WO2003056652A1 - Cellule polymere au lithium et son procede de fabrication - Google Patents

Cellule polymere au lithium et son procede de fabrication Download PDF

Info

Publication number
WO2003056652A1
WO2003056652A1 PCT/JP2002/013568 JP0213568W WO03056652A1 WO 2003056652 A1 WO2003056652 A1 WO 2003056652A1 JP 0213568 W JP0213568 W JP 0213568W WO 03056652 A1 WO03056652 A1 WO 03056652A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
lithium ion
ion conductive
solid electrolyte
Prior art date
Application number
PCT/JP2002/013568
Other languages
English (en)
French (fr)
Inventor
Tetsuo Sakai
Seiji Maeda
Yoichiro Saito
Original Assignee
The Nippon Synthetic Chemical Industry Co., Ltd.
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Nippon Synthetic Chemical Industry Co., Ltd., National Institute Of Advanced Industrial Science And Technology filed Critical The Nippon Synthetic Chemical Industry Co., Ltd.
Priority to EP02790881A priority Critical patent/EP1460706A4/en
Priority to US10/495,309 priority patent/US20050003276A1/en
Priority to KR10-2004-7008083A priority patent/KR20040063938A/ko
Priority to CA002464075A priority patent/CA2464075A1/en
Priority to JP2003557060A priority patent/JPWO2003056652A1/ja
Priority to AU2002367181A priority patent/AU2002367181A1/en
Publication of WO2003056652A1 publication Critical patent/WO2003056652A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • Lithium polymer battery and method of manufacturing the same Lithium polymer battery and method of manufacturing the same
  • the present invention relates to a lithium polymer battery and a method for producing the same.
  • polyether copolymers having an alkylene oxide group and the like have been known as resins used in electrolytes.
  • resins used in electrolytes With such a resin, it was necessary to form a film by dissolving it in an organic solvent, dry the film, and then bond it to the negative electrode as an electrolyte membrane. At this time, if the film is made thinner, the film strength becomes insufficient.
  • the composite positive electrode may partially dissolve and swell, thereby deteriorating the electrode performance.
  • An object of the present invention is to provide a lithium polymer battery which forms an electrolyte without using a solvent and has excellent battery performance (such as conductivity and charge / discharge characteristics) and a method for producing the same.
  • FIG. 1 shows the flow of electrode preparation.
  • FIG. 2 shows the charge / discharge characteristics (1). More specifically, the upward-sloping curve shows the situation when charging, and the downward-sloping curve shows the situation when discharging. Each line represents this charge / discharge cycle. From this, it can be seen that stable charge / discharge has been achieved.
  • Figure 3 shows the charge-discharge cycle characteristics (2), and more specifically, shows the change when the charge-discharge cycle is repeated. Battery life with little decrease in battery capacity You can see that it is excellent.
  • the positive electrode Mn-based composite positive electrode, SPE urethane Atari rate system, the negative electrode is lithium, charge and discharge current (charge discharge current) is 0. 1 mA / cm 2, voltage range (Voltage range) 3. 5 to 2.0 V.
  • Figure 4 shows the results of the lithium ion continuity test.
  • 0. 1 mA / cm indicates a voltage change when a current of second current, it is little change in resistance even when many cycles I understand. With conventional solvent systems, the resistance is higher.
  • the present invention has been made intensely in view of the difficult problems, and as a result, the present invention has been completed by using a lithium ion conductive composition which is liquid at room temperature and does not contain a solvent. (Primary or secondary) batteries and a method for producing the same.
  • a solid electrolyte comprising a cured film obtained from a lithium conductive composition containing a curable oligomer, an ethylenically unsaturated monomer, and an electrolyte salt, is sandwiched between a positive electrode and a negative electrode.
  • Lithium polymer battery Lithium polymer battery.
  • Item 2 Joining the composite positive electrode to a solid electrolyte-negative electrode assembly formed by forming a cured film obtained from a lithium ion conductive composition containing a curable oligomer, an ethylenically unsaturated monomer and an electrolyte salt on a lithium foil Item 6.
  • the battery according to Item 1 wherein Item 3.
  • a solid electrolyte-positive electrode assembly formed by forming a cured film obtained from a lithium ion conductive composition containing a curable oligomer, an ethylenically unsaturated monomer, and an electrolyte salt on a composite cathode.
  • Item 2 The battery according to Item 1, wherein the negative electrode made of a foil is joined.
  • Item 4 A solid electrolyte-negative electrode assembly obtained by forming a cured film obtained from a lithium ion conductive composition containing a curable oligomer, an ethylenically unsaturated monomer and an electrolyte salt on a lithium foil; A solid electrolyte-positive electrode assembly formed by forming a cured film obtained from a lithium ion conductive composition containing a curable oligomer, an ethylenically unsaturated monomer and an electrolyte salt on the top so that the solid electrolyte surfaces contact each other.
  • Item 2. The battery according to Item 1, wherein the battery is joined.
  • the battery according to Item 1 wherein the curable oligomer is a polyisocyanate derivative having a urethane (meth) acrylate and / or a branched structure.
  • Item 6 The battery according to Item 1, wherein the thickness of the lithium ion conductive cured film is 5 to 100 m.
  • Item 7 The battery according to Item 1, wherein the lithium ion conductive composition further contains fine particles of silicon oxide.
  • Item 8 The battery according to Item 1, wherein the lithium ion conductive composition further contains an electrolytic solution.
  • Item 9 After applying a lithium ion conductive composition containing no solvent and containing a curable oligomer, an ethylenically unsaturated monomer, and an electrolyte salt on a lithium foil, the resin is cured to cure the lithium ion conductive.
  • Forming a solid electrolyte-negative electrode assembly comprising a coating, applying a positive electrode material to a conductive metal plate to form a composite positive electrode, and joining the solid electrolyte-negative electrode assembly and the composite positive electrode.
  • a method for manufacturing a lithium polymer battery After applying a lithium ion conductive composition containing no solvent and containing a curable oligomer, an ethylenically unsaturated monomer, and an electrolyte salt on a lithium foil, the resin is cured to cure the lithium ion conductive.
  • Forming a solid electrolyte-negative electrode assembly comprising a coating, applying a positive electrode material to a conductive metal plate to form a composite positive electrode
  • Item 10 A step of applying a positive electrode material to a conductive metal plate to form a composite positive electrode, and coating a lithium ion conductive composition containing a curable oligomer, an ethylenically unsaturated monomer and an electrolyte salt on the composite positive electrode. And then curing to form a solid electrolyte-positive electrode assembly composed of a cured lithium ion conductive film, and a step of joining the solid electrolyte-positive electrode assembly and a negative electrode composed of lithium foil. Manufacturing method of lithium polymer battery.
  • Item 11 A step of applying a positive electrode material to a conductive metal plate to form a composite positive electrode, and coating a lithium ion conductive composition containing a curable oligomer, an ethylenic unsaturated monomer, and an electrolyte salt on the composite positive electrode.
  • Process to cure to form a solid electrolyte-positive electrode assembly consisting of a cured lithium ion conductive film, no solvent on the lithium foil, curable oligomer, ethylenically unsaturated monomer and ⁇
  • a method for producing a lithium polymer battery comprising a step of joining a positive electrode assembly so that solid electrolyte surfaces are in contact with each other. Item 12.
  • Item 14 The method according to any one of Items 9 to 11, wherein the lithium ion conductive composition further contains an electrolytic solution.
  • the thickness of the lithium foil used for the negative electrode of the lithium polymer battery of the present invention is about 10 to 500 ⁇ m, preferably about 50 to 200 ⁇ m, and more preferably 50 to 150 ⁇ . It is about.
  • a lithium ion conductive cured coating is applied on the surface of a lithium foil fixed on a current collector such as a copper foil or an iron foil.
  • the cured lithium ion conductive coating obtained from the lithium ion conductive composition is preferably formed "directly" on the lithium foil.
