WO2003064200A1 - Verfahren zur einstellung eines betriebspunktes eines hybridantriebes eines fahrzeuges - Google Patents

Verfahren zur einstellung eines betriebspunktes eines hybridantriebes eines fahrzeuges Download PDF

Info

Publication number
WO2003064200A1
WO2003064200A1 PCT/DE2002/003360 DE0203360W WO03064200A1 WO 2003064200 A1 WO2003064200 A1 WO 2003064200A1 DE 0203360 W DE0203360 W DE 0203360W WO 03064200 A1 WO03064200 A1 WO 03064200A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
vehicle
hybrid drive
electrical machines
operating
Prior art date
Application number
PCT/DE2002/003360
Other languages
English (en)
French (fr)
Inventor
Claus Bischoff
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/503,102 priority Critical patent/US7219756B2/en
Priority to JP2003563849A priority patent/JP3913735B2/ja
Priority to EP02774320A priority patent/EP1472108B9/de
Priority to DE50206162T priority patent/DE50206162D1/de
Publication of WO2003064200A1 publication Critical patent/WO2003064200A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0614Position of fuel or air injector
    • B60W2510/0623Fuel flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0806Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts
    • F16H37/0813Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator

Definitions

  • the invention relates to a method for setting an operating point of a hybrid drive of a vehicle, the hybrid drive comprising an internal combustion engine and at least two electrical machines as drive machines and the output shafts of the drive machines being operatively connectable to a drive train of the vehicle.
  • Hybrid drives for vehicles are known.
  • an internal combustion engine is combined with at least two electrical machines, so that several drive sources are available for the vehicle.
  • the drive sources can optionally feed their drive torques into a drive train of the vehicle. In a manner known per se, this results in different drive design options depending on specific driving situations, which in particular improve driving comfort and reduce one Use energy and reduce pollutant emissions.
  • the method according to the invention with the features mentioned in claim 1 offers the advantage that hybrid drives with an internal combustion engine and at least two electrical machines for setting an operating point of the hybrid drive also the efficiency of the electrical drive components and the effects of the operating behavior of the electrical drive machines on electrical Energy storage are taken into account.
  • the fact that the operating points of the electrical machines are set as a function of a desired output torque and a current vehicle speed such that the sum of the mechanical outputs and the electrical losses of all electrical machines of the hybrid drive is zero, is advantageously achieved in that the stationary drive states of the hybrid drive the electrical energy stores remain uninvolved and their batteries power is controlled to zero.
  • high-performance batteries are used, which require a considerable investment.
  • the operating strategy of the electrical machines controls the battery power to zero in steady-state driving conditions
  • the load on the high-performance batteries is reduced and thus their overall operating life is increased.
  • the operating life of the high-performance battery can be matched to the life of the vehicle that has the hybrid drive. This results in economic savings that significantly increase the effectiveness of the hybrid drives.
  • motor-operated electrical machines are supplied with energy by at least one generator-operated electrical machine, which also covers all electrical losses of the electrical machines. This allows the battery power to be controlled to zero in steady-state driving conditions.
  • At least one optimization criterion in particular a minimal fuel torque consumption of the internal combustion engine, is taken into account when setting the operating points of the electrical machines.
  • the operating point of the hybrid drive can be selected such that in addition to a low load on the high-performance batteries The lowest possible fuel consumption and thus the lowest possible pollutant emissions of the hybrid drive can be achieved at the same time over their entire service life.
  • Figure 1 shows schematically a hybrid drive
  • FIG. 2 shows a block diagram of a method for setting an operating point of the hybrid drive
  • Figure 3 shows a replacement model of the hybrid drive
  • FIG. 4 shows a block diagram of an operating strategy for the hybrid drive
  • Figure 5 maps for optimized operating points of the internal combustion engine of the hybrid drive
  • Figure 6 shows an optimized drive map of the hybrid drive. Description of the embodiments
  • FIG. 1 schematically shows a total of recorded with 10 be ⁇ hybrid drive of a motor vehicle.
  • the hybrid drive system 10 includes an internal combustion ⁇ machine 12 and a first electric machine 14, and a second electric motor 16.
  • a crankshaft 18 of the engine 12 and drive shafts 20 and 22 of the electric motors 14 and 16 are connected to a gear assembly 24 operatively connected.
  • the drive shaft 20 is connected to a first planetary gear 26 and the drive shaft 22 to a second planetary gear 28.
  • a ring gear of the planetary gear 26 is connected to a manual transmission 30 and a ring gear of the planetary gear 28 is connected to a manual transmission 32.
  • the manual transmissions 30 and 32 are in turn connected to an output shaft 34 of the transmission arrangement 24.
  • the output shaft 34 is operatively connected to a drive axle of the motor vehicle, not shown.
  • the construction and mode of operation of such a hybrid drive 10 are generally known, so that this will not be discussed in more detail in the context of the present description.
  • the manual transmissions 30 and 32 permit Actuate a switching transmitter in a known manner, the insertion of different gears, which are designated here with gears 1, 2, 3, 4, 5 and 6 and a reverse gear R.
  • the electrical machines 14 and 16 can each be operated in generator mode or motor mode and are used, for example, to provide a vehicle electrical system voltage and to charge an accumulator.
  • the electrical machines 14 and 16 are associated with braking devices 36 and 38, respectively, with which the rotors of the electrical machines 14 and 16 can be mechanically braked.
  • FIG. 2 shows in a block diagram a section of an engine control device for controlling the hybrid drive 10.
  • the engine control device comprises a coordinator 40 for determining a map-based operating strategy for the hybrid drive 10.
  • the operating strategy serves to set an optimal operating point of the hybrid drive 10, such as is explained below.
  • the coordinator 40 receives a signal 44 from an encoder 42, which corresponds to the current speed v of the vehicle.
  • the coordinator 40 receives a signal 48 from a transmitter 46, which corresponds to a desired output torque of a vehicle driver.
  • the transmitter 46 can interact, for example, with an accelerator pedal, a brake pedal or an automatic vehicle driver of the vehicle.
  • the coordinator 40 determines signals 50, 52, 54, 56 for controlling the internal combustion engine 12 of the electrical machines 14 and 16 and the transmission 24.
  • the signal 50 contains a speed specification and a torque specification for the internal combustion engine 12, the signal 52 a speed specification and a torque specification for the electrical machine 14, the signal 54 a speed specification and a torque specification for the electric machine 16 and the signal 56 a speed setting specification for the transmission 24.
