WO2003064990A2 - Deckelelement - Google Patents

Deckelelement Download PDF

Info

Publication number
WO2003064990A2
WO2003064990A2 PCT/DE2003/000219 DE0300219W WO03064990A2 WO 2003064990 A2 WO2003064990 A2 WO 2003064990A2 DE 0300219 W DE0300219 W DE 0300219W WO 03064990 A2 WO03064990 A2 WO 03064990A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
cover element
cell culture
optically sensitive
Prior art date
Application number
PCT/DE2003/000219
Other languages
English (en)
French (fr)
Other versions
WO2003064990A3 (de
Inventor
Andreas Katerkamp
Uwe Brinkmann
Frank Grawe
Göran KEY
Sabine Schreiber
Jochen Uckelmann
Original Assignee
O2-Scan Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O2-Scan Gmbh filed Critical O2-Scan Gmbh
Priority to AU2003206642A priority Critical patent/AU2003206642A1/en
Priority to CA002474866A priority patent/CA2474866A1/en
Priority to US10/503,266 priority patent/US20050239197A1/en
Priority to JP2003564540A priority patent/JP2005516596A/ja
Priority to EP03704260A priority patent/EP1470215A2/de
Priority to DE10390291T priority patent/DE10390291D2/de
Publication of WO2003064990A2 publication Critical patent/WO2003064990A2/de
Publication of WO2003064990A3 publication Critical patent/WO2003064990A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50853Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/163Biocompatibility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides

Definitions

  • the invention relates to a lid element which can be placed on cell culture vessels, e.g. Petri dishes and preferably microtiter plates as well as a device and a method using such a cover element for the detection of the metabolic activity of cells contained in liquid media.
  • the invention can advantageously e.g. are used to investigate the effects of different environmental and (bio-) chemical substance influences on the vitality of cells. There is also the possibility of carrying out studies to improve cultivation conditions for the cells, for example to increase the rate of formation of biomolecules formed by cells, such as various proteins.
  • cells for example, microorganisms, cells of fungi and human, animal or plant cells such as cell line cells such as HL- 60 (human, promyeloblast), U-937 (human, Ly phom), MCF-7 (human, mom carcinoma), CACO-2 (human, colon carcinoma, J774A.1 (murine, macrophage), 3T3 (murine, Fi - broblast), BHK-12 (hamster, kidney), but also primary cells, such as can be obtained from biopsies or blood, for example.
  • cell line cells such as HL- 60 (human, promyeloblast), U-937 (human, Ly phom), MCF-7 (human, mom carcinoma), CACO-2 (human, colon carcinoma, J774A.1 (murine, macrophage), 3T3 (murine, Fi - broblast), BHK-12 (hamster, kidney), but also primary cells, such as can be obtained from biopsies or blood, for example.
  • a corresponding solution is known from DE 199 03 506 AI, in which the changing oxygen concentration within a liquid medium in which cells are contained is measured in specially designed vessels and this change is used as a measure of the metabolic activity of the cultivated cells.
  • the vessels described there are designed in a special form and the sensor membrane to be used is arranged in a defined manner within the vessels to avoid measurement errors.
  • a disadvantage is an arrangement of the sensor membrane on the bottom of the cell culture vessels on which the cells are also located. In particular, the cultivation conditions for the cells are thereby deteriorated.
  • US Pat. No. 5,567,598 discloses a device for the detection of microorganisms in liquid samples or for monitoring the effects of certain chemical substances influencing such microorganisms. According to the teaching taught there, among other things sensor membranes should be at the ends from there
  • Wedge-shaped elements called “prongs” are arranged. These wedge-shaped elements are fastened to a frame element and are immersed with this sensor membrane in a sample liquid which is contained in a reservoir. However, these wedge-shaped elements are partially inside hollow and kept closed only on the end face on which the sensor membrane is arranged.
  • the device for measuring signal detection from the sensor membrane described in US Pat. No. 5,567,598 is very susceptible to measurement errors, since measurements are carried out through the liquid medium, and does not provide quantitative measurement signals, so this arrangement is not suitable for automated routine use.
  • EP 0 425 587 describes the use of so-called “optodes” for the same field of application.
  • the solution described there, such an optode is intended to be attached to the tip of a probe that can be inserted into a container, with light guides for such a probe an excitation and detection device has been included, but it is remarkable that this solution should only be used in closed systems that are completely sealed off from the environment and consequently that there is no exchange of materials between the system and the environment.
  • this object is achieved with a cover element having the features of claim 1, as well as with an apparatus and a method which such cover elements are used, according to claim 14 for a device and claim 21 for a method.
  • Advantageous refinements and developments of the invention can be achieved with the features specified in the subordinate claims.
  • the lid elements according to the invention can be placed directly on the various cell culture vessels known per se in adapted form and with the aid of these lid elements an optical detection and derived therefrom the metabolic activities of cells contained in a liquid medium, such as a nutrient solution, can be determined.
  • a liquid medium such as a nutrient solution
  • the adaptation of the geometry and dimensioning of the lid elements can be carried out relatively easily and can be designed with respect to the cell culture vessels usually used in laboratories.
  • Such a cover element can preferably be designed for the so-called microtiter plates, taking into account the respective number and arrangements of the individual cavities (wells).
  • At least one light-guiding element is present on the cover element according to the invention, which is preferably designed as a rod-shaped optical waveguide. In the attached position of the cover element, these light-guiding elements protrude into the respective cell culture vessel, in each case into a cavity.
  • At least one optically sensitive layer is formed on the light-guiding elements.
  • Such an optically sensitive layer can be formed on the end face, which projects into the interior of the respective cavity, in / or on an outer lateral surface.
  • Such an optically sensitive layer changes its optical properties depending on the (bio-) chemical substance concentration in the cavity of the cell culture vessel that is to be detected and which is changed by the metabolism of the cells.
  • optical properties of such optically sensitive layers can change with regard to their luminescence, light transmission or light scattering.
  • luminescence excitation takes place in such a layer with suitable light and a change in the excited luminescence light dependent on the substance concentration occurs, and this change in the luminescence light can be used as a measure of the respective substance concentration.
  • ruthenium complexes are known (Otto S. Wolfbeis (ed.), Fiber Optic Chemical Sensors and Biosensors, Vol, II, CRC Press 1991), which are embedded in a polymer matrix that is permeable to oxygen. These ruthenium complexes have the property that the luminescence intensity changes depending on the respective oxygen concentration or the oxygen partial pressure. As a result, the intensity of the luminescent light or the temporal decay behavior of the luminescent light can be changed after switching off one that is appropriate for the luminescence excitation. suitable light source can be used.
  • the substances suitable for luminescent excitation which are embedded in such a polymer matrix, are subject to a certain aging and the detection of the luminescence intensity can be falsified by stray light, it is particularly advantageous to determine the decay time of the lumines, which changes depending on the oxygen concentration - To measure zenz by a phase shift between the sinusoidal excitation light and the fluorescent light.
  • An optically sensitive layer that can be used in a cover element according to the invention can be designed, for example, as described in DE 198 31 770 A1.
  • optically sensitive layers can also be designed in a different form without luminescence phenomena occurring and being able to be taken into account.
  • an optically sensitive layer can be formed from a material or such
  • Contain substance that changes its light transmission properties depending on the respective substance concentration for example by a corresponding successive color change. Accordingly, more or less light is absorbed by such an optically sensitive layer, so that the intensity of the transmitted light that passes through such a sensitive layer and strikes an optical detector is also a suitable measure.
  • An example would be optical sensor membranes, such as those used to determine the Carbon dioxide concentration or the pH value from Otto S. Wolfbeiss (ed.), Fiber Optic Chemical Sensors and Biosensors, Vol. II, CRC Press 1991, are known.
  • the light scattering which occurs with such an optically sensitive layer and which also changes as a function of the respective substance concentration can be used.
  • light-scattering particles are contained in such an optically sensitive layer, whereby these particles can be embedded in a polymeric material.
  • This material is influenced by the respective substance concentration and the light-scattering or reflecting particles are shifted or aligned within the layer, so that the proportion of the light transmitted through this layer in the direction of an optical detector also changes in accordance with the substance concentration ,
  • the layer material in which such particles are embedded can, for example, be in the form of a gel or a liquid crystal.
  • the cover element according to the invention can advantageously have a surface which forms a structure in the region of rod-shaped optical waveguides, as light-guiding elements. Such a structure is consequently on the side of the cover element opposite such rod-shaped optical waveguides educated .
  • such a structure can be designed in the form of convex elevations or concave depressions in order to be able to advantageously influence the light guidance.
  • convex elevations can form plano-convex optical lenses or concave depressions, concave lenses, which specifically shape the light to be coupled into the rod-shaped optical waveguide.
  • the plano-convex lenses can also direct light emerging on this side of the cover element in a targeted manner onto an optical detector or focus it for coupling into an optical fiber.
  • Recesses are also possible which can be funnel-shaped, the light being coupled into the respective rod-shaped optical waveguide through the funnel formed in each case. In this case, it is advantageous to form a planar surface within the funnel-shaped area for coupling light into and / or out of the respective rod-shaped optical waveguide.
  • the optical waveguides can have a region in the form of a funnel, truncated cone or truncated pyramid, which then passes over to the area, this allows more favorable lighting conditions within the optical waveguides for the coupling and / or coupling out of light to be achieved. 5
  • the optical waveguides which are entirely in the form of a rod or have only one rod-shaped region, can have a circular, oval, triangular or polygonal cross section, at least in the rod-shaped parts.
  • the formation of a plurality of optically sensitive layers on a rod-shaped optical waveguide with a triangular or polygonal cross section on the correspondingly planar lateral surface areas can be carried out relatively easily and a clear separation of such then preferably different optically sensitive layers can be achieved.
  • spacers can be raised areas, for example, on the underside, that is to say on the side on which the rod-shaped optical waveguides are formed or present.
  • Spacers can, however, also be frame elements adapted to the cell culture vessels used in the usual shape and size, which can be placed between the cell culture vessel and the lid element. A second effect can also be achieved with frame-shaped spacers designed in this form. This makes it possible to arrange the optically sensitive layers within the cavities of such a cell culture vessel in a specifically changeable manner.
  • the one or more optically sensitive layers can be immersed more or less deeply in the respective liquid medium or it can even be achieved that the one or more optically sensitive layer (s) is arranged above the liquid medium and there the respective measurement of the Concentration of substances in the gas space above which liquid can be carried out.
  • these openings are advantageously closed with gas-permeable membranes, so that, for example, the undesired introduction of foreign cells such as e.g. Microorganisms can be avoided.
  • reflecting or absorbing layers on the surface of a cover element according to the invention can suppress or at least hinder the effects of external and scattered light or the influence of neighboring cavities.
  • a reflecting or absorbing layer is not formed over the entire surface of the surface of a cover element according to the invention, but rather the areas for the coupling and / or coupling out of light into or out of the light-guiding elements.
  • Such a coating is of course kept free.
  • the cover element according to the invention can be introduced in a device for determining the optical properties of the sensitive layers on the light-guiding elements, which are influenced by the metabolism of the cells to be cultivated.
  • light from at least one light source is directed by light-guiding elements present on the cover element, such as rod-shaped optical waveguides, to or through optically sensitive layers formed there, and the light influenced by the one or more optically sensitive layers is measured with at least one optical detector .
  • the measurement as already described above, can take place in different forms, such as Luminescence light measurement, light transmission measurement or light scattering measurement or a combination of at least two of these measurements.
  • luminescence measuring devices such as e.g. Fluorescence scanner / reader and photometric measuring devices such as ELISA plate readers are used if a corresponding optically sensitive layer is formed on the rod-shaped optical waveguides as light-guiding elements.
  • optical fibers can be guided from a light source onto or through such optically sensitive layers on the rod-shaped optical waveguides by means of optical fibers.
  • These optical fibers or further additional optical fibers can also direct the light to be measured in each case to at least one optically see detector align. If several individual cell culture vessels or cell culture vessels with a plurality of cavities are used, it is advantageous to design the device in such a way that a relative movement between the cover element on the cell culture vessel, the light source or the end faces of optical fibers that are used for the light coupling in and / or can be used from the rod-shaped optical fiber on the cover element, is possible. This allows targeted positioning in relation to the optically sensitive
  • Layer can be reached on the respective light-guiding element in the cavity of the cell culture vessel, so that the measurements in the individual cavities can be carried out sequentially.
  • the at least one optical detector should also be arranged above the cover element or at least the end face of an optical fiber into which the luminescence light is coupled and through which the luminescence light is directed onto the optical detector. be arranged accordingly.
  • the solution according to the invention can also be used to determine the CO 2 , H 2 , H + , H 2 S, NH 4+ concentration and / or the pH.
  • Enzyme sensors can be used for optically sensitive layers. However, glucose and / or lactate can also be detected with such enzyme sensors.
  • FIG. 1 shows, in a sectional illustration and in schematic form, a lid element according to the invention, which is placed on a cell culture vessel designed in the form of a microtiter plate;
  • FIG. 2 shows a sectional illustration in a top view along the line AA of FIG. 1;
  • FIG. 3 shows a sectional illustration of an advantageous development of a cover element according to the invention
  • FIG. 4 shows another embodiment of a cover element according to the invention
  • Figure 5 shows a further embodiment of a cover element according to the invention.
  • FIG. 6 shows a cover element according to the invention for determining substance concentrations in a gaseous atmosphere above the liquid medium containing the cells to be cultivated;
