EP1756405B1 - Dispositif de variation du taux de compression d'un moteur a combustion interne et procede pour utiliser un tel dispositif - Google Patents

Dispositif de variation du taux de compression d'un moteur a combustion interne et procede pour utiliser un tel dispositif Download PDF

Info

Publication number
EP1756405B1
EP1756405B1 EP04816459A EP04816459A EP1756405B1 EP 1756405 B1 EP1756405 B1 EP 1756405B1 EP 04816459 A EP04816459 A EP 04816459A EP 04816459 A EP04816459 A EP 04816459A EP 1756405 B1 EP1756405 B1 EP 1756405B1
Authority
EP
European Patent Office
Prior art keywords
compression ratio
varying
eccentric
piston
ratio according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04816459A
Other languages
German (de)
English (en)
Other versions
EP1756405A1 (fr
Inventor
Michel Marchisseau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1756405A1 publication Critical patent/EP1756405A1/fr
Application granted granted Critical
Publication of EP1756405B1 publication Critical patent/EP1756405B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/045Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable connecting rod length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/047Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of variable crankshaft position

Definitions

  • the present invention relates to a device for varying the compression ratio of an internal combustion engine and to a method enabling the use of such a device.
  • It relates more particularly to a device that can change the compression ratio of this engine by changing the dead volume of the combustion chamber at the top dead center of the piston.
  • One of the drawbacks of such a device lies essentially in the lack of flexibility of the possibilities of adjusting the compression ratio which comprises only two possibilities of variation of this rate.
  • This device has a major disadvantage in the sense that the eccentric towed comprises an element (the jack) which disturbs, or even opposes, the movement of the eccentric during its rotation which is generated by the torque from the resulting inertia force displacement of the piston and connecting rod assembly.
  • the eccentric is not an eccentric towed type but a motorized eccentric through the cooperation of a gear sector of this eccentric with a worm.
  • This device has a major disadvantage in the sense that the worm must be motorized to control the rotation of the eccentric. This motorization is bulky and requires large powers to overcome the inertia of the mobile and the various friction.
  • the present invention proposes to overcome the above mentioned drawbacks by means of a device for variation of the compression ratio of simple and space-saving design which makes it possible to increase the possibilities of variation of the compression ratio.
  • the present invention relates to a device for varying the compression ratio of an internal combustion engine comprising at least one cylinder with a combustion chamber, a mobile unit comprising a piston displaceable in translation under the action of a connecting rod connected by an axis to said piston and connected to a crankpin of a crankshaft, said piston making a race between a top dead center and a bottom dead center leaving a dead volume at the top dead center of said piston, said device comprising an eccentric rotary tensioner housed between said crankpin and said connecting rod by making it possible to vary the compression ratio and means for controlling the displacement of the eccentric, characterized in that the control means comprise a fluidic jack carried by the connecting rod and comprising a slider placed in a housing formed in a slide support, in that the slide defines two fluidic chambers in communication with each other. at least one closed circuit and in that the slide comprises a toothed surface cooperating with a toothed sector carried by the periphery of the eccentric.
  • the fluidic chambers may be in communication with one another by at least one closed circuit.
  • the closed circuit may comprise at least one valve means for controlling the flow of fluid from one chamber to the other.
  • valve means can be a valve with at least two channels.
  • the valve means can be a piezoelectric device.
  • the piezoelectric device may comprise a needle and a piezoelectric actuator.
  • the piezoelectric device can be controlled by cooperation of pads and electrical tracks.
  • the circuit may comprise at least one metering device located downstream of the draining means.
  • the metering device may comprise a piston-cylinder assembly with a setting spring.
  • the elements of the closed circuit may be at least partly housed in the cylinder.
  • the variation device may comprise means for locating the position of the eccentric.
  • the locating means may comprise a transmitter-receiver set of signals.
  • the eccentric can include the transmitter and the receiver can be housed on a fixed part of the engine.
  • the eccentric may comprise means cooperating form with the slide.
  • the cooperation means may comprise a toothed sector carried by the eccentric and a toothed bearing carried by the slide.
  • An advantage of the present invention over devices of the state of the art lies in the fact that the energy loss of the bearing function between the connecting rod and the crankpin is lower. Indeed, when the compression ratio does not vary, the position of the eccentric relative to the connecting rod is fixed and the bearing function between the connecting rod and the crankpin is achieved by the relative displacement between the eccentric and crankpin crankpin . Therefore, the bearing function between the connecting rod and the crankshaft is made with a smaller bearing diameter, which is a significant advantage because as is experienced energy loss of a bearing, for a given load under normal operating conditions, is an increasing function of its diameter.
  • Another advantage of the present invention is easier control of compression ratio adjustment.
  • the present invention uses a reversible kinematic connection which continuously links the angular displacement of the eccentric to the translation of the slide.
  • the angular setting of the eccentric and consequently the adjustment of the compression ratio is a continuous function of the position in translation of the slide defined by the mechanical construction of the device according to the invention.
  • the compression ratio be varied without the translational position of the slide being modified and, thanks to the hydraulic device of the present invention, the control of the position of the slide is obtained easily.
  • the present invention uses a reversible kinematic connection to continuously link the angular displacement of the eccentric to the translation of the slide. Due to the reversibility of the kinematic link, the friction in this connection can be minimized by construction. Thanks to this, the energy loss by friction of this connection, the wear of this connection and the amplitude of the hysteresis phenomena may be all three smaller. In addition, the lowering of the amplitude of the hysteresis phenomenon leads to a better accuracy of the adjustment of the compression ratio. In addition, because of its reversibility, the kinematic connection of the present invention does not present a risk of jamming.
  • This reversibility can be obtained by means of a toothed sector, preferably placed on the peripheral wall of the eccentric, which cooperates through an opening provided in the connecting rod head, with a toothed rack-type bearing, provided in a slider movable in a housing carried by a support connected to the connecting rod.
  • This slider has a displacement tangential to the circumference of said eccentric.
  • Yet another advantage of the present invention lies in a greater simplicity of integration of the device in the engine and in its environment.
  • the present invention uses an eccentric housed between the crankpin and the bore of the crankshaft. Therefore, the distance between the axis of the crankshaft and the various peripherals of the engine, the camshaft, the starter, the alternator, the water pump, etc. does not vary and therefore does not lead to additional specific devices to compensate for variations in distances between the crankshaft and these different devices of the engine. Likewise, the alignment between the crankshaft and the transmission does not change. Thanks to the present invention, it is therefore not necessary to use specific device to compensate for the alignment variations between the engine and the transmission to which it is coupled.
  • the device of the present invention allows to have a weight and a smaller footprint and a greater responsiveness of the adjustment of the compression ratio. Indeed, because the eccentric is towed, the adjustment of the compression ratio does not require a drive motor of the eccentric and the device is not penalized by the weight, the space and by the response times of a specific motor and its kinematic links to rotate the eccentric to adjust the compression ratio.
  • this device has other advantages such as compatibility with a shorter distance between the crankshaft axis and the engine cylinder head, less vibration and a lower cost of implementation.
  • the cylinder whose function is to control the position of the eccentric placed between the crankshaft and crankpin crankpin is distinct from said eccentric, including its slider is distinct from all other parts and is movable with respect to all these other pieces. Thanks to this a wide choice of orientation of said cylinder relative to the connecting rod is allowed, which simultaneously optimizes the distance between the axis of the crankshaft and the cylinder head and the vibrations induced by the moving equipment and also the shapes to reduce manufacturing costs.
  • FIGS 1 to 3 show an internal combustion engine with at least one cylinder 10 which comprises a bore 12 inside which slides a hollow piston 14 in an alternating translational movement under the impulse of a connecting rod 16.
  • This piston delimits with its upper part , the side wall of the bore 12 and the upper part of this bore, generally formed by a portion of the yoke 18, a combustion chamber 20 in which the combustion cycle takes place.
  • the piston carries two diametrically opposed radial bores 22 through which is housed a cylindrical axis 24 which connects an end 26 of the connecting rod, said small end, to said piston through, sliding, a bore 28 provided in the small end.
  • the other end of the connecting rod is connected by a device for varying the compression ratio 32 to a crank pin 34 of a crankshaft 36.
  • This crankshaft is subjected to a rotational movement about an axis. XX so that the crankpin 34 follows a circular path 38 about the axis XX.
  • the piston 14, the connecting pin 24, the connecting rod 16, the crankshaft 36 with its crankpin 34 form the movable engine.
  • the crank pin 34 passes successively from a high position, indicated 0 ° on the figure 1 at a low position, indicated 180 °.
  • the piston 14, which is connected to the crankpin 34 by the connecting rod 16 undergoes an alternating translational movement between an initial upward dead center (referenced PMHi on the figure 1 ) which corresponds to the high position of the crankpin and an initial low dead point (referenced PMBi on the figure 2 ) corresponding to the low position of the crank pin.
  • PMHi initial upward dead center
  • PMBi initial low dead point
  • the compression ratio of an engine is a function not only of the extent of the cylinder volume delimited by the piston stroke but also the magnitude of the dead volume. To modify the compression ratio, simply modify one of these volumes and more particularly the size of the dead volume.
  • the compression rate variation device 32 comprises an eccentric 42 housed between the crank pin 34 and a bore 44 provided in the crank head 30.
  • This eccentric has a generally circular shape with a geometric axis X1X1 which corresponds to its center axis and comprises a bore 46 of X2X2 axis not coaxial with the axis X1X1 but coincident with the axis of the crankpin 34.
  • This eccentric is slidably accommodated in the receiving bore 44 made in the connecting rod head and on the peripheral wall of the crank pin 34.
  • This eccentric is said towed because during operation of the engine, it is likely to be rotated about the axis X2X2 under the effect of a torque generated by the inertial force resulting from the displacement of the engine.
  • crankpin 32 travels a semicircular path for a phase, for example admission, ranging from 0 ° to 180 ° and another semicircular path (180 ° to 0 °) for another phase, as the compression phase.
  • the piston 14 goes from its top dead center to its bottom dead point and then from its bottom dead center to its top dead center.
  • this piston and the connecting rod 16 undergo an acceleration that increases as one of its dead spots approaches.
  • the inertial force is sufficient to overcome not only the weight of the piston 14 and the connecting rod 16 and / or the resultant of the gas pressures on the piston and the connecting rod but also the friction forces.
  • the eccentric has a rotational movement in a counter-clockwise direction for a decrease in the compression ratio when the piston stroke from its top dead center to its bottom dead point, and in a clockwise direction for an increase in the rate of compression during the stroke of this piston from its dead point down to its top dead center.
  • This eccentric comprises, preferably on its peripheral wall, a toothed sector 48, of angular extent SD, which cooperates, through an opening 50 provided in the connecting rod head 30, with a toothed surface 52, of rack-type, provided on a slide 54 movable in rectilinear translation in a housing 56 carried by a support 58 connected to the connecting rod head 30.
  • this support is integrated with the lower half-bearing 60 which usually comprises the connecting rod head 30 and which is assembled by screws 62 to the other half-bearing 64 carried by the body of the connecting rod.
  • the slider 54 comprises a peripheral wall 66 of cylindrical section on which are placed seals 68 and this in the vicinity of its end faces 70 which preferably comprise axial recesses 72.
  • This peripheral wall is interrupted by the rack 52 which is substantially rectilinear and which extends over a large part of the length of this slider.
  • This rack has a length in length which corresponds at least to the developed sector toothed 48 of the eccentric 42.
  • the housing 56 is of complementary shape to the cross section of that of the slide 54 and comprises two end walls 74.
  • the distance between these two walls and the setting of the toothed sector of the eccentric with respect to the toothed range of the slide are such that the total length of the slide to which is added the total clearance of this slide, under the effect of the rotation of the eccentric , allows the geometric axis X1X1 of this slider to be located on the left of the axis of the cylinder, considering the figures, and this both at the top dead center at the bottom dead center of the piston.
  • the angular displacement of this eccentric is of the order of 120 ° between its two extreme positions.
  • the midpoint M1 of the toothed sector of the eccentric is located halfway at the point M2 of the length of the rack in such a way that the axis X1X1 this eccentric is at the same height as the axis X2X2 of the crank pin at the top dead center and at the bottom dead center of the piston. So from this position nominal, the eccentric rotates counter-clockwise at an angle of about 60 ° to obtain a minimum compression rate which may be the nominal rate and arrived at the position of the figure 3 and, for a maximum rate, rotates, still from this initial setting position, by an angle of approximately 60 ° in the clockwise direction to arrive at the position of the figure 1 .
  • the eccentric rotates counter-clockwise at an angle of about 120 ° to reach the minimum rate and about 120 ° clockwise to obtain a maximum rate from its minimum rate.
  • the volumes delimited by the peripheral wall of the housing, its end walls and the end faces of the slide thus form two sealed fluidic chambers 75a and 75b, respectively, which allow the movement of the slide in the housing to be authorized and controlled.