  • the coordinator 40 uses maps to carry out the map-based operating strategy. To determine these maps, the replacement model for the hybrid drive 10 shown in FIG. 3 is initially used.
  • the hybrid drive 10 comprises the internal combustion engine 12 as well as the electrical machines 14 and 16 and the gearbox 24.
  • the electrical machines 14 and 16 are assigned a high-performance battery 58 which is fed by the electrical machines 14 and 16 in generator operation or which the electrical machines 14 and 16 feeds in their engine operation. As a rule, an electrical machine works in motor operation and an electrical machine in generator operation.
  • a tank 60 is provided for supplying fuel to the internal combustion engine 12, resulting in an instantaneous consumption 62 of fuel.
  • Hybrid drive 10 delivers an output power P. the output shaft 34.
  • the output power P is a function of the vehicle speed v (signal 44) and the desired output torque M (signal 48).
  • An optimization criterion is defined on the basis of this replacement model shown in FIG. 3, which lies, for example, in a minimal fuel instantaneous consumption 62.
  • a driving state of the vehicle is defined via the output power P and thus via the instantaneous speed v or the desired output torque M.
  • These driving states can be realized by operating points of the drive train, that is to say by operating points of the internal combustion engine 12, the electrical machines 14 and 16 and the transmission 24.
  • the sum of the mechanical powers of the electrical machines 14 and 16 and the electrical losses of the electrical machines 14 and 16 is zero.
  • one of the electrical machines 14 and 16 operates in the generator mode and the other of the electrical machines 14 and 16 in the motor mode.
  • the electrical machine operating in generator mode supplies the electrical machine operating in motor mode with energy and also covers all electrical losses of the two electrical machines 14 and 16. This ensures that the stationary is assumed for this Driving state the power of the battery 58 is controlled to zero.
  • the coordinator 40 thus first determines from the set of all possible drive train operating points with which one of the driving states defined via the output power P can be realized all the operating points of the internal combustion engine 12 of the electrical machines 14 and 16 and of the transmission 24 which meet the requirement that the The sum of the mechanical powers and the electrical losses of the electrical machines is zero.
  • the input signals 44 instantaneous speed v
  • 48 desired output torque
  • a characteristic map 64 which is an optimal speed step for the transmission 24 determines.
  • This signal 66 which corresponds to the optimal driving step, is fed to a driving step release 68, which releases the optimal driving step as the desired driving step and outputs the control signal 56.
  • the release of the target speed step can take place depending on further parameters, for example to prevent gear changes during cornering, double gear changes or the like.
  • the signal 56 is provided on the one hand to the transmission 24 for setting the shift stage.
  • the signal 56 is linked to a characteristic diagram 70 for determining a target operating point of the internal combustion engine 12.
  • the resulting signal 50 is fed to the internal combustion engine 12 and a module 72.
  • the module 72 links the signal 50 with the signal 56 and provides the signals 52 and 54 for controlling the electrical machines 14 and 16, which correspond to their optimal operating points.
  • FIG. 4 clearly shows that the method according to the invention can be implemented in a simple manner. Parallel calculations of the possible operating points of the units of the hybrid drive 10 for different driving stages are not necessary, so that this is not a major one Computational effort is required.
  • the switching stages are released immediately after the optimum switching stage has been determined, so that if the optimum driving stage is prevented from being released, the subsequent steps for determining signals 50, 52 and 54 are not carried out unnecessarily.
  • the capacity not used in this way can be used to search for an alternative solution, for example a different speed level.
  • This map-based operating strategy into which maps 64 and 70 flow, results in a very reliable control chain in which the effort for monitoring the units of hybrid drive 10 can be reduced to a minimum, since the maps of the operating strategy already exist ensure that no impermissible operating points of the units are approached.
  • An adaptation to different hybrid drives 10, for example to hybrid drives 10 with a different number of switching stages, can be implemented in a simple manner by the modular structure of the control chain, by only having to adapt the control map 64 and the drive stage release 68.
  • FIG. 5 shows, by way of example, characteristic diagrams 70, by means of which the optimized operating points of the internal combustion engine 12 can be determined.
  • Each driving state which is characterized by the vehicle speed v (signal 44) and the desired output torque (signal 48), is in each case a target torque M So n and a target speed n So ⁇ assigned.
  • These values corresponding to the optimized operating points are fed as a signal 50 (FIG. 4) to the internal combustion engine 12 and to the module 72 (FIG. 4).
  • FIG. 6 shows the control map 64 for selecting the optimal driving stage.
  • driving states can be realized which can be approached with different driving stages.
  • the optimized driving range map for example shown in FIG. 6, on the basis of which the signal 66 (FIG. 4) is output as a function of the speed v and the desired output element n.
  • the hybrid drive 10 in the embodiment variant shown in FIG. 1 there are a total of seven system variables, namely in each case moments and speeds of the two electrical machines 14 and 16 and the internal combustion engine 12, as well as the gear stage of the transmission 24 as a combination of two gear stages of the manual transmissions 30 and 32.
  • the transmission 24 as a coupling element of the internal combustion engine 12 of the electrical machines 14 and 16 and of the output shaft 34 provides four boundary conditions. These are two kinematic boundary conditions for the aggregate speeds and two dynamic coupling conditions for the aggregate moments. Taking into account a minimization of the instantaneous fuel consumption, these boundary conditions can be taken into account in order to determine the optimal driving stage for a minimal instantaneous consumption of fuel of the internal combustion engine 12 and to control the power of the battery 58 to zero.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Einstellung eines Betriebspunktes eines Hybridantriebes eines Fahrzeuges, wobei der Hybridantrieb als Antriebs maschinen eine Verbrennungskraftmaschine und wenigstens zwei elektrische Maschinen umfasst und die Abtriebswellen der Antriebsmaschinen mit einem Antriebsstrang des Fahrzeuges wirkverbindbar sind. Es ist vorgesehen, dass in Abhängigkeit eines Wunschabtriebsmomentes (Signal 48) und einer momentanen Fahrzeuggeschwindigkeit (Signal 44) Betriebspunkte der elektrischen Maschinen (14, 16) derart eingestellt werden, dass die Summe der mechanischen Leistungen und der elektrischen Verluste aller elektrischen Maschinen (14, 16) des Hybridantriebes (10) gleich Null ist.