  • FIG. 7 shows in schematic form the illumination of an optically sensitive layer, which is arranged on an end face of a rod-shaped optical waveguide, within a liquid medium;
  • FIG. 8 shows in schematic form the illumination of an optically sensitive layer formed on an end face of an optical waveguide with a funnel-shaped area
  • FIG. 9 shows in schematic form the light guidance of luminescent light excited in an optically sensitive layer from a rod-shaped optical waveguide, which is coupled into and through an optical fiber
  • Optical fiber can be directed to an optical detector, not shown;
  • FIG. 10 shows in schematic form an optical structure for illuminating optically sensitive layers and detecting light influenced by them, in one example with optical fiber;
  • FIG. 11 shows a further example of a suitable optical structure
  • FIG. 12 shows, in schematic form, one possibility for arranging optical fibers via which the
  • FIG. 13 shows, in schematic form, a possibility for arranging optical fibers via which the light from a light source, not shown, is directed onto an optically sensitive layer and through this layer and the bottom of a cavity onto a detector, not shown;
  • FIG. 14 (a) shows an example of an optical structure, as it is for lighting an optically sensitive layer
  • FIG. 14 (b) shows an example of an optical structure for the detectors of light from an optically sensitive layer, as can be used together in the examples shown in FIGS. 12 and 13;
  • Figure 15 in schematic form an example of a
  • FIG. 16 shows an example of a device with additional optical elements
  • FIG. 17 shows an example with optical fibers as light-guiding elements
  • FIG. 18 shows a diagram of measurement signal curves which have been measured in five cavities of a cell culture vessel in uncorrected form
  • FIG. 19 shows a diagram of the standardized measurement signal curves according to FIG. 18.
  • FIG. 1 shows in schematic form an example of a lid element 6 according to the invention as it is placed on a cell culture vessel 5 with a plurality of cavities.
  • a rod-shaped optical waveguide 1 is provided on the cover element 6 according to the invention for each cavity 8, the entire cover element 6 including the rod-shaped optical waveguide 1 being produced from an optically transparent material in this example.
  • a cover element can be produced, for example, in an injection molding process from a suitable polymer plastic material which is transparent to light, such as PMMA.
  • a liquid medium as well as cells are contained in the cavities 8 of the cell culture vessel 5, which is indicated by the wavy line in the cavities 8.
  • an optically sensitive layer 4 is formed on the lower end faces 2 of the rod-shaped light waveguide 1.
  • Such optically sensitive layers 4 can, however, also be formed alone or additionally on the outer lateral surface 3 of the rod-shaped optical waveguide 1.
  • FIG. 2 shows the example according to FIG. 1 in a sectional plan view along the line A - A from FIG. 1. It is clear here that the rod-shaped optical waveguides 1 on the cover element 6 are each arranged centrally in relation to the individual cavities 8.
  • FIG. 3 shows a modified cover element 6 compared to the example shown in FIG. 1.
  • This cover element 6 has on its surface a structure in the form of plano-convex lenses 9, which are arranged and designed in relation to a rod-shaped optical waveguide 1.
  • this cover element 6 is formed as a part and consequently also the plano-convex lenses 9 as an integral part of the cover element 6.
  • the example of a cover element 6 according to the invention shown in FIG. 4 has optical waveguides 1 which have a funnel-shaped region 10 which merges into a rod-shaped region 1 *.
  • this has a structure in which concave depressions 11 are formed in relation to the individual cavities 8 and the rod-shaped optical waveguides 1.
  • concave depressions 11 are formed in relation to the individual cavities 8 and the rod-shaped optical waveguides 1.
  • flat surfaces for light coupling in and / or coupling out from or into the rod-shaped optical waveguide 1 are formed vis-a-vis the end faces 2, on which optically sensitive layers 4 are also formed in this example.
  • the rod-shaped optical waveguides 1 are of significantly shorter design than the rod-shaped optical waveguides 1 described and shown in the previous examples, so that the optical sensitive layers 4 formed here on the downward-facing end faces 2 are also upper - Arranged half of the liquid medium, within the cavities 8 for the determination of changing substance concentrations in a gaseous atmosphere.
  • this effect can also be achieved by appropriate spacers, which are attached to a cover element 6. forms or can also be used between cover element 6 and cell culture vessel 5 can be achieved.
  • FIG. 7 shows an example of a possible light guide for illuminating an optically sensitive layer 4 in schematic form.
  • light from a light source not shown, is directed via an optical fiber 12 onto a biconvex optical lens 13 and guided by means of this optical lens 13 into the rod-shaped optical waveguide 1 of a cover element 6, which is indicated.
  • the optical lens 13 and the optical fiber 12 are selected and the rod-shaped element 1 is dimensioned such that the light is guided within the rod-shaped optical waveguide 1 while observing total reflection conditions on the optically sensitive layer 4.
  • an optical fiber 12 is again shown in largely analog form, but here with a somewhat larger diameter, in which the light emerging from an end face is directed directly onto a flat surface of a cover element 6 and through an optical waveguide 1 with a funnel-shaped area 10 and a rod-shaped area 1 is also directed to a sensitive layer 4 formed on the lower face surface 2, while maintaining total reflection on the outer lateral surfaces.
  • FIG. 9 is intended to indicate how luminescent light from the optically sensitive layer 4, which then has the appropriate properties, is again observed by the rod-shaped optical waveguide 1 of total reflection conditions is directed via the biconvex optical lens 13 onto the end face of an optical fiber 12 for coupling into the optical fiber 12.
  • the luminescent light reaches an optical detector (not shown) via this optical fiber 12.
  • FIG. 10 shows an optical structure as can be used in connection with the examples according to FIGS. 7 to 9.
  • light from a light source 21 is passed through a biconvex optical lens 20, an optical filter 19 which only allows light in the wavelength range which is suitable for luminescence excitation, onto a dichroic mirror 15 and from there via a further biconvex optical lens 14 and by means of this optical lens 14 directed to an end face of the optical fiber 12.
  • This light then passes through the optical fiber 12 into a rod-shaped optical waveguide 1 (not shown here).
  • the luminescent light excited in the optically sensitive layer can then be guided in the opposite direction through the optical fiber 12 and via the optical lens 14, through the dichroic mirror 15, the optical filter 16, via a further biconvex optical lens 17 onto an optical one Detector 18 are directed.
  • the optical filter 16 blocks extraneous and scattered light outside the wavelength range of the luminescent light.
  • FIG. 11 shows a further example of an optical structure, as can be used in a device with a cover element 6 according to the invention, shown.
  • an optical fiber 12 is used, which is divided into two parts.
  • an optical fiber bundle which is divided into two individual bundles.
  • the part of an optical construction shown on the left in FIG. 11 in turn uses a light source 29, with which light is coupled into a part of the optical fiber 12 through two biconvex optical lenses 28 and 26, between which an optical filter 27 is arranged, and through the optical fiber 12 a rod-shaped optical waveguide 1, not shown here, is directed onto an optically sensitive layer 4, also not shown.
  • Luminescence and / or scattered light from the optically sensitive layer 4 then, after corresponding coupling into the optical fiber 12, also reaches an optical detector 25 via two biconvex optical lenses 22 and 24, between which in turn an optical filter 23 is arranged.
  • the optical filters 27 and 23 are selected such that the optical filter 27 transmits only light in the wavelength range that is required for the excitation of luminescent light and / or light scattering, and the optical filter 23 only for light in the wavelength range of the respective luminescence - and / or stray light is permeable.
  • two individual optical fibers which are connected to one another via a Y-coupler, can also be used in analog form.
  • FIG. 12 shows an example of a adhesive light guidance of luminescent light, in conjunction with an optically sensitive layer 4, the luminescence of which can be changed as a function of the respective substance concentration within the liquid medium.
  • light from a light source is in turn coupled via an optical fiber 12, a biconvex optical lens 13 into a rod-shaped optical waveguide 1 of a cover element 6 according to the invention and directed onto the optically sensitive layer 4 formed on the end face 2 of the rod-shaped optical waveguide 1.
  • the luminescent light generated in the optically sensitive layer is coupled down through the bottom of the cavity 8 via the biconvex optical lens 30 into a further optical fiber 31 and from there is directed to an optical detector (not shown here).
  • an exemplary light guide is shown in schematic form, in conjunction with an optically sensitive layer 4, the light transmission or absorption and / or light scattering of which can be changed as a function of the respective substance concentration within the liquid medium.
  • Optical waveguide 1 of a cover element 6 according to the invention coupled in and directed onto the optically sensitive layer 4 formed on the surface 2 of the rod-shaped optical waveguide 1.
  • a certain amount of light is emitted by the optical sensitive layer 4 is absorbed or scattered, so that only part of the light can pass through the optically sensitive layer 4 and can be coupled into a further optical fiber 31 via the biconvex optical lens 30 and can be directed from there to an optical detector (not shown here) ,
  • FIG. 14 shows optical structures which can be connected to the optical fiber 12 and the optical fiber 31, in accordance with the examples in FIGS. 12 and 13.
  • a light source 29 the light of which is coupled into the optical fiber 12 via biconvex optical lenses 28 ′ and 26 *, between which in turn an optical filter 27 ⁇ is arranged, and from there onto the cover element 6 according to the invention for illuminating the sensitive layer 4 directed.
  • the light transmitted through the optically sensitive layer 4 or the luminescent light excited in the optically sensitive layer 4 is coupled into the optical fiber 31 and, after being decoupled from this optical fiber 31, also via two biconvex optical lenses 22 ⁇ and 24 ⁇ onto the detector 25 v directed.
  • an optical filter 23 is arranged between the bi- convex optical lenses 22 ⁇ and 24 ⁇ .
  • FIG. 15 shows an example of a possibility in which measurements can be carried out simultaneously in a plurality of cavities 8 of a cell culture vessel 5 with a cover element 6 according to the invention.
  • a plurality of optical fibers 12 are arranged above the cover element 6 and positioned in relation to the rod-shaped optical waveguide 1 projecting into cavities 8.
  • the cover element 6 is formed here with funnel-shaped regions 10 having optical waveguides 1 which merge into a rod-shaped region 1 *.
  • the light emerging from the light fibers 12 is directed through the optical waveguide 1 and the optically sensitive layers 4, the bottoms of the cavit 8 of the cell culture vessel 5 via a biconvex optical lens 32 to an optical detector 33.
  • the biconvex optical lens 32 is designed such that the light emerging from the rod-shaped optical waveguides 1 through the optically sensitive layers 4 of the individual cavities is directed in each case at a specific surface area of the optical detector 33, which is designed as a photosensitive array is, so that a simultaneous evaluation for each individual cavity 8 can take place.
  • the biconvex lens 32 can also advantageously be designed as a lens system in order to achieve optimal optical imaging properties.
  • CCD- are particularly suitable as photosensitive arrays Arrays.
  • FIG. 16 shows an example of a device in which a cover element 6, as shown in FIG. 1, is used.
  • cover elements 6 can also be used in a similar form in accordance with the other illustrated examples.
  • a carrier element 34 is arranged above the cover element 6 between an optical fiber 12 or a light source, not shown.
  • Optical waveguide 1 is held in a fixed manner, so that light that is coupled out and / or coupled back into the optical fiber 12 can advantageously be coupled out of the optical fiber 12, which can be positioned in relation to the rod-shaped optical waveguide 1, as indicated by the double arrow, by means of the biconvex optical lenses 35 is focusable.
  • FIG. 17 shows an example of a cover element 6, with optical fibers 12, which change into light-guiding elements within the cavities 8 as rod-shaped optical waveguides.
  • the optical fibers 12 can be guided through corresponding openings in the cover element 6 and protrude into the interior of cavities 8 of a cell culture vessel 5.
  • the end faces of the optical fibers 12 protruding into the interior of the cavities are provided with an optically sensitive layer 4.
  • the individual optical fibers 12 should be fixed to the cover element 6 in such a way that they protrude into the interior of the cavities 8 with the same length, so that a measurement is carried out at equal distances from the bottom of the cavities 8 filled with the same volumes of the liquid medium can.
  • FIG. 18 shows the experimentally determined measurement signal curve of an optical oxygen measurement in five cavities of a cell culture vessel 5 with 96 cavities (96 well microtiter plates).
  • the optically sensitive layers are located on the end faces of optical fibers 12.
  • a layer as described in DE 198 31 770 A1 was used as the optically sensitive layer 4.
  • the phase shift between the sinusoidal excitation light and the sinusoidal luminescent light was measured as a measure of the oxygen concentration with an optical structure as shown in FIG. 10.
  • the optically sensitive layer for determining the oxygen concentration was located 1.5 mm above the bottom of cavitation 8. In cavitation no. 1, 3, 4 and 5, respectively through measuring channels no. 1, 3, 4 and 5 were recorded, there were approx. 2 * 10 4 cells of the HL 60 cell line.
  • the reference channel Nos. 2, 3 is determined as a constant value for each measuring channel. Taking this constant value and its sign into account, all measurement signals that have been recorded over time have been corrected for the respective measurement channel, so that all signal curves at RWB x _ We rt have the same starting point and then the measurement signals recorded later this constant value has been corrected, the measurement signal curves are quasi shifted according to this constant value, taking its sign into account. Furthermore, the measurement signal values of the individual measurement channels No. 1, 3 to 5 were corrected using time-variable values. The individual measured at different time points measured signal values of the individual measurement channels # 1 were., 3 to 5 with the value of the difference between the RWB x _ If t and the measured at this time measurement signal value of the refer- ence channel no. 2 corrected.