  • a fluid cylinder 76 comprising the support 58 with its housing 56 in which the slide 54 moves rectilinearly under the effect of the fluid present in the chambers 75a, 75b.
  • the variation device comprises a slider and a slider support separate from the eccentric. The relative position in translation of this slider relative to its support is continuously kinematically related to the angular displacement of the eccentric relative to the connecting rod by a kinematically reversible connection.
  • This housing is connected to a control circuit 77, as shown in FIG. figure 4 , which makes it possible to control the rotation of the eccentric thanks to the control of the movement of the slide.
  • This control circuit comprises at least one closed circuit in which a fluid circulates, for example oil.
  • the control circuit comprises two closed circuits 78a and 78b for which each closed circuit connects the two chambers 75a and 75b.
  • the chamber 75a is connected by a pipe 80a to a valve means 82a and more particularly to a 3-way valve, one of the channels is connected to the pipe 80a and the other of the channels is connected to a cover 84a by a channel 86a.
  • This valve is controlled by a means 88a whose actuation is dependent on the demand for variation of the rate of compression.
  • a pipe 90a then connects the outlet of the valve 82a to a metering device 92a comprising a cylinder 94a with a sealed piston 96a movable within the cylinder and which define two metering chambers 98a and 100a.
  • the chamber 98a is connected to the pipe 90a while the chamber 100a, which comprises a spring 102a, is connected by a pipe 104a to the fluid chamber 75b.
  • the pipes 80a and 104a carry check valves 106a and 108a respectively avoiding a return of fluid in the chamber 75a and a fluid outlet of the chamber 75b.
  • this control circuit comprises means for filling and purging circuits 78a and 78b.
  • These means comprise a hydraulic pump 110, pipes 112a, 112b each carrying a non-return valve and connected to the pipes 104a, 104b, purge valves 114a and 114 connected to the pipes 80a and 80b and purge devices 116a and 116b located on the metering devices 92a and 92b.
  • the displacement of the slider 54 to the left is controlled by the opening control of the valve 82a which communicates, through the pipes 80a and 90a, the fluid chamber 75a with the metering chamber 98a.
  • the piston 96a Under the effect of the pressure generated in the fluidic chamber 75a by the displacement of the slide under the impulse of the eccentric, the piston 96a is pushed against the spring 102a towards the metering chamber 100a and the fluid present in this chamber is introduced through the pipe 104a into the fluid chamber 75b.
  • any decrease in the volume of a fluid chamber results in an increase in the volume of the other chamber.
  • This spring is tared in such a way that it makes it possible to dose the progressive introduction of the fluid into the chamber 98a, which makes it possible to avoid jolts at the level of the slide.
  • the valve 82a is actuated in closing by the control 88a to hold the slider in the position where it arrived.
  • the communication between the chambers 75a and 98a is closed and, on the other hand, the evacuation of the fluid present in the metering chamber 98a, under the impulsion of the spring 102a, is authorized by the pipes 90a and 86a to the tank 84a.
  • the volume of the metering chamber 98a is shaped in such a way that it corresponds to a determined displacement value of the slide, hereinafter referred to as the increment description, this increment being able to be used partly or entirely during the displacement. from this slider.
  • the volume of fluid from the fluid chamber 75a, during movement of the slider may be greater than this increment.
  • the control 88a controls several sequences of opening and closing of the valve 82a to sequentially fill and empty the chamber 98a by keeping the slide in the reached position and then close this valve as soon as the eccentric has reaches the desired position.
  • the displacement of the slider 54 in the opposite direction, that is to the right, is controlled in the same way but by acting on the various elements of the closed circuit 78b.
  • the hydraulic pump 110 fills, via the conduits 112a, 112b, the metering chambers 100a, 100b and the pipes 104a, 104b. Through these pipes, the fluidic chambers 75a, 75b are also filled, as well as the pipes 80a, 80b through which the filling of the metering chambers 98a, 98b is ensured. During this filling, the purge valves 114a, 114b and the purges 116a, 116b are open to evacuate any air present in the circuits. Of course and as is usual, the pump and the pipes 112a, 112b will be used to compensate for any fluid losses during operation of the device.
  • This support also comprises the control valves 82a and 82b, the metering devices 92a and 92b, the non-return valves 106 and 108 (respectively 108a), the purge valves 114 (respectively 114a) and the pipes 80, 90, 104 (respectively 104a) for putting in communication these elements.
  • the compression rate variation device is in a determined configuration, as shown in FIG. figure 3 which corresponds, by way of example, to a minimum compression ratio, which may be the nominal rate, and the piston 14 is at its bottom dead center position (PMBv) as illustrated in FIG. figure 2 .
  • PMBv bottom dead center position
  • the PMBi is confused with the PMBv and the piston 14 has a stroke from this dead point down to its top dead center to achieve the compression phase of the air or fuel mixture present in the combustion chamber, as shown in the figure 1 .
  • the crankpin 34 travels a semicircular path to go from its low point (180 °) to its high point (0 °).
  • This compression ratio is determined by a control unit, for example the calculator that usually comprises the engine, and this calculator determines a deflection angle of the eccentric to obtain this rate.
  • control instructions are sent, by the computer, to the control 88a of the 3-way valve 82a to put in communication, during a number of sequences, corresponding to an increment number and / or an increment part in displacement of the slider, and a duration determined by this calculator, the fluidic chamber 75a with the metering device 92a so as to allow the displacement of the slider by transfer of the fluid from a fluidic chamber 75a towards the other fluid chamber 75b via this metering device.
  • this slide Under the effect of the rotation of the eccentric and by the cooperation of the toothed sector 48 of the eccentric with the rack 52 of the slide, this slide has a displacement to the left, to increase the compression ratio.
  • the fluid present in the chamber 98a of the metering device 92a is discharged to the tank 84a by the pipes 90a, 86a and the piston 96a of this metering device is found in the initial state, that is to say say close to the 90a pipeline.
  • the piston 14 makes an overtravel S with respect to its PMHi to be in the position illustrated in FIG. figure 1 .
  • the distance between the axis 24 of the piston 14 and the axis of the crankpin has increased and the piston 14 has lengthened its initial course while exceeding the PMHi and penetrating into the initial dead volume 40.
  • this initial dead volume is decreased and a new dead volume 118 is created in the cylinder 12.
  • this new dead volume is smaller than the initial dead volume, it follows that the compression ratio of the engine is increased.
  • this new rate may be the initial compression ratio for which the we find the initial dead volume or a rate lower than that which was obtained in a previous phase of increase of this rate
  • the computer sends instructions to the control 88b of the valve 82b of the circuit 78b so that the eccentric 42 be in the position illustrated in the figure 3 or in a position approximating this figure to reduce the compression ratio obtained in an earlier phase.
  • an operating phase of the motor is used during which the crankpin 34 goes from its 0 ° to 180 ° position, as the intake or expansion phase.
  • the control opening / closing for a specified time and closing the 3-way valve 82b allows to communicate the fluidic chamber 75b with the metering device 92b so as to allow this movement of the slide while controlling the transfer of doses of fluid dosed by the metering device 92b from a fluid chamber 75b to the other fluid chamber 75a.
  • this slide Under the effect of the rotation of the eccentric generated by the inertia force and by the cooperation of the toothed sector 48 of the eccentric with the toothed bearing surface 52 of the slide, this slide has a displacement to the right to reach the position illustrated in the figure 3 .
  • this displacement of the slider is continuously controlled by action on the valve 82b, which makes it possible to obtain a multiplicity of angular positions of the eccentric during its displacement in the counter-clockwise direction and consequently a multiplicity of possibilities of decreasing the overtravel piston, which has the effect of obtaining a multiplicity of possibilities of increasing the dead volume 118 to the initial dead volume 40.
  • this device for varying the compression ratio, it is not only possible to obtain a multiplicity of possibilities of increasing the compression rate but also a multiplicity of possibilities of decreasing this rate from a rate which has undergone an increase.
  • each 3-way valve is replaced by two piezoelectric devices 126 (respectively 126b) which make it possible to improve the response time and consequently to increase the accuracy of the adjustment the compression ratio.
  • Each of these devices comprises a needle 128 subjected to the action of a piezoelectric actuator 130 and constitutes a two-way valve.
  • One of these piezoelectric devices controls the passage of the fluid between the pipe 80 (respectively 80b) and the pipe 90 (respectively 90b) and the other of the piezoelectric devices controls the passage of the fluid between the pipe 90 (respectively 90b) and the 86.
  • each 3-way valve 82a, 82b of the circuit shown in FIG. figure 4 is replaced by two 2-way valves each formed by a piezoelectric device.
  • the support 58 carries two electrical pads 132 connected by electrical conductors (not shown) to this actuator.
  • Electric tracks 134 are carried by a fixed element of the motor, like the motor casing, and are arranged in such a way that they are continually facing the pads 132 at least for a movement of the crank pin from its 0 ° point. at its 180 ° point, as illustrated on the Figures 6a to 6d . Of course and without departing from the scope of the invention, these tracks can extend over the entire rotation of the crankpin 360 °. These tracks are traversed by an electric current and induce a magnetic field which creates an electric current at the pads 132 for the control of the actuator.
  • an electrical track 134 is assigned to the control of each of the piezoelectric devices and a fifth track is common for the control of the four piezoelectric actuators 130.
  • the operation of the device for varying the compression ratio 32 and the circuits 78a, 78b is the same as that described with respect to the Figures 1 to 5 the differences according to which the connection of the fluid passage between the fluidic chamber 75a, 75b and the metering chamber 98a, 98b is carried out by a first 2-way valve constituted by a piezoelectric device, the connection of the fluid passage between the chamber of dosing 98a, 98b and the tarpaulin 84a, 84b is made by another 2-way valve consisting of a piezoelectric device, and an electric current is sent in the tracks 134 to control the opening of the needle 128 during the request for variation of the compression ratio.
  • This means comprises a signal transmitter-receiver assembly 136, one of whose elements is carried by the eccentric 42 and the other of which elements is carried by a fixed element of the motor, such as a tab 138 coming from a wall of this case.
  • the eccentric carries an index 140 which emits a signal by radiation, for example by magnetic radiation
  • the tab 138 carries a receiver formed by a reading sector 142 of the signal emitted by the index 140 and which makes it possible to know the position of this index during the rotation of the crank pin 34.
  • This reading sector is substantially in a circular arc, whose concavity is directed towards the crankshaft, with a substantially constant radial thickness E.
  • This sector comprises a first reading region 144 located in its upper part for reading the signal emitted by the index 140 when the compression ratio is maximum or is increased and a second region 146 placed in the lower part of this sector for the reading the signal emitted by the index 140 when the compression ratio is nominal or is decreased.
  • the calculator that this engine usually comprises determines the angular setting C of the eccentric with respect to the longitudinal axis of the connecting rod ( figure 7a ) to obtain a defined compression ratio and that when the piston is at top dead center.
  • the latter takes into account the intensity of the signal received by the reading region 144.
  • this signal is highest when the emission point 148 of the index 140 is substantially in the middle of the thickness E of this reading region and corresponds to a maximum compression ratio.
  • the different values of the compression ratio can be controlled by taking into account the position of the emission point 148 of the index 140 relative to the middle of the thickness E of this reading region.
  • one of the closed circuits 78a, 78b will be operational so that the slider 54 moves to allow an angular displacement of the eccentric 42 to obtain such a positioning of the emission point 148. From that this angular setting is obtained, the piston leaves its top dead center to go towards its bottom dead point ( Figures 7b and 7c ) and the index 140 moves away from the central zone of region 144 ( figure 7b ) to finally arrive, in the vicinity of the bottom dead center, away from sector 142 ( Figure 7c ). Likewise, this calculator determines the angular setting Ci ( figure 7d ) of the eccentric with respect to the longitudinal axis of the connecting rod, when the piston is at low dead point, to obtain a nominal compression ratio or to reduce the compression ratio obtained during a previous phase.
  • Ci figure 7d
  • this calculator takes into account the intensity of the signal received by the reading region 146 and, as previously mentioned, this signal is at the highest when the point of emission of the index 140 is substantially in the middle of the thickness E of this region.
  • the circuits 78a, 78b will be actuated in such a way that the slider can allow an angular displacement of the eccentric to obtain such angular setting.
  • this reading sector 142 comprises insulative wires insulated from one another and arranged substantially radially with respect to its arcuate shape over its thickness E. These conducting wires constitute a plurality of receivers of the signals emitted by the index 140 , angularly distributed from the upper part of the reading sector 142 to its lower part.
  • the index 140 describes at each rotation of the crankshaft a substantially circular curve of radius less than the radius of the substantially circular shape of the reading sector 142. The substantially circular curve described by the index 140 is translated according to the angular setting of the eccentric 42.
  • the reading accuracy of the angular setting of the eccentric 42 is improved by the combined reading of the position and the intensity of the signals perceived by the conductive threads informed by the index 140 during the rotation of the crankshaft.
  • the index 140 is completely opposite the thickness E of the reading sector 142, for example on the Figures 7a and 7d at least one of the conductive wires receives a maximum information signal from the index 140.
  • the informed leads receive a weaker signal from the index 140.
  • the device for varying the compression ratio is placed at the small end of the connecting rod 26 with an eccentric carried by the axis 24 of the piston 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Road Paving Machines (AREA)

