WO2003056172A1 - Moteur hydraulique a pistons radiaux - Google Patents

Moteur hydraulique a pistons radiaux Download PDF

Info

Publication number
WO2003056172A1
WO2003056172A1 PCT/FR2002/004494 FR0204494W WO03056172A1 WO 2003056172 A1 WO2003056172 A1 WO 2003056172A1 FR 0204494 W FR0204494 W FR 0204494W WO 03056172 A1 WO03056172 A1 WO 03056172A1
Authority
WO
WIPO (PCT)
Prior art keywords
orifice
orifices
communication
distribution
edge
Prior art date
Application number
PCT/FR2002/004494
Other languages
English (en)
Inventor
Bernard Allart
Louis Bigo
Original Assignee
Poclain Hydraulics Industrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poclain Hydraulics Industrie filed Critical Poclain Hydraulics Industrie
Priority to US10/499,948 priority Critical patent/US6978713B2/en
Priority to JP2003556667A priority patent/JP4133828B2/ja
Priority to AU2002364477A priority patent/AU2002364477A1/en
Priority to DE60218351T priority patent/DE60218351T2/de
Priority to EP02799840A priority patent/EP1466092B1/fr
Publication of WO2003056172A1 publication Critical patent/WO2003056172A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/0447Controlling
    • F03C1/045Controlling by using a valve in a system with several pump or motor chambers, wherein the flow path through the chambers can be changed, e.g. series-parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/0403Details, component parts specially adapted of such engines
    • F03C1/0435Particularities relating to the distribution members
    • F03C1/0444Particularities relating to the distribution members to plate-like distribution members