Description

Verfahren zur Einstellung eines Betriebspunktes eines Hybridantriebes eines Fahrzeuges
Die Erfindung betrifft ein Verfahren zur Einstellung eines Betriebspunktes eines Hybridantriebes eines Fahrzeuges, wobei der Hybridantrieb als Antriebsmaschinen eine Verbrennungskraftmaschine und wenigstens zwei elektrische Maschinen umfasst und die Abtriebs- wellen der Antriebsmaschinen mit einem Antriebsstrang des Fahrzeuges wirkverbindbar sind.
Stand der Technik
Hybridantriebe für Fahrzeuge sind bekannt. Bei den hier angesprochenen Hybridantrieben wird eine Verbrennungskraftmaschine mit wenigstens zwei elektrischen Maschinen kombiniert, so dass mehrere Antriebsquellen für das Fahrzeug zur Verfügung stehen. Ent- sprechend vorgegebener Anforderungen durch einen Fahrzeugführer können hierbei die Antriebsquellen wahlweise ihre Antriebsmomente in einen Antriebsstrang des Fahrzeuges einspeisen. Hierdurch ergeben sich in an sich bekannter Weise in Abhängigkeit kon- kreter Fahrsituationen unterschiedliche Antriebsgestaltungsmöglichkeiten, die insbesondere der Verbesserung eines Fahrkomforts und der Reduzierung eines Energieeinsatzes sowie der Reduzierung einer Schadstoffemission dienen.
Bei Hybridantrieben für Fahrzeuge sind serielle An- Ordnungen, parallele Anordnungen und gemischte Anordnungen von Verbrennungskraftmaschine und elektrischen Maschinen bekannt. Je nach Anordnung sind die elektrischen Maschinen direkt oder indirekt in den Antriebsstrang der Verbrennungskraftmaschine schaltbar. Zur Wirkverbindung der Verbrennungskraftmaschine und/oder der elektrischen Maschinen ist bekannt, diese über Getriebe, beispielsweise Planetengetriebe oder dergleichen, und Kupplungen miteinander wirkver- bindbar anzuordnen.
Um einen Fahrerwunsch nach einer Antriebsleistung des Hybridantriebes optimal umsetzen zu können, ist eine koordinierte Ansteuerung der Antriebsmaschinen des Hybridantriebes erforderlich, die bekanntermaßen durch ein so genanntes Motorsteuergerät erfolgt. Hierbei muss in jeder Fahrsituation des Fahrzeuges der Fahrerwunsch in optimaler Weise mit den vom Fahrzeug zur Verfügung gestellten Ressourcen befriedigt werden. Bekannte Betriebsstrategien für Hybrid- antriebe zeichnen sich im Wesentlichen dadurch aus, dass sie für die Verbrennungskraftmaschine in Abhängigkeit von spezifischen Eingangsgrößen wie Antriebsleistungsforderung, FahrZeuggeschwindigkeit, Fahrbahnsteigung und dergleichen, einen optimierten Betriebspunkt definieren. Dabei wird angestrebt, die Verbrennungskraftmaschine möglichst außerhalb des wirkungsgradungünstigen Teillastbereiches zu be- treiben und gegebenenfalls bei Kleinst-Wunsch- abtriebsleistungen abzuschalten. In diesen Fällen übernimmt die wenigstens eine elektrische Maschine den Antrieb des Fahrzeuges. Bekannt ist auch, die Verbrennungskraftmaschine entlang einer optimalen Verbrauchskennlinie zu steuern. Bei diesen bekannten Betriebsstrategien ist nachteilig, dass die Wirkungsgrade der elektrischen Antriebsmaschinen und die Auswirkungen des Betriebsverhaltens der elektrischen An- triebsmaschinen auf elektrische Energiespeicher (Batterien) unberücksichtigt bleiben.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren mit den in Anspruch 1 genannten Merkmalen bietet demgegenüber den Vorteil, dass bei Hybridantrieben mit einer Verbrennungskraftmaschine und wenigstens zwei elektrischen Maschinen zur Einstellung eines Betriebspunktes des Hybrid- antriebes auch die Wirkungsgrade der elektrischen Antriebskomponenten und die Auswirkungen des Betriebsverhaltens der elektrischen Antriebsmaschinen auf elektrische Energiespeicher berücksichtigt sind. Dadurch, dass in Abhängigkeit eines Wunschabtriebs- momentes und einer momentanen Fahrzeuggeschwindigkeit Betriebspunkte der elektrischen Maschinen derart eingestellt werden, dass die Summe der mechanischen Leistungen und der elektrischen Verluste aller elektrischen Maschinen des Hybridantriebes gleich Null ist, wird vorteilhaft erreicht, dass bei stationären Fahrzuständen des Hybridantriebes die elektrischen Energiespeicher unbeteiligt bleiben und deren Bat- terieleistung zu Null gesteuert wird. Bei Hybridantrieben mit elektrischen Maschinen kommen Hochleistungsbatterien zum Einsatz, die einen erheblichen Anschaffungsaufwand erfordern. Dadurch, dass durch die Betriebsstrategie der elektrischen Maschinen die Batterieleistung in stationären Fahrzuständen zu Null gesteuert wird, wird die Belastung der Hochleistungsbatterien vermindert und somit deren Gesamtbetriebslebensdauer vergrößert. Insbesondere kann hierdurch die Betriebslebensdauer der Hochleistungsbatterie an die Lebensdauer des Fahrzeuges, das den Hybridantrieb aufweist, angeglichen werden. Somit ergeben sich ökonomische Einsparpotentiale, die die Effektivität der Hybridantriebe wesentlich vergrößern. In dem Moment, wo die Summe der mechanischen Leistungen und der elektrischen Verluste aller elektrischen Maschinen gleich Null ist, werden motorisch arbeitende elektrische Maschinen durch wenigstens eine generatorisch arbeitende elektrische Maschine mit Energie versorgt, die darüber hinaus auch alle elektrischen Verluste der elektrischen Maschinen abdeckt. Dies gestattet, die Batterieleistung in stationären Fahrzuständen auf Null zu steuern.
In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass bei Einstellung der Betriebspunkte der elektrischen Maschinen wenigstens ein Optimierungskriterium, insbesondere ein minimaler Kraftstoffmomentanverbrauch der Verbrennungskraftmaschine, be- rücksichtigt wird. Hierdurch lässt sich der Betriebspunkt des Hybridantriebes derart wählen, dass neben einer geringen Belastung der Hochleistungsbatterien über deren Gesamtlebensdauer gleichzeitig ein möglichst minimaler Kraftstoffverbrauch und somit eine möglichst minimale Schadstoffemission des Hybrid- antriebes erzielbar ist.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteranspruchen genannten Merkmalen.
Zeichnungen
Die Erfindung wird nachfolgend in Ausfuhrungsbeispie- len anhand der zugehörigen Zeichnungen naher erläutert. Es zeigen:
Figur 1 schematisch einen Hybridantrieb;
Figur 2 ein Blockschaltbild eines Verfahrens zur Einstellung eines Betriebspunktes des Hybridantriebes;