Description

  • La présente invention se rapporte à un dispositif de variation du taux de compression d'un moteur à combustion interne et à un procédé permettant l'utilisation d'un tel dispositif.
  • Elle concerne plus particulièrement un dispositif qui peut changer le taux de compression de ce moteur en modifiant le volume mort de la chambre de combustion au point mort haut du piston.
  • Il est déjà connu, par le document EP 0 297 904 , un dispositif de variation du taux de compression d'un moteur dans lequel ce moteur comprend un vilebrequin, un cylindre à l'intérieur duquel un piston coulisse dans un mouvement translatif alternatif par l'intermédiaire d'une bielle reliée audit piston et audit vilebrequin, ce piston délimitant avec le haut du cylindre une chambre de combustion comportant un volume mort au point mort haut (PMH) de ce piston, et un excentrique rotatif, de type tracté, intercalé entre la bielle et le piston. Cet excentrique, dans une première position, permet au piston de réduire le volume mort de la chambre de combustion tout en augmentant le taux de compression et d'augmenter ce volume mort, pour une autre position de cet excentrique, tout en obtenant un taux de compression plus faible. Pour ce faire, l'excentrique présente une rainure prévue pour coopérer avec deux goupilles de verrouillage disposées chacune symétriquement par rapport à l'axe du piston permettant d'immobiliser l'excentrique dans l'une ou l'autre de ses positions.
  • Ce dispositif bien que donnant satisfaction présente néanmoins de nombreux inconvénients.
  • L'un des inconvénients d'un tel dispositif réside essentiellement dans le manque de souplesse des possibilités du réglage du taux de compression qui ne comporte que deux possibilités de variation de ce taux.
  • De plus, un tel dispositif nécessite un ajustage précis entre la rainure et la goupille pour éviter tous phénomènes de blocage de la goupille dans la rainure.
  • Il est également connu, par le document US 5 165 368 , un dispositif de variation du taux de compression dans lequel l'excentrique tracté porte un vérin qui coopère avec le maneton du vilebrequin de manière à contrôler la rotation de cet excentrique.
  • Ce dispositif présente un inconvénient majeur dans le sens que l'excentrique tracté comporte un élément (le vérin) qui perturbe, voire contrarie, le débattement de cet excentrique lors de sa rotation qui est engendrée par le couple provenant de la force d'inertie résultant du déplacement de l'ensemble piston et bielle.
  • Dans un autre type de dispositif de variation du taux de compression, comme mieux décrit dans la demande de brevet DE-A-42 26 361 , l'excentrique n'est pas un excentrique de type tracté mais un excentrique motorisé grâce à la coopération d'un secteur denté de cet excentrique avec une vis sans fin.
  • Ce dispositif présente un inconvénient majeur dans le sens que la vis sans fin doit être motorisée pour commander la rotation de cet excentrique. Cette motorisation est d'un encombrement volumineux et nécessite des fortes puissances pour vaincre l'inertie de l'équipage mobile et les différents frottements.
  • La présente invention se propose de remédier aux inconvénients ci-dessus mentionnés grâce à un dispositif de variation du taux de compression de conception simple et peu encombrant qui permet d'accroître les possibilités de variation du taux de compression.
  • A cet effet, la présente invention concerne un dispositif de variation du taux de compression d'un moteur à combustion interne comprenant au moins un cylindre avec une chambre de combustion, un équipage mobile comportant un piston déplaçable en translation sous l'action d'une bielle liée par un axe audit piston et raccordée à un maneton d'un vilebrequin, ledit piston effectuant une course entre un point mort haut et un point mort bas en laissant subsister un volume mort au point mort haut dudit piston, ledit dispositif comprenant un excentrique tracté rotatif logé entre ledit maneton et ladite bielle en permettant de faire varier le taux de compression et des moyens de contrôle du déplacement de l'excentrique, caractérisé en ce que les moyens de contrôle comprennent un vérin fluidique porté par la bielle et comportant un coulisseau placé dans un logement formé dans un support de coulisseau, en ce que le coulisseau délimite deux chambres fluidiques en communication avec au moins un circuit fermé et en ce que le coulisseau comprend une portée dentée coopérant avec un secteur denté porté par la périphérie de l'excentrique.
  • Les chambres fluidiques peuvent être en communication l'une avec l'autre par au moins un circuit fermé.
  • Le circuit fermé peut comprendre au moins un moyen de vannage permettant de contrôler le débit de fluide d'une chambre vers l'autre.
  • Avantageusement, le moyen de vannage peut être une vanne à au moins 2 voies.
  • De manière préférentielle, le moyen de vannage peut être un dispositif piézoélectrique.
  • Le dispositif piézoélectrique peut comprendre un pointeau et un actionneur piézoélectrique.
  • Le dispositif piézoélectrique peut être commandé par coopération de plots et de pistes électriques.
  • Le circuit peut comprendre au moins un dispositif doseur situé en aval du moyen dé vannage.
  • Le dispositif doseur peut comprendre un ensemble piston-cylindre avec un ressort de tarage.
  • Les éléments du circuit fermé peuvent être au moins en partie logés dans le vérin.
  • Le dispositif de variation peut comprendre des moyens de localisation de la position de l'excentrique.
  • Les moyens de localisation peuvent comprendre un ensemble émetteur-récepteur de signaux.
  • L'excentrique peut comprend l'émetteur et le récepteur peut être logé sur une partie fixe du moteur.
  • L'excentrique peut comprendre des moyens à coopération de forme avec le coulisseau.
  • Les moyens de coopération peuvent comprendre un secteur denté porté par l'excentrique et une portée dentée portée par le coulisseau.
  • Un avantage de la présente invention par rapport aux dispositifs de l'état de la technique réside dans le fait que la déperdition énergétique de la fonction palier entre la bielle et le maneton du vilebrequin est moindre. En effet, lorsque le taux de compression ne varie pas, la position de l'excentrique par rapport à la bielle est fixe et la fonction palier entre la bielle et le maneton est réalisée par le déplacement relatif entre l'excentrique et le maneton du vilebrequin. De ce fait, la fonction palier entre la bielle et le vilebrequin est réalisée avec un diamètre de palier moindre, ce qui est un avantage non négligeable car comme cela est connu la déperdition énergétique d'un palier, pour une charge donnée dans des conditions normales de fonctionnement, est une fonction croissante de son diamètre.
  • Un autre avantage de la présente invention est un contrôle plus aisé de l'ajustement du taux de compression. En effet, la présente invention utilise une liaison cinématique réversible qui lie continûment le débattement angulaire de l'excentrique à la translation du coulisseau. De ce fait, le calage angulaire de l'excentrique et par voie de conséquence l'ajustement du taux de compression, est une fonction continue de la position en translation du coulisseau définie par la construction mécanique du dispositif selon l'invention. Donc, à aucun moment le taux de compression ne peut varier sans que la position en translation du coulisseau ne soit modifiée et grâce au dispositif hydraulique de la présente invention le contrôle de la position du coulisseau est obtenu aisément.
  • D'autres avantages supplémentaires de la présente invention sont une moindre déperdition énergétique, une plus grande précision et une plus grande durée de vie. En effet, la présente invention utilise une liaison cinématique réversible pour lier continûment le débattement angulaire de l'excentrique à la translation du coulisseau. Du fait de la réversibilité de la liaison cinématique, les frottements dans cette liaison peuvent être minimisés par construction. Grâce à cela, la déperdition énergétique par frottement de cette liaison, l'usure de cette liaison et l'amplitude des phénomènes d'hystérésis peuvent être tous les trois moindres. De plus, l'abaissement de l'amplitude du phénomène d'hystérésis conduit à une meilleure précision de l'ajustement du taux de compression. En outre, du fait de sa réversibilité, la liaison cinématique de la présente invention ne présente pas de risque de coincement. Cette réversibilité peut être obtenue grâce à un secteur denté, placé de préférence sur la paroi périphérique de l'excentrique, qui coopère au travers d'une ouverture prévue dans la tête de bielle, avec une portée dentée, de type crémaillère, prévue dans un coulisseau mobile dans un logement porté par un support relié à la tête de bielle. Ce coulisseau a un déplacement tangentiel à la circonférence dudit excentrique.
  • Encore un autre avantage de la présente invention réside dans une plus grande simplicité d'intégration du dispositif dans le moteur et dans son environnement. En effet, la présente invention utilise un excentrique logé entre le maneton du vilebrequin et l'alésage de la tête de bielle. De ce fait, la distance entre l'axe du vilebrequin et les différents périphériques du moteur, l'arbre à cames, le démarreur, l'alternateur, la pompe à eau, etc. ne varie pas et donc ne conduit pas à des dispositifs supplémentaires spécifiques pour compenser les variations de distances entre le vilebrequin et ces différents périphériques du moteur. De même, l'alignement entre le vilebrequin et la transmission ne change pas. Grâce à la présente invention, il n'est donc pas nécessaire d'utiliser de dispositif spécifique pour compenser les variations d'alignement entre le moteur et la transmission à laquelle il est accouplé.
  • De plus, le dispositif de la présente invention permet d'avoir un poids et un encombrement moindres ainsi qu'une plus grande réactivité de l'ajustement du taux de compression. En effet, du fait que l'excentrique est tracté, l'ajustement du taux de compression ne nécessite pas de moteur d'entraînement de l'excentrique et le dispositif n'est donc pas pénalisé par le poids, par l'encombrement et par les temps de réponses d'un moteur spécifique et de ses liaisons cinématiques pour entraîner en rotation l'excentrique afin d'ajuster le taux de compression.
  • En outre, ce dispositif a encore d'autres avantages comme la compatibilité avec une distance plus courte entre l'axe du vilebrequin et la culasse du moteur, des vibrations moindres et un coût de réalisation moindre. En effet, le vérin dont la fonction est de contrôler la position de l'excentrique placé entre la tête de bielle et le maneton du vilebrequin est distinct dudit excentrique, notamment son coulisseau est distinct de toutes les autres pièces et est mobile par rapport à toutes ces autres pièces. Grâce à cela un large choix d'orientation dudit vérin par rapport à la bielle est permis, ce qui optimise simultanément la distance entre l'axe du vilebrequin et la culasse ainsi que les vibrations induites par l'équipage mobile et également les formes pour réduire les coûts de fabrication.
  • Les autres caractéristiques et avantages de l'invention vont apparaître à la lecture de la description qui va suivre, donnée à titre uniquement illustratif et non limitatif, et à laquelle sont annexés :