Abstract

Die Erfindung betrifft ein Deckelelement, das auf Zellkulturgefässe, in denen in einem flüssigen Medium enthaltene Zellen aufgenommen sind. Das erfindungsgemässe Deckelelement soll eine Bestimmung von Stoffwechselaktivitäten von in den Zellkulturgefässen enthaltenen Zellen, mit optischen Messmethoden ermöglichen, wobei durch einfache Handhabung beim Laborpersonal erreicht werden kann. Am auf die Zellkulturgefässe aufsetzbaren Deckelelement sind lichtführende Elemente vorhanden, die in aufgesetzter Stellung des Deckelelementes in das Innere von Kavitäten des Zellgefässes hineinragen. Auf einer Stirnfläche und/oder auf der äusseren Mantelfläche der lichtführenden Elemente, die bevorzugt als stabförmige Lichtwellenleiter ausgebildet sind, ist mindestens eine optisch sensitive Schicht, zur Detektion von innerhalb der Kavitäten sich verändernden chemischen Stoffkonzentrationen, ausgebildet.

Description

Deckelelement
Die Erfindung betrifft ein Deckelelement, das auf Zellkulturgefäße, wie z.B. Petrischalen und bevorzugt Mikrotiterplatten sowie eine Vorrichtung und ein Verfahren unter Verwendung eines solchen Deckelelementes zur Detektion der Stoffwechselaktivität von in flüssigen Medien enthaltenen Zellen. Die Erfindung kann vorteilhaft z.B. für Untersuchungen von Wirkungen un- terschiedlicher Umwelt- und (bio- ) chemischer Stoffe- inflüsse auf die Vitalität von Zellen eingesetzt werden. Es besteht auch die Möglichkeit, Untersuchungen für die Verbesserung von Kultivierungsbedingungen für die Zellen vorzunehmen, um beispielsweise die Bil- dungsrate von durch Zellen gebildeter Biomoleküle, wie verschiedene Proteine, zu erhöhen.
Unter dem Betriff Zellen sollen z.B. Mikroorganismen, Zellen von Pilzen sowie menschliche, tierische oder pflanzliche Zellen wie z.B. Zellinien-Zellen wie HL- 60 (human, Promyeloblast) , U-937 (human, Ly phom) , MCF-7 (human, Mamakarzinom) , CACO-2 (human, Colonkar- zinom, J774A.1 (murin, Makrophage) , 3T3 (murin, Fi- broblast) , BHK-12 (Hamster, Niere) , aber auch primäre Zellen, wie sie z.B. aus Biopsien oder Blut gewonnen werden können, verstanden werden.
Aus DE 199 03 506 AI ist eine entsprechende Lösung bekannt, bei der in speziell ausgebildeten Gefäßen, die sich verändernde Sauerstoffkonzentration innerhalb eines flüssigen Mediums, in dem Zellen enthalten sind, gemessen wird und diese Veränderung als Maß für die Stoffwechselaktivität der kultivierten Zellen benutzt wird.
Die dort beschriebenen Gefäße sind in einer speziellen Form ausgebildet und die zu verwendende Sensormembran ist innerhalb der Gefäße zur Vermeidung von Messfehlern definiert angeordnet. Nachteilig ist eine Anordnung der Sensormembran auf dem Boden der Zell- kulturgefäße auf dem sich auch die Zellen befinden. Insbesondere werden dadurch die Kultivierungsbedingungen für die Zellen verschlechtert.
Daneben ist in US 5,567,598 eine Vorrichtung für den Nachweis von Mikroorganismen in flüssigen Proben bzw. zur Überwachung von Wirkungen bestimmter auf solche Mikroorganismen Einfluss nehmenden chemischer Stoffe bekannt . Gemäß der dort vermittelten Lehre sollen un- ter anderem Sensormembranen an den Enden von dort mit
„Prongs" bezeichneten keilförmigen Elementen angeordnet werden. Diese keilförmigen Elemente sind an einem Rahmenelement befestigt und werden mit dieser Sensormembran in eine Probenflüssigkeit, die in einem Re- servoir enthalten ist, eingetaucht. Diese keilförmigen Elemente sind in ihrem Inneren jedoch teilweise hohl ausgebildet und lediglich an der Stirnseite, an der die Sensormembran angeordnet ist, verschlossen gehalten. Die in US 5,567,598 beschriebene Vorrichtung zur Messsignalerfassung von der Sensormembran ist sehr Messfehler anfällig, da durch das flüssige Medium hindurch gemessen wird, und liefert keine quantitative Messsignale, damit ist diese Anordnung für eine automatisierte Routineanwendung nicht geeignet .
In EP 0 425 587 ist für den gleichen Anwendungsbereich der Einsatz sogenannten „Optoden" bezeichnet. In einem Beispiel, der dort beschriebenen Lösung, soll eine solche Optode an der Spitze einer in einen Behälter einführbaren Sonde befestigt werden, wobei innerhalb einer solchen Sonde Lichtleiter für eine Anregungs- und Detektionseinrichtung aufgenommen sind. Bemerkenswert ist es aber, dass diese Lösung ausschließlich in geschlossenen Systemen, die vollständig gegenüber der Umwelt abgeschlossen sind und demzufolge auch ein Stoffaustausch zwischen System und Umwelt ausgeschlossen ist, eingesetzt werden soll .
Ausgehend hiervon, ist es daher Aufgabe der Erfindung, eine kostengünstige, in vielfältiger Form ein- setzbare Lösung zu schaffen, mit der über eine optisch sensitive Schicht und optischer Messung die Stoffwechselaktivit von kultivierten Zellen unter Be- rücksichtigung unterschiedlicher Einflusskriterien, mit hoher Akzeptanz durch Laborpersonal bewertet werden können.
Erfindungsgemäß wird diese Aufgabe mit einem Deckel- element, das die Merkmale des Anspruchs 1 aufweist, sowie mit einer Vorrichtung und einem Verfahren, bei denen solche Deckelelemente Verwendung finden, gemäß dem Anspruch 14 für eine Vorrichtung und dem Anspruch 21 für ein Verfahren gelöst. Vorteilhafte Ausgestaltungsformen und Weiterbildungen der Erfindung können mit den in den untergeordneten Ansprüchen bezeichneten Merkmalen erreicht werden.
Die erfindungsgemäßen Deckelelemente können in ange- passter Form auf die verschiedensten an sich bekann- ten Zellkulturgefäße unmittelbar aufgesetzt werden und mit Hilfe dieser Deckelelemente eine optische Erfassung und davon abgeleitet die Stoffwechselaktivitäten von in einem flüssigen Medium, wie beispielsweise einer Nährlösung, enthaltenen Zellen bestimmt werden. Die Anpassung der Geometrie und Dimensionierung der Deckelelemente kann relativ einfach erfolgen und bezüglich der üblicherweise in Labors eingesetzten Zellkulturgefäße ausgebildet sein. So kann ein solches Deckelelement bevorzugt für die sogenannten Mikrotiterplatten unter Berücksichtigung der jeweiligen Anzahl und Anordnungen der einzelnen Kavitaten (Wells) ausgebildet sein.
Am erfindungsgemäßen Deckelelement ist mindestens ein lichtführendes Element vorhanden, das vorzugsweise als stabförmiger Lichtwellenleiter ausgebildet ist. Diese lichtführenden Elemente ragen in aufgesetzter Position des Deckelelementes auf das jeweilige Zellkulturgefäß, in jeweils eine Kavität hinein.
An den lichtführenden Elementen sind jeweils mindestens eine optisch sensitive Schicht ausgebildet. Eine solche optisch sensitive Schicht kann an der Stirnfläche, die an das Innere der jeweiligen Kavität hineinragt, in/oder auf einer äußeren Mantelfläche ausgebildet sein. Selbstverständlich besteht auch die Möglichkeit, auf einem solchen lichtführenden Element zwei und mehr unterschiedliche optisch sensitive Schichten auszu- bilden.
Eine solche optisch sensitive Schicht verändert seine optischen Eigenschaften in Abhängigkeit der zu detek- tierenden, vom Stoffwechsel der Zellen veränderten, (bio-) chemischen Stoffkonzentration, in der Kavität des Zellkulturgefäßes.
So können sich die optischen Eigenschaften solcher optisch sensitiver Schichten bezüglich ihrer Lumines- zenz, Lichttransmission oder LichtStreuung verändern.
Beispielsweise ist es bekannt, dass eine Lumineszenzanregung mit geeignetem Licht in einer solchen Schicht erfolgt und eine stoffkonzentrationsabhangige Veränderung des angeregten Lumineszenzlichtes auftritt und diese Veränderung des Lumineszenzlichtes als Maß für die jeweilige Stoffkonzentration genutzt werden kann .
Zur Bestimmung der Sauerstoffkonzentration sind beispielsweise Ruthenium-Komplexe bekannt (Otto S. Wolfbeis (ed.), Fiber Optic Chemical Sensors and Biosensors, Vol, II, CRC Press 1991), die in eine für Sauerstoff permeable polymere Matrix eingebettet sind. Diese Ruthenium-Komplexe haben die Eigenschaft, dass sich die Lumineszenzintensität in Abhängigkeit der jeweiligen Sauerstoffkonzentration bzw. des Sauerstoffpartialdruckes verändert. Dadurch kann die Intensität des Lumineszenzlichtes oder das zeitliche Abklingverhalten des Lumineszenzlichts, nach Abschaltung einer entsprechend zur Lumineszenzanregung ge- eigneten Lichtquelle genutzt werden.
Da aber insbesondere die zur Lumineszentanregung geeigneten Stoffe, die in einer solchen polymeren Ma- trix eingebettet sind, einer gewissen Alterung unterworfen sind und die Erfassung des Lumineszenzintesi- tät durch Störlicht verfälscht werden kann, ist es besonders vorteilhaft, die sich Sauerstoffkonzentrationsabhängig verändernde Abklingzeit der Lumines- zenz durch eine Phasenverschiebung zwischen dem sinusförmigen Anregungslicht und dem Fluoreszenzlicht zu messen.
Eine bei einem erfindungsgemäßen Deckelelement ein- setzbare optisch sensitive Schicht kann beispielsweise so ausgebildet sein, wie sie in DE 198 31 770 AI beschrieben ist.
Die optisch sensitiven Schichten können aber auch in anderer Form ausgebildet sein, ohne dass Lumineszenzerscheinungen auftreten und berücksichtigt werden können .
So kann beispielsweise eine optisch sensitive Schicht aus einem Stoff gebildet sein bzw. einen solchen
Stoff enthalten, der in Abhängigkeit der jeweiligen Stoffkonzentration seine Lichttransmissionseigenschaften, beispielsweise durch einen entsprechenden sukzessiven Farbumschlag, verändert. Dementsprechend wird von einer solchen optisch sensitiven Schicht entsprechend mehr oder weniger Licht absorbiert, so dass die Intensität des durch eine solche sensitive Schicht gelangenden und auf einen optischen Detektor auftreffenden transmittierten Lichtes ebenfalls ein geeignetes Maß ist. Zu nennen wäre hier als Beispiel optische Sensormembranen, wie sie zur Bestimmung der Kohlendioxidkonzentration oder des pH-Wertes aus Otto S. Wolfbeiss (ed.), Fiber Optic Chemical Sensors and Biosensors, Vol. II, CRC Press 1991, bekannt sind.
In einer weiteren Alternative kann aber auch die mit einer solchen optisch sensitiven Schicht auftretende Lichtstreuung, die sich ebenfalls in Abhängigkeit der jeweiligen Stoffkonzentration ändert, genutzt werden.
In diesem Fall sind in einer solchen optisch sensitiven Schicht lichtstreuende Partikel enthalten, wobei diese Partikel in einem polymeren Material eingebettet sein können. Dieses Material wird von der jeweiligen Stoffkonzentration beeinflusst und es erfolgt eine Verschiebung bzw. Ausrichtung der lichtstreuenden bzw. reflektierenden Partikel innerhalb der Schicht, so dass auch hier der Anteil des durch diese Schicht transmittierten Lichtes in Richtung eines optischen Detektors sich entsprechend der Stoffkonzen- tration verändert. Das Schichtmaterial, in dem solche Partikel eingebettet sind, kann beispielsweise gel- förmig oder eine Flüssigkristallform sein.
Neben den reinen Lumineszenz-, Lichttransmissions- und Lichtstreuungsmessungen sind auch Kombinationen von mindestens zwei Messarten möglich. Sinnvolle Kombinationen wären z.B. eine Lumineszenzmessung und eine Lichtstreuungsmessung oder eine Lichttransmissionsmessung und eine Lichtstreuungsmessung.
Das erfindungsgemäße Deckelelement kann vorteilhaft eine Oberfläche aufweisen, die im Bereich von stab- förmigen Lichtwellenleitern, als lichtführende Elemente, eine Struktur bildet. Eine solche Struktur ist demzufolge auf der solchen stabförmigen Lichtwellenleitern gegenüberliegenden Seite des Deckelelementes ausgebildet .
So kann beispielsweise eine solche Struktur in Form konvexer Erhebungen oder konkaver Vertiefungen ausge- bildet sein, um die Lichtführung vorteilhaft beeinflussen zu können.
So können konvexe Erhebungen plankonvexe optische Linsen oder konkave Vertiefungen konkave Linsen bil- den, die das in die stabförmige Lichtwellenleiter einzukopelnde Licht gezielt formen. Die plankonvexen Linsen können aber auch an dieser Seite des Deckelelementes austretendes Licht gezielt geformt auf einen optischen Detektor richten oder zur Einkopplung in eine Lichtleitfaser fokussieren.
Möglich sind auch Vertiefungen die trichterförmig ausgebildet sein können, wobei das Licht durch den jeweils ausgebildeten Trichter in die jeweiligen stabförmigen Lichtwellenleiter eingekoppelt wird. In diesem Fall ist es vorteilhaft, innerhalb des trichterförmigen Bereiches eine planare Fläche zur Ein- und/oder Auskopplung von Licht in den bzw. aus dem jeweiligen stabförmigen Lichtwellenleiter auszubil- den.
Des weiteren besteht die Möglichkeit, allein oder zusätzlich zu den beschriebenen Strukturen auf der Oberfläche eines erfindungsgemäßen Deckelelementes auch die am Deckelelement vorhandenen Lichtwellenleiter gezielt geometrisch zu gestalten, um die Lichtführung innerhalb der Lichtwellenleiter positiv beeinflussen zu können. Dabei können die Lichtwellenleiter, ausgehend von oben nach unten einen in Trich- ter-, Kegelstumpf- oder Pyramidenstumpfform ausgebildeten Bereich aufweisen, der dann in einen stabförmi- gen Bereich übergeht, dadurch lassen sich günstigere Lichtführungsverhältnisse innerhalb der Lichtwellenleiter für die Einkopplung und/oder Auskopplung von Licht erreichen. 5
Die gänzlich in Stabform oder lediglich einen stabförmigen Bereich aufweisenden Lichtwellenleiter, können zumindest in den stabförmig ausgebildeten Teilen einen kreisförmigen, ovalen, drei- oder mehreckigen 10 Querschnitt aufweisen.
So kann beispielsweise die Ausbildung von mehreren optisch sensitiven Schichten auf einem stabförmigen Lichtwellenleiter mit drei- oder mehreckigem Quer- 15 schnitt auf den entsprechend planaren Mantelflächenbereichen relativ einfach erfolgen und eine deutliche Trennung solcher dann bevorzugt unterschiedlicher optisch sensitiver Schichten erreicht werden.
20. Insbesondere für Untersuchungen über längere Zeiträume ist es günstig, an einem erfindungsgemäßen Deckelelement Abstandshalter oder Öffnungen vorzusehen. Mit diesen Elementen wird ein hermetischer Abschluss zwischen dem flüssigen Medium und der Umwelt vermieden, 25 so dass ein Stoffaustausch zwischen Umwelt und dem flüssigen Medium erfolgen kann. Dies ist insbesondere für den aeroben Stoffwechsel Zellen von Bedeutung, da z.B. der notwendige Sauerstoff somit aus der Umgebung in das flüssige Medium eindringen und durch Diffusion
30 zu den Sauerstoffverbrauchenden Zellen gelangen kann.