  • “directly” means that the lithium ion conductive composition is formed by directly applying and curing on a lithium foil because the lithium ion conductive composition does not contain a solvent. The purpose is to exclude the one that is bonded to the lithium foil after separately forming the on-conductive cured film.
  • the thickness of the lithium ion conductive cured film is preferably about 5 to 100 ⁇ m, more preferably 10 to 50 ⁇ .
  • the lithium ion conductive composition is characterized in that it does not contain a solvent, and contains a curable oligomer, an ethylenically unsaturated monomer and an electrolyte salt, and further contains fine particles of silicon oxide and an electrolyte as optional components.
  • curable oligomer ⁇ urethane (meta) from the viewpoints of thin film, conductivity, stability with lithium metal, and withstand voltage of 3.5 V or more, more preferably 4 V or more.
  • the urethane (meth) acrylate is preferably obtained by reacting a polyol, polyisocyanate and hydroxy (meth) acrylate.
  • Such polyols are not particularly limited, and include, for example, ethylene diol, propylene glycol, butylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, hydrogen Bisphenol 8, polymethylprolactone, trimethylolethane, trimethylolpropane, polytrimethylolpropane, pentaerythritol, polypentaerythritol, polyhydric alcohols such as sorbitol, mannitol, glycerin, polyglycerin, diethylene glycol, Triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polybutylene glycol, polyester In addition to tetramethylene glycol, etc., random or block copolymers of ethylene oxide, propylene oxide, tetramethylene oxide, ethylene oxide and prop
  • Polyester modified polyols such as polyester polyols, polylactone modified polytetramethylene polyol, polyolefin polyols, hydrogenated polybutadiene poly And polybutadiene-based polyols such as all.
  • the molecular weight is from 200 to 600, preferably from 500 to 500, more preferably from 800 to 400, and ethylene oxide, propylene oxide, tetra Methylene oxide, random or block copolymer of ethylene oxide / propylene oxide, random or block copolymer of ethylene oxide / tetramethylene oxide, propylene oxide / tetramethylene oxide It is preferable to use a polyether polyol having at least one structure selected from random or block copolymers of ethylene oxide, propylene oxide and tetramethylene oxide. If the molecular weight of the polyol is less than 200, the conductivity is adversely affected, and if it exceeds 600, the strength of the formed film is remarkably reduced, which is not preferable.
  • the polyisocyanate is not particularly limited, and examples thereof include aromatic, aliphatic, cycloaliphatic, and alicyclic polyisocyanates.
  • TDI diphenylmethane diisocyanate
  • H—MD I hydrogenated diphenyl methane diisocyanate
  • polyphenyl methane polyisocyanate modified diphenyl methane diisocyanate (modified) MD I
  • H-XDI hydrogenated xylylene diisocyanate
  • XDI xylylene diisocyanate
  • HD I trimethylhexamethylene diisocyanate
  • THMD 1 Tetramethylxylylene diisocyanate
  • m—TMX DI isophorone diisocyanate
  • NBDI norbornene diisocyanate
  • 1,3-bis isocyanate Methinole
  • Polyisocyanate such as cyclohexane or
  • the hydroxy (meth) acrylate is not particularly limited, and includes, for example, 2-hydroxyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxy butyl (meth).
  • Atarilate 2—Hid Loxoshetyl ataliloyl phosphate, 4-butyl hydroxy (meth) atalylate, 2- (meth) atalyloxoxyl- 2-hydroxypropyl phthalate, 2-hydroxy 3- (meth) acryloyl Roxypropyl (meth) acrylate, hydroprolatatatone-modified 2-hydroxyethyl (meth) acrylate, pentaerythritol tonoletri (meth) acrylate, dipentaerythritol penta (meth) acrylate, ethylene oxide-modified hydroxy (meth) acrylate Rate, propylene-modified hydroxy (meth) acrylate, ethylene oxide-propylene oxide-
  • the method for producing the urethane (meth) acrylate is not particularly limited as long as it is a method in which a polyol, polyisocyanate, or hydroxy (meth) acrylate is reacted, and a known method is employed. For example, (i) a method in which three components of polyol, polyisocyanate, and hydroxy (meth) acrylate are mixed together and reacted, and (ii) a reaction between polyol and polyisocyanate, and at least one compound per molecule.
  • a catalyst such as dibutyltin diallate may be used for the purpose of accelerating the reaction.
  • the polyisocyanate derivative having a branched structure is preferably one obtained by reacting a polyol, a polyisocyanate, an alkylene glycol monoalkyl ether, and, if necessary, a hydroxy (meth) acrylate.
  • a polyol e.g., polyethylene glycol monoalkyl ether
  • a hydroxy (meth) acrylate e.g., a hydroxy (meth) acrylate.
  • Such polyols are not particularly limited, and include those similar to the above.
  • the polyisocyanate is not particularly limited, and examples thereof include aromatic, aliphatic, cycloaliphatic, and alicyclic polyisocyanates.
  • TDI diphenylmethane diisocyanate
  • H-MDI hydrogenated diphenylmethane diisocyanate
  • H-MDI polyphenylmethane polyisocyanate
  • H-MDI modified diphenylmethane diisocyanate
  • H-MDI Denatured MD I
  • H-XDI xylylene diisocyanate
  • XDI hexamethylene diisocyanate
  • HDI trimethinolehexamethylene diisocyanate
  • TMD I tetramethyl Xylylene diisocyanate
  • m-TMX DI isophorone diisocyanate
  • IPDI nonolebornene diisocyanate
  • NBDI 1, 3 Bis (iso
  • the polyalkylene glycol monoalkyl ether is not particularly limited and includes, for example, diethylene glycol, triethylene glycol, tetraethylene dali cone, dipropylene glycol, polyethylene glycol cone, polypropylene glycol, polybutylene glycol, polytetramethylene glycol, and the like.
  • hydroxy (meth) acrylate is not particularly limited, and includes the same ones as described above.
  • R 1 is hydrogen or a methyl group
  • R 2 is hydrogen, a linear or branched alkyl group having 1 to 18 carbon atoms
  • k, 1, and m are all integers
  • k + l + m ⁇ l the content in parentheses may be either a block copolymer or a random copolymer.
  • the linear or branched alkyl group having 1 to 18 carbon atoms include methyl, ethyl, n-propynole, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, and octyl.
  • Trimethylolpropane tri (meth) acrylate ethylene oxide-modified trimethylol propane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, Tri- or higher-functional monomers such as dipentaerythritol penta (meth) acrylate, tri (meth) atalyloyloxyethoxytrimethyl methylpropane, glycerin polyglycidyl ether poly (meth) acrylate
  • an ethylenically other than the monomer represented by the unsaturated monomer is preferably less than 2 0 weight 0/0 for Richiumui on conductive oligomer first composition.
  • Specific examples of the monomer represented by the general formula (1) include polyethylene glycol mono (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and polypropylene glycol mono.
  • (Meth) atalilate polyethylene glycol monopolypropylene glycol mono (meth) acrylate, poly (ethylene glycol-tetramethylene daricol) mono (meth) atarilate, poly (propylene glycol-tetramethylene dalicol) mono ( Meth) acrylate, methoxypolyethylene glycol mono (meth) atalylate, ethoxypolyethylene glycol mono (meth) atalylate, otaethoxy polyethylene glycol-polypropylene dalicol mono (meth) a Relate, lauroxypolyethylene glycol mono (meth) Atari rate, steer port Kishipo triethylene glycol mono (meth) Atari rate and the like.
  • R 1 is hydrogen or a methyl group
  • R 2 is a methyl group
  • 1-force S 0, m is 0, and the methoxypolyethylene glycol mono Atearliest One is particularly preferred from the viewpoint of conductivity.
  • the electrolyte salt is not particularly limited as long as it is used as a normal electrolyte.
  • L i BR 4 R is a phenyl group or an alkyl group
  • L i PF 6 L i S b F 6
  • L i A s F 6 L i BF 4
  • CF 3 S_ ⁇ 3 L i (CF 3 S 0 2) 2 NL i, (CF 3 S0 2) 3 CL i
  • Sulfonic acid-based or imido salt-based electrolytes are preferably used.
  • the composition of the curable oligomer (preferably a urethane (meth) acrylate and / or a polyisocyanate derivative having a branched structure) is preferably 60 to 95 parts by weight, more preferably And 65 to 95 parts by weight, particularly preferably 65 to 90 parts by weight; and the ethylenically unsaturated monomer is preferably 5 to 40 parts by weight, more preferably 5 to 35 parts by weight, particularly preferably 1 to 35 parts by weight. 0 to 35 parts by weight.
  • the compounding amount of the silicon oxide fine particles is determined by mixing the urethane (meth) atarylate and Z or the polyisocyanate derivative having a branched structure with the ethylenically unsaturated monomer. 5-30 weight of total body weight. / 0 is preferred.
  • the particle size of the fine particles of silicon oxide is preferably 1 ⁇ m or less.
  • the silicon oxide are not particularly limited. Among them, a hydrophobic silicon oxide is preferable, and a hydrophilic silicon oxide is not preferable because the viscosity becomes too high after mixing and it becomes difficult to form a thin film.
  • hydrophobic silicon oxides those hydrophobicized with a dimethyl group are preferred.