    • la figure 1 qui montre, en coupe axiale, un moteur à combustion interne avec le dispositif de variation du taux de compression selon l'invention dans une première position,
    • la figure 2 est une autre vue, en coupe axiale, montrant le moteur à combustion interne avec le dispositif de la figure 1 dans une autre position et dans une autre configuration,
    • la figure 3 est une vue de détail dans une position extrême du dispositif de l'invention de la figure 1,
    • la figure 4 est un schéma montrant le circuit de commande utilisé pour le dispositif selon l'invention,
    • la figure 5 est une autre vue de détail du dispositif montrant les différents éléments du circuit de commande portés par le dispositif selon l'invention,
    • la figure 6a est une autre vue de détail du dispositif montrant une variante d'un des éléments du circuit de commande du dispositif selon l'invention alors que les figures 6b à 6d sont une illustration des différentes positions de ce dispositif pendant la rotation du vilebrequin et
    • les figures 7a à 7d sont une autre illustration d'un dispositif de localisation de la position angulaire de l'un des éléments du dispositif de variation du taux de compression selon l'invention.
  • On se rapporte aux figures 1 à 3 qui montrent un moteur à combustion interne avec au moins un cylindre 10 qui comprend un alésage 12 à l'intérieur duquel coulisse un piston creux 14 dans un mouvement translatif alternatif sous l'impulsion d'une bielle 16. Ce piston délimite avec sa partie haute, la paroi latérale de l'alésage 12 et la partie haute de cet alésage, généralement formée par une partie de la culasse 18, une chambre de combustion 20 dans laquelle se déroule le cycle de combustion. Le piston porte deux alésages radiaux diamétralement opposés 22 au travers desquels est logé un axe cylindrique 24 qui relie une extrémité 26 de la bielle, dite pied de bielle, audit piston en traversant, à glissement, un alésage 28 prévu dans le pied de bielle. L'autre extrémité 30 de la bielle, appelée tête de bielle, est reliée par un dispositif de variation du taux de compression 32 à un maneton 34 d'un vilebrequin 36. Ce vilebrequin est soumis à un mouvement de rotation autour d'un axe XX de manière à ce que le maneton 34 suive un cheminement circulaire 38 autour de l'axe XX. Comme cela est connu, le piston 14, l'axe de liaison 24, la bielle 16, le vilebrequin 36 avec son maneton 34 forment l'équipage mobile du moteur.
  • Dans les moteurs conventionnels, pendant le mouvement de rotation du vilebrequin 36 comme les phases d'admission et de détente, le maneton 34 passe successivement d'une position haute, indiquée 0° sur la figure 1, à une position basse, indiquée 180°. Pendant ce mouvement, le piston 14, qui est relié au maneton 34 par la bielle 16, subit un mouvement translatif alternatif entre un point mort haut initial (référencé PMHi sur la figure 1) qui correspond à la position haute du maneton et un point mort bas initial (référencé PMBi sur la figure 2) correspondant à la position basse du maneton. Ainsi, le piston 14 a une course initiale entre son PMHi et son PMBi.
  • Dans ces moteurs, lorsque le piston est au PMHi, soit à la fin de la phase de compression, soit à la fin de la phase d'échappement, il subsiste un volume mort 40 dans la chambre de combustion 20. Ce volume est nécessaire pour le fonctionnement du moteur pendant ses phases de compression, de combustion et de détente.
  • Comme le sait pertinemment l'homme du métier, le taux de compression d'un moteur est une fonction non seulement de l'étendue du volume du cylindre délimité par la course du piston mais aussi de l'ampleur du volume mort. Pour modifier le taux de compression, il suffit de modifier l'un de ces volumes et plus particulièrement la grandeur du volume mort.
  • Pour ce faire, le dispositif de variation de taux de compression 32 comprend un excentrique 42 logé entre le maneton 34 et un alésage 44 prévu dans la tête de bielle 30. Cet excentrique a une forme générale circulaire avec un axe géométrique X1X1 qui correspond à son axe milieu et comprend un alésage 46 d'axe X2X2 non coaxial avec l'axe X1X1 mais confondu avec l'axe du maneton 34. Cet excentrique est logé à glissement dans l'alésage de réception 44 réalisé dans la tête de bielle et sur la paroi périphérique du maneton 34.
  • Cet excentrique est dit tracté car, pendant le fonctionnement du moteur, il est susceptible d'être entraîné en rotation autour de l'axe X2X2 sous l'effet d'un couple de rotation généré par la force d'inertie résultant du déplacement de l'équipage mobile et plus particulièrement du piston et du cylindre.
  • En effet, le maneton 32 parcourt un chemin semi-circulaire pour une phase, par exemple d'admission, allant de 0° à 180° puis un autre chemin semi-circulaire (de 180° à 0°) pour une autre phase, comme la phase de compression. Pendant ces cheminements, le piston 14 va de son point mort haut à son point mort bas puis de son point mort bas vers son point mort haut. Pendant ce mouvement, ce piston et la bielle 16 subissent une accélération qui augmente au fur et à mesure du rapprochement de l'un de ses points morts. Lorsque la force résultante de cette accélération, dite force d'inertie, est suffisante pour vaincre non seulement le poids du piston 14 et de la bielle 16 et/ou la résultante des pressions gazeuses sur le piston et la bielle mais aussi les forces de frottement entre ce piston et la paroi de l'alésage du cylindre, celle-ci génère une augmentation de vitesse de l'ensemble piston bielle par rapport à celle transmise à cet ensemble par le maneton. De ce fait, si le débattement de l'excentrique n'est pas entravé, il se produit un déplacement supplémentaire du piston et de la bielle par rapport à celui induit par le maneton. Ce déplacement a lieu vers le haut lorsque le piston est du coté du point mort haut et vers le bas lorsque ce piston est du coté du point mort bas. Cet entraînement supplémentaire peut être rendu possible grâce à la rotation, autour de l'axe X2X2, de l'excentrique 42 relié à la bielle 16. Ainsi, comme cela est représenté à titre d'exemple sur les figures 1 à 3, l'excentrique a un mouvement de rotation dans un sens anti-horaire pour une diminution du taux de compression lors de la course du piston de son point mort haut vers son point mort bas, et dans un sens horaire pour une augmentation du taux de compression lors de la course de ce piston de son point mort bas vers son point mort haut.
  • Cet excentrique comprend, de préférence sur sa paroi périphérique, un secteur denté 48, d'étendue angulaire SD, qui coopère, au travers d'une ouverture 50 prévue dans la tête de bielle 30, avec une portée dentée 52, de type crémaillère, prévue sur un coulisseau 54 mobile en translation rectiligne dans un logement 56 porté par un support 58 relié à la tête de bielle 30. De préférence, ce support est intégré au demi-palier inférieur 60 que comporte habituellement la tête de bielle 30 et qui est assemblé par des vis 62 à l'autre demi-palier 64 porté par le corps de la bielle. Le coulisseau 54 comprend une paroi périphérique 66 de section cylindrique sur laquelle sont placés des joints d'étanchéité 68 et cela au voisinage de ses faces terminales 70 qui comportent, de manière préférentielle, des embrèvements axiaux 72. Cette paroi périphérique est interrompue par la crémaillère 52 qui est sensiblement rectiligne et qui s'étend sur une grande partie de la longueur de ce coulisseau. Cette crémaillère a une étendue en longueur qui correspond au moins au développé du secteur denté 48 de l'excentrique 42. Le logement 56 est de forme complémentaire à la section transversale de celle du coulisseau 54 et comprend deux parois extrêmes 74. La distance entre ces deux parois et le calage du secteur dentée de l'excentrique par rapport à la portée dentée du coulisseau sont tels que la longueur totale du coulisseau à laquelle est additionné le débattement total de ce coulisseau, sous l'effet de la rotation de l'excentrique, permet à l'axe géométrique X1X1 de ce coulisseau de se situer à gauche de l'axe du cylindre, en considérant les figures, et cela tant au point mort haut qu'au point mort bas du piston. Préférentiellement, le débattement angulaire de cet excentrique est de l'ordre de 120° entre ses deux positions extrêmes. Pour exécuter le calage initial du secteur denté lors du montage du dispositif, le point milieu M1 du secteur denté de l'excentrique est situé à mi-distance au point M2 de la longueur de la crémaillère d'une façon telle que l'axe X1X1 de cet excentrique soit à la même hauteur que l'axe X2X2 du maneton au point mort haut et au point mort bas du piston. Ainsi à partir de cette position nominale, l'excentrique tourne dans le sens anti-horaire d'un angle d'environ de 60° pour obtenir un taux minimum de compression qui peut être le taux nominal et arrivé à la position de la figure 3 et, pour un taux maximum, tourne, toujours à partir de cette position de calage initial, d'un angle d'approximativement 60° dans le sens horaire pour arriver à la position de la figure 1. Lorsque le taux maximum est atteint, l'excentrique tourne dans le sens anti-horaire d'un angle d'environ 120° pour atteindre le taux minimum et d'environ 120° dans le sens horaire pour obtenir un taux maximum à partir de son taux minimum. Les volumes délimités par la paroi périphérique du logement, ses parois extrêmes et les faces terminales du coulisseau forment ainsi deux chambres fluidiques étanches, respectivement 75a et 75b, qui permettent d'autoriser et de contrôler le déplacement du coulisseau dans le logement. Il est ainsi formé un vérin fluidique 76 comprenant le support 58 avec son logement 56 dans lequel se déplace le coulisseau 54, de manière rectiligne, sous l'effet du fluide présent dans les chambres 75a, 75b. Ainsi, le dispositif de variation comprend un coulisseau et un support de coulisseau distincts de l'excentrique. La position relative en translation de ce coulisseau, par rapport à son support, est continûment liée cinématiquement au débattement angulaire de l'excentrique par rapport à la bielle par une liaison cinématiquement réversible.
  • Ce logement est connecté à un circuit de commande 77, comme montré sur la figure 4, qui permet de contrôler la rotation de l'excentrique grâce à la maîtrise du déplacement du coulisseau.
  • Ce circuit de commande comprend au moins un circuit fermé dans lequel circule un fluide, par exemple de l'huile. Dans l'exemple de la figure 4, le circuit de commande comprend deux circuits fermés 78a et 78b pour lesquels chaque circuit fermé relie les deux chambres 75a et 75b. La chambre 75a est connectée par une canalisation 80a à un moyen de vannage 82a et plus particulièrement à une vanne 3 voies dont l'une des voies est raccordée à la canalisation 80a et dont l'autre des voies est reliée à une bâche 84a par une canalisation 86a. Cette vanne est commandée par un moyen 88a dont l'actionnement est tributaire de la demande de variation du taux de compression. Une canalisation 90a relie ensuite la sortie de la vanne 82a à un dispositif doseur 92a comprenant un cylindre 94a avec un piston étanche 96a mobile à l'intérieur de ce cylindre et qui délimitent deux chambres de dosage 98a et 100a. La chambre 98a est reliée à la canalisation 90a alors que la chambre 100a, qui comprend un ressort 102a, est reliée par une canalisation 104a à la chambre fluidique 75b. Avantageusement, les canalisations 80a et 104a portent des clapets anti-retour 106a et 108a évitant respectivement un retour de fluide dans la chambre 75a et une sortie de fluide de la chambre 75b.