Solche Abstandshalter können beispielsweise an der Unterseite, also an der Seite, an der die stabförmigen Lichtwellenleiter ausgebildet oder vorhanden 35 sind, ausgebildete Erhebungen sein. Abstandshalter können aber auch an die jeweils verwendeten Zellkulturgefäße in üblicher Form und Größe angepasste Rahmenelemente sein, die zwischen Zellkulturgefäß und Deckelelement aufgesetzt werden können. Mit in dieser Form ausgebildeten rahmenförmigen Abstandshaltern kann außerdem ein zweiter Effekt erreicht werden. Dadurch besteht die Möglichkeit, eine gezielt veränderbare Anordnung der optisch sensitiven Schichten innerhalb der Kavitaten eines solchen Zell- kulturgefäßes vorzunehmen. So können beispielsweise die eine oder auch mehrere optisch sensitiven Schichten mehr oder weniger tief in das jeweilige flüssige Medium eingetaucht werden oder gar erreicht werden, dass die eine oder mehrere optische sensitive Schicht (en) oberhalb des flüssigen Mediums angeordnet ist und dort die jeweilige Messung der Stoffkonzentration im Gasraum über der Flüssigkeit durchgeführt werden kann .
Bei Deckelelementen, in denen für einen Gasaustausch mit der Umgebung Öffnungen ausgebildet sind, sind diese Öffnungen günstigerweise mit gaspermeablen Membranen verschlossen, so dass beispielsweise die unerwünschte Einschleppung von fremden Zellen wie z.B. Mikroorganismen vermieden werden kann.
Die Ausbildung von reflektierenden oder absorbierenden Schichten auf der Oberfläche eines erfindungsgemäßen Deckelelementes kann Fremd- und Streulichtein- flüsse bzw. die Beeinflussung aus benachbarten Kavitaten unterdrücken bzw. zumindest behindern. In diesem Fall ist eine solche reflektierende oder absorbierende Schicht nicht vollflächig auf der Oberfläche eines erfindungsgemäßen Deckelelementes ausgebildet, sondern die Bereiche für die Ein- und/oder Auskopplung von Licht in oder aus den lichtführenden Elemen- ten sind selbstverständlich von einer solchen Beschichtung freigehalten.
Das erfindungsgemäße Deckelelement, wie es in unter- schiedlichen Ausführungsformen vorab beschrieben worden ist, kann in einer Vorrichtung zur Bestimmung der optischen Eigenschaften der sensitiven Schichten an den lichtführenden Elementen, die durch den Stoffwechsel der zu kultivierenden Zellen beeinflusst wer- den, eingebracht werden. Dabei wird Licht mindestens einer Lichtquelle durch am Deckelelement vorhandene lichtführende Elemente, wie stabförmige Lichtwellenleiter auf oder durch dort ausgebildete optisch sensitive Schichten gerichtet und das von der einen oder auch mehreren optisch sensitiven Schicht (en) beein- flusste Licht wird mit mindestens einem optischen Detektor gemessen, wobei die Messung, wie bereits vorab beschrieben, in unterschiedlicher Form erfolgen kann, wie z.B. Lumineszenzlichtmessung, Lichttransmissions- messung oder LichtStreuungsmessung oder auch eine Kombination von mindestens zwei dieser Messungen.
Für eine solche Vorrichtung können an sich bekannte Lumineszenzmessgeräte wie z.B. Fluoreszenzscanner/ -reader und photometrisch messende Geräte wie z.B. ELISA Plattenreader eingesetzt werden, wenn auf den stabförmigen Lichtwellenleitern, als lichtführende Elemente eine entsprechende optisch sensitive Schicht ausgebildet ist.
Die Lichtführung von einer Lichtquelle auf bzw. durch solche optisch sensitiven Schichten an den stabförmigen Lichtwellenleitern kann aber auch mittels Lichtleitfasern erfolgen. Diese Lichtleitfasern oder wei- tere zusätzliche Lichtleitfasern können auch das jeweils zu messende Licht auf mindestens einen opti- sehen Detektor richten. Werden mehrere einzelne Zell- kulturgefäße oder Zellkulturgefäße mit einer Mehrzahl von Kavitaten eingesetzt, ist es vorteilhaft, die Vorrichtung so auszubilden, dass eine Relativbewegung zwischen dem Deckelelement auf dem Zellkulturgefäß, der Lichtquelle bzw. den Stirnflächen von Lichtleitfasern, die für die Lichtkopplung in und/oder aus den stabförmigen Lichtwellenleiter am Deckelelement genutzt werden, möglich ist. Dadurch kann eine gezielte Positionierung in Bezug zur optisch sensitiven
Schicht am jeweiligen lichtführenden Element in der Kavität des Zellkulturgefäßes erreicht werden, so dass die Messungen in den einzelnen Kavitaten sequentiell durchgeführt werden können. Selbstverständlich besteht auch die Möglichkeit, eine entsprechende Relativbewegung in Bezug zu mindestens einer Lichtquelle, einer Lichtleitfaser und/oder einem optischen Detektor vorzunehmen.
Bei einer solchen Vorrichtung ist es vorteilhaft, für die Beleuchtung der optisch sensitiven Schichten die eine bzw. mehrere Lichtquelle (n) oder die Stirnfläche einer Lichtleitfaser, aus der das auf solche optisch sensitiven Schichten gerichtete Licht ausgekoppelt wird, oberhalb des Deckelelementes und demzufolge auch der Öffnungen der Kavitaten, die im Zellkulturgefäß ausgebildet sind, anzuordnen. Insbesondere dann, wenn eine Lumineszenzanregung in den optisch sensitiven Schichten erfolgt, sollte auch der minde- stens eine optische Detektor oberhalb des Deckelelementes angeordnet oder zumindest die Stirnfläche einer Lichtleitfaser, in die das Lumineszenzlicht eingekoppelt und durch die das Lumineszenzlicht auf den optischen Detektor gerichtet wird, entsprechend dort angeordnet sein. Insbesondere für den Fall, dass die Intensität von durch eine optisch sensitive Schicht gerichtetem Licht zur Bewertung der Stoffwechselaktivität der zu kultivierenden Zellen gemessen werden soll, ist es jedoch günstiger, einen optischen Detektor unterhalb des Zellkulturgefäßes oder eine entsprechende Stirnfläche einer Lichtleitfaser, in die dieses Licht eingekoppelt und durch die das Licht auf einen optischen Detektor gerichtet wird, dort entsprechend anzuord- nen.
Vorteilhaft ist es außerdem, eine Vergleichsmessung in einer Kavität durchzuführen, in der sich zwar ein entsprechend gleiches flüssiges Medium wie in anderen Kavitaten befindet, jedoch keinerlei stoffwechselaktiven Zellen oder zusätzliche Stoffe enthalten sind, diese Kavität demzufolge als Normal anzusehen ist.
Mit der erfindungsgemäßen Lösung können neben der be- reits mehrfach erwähnten Sauerstoffkonzentration auch die C02-,H2-, H+- , H2S-, NH4+ - Konzentration und/oder der pH-Wert bestimmt werden.
Des weiteren besteht die Möglichkeit die Konzentrati - on und/oder die Veränderung der Konzentration von Enzym Substraten, die durch den Stoffwechsel der Zellen erzeugt worden sind, zu bestimmen. Hierbei können Enzym Sensoren für optisch sensitive Schichten eingesetzt werden. Es können aber auch Glucose und/oder Lactat mit solchen Enzym Sensoren detektiert werden.
Nachfolgend soll die Erfindung beispielhaft erläutert werden.
Dabei zeigen: Figur 1 in einer Schnittdarstellung und in schematischer Form ein erfindungsgemäßes Deckel - element, das auf ein in Mikrotiterplatten- form ausgebildetes Zellkulturgefäß aufge- setzt ist;
Figur 2 eine Schnittdarstellung in einer Draufsicht entlang der Linie A - A von Figur 1 ;
Figur 3 in einer Schnittdarstellung eine vorteilhafte Weiterbildung eines erfindungsgemäßen Deckelelementes ;
Figur 4 eine andere Ausbildungsform eines erfin- dungsgemäßen Deckelelementes;
Figur 5 eine weitere Ausbildungsform eines erfindungsgemäßen Deckelelementes;
Figur 6 ein erfindungsgemäßes Deckelelement zur Bestimmung von Stoffkonzentrationen in einer gasförmigen Atmosphäre oberhalb des die zu kultivierenden Zellen enthaltenden flüssigen Mediums ;
Figur 7 in schematischer Form die Beleuchtung einer optisch sensitiven Schicht, die an einer Stirnfläche eines stabförmigen Lichtwellenleiters, innerhalb eines flüssigen Mediums angeordnet ist;
Figur 8 in schematischer Form die Beleuchtung einer an einer Stirnfläche eines Lichtwellenleiters mit einem trichterförmigen Bereich ausgebildeten optisch sensitiven Schicht; Figur 9 in schematischer Form die Lichtführung von in einer optisch sensitiven Schicht angeregtem Lumineszenzlicht aus einem stabförmigen Lichtwellenleiter, das in eine Licht- leitfaser eingekoppelt und durch diese
Lichtleitfaser auf einen nicht dargestellten optischen Detektor gerichtet werden kann;
Figur 10 in schematischer Form einen optischen Aufbau zur Beleuchtung optisch sensitiver Schichten und Erfassung von durch diese be- einflusstem Licht, in einem Beispiel mit Lichtleitfaser;
Figur 11 ein weiteres Beispiel eines entsprechend geeigneten optischen Aufbaus;
Figur 12 in schematischer Form eine Möglichkeit zur Anordnung von Lichtleitfasern über die das
Licht einer nicht dargestellten Lichtquelle auf eine optisch sensitive Schicht und aus dieser Schicht austretendes Lumineszenzlicht durch den Boden einer Kavität auf ei- nen nicht dargestellten Detektor gerichtet wird;
Figur 13 in schematischer Form eine Möglichkeit zur Anordnung von Lichtleitfasern über die das Licht einer nicht dargestellten Lichtquelle auf eine optisch senitive Schicht und durch dieser Schicht sowie den Boden einer Kavität hindurch auf einen nicht dargestellten Detektor gerichtet wird;
Figur 14 (a) ein Beispiel eines optischen Aufbaus , wie er für eine Beleuchtung einer optisch sensitiven Schicht und
Figur 14 (b) ein Beispiel für einen optischen Aufbau für die Detektoren des Lichtes von einer optisch sensitiven Schicht, wie sie gemeinsam bei den in den Figuren 12 und 13 gezeigten Beispielen eingesetzt werden können;
Figur 15 in schematischer Form ein Beispiel einer
Vorrichtung, bei der gleichzeitig und ortsaufgelöst eine Messung in mehreren Kavitaten eines Zellkulturgefäßes durchführbar ist;
Figur 16 ein Beispiel einer Vorrichtung mit zusätzlichen optischen Elementen;
Figur 17 ein Beispiel mit Lichtleitfasern, als lichtführende Elemente;
Figur 18 ein Diagramm von Messsignalverläufen, die in fünf Kavitaten eines Zellkulturgef ßes in unkorrigierter Form gemessen worden sind und
Figur 19 ein Diagramm der normierten Messsignalverläufe gemäß Figur 18.
In Figur 1 ist in schematischer Form ein Beispiel eines erfindungsgemäßen Deckelelementes 6, wie es auf ein Zellkulturgefäß 5, mit einer Mehrzahl von Kavitä- ten aufgesetzt ist, dargestellt. Dabei ist an dem erfindungsgemäßen Deckelelement 6 für jeweils eine Kavität 8 ein stabförmiger Lichtwellenleiter 1 vorhanden, wobei bei diesem Beispiel das gesamte Deckelelement 6 inklusive der stabförmigen Lichtwellenleiter 1 aus einem optisch transparenten Material hergestellt worden sind. Ein solches Deckel - element kann beispielsweise im Spritzgußverfahren aus einem geeigneten für Licht transparenten polymeren Kunststoffmaterial, wie z.B. PMMA hergestellt werden.
In den Kavitaten 8 des Zellkulturgefäßes 5 sind ein flüssiges Medium sowie in diesem Medium Zellen enthalten, was mit der Wellenlinie in den Kavitaten 8 angedeutet ist.
An den unteren Stirnflächen 2 der stabförmigen Licht- Wellenleiter 1 sind bei diesem Beispiel eines erfindungsgemäßen Deckelelementes 6, jeweils eine optisch sensitive Schicht 4 ausgebildet. Solche optisch sen- sitiven Schichten 4 können aber auch allein oder zusätzlich auf der äußeren Mantelfläche 3 der stabförmigen Lichtwellenleiter 1 ausgebildet sein.
Figur 2 zeigt das Beispiel nach Figur 1 in einer ge- schnittenen Draufsicht entlang der Linie A - A aus Figur 1. Hier wird deutlich, dass die stabförmigen Lichtwellenleiter 1 am Deckelelement 6 jeweils mittig in Bezug zu den einzelnen Kavitaten 8 angeordnet sind.
In Figur 3 ist ein, gegenüber dem in Figur 1 gezeigten Beispiel, modifiziertes Deckelelement 6 dargestellt. Dieses Deckelelement 6 weist an seiner Oberfläche eine Struktur in Form von plankonvexen Linsen 9, die in Bezug zu jeweils einem stabförmigen Lichtwellenleiter 1 angeordnet und ausgebildet sind, auf. Auch hier ist dieses Deckelelement 6 als ein Teil und demzufolge auch die plankonvexen Linsen 9 als ein integraler Bestandteil des Deckelelementes 6 ausgebildet.
Das in Figur 4 gezeigte Beispiel eines erfindungsgemäßen Deckelelementes 6 weist Lichtwellenleiter 1 auf, die einen trichterförmigen Bereich 10 aufweisen, der in einen stabförmigen Bereich 1 * übergeht .
Bei dem mit Figur 5 dargestellten Beispiel eines erfindungsgemäßen Deckelelementes 6, weist dieses eine Struktur auf, bei der in Bezug zu den einzelnen Kavitaten 8 und den stabförmigen Lichtwellenleitern 1 konkave Vertiefungen 11 ausgebildet sind. Innerhalb dieser konkaven Vertiefungen 11 sind vis-a-vis zu den Stirnflächen 2, auf denen auch bei diesem Beispiel optisch sensitive Schichten 4 ausgebildet sind, plane Flächen für eine Lichtein- und/oder -auskopplung aus bzw. in die stabförmigen Lichtwellenleiter 1 ausgebildet.
Bei dem in Figur 6 gezeigten erfindungsgemäßen Dek- kelelement 6 sind die stabförmigen Lichtwellenleiter 1 gegenüber den bei den vorherigen Beispielen beschriebenen und gezeigten stabförmigen Lichtwellenleiter 1 deutlich kürzer ausgebildet, so dass die auch hier auf den nach unten weisenden Stirnflächen 2 ausgebildeten optischen sensitiven Schichten 4 ober- halb des flüssigen Mediums, innerhalb der Kavitaten 8 zur Bestimmung von sich ändernden Stoffkonzentratio- nen in einer gasförmigen Atmosphäre, angeordnet.
Dieser Effekt kann aber auch, wie im allgemeinen Teil der Beschreibung bereits erwähnt, durch entsprechende Abstandshalter, die an einem Deckelelement 6 ausge- bildet oder zusätzlich zwischen Deckelelement 6 und Zellkulturgefäß 5 eingesetzt werden können, erreicht werden.
In Figur 7 ist ein Beispiel für eine mögliche Licht - führung zur Beleuchtung einer optisch sensitiven Schicht 4 in schematischer Form gezeigt. Hierbei wird Licht einer nicht dargestellten Lichtquelle über eine Lichtleitfaser 12 auf eine bikonvexe optische Linse 13 gerichtet und mittels dieser optischen Linse 13 in den stabförmigen Lichtwellenleiter 1 eines in Andeutung dargestellten Deckelelementes 6 geführt.
Dabei sind die optische Linse 13 und die Lichtleitfa- ser 12 so ausgewählt und das stabfδrmige Element 1 so dimensioniert, dass innerhalb des stabförmigen Lichtwellenleiters 1 die Lichtführung unter Einhaltung von Totalreflexionsbedingungen auf die optisch sensitive Schicht 4 erfolgt.
In Figur 8 ist in weitestgehend analoger Form wiederum eine Lichtleitfaser 12 dargestellt, hier aber mit etwas größerem Durchmesser, bei der das aus einer Stirnfläche austretende Licht unmittelbar auf eine plane Oberfläche eines Deckelelementes 6 gerichtet und durch einen Lichtwellenleiter 1 mit einem trichterförmigen Bereich 10 und einem stabförmigen Bereich 1 ebenfalls unter Einhaltung von Totalreflexion an den äußeren Mantelflächen auf eine an der hier unte- ren Strinfläche 2 ausgebildete sensitive Schicht 4 gerichtet wird.
Mit Figur 9 soll angedeutet werden, wie Lumineszenzlicht von der optisch sensitiven Schicht 4, die dann entsprechende Eigenschaften aufweist, wiederum durch den stabförmigen Lichtwellenleiter 1 unter Einhaltung von Totalreflexionsbedingungen über die bikonvexe optische Linse 13 auf die Stirnfläche einer Lichtleitfaser 12, zur Einkopplung in die Lichtleitfaser 12 gerichtet wird. Über diese Lichtleitfaser 12 gelangt das Lumineszenzlicht auf einen nicht dargestellten optischen Detektor.
In Figur 10 ist ein optischer Aufbau, wie er im Zusammenhang mit den Beispielen gemäß den Figuren 7 bis 9 eingesetzt werden kann, dargestellt.