  • a hydrophobic raw material such as “Aerosil R 972J (manufactured by Nippon Aerosil Co., Ltd.) is preferably used.
  • the amount of silica is 0.1 parts per 100 parts of the lithium ion conductive composition. The amount is preferably from 30 to 30 parts, more preferably from 0.5 to 10 parts.
  • the ratio of the number of moles of lithium atoms to the number of etheric oxygen atoms in the composition is preferably from 0.02 to 0.2, more preferably from 0.03 to 0.1. It is.
  • lithium ion conductive composition for example, urethane (meth) acrylate and curable polyol such as Z or branched polyisocyanate derivative and ethylenically unsaturated monomer
  • electrolyte In mixing the salt, (a) urethane (meth) acrylate and / or a polyisocyanate derivative having a branched structure, an ethylenically unsaturated monomer, an electrolyte salt, and fine particles of silicon oxide as an optional component are used.
  • the lithium ion conductive composition preferably further contains an electrolytic solution from the viewpoint of electric conductivity.
  • the strong electrolytic solution include carbonate solvents (propylene carbonate, ethylene carbonate, butylene carbonate, diethylene carbonate, and the like).
  • Methyl carbonate, getyl carbonate amide solvent
  • amide solvent N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N-methylacetamide, N-ethylacetamide, N-methylpyrrolidine
  • ratatone solvents ⁇ -butyrolactone, ⁇ -valerolatatotone, ⁇ -valerolatone, 3-methyl-1,3-oxazolidin-1-one, etc.
  • alcoholic solvents ethylene glycol, propylene glycolone, glycerin, methylcellosolve, 1,2 butanediole, 1,3 Butanediol, 1,4-butanediol, diglycerin, polyoxyalkylene glycol cyclohexanediol, xylene glycol, etc.
  • ether solvents methylone, 1,2-dimethoxetane, 1,2-diethoxyxetane, 1-ethoxy 2-me
  • the preferred composition in the case of using the electrolyte is not particularly limited, but is a total of 100 parts by weight of a urethane (meth) acrylate and / or a polyisocyanate derivative having a branched structure and an ethylenically unsaturated monomer. It is preferably from 10 to 100 parts by weight, more preferably from 10 to 70 parts by weight, particularly preferably from 10 to 30 parts by weight.
  • the formation of the cured lithium ion conductive film according to the present invention is achieved by coating the lithium foil with the lithium ion conductive composition, and then polymerizing and curing by irradiation with actinic light or heat.
  • the actinic ray irradiation is usually performed by light, ultraviolet rays, electron beams, X-rays, etc., and among them, ultraviolet rays are preferable, and when irradiating with ultraviolet rays, high-pressure mercury lamps, ultra-high pressure mercury lamps, carbon arc lamps, xenon lamps, Metal halide lamps, chemical lamps and the like are used.
  • the amount of irradiation is appropriately selected without particular limitation, 1 0 0 ⁇ 1 0 0 O m J / cm 2, preferably 1 0 0-7 0 0 integrated irradiation dose of m J / cm 2, irradiation Is preferably performed.
  • a photopolymerization initiator is used as the polymerizable component of the lithium ion conductive composition (for example, urethane (meth) atalylate and / or a polyisocyanate derivative having a branched structure).
  • Curable oligomers and ethylenically unsaturated monomers It is preferable that the content be 0.3 parts by weight or more, particularly 0.5 to 5 parts by weight, based on 100 parts by weight. If both the integrated irradiation amount and the photopolymerization initiator are small, the strength of the film cannot be maintained, and if it is too large, no further effect is observed, which is not preferable.
  • the photopolymerization initiator is not particularly limited, and a known photopolymerization initiator can be used. Examples thereof include benzophenone, P, P′-bis (dimethylamino) benzophenone, and P, ⁇ ′-bis (getinoleamino).
  • 6- (4, -Methoxyxanaphthyl) 1,1,3,5-triazine, 2,4— [bis (tric-methylmetholone)]-6- (piperonyl) 1,1,3,5-Triazine, 2, 4— [Bis (trichloromethyl)] — 6— (4, -Methoxystyryl) triazine derivatives such as 1,1,3,5-triazine; acridine derivatives such as acridine and 9-phenylazine; 2'-bis ( ⁇ -clo mouth phenyl) 1,4,5 ', 5'-tetra-phenyl 1,2'-biimidazonole, 2,2, _bis ( ⁇ -cro mouth phenyl)
  • Hexaryl biimidazole derivatives such as tautomers covalently bonded at 1, 2'-, 1,4'-, 2,4 ' Fin, and also 2-benzoyl-2-dimethylamino-1- [4-morpholinophenyl] -butane and the like.
  • 2-hydroxy-2-methyl-1-phenylpropane-one, 2-one 1,2-dimethoxy-1,2-diphenyl-1,1-one, 1-hydroxy-1 cycle Hexyl one to Hue - such Ruketon are particularly preferred.
  • the thermal polymerization initiator is used in an amount of 0.1 to 5 parts by weight, preferably 0.3 to 100 parts by weight of the polymerizable component of the lithium ion conductive composition.
  • the content be contained in an amount of 1 to 1 part by weight.
  • thermal polymerization initiator examples include, for example, azobisisobutyl mouth-trinole, benzoinoleperoxide, lauroinoleperoxide, etinolemethyl ketone peroxide, bis- (4-1: hexyl hexyl). And peroxydicarbonates such as peroxydicarbonate and diisopropylpropylperoxydicarbonate.
  • a sensitizer if necessary, a storage stabilizer and the like are used in combination.
  • Preferred sensitizers are urea, nitrile compounds ( ⁇ , ⁇ -disubstituted mono-aminobenzo-tolyl, etc.) and phosphorus compounds (tree ⁇ -butylphosphine, etc.). Quaternary ammonium chloride, benzothiazole, and hydroquinone are preferred.
  • the lithium ion conductive cured film has sufficient strength despite its very thinness, and has excellent battery performance such as conductivity and charge / discharge characteristics (primary and secondary batteries). Battery). Especially secondary power It shows a great effect when applied to a pond.
  • silicon oxide in particular, fine particles of hydrophobic silicon oxide are blended in the lithium ion conductive composition, the mechanical strength of the solid electrolyte membrane and the mechanical strength of the solid electrolyte membrane can be further improved without lowering the ion conductivity. Heat resistance can be increased, and it also has the function of suppressing short circuits between electrodes.
  • the lithium polymer battery of the present invention is basically composed of a positive electrode, a negative electrode, and a polymer solid electrolyte. If necessary, a separator may be used as a polymer holding material.
  • separator a separator having low resistance to ion migration of the electrolyte solution is used.
  • separator include polypropylene, polyethylene, polyester, polytetrafluoroethylene, polybutyl alcohol, and saponified ethylene monoacetate copolymer.
  • a microporous membrane, a nonwoven fabric or a woven fabric selected from more than one kind of material can be fisted and short-circuiting can be completely prevented. These are unnecessary when the polymer solid electrolyte of the present invention itself has a function as a separator.
  • the “composite cathode” refers to a cathode active material formed from a conductive additive such as ketjen black or acetylene black, a binder such as polyvinylidene fluoride, and, if necessary, an ion conductive polymer.
  • a conductive additive such as ketjen black or acetylene black
  • a binder such as polyvinylidene fluoride
  • an ion conductive polymer e.g, aluminum foil.
  • Examples of the positive electrode active material of the secondary battery of the present invention include an inorganic active material, an organic active material, and a composite thereof.
  • An inorganic active material or a composite of an inorganic active material and an organic active material is exemplified. However, it is particularly preferable because the energy density becomes large.
  • inorganic-based active material L i 0 at 3 V system. 3 M n O 2, L i 4 M ii 5 ⁇ 12, V 2 ⁇ 5 etc., a 4 V system L i C o 0 2, L i M n 2 ⁇ 4, L i N i 0 metal oxides such as 2, T i S 2, M o S 2, F e metal sulfides such as S, a composite oxide of lithium and these compounds can be mentioned up.
  • the organic active material include conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene; (carbon) organic disulfide compounds; carbon-based disulfide; and sulfur-based positive electrode materials such as active sulfur. Used.
  • Examples of the ion conductive polymer include polyethylene glycol dimethyl ether, polyethylene glycol monoethylene / polyethylene glycol resin, and the like. Polymers such as kilatenole, polyethylene glycol monoalkyl ether, and polyethylene glycol.
  • lithium metal an alloy of aluminum, lead, silicon, magnesium and the like with lithium, polypyridine, polyacetylene, polythiophene, or a cation-doping conductive high molecule of these derivatives
  • examples thereof include acid compounds such as Sn 2 that can store lithium and Sn-based alloys, among which lithium metal is most preferred in the present invention in terms of energy density.
