WO1993025802A1 - Dispositif pour distribution rotative - Google Patents

Dispositif pour distribution rotative Download PDF

Info

Publication number
WO1993025802A1
WO1993025802A1 PCT/BE1993/000032 BE9300032W WO9325802A1 WO 1993025802 A1 WO1993025802 A1 WO 1993025802A1 BE 9300032 W BE9300032 W BE 9300032W WO 9325802 A1 WO9325802 A1 WO 9325802A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
exhaust
orifices
lateral
intake
Prior art date
Application number
PCT/BE1993/000032
Other languages
English (en)
Inventor
Joseph Discry
Original Assignee
Joseph Discry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Discry filed Critical Joseph Discry
Publication of WO1993025802A1 publication Critical patent/WO1993025802A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/021Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves with one rotary valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/18Component parts, details, or accessories not provided for in preceding subgroups of this group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Definitions

  • the present invention relates to a device for rotary distribution, in particular in internal combustion engines.
  • Rotary distribution is used to overcome the drawbacks associated with the use of valves.
  • the major drawback of valve distribution is that, beyond a certain engine speed, the valve return time is practically constant with respect to the speed of rotation of the valve. ⁇ tor, because the return is made under the action of a spring of constant force.
  • the valves are noisy and obstruct the passage of gases by forcing them to travel around them a winding path.
  • the raising and lowering of the valves begin or end gradually, so that the gases are locally compressed at the beginning or at the end of the movement. Attempts have therefore been made to free the valves by using rotary distribution devices.
  • Known rotary dispensing devices have the disadvantage of being difficult to produce or of having gas passages which are too narrow to allow them to be easily circulated.
  • a device for distributing combustion gases using only rotary parts is described in document FR-A-2 417 636. It is mainly a rotary distribution device for four-stroke engines comprising a rotary distributor with gas inlet and outlet ports which have a preset opening. A transfer channel joins the two orifices along a curve adapted to allow a convenient passage of gases.
  • a rotary distribution device comprising at least one rotor provided with a longitudinal central bore and having lateral intake and exhaust orifices, as well as peripheral orifices of intake and exhaust.
  • a control shaft alternately has sections having different diameters, these sections being interconnected by transition surfaces.
  • the control shaft is slidably arranged in the bore.
  • first means are provided to partially and adjustably cover the lateral orifices and second means are provided to cover at least partially and in an adjustable manner the peripheral orifices, said first and second means being arranged so as to cooperate with the sections and the transition surfaces of the control shaft.
  • the first aforementioned means make it possible to cover or discover, according to a preset adjustment of the system, an adjustable portion of the lateral orifices of the rotary distributor. Furthermore, the aforementioned second means allow an adaptation of the peripheral orifices of the rotary distributor according to the invention.
  • the rotary distribution device thus offers the considerable advantage of having intake and exhaust orifices and orifi ⁇ these peripherals which have a variable and adaptable geometry according to instantaneous needs. This allows a faster growth of the rotation speed as well as an increased increase in the engine rotation speed. The more regular operation of the device thus obtained also ensures a reduction in the specific energy consumption.
  • the above-mentioned variable geometry arrangement allows, on admission, an advance relative to the top dead center (TDC) and a delay relative to the bottom dead center (PMB) and, at the exhaust , an advance compared to PMB and a delay compared to PMH.
  • the rotary distribution device applies to a motor with internal combustion, whatever the number of cylinders, and in particular to four-stroke engines (petrol, petrol injection, diesel injection or others), for example outboard motors, for motor vehicles, motorcycle, aircraft, etc.
  • four-stroke engines petrol, petrol injection, diesel injection or others
  • FIG. 1 represents a cutaway side view of a rotary distribution device according to the invention.
  • FIG. 2 represents a partial section view of the device of FIG. 1.
  • FIGS. 3 and 4 represent views in front and rear perspective of a rotor of the device according to FIG. 1.
  • FIG. 5 shows a partial broken view, on an enlarged scale, of a rotor overlapping a drive shaft.
  • FIG. 6 represents a cross-sectional view of a rotor of FIG. 3, showing first means of covering the inlet orifice of the rotor at the minimum rotation rate.