Dabei wird Licht einer Lichtquelle 21 durch eine bikonvexe optische Linse 20, ein optisches Filter 19, das lediglich Licht im Wellenlängenbereich, das zur Lumineszenzanregung geeignet ist, durchlässt, auf einen dichroitischen Spiegel 15 und von dort über eine weitere bikonvexe optische Linse 14 und mittels dieser optischen Linse 14 auf eine Stirnfläche der Lichtleitfaser 12 gerichtet. Durch die Lichtleitfaser 12 gelangt dieses Licht dann in einen stabförmigen Lichtwellenleiter 1 (hier nicht dargestellt) .
Das in der nicht dargestellten optisch sensitiven Schicht angeregte Lumineszenzlicht kann dann in ent- gegengesetzter Richtung durch die Lichtleitfaser 12 geführt und über die optische Linse 14, durch den dichroitischen Spiegel 15, das optische Filter 16, über eine weitere bikonvexe optische Linse 17 auf einen optischen Detektor 18 gerichtet werden. Dabei sperrt das optische Filter 16 Fremd- und Streulicht außerhalb des Wellenlängenbereiches des Lumineszenzlichtes .
In Figur 11 ist ein weiteres Beispiel für einen opti- sehen Aufbau, wie er bei einer Vorrichtung mit erfindungsgemäßem Deckelelement 6 eingesetzt werden kann, dargestellt. Hierbei wird eine Lichtleitfaser 12 eingesetzt, die in zwei Teile geteilt ist. Möglich ist auch an Stelle einer Lichtleitfaser ein Lichtleitfaserbündel zu verwenden, das in zwei einzelne Bündel aufgeteilt wird. Der in Figur 11 links dargestellte Teil eines optischen Aufbaus verwendet wiederum eine Lichtquelle 29, mit der Licht durch zwei bikonvexe optische Linsen 28 und 26, zwischen denen ein optisches Filter 27 angeordnet ist, in einen Teil der Lichtleitfaser 12 eingekoppelt und über die Lichtleitfaser 12 durch einen hier nicht dargestellten stabförmigen Lichtwellenleiter 1 auf eine ebenfalls nicht dargestellte optisch sensitive Schicht 4 gerichtet wird.
Lumineszenz- und/oder Streulicht von der optisch sensitiven Schicht 4 gelangt dann, nach entsprechender Einkopplung in die Lichtleitfaser 12, über ebenfalls zwei bikonvexe optische Linsen 22 und 24, zwischen denen wiederum ein optisches Filter 23 angeordnet ist, auf einen optischen Detektor 25.
Dabei sind insbesondere die optischen Filter 27 und 23 so ausgewählt, dass das optische Filter 27 ledig- lieh Licht im Wellenlängenbereich, das zur Anregung von Lumineszenzlicht und/oder Lichtsstreuung benötigt wird, transmittiert und das optische Filter 23 lediglich für Licht im Wellenlängenbereich des jeweiligen Lumineszenz- und/oder Streulicht durchlässig ist.
Anstelle einer geteilten Lichtleitfaser 12, wie hier dargestellt, können aber auch zwei einzelne Lichtleitfasern, die über einen Y-Koppler miteinander verbunden sind, in analoger Form eingesetzt werden.
In Figur 12 ist in schematischer Form eine beispiel- hafte Lichtführung von Lumineszenzlicht, in Verbindung mit einer optisch sensitiven Schicht 4, deren Lumineszenz in Abhängigkeit der jeweiligen Stoffkonzentration innerhalb des flüssigen Mediums veränder- bar ist, dargestellt.
Hierbei wird Licht einer nicht dargestellten Lichtquelle über wiederum eine Lichtleitfaser 12, eine bikonvexe optische Linse 13 in einen stabförmigen Lichtwellenleiter 1 eines erfindungsgemäßen Deckelelementes 6 eingekoppelt und auf die an der Stirnfläche 2 des stabförmigen Lichtwellenleiters 1 ausgebildete optisch sensitive Schicht 4 gerichtet. Das in der optisch sensitiven Schicht erzeugte Lumineszenz- licht wird nach unten durch den Boden der Kavität 8 hindurch über die bikonvexe optische Linse 30 in eine weitere Lichtleitfaser 31 eingekoppelt und von dort auf einen optischen Detektor, hier nicht dargestellt, gerichtet .
In Figur 13 ist in schematischer Form eine beispielhafte Lichtführung, in Verbindung mit einer optisch sensitiven Schicht 4, deren Lichttransmission bzw. -absorption und/oder Lichtstreuung in Abhängigkeit der jeweiligen Stoffkonzentration innerhalb des flüssigen Mediums veränderbar ist, dargestellt.
Hierbei wird Licht einer nicht dargestellten Lichtquelle über wiederum eine Lichtleitfaser 12, eine bi- konvexe optische Linse 13 in einen stabförmigen
Lichtwellenleiter 1 eines erfindungsgemäßen Deckelelementes 6 eingekopelt und auf die an der Strinflä- che 2 des stabförmigen Lichtwellenleiters 1 ausgebildete optisch sensitive Schicht 4 gerichtet. Dabei wird in Abhängigkeit der jeweiligen Stoffkonzentration ein gewisser Anteil an Licht durch die optisch sensitive Schicht 4 absorbiert oder gestreut, so dass lediglich ein Teil des Lichtes durch die optisch sensitive Schicht 4 gelangen kann und über die bikonvexe optische Linse 30 in eine weitere Lichtleitfaser 31 eingekoppelt und von dort auf einen optischen Detektor, hier nicht dargestellt, gerichtet werden kann.
In den Figuren 7, 8, 9, 12, 13 und 16 sind mögliche Bewegungen für eine Positionierung der verschiedenen Elemente mit Doppelpfeilen angedeutet. Möglich ist es das Zellkulturgefäß 5 mit Deckelelement 6 zu bewegen und die optischen Komponenten 12, 13, 30 und 31 ruhen oder das Zellkulturgefäß 5 mit Deckelelement 6 ruht und die optischen Komponenten 12, 13, 30 und 31 bewe- gen sich synchron zu einander. Eine Kombinierte Bewegung der genannten Fälle in unterschiedlichen Achsen ist auch möglich.
In Figur 14 sind optische Aufbauten, die an die Lichtleitfaser 12 und die Lichtleitfaser 31, gemäß den Beispielen der Figuren 12 und 13 angeschlossen werden können, dargestellt.
Auch hier wird wiederum eine Lichtquelle 29 , deren Licht über bikonvexe optische Linsen 28' und 26* , zwischen denen wiederum ein optisches Filter 27 λ angeordnet ist, in die Lichtleitfaser 12 eingekoppelt und von dort auf das erfindungsgemäße Deckelelement 6 zur Beleuchtung der sensitiven Schicht 4 gerichtet. Das durch die optische sensitive Schicht 4 transmit- tierte Licht oder das in der optisch sensitiven Schicht 4 angeregte Lumineszenzlicht wird in die Lichtleitfaser 31 eingekoppelte und nach Auskopplung aus dieser Lichtleitfaser 31 ebenfalls über zwei bi- konvexe optische Linsen 22 λ und 24 λ auf den Detektor 25 v gerichtet. Dabei ist auch hier zwischen den bi- konvexen optischen Linsen 22 λ und 24 λ ein optisches Filter 23 angeordnet.
In Figur 15 ist ein Beispiel für eine Möglichkeit, bei der mit einem erfindungsgemäßen Deckelelement 6, gleichzeitig Messungen in mehreren Kavitaten 8 eines Zellkulturgefäßes 5 durchgeführt werden können, dargestellt .
Hierbei sind mehrere Lichtleitfasern 12 oberhalb des Deckelelementes 6 angeordnet und in Bezug zu den in Kavitaten 8 hineinragende stabförmige Lichtwellenleiter 1 positioniert.
Das Deckelelement 6 ist hier mit trichterförmige Bereiche 10 aufweisenden Lichtwellenleitern 1, die in einen stabförmigen Bereich 1* übergehen, ausgebildet.
Das aus den Lichtfasern 12 austretende Licht wird durch die Lichtwellenleiter 1 und die optisch sensitiven Schichten 4, die Böden der Kavit ten 8 des Zellkulturgefäßes 5 über eine bikonvexe optische Linse 32 auf einen optischen Detektor 33 gerichtet.
Dabei ist die bikonvexe optische Linse 32 so ausgebildet, dass das aus den stabförmigen Lichtwellenleitern 1, durch die optisch sensitiven Schichten 4 austretende Licht, der einzelnen Kavitaten jeweils auf einen bestimmten Flächenbereich des optischen Detek- tors 33, der als Photoempfindliches Array ausgebildet ist, gerichtet wird, so dass eine gleichzeitige Auswertung für jede einzelne Kavität 8 erfolgen kann. Die bikonvexe Linse 32 kann auch vorteilhaft als Linsensystem ausgelegt werden um optimale optische Ab- bildungseigenschaften zu erreichen. Als Photoempfindliches Array eignen sich hier im besonderen CCD- Arrays .
In Figur 16 ist ein Beispiel einer Vorrichtung, bei der ein Deckelelement 6, wie es in Figur 1 gezeigt ist, verwendet wird. Selbstverständlich können auch Deckelelemte 6, gemäß den anderen erläuterten Beispielen in ähnlicher Form eingesetzt werden.
Hierbei ist ein Trägerelement 34 oberhalb des Deckel - elementes 6 zwischen einer Lichtleitfaser 12 bzw. einer nicht dargestellten Lichtquelle angeordnet.
Im Trägerelement 34 sind bei diesem Beispiel bikonvexe optische Linsen 35, als strahlformende optische Elemente in Bezug zu jeweils einem stabförmigen
Lichtwellenleiter 1 fixiert gehalten, so dass aus der Lichtleitfaser 12, die durch, wie mit dem Doppelpfeil angedeutete Relativbewegung, in Bezug zu den stabförmigen Lichtwellenleitern 1 positionierbar ist, ausge- koppeltes und/oder wieder in die Lichtleitfaser 12 eingekoppeltes Licht in vorteilhafter Weise mittels der bikonvexen optischen Linsen 35 fokussierbar ist.
Bei diesem Beispiel besteht die Möglichkeit, dass durch eine bestimmte Anordnung des Trägerelementes 34 unterschiedliche Anordnungen und insbesondere Abstände einer Lichtquelle oder, wie hier gezeigt, der Stirnfläche der Lichtleitfaser 12 für die Ein- und/oder Auskopplung von Licht in Bezug zur Einkop- pelfläche am Deckelelement 6 für die einzelnen stabförmigen Lichtwellenleiter 1, berücksichtigt werden können. So kann beispielsweise das Trägerelement 34 in vertikaler Richtung, also nach oben bzw. nach unten bewegt und in einer optimalen Position fixiert werden. In Figur 17 ist ein Beispiel eines Deckelelementes 6, in mit Lichtleitfasern 12, die innerhalb der Kavitaten 8 in lichtführende Elemente, als stabförmige Lichtwellenleiter übergehen.
Die Lichtleitfasern 12 können durch entsprechende Durchbrechungen im Deckelelement 6 geführt sein und in das Innere von Kavitaten 8 eines Zellkulturgefäßes 5 hineinragen. Dabei sind bei dem hier gezeigten Bei- spiel die in das Innere der Kavitaten hineinragenden Stirnflächen der Lichtleitfasern 12 mit einer optisch sensitiven Schicht 4 versehen.
Die einzelnen Lichtleitfasern 12 sollten am Deckel- element 6 so fixiert sein, dass sie mit gleicher Länge in das Innere der Kavitaten 8 hineinragen, so dass eine Messung in jeweils gleichen Abständen vom Boden, der mit gleichen Volumina des flüssigen Mediums befüllten Kavitaten 8, erfolgen kann.
Figur 18 zeigt den experimentell ermittelten Messsignalverlauf einer optischen Sauerstoffmessung in fünf Kavitaten eines Zellkulturgefäßes 5 mit 96 Kavitaten (96 Well Mikrotiterplatten) . Die optisch sensi- tiven Schichten befinden sich wie in Figur 17 dargestellt an den Stirnflächen von Lichtleitfasern 12. Als optisch sensitive Schicht 4 wurde eine Schicht verwendet, wie sie in DE 198 31 770 AI beschriben ist . Gemessen wurde die Phasenverschiebung zwischen den sinusförmigen Anregungslicht und der sinusförmigen Lumineszenzlicht als Maß für die Sauerstoffkonzentration mit einem optischen Aufbau wie in Figur 10 dargestellt. Die optisch sensitive Schicht zur Sauerstoffkonzentrationsbestimmung befand sich 1,5 mm über dem Boden der Kavitaten 8. In den Kavitaten Nr. 1, 3, 4 und 5 die respektive durch die Messkanäle Nr. 1, 3, 4 und 5 erfasst wurden, befanden sich ca. 2*104 Zellen der Zelllinie HL 60. Die Kavität Nr. 2 erfasst durch den Messkanal Nr. 2 war nicht mit Zellen belegt. Alle Kavitaten waren mit 250 μl Zellkulturmedi- um (90% DMEM und 10 % FCS inaktiviert) gefüllt. Das Zellkulturgefäß befand sich während der Messung in einem Brutschrank bei 37 °C, 100 % relativer Feuchte und normalen Atmosphären Druck.
Aus den in Figur 18 gezeigten zeitlichen Messsignal - verlaufen wird deutlich, dass zu Beginn der Messungen eine bestimmte Einschwingphase beachtet werden muss, in der eine präzise Auswertung nicht möglich ist. Dies ist insbesondere dem erforderlichen Temperatur- ausgleich zwischen Brutschrank und Zellkulturmedium geschuldet, da die Kavitaten 8 mit Zellen und Zell- kulturmedium bei Raumtemperatur außerhalb des Brutschranks befüllt wurden. Nach Ablauf dieses Zeitraumes, der für diese Einschwingphase erforderlich ist und der sich üblicherweise über eine Zeit von ca. 40 bis 90 min erstreckt, können die gemessenen Messsignale benutzt werden.
Aus den in Figur 18 gezeigten Messsignalverläufen für die insgesamt fünf Messkanäle, der jeweiligen Kavitaten 8 wird deutlich, dass jeweils nahezu zeitgleich Maximalwerte gemessen worden sind. Daraus ergibt sich, insbesondere für den Referenzkanal, hier Messkanal Nr. 2 der die Sauerstoffkonzentration in der Kavität Nr. 2 erfasst, ein sogenannter Referenzwert Brutschrank RWBX-Wert, als Maximalsignal in mV bei einer Temperatur von 37 °C, 100% relativer Feuchte und normal Druck der die Zusammensetzung der Gasatmosphäre innerhalb eines Brutschrankes und insbesondere de- ren Sauerstoffkonzentration berücksichtigt. Nach Erreichen dieses Maximalwertes wird mit Figur 18 deut- lieh, dass alle Messsignale und auch das Messsignal für den Referenzkanal abfallen.
Infolge der in den Kavitaten Nr. 1, 3, 4 und 5 ent- haltenen stoffwechselaktiven Zellen, die den Messsignalen der Messkanäle Nr. 1, 3 bis 5 entsprechen, reduzieren sich die Messwerte nach ca. 24 h Messzeit deutlich.
Um die Vergleichbarkeit und Reproduzierbarkeit zu verbessern sowie Messfehler zu reduzieren, besteht in einfacher Form die Möglichkeit, eine Messsignalnormierung durchzuführen, wobei entsprechend normierte Messsignalverläufe dem Diagramm der Figur 19 entnom- men werden können.
Für eine solche Normierung wurde der Zeitpunkt berücksichtigt, bei dem in der Kavität Nr. 2, in dem sich keine Zellen befanden, erfasst durch den Messka- nal Nr. 2 in Figur 18 als Referenz bezeichnet, der
Maximalwert der Einschwingphase erreicht worden ist .
Zu diesem Zeipunkt wurde die jeweilige Differenz der Messwerte der einzelnen Messkanäle Nr. 1, 3 bis 5 zum RWBX-Wertr den Referenzkanal Nr. 2, als für jeden Messkanal konstanter Wert ermittelt . Unter Berücksichtigung dieses konstanten Wertes und dessen Vorzeichen wurden alle Messsignale, die über die Zeit erfasst worden sind, für den jeweiligen Messkanal korrigiert, so dass alle Signalverläufe bei RWBx_Wert den gleichen Anfangspunkt haben und im Anschluß daran die zeitlich später erfassten Messsignale um diesen konstanten Wert korrigiert wurden, die Messsignalverläufe quasi entsprechend dieses konstanten Wertes un- ter Berücksichtigung seines Vorzeichens verschoben sind. Des weiteren wurden die Messsignalwerte der einzelnen Messkanäle Nr. 1, 3 bis 5 mittels zeitlich variabler Werte korrigiert . Dabei wurden die einzelnen zu unterschiedlichen Zeitpunkten gemessenen Messsignalwerte der einzelnen Messkanäle Nr. 1, 3 bis 5 mit dem Wert der Differenz zwischen dem RWBx_Wert und dem zu diesem Zeitpunkt gemessenen Messsignalwert des Refe- renzkanales Nr. 2 korrigiert.
Wie aus dem in Figur 19 gezeigten Diagramm weiter hervorgeht, ist auch eine Normierung bezüglich der tatsächlich gemessenen Sauerstoffkonzentration unter Berücksichtigung der Sauerstoffkonzentration inner- halb der Gasatmosphäre im Brutschrank, in dem die Messungen durchgeführt worden sind und einer Umge- bungsluftatmosphäre , bei gleicher Temperatur und Luftfeuchte durchgeführt worden.

