew.-%, vorzugsweise 0 bis 40 Gew.-% und besonders bevorzugt 0 bis 20 Gew.-%, bezogen auf das Gewicht der Monomeren, eingesetzt, wobei die Comonomere einzeln oder als Mischung verwendet werden können.
Bevorzugte Poly (meth) acrylate sind durch Polymerisation von Mischungen erhältlich, die mindestens 20 Gew.-%, insbesondere mindestens 60 Gew.-% und besonders bevorzugt mindestens 80 Gew.-%, jeweils bezogen auf das Gesamtgewicht der zu polymerisierenden Monomere, Methylmethacrylat aufweisen.
Hierbei können verschiedene Poly (meth) acrylate eingesetzt werden, die sich beispielsweise im Molekulargewicht oder in der Monomerzusammensetzung unterscheiden.
Des weiteren können die Poly (meth) acrylat-Formmassen weitere Polymere enthalten, um die Eigenschaften zu modifizieren. Hierzu gehören unter anderem Polyacrylnitrile, Polystyrole, Polyether, Polyester, Polycarbonate und Polyvinylchloride. Diese Polymere können einzeln oder als Mischung eingesetzt werden, wobei auch Copolymere, die von den zuvor genannten Polymere ableitbar sind, den Formmassen beigefügt werden können. Zu diesen gehören insbesondere Styrol- Acrylnitril-Polymere (SAN) , die vorzugsweise den Formmassen in einer Menge von bis zu 45 Gew.-% beigefügt werden.
Besonders bevorzugte Styrol-Acrylnitril-Polymere können durch die Polymerisation von Mischungen erhalten werden, die aus
70 bis 92 Gew.-% Styrol 8 bis 30 Gew.-% Acrylnitril und
0 bis 22 Gew.-% weiterer Comonomere, jeweils bezogen auf das Gesamtgewicht der zu polymerisierenden Monomere, bestehen.
In besonderen Ausgestaltungen beträgt der Anteil der Poly (meth) acrylate mindestens 20 Gew.-%, bevorzugt mindestens 60 Gew.-% und besonders bevorzugt mindestens 80 Gew.-%.
Derartig besonders bevorzugte Formmassen sind unter dem Handelsnamen PLEXIGLAS® von der Fa. Röhrα GmbH & Co . KG kommerziell erhältlich.
Das Gewichtsmittel des Molekulargewichts Mw der erfindungsgemäß als Matrixpolymere zu verwendenden Homo- und/oder Copolymere kann in weiten Bereichen schwanken, wobei das Molekulargewicht üblicherweise auf den Anwendungszweck und die Verarbeitungsweise der Formmasse abgestimmt wird. Im allgemeinen liegt es aber im Bereich zwischen 20 000 und 1 000 000 g/mol, vorzugsweise 50 000 bis 500 000 g/mol und besonders bevorzugt 80 000 bis 300 000 g/mol, ohne daß hierdurch eine Einschränkung erfolgen soll. Die erfindungsgemäßen Formmassen können des weiteren Acrylatkautschuk-Modifier enthalten. Überraschend kann hierdurch ein hervorragendes Schlagzähigkeitsverhalten bei Raumtemperatur (ca. 23°C) der Formkörper erzielt werden, die aus den erfindungsgemäßen Formmassen hergestellt wurden. Besonders wesentlich ist, daß die mechanischen und thermischen Eigenschaften, wie beispielsweise der E-Modul oder die Vicat- Erweichungstemperatur, auf sehr hohem Niveau erhalten bleiben. Wird versucht ein ähnliches
Kerbschlagzähigkeitsverhalten bei Raumtemperatur nur durch die Verwendung von Acrylatkautschuk-Modifier oder Siliconkautschuk-Pfropfcopolymerisat zu erzielen, so nehmen diese Werte deutlicher ab.
Derartige Acrylatkautschuk-Modifier sind an sich bekannt. Es handelt sich hierbei um Copolymerisate, die eine Kern-Hülle-Struktur aufweisen, wobei der Kern und die Hülle einen hohen Anteil an den zuvor beschriebenen (Meth) acrylaten aufweisen.
Bevorzugte Acrylatkautschuk-Modifier weisen hierbei eine Struktur mit zwei Schalen auf, die sich in ihrer Zusammensetzung unterscheiden.
Besonders bevorzugte Acrylatkautschuk-Modifier haben unter anderem folgenden Aufbau:
Kern: Polymerisat mit einem Methylmethacrylatanteil von mindestens 90 Gew.-%, bezogen auf das Gewicht des Kerns .
Schale 1: Polymerisat mit einem Butylacrylatanteil von mindestens 80 Gew.-%, bezogen auf das Gewicht der ersten Schale. Schale 2: Polymerisat mit einem Methylmethacrylatanteil von mindestens 90 Gew.-%, bezogen auf das Gewicht der zweiten Schale.
Beispielsweise kann ein bevorzugter Acrylatkautsch.uk- Modifier folgenden Aufbau aufweisen:
Kern: Copolymerisat aus Methylmethacrylat
(95,7 Gew.-%), Ethylacrylat (4 Gew.-%) und Allylmethacrylat (0,3 Gew.-%) Sl: Copolymerisat aus Butylacrylat (81,2 Gew.-%), Styrol (17,5 Gew.-%) und Allylmethacrylat (1,3 Gew:-%) S2 : Copolymerisat aus Methylmethacrylat (96 Gew.-%) und Ethylacrylat (4 Gew.-%)
Das Verhältnis von Kern zu Schale (n) der Acrylatkautschuk-Modifier kann in weiten Bereichen schwanken. Vorzugsweise liegt das Gewichtsverhältnis Kern zu Schale K/S im Bereich von 20:80 bis 80:20, bevorzugt von 30:70 zu 70:30 bis Modifiern mit einer Schale bzw. das Verhältnis von Kern zu Schale 1 zu Schale 2 K/S1/S2 im Bereich von 10:80:10 bis 40:20:40, besonders bevorzugt von 20:60:20 bis 30:40:30 bei Modifiern mit zwei Schalen.
Die Partikelgröße der Acrylatkautschuk-Modifier liegt üblich im Bereich von 50 bis 1000 nm, vorzugsweise 100 bis 500 nm und besonders bevorzugt von 150 bis 450 nm, ohne daß hierdurch eine Beschränkung erfolgen soll.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung liegt das GewichtsVerhältnis von Siliconkautschuk-Pfropfcopolymerisat zu Acrylatkautschuk-Modifier im Bereich von 1:10 bis 10:1, vorzugsweise von 4:6 bis 6:4.
Besondere Formmassen bestehen aus fl) 20 bis 95 Gew.-% (Meth) acrylatpolymere, f2) 0 bis 45 Gew.-% Styrol-Acrylnitril-Polymere, f3) 5 bis 60 Gew.-% Siliconkautschuk- Pfropfcopolymerisate f4) 0 bis 60 Gew.-% auf Acrylatkautschuk basierende Schlagzähmodifier, jeweils bezogen auf das Gewicht der Komponenten fl bis f4, und üblichen Additiven und Zuschlagsstoffen.