Figur 3 ein Ersatzmodell des Hybridantriebes;
Figur 4 ein Blockschaltbild einer Betriebsstrategie für den Hybridantrieb;
Figur 5 Kennfelder für optimierte Betriebspunkte der Verbrennungskraftmaschine des Hybrid- antriebes und
Figur 6 ein optimiertes Fahrstufenkennfeld des Hybridantriebes . Beschreibung der Ausführungsbeispiele
Figur 1 zeigt schematisch einen insgesamt mit 10 be¬ zeichneten Hybridantrieb eines Kraftfahrzeuges. Der Hybridantrieb 10 umfasst eine Verbrennungskraft¬ maschine 12 sowie eine erste elektrische Maschine 14 und eine zweite elektrische Maschine 16. Eine Kurbelwelle 18 der Verbrennungskraftmaschine 12 und Antriebswellen 20 beziehungsweise 22 der elektrischen Maschinen 14 und 16 sind mit einer Getriebeanordnung 24 wirkverbunden. Hierbei ist die Antriebswelle 20 mit einem ersten Planetengetriebe 26 und die Antriebswelle 22 mit einem zweiten Planetengetriebe 28 verbunden. Ein Hohlrad des Planetengetriebes 26 ist mit einem Schaltgetriebe 30 und ein Hohlrad des Planetengetriebes 28 mit einem Schaltgetriebe 32 verbunden. Die Schaltgetriebe 30 und 32 wiederum sind mit einer Abtriebswelle 34 der Getriebeanordnung 24 verbunden. Die Abtriebswelle 34 ist mit einer An- triebsachse des nicht dargestellten Kraftfahrzeuges wirkverbunden .
Aufbau und Wirkungsweise eines derartigen Hybridantriebes 10 sind allgemein bekannt, so dass im Rah- men der vorliegenden Beschreibung hierauf nicht näher eingegangen wird. Insbesondere kann durch gezielte Ansteuerung der Verbrennungskraftmaschine 12 und/oder der elektrischen Maschinen 14 und 16 von diesen ein unterschiedliches Antriebsmoment auf die Abtriebs- welle 34 abgefordert werden. Somit lassen sich verschiedene Betriebsmodi des Hybridantriebes 10 einstellen. Die Schaltgetriebe 30 und 32 gestatten durch Betatigen eines Schaltgebers in bekannter Weise das Einlegen unterschiedlicher Gange, die hier mit den Gangen 1, 2, 3, 4, 5 und 6 sowie einen Rückwärtsgang R bezeichnet sind. Die elektrischen Maschinen 14 und 16 können jeweils im Generatorbetrieb oder Motorbetrieb betrieben werden und dienen beispielsweise der Bereitstellung einer Bordnetzspannung des Kraftfahrzeuges und dem Aufladen eines Akkumulators. Den elektrischen Maschinen 14 und 16 sind jeweils Brems- emrichtungen 36 und 38 zugeordnet, mit denen Rotoren der elektrischen Maschinen 14 und 16 mechanisch gebremst werden können.
Figur 2 zeigt in einem Blockschaltbild einen Aus- schnitt aus einem Motorsteuergerat zur Ansteuerung des Hybridantriebes 10. Das Motorsteuergerat umfasst einen Koordinator 40 zur Festlegung einer kennfeld- basierten Betriebsstrategie für den Hybridantrieb 10. Die Betriebsstrategie dient der Einstellung eines optimalen Betriebspunktes des Hybridantriebes 10, wie nachfolgend erläutert wird.
Der Koordinator 40 erhalt von einem Geber 42 ein Signal 44, das der momentanen Geschwindigkeit v des Fahrzeuges entspricht. Von einem Geber 46 erhalt der Koordinator 40 ein Signal 48, das einem Wunschabtriebsmoment eines Fahrzeugfuhrers entspricht. Der Geber 46 kann beispielsweise mit einem Fahrpedal, einem Bremspedal oder einem Fahrautomaten des Fahr- zeuges zusammenwirken. Aus den Eingangssignalen 44 und 48 ermittelt der Koordinator 40 Signale 50, 52, 54, 56 zur Ansteuerung der Verbrennungskraftmaschine 12 der elektrischen Maschinen 14 und 16 und des Getriebes 24. Das Signal 50 beinhaltet eine Drehzahlvorgabe und eine Momentvorgabe für die Verbrennungskraftmaschine 12, das Signal 52 eine Drehzahlvorgabe und eine Momentvorgabe für die elektrische Maschine 14, das Signal 54 eine Drehzahlvorgabe und eine Momentvorgabe für die elek- frische Maschine 16 und das Signal 56 eine Fahrstufenvorgabe für das Getriebe 24.
Der Koordinator 40 greift zur Durchführung der kenn- feldbasierten Betriebsstrategie auf Kennfelder zu- rück. Zur Ermittlung dieser Kennfelder wird zunächst von dem in Figur 3 dargestellten Ersatzmodell für den Hybridantrieb 10 ausgegangen. Der Hybridantrieb 10 umfasst die Verbrennungskraftmaschine 12 sowie die elektrischen Maschinen 14 und 16 und das Getriebe 24. Den elektrischen Maschinen 14 und 16 ist eine Hochleistungsbatterie 58 zugeordnet, die von den elektrischen Maschinen 14 und 16 im Generatorbetrieb gespeist wird beziehungsweise die die elektrischen Maschinen 14 und 16 in deren Motorbetrieb speist. Im Regelfall arbeitet eine elektrische Maschine im Motorbetrieb und eine elektrische Maschine im Generatorbetrieb .
Zur KraftstoffVersorgung der Verbrennungskraft- maschine 12 ist ein Tank 60 vorgesehen, wobei sich ein Momentanverbrauch 62 an Kraftstoff ergibt. Der
Hybridantrieb 10 liefert eine Abtriebsleistung P an die Abtriebswelle 34. Die Abtriebsleistung P ist hierbei eine Funktion der Fahrzeuggeschwindigkeit v (Signal 44) und des Abtriebswunschmomentes M (Signal 48) .
Auf Basis dieses in Figur 3 gezeigten Ersatzmodells wird ein Optimierungskriterium definiert, das beispielsweise in einem minimalen Kraftstoffmomentanverbrauch 62 liegt.
Ein Fahrzustand des Fahrzeuges ist über die Abtriebs- leistung P und somit über die Momentangeschwindigkeit v beziehungsweise das Wunschabtriebsmoment M definiert. Diese Fahrzustände lassen sich durch Betriebs- punkte des Antriebsstranges, das heißt durch Betriebspunkte der Verbrennungskraftmaschine 12, der elektrischen Maschinen 14 und 16 sowie des Getriebes 24 realisieren.
Für die Erfindung ist vorgesehen, dass die Summe der mechanischen Leistungen der elektrischen Maschinen 14 und 16 und der elektrischen Verluste der elektrischen Maschinen 14 und 16 gleich Null ist. Dies heißt, eine der elektrischen Maschinen 14 und 16 arbeitet im ge- neratorischen Betrieb und die andere der elektrischen Maschinen 14 und 16 im motorischen Betrieb. Hierbei versorgt die im generatorischen Betrieb arbeitende elektrische Maschine die im motorischen Betrieb arbeitende elektrische Maschine mit Energie und deckt darüber hinaus alle elektrischen Verluste der beiden elektrischen Maschinen 14 und 16 ab. Hierdurch wird erreicht, dass für diesen angenommenen stationären Fahrzustand die Leistung der Batterie 58 zu Null gesteuert ist.