Definitions

  • the present invention relates to a hydraulic motor with radial pistons comprising a cam and a cylinder block capable of rotating relative to one another about an axis of rotation.
  • the cylinder block has radial cylinders connected by cylinder conduits to communication ports located in a communication face of the cylinder block which is perpendicular to the axis of rotation.
  • Pistons slidably mounted in the cylinders are able to cooperate with the cam and the latter has several lobes each having two ramps which each include a convex region and a concave region.
  • the engine further comprises a fluid distributor having a distribution face which is perpendicular to the axis of rotation and which is able to bear against the communication face of the cylinder block, this distribution face having dispensing orifices comprising orifices suitable for being connected to a fluid supply and orifices suitable for being connected to a fluid exhaust.
  • the fluid distributor is integral in rotation with the cam so that a ramp of the cam corresponds to each dispensing orifice (that is to say that each dispensing orifice is situated in angular correspondence with a ramp of the cam ), said dispensing orifices being able to communicate one after the other with the communicating orifices during the relative rotation of the cylinder block and the distributor, the edge of each dispensing orifice having a leading portion through which the communication between the dispensing orifice and the communication orifices opens during the relative rotation between the cylinder block and the distributor in a given relative direction of rotation, as well as a separation portion through which the communication between the The dispensing orifice and the communication orifices close during the relative rotation between the cylinder block and the distributor in the same direction of relative rotation.
  • each communication orifice is successively opposite a distribution orifice connected to the fluid supply and opposite a distribution orifice connected to the fluid exhaust.
  • the connection to the dispensing orifice which is connected to the supply has the effect of pushing radially outwards the piston contained in the cylinder connected to the communication orifice considered, while the connection of the same communication orifice to a dispensing orifice connected to the fluid exhaust allows this piston to enter in its cylinder, towards the axis of the engine.
  • each piston cooperates successively with the different parts of the cam lobes to allow the relative rotation of the cylinder block and the cam.
  • the spacings between the dispensing orifices and the spacings between the communication orifices are such that a communication orifice is not simultaneously connected to two dispensing orifices connected respectively to the fluid supply and to the fluid exhaust.
  • the working chambers of the cylinders that is to say the parts of these cylinders delimited below the pistons, are alternately placed at high pressure and at low pressure. Pressure changes in these working chambers therefore generally take place at a very rapid rate.
  • These pressure changes subject the pistons to proportional forces, and these forces are transmitted by the pistons to the cam.
  • the components of the motor in particular, its casing, are subjected to the variation in load which causes vibrations generating noise, the intensity of the noises produced mainly depending on the speed of the increases and pressure drops in the working chambers.
  • the pressure difference between the fluid supply and the fluid exhaust is large.
  • the present invention aims to limit the phenomena of relaxation and the shock effects which result therefrom, by tending to allow the engine to operate substantially smoothly.
  • leading portion and the edge separation portion of at least certain dispensing orifices each have an edge arrangement comprising at least one notch, said edge arrangements of a dispensing orifice being different, the edge arrangement of a dispensing orifice which is arranged in angular correspondence with the convex region of the ramp of the cam corresponding to the dispensing orifice considered being able to allow the passage of a volume of fluid pressure compensation between a communication orifice and the dispensing orifice smaller than the volume of pressure compensating fluid, the edge arrangement of the same dispensing orifice which is arranged in angular correspondence with the concave region of said ramp is suitable for allowing passage.
  • These volumes of compensation fluid are the volumes of fluid capable of passing through the notches of these edge arrangements as long as the communication between the dispensing orifice and a communication orifice takes place only through the notch (s) of the arrangement board considered.
  • the invention proposes to equip the attack portion and the edge separation portion with at least certain dispensing orifices each of an edge arrangement having at least one notch.
  • the communication orifice of the cylinder of this piston leaves the separation portion of a dispensing orifice or approaches the attack portion of the next dispensing orifice by an edge arrangement having at least one notch capable of passing a small volume of pressure compensation fluid between the orifices.
  • the communication orifice of the cylinder of this piston leaves the separation portion of a distribution orifice or approaches the attack portion of the neighboring distribution orifice by an edge arrangement having at least one notch capable of passing a larger volume of pressure compensation fluid between the orifices.
  • the invention allows the connection between each communication orifice and each distribution orifice to be progressive, either by means of the notch (s) of the on-board arrangement allowing the passage of a small volume disposed on one of the edges of the dispensing orifice, arrangement known as “with a small notched section”, either by means of the notch (s) of the edge arrangement allowing the passage of a large volume disposed on the other edge, arrangement said "with large notched section”. This limits the relaxation phenomena mentioned above.
  • connection between a communication orifice and the edge arrangement with a small notched section of a dispensing orifice is made when the volume of the working chamber of the cylinder connected to the communication orifice considered is minimal, while that the connection between the same communication orifice and the edge arrangement with a large notched section of a dispensing orifice takes place when the volume of the working chamber of the cylinder associated with the same communication orifice is maximum.
  • the edge arrangement of the leading portion of at least one dispensing orifice comprises at least one notch which, relative to a notch of the edge arrangement of the separation portion of said dispensing orifice , is arranged at a different radial distance from the axis of rotation.
  • the fact that these two notches are located at different radial distances from the axis of rotation can make it possible to make notches of different lengths. These different lengths are used to optimally define the variation in the pressure drop in the notch during the relative rotation of the fluid distributor and the cylinder block.
  • this arrangement makes it possible during the relative rotation of the fluid distributor and of the cylinder block to ensure that a communication orifice communicates for a period of time more large with edge arrangement with large notched section than with the other.
  • This difference in communication time is one of the factors which make it possible to homogenize the decompression or compression of the volume of fluid contained in the working chamber of the cylinder block which communicates with the communication orifice considered.
  • the period of time during which the notch furthest from the axis of rotation belonging to the edge arrangement with large notched section communicates with a communication orifice is generally greater since, for a given relative angle of rotation between the cylinder block and the distributor, the distance to be covered by a point distant from the axis of rotation is greater than that which is crossed by a point closer to this axis.
  • Another use of the length of the notch consists, for a very long notch, in limiting the communication of this notch with a communication orifice, to only a small part of the length of the notch (i.e. -to say on a small angular sector of relative rotation between the cylinder block and the distributor), before the frank communication is established with the very edge of the dispensing orifice.
  • this long cut constitutes a restriction of great length which only authorizes, over the small part considered, the passage of a small volume of pressure compensation fluid.
  • This long notch therefore corresponds to the small notched section defined above.
  • the notch on the other edge of the dispensing orifice disposed at a smaller radial distance from the axis of rotation, has a shorter length but is used over its entire length over an angular sector substantially identical to that of the limited communication of the long notch with the communication orifice before frank communication is established with the very edge of the dispensing orifice.
  • This short notch therefore allows the passage of a larger volume of pressure compensation and corresponds to the large notched section defined above.
  • the distance of a notch of short length from the axis of rotation is less than the distance of a notch of great length from rotation axis.
  • the edge arrangement which is arranged in angular correspondence with the concave region of the cam ramp corresponding to the dispensing orifice considered comprises at least one notch which extends over a sector angular, measured between two radii starting from the axis of rotation, which is larger than the angular sector, measured in the same way, over which extends the notch which is arranged in angular correspondence with the convex region of the ramp .
  • the edge arrangement which is arranged in angular correspondence with the concave region of the cam ramp corresponding to said orifice has a notched section larger than that of the edge arrangement which is arranged in angular correspondence with the convex region of the ramp.
  • the edge arrangements of at least one dispensing orifice each have the same number of notches (advantageously only one notch), the notch (s) of one of these arrangements being different from that (s) of the other edge arrangement.
  • the edge arrangements of at least one dispensing orifice each have similar notches, the number of notches of one of these edge arrangements being different from the number of notches of the other edge layout.
  • similar notches means notches having substantially the same section and can be made with the same tool.
  • two similar notches respectively present on the leading portion and on the separation portion of a dispensing orifice are such that the image of one of these notches obtained by symmetry with respect to a plane of symmetry of the dispensing orifice has an identical or almost identical conformation to that of the other notch.
  • cam top zones and these cam bottom areas are referred to as "cam flats”.
  • the substantially zero stroke of a piston which cooperates with a cam plate is made to coincide with an insulation of the communication orifice of the cylinder of this piston, with respect to any distribution orifice.
  • This avoids any significant compression or decompression of fluid in the working chamber of the cylinder block, the piston of which is in contact with a cam top region or a cam bottom region.
  • FIG. 2 is a sectional view along line II-II of Figure 1;
  • - Figure 3 is a partial section along the arc of a circle designated by III-III in Figure 2;
  • - Figure 4 illustrates the relative positions between a communication orifice and a dispensing orifice, during the relative rotation between the cylinder block and the distributor, this figure also shows how the dispensing orifice is arranged relative to a ramp of a cam lobe;
  • - Figure 5 shows, according to a variant, a communication orifice disposed between two dispensing orifices during the relative rotation between the cylinder block and the distributor;
  • FIG. 6 to 10 are variants each showing a dispensing orifice disposed between two communication orifices, during the relative rotation between the cylinder block and the distributor.
  • FIG. 1 shows a hydraulic motor comprising a fixed casing in three parts, 2A, 2B and 2C, assembled by screws 3.
  • the invention is not limited to hydraulic motors with fixed casing, but it also applies to hydraulic motors with rotating casing which are well known to those skilled in the art.
  • the part 2C of the casing is closed axially by a 2D radial plate also fixed by screws.
  • a wavy reaction cam 4 is produced on part 2B of the casing.
  • the engine comprises a cylinder block 6 which is mounted for relative rotation about an axis of rotation 10 relative to the cam 4 and which comprises a plurality of radial cylinders, capable of being supplied with fluid under pressure and at inside which the radial pistons are slidably mounted
  • the cylinder block 6 rotates a shaft 5 which cooperates with it by splines 7.
  • This shaft carries an outlet flange 9.
  • the engine also includes an internal fluid distributor 16 which is integral with the casing with respect to the rotation about the axis 10. Between the distributor 16 and the internal axial face of part 2C of the casing are formed distribution grooves, respectively a first groove 18, a second groove 19 and a third groove 20.
  • the distribution conduits of distributor 16 are distributed in a first group of conduits which, like conduit 21, are all connected to the groove 18, a second group of conduits (not shown) which are connected to the groove 19 and a third group of conduits which, like conduit 22, are connected to the groove 20.
  • the first groove 18 is connected to a first main conduit 24 to which are therefore connected all the distribution orifices of the distribution conduits of the first group, such as the orifice 21A.
  • the third groove 20 is connected to a second main conduit 26 to which are therefore connected all the distribution orifices of the conduits of the third group, such as the orifice 22A of the conduit 22.
  • the main conduits 24 and 26 are respectively an exhaust conduit and a fluid supply conduit, or the reverse.
  • the distribution conduits open into a distribution face 28 of the distributor 16, which bears against a communication face 30 of the cylinder block.
  • Each cylinder 12 has a cylinder conduit 32 which opens into this communication face so that, during the relative rotation of the cylinder block and the cam, the cylinder conduits are alternately in communication with the distribution conduits of the different groups.
  • the motor of FIG. 1 also comprises a device for selecting the displacement which, in this case, includes a bore 40, which extends axially in the part 2C of the casing and in which there is disposed an axially movable selection slide 42 .
  • the bore 40 comprises three communication channels, respectively 44, 46 and 48, which are respectively connected to the grooves 18, 19 and 20, by connection conduits, respectively 44 ', 46' and 48 '.
  • the slide 42 is movable between two extreme positions inside the bore 40 in which it communicates the tracks 44 and 46 or the tracks 46 and 48 by its groove 43.
  • the distribution orifices considered successively in the direction of relative rotation between the cylinder block and the distributor, comprise a pair of orifices 21A, 23A, respectively connected to the grooves 18 and 19, and a pair of orifices 21A, 22A, respectively connected to the grooves 18 and 20.
  • the grooves 19 and 20 both communicate with fluid supply.
  • a communication orifice 32A is successively set to high and to low pressure by communicating with the orifices of the two aforementioned pairs.
  • the selector 42 When, on the other hand, the selector 42 is moved in the direction of the arrow F so as to make the grooves 18 and 19 communicate with each other, then the two distribution orifices 21A, 23A of the first aforementioned pair are both set to the same pressure.
  • This pair is therefore deactivated since, when a communication orifice passes from one to the other of the two distribution orifices of this pair, the pressure in the cylinder duct connected to said communication orifice does not change.
  • the next pair is active, since a communication orifice communicating respectively with the two orifices 21A, 22A of this pair is successively placed at high and at low pressure.
  • the portions Bl of the edges of the dispensing orifices constitute attack portions, through which the communication of an orifice begins. communication with a dispensing orifice, while the portions B2 of the edges of the dispensing orifices constitute separation portions, by which this placing in communication ceases.