Die Formmassen können übliche Zusatzstoffe aller Art enthalten. Hierzu gehören unter anderem Antistatika, Antioxidantien, Entformungsmittel , Flammschutzmittel, Schmiermittel, Farbstoffe, Fließverbesserungsmittel, Füllstoffe, Lichtstabilisatoren und organische Phosphorverbindungen, wie Phosphite oder Phosphonate, Pigmente, Verwitterungsschutzmittel und Weichmacher.
Aus den zuvor beschriebenen Formmassen können durch bekannte Verfahren, wie beispielsweise Spritzguß oder Extrusion Formkörper erhalten werden, die hervorragende Kerbschlagzähigkeitswerte aufweisen.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung können so erhaltene Formkörper eine Vicat-
Erweichungstemperatur nach ISO 306 (B50) von mindestens 85, bevorzugt mindestens 90 und besonders bevorzugt mindestens 95°C, eine Kerbschlagzähigkeit KSZ (Izod 180/leA, 1,8 MPa) nach ISO 180 von mindestens 3,0 kJ/m2 bei -20°C und von mindestens 2,5 kJ/m2 bei -40°C, ein E-Modul nach ISO 527-2 von mindestens 1500, bevorzugt mindestens 1600, besonders bevorzugt mindestens 1700 MPa aufweisen. Die erfindungsgemäße Formmasse eignet sich insbesondere zur Herstellung von Spiegelgehäusen, Spoilern von Fahrzeugen, Rohren, Abdeckungen oder Bauelementen für Kühlschränke .
Nachfolgend wird die Erfindung durch Beispiele und
Vergleichsbeispiele eingehender erläutert, ohne daß die Erfindung auf diese Beispiele beschränkt werden soll .
Beispiel 1
In einen Polymerisationskessel werden bei 55°C (Regelung der Kessel-Außentemperatur) unter Rühren 5950 g einer Siliconkautschuk-Dispersion mit einem Gehalt von 2 mol-% an Vinyl-Gruppen und einem Feststoffgehalt von 20 Gew.-% vorgelegt. Diese
Siliconkautschuk-Dispersion ohne Hülle c) wurden in Anlehnung an die in EP-0 492 376 auf den Seiten 5 - 7 beschriebenen Beispielen hergestellt.
Anschließend erfolgt die Zugabe von 3 g konzentrierter Essigsäure und 0,0035 g Eisen (2) sulfat . Anschließend wird der Mischung eine Natriumhydoxymethyl- sulfinatlösung, die 2,8 g Natriumhydoxymethylsulfinat und 50 g Wasser enthält, mittels eines Zutropftrichters über ca. 20 min zugegeben. Gleichzeitig wird mit der Zugabe einer Mischung begonnen, die 793 g Methylmethacrylat und 2 g Butylhydroperoxid als Initiator enthält, wobei die Zulaufgeschwindigkeit der Mischung aus Monomer und Initiator so eingestellt wird, daß Zugabe dieser Mischung über einen Zeitraum 3
Stunden erfolgt. Nach Zulaufende wird die Temperatur zur Nachreaktion 30 Minuten weiterhin bei 55°C gehalten. Anschließend wird auf 30°C abgekühlt und die Dispersion über ein DIN 70 Siebgewebe filtriert. Die so hergestellten Siliconkautschuk-
Pfropfcopolymerisate haben eine Teilchengröße von 67 nm im Radius, die mit einem Coulter N4-Gerät bestimmt wird. Die Teilchen weisen ein Kern/Schale-Verhältnis (K/S) von 60/40 auf.
Die Dispersion wird bei -20°C eingefroren und nach 2 Tagen aufgetaut. Anschließend wird der Feststoff abfiltriert und bei 60°C getrocknet.
22,5 g der erhaltenen Partikel werden mittels eines Extruders mit 77,5 g Polymethylmethacrylat-Formmasse gemischt, die von Röhm GmbH & Co . KG unter dem Namen Plexiglas® 7N kommerziell erhältlich ist. Aus den Formmassen werden durch Extrusion Prüfkörper hergestellt, an denen die mechanischen und thermischen Eigenschaften gemessen werden.
Die Bestimmung der StrangaufWeitung erfolgte gemäß DIN 54811 (1984) . Die Erweichungstemperatur wird gemäß DIN ISO 306 (Aug. 1994); Mini-Vicat-Anlage (16h/80°C) bestimmt. Die Messung der Izod- Kerbschlagzähigkeit wird gemäß ISO 180 (1993) durchgeführt. Der Elastizitätsmodul wird nach ISO 527-2 ermittelt. Die so erhaltenen Daten sind in Tabelle 1 dargelegt.
Vergleichsbeispiel 1
Das Beispiel 1 wurde im wesentlichen wiederholt. Allerdings wurde eine Mischung von 3 g Natriumpersulfat in 50 g Wasser als Initiator verwendet, wobei auf die Verwendung von Essigsäure und Eisen (II) sulfat verzichtet wurde. Des weiteren wird die Temperatur des Reaktors auf 80°C eingestellt, Nach Zulaufende wird die Temperatur zur Nachreaktion 240 Minuten weiterhin bei 80°C gehalten wird.
Die so erhaltene Dispersion wird wie in Beispiel 1 beschrieben aufgearbeitet, wobei die Partikel eine
Teilchengröße im Bereich von 63 nm im Radius aufweisen. Die Teilchen weisen ein Kern/Schale-Verhältnis (K/S) von 60/40 auf.
22,5 g der erhaltenen Partikel werden mittels eines Extruders mit 77,5 g Polymethylmethacrylat-Formmasse gemischt, die von Röhm GmbH & Co . KG unter dem Namen Plexiglas® 7N kommerziell erhältlich ist.
Die Bestimmung der mechanischen Eigenschaften erfolgte gemäß Beispiel 1, wobei die erhaltenen Werte ebenfalls in Tabelle 1 aufgeführt sind.
Beispiel 2
Beispiel 1 wird im wesentlichen wiederholt, wobei jedoch eine Mischung aus 761,3 g Methylmethacrylat und 31,7 g Ethylacrylat als Monomer anstatt reinem Methylmethacrylat verwendet wird.
Analog Beispiel 1 wurden die Teilchen analysiert. Die Teilchen mit 'einer Größe von 72 nm im Radius wiesen ein Kern/Schale Verhältnis von 60/40 auf.
Entsprechend Beispiel 1 wurden 22,5 g der so erhaltenen Partikel in 77,5 g Polymethylmethacrylat-Formmasse eingearbeitet. Die so erhaltenen Werte sind ebenfalls in Tabelle 1 aufgeführt. Tabelle 1
Figure imgf000033_0001