  • Additionnellement, ce circuit de commande comprend des moyens de remplissage et de purge des circuits 78a et 78b. Ces moyens comprennent une pompe hydraulique 110, des canalisations 112a, 112b portant chacune un clapet anti-retour et connectées aux canalisations 104a, 104b, des vannes de purge 114a et 114 reliées aux canalisations 80a et 80b et des dispositifs de purge 116a et 116b situés sur les dispositifs doseurs 92a et 92b.
  • Ainsi, en considérant la figure 4, le déplacement du coulisseau 54 vers la gauche est contrôlé par la commande en ouverture de la vanne 82a qui met en communication, par les canalisations 80a et 90a, la chambre fluidique 75a avec la chambre de dosage 98a. Sous l'effet de la pression générée dans la chambre fluidique 75a par le déplacement du coulisseau sous l'impulsion de l'excentrique, le piston 96a est poussé à l'encontre du ressort 102a en direction de la chambre de dosage 100a et le fluide présent dans cette chambre est introduit par la canalisation 104a dans la chambre fluidique 75b. Ainsi, toute diminution du volume d'une chambre fluidique se traduit par une augmentation du volume de l'autre chambre. Ce ressort est taré d'une manière telle qu'il permette de doser l'introduction progressive du fluide dans la chambre 98a, ce qui permet d'éviter les à-coups au niveau du coulisséau. Dès que ce coulisseau a atteint la position souhaitée, la vanne 82a est actionnée en fermeture par la commande 88a pour maintenir le coulisseau dans la position où il est arrivé. Lors de cette action, d'une part, la communication entre les chambres 75a et 98a est fermée et, d'autre part, l'évacuation du fluide présent dans la chambre de dosage 98a, sous l'impulsion du ressort 102a, est autorisée par les canalisations 90a et 86a vers la bâche 84a.
  • Le volume de la chambre de dosage 98a est conformé d'une façon telle qu'il corresponde à une valeur de déplacement déterminé du coulisseau, dénommée dans la suite de la description incrément, cet incrément pouvant être utilisé en partie ou en totalité lors du déplacement de ce coulisseau. Pour ajuster le taux de compression à la valeur souhaitée, le volume de fluide issu de la chambre fluidique 75a, lors du déplacement du coulisseau, peut être supérieur à cet incrément. Dans ce cas, la commande 88a commande plusieurs séquences d'ouverture et de fermeture de la vanne 82a pour, séquentiellement, remplir et vider la chambre 98a en maintenant le coulisseau dans la position atteinte puis commande en fermeture cette vanne dès que l'excentrique a atteint la position souhaitée.
  • Le déplacement du coulisseau 54 dans le sens opposé, c'est-à-dire vers la droite, est contrôlé de la même manière mais en agissant sur les différents éléments du circuit fermé 78b.
  • Ainsi, pour pouvoir imposer le sens de débattement de l'excentrique dans le sens horaire ou dans le sens anti-horaire, on agira sur l'un ou l'autre des circuits.
  • En ce qui concerne le remplissage des circuits 78a, 78b et de leur purge, la pompe hydraulique 110 remplit, par l'intermédiaire des canalisations 112a, 112b, les chambres de dosage 100a, 100b et les canalisations 104a, 104b. Par ces canalisations, les chambres fluidiques 75a, 75b sont également remplies, ainsi que les canalisations 80a, 80b grâce auxquelles le remplissage des chambres de dosage 98a, 98b est assuré. Pendant ce remplissage, les vannes de purge 114a, 114b ainsi que les purges 116a, 116b sont ouvertes pour évacuer l'air éventuellement présent dans les circuits. Bien entendu et comme cela est habituel, la pompe et les canalisations 112a, 112b seront utilisées pour compenser les éventuelles pertes de fluide pendant le fonctionnement du dispositif.
  • En pratique et comme mieux visible sur la figure 5, les différentes canalisations, les dispositifs doseurs, les vannes de purge, les purges, et les clapets anti-retour sont logés dans le support 58, le vilebrequin avec son maneton et l'excentrique.
  • Comme ces différents éléments sont placés dans plusieurs plans parallèles transversaux à l'axe du vilebrequin, seul certains de ces éléments ont été montrés pour éviter de compliquer la figure. On peut donc voir que l'alimentation en fluide pour le remplissage des circuits est réalisée par des alésages axiaux et radiaux 120 dans le vilebrequin et le maneton, par une rainure circonférentielle 122, entre l'alésage de l'excentrique 42 et la paroi périphérique du maneton 34, pour la communication avec les alésages 120, et par des alésages radiaux 124 mettant en communication la rainure 122 avec la canalisation 112 (respectivement 112b) prévue dans le support 58. Ce support comporte également les vannes de commande 82a et 82b, les dispositifs doseurs 92a et 92b, les clapets anti-retour 106 et 108 (respectivement 108a), les vannes de purge 114 (respectivement 114a) et les canalisations 80, 90, 104 (respectivement 104a) permettant de mettre en communications ces éléments.
  • En fonctionnement, le dispositif de variation de taux de compression est dans une configuration déterminée, comme montré à la figure 3 qui correspond, à titre d'exemple, à un taux minimum de compression, qui peut être le taux nominal, et le piston 14 est à sa position de point mort bas (PMBv) comme illustré à la figure 2. Dans cette configuration, le PMBi est confondu avec le PMBv et le piston 14 a une course de ce point mort bas vers son point mort haut pour réaliser la phase de compression de l'air ou du mélange carburé présent dans la chambre de combustion, comme montré à la figure 1. Pendant cette course et comme illustré aux figures 1 à 3, le maneton 34 parcourt un chemin semi-circulaire pour aller de son point bas (180°) à son point haut (0°). Pendant ce mouvement, le piston 14, la bielle 16 ainsi que l'excentrique 42 subissent d'abord une accélération maximale au point mort bas qui diminue lors du déplacement du piston et de la bielle puis s'annule. Ce piston et cette bielle subissent ensuite une décélération qui augmente au fur et à mesure du rapprochement du piston 14 vers son point mort haut. Lorsque la force résultante de cette décélération est suffisante pour vaincre la résultante des pressions gazeuses qui s'exercent sur le piston, le poids du piston 14 et de la bielle 16 et les différentes forces de frottement, un entraînement du piston et de la bielle est généré par cette force d'inertie dans un mouvement vers le haut en considérant les figures. Ce mouvement est encore plus facilement réalisé que les forces d'inertie, de frottement et de la résultante des pressions gazeuses sont toutes dirigées vers le haut. Ces forces conjuguées s'appliquent sur l'axe X1X1 et créent un couple qui a tendance à faire tourner l'excentrique autour de l'axe X2X2 dans un sens horaire dans la position du coulisseau illustrée à la figure 3.
  • Ainsi, en fonction des paramètres de fonctionnement du moteur, comme la charge et la vitesse de ce moteur, il est déterminé un taux de compression permettant de répondre à la demande. Ce taux de compression est déterminé par une unité de contrôle, par exemple le calculateur que comporte habituellement le moteur, et ce calculateur détermine un angle de débattement de l'excentrique pour obtenir ce taux. En se rapportant à nouveau à la figure 4 et en cas d'augmentation du taux de compression, des instructions de commande sont envoyées, par le calculateur, à la commande 88a de la vanne 3 voies 82a pour mettre en communication, pendant un nombre de séquence, correspondant à un nombre d'incrément et/ou à une partie d'incrément en déplacement du coulisseau, et une durée déterminée par ce calculateur, la chambre fluidique 75a avec le dispositif doseur 92a de manière à autoriser le déplacement du coulisseau par transfert du fluide d'une chambre fluidique 75a vers l'autre chambre fluidique 75b via ce dispositif doseur. Sous l'effet de la rotation de l'excentrique et de par la coopération du secteur denté 48 de l'excentrique avec la crémaillère 52 du coulisseau, ce coulisseau a un déplacement vers la gauche, pour augmenter le taux de compression. Ainsi en contrôlant, de manière précise et de façon continuelle, la quantité de fluide sortant de la chambre fluidique par l'actionnement en ouverture et en fermeture de la vanne, il est possible de piloter le déplacement du coulisseau pour que l'excentrique se déplace en rotation selon le débattement angulaire déterminé par le calculateur. Au terme du nombre d'actionnement de la vanne 82a et de la durée d'ouverture de cette vanne, celle-ci reste fermée en isolant la chambre 75a de la chambre 75b et le coulisseau est immobilisé dans sa position grâce au fluide isolé dans ces chambres. Dans cette configuration, l'excentrique a parcouru le débattement angulaire déterminé par le calculateur. A la fermeture de la vanne 82a, le fluide présent dans la chambre 98a du dispositif doseur 92a est évacué vers la bâche 84a par les canalisations 90a, 86a et le piston 96a de ce dispositif doser se retrouve à l'état initial, c'est-à-dire proche de la canalisation 90a.
  • Sous l'effet de ce débattement angulaire dans le sens horaire à partir de la figure 3, le piston 14 réalise une surcourse S par rapport à son PMHi pour se trouver dans la position illustrée à la figure 1. Dans cette position, l'entraxe entre l'axe 24 du piston 14 et l'axe du maneton a augmenté et le piston 14 a allongé sa course initiale tout en dépassant le PMHi et en pénétrant dans le volume mort initial 40. Dans cette position, ce volume mort initial est diminué et un nouveau volume mort 118 est créé dans le cylindre 12. Comme ce nouveau volume mort est plus petit que le volume mort initial, il en ressort que le taux de compression du moteur est augmenté.
  • Cette configuration du dispositif est conservée tant que l'on souhaite garder ce taux modifié.
  • Compte tenu du fait que la rotation de l'excentrique est contrôlée de manière continue grâce à un déplacement piloté du coulisseau par les circuits 78a et 78b, il est donc possible de faire varier la valeur de la surcourse S du PMHi jusqu'au PMHv, et par conséquent la grandeur du volume mort.
  • Ainsi, grâce au déplacement piloté du coulisseau, déplacement qui est fonction du temps de réponse et du nombre d'ouverture et de fermeture de la vanne 82a, il est possible d'incrémenter ce déplacement et d'obtenir une multitude de possibilités de taux de compression par l'intermédiaire d'une multiplicité de positions angulaires de l'excentrique.
  • Dès que le calculateur détermine un nouveau débattement angulaire de l'excentrique qui correspond, pour l'exemple décrit ci-après, à un nouveau taux de compression plus faible que celui atteint, ce nouveau taux pouvant être le taux initial de compression pour lequel l'on retrouve le volume mort initial ou alors un taux inférieur à celui qui a été obtenu dans une phase précédente d'augmentation de ce taux, le calculateur envoie des instructions à la commande 88b de la vanne 82b du circuit 78b pour que l'excentrique 42 soit dans la position illustrée à la figure 3 ou dans une position se rapprochant de cette figure pour diminuer le taux de compression obtenu dans une phase antérieure.
  • Pour ce faire, on utilise une phase de fonctionnement du moteur durant laquelle le maneton 34 va de sa position de 0° à 180°, comme la phase d'admission ou de détente.