Claims

Patentansprüche
1. Deckelelement, das auf Zellkulturgefäße mit mindestens einer Kavität (8) aufsetzbar ist, wobei
am Deckelelement (6) lichtführende Elemente (1) vorhanden sind;
jeweils mindestens ein lichtführendes Element (1) in das Innere einer Kavität (8) , des Zellkulturgefäßes (5) in aufgesetzter Position des Deckelelementes (6) auf das Zellkulturgefäß hineinragt; in Kavitaten (8) ein flüssiges Medium und in mindestens einer Kavität (8) auch Zellen enthalten sind;
und auf einer Stirnfläche (2) und/oder auf der äußeren Mantelfläche (3) der lichtführenden Elemente (1) jeweils mindestens eine optisch sensi- tive, zur Detektion sich innerhalb der Kavitaten
(8) verändernder chemischer Stoffkonzentrationen geeignete Schicht (4) ausgebildet ist.
2. Deckelelement nach Anspruch 1, dadurch gekennzeichnet, dass die optisch sensi- tive Schicht (2) ihre optischen Eigenschaften bezüglich Lumineszenzintensität und/oder -ab- klingzeit, Lichttransmission oder Lichtstreuung in Abhängigkeit der jeweiligen sich ändernden chemischen Stoffkonzentration in der Kavität (8) verändert.
3. Deckelelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die lichtführenden Elemente (1) , als stabförmige Lichtwellenleiter ausgebildet sind.
4. Deckelelement nach Anspruch 3 , dadurch gekennzeichnet, dass die Oberfläche des Deckelelementes (6) im Bereich der lichtführenden Elemente (1) eine Struktur bildet.
5. Deckelelement nach Anspruch 4, dadurch gekennzeichnet, dass die Struktur in Form konvexer Erhebungen (9) oder konkaver Vertiefungen ausgebildet ist .
6. Deckelelement nach Anspruch 5, dadurch gekennzeichnet, dass die konvexen Erhebungen (9) plankonvexe optische Linsen oder die konkaven Vertiefungen konkave optische Linsen bilden.
7. Deckelelement nach Anspruch 5, dadurch gekennzeichnet, dass eine in Form von
Vertiefungen (11) ausgebildete Struktur trichterförmig ausgebildet ist und innerhalb des trichterförmigen Bereiches eine planare Fläche zur Ein- und/oder Auskopplung von Licht an den lichtführenden Elementen (1) ausgebildet ist.
8. Deckelelement nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die lichtführenden Elemente (1) einen in Trichter-, Kegelstumpf- oder Pyramidenstumpfform aus- gebildeten Bereich (10) , der in einen stabförmigen Bereich (l%) übergeht, aufweisen.
9. Deckelelement nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die optisch sensitive Schicht (4) aus einem zur Lumineszenzanregung geeigneten Stoff besteht oder einen solchen Stoff enthält.
10. Deckelelement nach mindestens einem der vorher- gehenden Ansprüche, dadurch gekennzeichnet, dass die lichtführenden Elemente (1) einen kreisförmigen, ovalen, drei- oder mehreckigen Querschnitt aufweisen.
11. Deckelelement nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass am Deckelelement (6) Abstandshalter oder Öffnungen vorhanden sind.
12. Deckelelement nach Anspruch 11, dadurch gekennzeichnet, dass die Öffnungen mit gaspermeablen Membranen verschlossen sind.
13. Deckelelement nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oberfläche des Deckelelementes (6) bis auf Bereiche für die Ein- und/oder Auskopplung von
Licht in die/aus den lichtführenden Element (en) (1) mit einer Licht reflektierenden oder absorbierenden Schicht versehen ist.
14. Vorrichtung mit einem Deckelelement nach einem der Ansprüche 1 bis 13, zur optischen Bestimmung der Stoffwechselaktivität von Zellen, die in Kavitaten (8) von Zellkulturgefäßen (5) in einem flüssigen Medium enthalten sind, dadurch gekennzeichnet, dass Licht mindestens einer Lichtquel- le (21, 29, 29') durch am Deckelelement (6) vorhandene lichtführende Elemente (1) auf oder durch an lichtführende Elemente (1) ausgebildete optische sensitive Schichten (4) gerichtet und zur Messung von angeregtem Lumineszenzlicht in der optischen sensitiven Schicht (4) und/oder durch die optische sensitive Schicht (4) trans- mittiertem Licht und/oder durch die optische sensitive Schicht (4) gestreutes Licht, minde- stens ein optischer Detektor (18, 25, 25 33) vorhanden ist.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Lichtführung zur und/oder von der optisch sensitiven Schicht
(4) über mindestens eine Lichtleitfaser (12, 31) erfolgt .
16. Vorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass Zellkulturgefäß (5) und Lichtquelle (21, 29, 29 ) oder Stirnflächen der Lichtleitfasern (12) für die Lichtaus- und/oder -einkopplung relativ zueinander bewegbar und in Bezug zu einem lichtführenden Element (1) des Deckelelementes (6) auf dem Zellkultur- gefäß (5) positionierbar sind.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass zusätzlich mindestens ein optischer Detektor (18, 25, 25λ) relativ zu lichtführenden Elementen (1) des Deckele- lementes (6) auf dem Zellkulturgefäß (5) bewegbar und positionierbar ist.
18. Vorrichtung nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass die Lichtquelle (21, 29, 29 Moder die Stirnfläche zur Lichtaus- kopplung von Lichtleitfasern (12) und/oder der mindestens eine optische Detektor (18, 25, 25 oberhalb vom Deckelelement (6) und Öffnungen der Kavitaten (8) des Zellkulturgefäßes (5) angeordnet sind.
19. Vorrichtung nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, dass der mindestens eine optische Detektor (25 , 33) unterhalb des Bodens von Kavitaten (8) eines Zellkulturgefäßes (5) angeordnet ist.
20. Vorrichtung nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, dass das Zellkulturgefäß (5) eine Mikrotiterplatte ist.
21. Verfahren zur optischen Bestimmung der Stoff- wechselaktivitäten von Zellen unter Verwendung eines Deckelelementes nach einem der Ansprüche 1 bis 13 und einer Vorrichtung nach einem der Ansprüche 14 bis 20, dadurch gekennzeichnet, dass mit mindestens einem optischen Detektor (18, 25, 25 , 33) mindestens eine sich infolge der Stoffwechselaktivität der Zellen verändernde Stoffkonzentration innerhalb von Kavitaten (8) eines Zellkulturge- fäßes (5) unter Ausnutzung von sich in Abhängigkeit der sich ändernden Stoffkonzentration verändernden optischen Eigenschaften von optisch sensitiven Schichten (4) detektiert wird.
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass die Intensität des auf den mindestens einen optischen Detektor (18, 25, 25 X 33) auf reffenden Lichtes gemessen wird.
23. Verfahren nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass die Intensität von in der optisch sensitiven Schicht (4) angeregten Lumineszenzlicht detektiert wird.
24. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass das zeitliche Ab- klingverhalten oder die Phasenverschiebung von in der optisch sensitiven Schicht (4) angeregten Lumineszenzlicht bestimmt wird.
25. Verfahren nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass die Intensität von durch die optisch sensitive Schicht (4) trans- mittiertem und/ oder gestreutem Licht gemessen wird.
26. Verfahren nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass die Messungen in vorgebbaren Zeitabständen für jeweils eine Kavität (8) wiederholend durchgeführt werden.
27. Verfahren nach einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, dass die Konzentration und/oder die Veränderung der Konzentration von 02, C02, H+,H2, H2S, NH4+ und/ oder der pH-Wert bestimmt wird.
28. Verfahren nach einem der Ansprüche 21 bis 27, dadurch gekennzeichnet, dass die Konzentration und/oder die Veränderung der Konzentration von Enzym Substraten, erzeugt durch die Stoffwechselaktivität der Zellen, durch Enzym Sensoren als optisch sensitive Schicht (4) bestimmt wird.
29. Verfahren nach Anspruch 38, dadurch gekennzei- chent, das Glucose und/oder Lactat mit Enzym Sensoren als optisch sensitive Schicht (4) bestimmt wird / werden.
30. Verfahren nach einem der Ansprüche 21 bis 29, dadurch gekennzeichnet, dass mindestens eine Kavität (8) eines Zellkulturgefäßes (5) mit Deckelelement (6) nicht mit Zellen belegt ist und als Referenz zur Stoffkonzentrationsbestimmung und deren Änderung mit optisch sensitiven Schichten
(4) verwendet wird.
1. Verfahren nach einem der Ansprüche 21 bis 30, dadurch gekennzeichnet, dass die Veränderung innerhalb der Kavitaten (8) oberhalb des flüssigen Mediums bestimmt wird.
PCT/DE2003/000219 2002-02-01 2003-01-24 Deckelelement WO2003064990A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2003206642A AU2003206642A1 (en) 2002-02-01 2003-01-24 Lid element
CA002474866A CA2474866A1 (en) 2002-02-01 2003-01-24 Lid element
US10/503,266 US20050239197A1 (en) 2002-02-01 2003-01-24 Lid element
JP2003564540A JP2005516596A (ja) 2002-02-01 2003-01-24 蓋要素
EP03704260A EP1470215A2 (de) 2002-02-01 2003-01-24 Deckelelement
DE10390291T DE10390291D2 (de) 2002-02-01 2003-01-24 Deckelelement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10204531.3 2002-02-01
DE10204531A DE10204531A1 (de) 2002-02-01 2002-02-01 Deckelelement

Publications (2)

Publication Number Publication Date
WO2003064990A2 true WO2003064990A2 (de) 2003-08-07
WO2003064990A3 WO2003064990A3 (de) 2004-01-08

Family

ID=27618316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000219 WO2003064990A2 (de) 2002-02-01 2003-01-24 Deckelelement

Country Status (7)

Country Link
US (1) US20050239197A1 (de)
EP (1) EP1470215A2 (de)
JP (1) JP2005516596A (de)
AU (1) AU2003206642A1 (de)
CA (1) CA2474866A1 (de)
DE (2) DE10204531A1 (de)
WO (1) WO2003064990A2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1628125A1 (de) * 2004-08-20 2006-02-22 International Business Machines Corporation Optischer Mikrosteckverbindungen für Mehrkanal-Vorrichtung und pharmazeutische Mehrkanal-Vorrichtung
WO2010089470A1 (fr) * 2009-02-06 2010-08-12 Bio-Rad Pasteur Appareil de validation thermique, ensemble d'un dispositif de traitement thermique d'échantillons biologiques et d'un tel appareil, et procédé de fabrication d'un tel appareil.
EP2375273A1 (de) 2010-04-09 2011-10-12 Leica Microsystems CMS GmbH Fluoreszenzmikroskop und Verfahren zur Durchführung von Multipositionierungen in einer Screening-Applikation
DE102010041426A1 (de) * 2010-09-27 2012-05-03 Siemens Aktiengesellschaft Messeinheit und Verfahren zur optischen Untersuchung einer Flüssigkeit zur Bestimmung einer Analyt-Konzentration
JP2016515207A (ja) * 2013-03-14 2016-05-26 ジェン−プローブ・インコーポレーテッド 複数の蛍光源からの信号放出を検出するための装置
WO2018136752A3 (en) * 2017-01-19 2018-09-13 Essen Instruments, Inc. D.B.A. Essen Bioscience, Inc. Methods and apparatus for perfusion and environment control of microplate labware
DE102018130299A1 (de) * 2018-11-29 2020-06-04 Presens Precision Sensing Gmbh Sensoranordnung und Messverfahren
USRE49293E1 (en) 2003-10-08 2022-11-15 Wilson Wolf Manufacturing Cell culture methods and devices utilizing gas permeable materials