Claims

Patentansprüche
1. Siliconkautschuk-Pfropfcopolymerisate mit Kern- Hülle-Struktur aufweisend mindestens einen Kern a) aus einem siliciumorganischen Polymer, das der allgemeinen Formel (R2Si02/2)x- (RSi03/2)y- (Si0 /2) z mit x = 0 bis 99,5 Mol-%, y = 0,5 bis 100 Mol-%, z = 0 bis 50 Mol-% entspricht, wobei R gleiche oder verschiedene Alkyl- oder Alkenyl-Reste mit 1 bis 6 C-Atomen, Aryl-Reste oder substituierte
Kohlenwasserstoffreste bedeutet sowie mindestens eine Hülle c) aus einem organischen Polymer, dadurch erhältlich, daß man die organische Hülle c) durch radikalische Polymerisation bei einer Temperatur von höchstens 65°C herstellt und den Initiator in mindestens zwei Portionen dem Reaktionsgefäß zugibt, wobei eine weitere Zugabe mindestens 2 Minuten nach Beginn der Polymerisation erfolgt.
2. Siliconkautschuk-Pfropfcopolymerisate gemäß
Anspruch 1, dadurch gekennzeichnet, daß man den Initiator in drei, insbesondere vier und vorzugsweise fünf Portionen dem Reaktionsgefäß zugibt, wobei die Zugabe jeweils nach mindestens 2 Minuten erfolgt.
3. Siliconkautschuk-Pfropfcopolymerisate gemäß
Anspruch 1 oder 2, dadurch gekennzeichnet, daß man den Initiator kontinuierlich über einen Zeitraum von mindestens einer Stunde dem Reaktionsgefäß zugibt.
4. Siliconkautschuk-Pfropfcopolymerisate gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man die Monomere kontinuierlich über einen Zeitraum von mindestens einer Stunde dem Reaktionsgefäß zugibt .
5. Siliconkautschuk-Pfropfcopolymerisate gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man die Monomere und den Initiator als Mischung dem Reaktionsgefäß zugibt.
6. Siliconkautschuk-Pfropfcopolymerisate gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, man die Konzentration an Initiator im Reaktionsgefäß unterhalb von 0,05 Gew.-%, bezogen auf die gesamte Reaktionsmischung hält.
7. Siliconkautschuk-Pfropfcopolymerisate gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem Kern a) und der Hülle c) eine weitere sphärische Polydialkylsiloxan-Schicht b) aus (R2Si02/2) - Einheiten vorhanden ist.
8. Siliconkautschuk-Pfropfcopolymerisate gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Siliconkautschuk- Pfropfcopolymerisate eine Teilchengröße im Bereich von 10 bis 300 nm im Durchmesser aufweisen.
9. Siliconkautschuk-Pfropfcopolymerisate gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Pfropfcopolymerisat zusammengesetzt ist aus 0,05 bis 95 Gew.-%, bezogen auf das Gesamtgewicht des Copolymerisats, eines Kerns a) aus einem siliciumorganischen Polymer,
0 bis 94,5 Gew.-%, bezogen auf das Gesamtgewicht des Copolymerisats, einer Polydialkylsiloxan- Schicht b) und 5 bis 95 Gew.-%, bezogen auf das Gesamtgewicht des Copolymerisats, einer Hülle c) aus organischen Polymeren.
10. Siliconkautschuk-Pfropfcopolymerisate gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Hülle c) polymerisierte (Meth) acrylate enthält .
11. Siliconkautschuk-Pfropfcopolymerisate gemäß Anspruch 10, dadurch gekennzeichnet, daß die Hülle c) durch Polymerisation einer Mischung, die Methacrylate und Acrylate umfaßt, erhalten wurde.
12. Siliconkautschuk-Pfropfcopolymerisate gemäß Anspruch 11, dadurch gekennzeichnet, daß die Hülle c) durch Polymerisation einer Mischung, die Methylmethacrylat und mindestens ein Acrylat mit 1 bis 8 Kohlenstoffato en umfaßt, erhalten wurde.
13. Siliconkautschuk-Pfropfcopolymerisate gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Kern a) aus einem siliciumorganischen Polymer vor Herstellung der organischen Hülle c) Vinylgruppen umfaßt.
14. Siliconkautschuk-Pfropfcopolymerisate gemäß Anspruch 13, dadurch gekennzeichnet, daß der Gehalt an Vinylgruppen des Kerns a) im Bereich von 2 bis 3 Mol.-% liegt, bezogen auf das Gewicht des Kerns.
15. Verfahren zur Herstellung von Siliconkautschuk- Pfropfcopoly erisäten gemäß den Ansprüchen 1 bis 14, dadurch gekennzeichnet, daß man einen Kern aus Polysiloxan nach dem
Emulsionspolymerisationsverfahren herstellt und anschließend auf das erhaltene Polysiloxan organische Monomere radikalisch aufpfropft, wobei man während der radikalischen Polymerisation kontinuierlich Initiator zugibt.