  • Lors de cette phase, les forces telles que décrites précédemment s'appliquent sur le maneton mais dans un sens opposé. Ceci a pour effet d'appliquer une force sur l'axe X1X1 qui a tendance à faire tourner l'excentrique autour de l'axe X2X2 dans un sens anti-horaire.
  • Pour autoriser cette rotation de l'excentrique, il suffit d'autoriser le déplacement contrôlé du coulisseau dans son logement. Pour cela et en se rapportant à la figure 4, la commande en ouverture/fermeture pendant une durée déterminée et en fermeture de la vanne 3 voies 82b permet de mettre en communication la chambre fluidique 75b avec le dispositif doseur 92b de manière à autoriser ce déplacement du coulisseau tout en contrôlant le transfert des doses de fluide dosées par le dispositif doseur 92b d'une chambre fluidique 75b vers l'autre chambre fluidique 75a. Sous l'effet de la rotation de l'excentrique générée par la force d'inertie et de par la coopération du secteur denté 48 de l'excentrique avec la portée dentée 52 du coulisseau, ce coulisseau a un déplacement vers la droite pour arriver à la position illustrée à la figure 3.
  • Egalement, ce déplacement du coulisseau est continuellement contrôlé par action sur la vanne 82b ce qui permet d'obtenir une multiplicité de positions angulaires de l'excentrique durant son déplacement dans le sens anti-horaire et par conséquent une multiplicité de possibilités de diminution de la surcourse du piston, ce qui a pour effet d'obtenir une multiplicité de possibilités d'augmentation du volume mort 118 jusqu'au volume mort initial 40.
  • Ainsi, grâce à ce dispositif de variation du taux de compression, il est non seulement possible d'obtenir une multiplicité de possibilités d'augmentation du taux de compression mais aussi une multiplicité de possibilités de diminution de ce taux à partir d'un taux qui a subi une augmentation.
  • On se reporte maintenant à la figure 6a qui montre une variante de réalisation de l'invention.
  • Cette variante ne diffère de la réalisation décrite ci-dessus que par le fait que chaque vanne 3 voies est remplacée par deux dispositifs piézoélectriques 126 (respectivement 126b) qui permettent d'améliorer le temps de réponse et en conséquence d'accroître la précision du réglage du taux de compression. Chacun de ces dispositifs comprend un pointeau 128 soumis à l'action d'un actionneur piézoélectrique 130 et constitue une vanne deux voies. L'un de ces dispositifs piézoélectriques contrôle le passage du fluide entre la canalisation 80 (respectivement 80b) et la canalisation 90 (respectivement 90b) et l'autre des dispositifs piézoélectriques contrôle le passage du fluide entre la canalisation 90 (respectivement 90b) et la canalisation 86. Ainsi, chaque vanne 3 voies 82a, 82b du circuit montré à la figure 4 est remplacée par deux vannes 2 voies formées chacune par un dispositif piézoélectrique.
  • Pour commander l'actionneur piézoélectrique qui agit sur le débattement du pointeau, le support 58 porte deux plots électriques 132 raccordés par des conducteurs électriques (non représentés) à cet actionneur. Des pistes électriques 134 sont portées par un élément fixe du moteur, comme le carter moteur, et sont disposées d'une manière telle qu'elles se trouvent continuellement en regard des plots 132 au moins pour un déplacement du maneton de son point à 0° à son point situé à 180°, comme cela est illustré sur les figures 6a à 6d. Bien entendu et cela sans sortir du cadre de l'invention, ces pistes peuvent s'étendre sur la totalité de la rotation du maneton de 360°. Ces pistes sont parcourues par un courant électrique et induisent un champ magnétique qui crée un courant électrique au niveau des plots 132 pour la commande de l'actionneur. Avantageusement, une piste électrique 134 est affectée à la commande de chacun des dispositifs piézoélectriques et une cinquième piste est commune pour la commande des quatre actionneurs piézoélectriques 130.
  • Le fonctionnement du dispositif de variation du taux de compression 32 et des circuits 78a, 78b est le même que celui décrit en relation avec les figures 1 à 5 aux différences selon lesquelles la liaison du passage de fluide entre la chambre fluidique 75a, 75b et la chambre de dosage 98a, 98b est réalisée par une première vanne 2 voies constituée d'un dispositif piézoélectrique, la liaison du passage de fluide entre la chambre de dosage 98a, 98b et la bâche 84a, 84b est réalisée par une autre vanne 2 voies constituée d'un dispositif piézoélectrique, et un courant électrique est envoyé dans les pistes 134 pour contrôler l'ouverture du pointeau 128 lors de la demande de variation du taux de compression.
  • Les exemples de réalisation de la commande du dispositif de variation décrits jusqu'à maintenant prévoient l'utilisation de deux circuits fermés pour contrôler le déplacement du coulisseau. Mais il peut être envisagé de n'utiliser qu'un seul circuit comportant une canalisation mettant en communication la chambre 75a avec un moyen de vannage, comme la vanne 3 voies, qui serait alors remplacée par une vanne 2 voies ou le dispositif piézoélectrique décrit précédemment, et une canalisation reliant le moyen de vannage avec l'autre chambre fluidique 75b. Bien entendu, les moyens de remplissage avec leur pompe hydraulique et les canalisations de raccordement avec la canalisation reliant le moyen de vannage à la chambre 75b, ainsi que les vannes de purge peuvent être également prévus sur ce circuit unique.
  • Pour pouvoir connaître à tous moments le taux de compression du moteur, il est prévu un moyen de localisation de la situation angulaire de l'excentrique 42, comme cela est illustré sur les figures 7a à 7d.
  • Ce moyen comprend un ensemble émetteur-récepteur de signaux 136, dont l'un des éléments est porté par l'excentrique 42 et dont l'autre des éléments est porté par un élément fixe du moteur, comme une patte 138 issue d'une paroi de ce carter. Avantageusement, l'excentrique porte un index 140 qui émet un signal par rayonnement, par exemple par rayonnement magnétique, et la patte 138 porte un récepteur formé par un secteur de lecture 142 du signal émis par l'index 140 et qui permet de connaître la position de cet index durant la rotation du maneton 34. Ce secteur de lecture est sensiblement en arc de cercle, dont la concavité est dirigée vers le vilebrequin, avec une épaisseur radiale E sensiblement constante. Ce secteur comporte une première région de lecture 144 située dans sa partie haute pour la lecture du signal émis par l'index 140 lorsque le taux de compression est maximal ou est augmenté et une deuxième région 146 placée dans la partie basse de ce secteur pour la lecture du signal émis par l'index 140 lorsque le taux de compression est nominal ou est diminué.
  • Pendant le fonctionnement du moteur, le calculateur que comporte habituellement ce moteur détermine le calage angulaire C de l'excentrique par rapport à l'axe longitudinal de la bielle (figure 7a) pour obtenir un taux de compression défini et cela lorsque le piston est au point mort haut. Pour arriver à vérifier l'exactitude du calage mesuré par rapport au calage déterminé par le calculateur, ce dernier prend en compte l'intensité du signal reçu par la région de lecture 144. Dans le cas de la figure 7a, ce signal est au plus haut lorsque le point d'émission 148 de l'index 140 se situe sensiblement au milieu de l'épaisseur E de cette région de lecture et correspond à un taux de compression maximal. Ainsi, on peut commander les différentes valeurs du taux de compression en tenant compte de la position du point d'émission 148 de l'index 140 par rapport au milieu de l'épaisseur E de cette région de lecture. De ce fait, l'un des circuits fermés 78a, 78b sera opérationnel de façon à ce que le coulisseau 54 se déplace pour autoriser un débattement angulaire de l'excentrique 42 permettant d'obtenir un tel positionnement du point d'émission 148. Dès que ce calage angulaire est obtenu, le piston quitte son point mort haut pour aller vers son point mort bas (figures 7b et 7c) et l'index 140 s'éloigne de la zone centrale de la région 144 (figure 7b) pour finalement arriver, au voisinage du point mort bas, à distance du secteur 142 (figure 7c). De même, ce calculateur détermine le calage angulaire Ci (figure 7d) de l'excentrique par rapport à l'axe longitudinal de la bielle, lorsque le piston est au point mort bas, pour obtenir un taux de compression nominal ou pour diminuer le taux de compression obtenu lors d'une phase précédente. Pour arriver à cette détermination, ce calculateur prend en compte l'intensité du signal reçu par la région de lecture 146 et, comme précédemment mentionné, ce signal est au plus haut lorsque le point d'émission de l'index 140 se situe sensiblement au milieu de l'épaisseur E de cette région. De ce fait, les circuits 78a, 78b seront actionnés d'une manière telle que coulisseau puisse autoriser un débattement angulaire de l'excentrique permettant d'obtenir un tel calage angulaire.
  • Selon une variante, ce secteur de lecture 142 comporte des fils conducteurs isolés entre eux et disposés sensiblement radialement par rapport à sa forme en arc de cercle sur son épaisseur E. Ces fils conducteurs constituent une pluralité de récepteurs des signaux émis par l'index 140, réparti angulairement depuis la partie supérieure du secteur de lecture 142 jusqu'à sa partie inférieure. L'index 140 décrit à chaque rotation du vilebrequin une courbe sensiblement circulaire de rayon inférieur au rayon de la forme sensiblement circulaire du secteur de lecture 142. La courbe sensiblement circulaire décrite par l'index 140 se translate en fonction du calage angulaire de l'excentrique 42. Cette translation, le rayon du secteur de lecture 142 et sa position sont tels que l'index 140 vient en regard des fils conducteurs de l'épaisseur E du secteur de lecture 142 selon un arc de cercle dont la position est caractéristique du calage angulaire de l'excentrique 42. De ce fait, la connaissance de l'identité des fils conducteurs sur l'épaisseur E du secteur de lecture informé par l'index 140 au cours de la rotation du vilebrequin permet de connaître la position angulaire de l'excentrique avec une précision fonction du pas des fils conducteur.
  • Selon une autre variante, la précision de lecture du calage angulaire de l'excentrique 42 est améliorée par la lecture conjuguée de la position et de l'intensité des signaux perçus par les fils conducteurs informés par l'index 140 au cours de la rotation du vilebrequin. Lorsque l'index 140 est totalement en regard de l'épaisseur E du secteur de lecture 142, par exemple sur les figures 7a et 7d, au moins l'un des fils conducteur reçoit un signal d'information maximal de l'index 140. Lorsque l'index 140 est partiellement en regard de l'épaisseur E du secteur de lecture 142, par exemple pour la figure 7b, les fils informés reçoivent un signal plus faible de l'index 140.
  • Avantageusement, il sera prévu de diminuer progressivement et de manière continue le taux de compression en augmentant le calage angulaire de C vers Ci et inversement de l'augmenter de Ci vers C et cela, cycle de combustion du moteur par cycle de combustion du moteur.
  • Bien entendu, la présente invention n'est pas limitée aux modes de réalisation décrits.
  • Notamment, il peut être envisagé que le dispositif de variation du taux de compression soit placé au niveau du pied de bielle 26 avec un excentrique porté par l'axe 24 du piston 14.