Der Koordinator 40 ermittelt somit aus der Menge aller möglichen Antriebsstrangbetriebspunkte, mit denen einer der über die Abtπebsleistung P definierten Fahrzustande realisiert werden kann, zunächst alle Betriebspunkte der Verbrennungskraftmaschine 12 der elektrischen Maschinen 14 und 16 sowie des Getriebes 24, die die Vorgabe erfüllen, dass die Summe der mechanischen Leistungen und der elektrischen Verluste der elektrischen Maschinen gleich Null ist.
Diese diese Randbedingungen erfüllenden optimierten Betriebspunkte der Verbrennungskraftmaschine 12, der elektrischen Maschinen 14 und 16 sowie des Getriebes 24 werden einem weiteren Optimierungskriterium unterzogen, nämlich gemäß dem Beispiel einem möglichst minimalen Kraftstoffmomentanverbrauch 62. Hierdurch ergeben sich verbrauchsoptimierte Betriebspunkte der Verbrennungskraftmaschine 12, der elektrischen Maschinen 14 und 16 sowie des Getriebes 24. Diese verbrauchsoptimierten Betriebspunkte werden in Steuerkennfeldern abgelegt, auf die der Koordinator 40 zu- ruckgreift. Da diese Steuerkennfelder aus Betriebskennfeldern der beteiligten Aggregate, das heißt der Verbrennungskraftmaschine 12, der elektrischen Maschinen 14 und 16 und der Getriebe 24 hervorgeht, sind in diesen Steuerkennfeldern implizit auch die Betriebsgrenzen dieser Aggregate, wie beispielsweise maximale Drehzahlen oder Volllastkennlmien, berücksichtigt und müssen nicht extra abgefragt werden. Figur 4 zeigt m einem Blockschaltbild das erfm- dungsgemaße Verfahren zur Einstellung des Betriebspunktes des Hybridantπebes 10 durch den Koordinator 40. Zunächst werden die Eingangssignale 44 (Momentan- geschwmdigkeit v) und 48 (Wunschabtriebsmoment) mit einem Kennfeld 64 verknüpft, das eine optimale Fahrstufe für das Getriebe 24 bestimmt. Dieses der optimalen Fahrstufe entsprechende Signal 66 wird einer Fahrstufenfreigabe 68 zugeführt, die die optimale Fahrstufe als Soll-Fahrstufe freigibt und das Steuersignal 56 ausgibt. Die Freigabe der Soll-Fahrstufe kann hierbei in Abhängigkeit weiterer Parameter, beispielsweise zur Verhinderung von Schaltungen wahrend einer Kurvenfahrt, von Doppelschaltungen oder der- gleichen erfolgen. Das Signal 56 wird einerseits dem Getriebe 24 zur Einstellung der Ξchaltstufe bereitgestellt. Ferner wird das Signal 56 mit einem Kennfeld 70 zur Ermittlung eines Soll-Betriebspunktes der Verbrennungskraftmaschine 12 verknüpft. Das hieraus resultierende Signal 50 wird der Verbrennungskraftmaschine 12 sowie einem Baustein 72 zugeführt. Der Baustein 72 verknüpft das Signal 50 mit dem Signal 56 und stellt die Signale 52 und 54 zur Ansteuerung der elektrischen Maschinen 14 und 16 bereit, die deren optimalen Betriebspunkten entsprechen.
Anhand der Darstellung in Figur 4 wird deutlich, dass das erfmdungsgemaße Verfahren sich in einfacher Weise realisieren lasst. Parallele Berechnungen der möglichen Betriebspunkte der Aggregate des Hybrid- antriebes 10 für unterschiedliche Fahrstufen sind nicht erforderlich, so dass hierfür kein großer Rechenaufwand benötigt wird. Die Freigabe der Schaltstufen erfolgt unmittelbar nach der Bestimmung der optimalen Schaltstufe, so dass im Falle einer Verhinderung der Freigabe der optimalen Fahrstufe die nachfolgenden Schritte zur Ermittlung der Signale 50 sowie 52 und 54 nicht unnötig durchgeführt werden. Die hierdurch nicht belegte Kapazität kann zur Suche nach einer Ausweichlösung, beispielsweise eine andere Fahrstufe, genutzt werden. Durch diese kennfeld- basierte Betriebsstrategie, in die die Kennfelder 64 und 70 einfließen, ergibt sich eine sehr zuverlässige Steuerkette, bei der sich der Aufwand für die Überwachung der Aggregate des Hybridantriebes 10 auf ein Minimum beschränken lässt, da die Kennfelder der Be- triebsstrategie bereits dafür Sorge tragen, dass keine unzulässigen Betriebspunkte der Aggregate angefahren werden.
Eine Anpassung an unterschiedliche Hybridantriebe 10, beispielsweise an Hybridantriebe 10 mit einer unterschiedlichen Anzahl an Schaltstufen, lässt sich durch den modularen Aufbau der Steuerkette in einfacher Weise implementieren, indem lediglich eine Anpassung des Steuerkennfeldes 64 und der Fahrstufenfreigabe 68 erfolgen muss.
In Figur 5 sind beispielhaft Kennfelder 70 dargestellt, mittels denen die optimierten Betriebspunkte der Verbrennungskraftmaschine 12 ermittelbar sind. Hierbei ist jedem Fahrzustand, der durch die Fahrzeuggeschwindigkeit v (Signal 44) und das Abtriebswunschmoment (Signal 48) gekennzeichnet ist, jeweils ein Soll-Moment MSon und eine Soll-Drehzahl nSoιι zugeordnet. Diese den optimierten Betriebspunkten entsprechenden Werte werden als Signal 50 (Figur 4) der Verbrennungskra tmaschine 12 sowie dem Baustein 72 (Figur 4) zugeführt.
Figur 6 zeigt das Steuerkennfeld 64 zur Auswahl der optimalen Fahrstufe. Hierbei lassen sich in Abhängigkeit von der Fahrzeuggeschwindigkeit v (Signal 44) und dem Wunschmoment M (Signal 48) Fahrzustände realisieren, die mit unterschiedlichen Fahrstufen angefahren werden können. Durch Verknüpfung mit der Verbrauchsoptimierung des Momentanverbrauches 62 erhält man das beispielsweise in Figur 6 dargestellte opti- ierte Fahrstufenkennfeld, anhand dessen das Signal 66 (Figur 4) in Abhängigkeit der Geschwindigkeit v und des Wunschabtriebselementes n ausgegeben wird.
Bezieht man die vorstehenden allgemeinen Erläute- rungen auf den Hybridantrieb 10 in der in Figur 1 dargestellten Ausführungsvariante, ergeben sich insgesamt sieben Systemvariablen, nämlich jeweils Momente und Drehzahlen der beiden elektrischen Maschinen 14 und 16 sowie der Verbrennungskraftmaschine 12 so- wie die Fahrstufe des Getriebes 24 als Kombination zweier Gangstufen der Schaltgetriebe 30 und 32. Das Getriebe 24 als Kopplungselement der Verbrennungskraftmaschine 12 der elektrischen Maschinen 14 und 16 und der Abtriebswelle 34 liefert vier Rand- bedingungen. Dies sind zwei kinematische Randbedingungen für die Aggregatedrehzahlen und zwei dynamische Kopplungsbedingungen für die Aggregate- momente. Unter Berücksichtigung einer Minimierung des Kraftstoffmomentanverbrauchs können diese Randbedingungen zur Ermittlung der optimalen Fahrstufe für einen minimalen Momentanverbrauch an Kraftstoff der Verbrennungskraftmaschine 12 und einer Steuerung der Leistung der Batterie 58 zu Null berücksichtigt werden .