16. Verfahren gemäß Anspruch 15, dadurch gekennzeichnet, daß man ein Initiatorsystem verwendet, das ein Reduktionsmittel umfaßt.
17. Verfahren gemäß Anspruch 15 oder 16, dadurch gekennzeichnet, daß man Butylhydroperoxid als Initiator verwendet.
18. Schlagzähe Formmasse aufweisend Siliconkautschuk- Pfropfcopolymerisate gemäß einem oder mehreren der
Ansprüche 1 bis 14.
19. Schlagzähe Formmasse gemäß Anspruch 18, dadurch gekennzeichnet, daß die Formmasse
Poly (meth) acrylate enthält .
20. Schlagzähe Formmasse gemäß Anspruch 18 oder 19, dadurch gekennzeichnet, daß die Formmasse Styrol- Acrylnitril-Polymere enthält.
21. Schlagzähe Formmasse gemäß Anspruch 20, dadurch gekennzeichnet, daß die Styrol-Acrylnitril-Polymere durch Polymerisation einer Mischung erhalten wurden, die aus 70 bis 92 Gew.-% Styrol 8 bis 30 Gew.-% Acrylnitril und 0 bis 22 Gew.-% weiterer Comonomere, jeweils bezogen auf das Gesamtgewicht der zu polymerisierenden Monomere, besteht.
22. Schlagzähe Formmasse gemäß einem oder mehreren der Ansprüche 18 bis 21, dadurch gekennzeichnet, daß die Formmasse mindestens einen auf Acrylatkautschuk basierenden Schlagzähmodifier aufweist.
23. Schlagzähe Formmasse gemäß einem oder mehreren der Ansprüche 18 bis 22, dadurch gekennzeichnet, daß die Formmasse fl) 0 bis 95 Gew.-% (Meth) acrylatpolymere, f2) 0 bis 45 Gew.-% Styrol-Acrylnitril-Polymere, f3) 5 bis 60 Gew.-% Siliconkautsch.uk-
Pfropfcopolymerisate gemäß einem oder mehreren der Ansprüche 1 bis 11 f4) 0 bis 60 Gew.-% auf Acrylatkautschuk basierende Schlagzähmodifier, jeweils bezogen auf das Gewicht der Komponenten fl bis f4, und üblichen Additiven und Zuschlagsstoffen besteht .
24. Formkörper hergestellt aus einer Formmasse gemäß einem oder mehreren der Ansprüche 18 bis 23.
25. Schlagzäher Formkörper gemäß Anspruch 24, dadurch gekennzeichnet, daß der Formkörper eine Vicat- Erweichungste peratur nach ISO 306 (B50) von mindestens 85°C, eine Kerbschlagzähigkeit KSZ (Izod 180/leA, 1,8 MPa) nach ISO 180 von mindestens 3,0 kJ/m2 bei -20°C und von mindestens 2,5 kJ/m2 bei - 40°C, einen E-Modul nach ISO 527-2 von mindestens 1500 MPa aufweist.
PCT/EP2003/000267 2002-02-06 2003-01-14 Siliconkautschuk-pfropfcopolymerisate mit kern-hülle-struktur, schlagzähmodifizierte formmassen und formkörper sowie verfahren zu deren herstellung WO2003066695A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MXPA04007629A MXPA04007629A (es) 2002-02-06 2003-01-14 Copolimeros injertados en caucho de silicona con estructura de nucleo y envoltura, composiciones de piezas moldeadas modificadas por impacto y piezas moldeadas y procesos para su produccion.
AU2003202558A AU2003202558A1 (en) 2002-02-06 2003-01-14 Core-shell structured silicone rubber graft polymers, impact-resistant modified molding compounds and molded bodies and method for producing the same
US10/501,467 US20050124761A1 (en) 2002-02-06 2003-01-14 Core-shell structured silicone rubber graft polymers, impact-resistant modified molding compounds and molded bodies and method for producing the same
KR1020047012228A KR100854939B1 (ko) 2002-02-06 2003-01-14 코어-쉘 구조의 실리콘 고무 그래프트 중합체, 내충격성개질된 성형 화합물 및 성형품, 및 이의 제조방법
JP2003566062A JP2005517058A (ja) 2002-02-06 2003-01-14 コア−シェル−構造を有するシリコーンゴム−グラフトコポリマー、耐衝撃性に改質された成形材料及び成形品並びにその製造方法
EP03701507A EP1472297A2 (de) 2002-02-06 2003-01-14 Siliconkautschuk-pfropfcopolymerisate mit kern-hülle-struktur, schlagzähmodifizierte formmassen und formkörper sowie verfahren zu deren herstellung
CA002471332A CA2471332A1 (en) 2002-02-06 2003-01-14 Core-shell structured silicone rubber graft polymers, impact-resistant modified molding compounds and molded bodies and method for producing the same
US11/970,190 US20080305335A1 (en) 2002-02-06 2008-01-07 Core-shell structured silicone rubber graft polymers, impact-resistant modified molding compounds and molded bodies and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10206518.7 2002-02-06
DE10206518 2002-02-06
DE10236240.8 2002-08-07
DE10236240A DE10236240A1 (de) 2002-02-06 2002-08-07 Silicon-Pfropfcopolymerisate mit Kern-Hülle-Struktur, schlagzähmodifizierte Formmassen und Formkörper sowie Verfahren zu deren Herstellung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US74887407A Continuation 2002-02-06 2007-05-15