  • FIG. 7 represents a view similar to that of FIG. 6, showing second means for covering peripheral orifices of the rotor at minimum rotation speed.
  • FIG. 8 represents a view similar to that of FIG. 6, showing the first means of covering the exhaust port of the rotor at the speed of rotation maximum.
  • FIGS. 9 to 12 each represent a diagrammatic view of a rotor in a rotational position determined with respect to the corresponding cylinder, at the minimum rotation speed.
  • Figures 13 to 16 show schematic views similar to those of Figures 9 to 12 respectively, at maximum rotation speed.
  • FIG. 1 shows an overall view of a device according to the invention, mounted on an engine block comprising four cylinders 20 in line.
  • the engine cylinder head is composed of an upper half-cylinder head 1 and a lower half-cylinder head 2 and contains four practically identical rotors 10, arranged in series and each surmounting a cylinder 20.
  • the lower half-cylinder head 2 comprises compression chambers having the necessary volume at the desired compression rate. Spark plugs 18 or pre-compression chambers and glow plugs for the diesel engine will also take place in the lower half-cylinder head 2.
  • the admission is carried out by three conduits 115 giving on a lateral face of the upper half-breech 1 located at the front relative to the plane of the drawing. These same conduits 115 pass through the lower half-breech 2 and end up in housings reserved for the rotors 10.
  • the exhaust is effected by two conduits 116 leaving the housings reserved for the rotors 10 in the upper half-breech l. These two conduits 116 terminate on the other lateral face of the half upper cylinder head 1 located at the rear relative to the plane of the drawing. Admissions are therefore made on one side of the cylinder head and exhausts on the other.
  • the rotors 10 are regularly offset one relative to the other in order to maintain a predetermined ignition order as well as the mass balance of the set of rotors 10.
  • the rotors four in number, are offset by a quarter of a turn with respect to each other to carry out an order of lighting said 1-3-4-2.
  • the rotors 10 are designed to rotate in a reduction ratio of 1/2 with respect to the speed of rotation of the crankshaft 3 by means of a transmission element 4 such as a toothed belt for example, a timing chain or gables.
  • the rotors 10 are directly connected to the crankshaft 3.
  • the rotors 10 are, in accordance with the invention, coupled to a control shaft 9 which has at regular intervals over its entire length, sections 92 of smaller diameter al ⁇ tarnishing with sections 93 of greater diameter.
  • the transition between the sections 92 of smaller diameter and the sections 93 of larger diameter is preferably practically linear and forms an angle with the axis of the control shaft 9, thus creating a set of ramps 94.
  • the shaft 9 is arranged to slide in the rotors 10.
  • the control shaft 9 cooperates with and acts on means arranged to partially cover and discover in an adjustable manner the inlet and outlet orifices of the rotors.
  • FIGS. 3 and 4 represent perspective views, respectively on the intake side and on the exhaust side, of one of the rotors 10.
  • the rotor consists of a body of practically cylindrical shape having two side surfaces 11, 12 and a peripheral surface 13. Each of the side surfaces 11, 12 has inlet 111 and outlet 112. ports.
  • the peripheral surface 13 has two peripheral ports. , one intake 117 and the other exhaust 118 also visible in FIG. 1, which are intended to communicate with one of the four cylinders 20 opposite which the rotor 10 is arranged.
  • the aforesaid orifices 111, 112, 117, 118 are in communication with one another by the intermediary of internal intake channels 113 and exhaust 114.
  • the interior intake channels 113 and d the exhaust 114 are formed in the machined or molded mass of the rotor 10.
  • each of the rotors 10 On its longitudinal axis, each of the rotors 10 is pierced right through a longitudinal central bore 19 and it has practically cylindrical nozzles 60 projecting from the lateral surfaces 11, 12 from which it extends.
  • the end pieces 60 end in raised ends allowing reliable interlocking of the different rotors 10 placed in line.
  • a constructively simple interlocking which is both safe and rapid, consists of a set of tenons 61 and mortises 62 crossed approximately at an angle of 360 / n (where n represents the number of cylinders) respectively on the intake side and the exhaust side, Or vice versa. In the example of a four-cylinder engine as illustrated in the drawings, the crossing angle is approximately 90 °.