  • the portions B2 which constitute the attack portions and the portions Bl which constitute the separation portions are the portions B2 which constitute the attack portions and the portions Bl which constitute the separation portions.
  • the leading portions B1 and the separation portions B2 of each dispensing orifice each have an edge arrangement, comprising a notch.
  • these notches are of different dimensions, the notches 54A of the edge arrangements 53A of the edges Bl of the distribution orifices 23A and 22A, as well as the notches 54A of the edge arrangements 53A of the edges B2 of the orifices 21A being small notches , these edges therefore having small notched sections, while the notches 54B of the edge arrangements 53B of the edges B2 of the distribution orifices 23A and 22A, as well as the notches 54B of the arrangements of edge 53B of the edges Bl of the orifices 21A being large notches, these edges therefore having large notched sections.
  • Each lobe of the cam includes two ramps, which each have a convex region and a concave region.
  • ramps 50 whose convex region, closer to the axis of rotation 10, is designated by the reference 51, and whose concave region, less close to this axis, is designated by the reference 52.
  • a cam lobe is formed by this ramp 50, and by another symmetrical ramp of the ramp 50 with respect to the radius R passing through the axis of rotation of the engine.
  • the adjacent cam lobe has a ramp 50 ′, symmetrical with the ramp 50 with respect to the radius RS.
  • a dispensing orifice is associated with each ramp of the cam. There is therefore an angular correspondence between each dispensing orifice and a ramp of the cam. Although the dispensing orifices are not in the same radial plane as the cam, FIG. 4 illustrates the angular correspondence between a dispensing orifice 23A and the ramp 50 of the cam. Furthermore, for the sake of clarity, the proportions have not been respected, the communication and distribution orifices being shown closer to the cam than in reality. Overall, the orifice 23A is arranged so that the inscribed circle passing through the end of the notches is substantially symmetrical with respect to a radius RC of the cam which intersects the latter substantially in an inflection zone between its convex regions 51 and concaves 52.
  • the notch 54A of the portion Bl of the edge of the orifice 23A is a small notch
  • the notch 54B of the portion B2 of the edge of the orifice 23A is a large notch.
  • the small notch 54A is in angular correspondence with the convex portion 51 of the cam, that is to say that a radius of the cam, extending radially from the axis of rotation 10 of the motor and passing through the notch 54A intersects the ramp 50 in the convex region 51 of the latter.
  • FIG. 4 also shows the different positions of a communication orifice relative to the distribution orifice 23A during the relative rotation of the cylinder block and the distributor. It is considered, for example, that the cylinder block rotates in the direction R2 relative to the cam, the direction for which the portions B2 and B1 of the edge of the orifice 23A respectively constitute the attack portion and the separation portion.
  • the communication orifice gradually covers the notch 54B of the orifice 23A and, on an angular displacement ⁇ 2, for example of the order by 2 °, it communicates with the dispensing orifice 23A only through this notch 54B, until it occupies a position 32A2.
  • the communication orifice gradually covers the whole of the orifice 23A, and there is a position 32A3, in which the dispensing orifice 23A is completely covered by the communication orifice, the communication section between the dispensing orifice and the communication orifice then being maximum.
  • the communication section decreases and the communication orifice reaches a position 32A4 in which it no longer communicates with the dispensing orifice 23A only by means of the notch 54A on the edge from this hole. He then has to travel an angular travel ⁇ 3, for example of the order of 1 °, so that the communication with the dispensing orifice 23A ceases completely. It then remains for the communication orifice to travel an angular travel ⁇ 4, for example of the order of 1 °, before communication begins with the distribution orifice 21A which is located after the distribution orifice 23A in the direction of rotation R2, by the notch 54A of this orifice 21A.
  • the total section of the communication passage between this orifice and the distribution orifice 23A is greater than the section of the communication passage which is established, by the small notch 54A, between the same dispensing orifice and the communication orifice when it occupies its position 32A4.
  • the ratio between these passage sections is advantageously chosen as a function of the ratio between the volumes of the working chamber of the cylinder 12 supplied by the communication orifice 32A considered when the communication orifice occupies its positions 32A2 and 32A4 respectively.
  • the ratio between the communication sections authorized by the notches 54B and 54A is proportional to the ratio between the volume presented by the working chamber of the cylinder supplied by the orifice 32A when this orifice is in its position 32A2 and the volume of the same working chamber when the orifice 32A is in its position 32A4.
  • the large notch 54B extends over an angular sector ⁇ 2, measured between two radii starting from the axis of the engine, which is greater than the angular sector ⁇ 3, also measured between two radii starting from the axis of the motor, over which extends the small notch 54A.
  • the ramp 50 of the cam is connected to the adjacent ramp 50 'by a cam top region 56, which extends between the convex region 51 of the ramp 50 and the convex region of the ramp 50', and it is connected to the other ramp which is adjacent to it, namely the ramp 50 ", by a cam bottom zone 58 which extends between the concave region 52 of the ramp 50 and the concave region of the ramp 50".
  • Cam top areas are those where the radial distance from the cam to the axis of rotation is minimal, while the cam bottom areas are those where the radial distance from the cam to the axis of rotation is Max.
  • the cam bottom zone 58 is substantially an arc centered on the axis of rotation. This means that this cam bottom zone is either an arc of a circle centered on the axis of rotation, or a region which, over the entire angular distance 2 ⁇ 'l which it covers, has a radial distance from the axis of rotation of the motor which is substantially equal to the maximum radial distance from the cam to the axis of rotation 10.
  • the angle ⁇ '2 over which the part of the cam top zone 56 situated on one side of the radius of symmetry RS extends, corresponds to the path described by the communication orifice 32A between its position 32A4 and its position 32A5, in which it is ready to approach the dispensing orifice 21A which follows the orifice 23A in the direction R2, by the small notch 54A of this dispensing orifice 21A.
  • the area at the top of the cam 56 substantially describes an arc of a circle centered on the axis of rotation. It can either actually form such an arc of a circle, or present, over the entire angular distance 2 ⁇ '2 which it covers, a radial distance to the axis of rotation of the motor which is substantially equal to the minimum radial distance from the cam to the axis of rotation 10, by deviating for example at most about 0.5% of this radial distance.
  • FIG. 5 shows a communication orifice 32A which is circular, arranged between two distribution orifices, respectively 123A and 121A, which are non-circular.
  • the leading portion (B2, if the cylinder block rotates in the direction R2 relative to the distributor and Bl, if the direction of this relative rotation is RI), as well as the portion of separation (Bl if the relative direction of rotation is R2 and B2 if the relative direction of rotation is RI) are both generally convex, seen from the interior of the orifice.
  • the leading portions and the separation portions form arcs of circles which, during the relative movement of the distributor and the cylinder block, cover the edge of a communication orifice, when the latter occupies a position corresponding to position 32A2 or to position 32A4 shown in FIG. 4.
  • the dispensing orifices generally have the shapes described in patent application FR-A-2 587 761.
  • the communication orifice 32A has a substantially circular section, and the aforementioned convex shape of the edges of the orifices of the distributions 121A and 123A is that which makes it possible to increase the communication between the communication orifice as quickly as possible. the distribution orifices, after a first communication via the notches 54A and 54B.
  • leading portion and the separation portion of the dispensing orifices are shapes which are substantially complementary to the forms which the edges of the communication orifices have through which the communication between the orifices opens or closes. distribution and communication ports.
  • FIG. 6 shows a dispensing orifice 221A disposed, during the relative rotation of the cylinder block and the distributor, between two communication orifices, respectively 32A and 32'A, while being simultaneously isolated from these two orifices.
  • the distance from the small notch 254A to the axis of rotation of the motor is less than the distance from the large notch 254B to this axis and the angular sector over which the large notch limits the communication between the orifices is larger than the angular sector of the small notch.
  • This allows, during the relative rotation between the distributor cylinder block, to ensure that the period of time during which the distribution orifice 221A communicates with the communication orifice 32A only through the notch 254B is greater than that during which the dispensing orifice communicates with the communication orifice 32'A only through the notch 254A.
  • the length of the notch 254B measured tangentially with respect to the axis of rotation of the motor, is greater than that of the notch 254A.
  • the notches 254A and 254B both have substantially the same thickness e, measured along a radius passing through the axis of rotation of the motor.
  • Figure 7 differs from Figure 6 only in that the notch 254'B of the separation portion B2 of the dispensing orifice 221A is slightly different from the notch 254B.
  • the notch 254'B of the edge arrangement 253'B has a maximum thickness el, measured along a radius passing through the axis of rotation, which is greater than the thickness e, also measured along a radius. passing through the axis of rotation, of the notch 254A of the edge arrangement 253A.
  • the thickness el is substantially equal to twice the thickness e.
  • the large notch 254'B forms a larger opening than the small notch 254A.
  • the dispensing orifice 221A is oblong, its largest dimension being measured along a radius passing through the axis of rotation.
  • the dispensing orifice 321A has, considering that the cylinder block rotates in the direction RI with respect to the cam, a separation portion B2 whose edge arrangement 353B comprises a notch 354B of upper section to that of the notch 354A of the edge arrangement 353A of the leading portion Bl.
  • the separation portion B2 of the dispensing orifice has substantially the shape of an arc of a circle whose center is located at the inside this hole.
  • the notch 354A is for example analogous to the notch 254A of FIGS. 6 and 7.
  • This attack portion Bl has a shape substantially complementary to that of the edge C of the communication orifice 32'A by which the communication between the 'communication port and the distribution port opens when the cylinder block rotates in the direction of rotation RI relative to the distributor. It is also by this edge C that the communication between the distribution orifice and the communication orifice 32'A closes when the cylinder block rotates relative to the distributor in the direction R2 opposite to the sense RI.
  • the leading portion B1 is convex, when viewed from the inside of the dispensing orifice 321A. It has substantially the shape of an arc of a circle capable of covering the arc of a circle formed by the portion C1 of the communication orifice 32'A.
  • the communication between the distribution orifice 321A and the communication orifice 32'A is done first by a very small section, due to the notch 354A, then it increases very quickly due to the shape of the attack portion Bl.
  • dispensing orifices having generally the same shape as the orifice 321A with notches similar to any of the notches 54A, 54B, or 254A, 254B previously mentioned.
  • the dispensing orifice 421A generally has the shape of a circle except for its notches. It can be seen that the notches 454A of the edge arrangement 453A of its leading portion B1 and 454B of the edge arrangement 453B of its separation portion B2 (in the direction of rotation RI) are located at different radial distances the axis of rotation of the motor.
  • FIGS. 1-10 the dispensing orifice 421A generally has the shape of a circle except for its notches.
  • the small notch 254A or 354A is substantially situated on an arc of a circle, centered on the axis of rotation of the motor and passing through the geometric centers of the communication orifices 32A and 32'A, while the large notch 254B, 254'B or 354B is located beyond this circular arc, away from the axis of rotation.
  • the “small” cut 454A is the cut of greatest length and is located beyond an arc of a circle A, passing through the geometric centers of the communication orifices 32A and 32′A and centered on the axis of rotation, while the “large” notch 454B is the shortest notch and is situated below this arc of a circle.
  • Notches 454A and 454B have identical sections.
  • This arrangement of the notch 454A of greater length makes it possible to limit the volume of fluid passing through the notch over the small part of its length in communication with the communication orifice, before frank communication is established with the edge. even from the dispensing opening.
  • This volume limitation is due to the pressure drop generated by the great length of restriction that this notch achieves.
  • the notch 454B of shorter length is used over its entire length on the same angular sector centered on the axis of rotation as that of the limited communication of the long notch 454A with the communication orifice before the open communication with the very edge of the dispensing orifice. The notch 454B therefore allows the passage of a larger volume of pressure compensation.
  • the advantage of this arrangement is to keep the circular communication and distribution orifices of the standard distributors (without notches) and in addition to make the notches defined for each application as a function of the working pressures, the rotation speeds and the volumes of the working chambers at top and bottom dead centers.
  • edges of all the dispensing orifices have notches, respectively on their leading portions and on their separation portions.
  • the large notches 54B are all the same size, while the small notches 54A are all the same size.
  • each pair of consecutive dispensing orifices (21A, 23A; 21A, 22A) comprises an orifice (22A or 23A) connected to the fluid supply and an orifice (21A) connected to the fluid exhaust.
  • this large displacement is obtained when the selector 42 is in the position shown.
  • the motor also includes a small active operating displacement in which certain pairs of consecutive distribution orifices (21A, 22A) are active and include an orifice (22A) connected to the fluid supply and an orifice (21A) connected to the fluid escape, while other pairs of dispensing orifices (21A, 23A) are inactive and include two orifices placed at the same pressure.
  • the edges of the dispensing orifices of the active pairs in small displacement may have edge arrangements having notched sections larger than those of the edge arrangements of the dispensing orifices of the inactive pairs in small displacement.
  • the edge arrangements of the distribution orifices of the active pairs in small displacement include a small notch and a large notch respectively arranged in angular correspondence with a convex zone and with a concave zone of the cam, while the edge arrangements of the orifices inactive pairs in small displacement also include a small notch and a large notch respectively located opposite a convex zone and a concave zone of the cam, but these notches of the inactive orifices in small displacement are smaller than those of the orifices active in small displacement.
  • each edge arrangement of a dispensing orifice has a single notch and the small or large notched sections are obtained by the choice of a small or a large notch.
  • the edge arrangements 553A and 553B of the dispensing orifice 521A include similar notches but in different numbers.
  • the edge arrangement 553A thus comprises a notch 554A, while the edge arrangement 553B comprises two notches, 554B and 554'B.
  • the single notch 554A therefore defines, for the arrangement 553A, a smaller notched section than that which, for the arrangement 553B, define the two notches 554B and 554'B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)