Publications (2)

Publication Number Publication Date
WO2003066695A2 true WO2003066695A2 (de) 2003-08-14
WO2003066695A3 WO2003066695A3 (de) 2004-03-04

Family

ID=27735683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/000267 WO2003066695A2 (de) 2002-02-06 2003-01-14 Siliconkautschuk-pfropfcopolymerisate mit kern-hülle-struktur, schlagzähmodifizierte formmassen und formkörper sowie verfahren zu deren herstellung

Country Status (9)

Country Link
US (2) US20050124761A1 (de)
EP (1) EP1472297A2 (de)
JP (1) JP2005517058A (de)
KR (1) KR100854939B1 (de)
AU (1) AU2003202558A1 (de)
CA (1) CA2471332A1 (de)
DE (1) DE10236240A1 (de)
MX (1) MXPA04007629A (de)
WO (1) WO2003066695A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037559A1 (de) * 2004-09-30 2006-04-13 Wacker Chemie Ag Kern-schalepartikel enthaltende zusammensetzung und ihre herstellung
WO2006132471A1 (en) 2005-06-07 2006-12-14 Lg Chem, Ltd. Polymeric lubricant having multi layer structure and manufacturing method thereof
WO2007057242A1 (de) * 2005-11-21 2007-05-24 Evonik Röhm Gmbh Transparente tpu (thermoplastische polyurethane) / pmma(polymethyl(meth)acrylat) abmischungen mit verbesserter kälteschlagzähigkeit
WO2008098825A1 (de) * 2007-02-14 2008-08-21 Wacker Chemie Ag Redispergierbare kern-schale polymere und ein verfahren zu deren herstellung