Claims (15)

  1. Dispositif de variation du taux de compression d'un moteur à combustion interne comprenant au moins un cylindre (10) avec une chambre de combustion (20), un équipage mobile comportant un piston (14) déplaçable en translation sous l'action d'une bielle (16) liée par un axe (24) audit piston et raccordée à un maneton (34) d'un vilebrequin (36), ledit piston effectuant une course entre un point mort haut et un point mort bas en laissant subsister un volume mort (40, 118) au point mort haut dudit piston, ledit dispositif comprenant un excentrique tracté (42) rotatif logé entre ledit maneton et ladite bielle en permettant de faire varier le taux de compression et des moyens de contrôle (32; 78a, 78b) du déplacement de l'excentrique, caractérisé en ce que les moyens de contrôle comprennent un vérin fluidique (76) porté par la bielle et comportant un coulisseau (54) placé dans un logement (56) formé dans un support de coulisseau (58), en ce que le coulisseau délimite avec ledit support deux chambres fluidiques (75a, 75b) en communication avec au moins un circuit fermé (77; 78a, 78b) et en ce que le coulisseau comprend une portée dentée coopérant avec un secteur denté porté par la périphérie de l'excentrique.
  2. Dispositif de variation du taux de compression selon la revendication 1, caractérisé en ce que les chambres fluidiques (75a, 75b) sont en communication l'une avec l'autre par au moins un circuit fermé (77; 78a, 78b).
  3. Dispositif de variation du taux de compression, selon l'une des revendications 1 ou 2, caractérisé en ce que le circuit fermé comprend au moins un moyen de vannage (82a, 82b; 126) permettant de contrôler le débit de fluide d'une chambre vers l'autre.
  4. Dispositif de variation du taux de compression selon la revendication 3, caractérisé en ce que le moyen de vannage est une vanne à au moins 2 voies (82a, 82b).
  5. Dispositif de variation du taux de compression selon la revendication 3, caractérisé en ce que le moyen de vannage est un dispositif piézoélectrique (126).
  6. Dispositif de variation du taux de compression selon la revendication 5, caractérisé en ce que le dispositif piézoélectrique comprend un pointeau (128) et un actionneur piézoélectrique (130).
  7. Dispositif de variation du taux de compression selon la revendication 5 ou 6, caractérisé en ce que le dispositif piézoélectrique est commandé par coopération de plots (132) et de pistes électriques (134).
  8. Dispositif de variation du taux de compression selon la revendication 3 précédentes, caractérisé en ce que le circuit comprend au moins un dispositif doseur (92a, 92b) situé en aval du moyen de vannage.
  9. Dispositif de variation du taux de compression selon la revendication 8, caractérisé en ce que le dispositif doseur comprend un ensemble piston-cylindre (94a ; 96a) avec un ressort de tarage (102a).
  10. Dispositif de variation du taux de compression selon la revendication 1, caractérisé en ce que les éléments du circuit fermé sont au moins en partie logés dans le vérin (76).
  11. Dispositif de variation du taux de compression selon l'une des revendications précédentes, caractérisé en ce que le dispositif de variation comprend des moyens de localisation (136) de la position de l'excentrique (42).
  12. Dispositif de variation du taux de compression selon la revendication 11, caractérisé en ce que les moyens de localisation comprennent un ensemble émetteur-récepteur (136) de signaux.
  13. Dispositif de variation du taux de compression selon la revendication 12, caractérisé en ce que l'excentrique (42) comprend l'émetteur (140, 148) et en ce que le récepteur (142) est logé sur une partie fixe (138) du moteur.
  14. Dispositif de variation du taux de compression selon l'une des revendications précédentes, caractérisé en ce que l'excentrique comprend des moyens à coopération de forme (48, 52) avec le coulisseau.
  15. Dispositif de variation du taux de compression selon la revendication 14, caractérisé en ce que les moyens de coopération comprennent un secteur denté (48) porté par l'excentrique (42) et une portée dentée (52) portée par le coulisseau (54).
EP04816459A 2003-12-23 2004-12-21 Dispositif de variation du taux de compression d'un moteur a combustion interne et procede pour utiliser un tel dispositif Not-in-force EP1756405B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0315214A FR2864154B1 (fr) 2003-12-23 2003-12-23 Dispositif de variation du taux de compression d'un moteur a combustion interne et procede pour utiliser un tel dispositif
PCT/FR2004/003329 WO2005071242A1 (fr) 2003-12-23 2004-12-21 Dispositif de variation du taux de compression d'un moteur à combustion interne et procédé pour utiliser un tel dispositif