Abstract

Moteur hydraulique à pistons radiaux comprenant une came, un distributeur et un bloc-cylindres dont les cylindres sont reliés à des orifices de communication situés dans une face de communication du bloc-cylindres. Le distributeur présente une face de distribution dans laquelle s'ouvrent des orifices de distribution aptes à communiquer avec les orifices de communication au cours de la rotation relative au bloc-cylindres et du distributeur. La came présente plusieurs lobes ayant chacun deux rampes (50) ayant chacune une portion convexe (51) et une portion concave (52). Le bord de chaque orifice de distribution a une portion d'attaque (B1) par laquelle la communication de cet orifice avec les orifices de communication s'ouvre, et une portion de séparation (B2) par laquelle cette communication se ferme. La portion d'attaque et la portion de séparation (B1, B2) du bord d'au moins certains orifices de distribution (21A, 23A) présentent chacune un agencement de bord (53A ; 53B) comportant au moins une entaille (54A ; 54B), ces agencements de bord étant différents selon qu'ils se trouvent en correspondance angulaire avec la région convexe (51) ou la région concave (52) de la rampe de la came.

Description

Moteur hydraulique à pistons radiaux
La présente invention concerne un moteur hydraulique à pistons radiaux comprenant une came et un bloc-cylindres aptes à tourner l'un par rapport à l'autre autour d'un axe de rotation. Le bloc-cylindres présente des cylindres radiaux reliés par des conduits de cylindres à des orifices de communication situés dans une face de communication du bloc-cylindres qui est perpendiculaire à l'axe de rotation. Des pistons montés coulissants dans les cylindres sont aptes à coopérer avec la came et cette dernière présente plusieurs lobes ayant chacun deux rampes qui comprennent chacune une région convexe et une région concave. Le moteur comprend, en outre, un distributeur de fluide présentant une face de distribution, qui est perpendiculaire à l'axe de rotation et qui est apte à être en appui contre la face de communication du bloc-cylindres, cette face de distribution présentant des orifices de distribution comprenant des orifices aptes à être reliés à une alimentation de fluide et des orifices aptes à être reliés à un échappement de fluide. Le distributeur de fluide est solidaire en rotation de la came de sorte qu'une rampe de la came corresponde à chaque orifice de distribution (c'est-à- dire que chaque orifice de distribution est situé en correspondance angulaire avec une rampe de la came), lesdits orifices de distribution étant aptes à communiquer les uns après les autres avec les orifices de communication au cours de la rotation relative du bloc-cylindres et du distributeur, le bord de chaque orifice de distribution ayant une portion d'attaque par laquelle la communication entre l'orifice de distribution et les orifices de communication s'ouvre au cours de la rotation relative entre le bloc-cylindres et le distributeur dans un sens de rotation relative donné, ainsi qu'une portion de séparation par laquelle la communication entre l'orifice de distribution et les orifices de communication se ferme au cours de la rotation relative entre le bloc-cylindres et le distributeur dans le même sens de rotation relative. Pour un moteur de ce type, fonctionnant à pleine cylindrée, chaque orifice de communication se trouve successivement en regard d'un orifice de distribution relié à l'alimentation en fluide et en regard d'un orifice de distribution relié à l'échappement de fluide. La liaison à l'orifice de distribution qui est relié à l'alimentation a pour effet de pousser radialement vers l'extérieur le piston contenu dans le cylindre relié à l'orifice de communication considéré, tandis que la liaison du même orifice de communication à un orifice de distribution relié à l'échappement de fluide permet de faire rentrer ce piston dans son cylindre, vers l'axe du moteur. Ainsi, chaque piston coopère successivement avec les différentes parties des lobes de la came pour permettre la rotation relative du bloc-cylindres et de la came.
Les espacements entre les orifices de distribution et les espacements entre les orifices de communication sont tels qu'un orifice de communication ne soit pas simultanément relié à deux orifices de distribution respectivement raccordés à l'alimentation de fluide et à l'échappement de fluide.
Au cours de la rotation relative du bloc-cylindres et du distributeur, les chambres de travail des cylindres, c'est-à-dire les parties de ces cylindres délimitées au-dessous des pistons, sont alternativement placées à la haute pression et à la basse pression. Il se produit donc dans ces chambres de travail des changements de pression s'effectuant généralement à une cadence très rapide. Ces changements de pression soumettent les pistons à des efforts proportionnels, et ces efforts sont transmis par les pistons à la came. II en résulte que les composants du moteur, en particulier, son carter, sont soumis à la variation de charge qui provoquent des vibrations génératrices de bruit, l'intensité des bruits produits dépendant principalement de la rapidité des accroissement et des chutes de pression dans les chambres de travail. Pour que le moteur fonctionne correctement, la différence de pression entre l'alimentation en fluide et l'échappement de fluide est importante. Lorsqu'un piston contribuant au couple moteur atteint l'extrémité de sa course, vers sa position la plus éloignée de l'axe du moteur (point mort haut), du fait du raccordement de l'orifice de communication de son cylindre à un orifice de distribution relié à l'alimentation de fluide, le même orifice de communication est isolé de cet orifice de distribution puis est relié à un autre orifice de distribution qui, cette fois, est lui-même raccordé à l'échappement de fluide. Il en résulte un phénomène de détente dans le cylindre du piston considéré, le fluide présent à une pression élevée dans ce cylindre étant brutalement mis en communication avec une pression nettement plus basse, qui est celle de l'échappement de fluide. A l'inverse, lorsque le piston a atteint le point mort bas de sa course (sa position la plus proche de l'axe du moteur), son cylindre est isolé de l'échappement de fluide puis est raccordé à l'alimentation en fluide pour permettre une nouvelle course centripète du piston. A cet instant, le fluide contenu dans le cylindre passe d'une faible pression à une pression beaucoup plus élevée qui est celle de l'alimentation de fluide. Un phénomène de détente se produit également, depuis l'alimentation de fluide, vers le cylindre. Dans le cas précédent, la détente se produit depuis le cylindre vers l'échappement de fluide.
Dans les deux cas, les détentes qui s'opèrent sont génératrices de sensations de choc ou d'à-coups, et de bruits tels que des claquements. Ces phénomènes deviennent d'autant plus sensibles que l'on a amélioré la qualité des moteurs et que l'on a réduit les fuites dans ces moteurs. En effet, dans les moteurs anciens, les fuites qui y régnaient permettaient d'éviter des variations de pression trop brusques entre les différentes enceintes.
La présente invention vise à limiter les phénomènes de détente et les effets de choc qui en résultent, en tendant à permettre un fonctionnement du moteur sensiblement sans à-coups.
Ce but est atteint grâce au fait que la portion d'attaque et la portion de séparation du bord d'au moins certains orifices de distribution présentent chacune un agencement de bord comportant au moins une entaille, lesdits agencements de bord d'un orifice de distribution étant différents, l'agencement de bord d'un orifice de distribution qui est disposé en correspondance angulaire avec la région convexe de la rampe de la came correspondant à l'orifice de distribution considéré étant apte à permettre le passage d'un volume de fluide de compensation de pression entre un orifice de communication et l'orifice de distribution plus petit que le volume de fluide de compensation de pression dont l'agencement de bord du même orifice de distribution qui est disposé en correspondance angulaire avec la région concave de ladite rampe est apte à permettre le passage.
Ces volumes de fluide de compensation sont les volumes de fluide capables de transiter par les entailles de ces agencements de bord tant que la communication entre l'orifice de distribution et un orifice de communication ne se fait que par la ou les entailles de l'agencement de bord considéré.
Pour éliminer les phénomènes de chocs et de bruits précités, ou tout au moins pour considérablement les atténuer, l'invention propose d'équiper la portion d'attaque et la portion de séparation du bord d'au moins certains orifices de distribution chacune d'un agencement de bord ayant au moins une entaille.
Lorsqu'un piston se trouve au contact d'une région convexe d'une rampe de la came, il est en position basse, c'est-à-dire qu'il est au voisinage de son point mort bas. Dans cette situation, le volume de la chambre de travail du cylindre dans lequel se déplace ce piston est minimal. En revanche, lorsque le piston se trouve en contact avec la région concave de la rampe de la came, il est au voisinage de son point mort haut et le volume de la chambre de travail du cylindre dans lequel se déplace ce piston est maximal. Avec l'invention, lorsqu'un piston se trouve au voisinage de son point mort bas, l'orifice de communication du cylindre de ce piston quitte la portion de séparation d'un orifice de distribution ou aborde la portion d'attaque de l'orifice de distribution suivant par un agencement de bord ayant au moins une entaille apte au passage d'un petit volume de fluide de compensation de pression entre les orifices. Lorsque le même piston est au voisinage de son point mort haut, l'orifice de communication du cylindre de ce piston quitte la portion de séparation d'un orifice de a distribution ou aborde la portion d'attaque de l'orifice de distribution voisin par un agencement de bord ayant au moins une entaille apte au passage d'un plus grand volume de fluide de compensation de pression entre les orifices.
D'une part, l'invention permet que la liaison entre chaque orifice de communication et chaque orifice de distribution soit progressive, soit par l'intermédiaire de la ou des entailles de l'agencement de bord autorisant le passage d'un petit volume disposé sur l'un des bords de l'orifice de distribution, agencement dit « à petite section entaillée », soit par l'intermédiaire de la ou des entailles de l'agencement de bord autorisant le passage d'un grand volume disposé sur l'autre bord, agencement dit « à grande section entaillée ». Ceci limite les phénomènes de détente évoqués précédemment. De plus, la liaison entre un orifice de communication et l'agencement de bord à petite section entaillée d'un orifice de distribution est réalisée lorsque le volume de la chambre de travail du cylindre raccordé à l'orifice de communication considéré est minimal, tandis que la liaison entre le même orifice de communication et l'agencement de bord à grande section entaillée d'un orifice de distribution s'opère lorsque le volume de la chambre de travail du cylindre associé au même orifice de communication est maximal.
En choisissant convenablement les dimensions et le nombre des entailles des agencements de bord à petite et à grande section entaillée, on peut ainsi obtenir une progressivité de la compensation de pression entre l'orifice de communication et les orifices de distribution qui, rapportée au volume de la chambre de travail, soit sensiblement la même dans les deux situations précitées. Ainsi, le choix de petites sections entaillées et de grandes sections entaillées pour les deux bords respectifs de chaque orifice de distribution permet d'obtenir une mise en communication encore plus homogène entre les orifices de communication et les orifices de distribution. Ceci favorise encore la souplesse de fonctionnement du moteur, puisque les phénomènes de détente sont évités de la même manière (dans les mêmes proportions) que les pistons se trouvent au voisinage à leur position extrême haute ou au voisinage de leur position extrême basse. On limite encore les vibrations et autres phénomènes de choc désagréable. Selon une variante, l'agencement de bord de la portion d'attaque d'au moins un orifice de distribution comporte au moins une entaille qui, par rapport à une entaille de l'agencement de bord de la portion de séparation dudit orifice de distribution, est disposé à une distance radiale différente de l'axe de rotation. Le fait que ces deux entailles soient situées à des distances radiales différentes de l'axe de rotation peut permettre de réaliser des entailles de longueurs différentes. Ces longueurs différentes sont utilisées pour définir de façon optimisée la variation de la perte de charge dans l'entaille lors de la rotation relative du distributeur de fluide et du bloc-cylindres. Par exemple, si l'entaille qui est la plus éloignée de l'axe de rotation et qui appartient à l'agencement de bord à grande section entaillée est en communication avec l'orifice de communication sur un secteur angulaire plus grand que celui sur lequel l'agencement de bord à petite section entaillée est en communication avec cet orifice, cette disposition permet lors de la rotation relative du distributeur de fluide et du bloc-cylindres de faire en sorte qu'un orifice de communication communique pendant un laps de temps plus grand avec l'agencement de bord à grande section entaillée qu'avec l'autre. Cette différence de temps de communication est l'un des facteurs qui permettent d'homogénéiser la décompression ou la compression du volume de fluide contenu dans la chambre de travail du bloc-cylindres qui communique avec l'orifice de communication considéré.
Ainsi, le laps de temps pendant lequel l'entaille la plus éloignée de l'axe de rotation appartenant à l'agencement de bord à grande section entaillée communique avec un orifice de communication est généralement plus grand puisque, pour un angle de rotation relative donné entre le bloc-cylindres et le distributeur, la distance devant être parcourue par un point éloigné de l'axe de rotation est plus grande que celle qui est parcourue par un point plus proche de cet axe.
Une autre utilisation de la longueur de l'entaille consiste, pour une entaille de grande longueur, à limiter la communication de cette entaille avec un orifice de communication, à une petite partie seulement de la longueur de l'entaille (c'est-à-dire sur un petit secteur angulaire de rotation relative entre le bloc-cylindres et le distributeur), avant que ne s'établisse la communication franche avec le bord même de l'orifice de distribution. Dans ce cas cette longue entaille constitue une restriction de grande longueur qui n'autorise, sur la petite partie considérée, que le passage d'un petit volume de fluide de compensation de pression. Cette longue entaille correspond donc à la petite section entaillée définie précédemment. L'entaille de l'autre bord de l'orifice de distribution, disposée à une distance radiale plus petite de l'axe de rotation, a une longueur plus courte mais est utilisée sur toute sa longueur sur un secteur angulaire sensiblement identique à celui de la communication limitée de la longue entaille avec l'orifice de communication avant que ne s'établisse la communication franche avec le bord même de l'orifice de distribution. Cette entaille courte autorise donc le passage d'un plus grand volume de compensation de pression et correspond à la grande section entaillée définie précédemment.
Dans ces cas, avantageusement, pour les agencements de bord d'au moins un orifice de distribution, la distance d'une entaille de petite longueur à l'axe de rotation est inférieure à la distance d'une entaille de grande longueur à l'axe de rotation. Avantageusement, pour au moins un orifice de distribution, l'agencement de bord qui est disposé en correspondance angulaire avec la région concave de la rampe de came correspondant à l'orifice de distribution considéré comprend au moins une entaille qui s'étend sur un secteur angulaire, mesuré entre deux rayons partant de l'axe de rotation, qui est plus grand que le secteur angulaire, mesuré de la même manière, sur lequel s'étend l'entaille qui est disposée en correspondance angulaire avec la région convexe de la rampe.
Avantageusement, pour au moins un orifice de distribution, l'agencement de bord qui est disposé en correspondance angulaire avec la région concave de la rampe de came correspondant audit orifice a une section entaillée plus grande que celle de l'agencement de bord qui est disposé en correspondance angulaire avec la région convexe de la rampe. Selon un mode de réalisation, les agencements de bord d'au moins un orifice de distribution présentent chacune le même nombre d'entailles (avantageusement une seule entaille), la ou les entailles de l'un de ces agencements étant différente(s) de celle(s) de l'autre agencement de bord. Selon un autre mode de réalisation, les agencements de bord d'au moins un orifice de distribution présentent chacun des entailles similaires, le nombre d'entailles de l'un de ces agencements de bord étant différent du nombre d'entailles de l'autre agencement de bord.
Par « entailles similaires », on entend des entailles ayant sensiblement la même section et pouvant être réalisées avec un même outil. Par exemple, deux entailles similaires respectivement présentes sur la portion d'attaque et sur la portion de séparation d'un orifice de distribution, sont telles que l'image de l'une de ces entailles obtenue par symétrie par rapport à un plan de symétrie de l'orifice de distribution présente une conformation identique ou quasi-identique à celle de l'autre entaille.