Claims

Patentansprüche
1. Verfahren zur Einstellung eines Betriebspunktes eines Hybridantriebes eines Fahrzeuges, wobei der Hybridantrieb als Antriebsmaschinen eine Verbren- nungskraftmaschine und wenigstens zwei elektrische Maschinen umfasst und die Abtriebswellen der An- triebsmaschinen mit einem Antriebsstrang des Fahrzeuges wirkverbindbar sind, dadurch gekennzeichnet, dass in Abhängigkeit eines Wunschabtriebsmomentes (Signal 48) und einer momentanen Fahrzeuggeschwindigkeit (Signal 44) Betriebspunkte der elektrischen Maschinen (14, 16) derart eingestellt werden, dass die Summe der mechanischen Leistungen und der elektrischen Verluste aller elektrischen Maschinen (14, 16) des Hybridantriebes (10) gleich Null ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei der Einstellung der Betriebspunkte der elektrischen Maschinen (14, 16) wenigstens ein Opti- mierungskriterium berücksichtigt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als Optimierungskriterium ein minimaler Kraft- stoffmomentanverbrauch (62) der Verbrennungskraft- maschine (12) herangezogen wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Betriebspunkte des Hybridantriebes (10) mit Hilfe einer kennfeld- basierten Betriebsstrategie eingestellt werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Drehzahl- und Momentvorgabe für die Verbrennungskraftmaschine (12) und die elektrischen Maschinen (14, 16) sowie die Vorgabe einer Schaltstufe für ein Getriebe (24) erfolgt.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zunächst alle möglichen Antriebsstrangbetriebspunkte ermittelt werden und aus diesen möglichen Antriebsstrangbetriebspunkten die das wenigstens eine Optimierungskriterium berücksichtigenden Betriebspunkte ermittelt werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese optimierten Betriebspunkte in Kennfeldern abgelegt sind, auf die die Betriebsstrategie zugreift.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine optimale Fahrstufe ermittelt wird und diese optimale Fahrstufe als Soll- Fahrstufe in Abhängigkeit von definierten Betriebs- zuständen des Fahrzeuges freigegeben wird.
PCT/DE2002/003360 2002-01-28 2002-09-10 Verfahren zur einstellung eines betriebspunktes eines hybridantriebes eines fahrzeuges WO2003064200A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/503,102 US7219756B2 (en) 2002-01-28 2002-09-10 Method for setting an operating point of a hybrid drive of a vehicle
JP2003563849A JP3913735B2 (ja) 2002-01-28 2002-09-10 車両のハイブリッドドライブの動作点の調整方法
EP02774320A EP1472108B9 (de) 2002-01-28 2002-09-10 Verfahren zur einstellung eines betriebspunktes eines hybridantriebes eines fahrzeuges
DE50206162T DE50206162D1 (de) 2002-01-28 2002-09-10 Verfahren zur einstellung eines betriebspunktes eines hybridantriebes eines fahrzeuges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10203064.2 2002-01-28
DE10203064A DE10203064A1 (de) 2002-01-28 2002-01-28 Verfahren zur Einstellung eines Betriebspunktes eines Hybridantriebes eines Fahrzeuges