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248209A1 (de) * 2002-10-16 2004-05-06 Kist-Europe Forschungsgesellschaft Mbh Verfahren und Vorrichtung zur Messung einer Vielzahl von parallel durchgeführten Reaktionen
US7751039B2 (en) 2006-03-30 2010-07-06 Duke University Optical assay system for intraoperative assessment of tumor margins
US8470584B2 (en) * 2006-05-10 2013-06-25 Ohio University Apparatus and method for growing biological organisms for fuel and other purposes
CA2754719C (en) * 2006-08-10 2013-12-31 Allen C. Barnes Portable biological testing device and method
DE102006044324A1 (de) * 2006-09-18 2008-03-27 Labor L + S Aktiengesellschaft Verfahren zur photometrischen Messung einer Flüssigkeitsprobe sowie Probengefäß und Mikrotiterplatte hierfür
EP2121895B1 (de) * 2007-03-19 2012-12-12 Feyecon B.V. Lichtbioreaktor mit lichtverteiler und verfahren zur herstellung einer photosynthetischen kultur
WO2008151832A1 (en) * 2007-06-15 2008-12-18 Eppendorf Ag Optically accessible cover
CN101796678B (zh) * 2007-08-08 2013-09-11 康宁股份有限公司 具有蜿蜒几何形状的密封体的固体氧化物燃料电池装置
WO2009043050A2 (en) * 2007-09-27 2009-04-02 Duke University Optical assay system with a multi-probe imaging array
WO2009043045A1 (en) * 2007-09-28 2009-04-02 Duke University Systems and methods for spectral analysis of a tissue mass using an instrument, an optical probe, and a monte carlo or a diffusion algorithm
US8033047B2 (en) * 2007-10-23 2011-10-11 Sartec Corporation Algae cultivation systems and methods
CN101424683A (zh) * 2007-10-31 2009-05-06 株式会社精工技研 生物传感器及其制造方法,以及传感器检测系统
BRPI0822491A2 (pt) * 2008-03-19 2014-11-11 Feyecon Bv Fotobiorreator com distribuidor claro e método para a produção de uma cultura fotossintética
US8999703B2 (en) * 2008-05-05 2015-04-07 Daniel P. Welch Cell container
WO2009136907A1 (en) * 2008-05-05 2009-11-12 Wilson Wolf Manufacturing Corporation Cell container
WO2012071619A1 (en) * 2010-12-03 2012-06-07 University Of Technology, Sydney A light guide device and apparatus for transmitting light into a culture solution
WO2013056317A1 (en) * 2011-10-19 2013-04-25 Kellogg Brown & Root Llc Photobioreactor
US9382569B1 (en) 2012-01-17 2016-07-05 Elemental Scientific, Inc. Fast detection of the presence of a target microbe in a liquid sample
KR101168166B1 (ko) * 2012-02-29 2012-07-24 케이맥(주) 생체물질 검출용 소자
DE202013103647U1 (de) 2013-08-12 2013-09-02 Aspect Imaging Ltd. Ein System zum Online-Messen und Steuern von O2-Fraktion, CO-Fraktion und CO2-Fraktion
CN107208021A (zh) * 2015-02-04 2017-09-26 通用电气健康护理生物科学股份公司 无菌可连接传感器贴片
AU2016276576B2 (en) * 2015-06-09 2021-09-02 Gen-Probe Incorporated Methods and devices for calibrating and/or monitoring optical measurement devices
DE102015217425A1 (de) * 2015-09-11 2017-03-16 Robert Bosch Gmbh Lichtleitvorrichtung, Messsystem und Verfahren zum Herstellen einer Lichtleitvorrichtung
EP3516370A4 (de) * 2016-09-26 2020-06-03 Azure Biosystems, Inc. Verfahren und vorrichtungen zur photometrischen analyse
WO2018109886A1 (ja) * 2016-12-14 2018-06-21 株式会社日立ハイテクノロジーズ 培養機器
JP6995476B2 (ja) * 2016-12-28 2022-01-14 デクセリアルズ株式会社 培養容器カバー、培養容器カバーの製造方法、及びカバー付き培養容器
KR101952497B1 (ko) * 2017-03-23 2019-03-04 엠비디 주식회사 바이오 칩용 필라 구조체
US11639925B2 (en) * 2017-04-06 2023-05-02 Agilent Technologies, Inc. Method and apparatus for measuring physiological properties of biological samples
KR101952503B1 (ko) * 2017-05-24 2019-03-04 엠비디 주식회사 바이오 칩용 필라 구조체
KR101997389B1 (ko) * 2018-01-30 2019-07-08 엠비디 주식회사 바이오 칩용 필라 유닛
CA3110214A1 (en) * 2018-08-31 2020-03-05 Lucid Scientific, Inc. Measurement of a dynamic system
DE102018131123A1 (de) * 2018-12-06 2020-06-10 Analytik Jena Ag Deckel für eine Mikrotiterplatte
DE102019217928A1 (de) * 2019-11-21 2021-05-27 Robert Bosch Gmbh Sensoreinrichtung für eine optische Analyseeinrichtung zum Analysieren einer Probe, optische Analyseeinrichtung und Verfahren zum Betreiben einer optischen Analyseeinrichtung
WO2023016834A1 (en) * 2021-08-08 2023-02-16 Cytena Bioprocess Solutions Co., Ltd Image acquisition system for acquiring an image of a liquid sample

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217875A (en) * 1989-05-12 1993-06-08 Avl Ag Method for detecting biological activities in a specimen and a device for implementing the method
WO1998015645A1 (en) * 1996-10-08 1998-04-16 Photonics Biosystems Microbiological assessment method and device utilizing oxygen gradient sensing
WO1999045354A2 (en) * 1998-03-02 1999-09-10 Biosensing Technologies Ltd. Luminescent microbe assay
WO2000044876A2 (de) * 1999-01-29 2000-08-03 Institut für Chemo- und Biosensorik Münster E.V. Verfahren, gefäss und vorrichtung zur überwachung der stoffwechselaktivität von zellkulturen in flüssigen medien
US6133021A (en) * 1998-02-09 2000-10-17 Kwangju Institute Of Science And Technology Bioreactor system and method for probing toxic materials
US6238911B1 (en) * 1998-06-29 2001-05-29 Olympus Optical Co., Ltd. Culture vessel and microscope for observing sample in culture vessel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392539B (de) * 1986-02-03 1991-04-25 Avl Verbrennungskraft Messtech Verfahren zur optischen bestimmung der katalytischen enzymaktivitaet einer probe, und eine anordnung zur durchfuehrung des verfahrens
EP0266881A3 (de) * 1986-09-30 1990-04-04 Astromed Limited Verfahren und Vorrichtung für optische Mehrfachprüfung
AU647609B2 (en) * 1991-04-18 1994-03-24 Becton Dickinson & Company Microbial monitoring device
US5695987A (en) * 1996-08-08 1997-12-09 Becton Dickinson And Company Reusable vented flask cap cover
DE19719422A1 (de) * 1997-05-12 1998-11-19 Matthias Dipl Ing Lau Vorrichtung zur Messung von durch Licht angeregter Fluoreszenz und deren Verwendung
ATE227338T1 (de) * 1998-03-18 2002-11-15 Massachusetts Inst Technology Vaskularisierte perfundierte anordnungen für mikrogewebe und mikroorgane
US6051437A (en) * 1998-05-04 2000-04-18 American Research Corporation Of Virginia Optical chemical sensor based on multilayer self-assembled thin film sensors for aquaculture process control
AU759974B2 (en) * 1998-05-16 2003-05-01 Applied Biosystems, Llc Instrument for monitoring polymerase chain reaction of DNA
AU6818800A (en) * 1999-11-16 2001-05-30 Sentronic Gmbh Gesellschaft Fur Optische Messsysteme Cap

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217875A (en) * 1989-05-12 1993-06-08 Avl Ag Method for detecting biological activities in a specimen and a device for implementing the method
WO1998015645A1 (en) * 1996-10-08 1998-04-16 Photonics Biosystems Microbiological assessment method and device utilizing oxygen gradient sensing
US6133021A (en) * 1998-02-09 2000-10-17 Kwangju Institute Of Science And Technology Bioreactor system and method for probing toxic materials
WO1999045354A2 (en) * 1998-03-02 1999-09-10 Biosensing Technologies Ltd. Luminescent microbe assay
US6238911B1 (en) * 1998-06-29 2001-05-29 Olympus Optical Co., Ltd. Culture vessel and microscope for observing sample in culture vessel
WO2000044876A2 (de) * 1999-01-29 2000-08-03 Institut für Chemo- und Biosensorik Münster E.V. Verfahren, gefäss und vorrichtung zur überwachung der stoffwechselaktivität von zellkulturen in flüssigen medien

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49293E1 (en) 2003-10-08 2022-11-15 Wilson Wolf Manufacturing Cell culture methods and devices utilizing gas permeable materials
EP1628125A1 (de) * 2004-08-20 2006-02-22 International Business Machines Corporation Optischer Mikrosteckverbindungen für Mehrkanal-Vorrichtung und pharmazeutische Mehrkanal-Vorrichtung
WO2010089470A1 (fr) * 2009-02-06 2010-08-12 Bio-Rad Pasteur Appareil de validation thermique, ensemble d'un dispositif de traitement thermique d'échantillons biologiques et d'un tel appareil, et procédé de fabrication d'un tel appareil.
FR2941876A1 (fr) * 2009-02-06 2010-08-13 Bio Rad Pasteur Appareil de validation thermique, ensemble d'un dispositif de traitement d'echantillons biologiques et d'un tel appareil, et procede de fabrication d'un tel appareil.
AU2009339202B2 (en) * 2009-02-06 2015-04-02 Bio-Rad Europe Gmbh Thermal validation apparatus, assembly including a device for the thermal processing of biological samples and such an apparatus, and method for manufacturing such an apparatus
US9221054B2 (en) 2009-02-06 2015-12-29 Bio-Rad Innovations Thermal validation apparatus, assembly including a device for the thermal processing of biological samples and such an apparatus, and method for manufacturing such an apparatus
DE102010016382B4 (de) 2010-04-09 2022-06-02 Leica Microsystems Cms Gmbh Fluoreszenzmikroskop und Verfahren zur Durchführung von Multipositionierungen in einer Screening-Applikation
EP2375273A1 (de) 2010-04-09 2011-10-12 Leica Microsystems CMS GmbH Fluoreszenzmikroskop und Verfahren zur Durchführung von Multipositionierungen in einer Screening-Applikation
DE102010016382A1 (de) * 2010-04-09 2011-10-13 Leica Microsystems Cms Gmbh Fluoreszenzmikroskop und Verfahren zur Durchführung von Multipositionierungen in einer Screening-Applikation
DE102010041426A1 (de) * 2010-09-27 2012-05-03 Siemens Aktiengesellschaft Messeinheit und Verfahren zur optischen Untersuchung einer Flüssigkeit zur Bestimmung einer Analyt-Konzentration
JP2016515207A (ja) * 2013-03-14 2016-05-26 ジェン−プローブ・インコーポレーテッド 複数の蛍光源からの信号放出を検出するための装置
US11149242B2 (en) 2017-01-19 2021-10-19 Essen Instruments, Inc. Methods and apparatus for perfusion and environment control of microplate lab ware
US10633624B2 (en) 2017-01-19 2020-04-28 Essen Instruments, Inc. Methods and apparatus for perfusion and environment control of microplate labware
WO2018136752A3 (en) * 2017-01-19 2018-09-13 Essen Instruments, Inc. D.B.A. Essen Bioscience, Inc. Methods and apparatus for perfusion and environment control of microplate labware
DE102018130299A1 (de) * 2018-11-29 2020-06-04 Presens Precision Sensing Gmbh Sensoranordnung und Messverfahren
DE102018130299B4 (de) 2018-11-29 2020-08-06 Presens Precision Sensing Gmbh Sensoranordnung und Messverfahren
US11313703B2 (en) 2018-11-29 2022-04-26 Presens Precision Sensing Gmbh Sensor device and measuring method comprising plural light guides with each second end disposed at a defined perpendicular distance to the first end on a carrier

Also Published As

Publication number Publication date
CA2474866A1 (en) 2003-08-07
JP2005516596A (ja) 2005-06-09
DE10204531A1 (de) 2003-08-21
WO2003064990A3 (de) 2004-01-08
EP1470215A2 (de) 2004-10-27
AU2003206642A1 (en) 2003-09-02
US20050239197A1 (en) 2005-10-27
DE10390291D2 (de) 2005-02-17

Similar Documents

Publication Publication Date Title
EP1470215A2 (de) Deckelelement
EP1144586B1 (de) Verfahren, gefäss und vorrichtung zur überwachung der stoffwechselaktivität von zellkulturen in flüssigen medien
DE2451769C2 (de) Vorrichtung zur fotometrischen Analyse von flüssigen Medien
DE69824680T2 (de) Methode und Gerät zum Nachweis von chemischen Substanzen mittels Lichtleitern mit flüssigem Kern
DE60028192T2 (de) Vorrichtung und Verfahren zum Nachweis der Zellaktivität
EP3030886B1 (de) Optischer sensor und messanordnung zum quantitativen nachweis eines analyten in einer probe
DE102011118619A1 (de) Vorrichtung und Verfahren zur Erfassung von Wachstumsprozessen und simultanen Messung von chemisch-physikalischen Parametern
WO2008074504A1 (de) Testelement mit referenzierung
AT398003B (de) Vorrichtung zur bestimmung des materieflusses
DE102014107837B4 (de) Optischer Sensor zum quantitativen Nachweis eines Analyten in einer Probe und Verfahren zur Herstellung des Sensors
DE112011103252T5 (de) Fluoreszenzmessverfahren und Fluoreszenzmessvorrichtung
EP0515623A1 (de) Verfahren und vorrichtung zur kontinuierlichen und reversiblen messung der konzentration einer chemischen spezies
EP2594601B1 (de) Optode
WO1993007483A1 (de) SENSORMEMBRAN ZUR ANZEIGE DES pH-WERTES EINER PROBE, IHRE HERSTELLUNG UND VERWENDUNG
DE10227962A1 (de) Grundkörper für einen Bio-Chip
EP3017290B1 (de) Diffusionskammer zur ermittlung unterschiedlicher parameter einer wässrigen substanz
DE102014115564A1 (de) Mobile photometrische Messvorrichtung und Verfahren zur mobilen photometrischen Messung von Mikrotitierplatten
EP0888534A1 (de) System zur quantitativen ortsaufgelösten auswertung von testelementen
DE3412023A1 (de) Verfahren und vorrichtung zur schnellbestimmung von schadstoffen in gewaessern
DE102020109901A1 (de) Optochemischer Sensor und Verfahren zur Messwertkorrektur
DE102018130299A1 (de) Sensoranordnung und Messverfahren
DE102011082716A1 (de) Indikatorelement mit einer von einer in kontakt zu bringenden substanz abhängigen farbgebung
DE102012101086A1 (de) Vorrichtung und Verfahren zur Erfassung wenigstens eines Bildes und wenigstens einer Veränderlichen einer Probe
DE4021556A1 (de) Vorrichtung zur messung der konzentration von gas- und/oder dampffoermigen komponenten eines gasgemisches
AT377093B (de) Behaelter zum unterteilen einer loesung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2474866

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003564540

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10503266

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003704260

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003704260

Country of ref document: EP

REF Corresponds to

Ref document number: 10390291

Country of ref document: DE

Date of ref document: 20050217

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10390291

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

WWW Wipo information: withdrawn in national office

Ref document number: 2003704260

Country of ref document: EP