On peut ainsi utiliser le même outil pour usiner toutes les entailles et choisir le nombre d'entailles sur chaque bord pour permettre le passage de volume de compensation de pression souhaité.
Une variante avantageuse est définie par le fait que deux rampes adjacentes de la came sont reliées entre elles soit par une zone de sommet de came s'étendant entre leurs régions convexes respectives, soit par une zone de fond de came s'étendant entre leurs régions concaves respectives, et lesdites zones de sommet de came et de fond de came sont sensiblement des arcs de cercle centrés sur l'axe de rotation, de telle sorte que, lorsque les pistons coopèrent avec lesdites zones, leurs courses radiales sont sensiblement nulles et par le fait que les orifices de distribution et les orifices de communication présentent des dimensions telles que, au cours de la rotation relative du bloc-cylindres et du distributeur, chaque orifice de distribution reste momentanément isolé de tout orifice de communication. Ces zones de sommet de came et ces zones de fond de came sont dénommées "plats de came". On fait avantageusement coïncider la course sensiblement nulle d'un piston qui coopère avec un plat de came avec une isolation de l'orifice de communication du cylindre de ce piston, par rapport à tout orifice de distribution. On évite alors toute compression ou décompression notable de fluide dans la chambre de travail du bloc-cylindres dont le piston est en contact avec une zone de sommet de came ou une zone de fond de came. L'invention sera bien comprise et ses avantages apparaîtront mieux à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels : - la figure 1 est une vue en coupe axiale d'un moteur hydraulique dont les orifices de distribution peuvent être conformes à l'invention ;
- la figure 2 est une vue en coupe selon la ligne II-II de la figure 1 ;
- la figure 3 est une section partielle selon l'arc de cercle désigné par III- III sur la figure 2 ; - la figure 4 illustre les positions relatives entre un orifice de communication et un orifice de distribution, au cours de la rotation relative entre le bloc-cylindres et le distributeur, cette figure montre également comment l'orifice de distribution est disposé par rapport à une rampe d'un lobe de came ; - la figure 5 montre, selon une variante, un orifice de communication disposé entre deux orifices de distribution au cours de la rotation relative entre le bloc-cylindres et le distributeur ; et
- les figures 6 à 10 sont des variantes montrant chacune un orifice de distribution disposé entre deux orifices de communication, au cours de la rotation relative entre le bloc-cylindres et le distributeur.
La figure 1 montre un moteur hydraulique comprenant un carter fixe en trois parties, 2A, 2B et 2C, assemblées par des vis 3.
Bien entendu, l'invention n'est pas limitée aux moteurs hydrauliques à carter fixe, mais elle s'applique également aux moteurs hydrauliques à carter tournant qui sont bien connus de l'homme du métier.
La partie 2C du carter est fermée axialement par une plaque radiale 2D également fixée par des vis. Une came de réaction ondulée 4 est réalisée sur la partie 2B du carter.
Le moteur comprend un bloc-cylindres 6 qui est monté à rotation relative autour d'un axe de rotation 10 par rapport à la came 4 et qui comporte une pluralité de cylindres radiaux, susceptibles d'être alimentés en fluide sous pression et à l'intérieur desquels sont montés coulissants les pistons radiaux
14.
Le bloc-cylindres 6 entraîne en rotation un arbre 5 qui coopère avec lui par des cannelures 7. Cet arbre porte une bride de sortie 9.
Le moteur comprend encore un distributeur interne de fluide 16 qui est solidaire du carter vis-à-vis de la rotation autour de l'axe 10. Entre le distributeur 16 et la face axiale interne de la partie 2C du carter sont formées des gorges de distribution, respectivement une première gorge 18, une deuxième gorge 19 et une troisième gorge 20. Les conduits de distribution du distributeur 16 sont répartis en un premier groupe de conduits qui, comme le conduit 21, sont tous reliés à la gorge 18, un deuxième groupe de conduits (non représentés) qui sont reliés à la gorge 19 et un troisième groupe de conduits qui, comme le conduit 22, sont reliés à la gorge 20. La première gorge 18 est reliée à un premier conduit principal 24 auquel sont donc reliés tous les orifices de distribution des conduits de distribution du premier groupe, tels que l'orifice 21A. La troisième gorge 20 est reliée à un deuxième conduit principal 26 auquel sont donc reliés tous les orifices de distribution des conduits du troisième groupe, tels que l'orifice 22A du conduit 22.
Selon le sens de rotation du moteur, les conduits principaux 24 et 26 sont respectivement un conduit d'échappement et un conduit d'alimentation en fluide, ou l'inverse.
Les conduits de distribution débouchent dans une face de distribution 28 du distributeur 16, qui est en appui contre une face de communication 30 du bloc-cylindres. Chaque cylindre 12 a un conduit de cylindre 32 qui débouche dans cette face de communication de telle sorte que, lors de la rotation relative du bloc-cylindres et de la came, les conduits de cylindres sont alternativement en communication avec les conduits de distribution des différents groupes.
Le moteur de la figure 1 comporte encore un dispositif de sélection de la cylindrée qui, en l'espèce, comprend un alésage 40, qui s'étend axialement dans la partie 2C du carter et dans lequel est disposé un tiroir de sélection 42 axialement mobile. L'alésage 40 comprend trois voies de communication, respectivement 44, 46 et 48, qui sont respectivement reliées aux gorges 18, 19 et 20, par des conduits de liaison, respectivement 44', 46' et 48'. Le tiroir 42 est mobile entre deux positions extrêmes à l'intérieur de l'alésage 40 dans lesquelles il fait communiquer les voies 44 et 46 ou les voies 46 et 48 par sa gorge 43.
Par exemple, comme le montre la figure 2, les orifices de distribution, considérés successivement dans le sens de rotation relative entre le bloc- cylindres et le distributeur, comprennent une paire d'orifices 21A, 23A, respectivement reliés aux gorges 18 et 19, et une paire d'orifices 21A, 22A, respectivement reliés aux gorges 18 et 20. Dans la position du sélecteur 42 représentée sur la figure 1, les gorges 19 et 20 communiquent toutes deux avec l'alimentation de fluide. On comprend que, lors de la rotation relative du bloc-cylindres et du distributeur, un orifice de communication 32A est successivement mis à la haute et à la basse pression en communiquant avec les orifices des deux paires précitées. Lorsque, en revanche, le sélecteur 42 est déplacé dans le sens de la flèche F de manière à faire communiquer entre elles les gorges 18 et 19, alors les deux orifices de distribution 21A, 23A de la première paire précitée sont tous les deux mis à la même pression. Cette paire est donc inactivée puisque, lorsqu'un orifice de communication passe de l'un à l'autre des deux orifices de distribution de cette paire, la pression dans le conduit de cylindre raccordé audit orifice de communication ne change pas. En revanche, la paire suivante est active, puisqu'un orifice de communication communiquant respectivement avec les deux orifices 21A, 22A de cette paire est successivement placé à la haute et à la basse pression.
La situation représentée sur la figure 1 est donc une situation de grande cylindrée, tandis que celle dans laquelle le sélecteur 42 est déplacé dans le sens de la flèche F pour faire communiquer les gorges 18 et 19 est une situation de petite cylindrée. Dans une telle situation, les paires d'orifices 21A et 23A sont inactives, tandis que les paires d'orifices 21A et 22A sont actives.
Lorsque le bloc-cylindres se déplace par rapport au distributeur dans le sens de rotation RI indiqué sur la figure 2, les portions Bl des bords des orifices de distribution constituent des portions d'attaque, par lesquelles commence la mise en communication d'un orifice de communication avec un orifice de distribution, tandis que les portions B2 des bords des orifices de distribution constituent des portions de séparation, par lesquelles cette mise en communication cesse. Bien entendu, lorsque la rotation relative s'effectue dans le sens inverse R2, ce sont les portions B2 qui constituent les portions d'attaque et les portions Bl qui constituent les portions de séparation.
Dans l'exemple de réalisation de la figure 2, les portions d'attaque Bl et les portions de séparation B2 de chaque orifice de distribution (considérées dans le sens de rotation RI) présentent chacune un agencement de bord, comprenant une entaille. On voit que ces entailles sont de dimensions différentes, les entailles 54A des agencements de bord 53A des bords Bl des orifices de distribution 23A et 22A, de même que les entailles 54A des agencements de bord 53A des bords B2 des orifices 21A étant de petites entailles, ces bords ayant donc des petites sections entaillées, tandis que les entailles 54B des agencements de bord 53B des bords B2 des orifices de distribution 23A et 22A, de même que les entailles 54B des agencements de bord 53B des bords Bl des orifices 21A étant de grandes entailles, ces bords ayant donc des grandes sections entaillées.
Dans la mesure où la came et le distributeur sont solidaires en rotation, la position de chaque orifice de distribution par rapport aux lobes de la came est fixe.
Chaque lobe de la came comprend deux rampes, qui présentent chacune une région convexe et une région concave. Sur la figure 4, on voit l'une de ces rampes 50, dont la région convexe, plus proche de l'axe de rotation 10, est désignée par la référence 51, et dont la région concave, moins proche de cet axe, est désignée par la référence 52. Un lobe de came est constitué par cette rampe 50, et par une autre rampe symétrique de la rampe 50 par rapport au rayon R passant par l'axe de rotation du moteur. Le lobe de came adjacent comporte une rampe 50', symétrique de la rampe 50 par rapport au rayon RS.
Un orifice de distribution est associé à chaque rampe de la came. Il existe donc une correspondance angulaire entre chaque orifice de distribution et une rampe de la came. Bien que les orifices de distribution ne se trouvent pas dans un même plan radial que la came, on a illustré sur la figure 4 la correspondance angulaire entre un orifice de distribution 23A et la rampe 50 de la came. Par ailleurs, pour la clarté du dessin, on n'a pas respecté les proportions, les orifices de communication et de distribution étant représentés plus proches de la came que dans la réalité. Globalement, l'orifice 23A est disposé de telle sorte que le cercle inscrit passant par l'extrémité des entailles soit sensiblement symétrique par rapport à un rayon RC de la came qui intersecte cette dernière sensiblement dans une zone d'inflexion entre ses régions convexes 51 et concaves 52.
On voit sur la figure 4 que l'entaille 54A de la portion Bl du bord de l'orifice 23A est une petite entaille, tandis que l'entaille 54B de la portion B2 du bord de l'orifice 23A est une grande entaille. La petite entaille 54A est en correspondance angulaire avec la portion convexe 51 de la came, c'est-à-dire qu'un rayon de la came, s'étendant radialement à partir de l'axe de rotation 10 du moteur et passant par l'entaille 54A, coupe la rampe 50 dans la région convexe 51 de cette dernière. En revanche, l'entaille 54B se trouve en correspondance angulaire avec la région concave 52 de la rampe 50, c'est-à- dire qu'un rayon de la came s'étendant à partir de l'axe de rotation 10 et passant par l'entaille 54B coupe la rampe 50 dans la région concave de cette dernière. On a également représenté sur la figure 4 les différentes positions d'un orifice de communication par rapport à l'orifice de distribution 23A au cours de la rotation relative du bloc-cylindres et du distributeur. On considère par exemple que le bloc-cylindres tourne dans le sens R2 par rapport à la came, sens pour lequel les portions B2 et Bl du bord de l'orifice 23A constituent respectivement la portion d'attaque et la portion de séparation.
Il existe d'abord une position 32A1 de l'orifice de communication 32A dans laquelle cet orifice de communication est isolé de tout orifice de distribution. On voit en effet que, dans cette position, l'orifice 32A est séparé de la pointe de l'entaille 54B de l'orifice 23A par une distance angulaire α1f par exemple de l'ordre de 1° et qu'il est également isolé de l'entaille 54B de l'orifice de distribution 21A précédent. Lors de la rotation du bloc-cylindres par rapport au distributeur dans le sens R2, l'orifice de communication vient peu à peu recouvrir l'entaille 54B de l'orifice 23A et, sur un déplacement angulaire α2, par exemple de l'ordre de 2°, il communique avec l'orifice de distribution 23A seulement par cette entaille 54B, jusqu'à occuper une position 32A2.
Lorsque la rotation dans le sens R2 se poursuit, l'orifice de communication vient recouvrir peu à peu l'ensemble de l'orifice 23A, et il existe une position 32A3, dans laquelle l'orifice de distribution 23A est totalement recouvert par l'orifice de communication, la section de communication entre l'orifice de distribution et l'orifice de communication étant alors maximale.
Lorsque la rotation dans le sens R2 se poursuit, la section de communication diminue et l'orifice de communication atteint une position 32A4 dans laquelle il ne communique plus avec l'orifice de distribution 23A que par l'intermédiaire de l'entaille 54A du bord de cet orifice. Il lui reste alors à parcourir une course angulaire α3, par exemple de l'ordre de 1°, pour que la communication avec l'orifice de distribution 23A cesse totalement. Il reste alors à l'orifice de communication à parcourir une course angulaire α4, par exemple de l'ordre de 1°, avant que ne commence sa communication avec l'orifice de distribution 21A qui est situé après l'orifice de distribution 23A dans le sens de rotation R2, par l'entaille 54A de cet orifice 21A.
Pour la grande entaille 54B, lorsque l'orifice de communication occupe sa position 32A2, la section totale du passage de communication entre cet orifice et l'orifice de distribution 23A est supérieure à la section du passage de communication qui s'établit, par la petite entaille 54A, entre le même orifice de distribution et l'orifice de communication lorsqu'il occupe sa position 32A4. Le rapport entre ces sections de passage est avantageusement choisi en fonction du rapport entre les volumes de la chambre de travail du cylindre 12 alimenté par l'orifice de communication 32A considéré lorsque l'orifice de communication occupe respectivement ses positions 32A2 et 32A4. Par exemple, le rapport entre les sections de communication autorisées par les entailles 54B et 54A est proportionnel au rapport entre le volume que présente la chambre de travail du cylindre alimenté par l'orifice 32A lorsque cet orifice est dans sa position 32A2 et le volume de la même chambre de travail lorsque l'orifice 32A est dans sa position 32A4. On constate que la grande entaille 54B s'étend sur un secteur angulaire α2, mesuré entre deux rayons partant de l'axe du moteur, qui est supérieur au secteur angulaire α3, également mesuré entre deux rayons partant de l'axe du moteur, sur lequel s'étend la petite entaille 54A.
La rampe 50 de la came est reliée à la rampe adjacente 50' par une zone de sommet de came 56, qui s'étend entre la région convexe 51 de la rampe 50 et la région convexe de la rampe 50', et elle est reliée à l'autre rampe qui lui est adjacente, à savoir la rampe 50", par une zone de fond de came 58 qui s'étend entre la région concave 52 de la rampe 50 et la région concave de la rampe 50". Les zones de sommet de came sont celles dans lesquelles la distance radiale de la came à l'axe de rotation est minimale, tandis que les zones de fond de came sont celles dans lesquelles la distance radiale de la came à l'axe de rotation est maximale.
Lorsque l'on considère l'orifice 32A, on constate qu'il parcourt entre sa position 32A1 et sa position 32A2 un déplacement angulaire αl+α2 qui est égal à l'angle '1 correspondant à une partie du fond de came 58 située d'un côté du rayon de symétrie R. En d'autres termes, pendant la rotation relative du bloc-cylindres et du distributeur, lorsque l'orifice de communication passe de sa position 32A1 à sa position 32A2, le piston du cylindre alimenté par cet orifice de communication coopère avec la zone de fond de came 58. Sur une partie de ce parcours angulaire, correspondant au déplacement angulaire l, l'orifice 32A est isolé de tout orifice de distribution. Sur la partie restante, correspondant au déplacement α2, il est en communication avec l'orifice de distribution 23A seulement par la rainure 54B.