  • the above-mentioned positive electrode may be provided with a curable oligomer such as the above-mentioned lithium ion conductive composition (polyurethane (meth) acrylate and / or a polyisocyanate derivative having a branched structure) and an ethylenically unsaturated monomer. It is also preferable to form a cured film composed of a monomer, an electrolyte salt, and an optional component comprising silicon oxide fine particles and an electrolytic solution.
  • a curable oligomer such as the above-mentioned lithium ion conductive composition (polyurethane (meth) acrylate and / or a polyisocyanate derivative having a branched structure) and an ethylenically unsaturated monomer. It is also preferable to form a cured film composed of a monomer, an electrolyte salt, and an optional component comprising silicon oxide fine particles and an electrolytic solution.
  • the ion-conductive polymer is not always necessary and is appropriately selected.
  • the above-mentioned lithium ion conductive composition (a curable oligomer such as a urethane (meth) acrylate and / or a polyisocyanate derivative having a branched structure) and an ethylenically unsaturated monomer are placed on a composite positive electrode.
  • a solid electrolyte-positive electrode assembly comprising a lithium ion conductive cured film, which is then coated, and then cured to form a solid electrolyte-positive electrode assembly comprising a lithium ion conductive cured film. It is preferable to join the solid electrolyte-positive electrode assembly and a negative electrode made of lithium foil.
  • a solid electrolyte-negative electrode assembly obtained by forming a cured film obtained from a lithium ion conductive composition on a lithium foil and a lithium ion conductive yarn obtained on a composite positive electrode are obtained. It is also preferable to bond the solid electrolyte-positive electrode assembly formed with the cured film so that the solid electrolyte surfaces are in contact with each other. Specifically, a positive electrode material is applied to a conductive metal plate to form a composite positive electrode After that, the lithium ion conductive composition is coated on the composite positive electrode, and cured to form a solid electrolyte-positive electrode assembly composed of a cured lithium ion conductive film, while the lithium ion conductive composition is formed on the lithium foil.
  • the composition is applied and cured to form a solid electrolyte-negative electrode assembly comprising a lithium ion conductive cured film, and the obtained solid electrolyte-negative electrode assembly and the obtained solid electrolyte It is preferable to join the degraded-positive electrode assembly so that the solid electrolyte surfaces are in contact with each other.
  • the form of the battery of the present invention particularly the lithium ion polymer secondary battery, is not particularly limited, it can be enclosed in various forms of battery cells such as coins, sheets, cylinders, gums, and the like.
  • FIG. 1 shows a flow of manufacturing the battery of the present invention.
  • a lithium ion conductive composition is applied on the Li foil, and then the coating is cured by UV light irradiation.
  • a composite positive electrode is attached to the cured film to obtain a battery.
  • the present invention is not limited to this.
  • a lithium ion conductive composition is applied to the composite positive electrode, the coating is cured by irradiation with UV light, and then the negative electrode is attached to the cured coating, or
  • the lithium ion conductive composition is applied to each of the negative electrode and the composite positive electrode, and the coating is cured by UV light irradiation.Then, the cured coatings on the negative electrode and the composite positive electrode are bonded to each other to form a battery. You can also get
  • the production of the positive electrode and the production of the negative electrode can be carried out continuously, and the joining of the two electrodes can be carried out continuously. It can be a continuous production method.
  • a conventional batch type for example, a composite positive electrode or negative electrode stored in a roll shape is once wound out of a roll shape, cut into a predetermined size, and then formed into an electrolyte layer thereon.
  • the bonding between the solid electrolyte-negative electrode assembly and the composite positive electrode, the bonding between the solid electrolyte-positive electrode assembly and the negative electrode, or the bonding between the solid electrolyte-positive electrode assembly and the solid electrolyte-negative electrode assembly are performed by thermocompression bonding. It is preferred to do so.
  • % and “parts” mean “% by weight” and “parts by weight” unless otherwise specified.
  • isophorone diisocyanate VESTANAT I PD IJ, manufactured by Desasa Huls 755 parts by weight of ethylene oxide / propylene oxide block polyether polyol (manufactured by Asahi Denka Kogyo Co., Ltd., “CM-21 1”, weight average molecular weight: about 2100), and after heating to 70 ° C, 2-hydroxyethyl A mixed liquid of 85 parts of ruatarylate, 0.4 part of hydroquinone monomethyl ether, and 0.1 part of dibutyltin dilaurate (manufactured by Tokyo Fine Chemical Co., Ltd., “LI ⁇ I”) was added dropwise over 3 hours, and the reaction was carried out.
  • isophorone diisocyanate (Desa's Huls, “VE S TANAT I PD IJ”) 1 70 parts, ethylene oxide / propylene oxide random polyether polyol (Asahi Denka Kogyo Co., Ltd., “PR-2008”, weight average molecular weight about 2000) 741 parts were charged, and after heating to 70 ° C, 2 — A mixture of 89 parts of hydroxyethyl acrylate, 0.4 parts of hydroquinone monomethyl ether, and 0.1 part of dibutyltin dilaurate (“LIOI” manufactured by Tokyo Fine Chemical Co., Ltd.) was added dropwise over 3 hours, followed by reaction.
  • LIOI dibutyltin dilaurate
  • hexamethylene diisocyanate Takenate 700, manufactured by Takeda Pharmaceutical Co., Ltd. 72 Parts, ethylene oxide Z propylene oxide random polyether polyol (manufactured by Asahi Denka Kogyo Co., Ltd., “PR_3007”, weight average molecular weight about 3000), 850 parts, and after heating to 70 ° C, 78 parts of Tallylate (manufactured by NOF Corporation, “AE-200”), 0.4 parts of hydroquinone monomethyl ether, and 0.1 part of dibutyltin dilaterate (manufactured by Tokyo Fine Chemicals, “LIOI”)
  • the reaction was carried out by dropping uniformly over 3 hours.
  • hexamethylene diisocyanate trimer isocyanurate (“Duranate TPA-100J” manufactured by Asahi Kasei Corporation) 177 parts, polyethylene d'arycol monomethyl ether (manufactured by NOF Corporation, “UNIOX M-1000”, weight average molecular weight: about 1000) 634 parts were charged, and the temperature was raised to 0 ° C.
  • the obtained positive electrode and the solid electrolyte-negative electrode assembly were bonded by thermocompression bonding and sealed in a battery cell to produce a lithium polymer battery of the present invention.
  • the charge / discharge characteristics of the obtained lithium polymer battery were evaluated as follows.
  • the charge and discharge test with a charge-discharge measuring device manufactured by instrument center, charging 0.1 from 1 mA / cm 2 of current at a voltage 2 V to 3. 5 V, after cessation of 1 0 minute, 0. I MAZ With a current of cm 2 , the battery voltage was discharged to 2 V, and this charge / discharge was repeated.
  • the capacity retention ratio (%) at the initial stage and at the 60th cycle was measured, and the charge / discharge characteristics were evaluated.
  • an electrochemical device having sufficient solid strength without short circuit was produced. Figure the result 2 to 3 show.
  • FIG. 4 shows the results of a lithium ion conduction test performed using the negative electrode of Example 1 and a sample of Li foil / cured coating / Li foil.
  • a lithium polymer battery was prepared in the same manner as in Example 1 except that the urethane acrylate in Reference Example 1 was changed to the urethane acrylate in Reference Examples 2 to 4, and a lithium polymer battery was similarly evaluated.
  • Example 1 was repeated except that the urethane acrylate of Reference Example 1 was mixed with the urethane acrylate of Reference Example 1 and the polyisocyanate derivative of Reference Example 5 at a weight ratio of 4: 1.
  • a polymer battery was fabricated, and the charge / discharge characteristics were evaluated in the same manner.
  • Example 1 A lithium polymer battery was prepared in the same manner as in Example 1 except that the urethane acrylate of Reference Example 1 was changed to 65 parts, and that 15 parts of ethylene carbonate was used as an electrolyte. did.
  • Example 1 A lithium polymer battery was produced in the same manner as in Example 1 except that 3 parts of “Aerosil R 972” (manufactured by Nippon Aerosil Co., Ltd.) was used as a silicon oxide, and a charge / discharge characteristic was similarly evaluated.
  • “Aerosil R 972” manufactured by Nippon Aerosil Co., Ltd.
  • the obtained solid electrolyte-positive electrode assembly was bonded to a lithium foil by thermocompression bonding, and sealed in a battery cell to produce a lithium polymer battery of the present invention.