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260089A1 (de) * 2002-12-19 2004-07-01 Röhm GmbH & Co. KG Verfahren zur Herstellung von wässrigen Dispersionen
DE10260065A1 (de) * 2002-12-19 2004-07-01 Röhm GmbH & Co. KG Kern-Schale-Teilchen zur Schlagzähmodifizierung von Poly(meth)acrylat-Formmassen
DE10345045A1 (de) * 2003-09-26 2005-04-14 Röhm GmbH & Co. KG Verfahren zur Oberflächenvergütung von Werkstoffen durch Aufbringen insbesondere transparenter Schichten auf Basis von Polymethacrylaten
DE10349144A1 (de) * 2003-10-17 2005-05-12 Roehm Gmbh Polymermischung für mattierte Spritzgußteile
DE10349142A1 (de) * 2003-10-17 2005-05-12 Roehm Gmbh Polymermischung sowie deren Verwendung für Spritzgußteile
DE10351535A1 (de) * 2003-11-03 2005-06-09 Röhm GmbH & Co. KG Mehrschichtfolie aus (Meth)acrylatcopolymer und Polycarbonat
DE102004010504B4 (de) * 2004-03-04 2006-05-04 Degussa Ag Hochtransparente lasermarkierbare und laserschweißbare Kunststoffmaterialien, deren Verwendung und Herstellung sowie Verwendung von Metallmischoxiden und Verfahren zur Kennzeichnung von Produktionsgütern
DE102004022540A1 (de) 2004-05-05 2005-12-08 Röhm GmbH & Co. KG Formmasse für Formkörper mit hoher Witterungsbeständigkeit
DE102005002072A1 (de) * 2005-01-14 2006-07-20 Röhm GmbH & Co. KG Witterungsstabile Folie zur Gelbeinfärbung retroreflektierender Formkörper
US7704586B2 (en) * 2005-03-09 2010-04-27 Degussa Ag Plastic molded bodies having two-dimensional and three-dimensional image structures produced through laser subsurface engraving
US7790079B2 (en) 2005-04-18 2010-09-07 Evonik Rohm Gmbh Thermoplastic molding material and molding elements containing nanometric Inorganic particles for making said molding material and said molding elements, and uses thereof
FR2896445B1 (fr) 2006-01-25 2010-08-20 Arkema Film flexible a base de polymere fluore
JP5563762B2 (ja) * 2006-03-02 2014-07-30 株式会社カネカ 中空シリコーン系微粒子の製造方法
US7846492B2 (en) * 2006-04-27 2010-12-07 Guardian Industries Corp. Photocatalytic window and method of making same
DE102007021199B4 (de) * 2006-07-17 2016-02-11 Evonik Degussa Gmbh Zusammensetzungen aus organischem Polymer als Matrix und anorganischen Partikeln als Füllstoff, Verfahren zu deren Herstellung sowie deren Verwendung und damit hergestellte Formkörper
ES2691528T3 (es) * 2006-07-31 2018-11-27 Henkel Ag & Co. Kgaa Composiciones adhesivas basadas en resina epoxi curable
CA2665551A1 (en) * 2006-10-06 2008-04-17 Henkel Ag & Co. Kgaa Pumpable epoxy paste adhesives resistant to wash-off
DE102007005432A1 (de) * 2007-01-30 2008-07-31 Evonik Röhm Gmbh Formmassen für mattierte Polyacrylat-Formkörper
EP2136695B1 (de) * 2007-03-22 2018-05-23 Maquet Cardiovascular LLC Verfahren und vorrichtungen zur verringerung der reflexion beleuchteter artefakte
DE102007026200A1 (de) * 2007-06-04 2008-12-11 Evonik Röhm Gmbh Zusammensetzung mit erhöhter Spannungsrissbeständigkeit
DE102007026201A1 (de) * 2007-06-04 2008-12-11 Evonik Röhm Gmbh Eingefärbte Zusammensetzung mit erhöhter Spannungsrissbeständigkeit
DE102007028601A1 (de) * 2007-06-19 2008-12-24 Evonik Röhm Gmbh Reaktivgemisch zur Beschichtung von Formkörpern mittels Reaktionsspritzguss sowie beschichteter Formkörper
DE102007029263A1 (de) * 2007-06-22 2008-12-24 Evonik Röhm Gmbh PMMA/PVDF-Folie mit besonders hoher Witterungsbeständigkeit und hoher UV-Schutzwirkung
DE102007051482A1 (de) * 2007-10-25 2009-04-30 Evonik Röhm Gmbh Verfahren zur Herstellung von beschichteten Formkörpern
DE102008001231A1 (de) * 2008-04-17 2009-10-22 Evonik Röhm Gmbh Flammfeste PMMA-Formmasse
DE102008001695A1 (de) * 2008-05-09 2009-11-12 Evonik Röhm Gmbh Poly(meth)acrylimide mit verbesserten optischen und Farbeigenschaften, insbesondere bei thermischer Belastung
US8518208B2 (en) * 2009-08-31 2013-08-27 Cytec Technology Corp. High performance adhesive compositions
FR2971626B1 (fr) 2011-02-11 2015-12-04 Arkema France Film bi-couches d'un module photovoltaique
FR2974535A1 (fr) 2011-04-27 2012-11-02 Arkema France Utilisations d'une structure multicouche pvc/polymere fluore pour la protection arriere des panneaux solaires
FR3004714B1 (fr) * 2013-04-23 2015-12-18 Arkema France Film fluore
DE102014226826A1 (de) 2014-12-22 2016-06-23 Henkel Ag & Co. Kgaa Epoxidharz-Zusammensetzung
US10774208B2 (en) 2015-03-11 2020-09-15 Arkema Inc. High impact blends of vinylidene fluoride-containing polymers
FR3053045B1 (fr) * 2016-06-23 2020-06-19 Arkema France Preforme, son procede de preparation, son utilisation et composite comprenant celle-ci
EP3825355A1 (de) 2019-11-22 2021-05-26 Henkel AG & Co. KGaA Formulierungen mit hohen glasübergangstemperaturen für laminate
KR20220096732A (ko) * 2020-12-31 2022-07-07 롯데케미칼 주식회사 열가소성 수지 조성물 및 이를 이용한 성형품

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690986A (en) * 1984-05-30 1987-09-01 Mitsubishi Rayon Co., Ltd. Impact-resistant thermoplastic polyorganosiloxane-based graft copolymer and process for producing same
EP0246537A2 (de) * 1986-05-23 1987-11-25 Bayer Ag Kerbschlagzähe Pfropfpolymerisate
US4812515A (en) * 1986-09-17 1989-03-14 Bayer Aktiengesellschaft Ageing-resistant thermoplastic moulding materials of good impact strength
EP0308198A2 (de) * 1987-09-18 1989-03-22 Mitsubishi Rayon Co., Ltd. Thermoplastische Polymethacrylimidzusammensetzung
EP0326038A1 (de) * 1988-01-25 1989-08-02 Mitsubishi Rayon Co., Ltd. Schlagfeste Harzzusammensetzung
US4885209A (en) * 1987-06-20 1989-12-05 Bayer Aktiengesellschaft Thermoplastic silicon rubber graft polymers (II)
US4945124A (en) * 1988-01-20 1990-07-31 Bayer Aktiengesellschaft Impact resistant polyamide moulding compounds modified with silicone graft rubbers
EP0430134A2 (de) * 1989-11-27 1991-06-05 Mitsubishi Rayon Co., Ltd. Hochschlagfeste Pfropfkopolymere und Harzzusammensetzungen
EP0433906A2 (de) * 1989-12-18 1991-06-26 Toshiba Silicone Co., Ltd. Thermoplastischer Kunststoff und Verfahren zur Herstellung
EP0534244A1 (de) * 1991-09-26 1993-03-31 BASF Aktiengesellschaft Thermoplastische Formmassen
US5223586A (en) * 1990-12-20 1993-06-29 Wacker-Chemie Gmbh Elastomeric graft copolymers having a core/shell structure
EP0584363A1 (de) * 1992-02-06 1994-03-02 Mitsubishi Rayon Co., Ltd. Pfropfpolymerteilche, herstellung davon, und diese enthaltende zusammensetzung
EP0678532A1 (de) * 1993-12-09 1995-10-25 Basf Aktiengesellschaft Dreistufige Propfcopolymerisate und solche enthaltende thermoplastische Formmassen mit hoher Zähigkeit
US5981659A (en) * 1995-09-26 1999-11-09 Wacker-Chemie Gmbh Precross-linked silicone elastomer particles with organopolymer shell as formulation constituent in powder coating materials
US6251313B1 (en) * 1998-03-12 2001-06-26 Wacker-Chemie Gmbh Process for the preparation of microencapsulated products having organopolysiloxane walls
WO2002036682A1 (de) * 2000-10-31 2002-05-10 Röhm GmbH & Co. KG Pmma-formmassen mit verbesserter kälteschlagzähigkeit
WO2002036683A1 (de) * 2000-10-31 2002-05-10 Röhm GmbH & Co. KG Formmassen mit verbesserter kälteschlagzähigkeit