Lorsqu'un piston coopère avec la zone de fond de came 58, sa course radiale est nulle ou sensiblement nulle. Par exemple, elle est tout au plus sensiblement égale à 0,5 % de l'amplitude de la course du piston entre ses points morts haut et bas. Pour cela, la zone de fond de came 58 est sensiblement un arc de cercle centré sur l'axe de rotation. Ceci signifie que cette zone de fond de came est soit un arc de cercle centré sur l'axe de rotation, soit une région qui, sur toute la distance angulaire 2α'l qu'elle couvre, présente une distance radiale à l'axe de rotation du moteur qui est sensiblement égale à la distance radiale maximale de la came à l'axe de rotation 10. Dans la mesure où, lorsque l'orifice de communication parcourt le débattement angulaire αl, il est isolé de tout orifice de distribution, la pression dans la chambre de travail du cylindre alimenté par cet orifice reste sensiblement constante pendant ce déplacement. La conformation de la zone de fond de came permet alors d'éviter toute compression notable de fluide dans cette chambre. Sur la partie restante α2 de la course de l'orifice de communication 32A pendant laquelle le piston du cylindre alimenté par cet orifice coopère avec la zone de fond de came 58, ledit orifice de communication communique avec l'orifice de distribution seulement par l'entaille 54B. On profite de cette partie restante, sur laquelle le piston n'a pas à effectuer de déplacement radial, pour faire varier "en douceur" la pression dans la chambre de travail de ce piston par la communication opérée par l'entaille 54B. En l'espèce, l'orifice 23A étant relié à l'échappement de fluide, la pression diminue alors très progressivement dans la chambre de travail, jusqu'à atteindre une valeur proche ou égale à la pression de l'orifice 23A lorsque l'orifice de communication aura dépassé sa position 32A2 dans le sens de rotation R2, auquel cas le piston du cylindre alimenté par cet orifice coopérera avec la rampe 50 et se déplacera radialement vers l'axe de rotation du moteur. L'angle α'2 sur lequel s'étend la partie de la zone de sommet de came 56 située d'un côté du rayon de symétrie RS, correspond au parcours décrit par l'orifice de communication 32A entre sa position 32A4 et sa position 32A5, dans laquelle il est prêt à aborder l'orifice de distribution 21A qui suit l'orifice 23A dans le sens R2, par la petite entaille 54A de cet orifice de distribution 21A. Ceci signifie que l'orifice de communication se déplace entre ses positions 32A4 et 32A5 pendant que le piston du cylindre alimenté par cet orifice coopère avec la zone de sommet de came 56. Au cours de ce déplacement, sur le parcours α3, l'orifice de communication 32A continue de communiquer avec l'orifice de distribution 23A, mais seulement par la petite rainure 54A, puis, sur le parcours α4, il est isolé de tout orifice de distribution. La zone de sommet de came 56 décrit sensiblement un arc de cercle centré sur l'axe de rotation. Elle peut soit former réellement un tel arc de cercle, soit présenter, sur toute la distance angulaire 2α'2 qu'elle couvre, une distance radiale à l'axe de rotation du moteur qui est sensiblement égale à la distance radiale minimale de la came à l'axe de rotation 10, en s'écartant par exemple de cette distance radiale tout au plus d'environ 0,5 %. Comme c'est le cas pour les zones de fond de came 58, on profite de cette situation dans laquelle le piston alimenté par l'orifice de communication 32A n'a pas à effectuer un déplacement radial notable, pour ouvrir "en douceur" la liaison entre cet orifice et l'orifice de distribution 21A suivant.
Sur la figure 3, on voit la position d'un orifice de communication 32A entre deux orifices de distribution, 23A et 21A. On voit que les entailles 54B sont plus longues que les entailles 54A, c'est-à-dire qu'elles s'étendent sur des débattements angulaires α2 (voir figure 4) plus grands que ceux (α3) sur lesquels s'étendent les entailles 54A. Les entailles 54B sont également légèrement plus profondes que les entailles 54A. Pour réaliser les entailles, on peut partir d'un orifice parfaitement circulaire et appliquer une fraise qui s'étend dans un plan diamétral de cet orifice et qui est déplacée axialement par rapport à ce dernier. Si la fraise est circulaire, avec un diamètre légèrement décalé par rapport à l'axe de l'orifice considéré, on peut ainsi réaliser les entailles 54B plus grandes et plus profondes que les entailles 54A.
Sur les figures qui viennent d'être décrites, les orifices de distribution sont circulaires, exception faite des entailles 54A et 54B. On peut toutefois choisir des orifices de distribution de formes différentes. Ainsi, la figure 5 montre un orifice de communication 32A qui est circulaire, disposé entre deux orifices de distribution, respectivement 123A et 121A, qui sont non circulaires. En effet, pour ces orifices de distribution, la portion d'attaque (B2, si le bloc- cylindres tourne dans le sens R2 par rapport au distributeur et Bl, si le sens de cette rotation relative est RI), de même que la portion de séparation (Bl si le sens de rotation relatif est R2 et B2 si le sens de rotation relatif est RI) sont toutes deux globalement convexes, vues depuis l'intérieur de l'orifice. Globalement, exception faite des agencements de bord 53'A et 53'B qui présentent les entailles 54A et 54B précédemment décrites, les portions d'attaque et les portions de séparation forment des arcs de cercles qui, lors du déplacement relatif du distributeur et du bloc-cylindres, viennent recouvrir le bord d'un orifice de communication, lorsque ce dernier occupe une position correspondant à la position 32A2 ou à la position 32A4 représentée sur la figure 4. Ainsi, les orifices de distribution présentent globalement les formes décrites dans la demande de brevet FR-A-2 587 761.
Cette disposition permet, une fois que la communication a été établie par les entailles 54A ou 54B, et lorsque la rotation relative entre le distributeur et le bloc-cylindres continue, d'augmenter très rapidement la section de communication entre les orifices de distribution et les orifices de communication. Ainsi, grâce aux entailles, on évite les effets de choc précités mais, grâce à la forme particulière des orifices de distribution, on permet ensuite une communication très rapide, de sorte que l'on améliore le rendement du moteur.
Sur la figure 5, l'orifice de communication 32A a une section sensiblement circulaire, et la forme convexe précitée des bords des orifices des distributions 121A et 123A est celle qui permet de faire augmenter le plus rapidement la communication entre l'orifice de communication et les orifices de distribution, après une première communication par l'intermédiaire des entailles 54A et 54B.
De manière générale, il est avantageux que la portion d'attaque et la portion de séparation des orifices de distribution présentent des formes sensiblement complémentaires des formes que présentent les bords des orifices de communication par lesquels s'ouvre ou se ferme la communication entre les orifices de distribution et les orifices de communication.
La figure 6 montre un orifice de distribution 221A disposé, au cours de la rotation relative du bloc-cylindres et du distributeur, entre deux orifices de communication, respectivement 32A et 32'A, en étant simultanément isolé de ces deux orifices.
Sur la figure 6, pour la clarté du dessin, on a indiqué les arcs de cercles Cl et C2 entre lesquels sont délimités les orifices de communication et de distribution. Si le sens de rotation relatif du bloc-cylindres et du distributeur est tel que le bloc-cylindres tourne dans le sens RI par rapport au distributeur, alors l'entaille 254A est disposée sur la portion d'attaque Bl du bord de l'orifice de distribution 221A, tandis que l'entaille 254B est disposée sur la portion de séparation B2 du bord de cet orifice. On voit que les entailles 254A et 254B des agencements de bord 253A et 253B sont disposées à des distances radiales différentes de l'axe de rotation. Plus précisément, la distance de la petite entaille 254A à l'axe de rotation du moteur est inférieure à la distance de la grande entaille 254B à cet axe et le secteur angulaire sur lequel la grande entaille limite la communication entre les orifices est plus grand que le secteur angulaire de la petite entaille. Ceci permet, lors de la rotation relative entre le bloc-cylindres de distributeur, de faire en sorte que le laps de temps pendant lequel l'orifice de distribution 221A communique avec l'orifice de communication 32A seulement par l'entaille 254B soit plus grand que celui pendant lequel l'orifice de distribution communique avec l'orifice de communication 32'A seulement par l'entaille 254A. De plus, la longueur de l'entaille 254B, mesurée tangentiellement par rapport à l'axe de rotation du moteur, est plus importante que celle de l'entaille 254A.
Dans l'exemple de la figure 6, les entailles 254A et 254B présentent toutes deux sensiblement la même épaisseur e, mesurée selon un rayon passant par l'axe de rotation du moteur.
La figure 7 se différencie de la figure 6 seulement en ce que l'entaille 254'B de la portion de séparation B2 de l'orifice de distribution 221A est légèrement différente de l'entaille 254B. En effet, l'entaille 254'B de l'agencement de bord 253'B présente une épaisseur maximale el, mesurée selon un rayon passant par l'axe de rotation, qui est supérieure à l'épaisseur e, mesurée également selon un rayon passant par l'axe de rotation, de l'entaille 254A de l'agencement de bord 253A. Par exemple, l'épaisseur el est sensiblement égale au double de l'épaisseur e. Ainsi, la grande entaille 254'B forme une ouverture plus grande que la petite entaille 254A.
Sur les figures 6 et 7, l'orifice de distribution 221A est oblong, sa plus grande dimension étant mesurée selon un rayon passant par l'axe de rotation. Sur la figure 8, l'orifice de distribution 321A présente, en considérant que le bloc-cylindres tourne dans le sens RI par rapport à la came, une portion de séparation B2 dont l'agencement de bord 353B comporte une entaille 354B de section supérieure à celle de l'entaille 354A de l'agencement de bord 353A de la portion d'attaque Bl. La portion de séparation B2 de l'orifice de distribution a sensiblement la forme d'un arc de cercle dont le centre est situé à l'intérieur de cet orifice. L'entaille 354A est par exemple analogue à l'entaille 254A des figures 6 et 7. Cette portion d'attaque Bl présente une forme sensiblement complémentaire de celle du bord C de l'orifice de communication 32'A par laquelle la communication entre l'orifice de communication et l'orifice de distribution s'ouvre lorsque le bloc-cylindres tourne dans le sens de rotation RI par rapport au distributeur. C'est également par ce bord C que se ferme la communication entre l'orifice de distribution et l'orifice de communication 32'A lorsque le bloc-cylindres tourne par rapport au distributeur dans le sens R2 opposé au sens RI. La portion d'attaque Bl est convexe, lorsqu'on la considère depuis l'intérieur de l'orifice de distribution 321A. Elle présente sensiblement la forme d'un arc de cercle apte à recouvrir l'arc de cercle formé par la portion Cl de l'orifice de communication 32'A. Ainsi, dans le sens de rotation RI, la communication entre l'orifice de distribution 321A et l'orifice de communication 32'A se fait d'abord par une section très faible, due à l'entaille 354A, puis elle augmente très rapidement en raison de la forme de la portion d'attaque Bl.
Dans le sens inverse de rotation R2, on constate que du fait de la forme du bord B2 une partie seulement de l'entaille 354B va permettre la communication par une section limitée entre les orifices 321A et 32A avant que ne s'établisse la communication franche entre les orifices. La section de cette partie de l'entaille 354B est plus grande que la section de l'entaille 354A.
Bien entendu, on pourrait équiper des orifices de distribution ayant globalement la même forme que l'orifice 321A d'entailles analogues à l'une quelconque des entailles 54A, 54B, ou 254A, 254B précédemment évoquées.
Sur la figure 9, l'orifice de distribution 421A a globalement la forme d'un cercle exception faite de ses entailles. On voit que les entailles 454A de l'agencement de bord 453A de sa portion d'attaque Bl et 454B de l'agencement de bord 453B de sa portion de séparation B2 (dans le sens de rotation RI) sont situées à des distances radiales différentes de l'axe de rotation du moteur. Sur les figures 6 à 8, la petite entaille 254A ou 354A est sensiblement située sur un arc de cercle, centré sur l'axe de rotation du moteur et passant par les centres géométriques des orifices de communication 32A et 32'A, tandis que la grande entaille 254B, 254'B ou 354B est située au- delà de cet arc de cercle, en s'éloignant de l'axe de rotation.
Sur la figure 9, la « petite » entaille 454A est l'entaille de plus grande longueur et est située au-delà d'un arc de cercle A, passant par les centres géométriques des orifices de communication 32A et 32'A et centrée sur l'axe de rotation, tandis que la « grande » entaille 454B est l'entaille la plus courte et est située en-deça de cet arc de cercle. Les entailles 454A et 454B présentent des sections identiques.
Cette disposition de l'entaille 454A de plus grande longueur permet de limiter le volume de fluide traversant l'entaille sur la petite partie de sa longueur en communication avec l'orifice de communication, avant que ne s'établisse la communication franche avec le bord même de l'orifice de distribution. Cette limitation du volume est due à la perte de charge générée par la grande longueur de restriction que réalise cette entaille. L'entaille 454B de plus petite longueur est utilisée sur toute sa longueur sur le même secteur angulaire centré sur l'axe de rotation que celui de la communication limitée de la longue entaille 454A avec l'orifice de communication avant que ne s'établisse la communication franche avec le bord même de l'orifice de distribution. L'entaille 454B autorise donc le passage d'un plus grand volume de compensation de pression.
L'intérêt de cette disposition est de conserver les orifices de communication et de distribution circulaires des distributeurs standards (sans entailles) et de réaliser en plus les entailles définies pour chaque application en fonction des pressions de travail, des vitesses de rotation et des volumes des chambres de travail aux points morts haut et bas.
Dans l'exemple qui vient d'être décrit, les bords de tous les orifices de distribution présentent des entailles, respectivement sur leurs portions d'attaque et sur leurs portions de séparation.
De plus, comme on le voit sur la figure 2, les grandes entailles 54B ont toutes la même taille, tandis que les petites entailles 54A ont toutes la même taille.
On pourrait choisir que seuls certains orifices de distribution aient leurs bords pourvus d'entailles ou bien l'on pourrait choisir que, pour certains orifices de distribution, les entailles aient des dimensions données, inférieures à celles des entailles d'autres orifices de distribution.
En particulier, on a indiqué en décrivant les figures 1 et 2 que le moteur représenté comporte deux cylindrées actives de fonctionnement, soit une grande cylindrée dans laquelle chaque paire d'orifices de distribution consécutifs (21A, 23A ; 21A, 22A) comprend un orifice (22A ou 23A) raccordé à l'alimentation de fluide et un orifice (21A) raccordé à l'échappement de fluide. Pour le moteur de la figure 1, cette grande cylindrée est obtenue lorsque le sélecteur 42 est dans la position représentée. Le moteur comprend également une petite cylindrée active de fonctionnement dans laquelle certaines paires d'orifices de distribution consécutifs (21A, 22A) sont actives et comprennent un orifice (22A) raccordé à l'alimentation de fluide et un orifice (21A) raccordé à l'échappement de fluide, tandis que d'autres paires d'orifices de distribution (21A, 23A) sont inactives et comprennent deux orifices mis à la même pression.
Lorsque le moteur fonctionne en petite cylindrée active de fonctionnement, pour un même débit de fluide d'alimentation, sa vitesse est plus grande que lorsqu'il fonctionne en grande cylindrée. En revanche, il délivre un couple plus faible en petite cylindrée.
Les phénomènes de chocs ou de claquements évoqués précédemment sont encore plus sensibles lorsque le moteur fonctionne de grande vitesse. Pour cette raison, on peut prévoir que seuls les bords des orifices de distribution des paires actives en petite cylindrée présentent des agencements de bord ayant des entailles. Comme précédemment décrit, ces entailles comprennent alors des petites entailles du type des entailles 54A et des grandes entailles du type des entailles 54B, selon leurs positions respectives par rapport aux régions convexe et concave de chaque rampe de came.
De manière alternative, on peut prévoir que les bords des orifices de distribution des paires actives en petite cylindrée présentent des agencements de bord ayant des sections entaillées plus grandes que celles des agencements de bord des orifices de distribution des paires inactives en petite cylindrée. Ainsi, les agencements de bord des orifices de distribution des paires actives en petite cylindrée comprennent une petite entaille et une grande entaille respectivement disposées en correspondance angulaire avec une zone convexe et avec une zone concave de la came, tandis que les agencements de bord des orifices des paires inactives en petite cylindrée comprennent également une petite entaille et une grande entaille respectivement situées en regard d'une zone convexe et d'une zone concave de la came, mais ces entailles des orifices inactifs en petite cylindrée sont plus petites que celles des orifices actifs en petite cylindrée.
Sur les figures décrites précédemment, chaque agencement de bord d'un orifice de distribution présente une seule entaille et les petites ou grandes sections entaillées sont obtenues par le choix d'une petite ou d'une grande entaille.
Sur la figure 10, les agencements de bord 553A et 553B de l'orifice de distribution 521A comprennent des entailles similaires mais en nombres différents. L'agencement de bord 553A comprend ainsi une entaille 554A, tandis que l'agencement de bord 553B comprend deux entailles, 554B et 554'B.
L'unique entaille 554A définit donc, pour l'agencement 553A, une plus petite section entaillée que celle que définissent, pour l'agencement 553B, les deux entailles 554B et 554'B.
Ces entailles peuvent être réalisées avec un même outil, que l'on déplace convenablement par rapport à l'orifice 521A.