Publications (1)

Publication Number Publication Date
WO2003064200A1 true WO2003064200A1 (de) 2003-08-07

Family

ID=7713150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003360 WO2003064200A1 (de) 2002-01-28 2002-09-10 Verfahren zur einstellung eines betriebspunktes eines hybridantriebes eines fahrzeuges

Country Status (5)

Country Link
US (1) US7219756B2 (de)
EP (1) EP1472108B9 (de)
JP (1) JP3913735B2 (de)
DE (2) DE10203064A1 (de)
WO (1) WO2003064200A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580152B2 (en) 2010-04-13 2013-11-12 Ineos Usa Llc Methods for gasification of carbonaceous materials
WO2016150330A1 (en) * 2015-03-25 2016-09-29 Byd Company Limited Power transmission system of vehicle and gear-shift control method for the same

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036581A1 (de) 2004-07-28 2006-03-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebs und Vorrichtung zur Durchführung des Verfahrens
DE102006016810A1 (de) * 2006-04-10 2007-10-11 Robert Bosch Gmbh Definierter Verbrennungsmotorbetrieb bei Fahrzeugen mit Hybridantrieb
DE102006019031A1 (de) * 2006-04-25 2007-10-31 Volkswagen Ag Verfahren zur Momentensteuerung einer Hybridantriebseinheit sowie Hybridantriebseinheit
DE102006045823B4 (de) 2006-09-28 2016-10-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Steuerung eines Parallel-Hybrid-Fahrzeugantriebs
DE102007050773A1 (de) * 2007-10-24 2009-04-30 Zf Friedrichshafen Ag Kraftfahrzeugsteuerungssystem
DE102007050771A1 (de) * 2007-10-24 2009-05-07 Zf Friedrichshafen Ag Kraftfahrzeugsteuerungssystem
DE102007050775A1 (de) * 2007-10-24 2009-04-30 Zf Friedrichshafen Ag Kraftfahrzeugsteuerungssystem
US8010247B2 (en) * 2007-11-03 2011-08-30 GM Global Technology Operations LLC Method for operating an engine in a hybrid powertrain system
JP5316002B2 (ja) * 2009-01-07 2013-10-16 日産自動車株式会社 ハイブリッド車両の制御装置
FR2942192A1 (fr) * 2009-02-17 2010-08-20 Renault Sas Systeme et procede de commande d'un groupe motopropulseur equipe d'une transmission infiniment variable multimode
JP5212741B2 (ja) * 2009-11-02 2013-06-19 本田技研工業株式会社 ハイブリッド車両用動力出力装置
US8337352B2 (en) 2010-06-22 2012-12-25 Oshkosh Corporation Electromechanical variable transmission
US9114804B1 (en) 2013-03-14 2015-08-25 Oshkosh Defense, Llc Vehicle drive and method with electromechanical variable transmission
SE538187C2 (sv) 2014-03-20 2016-03-29 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE538736C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina för att optimera det drivande momentet från en hos hybriddrivlinan anordnad förbränningsmotor
SE539660C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramproduk t innefattande programkod
SE540692C2 (sv) 2014-03-20 2018-10-09 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE537896C2 (sv) 2014-03-20 2015-11-17 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramprodukt innefattande programkod
SE540693C2 (sv) 2014-03-20 2018-10-09 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539030C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539032C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539002C2 (sv) 2014-03-20 2017-03-14 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539662C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramproduk t innefattande programkod
SE537897C2 (sv) 2014-03-20 2015-11-17 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramprodukt innefattande programkod
SE538737C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539661C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor hos en hybriddrivlina, fordon med en sådan förbränningsmotor, datorprogram för att starta en sådan förbränningsmotor, samt en datorprogramprodukt innefattande programkod
SE538735C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina för att optimera bränsleförbrukningen
SE539028C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramproduk t innefattande programkod
US9650032B2 (en) 2015-02-17 2017-05-16 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10421350B2 (en) 2015-10-20 2019-09-24 Oshkosh Corporation Inline electromechanical variable transmission system
US12078231B2 (en) 2015-02-17 2024-09-03 Oshkosh Corporation Inline electromechanical variable transmission system
US11701959B2 (en) 2015-02-17 2023-07-18 Oshkosh Corporation Inline electromechanical variable transmission system
US10584775B2 (en) 2015-02-17 2020-03-10 Oshkosh Corporation Inline electromechanical variable transmission system
US9656659B2 (en) 2015-02-17 2017-05-23 Oshkosh Corporation Multi-mode electromechanical variable transmission
US9651120B2 (en) 2015-02-17 2017-05-16 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10982736B2 (en) 2015-02-17 2021-04-20 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10578195B2 (en) 2015-02-17 2020-03-03 Oshkosh Corporation Inline electromechanical variable transmission system
CN105416049B (zh) * 2015-12-11 2016-08-17 南京越博动力系统股份有限公司 一种车用双轴并联电驱动系统的换档控制方法
US10919385B2 (en) 2017-02-22 2021-02-16 Dana Heavy Vehicle Systems Group, Llc Continuously variable electric axles with on-demand energy harvesting capabilities for secondary or tag e-axles
CN108361327A (zh) * 2018-04-12 2018-08-03 宁功韬 双电机双轴输出变速器
CN109649147A (zh) * 2019-01-31 2019-04-19 郑州智驱科技有限公司 一种纯电动车双电机输入平行轴两档变速器传动方案