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297764B2 (ja) * 1993-04-22 2002-07-02 鐘淵化学工業株式会社 常温硬化性組成物
DE10043868A1 (de) * 2000-09-04 2002-04-04 Roehm Gmbh PMMA Formmassen mit verbesserter Schlagzähigkeit
US6670419B2 (en) * 2000-09-14 2003-12-30 Rohm And Haas Company Method of toughening thermoplastic polymers and thermoplastic compositions produced thereby
US7498373B2 (en) * 2001-02-07 2009-03-03 Roehm Gmbh & Co. Kg Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
DE10127134A1 (de) * 2001-06-05 2002-12-12 Roehm Gmbh verfahren zur Herstellung von Formkörpern aus (Meth)acrylat-Copolymeren mittels Spritzguß
DE10204890A1 (de) * 2002-02-06 2003-08-14 Roehm Gmbh Schlagzähe Formmasse und Formkörper
DE10243062A1 (de) * 2002-09-16 2004-03-25 Röhm GmbH & Co. KG Heißwasserwechseltestbeständiges Sanitärmaterial aus PMMA-Formmasse oder schlagzäher PMMA-Formmasse
DE10251144A1 (de) * 2002-10-31 2004-05-19 Röhm GmbH & Co. KG Makroporöses Kunststoffperlenmaterial
DE10260065A1 (de) * 2002-12-19 2004-07-01 Röhm GmbH & Co. KG Kern-Schale-Teilchen zur Schlagzähmodifizierung von Poly(meth)acrylat-Formmassen
DE10260089A1 (de) * 2002-12-19 2004-07-01 Röhm GmbH & Co. KG Verfahren zur Herstellung von wässrigen Dispersionen
MXPA04010956A (es) * 2003-01-30 2005-01-25 Roehm Gmbh Forma de dosis farmaceutica y metodo para la produccion de la misma.
DE10320318A1 (de) * 2003-05-06 2004-12-02 Röhm GmbH & Co. KG Verfahren zur Herstellung von lichtstreuenden Formteilen mit hervorragenden optischen Eigenschaften
DE10349144A1 (de) * 2003-10-17 2005-05-12 Roehm Gmbh Polymermischung für mattierte Spritzgußteile
DE10349142A1 (de) * 2003-10-17 2005-05-12 Roehm Gmbh Polymermischung sowie deren Verwendung für Spritzgußteile
MX2007008855A (es) * 2003-10-18 2008-03-13 Roehm Gmbh Masas de pieza moldeada de poli (met) acrilato resistentes a impactos con alta estabilidad termica.
DE10351535A1 (de) * 2003-11-03 2005-06-09 Röhm GmbH & Co. KG Mehrschichtfolie aus (Meth)acrylatcopolymer und Polycarbonat
DE10354379A1 (de) * 2003-11-20 2005-06-23 Röhm GmbH & Co. KG Formmasse, enthaltend ein Mattierungsmittel
DE102004022540A1 (de) * 2004-05-05 2005-12-08 Röhm GmbH & Co. KG Formmasse für Formkörper mit hoher Witterungsbeständigkeit
DE102004045296A1 (de) * 2004-09-16 2006-03-23 Röhm GmbH & Co. KG Verwendung von Polyalkyl (meth) acrylat-Perlpolymerisaten und Formmasse zur Herstellung von extrudierten Formteilen mit mattierter Oberfläche
DE102005002072A1 (de) * 2005-01-14 2006-07-20 Röhm GmbH & Co. KG Witterungsstabile Folie zur Gelbeinfärbung retroreflektierender Formkörper
US7790079B2 (en) * 2005-04-18 2010-09-07 Evonik Rohm Gmbh Thermoplastic molding material and molding elements containing nanometric Inorganic particles for making said molding material and said molding elements, and uses thereof
DE102007021199B4 (de) * 2006-07-17 2016-02-11 Evonik Degussa Gmbh Zusammensetzungen aus organischem Polymer als Matrix und anorganischen Partikeln als Füllstoff, Verfahren zu deren Herstellung sowie deren Verwendung und damit hergestellte Formkörper