  • urethane acrylate of Reference Example 1 80 parts
  • 1-hydroxyl-cyclohexynole-phenylenoloketone as photopolymerization initiator manufactured by Tianoku Suzuyanoreti Chemicals Co., Ltd.
  • Irgacure 184 3 parts
  • the composite was coated on the composite positive electrode and irradiated with a high-pressure mercury lamp at an irradiation amount of 500 mJcm2 to form a cured film having a thickness of 10 m, thereby producing a solid electrolyte-positive electrode assembly.
  • the obtained solid electrolyte-negative electrode assembly and the solid electrolyte-positive electrode assembly were bonded by thermocompression bonding, and sealed in a battery cell to produce a lithium polymer battery of the present invention.
  • the obtained lithium polymer battery was evaluated for charge and discharge characteristics in the same manner as described above. Table 1 shows the evaluation results of the examples.
  • the polymer battery of the present invention comprises a curable oligomer (preferably a urethane (meth) acrylate and / or a polysocyanate derivative having a branched structure) on a lithium foil and / or a composite positive electrode, an ethylenically unsaturated monomer, It is formed by joining a composite positive electrode and a negative electrode directly formed with a lithium ion conductive cured film containing an electrolyte salt and, optionally, fine particles of acid hydride and an electrolytic solution.
  • a curable oligomer preferably a urethane (meth) acrylate and / or a polysocyanate derivative having a branched structure
  • the lithium ion conductive cured film contains fine particles of silicon oxide, the mechanical strength is further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明細書
リチウムポリマー電池及びその製造方法
技術分野
本発明はリチウムポリマー電池及ぴその製造方法に関する。
背景技術
従来、 電解質に用いられている樹脂として、 アルキレンオキサイド基を有した ポリエーテル共重合体など (例えば特開平 9一 3 2 4 1 1 4号公報) が知られて いた。 かかる樹脂では、 一旦有機溶媒に溶解して製膜し、 乾燥してフィルムを作 製した上で、 電解質膜として負極に貼り合わせる必要があった。 この際、 フィル ムを薄膜化するとフィルム強度が不十分になる。
かかる電解質樹脂を負極、 特にリチウム箔に塗工する場合には、 該樹脂が溶剤 系であるために、 溶剤が負極のリチウムと反応してダメージを与え電池性能を低 下させる問題があり、 溶剤を用いる塗工法での薄膜化には限界がある。
さらに、 溶剤を有する固体電解質製造原料を複合正極に直接塗布すると、 複合 正極が部分的に溶解、 膨潤して電極性能が低下するおそれがあった。
本発明は、 電解質を溶剤を使用することなく形成し、 電池性能 (導電性、 充放 電特性等) に優れたリチウムポリマー電池及びその製造方法を提供することを目 的とする。
図面の簡単な説明
図 1は、 電極作成のフローを示す。
図 2は、 充放電特性 ( 1 ) を示し、 より詳しくは右上がりの曲線が充電のとき の状況を、 右下がりの曲線が放電のときの状況を各々表す。 また、 それぞれの線 は、 この充放電のサイクルを表す。 これから安定した充放電ができていることが わかる。
図 2において、 正極は M n系複合正極、 S P Eはウレタンアタリレート系、 負 極はリチウム、 充放電電流 (charge discharge current)は 0 . 0 5 mA/ c m 2、 電圧範囲 (voltage range)は 3 . 5〜2 . 0 Vである。
図 3は、 充放電サイクル特性 (2 ) を示し、 より詳しくは充放電のサイクルを 繰り返したときの変化を表す。 回数が多.くなっても電池容量低下が少なく耐久性 に優れることかわかる。
図 3において、 正極は Mn系複合正極、 S P Eはウレタンアタリレート系、 負 極はリチウム、 充放電電流 (charge discharge current)は 0 . 1 mA/ c m 2、 電 圧範囲 (voltage range)は 3 . 5〜 2 . 0 Vである。
図 4は、 リチウムイオン導通テストの結果を示す。 L i Z硬化被膜 ZL iのサ ンプルにおいて、 右から及び左から、 0 . 1 mA/ c m2の電流を流したときの 電圧変化を示し、 サイクル数が多くなっても抵抗の変化が少ないことが分かる。 従来の溶剤系では、 抵抗がより大きくなる。
発明の開示
本発明は、 力かる問題点に鑑み鋭意検討した結果、 常温で液状の且つ溶剤を含 まないリチウムィォン導電性組成物を用いることにより本発明を完成させたもの であり、 以下のリチウムポリマー (一次ないし二次) 電池及びその製造方法を提 供するものである。
項 1 . 硬化性ォリゴマー、 ェチレン性不飽和単量体及び電解質塩を含むリチウ ムィォン導電性組成物から得られる硬化被膜からなる固体電解質を正極と負極と の間に挟持してなることを特徴とするリチウムポリマー電池。
項 2 . リチウム箔上に硬化性ォリゴマー、 ェチレン性不飽和単量体及び電解質 塩を含むリチウムィオン導電性組成物から得られる硬化被膜を形成してなる固体 電解質一負極接合体に複合正極を接合してなることを特徴とする項 1記載の電池。 項 3 . 複合正極上に硬化性オリゴマー、 エチレン性不飽和単量体及ぴ電解質塩 を含むリチウムイオン導電性組成物から得られる硬化被膜を形成してなる固体電 解質一正極接合体にリチウム箔からなる負極を接合してなることを特徴とする項 1記載の電池。
項 4 . リチウム箔上に硬化性ォリゴマー、 ェチレン性不飽和単量体及ぴ電解質 塩を含むリチウムイオン導電性組成物から得られる硬化被膜を形成してなる固体 電解質一負極接合体と、 複合正極上に硬化性オリゴマー、 エチレン性不飽和単量 体及び電解質塩を含むリチウムィオン導電性組成物から得られる硬化被膜を形成 してなる固体電解質一正極接合体とを固体電解質面同士が接するように接合して なることを特徴とする項 1記載の電池。 項 5 . 硬化性オリゴマーが、 ウレタン (メタ) アタリレート及び/又は分岐構 造を持つポリイソシァネート誘導体であることを特徴とする項 1に記載の電池。 項 6 . リチウムィオン導電性硬化被膜の厚みが、 5〜 1 0 0 mであることを 特徴とする項 1に記載の電池。
項 7 . リチウムイオン導電性組成物がさらに酸化ケィ素の微粒子を含むことを 特徴とする項 1に記載の電池。
項 8 . リチウムィオン導電性組成物がさらに電解液を含有することを特徴とす る項 1に記載の電池。
項 9 . リチウム箔上に溶媒を含まず、 かつ、 硬化性オリゴマー、 エチレン性不 飽和単量体及び電解質塩を含むリチウムイオン導電性組成物を塗工した後、 硬化 してリチウムイオン導電性硬化被膜からなる固体電解質一負極接合体を形成する 工程、 正極材料を導電性金属板に塗布して複合正極を形成する工程、 固体電解質 —負極接合体と複合正極を接合する工程を含むことを特徴とするリチウムポリマ 一電池の製造方法。
項 1 0 . 正極材料を導電性金属板に塗布して複合正極を形成する工程、 複合正 極上に硬化性ォリゴマー、 エチレン性不飽和単量体及び電解質塩を含むリチウム ィオン導電性組成物を塗工した後、 硬化してリチウムィオン導電性硬化被膜から なる固体電解質一正極接合体を形成する工程、 固体電解質—正極接合体とリチウ ム箔からなる負極を接合する工程を含むことを特徴とするリチウムポリマー電池 の製造方法。
項 1 1 . 正極材料を導電性金属板に塗布して複合正極を形成する工程、 複合正 極上に硬化性ォリゴマー、 ェチレン性不飽和単量体及び電解質塩を含むリチウム ィオン導電性組成物を塗工した後、 硬化してリチウムイオン導電性硬化被膜から なる固体電解質一正極接合体を形成する工程、 リチウム箔上に溶媒を含まず、 か つ、 硬化性オリゴマー、 エチレン性不飽和単量体及ぴ電解質塩を含むリチウムィ オン導電性組成物を塗工した後、 硬化してリチウムイオン導電性硬化被膜からな る固体電解質一負極接合体を形成する工程、 固体電解質一負極接合体と固体電解 質一正極接合体とを固体電解質面同士が接するように接合する工程を含むことを 特徴とするリチウムポリマー電池の製造方法。 項 1 2 . 正極及び負極の製造がそれぞれ連続して行われ、 引き続いて両極の接 合が連続して行われることを特徴とする項 9〜 1 1のいずれかに記載の方法。 項 1 3 . リチウムイオン導電性組成物がさらに酸化ケィ素の微粒子を含むこと を特徴とする項 9〜 1 1のいずれかに記載の方法。
項 1 4 . リチゥムイオン導電性組成物がさらに電解液を含有することを特徴と する項 9〜 1 1のいずれかに記載の方法。
本発明のリチウムポリマー電池の負極に使用されるリチウム箔の厚みは 1 0〜 5 0 0 μ m程度、 好ましくは 5 0〜 2 0 0 μ m程度、 より好ましくは 5 0〜 1 5 0 μ πι程度である。 銅箔や鉄箔などの集電体上に固定したリチウム箔表面上にリ チウムイオン導電性硬化被膜が適用される。
リチウムイオン導電性組成物から得られるリチウムイオン導電性硬化被膜は、 リチウム箔上に"直接"形成されるのが好ましい。ここで、 "直接"形成されるとは、 リチウムイオン導電性組成物が溶媒を含まないため、リチウム箔上に直接塗布し、 硬化させることにより形成されたものであることを意味し、 いったんリチウムィ オン導電性硬化被膜を別途形成した後、 リチウム箔に貼合わせたものを排除する 趣旨である。 このように、 溶媒を含まないリチウムイオン導電性組成物を用いて リチウム箔上に直接リチウムィオン導電性硬化被膜を形成することにより、 被膜 が薄くても十分な強度が得られ、結果として電池性能を向上させることができる。 さらに、リチウム金属表面の酸ィ匕を防止でき、取り扱いが容易となる利点もある。 リチウムィオン導電性硬化被膜の厚みは 5〜 1 0 0 μ m程度が好ましく、 より 好ましくは 1 0〜 5 0 μ ηιである。
リチウムイオン導電性組成物は、 溶媒を含まないことを特徴と.し、 硬化性オリ ゴマー、 エチレン性不飽和単量体及び電解質塩、 さらに任意成分として酸化ケィ 素の微粒子や電解液を含む組成物であるが、 薄膜化、 導電性、 リチウム金属との 安定性、 耐電圧 3 . 5 V以上、 より好ましくは 4 V以上が求められることなどの 観点から ( I )硬化性オリゴマー {ウレタン (メタ) アタリレート、 エポキシ (メ タ) ァクリレート、 ポリエステル (メタ) ァクリレート、 特にはウレタン (メタ) アタリレート } と (II) エチレン性不飽和単量体、 及び (III) 電解質塩、 さらに 任意成分として酸ィ匕ケィ素の微粒子や電解液から構成されるのが好ましい。 又、 イオン導電性の点で分岐構造をもつポリイソシァネート誘導体をウレタン (メタ) アタリレートの代わりに用いたり、 ウレタン (メタ) アタリレートと併 用することも好ましい。 ( I ) 硬化性オリゴマー
(1-1) ウレタン (メタ) アタリレート
ウレタン (メタ) アタリレートとしてはポリオール、 ポリイソシァネート及ぴ ヒ ドロキシ (メタ) アタリレートを反応させて得られるものであることが好まし い。
かかるポリオールとしては、 特に限定されることなく、 例えば、 エチレンダリ コール、プロピレングリコール、プチレングリコール、 1, 4一ブタンジオール、 1, 6—へキサンジオール、 ネオペンチルグリコール、 シクロへキサンジメタノ ール、水素添加ビスフエノ一ル八、ポリ力プロラクトン、 トリメチロールエタン、 トリメチロールプロパン、ポリ トリメチロールプロパン、ペンタエリスリ トール、 ポリペンタエリスリ トール、 ソルビトール、 マンニトーノレ、 グリセリン、 ポリグ リセリン等の多価アルコールや、 ジエチレングリコール、 トリエチレングリコー ル、 テトラエチレングリコーノレ、 ジプロピレングリコーノレ、 ポリエチレングリコ 一ノレ、 ポリプロピレングリコーノレ、 ポリブチレングリコーノレ、 ポリテトラメチレ ングリコール等の他、 エチレンォキサイド、 プロピレンォキサイド、 テトラメチ レンオキサイ ド、 エチレンオキサイドノプロピレンオキサイドのランダム又はブ 口ック共重合体、 エチレンォキサイド zテトラメチレンォキサイドのランダム又 はブロック共重合体、 プロピレンォキサイド /テトラメチレンォキサイ ドのラン ダム又はブロック共重合体、 エチレンォキサイド /プロピレンォキサイ ド Zテト ラメチレンォキサイドのランダム又はブロック共重合体から選ばれる少なくとも 1種の構造を有するポリエーテルポリオール、 該多価アルコール又はポリエーテ ルポリオールと無水マレイン酸、 マレイン酸、 フマール酸、 無水ィタコン酸、 ィ タコン酸、 アジピン酸、 イソフタル酸等の多塩基酸との縮合物であるポリエステ ルポリオール、 力プロラクトン変性ポリテトラメチレンポリオール等の力プロラ ク トン変性ポリオール、 ポリオレフイン系ポリオール、 水添ポリブタジェンポリ オール等のポリブタジェン系ポリオール等が挙げられる。
中でも特に、 分子量が 2 0 0〜6 0 0 0、 好ましくは 5 0 0〜 5 0 0 0、 更に 好ましくは 8 0 0〜4 0 0 0で、 かつ、 エチレンオキサイド、 プロピレンォキサ ィド、 テトラメチレンォキサイド、 エチレンォキサイド /プロピレンォキサイド のランダム又はプロック共重合体、 エチレンォキサイド /テトラメチレンォキサ ィ ドのランダム又はブロック共重合体、 プロピレンォキサイド /テトラメチレン ォキサイ ドのランダム又はブロック共重合体、 エチレンォキサイド プロピレン 才キサイ ド /テトラメチレンォキサイドのランダム又はブロック共重合体から選 ばれる少なくとも 1種の構造を有するポリエーテルポリオールであることが好ま しい。 ポリオールの分子量が 2 0 0未満であれば導電性に悪影響を与え、 6 0 0 0を越えると形成した膜の強度が著しく低下することとなり好ましくない。
ポリイソシァネートとしては、 特に限定されることなく、 例えば芳香族系、 脂 肪族系、 環式脂肪族系、 脂環式系等のポリイソシァネートが挙げられ、 中でもト リ レンジイソシァネート (T D I )、ジフエニルメタンジィソシァネート (MD I )、 水添化ジフエニルメタンジイソシァネート (H— MD I )、ポリフエニルメタンポ リイソシァネート、変性ジフエニルメタンジィソシァネート (変性 MD I )、水添 化キシリレンジィソシァネート (H— X D I )、 キシリ レンジィソシァネート (X D I )、 へキサメチレンジイソシァネート (HD I )、 トリメチルへキサメチレン ジイソシァネート(TMHMD 1 )、テトラメチルキシリレンジイソシァネート(m — TMX D I )、 イソホロンジイソシァネート (I P D I )、 ノルボルネンジイソ シァネート (N B D I )、 1 , 3 -ビス (イソシアナトメチノレ) シクロへキサン等 のポリイソシァネート或いはこれらポリイソシァネートの三量体化合物、 2—ィ ソシアナ一トェチルカプロネート一 2, 6—ジイソシァネート、 これらポ])イソ シァネートとポリオールの反応生成物等が挙げられるが、 導電性の観点からィソ ホロンジイソシァネート(I P D I )、へキサメチレンジイソシァネート(H D 1 )、 トリメチ^/へキサメチレンジイソシァネート (TMD I ) などが特に好ましい。 更に、 ヒ ドロキシ (メタ) アタリレートとしては、 特に限定されることなく、 例えば、 2—ヒ ドロキシェチル (メタ) アタリレート、 2—ヒ ドロキシプロピル (メタ) アタリレート、 2—ヒ ドロキシブチル (メタ) アタリレート、 2—ヒ ド ロキシェチルアタリロイルホスフェート、 4一プチルヒ ドロキシ (メタ) アタリ レート、 2 - (メタ) アタリロイロキシェチルー 2—ヒ ドロキシプロピルフタレ ート、 2—ヒ ドロキシー 3— (メタ) ァクリロイロキシプロピル (メタ) ァクリ レート、 力プロラタトン変性 2—ヒドロキシェチル (メタ) アタリレート、 ペン タエリスリ トーノレトリ (メタ)ァクリ レート、ジペンタエリスリ トールペンタ (メ タ) アタリレート、 エチレンオキサイド変性ヒ ドロキシ (メタ) アタリレート、 プロピレン変性ヒ ドロキシ (メタ) アタリレート、 エチレンオキサイド一プロピ レンォキサイド変性ヒドロキシ (メタ) アタリレート、 エチレンォキサイドーテ トラメチレンオキサイド変性ヒドロキシ (メタ) アタリレート、 プロピレンォキ サイ ドーテトラメチレンォキサイド変性ヒドロキシ (メタ) アタリレート等が挙 げられ、 中でも 2—ヒドロキシェチル (メタ) ァクリレート、 2—ヒドロキシプ 口ピル (メタ) アタリレート、 エチレンォキサイ ド変性ヒ ドロキシ (メタ) ァク リレートが好適に用いられる。
上記ウレタン (メタ) アタリレートの製造方法については、 ポリオール、 ポリ イソシァネート、 ヒ ドロキシ (メタ) アタリレートを反応させる方法であれば特 に限定されず、 公知の方法が採用される。 例えば、 (i)ポリオール、 ポリイソシァ ネート、 ヒ ドロキシ (メタ) アタリレートの 3成分を一括に混合して反応させる 方法、 (ii)ポリオールとポリイソシァネートを反応させて、 1分子当たり 1個以上 のィソシァネート基を含有するゥレタンィソシァネート中間体を形成した後に該 中間体とヒ ドロキシ (メタ) アタリレートを反応させる方法、 (iii)ポリイソシァ ネートとヒ ドロキシ (メタ) アタリレートを反応させて 1分子当たり 1個以上の イソシァネート基を含有するウレタン (メタ) アタリレート中間体を形成した後 に該中間体とポリオールを反応させる方法等が挙げられる。
上記反応においては、 反応を促進する目的でジブチルチンジラゥレート等の触 媒を用いてもよい。
(1-2) 分岐構造を持つポリイソシァネート誘導体
又、 分岐構造を持つポリィソシァネート誘導体としては、 ポリオール、 ポリイ ソシァネート、 アルキレングリコールモノアルキルエーテル、 必要に応じて更に ヒ ドロキシ (メタ) アタリレートを反応させてなるものであることが好ましい。 かかるポリオールとしては、 特に限定されることなく、 上記と同様のものが挙 げられる。