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930391A1 (de) * 1998-07-03 2000-01-13 Nissan Motor Hybridantriebssystem für ein Fahrzeug mit Kupplungssteuerung
DE10024235A1 (de) * 1999-05-18 2000-12-07 Toyota Motor Co Ltd Leistungsabgabeeinheit, Verfahren zur Steuerung der Leistungsabgabeeinheit und Hybridfahrzeug

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099699B2 (ja) * 1995-05-19 2000-10-16 トヨタ自動車株式会社 動力伝達装置及びその制御方法
JP3048319B2 (ja) * 1995-05-25 2000-06-05 株式会社エクォス・リサーチ ハイブリッド車両
JP3050125B2 (ja) * 1996-05-20 2000-06-12 トヨタ自動車株式会社 動力出力装置および動力出力装置の制御方法
EP0830968A1 (de) * 1996-09-18 1998-03-25 SMH Management Services AG Verfahren zum Betrieb eines nichtspurgebundenen Hybridfahrzeuges
DE19648055A1 (de) * 1996-11-20 1998-06-04 Siemens Ag Antriebsstrangsteuerung für ein Kraftfahrzeug
JP3543678B2 (ja) * 1998-12-16 2004-07-14 日産自動車株式会社 車両の駆動力制御装置
JP3536704B2 (ja) * 1999-02-17 2004-06-14 日産自動車株式会社 車両の駆動力制御装置
DE19938623C2 (de) * 1999-08-14 2001-09-06 Daimler Chrysler Ag System zur Minimierung der Verlustleistungsäquivalente eines Antriebssystems
JP3714405B2 (ja) * 2001-03-15 2005-11-09 日産自動車株式会社 車両の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930391A1 (de) * 1998-07-03 2000-01-13 Nissan Motor Hybridantriebssystem für ein Fahrzeug mit Kupplungssteuerung
DE10024235A1 (de) * 1999-05-18 2000-12-07 Toyota Motor Co Ltd Leistungsabgabeeinheit, Verfahren zur Steuerung der Leistungsabgabeeinheit und Hybridfahrzeug

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580152B2 (en) 2010-04-13 2013-11-12 Ineos Usa Llc Methods for gasification of carbonaceous materials
WO2016150330A1 (en) * 2015-03-25 2016-09-29 Byd Company Limited Power transmission system of vehicle and gear-shift control method for the same
US10343683B2 (en) * 2015-03-25 2019-07-09 Byd Company Limited Power transmission system of vehicle and gear-shift control method for the same

Also Published As

Publication number Publication date
JP3913735B2 (ja) 2007-05-09
US7219756B2 (en) 2007-05-22
DE10203064A1 (de) 2003-08-07
DE50206162D1 (de) 2006-05-11
EP1472108B9 (de) 2006-09-06
EP1472108B1 (de) 2006-03-22
US20050126836A1 (en) 2005-06-16
EP1472108A1 (de) 2004-11-03
JP2005516160A (ja) 2005-06-02

Similar Documents

Publication Publication Date Title
EP1472108B1 (de) Verfahren zur einstellung eines betriebspunktes eines hybridantriebes eines fahrzeuges
DE102008009778B4 (de) Hybrid-Fahrzeug-Antriebssystem sowie Verfahren zum Einstellen von Drehmomentausgabe
EP1485266B1 (de) Verfahren zur steuerung eines hybridantriebes eines fahrzeuges
DE60225753T2 (de) Steuerungsverfahren für ein Hybridfahrzeug während eines Rückwärtsmanövers
DE102008023732B4 (de) Steuerung des negativen Antriebsstrangdrehmoments sowie Auswahl des Getriebezustands bei einem Hybridfahrzeug
DE102009020408B4 (de) Elektrischer Drehmomentwandler für einen Antriebsstrang und Verfahren zum Betreiben eines Fahrzeugs
DE60223850T2 (de) Verfahren zum Betrieb eines Antriebssystems eines Hybridfahrzeuges
DE102005021582B4 (de) Steuervorrichtung für Fahrzeug-Kraftübertragungsmechanismus
DE102007055930B4 (de) Steuervorrichtung für ein Fahrzeugantriebssystem
EP2190710A2 (de) Verfahren zur lastpunktverschiebung im hybridbetrieb bei einem parallelen hybridfahrzeug
DE102010018448B4 (de) Hybridantriebsstrang und Verfahren für seinen Betrieb
DE102015222694A1 (de) Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015222690A1 (de) Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102006013326A1 (de) Gangwechsel-Steuervorrichtung für ein Hybridfahrzeug
DE102008009763A1 (de) System und Verfahren zur Drehmomentübertragung unter Verwendung einer Elektroenergiewandlervorrichtung
DE102014119115A1 (de) Hybridfahrzeuggetriebeschaltmanagementsystem und -verfahren
DE102005002210A1 (de) Steuersystem für Hybridfahrzeuge
EP1682372A2 (de) Hybridantriebssystem für ein kraftfahrzeug
DE102007055828A1 (de) Verfahren und Vorrichtung zum Betrieb eines Hybridfahrzeuges
DE19709457A1 (de) Antriebsanordnung für ein Kraftfahrzeug
EP1711363A1 (de) Hybridmotor
DE102010005532B4 (de) Verfahren zur Ermittlung eines Soll-Getriebegangs für ein Hybridfahrzeug
EP1467886B1 (de) Verfahren zur steuerung eines hybridantriebes eines fahrzeuges
WO2008015049A1 (de) Vorrichtung zum steuern eines hybridantriebs
EP1456053A1 (de) Verfahren zur einstellung eines soll-betriebszustandes eines hybridantriebes eines fahrzeuges

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002774320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003563849

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002774320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10503102

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002774320

Country of ref document: EP