Publications (2)

Publication Number Publication Date
EP1756405A1 EP1756405A1 (fr) 2007-02-28
EP1756405B1 true EP1756405B1 (fr) 2010-10-27

Family

ID=34630484

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04816459A Not-in-force EP1756405B1 (fr) 2003-12-23 2004-12-21 Dispositif de variation du taux de compression d'un moteur a combustion interne et procede pour utiliser un tel dispositif

Country Status (6)

Country Link
US (1) US7789050B2 (fr)
EP (1) EP1756405B1 (fr)
AT (1) ATE486203T1 (fr)
DE (1) DE602004029823D1 (fr)
FR (1) FR2864154B1 (fr)
WO (1) WO2005071242A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882575A1 (fr) * 2005-02-28 2006-09-01 Michel Alain Leon Marchisseau Dispositif tres compact pour ajuster le taux de compression d'un moteur a combustion interne
DE102012212336A1 (de) * 2012-07-13 2014-01-16 Robert Bosch Gmbh Pleuelbaugruppe für einen Zylinder einer Brennkraftmaschine
DE102012020999B4 (de) 2012-07-30 2023-02-23 FEV Europe GmbH Hydraulischer Freilauf für variable Triebwerksteile
DE102012112434B4 (de) 2012-12-17 2022-10-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Pleuelstangenanordnung sowie Verfahren zum Entlüften eines Hydraulikzylinders einer derartigen Pleuelstangenanordnung
CN103244260B (zh) * 2013-05-16 2015-09-23 沈大兹 一种可变压缩比和可变膨胀比装置
AT515419B1 (de) * 2014-05-12 2015-09-15 Imt C Innovative Motorfahrzeuge Und Technologie Cooperation Gmbh Pleuel für eine Verbrennungskraftmaschine
CN104965998B (zh) * 2015-05-29 2017-09-15 华中农业大学 多靶标药物和/或药物组合的筛选方法
RU2607436C1 (ru) * 2015-11-03 2017-01-10 Александр Алексеевич Семенов Двигатель внутреннего сгорания с изменяемой степенью сжатия эксцентриковым механизмом
JP6365570B2 (ja) * 2016-02-29 2018-08-01 トヨタ自動車株式会社 可変長コンロッド及び可変圧縮比内燃機関
DE102016008306A1 (de) * 2016-07-06 2018-01-11 Avl List Gmbh Pleuel mit verstellbarer Pleuellänge
CN107763061B (zh) * 2016-08-19 2020-03-10 上海汽车集团股份有限公司 汽车、发动机、曲柄连杆机构及其连杆组件
DE102017107698A1 (de) * 2017-04-10 2018-10-11 Avl List Gmbh Pleuel mit Exzenter
CN109386380A (zh) * 2017-08-08 2019-02-26 罗灿 花键输出变压缩比内燃机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864975A (en) 1987-07-03 1989-09-12 Honda Giken Kogyo Kabushiki Kaisha Compression ratio-changing device for internal combustion engines
JP2689296B2 (ja) * 1991-12-20 1997-12-10 三菱自動車エンジニアリング株式会社 内燃機関の可変圧縮比装置
US5165368A (en) * 1992-03-23 1992-11-24 Ford Motor Company Internal combustion engine with variable compression ratio
DE4226361C2 (de) 1992-08-10 1996-04-04 Alex Zimmer Brennkraftmaschine
US5595146A (en) * 1994-10-18 1997-01-21 Fev Motorentechnik Gmbh & Co. Kommanditgesellschaft Combustion engine having a variable compression ratio
JP2000130201A (ja) * 1998-10-27 2000-05-09 Hideki Yamamoto 内燃機関の圧縮比改善装置
JP3879385B2 (ja) * 2000-10-31 2007-02-14 日産自動車株式会社 内燃機関の可変圧縮比機構
US6397796B1 (en) * 2001-03-05 2002-06-04 Ford Global Technologies, Inc. Oiling systems and methods for changing lengths of variable compression ratio connecting rods

Also Published As

Publication number Publication date
EP1756405A1 (fr) 2007-02-28
DE602004029823D1 (de) 2010-12-09
FR2864154A1 (fr) 2005-06-24
WO2005071242A1 (fr) 2005-08-04
ATE486203T1 (de) 2010-11-15
US7789050B2 (en) 2010-09-07
FR2864154B1 (fr) 2007-09-07
US20080022977A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
EP1756405B1 (fr) Dispositif de variation du taux de compression d'un moteur a combustion interne et procede pour utiliser un tel dispositif
EP1859135B1 (fr) Dispositif tres compacte pour ajuster le taux de compression d un moteur a combustion interne
CA2289568C (fr) Dispositif permettant de faire varier la cylindree et/ou le rapport volumetrique effectifs d'un moteur a pistons pendant son fonctionnement
CA2631670C (fr) Dispositif presseur pour moteur a rapport volumetrique variable
EP0407436B1 (fr) Groupe motopropulseur, notamment pour vehicule automobile et vehicule comportant un tel groupe
FR3043720B1 (fr) Moteur a rapport volumetrique variable
FR3043740A1 (fr) Bielle pour moteur a rapport volumetrique variable
FR2459369A1 (fr) Dispositif de reglage d'ouverture de soupape, soupape regulatrice de la pression d'un fluide et systeme pour regler l'ouverture de la soupape de cylindre a commande par came d'un moteur a combustion interne les utilisant
FR3043739A1 (fr) Bielle pour moteur a rapport volumetrique variable
FR2663982A1 (fr) Dispositif de reglage de la commande des soupapes d'un moteur a combustion interne.
FR2468732A1 (fr) Distribution variable a commande hydraulique pour moteurs a combustion interne
EP1466092A1 (fr) Moteur hydraulique a pistons radiaux
FR2831221A1 (fr) Dispositif de pompe hydraulique basse pression pour l'alimentation d'au moins un moteur hydraulique, notamment destine a equiper une bicyclette a entrainement hydraulique
EP0498682A1 (fr) Dispositif de commande de soupape à fonction de mise à l'arrêt pour moteur à combustion interne
FR2721684A1 (fr) Pompe doseuse d'huile pour moteurs à deux temps.
FR2555661A1 (fr) Mecanisme a bras de levier a rapport variable
EP3080478A1 (fr) Dispositif de regulation de la rotation d'un arbre, notamment dans le domaine automobile
FR2471481A1 (fr) Pompe d'injection de combustible
FR3117540A1 (fr) Arbre à cames d’un moteur à combustion interne.
WO1993025802A1 (fr) Dispositif pour distribution rotative
FR2821643A1 (fr) Chambre d'expansion de moteur a air comprime
FR2614655A1 (fr) Dispositif de commande pour actionner un verin hydraulique a double effet
FR2684135A1 (fr) Dispositif de reglage de la commande des soupapes d'un moteur a combustion interne.
FR2663981A1 (fr) Dispositif de reglage de la commande des soupapes d'un moteur a combustion interne.
FR3062185A1 (fr) Organe d’equilibrage et systeme d’equilibrage pour equilibrer un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081001

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004029823

Country of ref document: DE

Date of ref document: 20101209

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101027

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101224

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004029823

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: MICHEL MARCHISSEAU, INSTITUT FRANCAIS DU PETROLE, , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004029823

Country of ref document: DE

Owner name: MARCHISSEAU, MICHEL, FR

Free format text: FORMER OWNER: MICHEL MARCHISSEAU, INSTITUT FRANCAIS DU PETROLE, , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004029823

Country of ref document: DE

Owner name: MARCHISSEAU, MICHEL, FR

Free format text: FORMER OWNERS: MARCHISSEAU, MICHEL, LIMOGES, FR; INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004029823

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNERS: MARCHISSEAU, MICHEL, LIMOGES, FR; INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110329

BERE Be: lapsed

Owner name: MARCHISSEAU, MICHEL

Effective date: 20101231

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110207

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

26N No opposition filed

Effective date: 20110728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004029823

Country of ref document: DE

Effective date: 20110728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101221

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111221

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161212

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161228

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004029823

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102