ポリイソシァネートとしては、 特に限定されることなく、 例えば芳香族系、 脂 肪族系、 環式脂肪族系、 脂環式系等のポリイソシァネートが挙げられ、 中でもト リレンジイソシァネート(T D I )、ジフエニルメタンジイソシァネート(MD 1 )、 水添化ジフエニルメタンジィソシァネート (H— MD I )、ポリフエニルメタンポ リイソシァネート、変性ジフエ-ルメタンジィソシァネート (変性 MD I )、水添 化キシリレンジイソシァネート (H— X D I )、 キシリレンジイソシァネート (X D I )、 へキサメチレンジイソシァネート (H D I )、 トリメチノレへキサメチレン ジイソシァネート (TMD I )、 テトラメチルキシリレンジイソシァネート (m— TMX D I )、 イソホロンジイソシァネート (I P D I )、 ノノレボルネンジイソシ ァネート (N B D I )、 1 , 3—ビス (イソシアナトメチル) シクロへキサン等の ポリイソシァネートの三量体化合物、 これらポリイソシァネートとポリオールの 反応生成物(末端イソシァネート基を 3個以上有するものを含む)、 2 —イソシァ ナートェチルカプロネート一 2 , 6—ジイソシァネート等が挙げられるが、 取り 扱いや粘度の観点からへキサメチレンジイソシァネート (HD I ) の三量体化合 物、 2 —イソシアナ一トェチルカプロネート一 2 , 6ジイソシァネートなどが特 に好ましい。
ポリアルキレングリコールモノアルキルエーテルとしては、 特に限定されず、 例えば、 ジエチレングリコール、 トリエチレングリコール、 テトラエチレンダリ コーノレ、 ジプロピレングリ コーノレ、 ポリエチレングリ コーノレ、 ポリプロピレング リコール、 ポリブチレンダリコール、 ポリテトラメチレングリコール等の他、 ェ チレンォキサイ ド、 プロピレンォキサイド、 テトラメチレンォキサイド、 ェチレ ンォキサイ ド /プロピレンォキサイドのランダム又はプロック共重合体、 ェチレ ンオキサイ ド Zテトラメチレンオキサイドのランダム又はブロック共重合体、 プ ロピレンォキサイド zテトラメチレンォキサイドのランダム又はブロック共重合 体、 エチレンォキサイドノプロピレンォキサイド/テトラメチレンォキサイドの ランダム又はプロック共重合体から選ばれる少なくとも 1種の構造を有するポリ エーテルポリオール等のモノアルキルエーテルが挙げられる。 ヒ ドロキシ (メタ) アタリレートとしては、 .特に限定されることなく、 上記と 同様のものが挙げられる。
(II) エチレン性不飽和単量体
ェチレン性不飽和単量体としては、
• 一般式 (1 ) で示される重合性モノマー ひ)
Figure imgf000011_0001
〔ここで、 R 1は水素又はメチル基、 R 2は水素、 炭素数 1〜1 8の直鎖又は分岐 のアルキル基、 k、 1、 mはいずれも整数であり、 k + l + m≥lである。〕 尚、 一般式中、 括弧内はプロック共重合体又はランダム共重合体のいずれでもよい。 また、 炭素数 1〜1 8の直鎖又は分岐のアルキル基としては、 メチル、 ェチル、 n-プロピノレ、 イソプロピル、 n-ブチル、 イソブチル、 sec-プチル、 t-ブチル、 ペン チル、 へキシル、 ォクチル、 ノニル、 デシル、 ゥンデシル、 ドデシル、 テトラデ シル、 へキサデシル、 ォクタデシルが例示される。
• 2一ビュルピロリ ドン、 ァクリロイルモルフォリン、 2—ヒドロキシプチルビ ニノレエーテノレ、 ェチ/レエチレングリコーノレモノ (メタ) アタリレート、 プロピノレ エチレングリコーノレモノ (メタ) アタリ レート、 フエニノレエチレングリコーノレモ ノ (メタ) アタリレート等の単官能モノマー、
'エチレングリコールジ (メタ) アタリレート、 ジエチレングリコールジ (メタ) アタリレート、 テトラエチレングリコールジ (メタ) アタリレート、 ポリエチレ ングリコールジ (メタ) アタリレート、 プロピレングリコールジ (メタ) アタリ レート、 ポリプロピレングリコーノレジ (メタ) アタリレート、 ブチレングリコー ルジ (メタ) アタリレー卜、 ネオペンチルグリコールジ (メタ) アタリレート、 エチレンオキサイド変性ビスフエノール A型ジ (メタ) アタリレート、 プロピレ ンオキサイド変性ビスフエノール A型ジ (メタ) アタリレート、 1, 6—へキサ ンジォ一 ジ (メタ) アタリレート、 グリセリンジ (メタ) アタリレート、 ペン タエリスリ トールジ (メタ) アタリレート、 エチレングリコールジグリシジルェ 一テルジ (メタ) ァクリレート、 ジエチレングリコーノレジグリシジルエーテルジ (メタ) ァクリレート、 フタル酸ジグリシジルエステルジ(メタ)ァクリレート、 ヒ ドロキシピバリン酸変性ネオペンチルグリコールジ (メタ) ァクリレート等の 2官能モノマー、
• トリメチロールプロパントリ (メタ) アタリレート、 エチレンオキサイド変性 トリメチロールプロパントリ (メタ) アタリレート、 ペンタエリスリ トールトリ (メタ) ァクリレート、 ペンタエリスリ トールテトラ (メタ) ァクリレート、 ジ ペンタエリスリ トールへキサ (メタ) アタリレート、 ジペンタエリスリ トールぺ ンタ (メタ) アタリレート、 トリ (メタ) アタリロイルォキシエトキシトリメチ 口ールプロパン、 グリセリンポリグリシジルエーテルポリ (メタ) ァクリレート 等の 3官能以上のモノマー
等が挙げられ、 一般式 (1 ) の単量体が好ましい。
一般式 (1 ) で表される単量体以外のエチレン性不飽和単量体は、 リチウムィ オン導電性オリゴマ一組成物に対して 2 0重量0 /0未満であることが好ましい。 一般式 (1 ) の単量体の具体例としては、 ポリエチレングリコールモノ (メタ) アタリレート、 2—ヒ ドロキシプロピル (メタ) アタリレート、 3—ヒ ドロキシ プロピル (メタ) アタリレート、 ポリプロピレングリコールモノ (メタ) アタリ レート、 ポリエチレングリコーノレ一ポリプロピレングリコーノレモノ (メタ) ァク リレート、 ポリ (エチレングリコールーテトラメチレンダリコール) モノ (メタ) アタリレート、 ポリ (プロピレングリコールーテトラメチレンダリコール) モノ (メタ) アタリレート、 メ トキシポリエチレングリコールモノ (メタ) アタリレ ート、 エトキシポリエチレングリコールモノ (メタ) アタリレート、 オタトキシ ポリエチレングリコール一ポリプロピレンダリコールモノ(メタ)ァクリレート、 ラウロキシポリエチレングリコールモノ (メタ) アタリレート、 ステア口キシポ リエチレングリコールモノ (メタ) アタリレート等が挙げられる。 中でも、 一般 式 (1 ) において、 R 1が水素又はメチル基、 R 2がメチル基で、 k力 S 3、 9又は 1 2、 1力 S 0、 mが 0のメ トキシポリエチレングリコールモノ (メタ) アタリレ 一トが導電率の観点から特に好ましい。
(III) 電解質塩
電解質塩としては、 通常の電解質として用いられるものであれば特に制限はな いが、 例えば、 L i BR4 (Rはフエニル基又はアルキル基)、 L i PF6、 L i S b F6、 L i A s F6、 L i BF4、 L i C I 04、 CF3S〇3L i、 (C F3 S 02) 2NL i、 (CF3S02) 3CL i、 C6F9S〇3L i、 C8F17S〇3L i、 L i A l C l 4、 リチウムテトラキス [3, 5—ビス (トリフルォロメチル) フ ヱニル] ボレート等の単独あるいは混合物等が挙げられる。 中でも、 CF3S〇3 L i、 (CF3S〇2) 2NL i、 (CF3S02) 3CL i、 C6F9S〇3L i、 C8 F 17S03L i等のスルホン酸系ァ-オン又はィミ ド塩系の電解質が好適に用い られる。
リチウムィオン導電性組成物の好まし!/、組成は、 作業性などの観点より、 硬化 性オリゴマー (好ましくはウレタン (メタ) アタリレート及び/又は分岐構造を もつポリイソシァネート誘導体) は、 好ましくは 60〜 95重量部、 より好まし くは 65〜 95重量部、 特に好ましくは 65〜 90重量部;及び、 エチレン性不 飽和単量体は、 好ましくは 5〜 40重量部、 より好ましくは 5〜 35重量部、 特 に好ましくは 1 0〜 35重量部である。 リチウムィオン導電性組成物が酸化ケィ 素微粒子を含む場合、 酸化ケィ素微粒子の配合量は、 ウレタン (メタ) アタリレ 一ト及び Z又は分岐構造をもつポリィソシァネート誘導体とエチレン性不飽和単 量体の合計量の 5〜 30重量。 /0が好ましい。
酸化ケィ素の微粒子の粒径は、 1 μ m以下であるのが好ましい。
酸化ケィ素の具体例としては特に限定されないが、 中でも疎水性の酸化ケィ素 が好ましく、 親水性のものでは混合後に粘度が上がりすぎ薄膜を作るのが困難と なり好ましくない。 疎水性酸化ケィ素の中でもジメチル基で疎水化したものが好 適である。具体例としては、例えば「ァエロジル R 972J (日本ァエロジル社製) 等の疎水 'ί生シリ力等が好ましく用いられる。 シリカの配合量はリチウムイオン導 電性組成物 100部に対して 0. 1〜30部が好ましく、 より好ましくは 0. 5 〜10部である。 電解質塩に関しては、 該組成物中のリチウム原子とエーテル性の酸素原子のモ ル数の比が 0 . 0 2〜0 . 2であることが好ましく、 より好ましくは 0 . 0 3〜 0 . 1である。
リチウムィォン導電性組成物の重合†生成分 (例えばウレタン (メタ) アタリレ ート及ぴ Z又は分岐構造をもつポリイソシァネート誘導体などの硬化性ォリゴマ 一及びエチレン性不飽和単量体) と電解質塩を混合するに当たっては、 (a)ウレタ ン (メタ) ァクリレート及び/又は分岐構造をもつポリイソシァネート誘導体、 エチレン性不飽和単量体、 電解質塩及び任意成分としての酸化ケィ素の微粒子を —括混合する方法、(b)電解質塩及び任意成分と.しての酸化ケィ素の微粒子をェチ レン性不飽和単量体に溶解した後硬化性オリゴマー (特にウレタン (メタ) ァク リレート及ぴ Z又は分岐構造をもつポリイソシァネート誘導体)と混合する方法、 等が挙げられるが、 取り扱いや混合効率の点で (b)の方法が好ましい。
また、 本発明では、 リチウムイオン導電性組成物がさらに電解液を含有するこ とも導電率の点で好ましく、 力かる電解液としては、 例えば、 カーボネート溶媒 (プロピレンカーボネート、 エチレンカーボネート、 ブチレンカーボネート、 ジ メチルカーボネート、 ジェチルカーボネート)、 アミ ド溶媒(N—メチホルムアミ ド、 N—ェチルホルムアミ ド、 N, N—ジメチルホルムアミ ド、 N—メチルァセ トアミ ド、 N—ェチルァセトアミド、 N—メチルピロジリノン)、ラタトン溶媒(γ 一プチルラク トン、 γ—バレロラタ トン、 δ—バレロラタ トン、 3—メチルー 1、 3ォキサゾリジン一 2—オン等)、 アルコール溶媒(エチレングリコール、 プロピ レングリコーノレ、 グリセリン、 メチルセ口ソルブ、 1、 2ブタンジォーノレ、 1、 3ブタンジオール、 1 , 4ブタンジオール、 ジグリセリン、 ポリオキシアルキレ ングリコールシクロへキサンジオール、キシレンダリコール等)、エーテル溶媒(メ チラ一ノレ、 1 , 2—ジメ トキシェタン、 1 , 2—ジエトキシェタン、 1ーェトキ シ一 2—メ トキシェタン、アルコキシポリアルキレンエーテル等)、二トリル溶媒 (ベンゾニトリル、 ァセトニトリル、 3—メ トキシプロピオ二トリル等)、燐酸類 及び燐酸エステル溶媒 (正燐酸、 メタ燐酸、 ピロ燐酸、 ポリ燐酸、 亜燐酸、 トリ メチルホスフェート等)、 2—イミダゾリジノン類(1, 3—ジメチルー 2—イミ ダゾリジノン等)、 ピロリ ドン類、 スルホラン溶媒(スルホラン、 テトラメチレン スルホラン)、フラン溶媒 (テトラヒドロフラン、 2—メチルテトラヒドロフラン、 2 , 5—ジメ トキシテトラヒ ドロフラン)、 ジォキソラン、 ジ才キサン、 ジクロロ ェタン等が挙げられ、 これらの単独あるいは 2種以上の混合溶媒が使用できる。 これらのうち好ましくはカーボネート類、 エーテル類、 フラン溶媒である。
電解液を使用する場合の好ましい組成は、 特に限定されないが、 ウレタン (メ タ) ァクリレート及び/又は分岐構造をもつポリイソシァネート誘導体とェチレ ン性不飽和単量体の合計 1 0 0重量部に対して 1 0〜 1 0 0重量部、 より好まし くは 1 0〜 7 0重量部、 特に好ましくは 1 0〜 3 0重量部である。
本発明によるリチウムイオン導電性硬化被膜の形成は、 リチウム箔にリチウム ィオン導電性組成物をコーティングした後、活性光線照射又は 及ぴ熱で重合し、 硬化することにより達成される。 本発明においては、 取り扱いや生産効率の点で 活性光線照射により重合し、 硬化するほうが好ましい。
活性光線照射は通常、 光、 紫外線、 電子線、 X線等により行われるが、 中でも 紫外線が好ましく、 紫外線照射に際しては、 光源として、 高圧水銀灯、 超高圧水 銀灯、 カーボンアーク灯、 キセノン灯、 メタルハライドランプ、 ケミカルランプ 等が用いられる。 照射量としては、 特に限定されず適宜選択されるが、 1 0 0〜 1 0 0 O m J / c m2、 好ましくは 1 0 0〜 7 0 0 m J / c m 2の積算照射量で、 照射を行うことが好ましい。
これらの活性光線照射により重合し、 硬化させる場合は、 光重合開始剤をリチ ゥムイオン導電性組成物の重合性成分 (例えば、 ウレタン (メタ) アタリレート 及び/又は分岐構造をもつポリイソシァネート誘導体などの硬化性オリゴマー、 及びエチレン性不飽和単量体) 1 0 0重量部に対して 0 . 3重量部以上、 特には 0 . 5〜 5重量部含有させることが好ましい。 積算照射量や光重合開始剤が共に 少なレ、場合はフィルムの強度が保てず、 また多すぎてもそれ以上の効果は認めら れず好ましくない。
該光重合開始剤としては、 特に限定されず、 公知の光重合開始剤を用いること ができるが、 例えば、 ベンゾフエノン、 P, P '—ビス (ジメチルァミノ) ベンゾ フエノン、 P , Ρ '—ビス (ジェチノレアミノ) ベンゾフエノン、 ρ , ρ '—ビス (ジ ブチノレアミノ) ベンゾフエノン、 ベンゾイン、 ベンゾインメチノレエーテノレ、 ベン ゾィンェチ /レエ一テル、 ベンゾィンィソプロピルエーテル、 ベンゾィン n—ブチ ノレエーテノレ、 ベンゾインフエニノレエーテノレ、 ベンゾインイソブチノレエーテ レ、 ベ ンゾィル安息香酸、 ベンゾィノレ安息香酸メチル、 ベンジルジフヱユルジスルフィ ド、 ペンジノレジメチルケタール、 ジベンジノレ、 ジァセチノレ、 アントラキノン、 ナ フトキノン、 3, 3'—ジメチル一 4ーメ トキシベンゾフエノン、 ジクロロアセト フエノン、 2—クロ口チォキサントン、 2—メチルチオキサントン、 2, 4ージ ェチルチオキサントン、 2, 2—ジェトキシァセトフェノン、 2, 2—ジクロ口 一 4一フエノキシァセトフエノン、 フエニノレグリオキシレート、 α—ヒ ドロキシ イソブチノレフエノン、 ジベンゾスパロン、 1一 (4—イソプロピルフエ-ノレ) - 2—ヒ ドロキシー2—メチル一 1—プロパノン、 2—メチルー [4一 (メチルチ ォ) フエ二ノレ] _ 2—モルフオリノー 1一プロパノン、 トリブロモフエニルスノレ ホン、 トリブロモメチルフエニノレスルホン、 メチルベンゾィルホルメート、 2― ヒ ドロキシー 2—メチル一 1一フエニルプロパン一 1一オン、 2, 2—ジメ トキ シー 1 , 2—ジフエエノレメタン一 1—オン、 1—ヒ ドロキシ一シクロへキシノレ一 フエ二ノレ一ケトン、 更には 2, 4, 6— [トリス (トリクロロメチル)] 一 1, 3,
5—トリアジン、 2, 4- [ビス (トリクロロメチル)] 一 6— (4'—メ トキシ フエニル) —1, 3, 5—トリァジン、 2, 4― [ビス (トリクロロメチル)] 一
6- (4,ーメ トキシナフチル) 一1, 3, 5—トリアジン、 2, 4— [ビス (ト リク口ロメチノレ) ] - 6 - (ピぺロニル) 一 1, 3, 5—トリアジン、 2 , 4— [ビ ス (トリクロロメチル) ] — 6— (4,ーメ トキシスチリル) 一 1 , 3, 5—トリ ァジン等のトリァジン誘導体、 ァクリジン及び 9一フエ二ルァクリジン等のァク リジン誘導体、 2, 2'—ビス (ο—クロ口フエニル) 一4, 5, 4', 5'—テト ラフェニル一 1, 2'—ビイミダゾーノレ、 2, 2,_ビス (ο—クロ口フエェノレ) 一
4, 5, 4', 5,ーテトラフエ二ルー 1, 1,ービイミダゾール、 2, 2'—ビス (ο —フルオロフェニノレ) 一 4, 5, 4,, 5'—テトラフエ二ルー 1, Γービイミダ ゾール、 2, 2'—ビス (ο—メ トキシフエニル) ー4, 5, 4,, 5'—テトラフ ェニル _1, ι,ービイミダゾール、 2, 2'—ビス (ρ—メ トキシフエニル) 一4,
5, 4,, 5,ーテトラフエニノレー 1, 1,一ビイミダゾール、 2, 4, 2,, 4,ービ ス [ビ (ρ—メ トキシフエ二ル)] 一 5, 5,ージフエニノレー 1, ービイミダゾ ール、 2 , 2 '—ビス (2, 4—ジメ トキシフエエル) ー4, 5 , 4,, 5,ージフ ェ二ルー 1 , 1,一ビィミダゾール、 2 , 2 '—ビス ( ρ—メチルチオフエニル) 一 4, 5, 4,, 5,一ジフエ二ルー 1, 1 'ービイミダゾーノレ、 ビス (2, 4, 5 - トリフエニル) 一 1, 1,一ビィミダゾール等ゃ特公昭 4 5— 3 7 3 7 7号公報に 開示される 1 , 2 '—、 1 , 4 '—、 2, 4 '一で共有結合している互変異性体等の へキサァリールビイミダゾール誘導体、 トリフエニルフォスフィン、 そのほかに も 2—ベンゾィルー 2—ジメチルァミノ一 1― [ 4一モルフォリノフエニル] 一 ブタン等が挙げられ、 特に取り扱いの面で 2—ヒドロキシー 2—メチルー 1—フ ェニルプロパン一 1一オン、 2 , 2—ジメトキシ一 1, 2—ジフエ二ノレメタン一 1一オン、 1ーヒドロキシ一シクロへキシル一フエ-ルーケトンなどが特に好適 である。
又、 熱により重合し、 硬化させる場合は、 熱重合開始剤をリチウムイオン導電 性組成物の重合性成分 1 0 0重量部に対して、 0 . 1〜 5重量部、 特には 0 . 3
〜 1重量部含有させることが好ましい。
かかる熱重合開始剤としては、 特に限定されないが、 例えばァゾビスイソプチ 口-トリノレ、 ベンゾィノレパーオキサイド、 ラウロイノレパーオキサイド、 ェチノレメ チルケトンペルォキシド、 ビス一 (4— 1:一プチルシク口へキシル) パーォキシ ジカーボネート、 ジィソプロピルパーォキシジカーボネート等のパーォキシジカ ーボネート等が挙げられる。
又、 光及び熱を併用して重合し、 硬化させる場合は、 上記の光重合開始剤と上 記熱重合開始剤を併用することが好ましい。
更に、 本発明では必要に応じて、 増感剤、 貯蔵安定剤等も併用される。 増感剤 としては、 尿素、 二トリル化合物 (Ν, Ν—ジ置換一 Ρ—ァミノべンゾ-トリル 等)、 燐化合物 (トリー η—ブチルホスフィン等) が好ましく、貯蔵安定剤として は、 第 4級アンモニゥムクロライド、 ベンゾチアゾール、 ハイドロキノンが好ま しい。
かくして、 リチウムイオン導電性の硬化被膜は、 非常に薄いにもかかわらず十 分な強度を有しており、 導電性及び充放電特性などの電池性能に優れたリチウム イオン電池 (一次電池、 二次電池) を得るために好適に使用できる。 特に二次電 池に応用した場合には大きな効果を示す。 リチウムイオン導電性組成物に酸化ケ ィ素、 特に疎水性の酸化ケィ素の微粒子を配合した場合には、 さらに、 イオン導 電性の低下を招かずに、 固体電解質膜の機械的強度や、 耐熱性を高めることがで き、 電極間のショートを抑制する働きもある。
本発明のリチウムポリマ一電池は、 基本的には正極、 負極及ぴ高分子固体電角罕 質から構成され、 必要によりポリマーの保持材としては、 セパレータを用いても よい。
セパレータとしては、 電解質溶液のイオン移動に対して低抵抗であるものが用 いられ、 例えば、 ポリプロピレン、 ポリエチレン、 ポリエステル、 ポリテトラフ ルォロエチレン、 ポリビュルアルコール、 エチレン一酢酸ビエル系共重合体ケン 化物等の 1種以上の材質から選ばれる微多孔膜、 不織布又は織布が拳げられ、 短 絡を完全に防止することができる。 本発明の高分子固体電解質そのものにセパレ ータとしての機能 持たせる場合はこれらは不要である。