Claims

REVENDICATIONS
1. Moteur hydraulique à pistons radiaux comprenant une came (4) et un bloc-cylindres (6) aptes à tourner l'un par rapport à l'autre autour d'un axe de rotation (10), le bloc-cylindres présentant des cylindres radiaux (12) reliés par des conduits de cylindres (32) à des orifices de communication (32A) situés dans une face de communication (30) du bloc-cylindres qui est perpendiculaire à l'axe de rotation, des pistons (14) montés coulissants dans les cylindres étant aptes à coopérer avec la came (4), cette dernière présentant plusieurs lobes ayant chacun deux rampes (50) qui comprennent chacune une région convexe (51) et une région concave (52), le moteur comprenant, en outre, un distributeur de fluide (16) présentant une face de distribution (28), qui est perpendiculaire à l'axe de rotation et qui est apte à être en appui contre la face de communication (30) du bloc-cylindres, cette face de distribution présentant des orifices de distribution (21A, 22A, 23A) comprenant des orifices aptes à être reliés à une alimentation de fluide (24) et des orifices aptes à être reliés à un échappement de fluide (26), le distributeur de fluide étant solidaire en rotation de la came de sorte qu'une rampe de la came corresponde à chaque orifice de distribution, lesdits orifices de distribution étant aptes à communiquer les uns après les autres avec les orifices de communication au cours de la rotation relative du bloc-cylindres (6) et du distributeur (16), le bord de chaque orifice de distribution ayant une portion d'attaque (Bl) par laquelle la communication entre l'orifice de distribution et les orifices de communication s'ouvre au cours de la rotation relative entre le bloc-cylindres et le distributeur dans un sens de rotation relative donné (RI), ainsi qu'une portion de séparation (B2) par laquelle la communication entre l'orifice de distribution et les orifices de communication se ferme au cours de la rotation relative entre le bloc-cylindres et le distributeur dans le même sens de rotation relative (RI), caractérisé en ce que la portion d'attaque et la portion de séparation (Bl,
B2) du bord d'au moins certains orifices de distribution (21A, 22A, 23A) présentent chacune un agencement de bord (53A, 53B ; 53'A, 53'B ; 253A, 253B ; 253'A, 253'B ; 353A, 353B ; 453A, 453B ; 553A, 553B) comportant au moins une entaille, lesdits agencements de bord d'un orifice de distribution étant différents, l'agencement de bord d'un orifice de distribution qui est disposé en correspondance angulaire avec la région convexe (51) de la rampe (50) de la came (4) correspondant à l'orifice de distribution (21A) considéré étant apte à permettre le passage d'un volume de fluide de compensation de pression entre un orifice de communication et l'orifice de distribution plus petit que le volume de fluide de compensation de pression dont l'agencement de bord du même orifice de distribution qui est disposé en correspondance angulaire avec la région concave (52) de ladite rampe (50) est apte à permettre le passage.
2. Moteur selon la revendication 1, caractérisé en ce que, pour au moins certains orifices de distribution (121A, 123A), la portion d'attaque et la portion de séparation présentent des formes sensiblement complémentaires des formes qui présentent les bords des orifices de communication (32A) par lesquels s'ouvre ou se ferme la communication entre les orifices de distribution et les orifices de communication.
3. Moteur selon la revendication 2, caractérisé en ce que, pour chaque orifice de distribution (121A, 123A), la portion d'attaque et la portion de séparation (Bl, B2) sont globalement convexes, vues depuis l'intérieur de l'orifice.
4. Moteur hydraulique selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'agencement de bord (253A ; 353A ; 453A ; 553A) de la portion d'attaque (Bl) d'au moins un orifice de distribution (221A ; 321A ; 421A ; 521A) comporte au moins une entaille (254A ; 354A ; 454A ; 554A) qui, par rapport à une entaille (254B ; 254'B ; 354B ; 454B ; 554B) de l'agencement de bord (253B ; 353B ; 453B ; 553B) de la portion de séparation (B2) du bord dudit orifice de distribution est disposée à une distance radiale différente de l'axe de rotation.
5. Moteur selon la revendication 4, caractérisé en ce que, pour les agencements de bord d'au moins un orifice de distribution (221A ; 321A ; 421A), la distance d'une entaille de petite longueur (254A ; 354A ; 454B) à l'axe de rotation est inférieure à la distance d'une entaille de grande longueur (254B ; 254'B ; 354B ; 454B) à l'axe de rotation.
6. Moteur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que, pour au moins un orifice de distribution (21A ; 123A ; 221A ; 321A), l'agencement de bord (53B ; 53'B ; 253B ; 253'B ; 353B) qui est disposé en correspondance angulaire avec la région concave (52) de ladite rampe (50) comprend au moins une entaille (54B ; 254B ; 254'B ; 354B) qui s'étend sur un secteur angulaire (α2) mesuré entre deux rayons partant de l'axe de rotation (10), qui est plus grand que le secteur angulaire (α3), mesuré de la même manière, sur lequel s'étend l'entaille (54A ; 254A ; 354A) qui est disposée en correspondance angulaire avec la région convexe (51) de la rampe (50).
7. Moteur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que, pour au moins un orifice de distribution, l'agencement de bord (253'B ; 353B ; 553B) qui est disposé en correspondance angulaire avec la région concave (52) de ladite rampe (50) a une section entaillée plus grande que celle de l'agencement de bord (253A ; 353A ; 553A) qui est disposé en correspondance angulaire avec la région convexe (51) de la rampe (50).
8. Moteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que, les agencements de bord (53A ; 53B ; 253A ; 253B ; 253'A ; 253'B ; 353A ; 353B ; 453A ; 453B) d'au moins un orifice de distribution présentent chacun le même nombre d'entailles, la ou les entailles de l'un de ces agencements de bord étant différente(s) de celle(s) de l'autre agencement de bord.
9. Moteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les agencements de bord (553A ; 553B) d'au moins un orifice de distribution (521A) présentent chacun des entailles similaires, le nombre d'entailles (554A) de l'un de ces agencements de bord (553A) étant différent du nombre d'entailles (554B, 554'B) de l'autre agencement de bord (553B).
10. Moteur selon l'une quelconque des revendications 1 à 9, caractérisé en ce que deux rampes adjacentes (50, 50' ; 50, 50") de la came sont reliées entre elles soit par une zone de sommet de came (56) s'étendant entre leurs régions convexes (51) respectives, soit par une zone de fond de came (58) s'étendant entre leurs régions concaves (52) respectives, en ce que lesdites zones de sommet de came et de fond de came sont sensiblement des arcs de cercles centrés sur l'axe de rotation, de telle sorte que lorsque les pistons coopèrent avec lesdites zones, leurs courses radiales sont sensiblement nulles et en ce que les orifices de distribution (21A, 22A, 23A) et les orifices de communication (32A) présentent des dimensions telles que, au cours de la rotation relative du bloc-cylindres (6) et du distributeur (16), chaque orifice de distribution reste momentanément isolé de tout orifice de communication.
11. Moteur selon la revendication 10, caractérisé en ce que les zones de sommet de came (56) s'étendent sur des secteurs angulaires (α'2 + α'2), mesurés chacun entre deux rayons partant de l'axe de rotation (10), qui sont inférieurs aux secteurs angulaires ( '1 + α'1), mesurés de la même manière, sur lesquels s'étendent les zones de fond de came (58).
12. Moteur selon l'une quelconque des revendications 1 à 11, ayant deux cylindrées actives de fonctionnement, soit une grande cylindrée dans laquelle chaque paire d'orifices de distribution consécutifs (21A, 22A ; 21A, 23A) comprend un orifice (22A, 23A) raccordé à l'alimentation de fluide (26) et un orifice (21A) raccordé à l'échappement de fluide (24), ainsi qu'une petite cylindrée dans laquelle certaines paires (21A, 22A) d'orifices de distribution consécutifs sont actives et comprennent un orifice (22A) raccordé à l'alimentation de fluide (26) et un orifice (21A) raccordé à l'échappement de fluide (24), tandis que d'autres paires d'orifices de distribution sont inactives et comprennent deux orifices (21A, 23A) mis à la même pression, caractérisé en ce que seuls les bords des orifices de distribution des paires actives en petite cylindrée présentent des entailles.
13. Moteur selon l'une quelconque des revendications 1 à 11, ayant deux cylindrées actives de fonctionnement, soit une grande cylindrée dans laquelle chaque paire d'orifices de distribution consécutifs (21A, 22A ; 21A, 23A) comprend un orifice (22A, 23A) raccordé à l'alimentation de fluide (26) et un orifice raccordé à l'échappement de fluide (24), ainsi qu'une petite cylindrée dans laquelle certaines paires (21A, 22A) d'orifices de distribution consécutifs sont actives et comprennent un orifice (21A) raccordé à l'alimentation de fluide (26) et un orifice (21A) raccordé à l'échappement de fluide (24), tandis que d'autres paires d'orifices de distribution sont inactives et comprennent deux orifices (21A, 23A) mis à la même pression, caractérisé en ce que les bords des orifices de distribution des paires actives en petite cylindrée présentent des agencement de bord ayant des sections entaillées plus grandes que celles des agencements de bord des orifices de distribution des paires inactives en petite cylindrée.
PCT/FR2002/004494 2001-12-24 2002-12-20 Moteur hydraulique a pistons radiaux WO2003056172A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/499,948 US6978713B2 (en) 2001-12-24 2002-12-20 Hydraulic radial piston motor
JP2003556667A JP4133828B2 (ja) 2001-12-24 2002-12-20 ラジアル・ピストンを有する油圧モータ
AU2002364477A AU2002364477A1 (en) 2001-12-24 2002-12-20 Hydraulic radial piston motor
DE60218351T DE60218351T2 (de) 2001-12-24 2002-12-20 Radialkolbenhydraulikmotor
EP02799840A EP1466092B1 (fr) 2001-12-24 2002-12-20 Moteur hydraulique a pistons radiaux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0116815A FR2834011B1 (fr) 2001-12-24 2001-12-24 Moteur hydraulique a pistons radiaux
FR01/16815 2001-12-24