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690986A (en) * 1984-05-30 1987-09-01 Mitsubishi Rayon Co., Ltd. Impact-resistant thermoplastic polyorganosiloxane-based graft copolymer and process for producing same
EP0246537A2 (de) * 1986-05-23 1987-11-25 Bayer Ag Kerbschlagzähe Pfropfpolymerisate
US4812515A (en) * 1986-09-17 1989-03-14 Bayer Aktiengesellschaft Ageing-resistant thermoplastic moulding materials of good impact strength
US4885209A (en) * 1987-06-20 1989-12-05 Bayer Aktiengesellschaft Thermoplastic silicon rubber graft polymers (II)
EP0308198A2 (de) * 1987-09-18 1989-03-22 Mitsubishi Rayon Co., Ltd. Thermoplastische Polymethacrylimidzusammensetzung
US4945124A (en) * 1988-01-20 1990-07-31 Bayer Aktiengesellschaft Impact resistant polyamide moulding compounds modified with silicone graft rubbers
EP0326038A1 (de) * 1988-01-25 1989-08-02 Mitsubishi Rayon Co., Ltd. Schlagfeste Harzzusammensetzung
EP0430134A2 (de) * 1989-11-27 1991-06-05 Mitsubishi Rayon Co., Ltd. Hochschlagfeste Pfropfkopolymere und Harzzusammensetzungen
EP0433906A2 (de) * 1989-12-18 1991-06-26 Toshiba Silicone Co., Ltd. Thermoplastischer Kunststoff und Verfahren zur Herstellung
US5223586A (en) * 1990-12-20 1993-06-29 Wacker-Chemie Gmbh Elastomeric graft copolymers having a core/shell structure
EP0534244A1 (de) * 1991-09-26 1993-03-31 BASF Aktiengesellschaft Thermoplastische Formmassen
EP0584363A1 (de) * 1992-02-06 1994-03-02 Mitsubishi Rayon Co., Ltd. Pfropfpolymerteilche, herstellung davon, und diese enthaltende zusammensetzung
EP0678532A1 (de) * 1993-12-09 1995-10-25 Basf Aktiengesellschaft Dreistufige Propfcopolymerisate und solche enthaltende thermoplastische Formmassen mit hoher Zähigkeit
US5981659A (en) * 1995-09-26 1999-11-09 Wacker-Chemie Gmbh Precross-linked silicone elastomer particles with organopolymer shell as formulation constituent in powder coating materials
US6251313B1 (en) * 1998-03-12 2001-06-26 Wacker-Chemie Gmbh Process for the preparation of microencapsulated products having organopolysiloxane walls
WO2002036682A1 (de) * 2000-10-31 2002-05-10 Röhm GmbH & Co. KG Pmma-formmassen mit verbesserter kälteschlagzähigkeit
WO2002036683A1 (de) * 2000-10-31 2002-05-10 Röhm GmbH & Co. KG Formmassen mit verbesserter kälteschlagzähigkeit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037559A1 (de) * 2004-09-30 2006-04-13 Wacker Chemie Ag Kern-schalepartikel enthaltende zusammensetzung und ihre herstellung
WO2006132471A1 (en) 2005-06-07 2006-12-14 Lg Chem, Ltd. Polymeric lubricant having multi layer structure and manufacturing method thereof
WO2007057242A1 (de) * 2005-11-21 2007-05-24 Evonik Röhm Gmbh Transparente tpu (thermoplastische polyurethane) / pmma(polymethyl(meth)acrylat) abmischungen mit verbesserter kälteschlagzähigkeit
US8722788B2 (en) 2005-11-21 2014-05-13 Evonik Roehm Gmbh Transparent TPU (thermoplastic polyurethanes)/PMMA (polymethyl (meth) acrylate) blends with improved low-temperature impact resistance
WO2008098825A1 (de) * 2007-02-14 2008-08-21 Wacker Chemie Ag Redispergierbare kern-schale polymere und ein verfahren zu deren herstellung

Also Published As

Publication number Publication date
JP2005517058A (ja) 2005-06-09
EP1472297A2 (de) 2004-11-03
US20080305335A1 (en) 2008-12-11
CA2471332A1 (en) 2003-08-14
MXPA04007629A (es) 2004-11-10
KR100854939B1 (ko) 2008-08-29
WO2003066695A3 (de) 2004-03-04
AU2003202558A8 (en) 2003-09-02
AU2003202558A1 (en) 2003-09-02
DE10236240A1 (de) 2003-08-14
KR20040099271A (ko) 2004-11-26
US20050124761A1 (en) 2005-06-09

Similar Documents

Publication Publication Date Title
EP1472314B1 (de) Schlagzähe formmassen und formkörper
WO2003066695A2 (de) Siliconkautschuk-pfropfcopolymerisate mit kern-hülle-struktur, schlagzähmodifizierte formmassen und formkörper sowie verfahren zu deren herstellung
EP0296403B1 (de) Thermoplastische Silikonkautschukpfropfpolymerisate (II)
EP1789491B1 (de) Verwendung von polyalkyl(meth)acrylat-perlpolmerisaten und formmasse zur herstellung von extrudierten formteilen mit mattierter oberfläche
EP0492376B1 (de) Elastomere Pfropfcopolymerisate mit Kern-Hülle-Struktur
EP0279261B1 (de) Teilchenförmige Mehrphasenpolymerisate
WO2005108449A1 (de) Polysiloxan-pfropfpolymerisat
DE102007007336A1 (de) Redispergierbare Kern-Schale Polymere und ein Verfahren zu deren Herstellung
EP0296402B1 (de) Thermoplastische Siliconkautschukpfropfpolymerisate (I)
EP0459257B1 (de) Thermoplastische, flexible Polyurethan-Zusammensetzungen und Verfahren zu ihrer Herstellung
EP1330494A1 (de) Formmassen mit verbesserter kälteschlagzähigkeit
JPH0535173B2 (de)
EP0630940B1 (de) Mischung aus Fluorkautschuk und Silicon/Acrylat-Kern/Mantel Kautschuk
JP3519504B2 (ja) 複合ゴム系グラフト共重合体、その粉体の製造方法およびその熱可塑性樹脂組成物
EP0258746A2 (de) Kerbschlagzähe Silikonkautschukpropfpolymerisate
JPH0742341B2 (ja) 熱可塑性樹脂組成物
DE4110975A1 (de) Schlagzaehe, waermeformbestaendige chemiewerkstoffe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003701507

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038017229

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2471332

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10501467

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003566062

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/007629

Country of ref document: MX

Ref document number: 1020047012228

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003701507

Country of ref document: EP