本発明において、 「複合正極」 とは、正極活物質に、 ケッチェンブラック、 ァセ チレンブラック等の導電助剤、 ポリフッ化ビニリデンなどの結着剤及ぴ、 必要に 応じてィオン導電性ポリマーからなる組成物を混合した正極材料を導電性金属板 (アルミニウム箔など) に塗布したものである。
本発明の二次電池の正極活物質としては、 無機系活物質、 有機系活物質、 これ らの複合体が例示できるが、 無機系活物質あるいは無機系活物質と有機系活物質 の複合体が、 特にエネルギー密度が大きくなる点から好ましい。
無機系活物質として、 3 V系では L i 0.3M n O 2、 L i 4M ii 512、 V 25等、 4 V系では L i C o 02、 L i M n 24、 L i N i 0 2等の金属酸化物、 T i S 2、 M o S 2、 F e S等の金属硫化物、 これらの化合物とリチウムの複合酸化物が挙 げられる。有機系活物質としてはポリアセチレン、ポリア二リン、ポリピロール、 ポリチォフェン、ポリパラフエ二レン、等の導電性高分子、 (炭素体)有機ジスル フィ ド化合物、 カーボンジスルフィド、 活性硫黄等の硫黄系正極材料等が用いら れる。
イオン導電性ポリマーとしては、 ポリエチレンダリコールジメチルエーテル、 ポリエチレングリコ一^ /ジェチノレエーテノレなどのポリエチレングリコーノレジァノレ キルエーテノレ、 ポリエチレングリコールモノアルキルエーテル、 ポリエチレング リコールなどのポリマーが挙げられる。
一方、 本発明の電池の負極活物質としては、 リチウム金属や、 アルミニウム、 鉛、 シリコン、 マグネシウム等とリチウムとの合金、 ポリピリジン、 ポリアセチ レン、 ポリチォフェンあるいはこれらの誘導体のカチオンドープ可能な導電性高 分子、 リチウムを吸蔵可能な S n〇2などの酸ィヒ物及ぴ S n系合金等が挙げられ、 中でも本発明ではリチウム金属がエネルギー密度の点で最も好ましい。
また、 本発明において、 上記正極に、 上記のリチウムイオン導電性,組成物 (ゥ レタン (メタ) ァクリレート及び/又は分岐構造をもつポリイソシァネート誘導 体などの硬化性オリゴマーとエチレン性不飽和単量体及び電解質塩、 さらに任意 成分として酸化ケィ素微粒子や電解液からなる組成物) カゝらなる硬化被膜を形成 させることも好ましい。
カかる硬化被膜を形成させる場合には、 イオン導電性ポリマーは必ずしも必要 ではなく、 適宜選択される。
具体的には、 複合正極上に上記のリチウムイオン導電性組成物 (ウレタン (メ タ) ァクリ レート及び/又は分岐構造をもつポリィソシァネート誘導体などの硬 化性オリゴマーとエチレン性不飽和単量体及び電解質塩、 さらに任意成分として 酸ィ匕ケィ素微粒子や電解液からなる組成物) を塗工した後、 硬化してリチウムィ オン導電性硬化被膜からなる固体電解質一正極接合体を形成し、 該固体電解質一 正極接合体とリチウム箔からなる負極を接合することが好ましい。
さらに、 本発明では、 リチウム箔上にリチウムイオン導電性組成物から得られ る硬化被膜を形成してなる固体電解質一負極接合体と、 複合正極上にリチウムィ オン導電性糸且成物から得られる硬化被膜を形成してなる固体電解質一正極接合体 とを固体電解質面同士が接するように接合することも好ましく、 具体的には、 正 極材料を導電性金属板に塗布して複合正極を形成した後、 複合正極上にリチウム ィオン導電性組成物を塗工し、 硬化してリチウムィオン導電性硬化被膜からなる 固体電解質一正極接合体を形成し、 一方、 リチウム箔上にリチウムイオン導電十生 組成物を塗工し、 硬化してリチウムィオン導電性硬化被膜からなる固体電解質一 負極接合体を形成し、 そして得られた固体電解質一負極接合体と得られた固体電 解質一正極接合体とを固体電解質面同士が接するように接合することが好ましい。 本発明の電池、 特にリチウムイオンポリマー二次電池の形態は、 特に限定する ものではないが、 コイン、 シート、 円筒、 ガム等、 種々の形態の電池セルに封入 することができる。
本発明の電池を製造するフローを図 1に示す。
先ず、 L i箔上にリチウムイオン導電性組成物を塗工し、 次に U V光照射によ り被膜を硬化させる。 次に複合正極を該硬化被膜に貼合わせて、 電池を得ること ができる。 但し、 これに限定されるものではなく、 上記の通り、 複合正極にリチ ゥムイオン導電性組成物を塗工し、 U V光照射により被膜を硬化させ、 次に負極 を該硬化被膜に貼合わせる、 或いは、 負極及び複合正極のいずれにもそれぞれリ チウムイオン導電性組成物を塗工し、 U V光照射により被膜を硬化させ、 次に負 極上及び複合正極上の硬化被膜同士を貼合わせるなどして、 電池を得ることもで ぎる。
また、 本発明においてリチウムポリマー電池を製造する当たり、 正極及び負極 の製造をそれぞれ連続して行い、 引き続いて両極の接合を連続して行うことがで き、 電極の製造から電池の製造まで一貫した連続製造方法とすることができる。 これにより、 従来のバッチ式、 例えば、 ロール状に保管された複合正極、 或い は負極を一旦ロール状から卷きだし所定の大きさにカツトした上で、 その上に電 解質層となる所定サイズのフィルムを積層し両極を貼り合わせるといった方法に 比べて、 複合正極或いは負極の卷きだしから電解質の塗工、 硬化、 両極の接合と 連続したラィン上で行うことができ、 複合正極や負極などの製造時におけるクラ ックの発生が無くなるなど、 各工程での製造管理が容易になるのである。
固体電解質一負極接合体と複合正極との接合、 固体電解質一正極接合体と負極 との接合、 或いは固体電解質一正極接合体と固体電解質一負極接合体との接合に 当たっては、 加熱圧着により行うことが好ましい。
発明を実施するための最良の形態
以下、 実施例を挙げて本発明を具体的に説明する。
なお、 実施例中 "%"、 "部" とあるのは、 特に断りのない限り "重量%"、 "重 量部" を意味する。 撹拌機、 温度計、 冷却管及び空気ガス導入管を装備した反応容器に乾燥空気ガ スを導入させた後、イソホロンジイソシァネート (デダサ 'ヒュルス社製、 「VE STANAT I PD I J) 1 60部、エチレンオキサイド/プロピレンォキサイ ドブロックポリエーテルポリオール (旭電化工業社製、 「CM—21 1」、 重量平 均分子量約 2100) 755部を仕込み、 70°Cに昇温後、 2—ヒドロキシェチ ルアタリレート 85部、 ハイドロキノンモノメチルエーテル 0. 4部、 及びジブ チルチンジラウレート (東京ファインケミカル社製、 「L I〇 I」) 0. 1部の混 合液体を 3時間かけて均一滴下し、 反応を行った。 滴下完了後、 約 5時間反応を 続けた後、 I R測定の結果によりィソシァネートの消失を確認し反応を終了し、 ウレタンアタリレートを得た (固形分: 99. 8 %、 数平均分子量: 4300)。 尚、 上記の数平均分子量は G PC測定 (ポリスチレン基準) により測定したも のである。
参考例 2
撹拌機、 温度計、 冷却管及ぴ空気ガス導入管を装備した反応容器に乾燥空気ガ スを導入させた後、 イソホロンジイソシァネート (デダサ 'ヒュルス社製、 「VE S TANAT I PD I J) 1 70部、エチレンォキサイド/プロピレンォキサイ ドランダムポリエーテルポリオール (旭電化工業社製、 「PR—2008」、 重量 平均分子量約 2000) 741部を仕込み、 70 °Cに昇温後、 2—ヒドロキシェ チルアタリレート 89部、 ハイドロキノンモノメチルエーテル 0. 4部、 及ぴジ ブチルチンジラウレート (東京ファインケミカル社製、 「L I O I」) 0. 1部の 混合液体を 3時間かけて均一滴下し、 反応を行った。 滴下完了後、 約 5時間反応 を続けた後、 I R測定の結果によりイソシァネートの消失を確認し反応を終了し、 ウレタンアタリレートを得た (固形分: 99. 8 %、 数平均分子量: 2700)。 参考例 3
撹拌機、 温度計、 冷却管及ぴ空気ガス導入管を装備した反応容器に乾燥空気ガ スを導入させた後、 イソホロンジイソシァネート (デダサ 'ヒュルス社製、 ΓνΕ STANAT I PD I J) 97部、エチレンオキサイドノプロピレンオキサイド ランダムポリエーテルポリオール (旭電化工業社製、 「 P R— 3007」、 重量平 均分子量約 3000) 870部を仕込み、 70 °Cに昇温後、 2—ヒドロキシェチ ルアタリレート 33部、 ハイ ドロキノンモノメチルエーテル 0. 4部、 及びジブ チルチンジラウレート (東京ファインケミカル社製、 「L I O I」) 0. 1部の混 合液体を 3時間かけて均一滴下し、 反応を行った。 滴下完了後、 約 5時間反応を 続けた後、 I R測定の結果によりィソシァネートの消失を確認し反応を終了し、 ウレタンァクリレートを得た (固形分: 99. 8%、 数平均分子量: 7000)。 参考例 4
撹拌機、 温度計、 冷却管及び空気ガス導入管を装備した反応容器に乾燥空気ガ スを導入させた後、へキサメチレンジイソシァネート (武田薬品工業社製、 「タケ ネート 700」) 72部、エチレンォキサイド Zプロピレンォキサイドランダムポ リエーテルポリオール (旭電化工業社製、 「PR_3007」、 重量平均分子量約 3000) 850部を仕込み、 70°Cに昇温後、 ポリエチレングリコールモノア タリレート (日本油脂社製、 「AE— 200」) 78部、 ハイドロキノンモノメチ ルエーテル 0. 4部、 及ぴジブチルチンジラゥレート (東京ファインケミカル社 製、 「L I O I」) 0. 1部の混合液体を 3時間かけて均一滴下し、反応を行った。 滴下完了後、 約 5時間反応を続けた後、 I R測定の結果によりィソシァネートの 消失を確認し反応を終了し、 ウレタンアタリレートを得た(固形分: 99. 8 %、 数平均分子量: 6800)。
参考例 5
撹拌機、 温度計、 冷却管及び空気ガス導入管を装備した反応容器に乾燥空気ガ スを導入させた後、 へキサメチレンジィソシァネート トリマー イソシァヌレー ト (旭化成社製、 「デユラネート TPA—100J) 177部、 ポリエチレンダリ コールモノメチルエーテル (日本油脂社製、 「ュニオックス M— 1000」、 重量 平均分子量約 1000) 634部を仕込み、 Ί 0°Cに昇温後、 ポリエチレンダリ コールモノアクリレート (日本油脂社製、 「AE— 400」) 189部、 ハイド口 キノンモノメチルエーテル 0. 4部、 及びジブチルチンジラウレート (東京ファ インケミカル社製、 「 L I〇 I」) 0. 1部の混合液体を 3時間かけて均一滴下し、 反応を行った。 滴下完了後、 約 5時間反応を続けた後、 I R測定の結果によりィ ソシァネートの消失を確認し反応を終了し、ポリイソシァネート誘導体を得た(固 形分: 9 9. 8 %、 数平均分子量: 40 0 0)。
実施例 1
(1) 固体電解質一負極接合体の作製
L i N (CF3 S02) 2 (5部) 又は L i B F4 (1 0部) を、 メトキシポリエ チレングリコールモノアタリレート (3 7部) に溶解した後、 該溶解液 2 8. 1 部に、参考例 1のウレタンァクリレート ( 8 0部)、光重合開始剤としての 1—ヒ ドロキシーシク口へキシノレ一フエニノレーケトン (チノく . スペシャルティ 'ケミカ ルズ社製、 「イノレガキュア 1 84」 ; 3部) を添加混合し溶解して、 リチウムィォ ン導電性組成物 (光重合性溶液) を調製した。
次に、 これを大気中にてワイヤーバーにて厚さ 1 0 0 μηιのリチウム箔上に塗 布し、 高圧水銀灯にて照射量 500mjZcm2で照射し、 厚さ 1 0 mの硬化 被膜を形成し、 固体電解質一負極接合体を作製した。
(2) 正極の作製
L i 0.33MnO2粉末 1. 0 g、ケチェンブラック 0. 1 5 gを十分に混合した。 次に、 エチレンォキシド (8 8mモル0 /0) と 2— (2—メ トキシェトキシ) ェチ ルグリシジルエーテル (1 2モル。/。) の共重合体 0. 1 0 g、 L i N (C F3S O 2) 20. 0 3 3 gをァセトニトリルに溶解させた。 L i 0.33MnO2及びケチェン ブラック混合粉末に前記ァセトニトリル溶液を加え、 乳鉢でよく混合し、 正極ス ラリーを得た。 これを大気中にワイヤーパーを用いて厚さ 2 0 μπιアルミニウム 電解箔上に塗布し、 1 0 0 °C 1 5分間乾燥させて膜厚 3 0 mの複合正極を作製 した。
得られた正極と固体電解質一負極接合体とを熱圧着により貼り合わせ、 電池セ ルに封入して本発明のリチウムポリマー電池を作製した。
得られたリチウムポリマー電池の充放電特性について下記の通り評価した。 充放電試験は計測器センター製の充放電測定装置を用いて、 0. 1 mA/ c m 2の電流で電圧 2 Vから 3. 5 Vまで充電し、 1 0分間の休止後、 0. I mAZ c m2の電流で電池電圧が 2 Vまで放電し、 この充放電を繰り返した。 この時の 初期と 6 0サイクル目の容量維持率 (%) を測定し、 充放電特性の評価とした。 また、 短絡しない充分な固体強度をもった電気化学素子が作製できた。 結果を図 2〜図 3に示す。
さらに、実施例 1の負極を用い、 L i箔 /硬化被膜 /L i箔のサンプルを用い、 リチウムィォン導通テストを行つた結果を図 4に示す。
実施例 2〜4
実施例 1において、 参考例 1のウレタンアタリレートを参考例 2〜4のウレタ ンアタリレートに変更した以外は同様に行い、 リチウムポリマー電池を作製し、 同様に充放電特性を評価した。
実施例 5
実施例 1において、 参考例 1のウレタンアタリレートを、 参考例 1のウレタン アタリレートと参考例 5のポリイソシァネート誘導体を重量比 4 : 1で混合して 用いた以外は同様に行い、 リチウムポリマー電池を作製し、 同様に充放電特性を 評価した。
実施例 6
実施例 1において、 参考例 1のウレタンアタリレートを 65部とし、 電解液と してエチレンカーボネート 1 5部を用いた以外は同様に行い、 リチウムポリマー 電池を作製し、 同様に充放電特性を評価した。
実施例 7
実施例 1において、酸化ケィ素として「ァエロジル R 972」 (日本ァエロジル 社製) 3部を用いた以外は同様に行い、 リチウムポリマー電池を作製し、 同様に 充放電特性を評価した。
実施例 8
(1) 固体電解質—正極接合体の作製
L i0.33MnO2粉末 1. 0 g、ケチェンブラック 0. 15 gを十分に混合した。 次に、 エチレンォキシド ( 88 mモル0 /0) と 2— (2—メ トキシエトキシ) ェチ ルグリシジルエーテル (12モル%) の共重合体 0. 10 g、 L i N (CF3S〇 2) 20. 033 gをァセトニトリルに溶解させた。 L i 0.33MnO2及ぴケチェン ブラック混合粉末に前記ァセトニトリル溶液を加え、 乳鉢でよく混合し、 正極ス ラリーを得た。 これを大気中にワイヤーバーを用いて厚さ 20 mアルミニウム 電解箔上に塗布し、 100 °C 15分間乾燥させて膜厚 30 mの複合正極を作製 した。
次に、 L i N (CF3S02) 2 (5部) 又は L i BF4 (10部) を、 メトキシ ポリエチレンダリコールモノアクリレート ( 37部) に溶解した後、 該溶角军液 2 8. 1部に、参考例 1のウレタンアタリレート (80部)、 光重合開台剤としての 1—ヒ ドロキシ一シクロへキシノレ一フエ二ノレ一ケトン (チバ · スぺシヤノレティ · ケミカルズ社製、 「ィルガキュア 184」 ; 3部) を添加混合し溶解して、 リチウ ムイオン導電性組成物 (光重合性溶液) を調製し、 これを大気中にてワイヤーバ 一にて厚さ 30 μ mの複合正極上に塗布し、 高圧水銀灯にて照射量 500 m J Z cm2で照射し、 厚さ 10 μπιの硬化被膜を形成し、 固体電解質一正極接合体を 作製した。
得られた固体電解質一正極接合体とリチウム箔とを熱圧着により貼り合わせ、 電池セルに封入して本発明のリチウムポリマー電池を作製した。
得られたリチウムポリマー電池について、上記と同様に充放電特性を評価した。 実施例 9
(1) 固体電解質一負極接合体の作製
L i N (CF3S02) 2 (5部) 又は L i BF4 (10部) を、 メトキシポリエ チレンダリコールモノアクリ レート (37部) に溶解した後、 該溶角液 28. 1 部に、参考例 1のウレタンアタリレート ( 80部)、光重合開始剤としての 1ーヒ ドロキシーシク口へキシノレ一フエニノレーケトン (チバ ·スぺシヤノレティ 'ケミカ ルズ社製、 「ィルガキュア 184」 ; 3部) を添加混合し溶解して、 リチウムィォ ン導電性糸且成物 (光重合性溶液) を調製し、 これを大気中にてワイヤーバーにて 厚さ 100 μπιのリチウム箔上に塗布し、 高圧水銀灯にて照射量 500m J/c m2で照射し、 厚さ 10 μπιの硬化被膜を形成し、 固体電解質一負極接合体を作 製した。
(2) 固体電解質一正極接合体の作製
L i0.33Mn〇2粉末 1. 0 g、ケチェンブラック 0. 15 gを十分に混合した。 次に、 エチレンォキシド (88mモル%) と 2— (2—メトキシエトキシ) ェチ ルグリシジルエーテル (12モル%) の共重合体 0. 10 g、 L i N (CFsSO 2) 2O . 033 gをァセトニトリルに溶解させた。 L i o.33Mn〇2及ぴケチェン ブラック混合粉末に前記ァセトニトリル溶液を加え、 乳鉢でよく混合し、 正極ス ラリーを得た。 これを大気中にワイヤーバーを用いて厚さ 2 0 μπιアルミニウム 電解箔上に塗布し、 1 0 0 °C 1 5分間乾燥させて膜厚 3 0 μ mの複合正極を作製 した。
次に、 L i N (CF3 S 02) 2 (5部) 又は L i B F4 ( 1 0部) を、 メ トキシ ポリエチレングリコールモノアクリレート (3 7部) に溶解した後、 該溶角早液 2
8. 1部に、参考例 1のウレタンァクリレート (8 0部)、 光重合開始剤としての 1ーヒ ドロキシ一シクロへキシノレ一フエニノレーケトン (チノく ' スぺシヤノレティ · ケミカルズ社製、 「ィルガキュア 1 84」 ; 3部) を添加混合し溶解して、 リチウ ムイオン導電性組成物 (光重合性溶液) を調製し、 これを大気中にてワイヤーバ 一にて厚さ 3 0 μ mの複合正極上に塗布し、 高圧水銀灯にて照射量 5 0 0 m J cm2で照射し、 厚さ 1 0 mの硬化被膜を形成し、 固体電解質一正極接合体を 作製した。
得られた固体電解質—負極接合体と固体電解質一正極接合体とを熱圧着により 貼り合わせ、 電池セルに封入して本発明のリチウムポリマー電池を作製した。 得られたリチウムポリマー電池について、上記と同様に充放電特性を評価した。 実施例の評価結果を表 1に示す。
ウレタン (メタ) アタリレート及 充放電特性 び/又はポリイソシァネート誘 6 0サイクル目の 導体 容量維持率 (%) 実施例 1 参考例 1 8 0
実施例 2 参考例 2 8 3
実施例 3 参考例 3 8 5
実施例 4 参考例 4 8 8
実施例 5 参考例 1及び参考例 5 9 1
実施例 6 参考例 1 9 5
実施例 7 参考例 1 8 3
実施例 8 参考例 1 8 4
実施例 9 参考例 1 9 0
本発明のポリマー電池は、 リチウム箔上及び/又は複合正極上に硬化性オリゴ マー (好ましくはウレタン (メタ) アタリレート及び/又は分岐構造をもつポリ ィソシァネート誘導体)、エチレン性不飽和単量体及び電解質塩及びさらに任意成 分としての酸ィヒケィ素微粒子や電解液を含むリチウムイオン導電性硬化被膜を直 接形成してなる負極と複合正極を接合してなるものであり、 液漏れ等を起こすこ となく、 イオン伝導度が高く、 均一性に優れ、 電気化学素子用固体電解質として の使用に充分な固体強度を有し、 充放電特性 (充放電の繰り返しによる劣化がな レ、) にも優れた効果を示し、 特に、 二次電池、 とりわけリチウムイオンポリマー 二次電池として非常に有用である。 リチウムイオン導電性硬化被膜が酸ィ匕ケィ素 の微粒子を含む場合、 機械的強度がさらに向上する。
また、 本発明においてリチウムポリマー電池を製造する当たり、 上記の通り電 極の製造から電池の製造まで一貫した連続製造方法を採用することにより、 従来 のパッチ式に比べて、 複合正極や負極などの製造時におけるクラックの発生が無 くなるなど、 各工程での製造管理が容易になるのである。