Publications (1)

Publication Number Publication Date
WO2003056172A1 true WO2003056172A1 (fr) 2003-07-10

Family

ID=8870949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/004494 WO2003056172A1 (fr) 2001-12-24 2002-12-20 Moteur hydraulique a pistons radiaux

Country Status (7)

Country Link
US (1) US6978713B2 (fr)
EP (1) EP1466092B1 (fr)
JP (1) JP4133828B2 (fr)
AU (1) AU2002364477A1 (fr)
DE (1) DE60218351T2 (fr)
FR (1) FR2834011B1 (fr)
WO (1) WO2003056172A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017001802A1 (fr) 2015-07-01 2017-01-05 Poclain Hydraulics Industrie Machine hydraulique a pistons radiaux a distribution en harmonique

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834012B1 (fr) * 2001-12-24 2004-03-19 Poclain Hydraulics Ind Moteur hydraulique a pistons radiaux
DE102006058076A1 (de) * 2006-12-07 2008-06-19 Zf Friedrichshafen Ag Hydraulischer Radialkolbenmotor
FI122115B (fi) * 2007-01-26 2011-08-31 Sampo Hydraulics Oy Mäntähydraulimoottori
FI125367B (fi) * 2007-01-26 2015-09-15 Sampo Hydraulics Oy Ajovoimansiirron ohjausjärjestelmä
CN102782310A (zh) * 2010-02-23 2012-11-14 阿尔特弥斯智能动力有限公司 可变排量式径向活塞流体工作机器
EP2436918A1 (fr) 2010-09-29 2012-04-04 Salzgitter Maschinenbau AG, Moteur hydraulique à piston radial

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE829553C (de) * 1944-08-15 1952-01-28 Vickers Armstrongs Ltd Pumpe oder hydraulischer Motor
DE2634065A1 (de) * 1976-07-29 1978-02-02 Duesterloh Gmbh Reversierbare, hydrostatische radial- oder axialkolbenmaschine
US4522110A (en) * 1982-09-08 1985-06-11 Ab Hagglund & Soner Hydraulic radial piston motor
FR2587761A1 (fr) * 1985-09-20 1987-03-27 Poclain Hydraulics Sa Mecanisme hydraulique comportant des glace et contre-glace de distribution du fluide
EP0935069A2 (fr) * 1998-02-04 1999-08-11 Brueninghaus Hydromatik Gmbh Machine à piston axial comportant une ouverture pour pression moyenne dans le disque de commande

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679963B1 (fr) * 1991-08-01 1993-11-12 Poclain Hydraulics Mecanisme a fluide sous pression muni d'enceintes d'equilibrage particulieres.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE829553C (de) * 1944-08-15 1952-01-28 Vickers Armstrongs Ltd Pumpe oder hydraulischer Motor
DE2634065A1 (de) * 1976-07-29 1978-02-02 Duesterloh Gmbh Reversierbare, hydrostatische radial- oder axialkolbenmaschine
US4522110A (en) * 1982-09-08 1985-06-11 Ab Hagglund & Soner Hydraulic radial piston motor
FR2587761A1 (fr) * 1985-09-20 1987-03-27 Poclain Hydraulics Sa Mecanisme hydraulique comportant des glace et contre-glace de distribution du fluide
EP0935069A2 (fr) * 1998-02-04 1999-08-11 Brueninghaus Hydromatik Gmbh Machine à piston axial comportant une ouverture pour pression moyenne dans le disque de commande

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017001802A1 (fr) 2015-07-01 2017-01-05 Poclain Hydraulics Industrie Machine hydraulique a pistons radiaux a distribution en harmonique
FR3038348A1 (fr) * 2015-07-01 2017-01-06 Poclain Hydraulics Ind Machine hydraulique a pistons radiaux a distribution en harmonique
US11067066B2 (en) 2015-07-01 2021-07-20 Poclain Hydraulics Industrie Harmonic distribution radial piston hydraulic machine

Also Published As

Publication number Publication date
JP4133828B2 (ja) 2008-08-13
FR2834011A1 (fr) 2003-06-27
US20050126387A1 (en) 2005-06-16
EP1466092A1 (fr) 2004-10-13
DE60218351T2 (de) 2007-10-31
FR2834011B1 (fr) 2004-03-19
AU2002364477A1 (en) 2003-07-15
JP2005513351A (ja) 2005-05-12
DE60218351D1 (de) 2007-04-05
EP1466092B1 (fr) 2007-02-21
US6978713B2 (en) 2005-12-27

Similar Documents

Publication Publication Date Title
EP0223656B1 (fr) Mécanisme, moteur ou pompe, à au moins deux cylindrées actives distinctes
EP1466093B1 (fr) Moteur hydraulique a pistons radiaux
EP3317537B1 (fr) Machine hydraulique a pistons radiaux a distribution en harmonique
FR2673684A1 (fr) Ensemble d'un moteur a fluide sous pression a plusieurs cylindrees et d'un frein associe.
EP3377743A1 (fr) Moteur a rapport volumetrique variable
FR2511432A1 (fr) Piston de moteur a surfaces d'appui distinctes
EP1466092B1 (fr) Moteur hydraulique a pistons radiaux
EP0969205A1 (fr) Moteur hydraulique compact
EP1612411A1 (fr) Moteur hydraulique
FR3024503B1 (fr) Dispositif de carter de distribution pour une machine hydraulique
EP1573198B1 (fr) Pompe ou moteur hydraulique
EP1756405B1 (fr) Dispositif de variation du taux de compression d'un moteur a combustion interne et procede pour utiliser un tel dispositif
EP1072791B1 (fr) Moteur hydraulique a pistons radiaux et a selecteur de debrayage unique
EP2436919B1 (fr) Dispositif de distribution hydraulique au moyen d'une pompe à double sens et à débit variable
WO1993017224A1 (fr) Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps
FR2794496A1 (fr) Selecteur de cylindree pour un moteur hydraulique evitant un freinage brutal lors du passage de petite cylindree en grande cylindree
FR2943391A1 (fr) Machine volumetrique hydrostatique, notamment machine a pistons axiaux
FR2781532A1 (fr) Dispositif de valve pour un moteur hydraulique apte a entrainer une masse d'inertie importante
FR2587761A1 (fr) Mecanisme hydraulique comportant des glace et contre-glace de distribution du fluide
FR2715444A1 (fr) Perfectionnement aux dispositifs à patins glissants de machine, notamment de pompes et moteurs hydrauliques.
EP2038547A1 (fr) Mecanisme hydraulique compact a pistons radiaux
WO2023213933A1 (fr) Machine hydraulique munie d'un tiroir de changement de sens
EP0597754A1 (fr) Machine à piston rotatif
WO2007000526A2 (fr) Dispositif d'obturation d'un conduit de fluide de vehicule automobile
CH628708A5 (fr) Machine a fluide sous pression a cloisons escamotables et a cylindree variable.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10499948

Country of ref document: US

Ref document number: 2003556667

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002799840

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002799840

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002799840

Country of ref document: EP