Claims

請求の範囲
1 . 硬化性ォリゴマー、 エチレン性不飽和単量体及ぴ電解質塩を含むリチ ゥムィオン導電性組成物から得られる硬化被膜からなる固体電解質を正極と負極 との間に挟持してなることを特徴とするリチウムポリマー電池。
5 2 . リチウム箔上に硬化性オリゴマー、 エチレン性不飽和単量体及ぴ電角 質塩を含むリチウムイオン導電性組成物から得られる硬化被膜を形成してなる固 体電解質一負極接合体に複合正極を接合してなることを特徴とする請求項 1記載 の電池。
3 . 複合正極上に硬化性ォリゴマー、 ェチレン性不飽和単量体及び電解質 10 塩を含むリチウムィォン導電性組成物から得られる硬化被膜を形成してなる固体 電解質一正極接合体にリチウム箔からなる負極を接合してなることを特徴とする 請求項 1記載の電池。
4 . リチウム箔上に硬化性ォリゴマー、 エチレン性不飽和単量体及び電解 質塩を含むリチゥムイオン導電性組成物から得られる硬化被膜を形成してなる固
15 体電解質—負極接合体と、 複合正極上に硬ィ匕性オリゴマー、 エチレン性不飽和単 量体及び電解質塩を含むリチウムィオン導電性組成物から得られる硬化被膜を形 成してなる固体電解質一正極接合体とを固体電解質面同士が接するように接合し てなることを特徴とする請求項 1記載の電池。
5 . 硬化性オリゴマーが、 ウレタン (メタ) アタリレート及ぴ Z又は分岐 20 構造を持つポリィソシァネート誘導体であることを特徴とする請求項 1に記載の 電池。
' 6 . リチウムィオン導電性硬化被膜の厚みが、 5〜 1 0 0 μ mであること を特徴とする請求項 1に記載の電池。
7 . リチウムイオン導電性組成物がさらに酸ィ匕ケィ素の微粒子を含むこと 25. を特徴とする請求項 1に記載の電池。
8 . リチウムイオン導電性組成物がさらに電解液を含有することを特徴と する請求項 1に記載の電池。
9 . リチウム箔上に溶媒を含まず、 かつ、 硬化性オリゴマー、 エチレン性 不飽和単量体及び電解質塩を含むリチウムィオン導電性組成物を塗工した後、 硬 ィ匕してリチウムィオン導電性硬化被膜からなる固体電解質一負極接合体を形成す る工程、 正極材料を導電性金属板に塗布して複合正極を形成する工程、 固体電解 質一負極接合体と複合正極を接合する工程を含むことを特徴とするリチウムポリ マー電池の製造方法。
1 0 . 正極材料を導電性金属板に塗布して複合正極を形成する工程、 複合 正極上に硬化性オリゴマー、 エチレン性不飽和単量体及び電解質塩を含むリチウ ムィオン導電性組成物を塗工した後、 硬化してリチウムィオン導電性硬化被膜か らなる固体電解質一正極接合体を形成する工程、 固体電解質一正極接合体とリチ ゥム箔からなる負極を接合する工程を含むことを特徴とするリチウムポリマー電 池の製造方法。
1 1 . 正極材料を導電性金属板に塗布して複合正極を形成する工程、 複合 正極上に硬化性オリゴマー、 エチレン性不飽和単量体及び電解質塩を含むリチウ ムィオン導電性組成物を塗工した後、 硬化してリチウムィオン導電性硬化被膜か らなる固体電解質一正極接合体を形成する工程、 リチウム箔上に溶媒を含まず、 かつ、 硬化性ォリゴマー、 ェチレン性不飽和単量体及び電解質塩を含むリチウム ィオン導電性組成物を塗工した後、 硬化してリチゥムイオン導電性硬化被膜から なる固体電解質一負極接合体を形成する工程、 固体電解質一負極接合体と固体電 解質一正極接合体とを固体電解質面同士が接するように接合する工程を含むこと を特徴とするリチウムポリマー電池の製造方法。
1 2 . 正極及び負極の製造がそれぞれ連続して行われ、 弓 1き続いて両極の 接合が連続して行われることを特徴とする請求項 9〜 1 1のいずれかに記載の方 法。
1 3 . リチウムィオン導電性組成物がさらに酸化ケィ素の微粒子を含むこ とを特徴とする請求項 9〜 1 1のいずれかに記載の方法。
1 4 . リチウムィオン導電性組成物がさらに電解液を含有することを特徴 とする請求項 9〜 1 1のいずれかに記載の方法。
PCT/JP2002/013568 2001-12-27 2002-12-26 Cellule polymere au lithium et son procede de fabrication WO2003056652A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP02790881A EP1460706A4 (en) 2001-12-27 2002-12-26 LITHIUM POLYMER CELL AND METHOD OF MANUFACTURING THEREOF
US10/495,309 US20050003276A1 (en) 2001-12-27 2002-12-26 Lithium polymer cell and manufacturing method thereof
KR10-2004-7008083A KR20040063938A (ko) 2001-12-27 2002-12-26 리튬 폴리머 전지 및 그의 제조방법
CA002464075A CA2464075A1 (en) 2001-12-27 2002-12-26 Lithium polymer cell and manufacturing method thereof
JP2003557060A JPWO2003056652A1 (ja) 2001-12-27 2002-12-26 リチウムポリマー電池及びその製造方法
AU2002367181A AU2002367181A1 (en) 2001-12-27 2002-12-26 Lithium polymer cell and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-396127 2001-12-27
JP2001396127 2001-12-27

Publications (1)

Publication Number Publication Date
WO2003056652A1 true WO2003056652A1 (fr) 2003-07-10

Family

ID=19189056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013568 WO2003056652A1 (fr) 2001-12-27 2002-12-26 Cellule polymere au lithium et son procede de fabrication

Country Status (8)

Country Link
US (1) US20050003276A1 (ja)
EP (1) EP1460706A4 (ja)
JP (1) JPWO2003056652A1 (ja)
KR (1) KR20040063938A (ja)
CN (1) CN1284262C (ja)
AU (1) AU2002367181A1 (ja)
CA (1) CA2464075A1 (ja)
WO (1) WO2003056652A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158703A (ja) * 2003-10-29 2005-06-16 Nippon Synthetic Chem Ind Co Ltd:The リチウムポリマー電池及びその製造方法
JP2005158702A (ja) * 2003-10-29 2005-06-16 Nippon Synthetic Chem Ind Co Ltd:The リチウムポリマー電池及びその製造方法
JP2006310071A (ja) * 2005-04-28 2006-11-09 Nippon Synthetic Chem Ind Co Ltd:The 固体電解質及びそれを用いたリチウムポリマー電池
JP2011222354A (ja) * 2010-04-12 2011-11-04 Nippon Soda Co Ltd 高分子固体電解質
CN107321128A (zh) * 2017-05-31 2017-11-07 南京威尔药业股份有限公司 一种用于生产高纯单甲氧基聚乙二醇的反应系统
WO2020054889A1 (ko) * 2018-09-13 2020-03-19 주식회사 그리너지 고체 고분자 전해질, 이를 포함하는 전극 구조체 및 전기화학소자, 그리고 고체 고분자 전해질 막의 제조방법

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902576B1 (fr) * 2006-06-16 2009-05-29 Univ Technologie De Varsovie Procede de modification de la resistance interfaciale d'une electrode de lithium metallique.
CN102017277A (zh) * 2008-02-22 2011-04-13 S·E·斯鲁普 再循环电池材料中锂的再引入
US20100203366A1 (en) * 2008-02-22 2010-08-12 Sloop Steven E Recycling of battery electrode materials
US8847196B2 (en) * 2011-05-17 2014-09-30 Micron Technology, Inc. Resistive memory cell
CN103165937B (zh) * 2011-12-17 2015-07-29 清华大学 固体电解质及使用该固体电解质的锂基电池
KR102314040B1 (ko) 2016-08-22 2021-10-18 삼성에스디아이 주식회사 리튬금속전지용 전해질 및 이를 포함하는 리튬금속전지
US20180151887A1 (en) * 2016-11-29 2018-05-31 GM Global Technology Operations LLC Coated lithium metal negative electrode
US20190190065A1 (en) * 2017-12-14 2019-06-20 Nano And Advanced Materials Institute Limited Printable Solid Electrolyte for Flexible Lithium Ion Batteries
KR102133477B1 (ko) * 2018-06-25 2020-07-13 전남대학교산학협력단 Uv 경화형 우레탄 폴리머-고체전해질 및 이의 제조방법
KR102286117B1 (ko) * 2019-10-10 2021-08-06 한국화학연구원 그라프트 공중합체 바인더 및 이를 포함하는 리튬이온 이차전지용 양극
US11830975B2 (en) * 2020-01-14 2023-11-28 Nano And Advanced Materials Institute Limited Cross-linked organic-inorganic solid composite electrolyte for lithium secondary batteries
KR102428210B1 (ko) 2020-03-31 2022-08-02 재원산업 주식회사 Uv 경화형 폴리우레탄 이오노머-세라믹 고체 전해질, 그 제조방법 및 이를 포함하는 리튬 이차전지
EP4303961A1 (fr) * 2022-07-04 2024-01-10 The Swatch Group Research and Development Ltd Composition polymerisable pour electrolyte polymere solide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035251A (ja) * 1999-07-21 2001-02-09 Nippon Synthetic Chem Ind Co Ltd:The 高分子固体電解質及びそれを用いた電気化学素子
JP2002216845A (ja) * 2001-01-18 2002-08-02 Nippon Synthetic Chem Ind Co Ltd:The 高分子固体電解質及びそれを用いた電気化学素子、二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010226B2 (ja) * 1993-03-10 2000-02-21 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
US5643695A (en) * 1995-09-26 1997-07-01 Valence Technology, Inc. Carbonaceous electrode and compatible electrolyte
US6096456A (en) * 1995-09-29 2000-08-01 Showa Denko K.K. Film for a separator of electrochemical apparatus, and production method and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035251A (ja) * 1999-07-21 2001-02-09 Nippon Synthetic Chem Ind Co Ltd:The 高分子固体電解質及びそれを用いた電気化学素子
JP2002216845A (ja) * 2001-01-18 2002-08-02 Nippon Synthetic Chem Ind Co Ltd:The 高分子固体電解質及びそれを用いた電気化学素子、二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1460706A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158703A (ja) * 2003-10-29 2005-06-16 Nippon Synthetic Chem Ind Co Ltd:The リチウムポリマー電池及びその製造方法
JP2005158702A (ja) * 2003-10-29 2005-06-16 Nippon Synthetic Chem Ind Co Ltd:The リチウムポリマー電池及びその製造方法
JP2006310071A (ja) * 2005-04-28 2006-11-09 Nippon Synthetic Chem Ind Co Ltd:The 固体電解質及びそれを用いたリチウムポリマー電池
JP2011222354A (ja) * 2010-04-12 2011-11-04 Nippon Soda Co Ltd 高分子固体電解質
CN107321128A (zh) * 2017-05-31 2017-11-07 南京威尔药业股份有限公司 一种用于生产高纯单甲氧基聚乙二醇的反应系统
WO2020054889A1 (ko) * 2018-09-13 2020-03-19 주식회사 그리너지 고체 고분자 전해질, 이를 포함하는 전극 구조체 및 전기화학소자, 그리고 고체 고분자 전해질 막의 제조방법

Also Published As

Publication number Publication date
EP1460706A1 (en) 2004-09-22
US20050003276A1 (en) 2005-01-06
JPWO2003056652A1 (ja) 2005-05-12
KR20040063938A (ko) 2004-07-14
AU2002367181A1 (en) 2003-07-15
CN1284262C (zh) 2006-11-08
CN1620736A (zh) 2005-05-25
EP1460706A4 (en) 2006-12-13
CA2464075A1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
WO2003056652A1 (fr) Cellule polymere au lithium et son procede de fabrication
JP2006310071A (ja) 固体電解質及びそれを用いたリチウムポリマー電池
JP2002216845A (ja) 高分子固体電解質及びそれを用いた電気化学素子、二次電池
KR101933288B1 (ko) 리튬 이온 전지용 피복 부극 활물질, 리튬 이온 전지용 슬러리, 리튬 이온 전지용 부극, 리튬 이온 전지, 및 리튬 이온 전지용 피복 부극 활물질의 제조 방법
JP2005044681A (ja) リチウム二次電池電極用バインダー組成物、リチウム二次電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法
KR100760276B1 (ko) 고분자 고체 전해질용 수지 조성물, 고분자 고체 전해질및 폴리머 전지
US20100036060A1 (en) Electrolyte compositions
JP4005192B2 (ja) 固体電池
JP2002280075A (ja) ポリアルキレンオキシド系固体高分子電解質組成物
JP2001035251A (ja) 高分子固体電解質及びそれを用いた電気化学素子
JP5164369B2 (ja) 二次電池
EP1772918B1 (en) Curable resin composition for fuel cell electrolyte film, electrolyte film and process for producing the same, electrolyte film/electrode assembly and process for producing the same
WO2000063292A1 (en) Solid crosslinked-polymer electrolyte and use thereof
JP3854511B2 (ja) ゲル状高分子電解質及びそれを用いた電気化学素子
US7629020B2 (en) Methods for preparing electrolyte membrane and electrolyte membrane/electrode assembly for fuel cells
JP2005158703A (ja) リチウムポリマー電池及びその製造方法
JP2005158702A (ja) リチウムポリマー電池及びその製造方法
US10526282B2 (en) Fluorine-based compound for brancher, polymer using same, and polymer electrolyte membrane using same
JP2001313074A (ja) ゲル状イオン伝導性電解質並びにそれを用いた電池及び電気化学的デバイス
JP3877581B2 (ja) 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
JP2000331713A (ja) 高分子固体電解質の製造法、高分子固体電解質及びこれを用いた電気化学的デバイス
JP4858741B2 (ja) 高分子電解質ワニス、これを用いた高分子電解質、複合電極、高分子電解質エレメント又は電気化学的デバイス
JP4450829B2 (ja) 固体電解質および燃料電池
JP2002050399A (ja) ゲル状イオン伝導性電解質及び電気化学的デバイス
JP2006049157A (ja) リチウムイオン電池用複合高分子電解質

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003557060

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2464075

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10495309

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002790881

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047008083

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20028260376

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002790881

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002790881

Country of ref document: EP