  • the rotors 10 are thus made integral with each other by mortise-tenons 61, 62 around the control shaft 9.
  • Support means, 63 are arranged peripherally than relative to the end pieces 60: they consist for example of pads on which the end caps 60 rest by means of half-shells. Packings 64 are also provided to allow the lubrication of the lubrication of the support means 63 to be sealed. It is still clear from FIGS. 3 and 4 that the lateral intake and exhaust orifices are offset one relative to the other.
  • the rotors 10 are advantageously made from composite materials with metal cores or from ceramics or carbon-carbon, for example. They can also be made from conventional materials as well as from various materials.
  • control shaft 9 cooperates with a system of rods such as 38, 48, 58 arranged to transmit the sliding movement of the control shaft 9 to members arranged to describe movements of rotation or back-and-forth transverse (for example the members 31, 131, 51, 151 and 41, 141 visible in Figures 5 to 8) as will be explained in detail later.
  • the rods represented schematically in FIG. 2 are arranged practically radially and perpendicularly to the control shaft 9, at the level of the intake and the exhaust of each rotor 10 as well as at the center of these. this.
  • the rods located on the intake side (for example 38 and 138) and on the exhaust side (for example 58 and 158) are arranged in pairs, the rods of each pair forming an angle of less than 180 ° between them, preferably rence an angle between 100 and 140 ° as shown in Figures 6 and 8.
  • the pairs of rods at the intake 38, 138 and at the exhaust are offset from each other as well as it emerges from Figure 7.
  • In the central plane of each rotor 10 is provided only one rod 48 (see Figure 7). Each rod bears by one of its ends on the control shaft 9.
  • FIG. 5 illustrates the engagement of the control shaft of 9 in the bore 19 of one of the rotors 10, the rods 38, 48, 58, (138, 158) being in a limit transition position between a section 92 or 93 and a transition surface 94 of the control shaft 9.
  • the angle o of the transition surfaces 94 is preferably between 30 and 50 °, for example 45 °, thus allowing a gradual passage and smooth rods 38, 138, 48, 58, 158 from one section to the other of the control shaft 9.
  • the aforementioned end of the rods advantageously has a rounded shape, in the ma ⁇ manner with a finger.
  • the peripheral inlet orifice 117 lets appear the variable cover means 40 of the peripheral inlet and outlet 117 and exhaust orifices 118, these means consisting for example of a valve device comprising an inlet valve. and an exhaust valve each cooperating with the rod 48.
  • the rod 48 is in the retracted position relative to the control shaft 9, while the intake rods 38, 138 and exhaust 58, 158 are in the engaged position relative to the control shaft.
  • the valve device 40 will be described below with the aid of FIG. 7.
  • the two pairs of rods 38, 138 and 58, 158 respectively form part of the covering means 30 intake and exhaust 50, which will be described later in light of Figures 6 and 8.
  • grooves 81, 82, 83 On the peripheral surface 13 are provided grooves 81, 82, 83 extending practically transversely and longitudinally with respect to the longitudinal axis of the rotor 10.
  • the transverse grooves 81, 82 and lon ⁇ gitudinal 83 are intended to accommodate compression seals to ensure excellent sealing of the assembly.
  • variable covering means 30 located on the admission side for adjusting the light from the lateral orifice for admitting mission 111 of the rotor 10 according to the invention are shown in FIG. 6.
  • These variable covering means comprise the pair of intake rods 38, 138 and at least one pivoting arm 31, 131 each cooperating with a respective intake rod.
  • the illus ⁇ trated example comprises two pivoting arms 31 and 131. These are intended to adjust the opening of the lateral intake orifice 111 by pivoting around the pivots 33 and 133, between a position of mutual contact and a apart position, depending on the position of the intake rods 38, 138 relative to the control shaft 9.
  • the variable intake cover means 30 are arranged in a recess 85 which are intended to form a guide for the back and forth movement of the rods.
  • the finger-shaped intake rods 38, 138 extend into radial bores 34, 134 which are drilled in the mass of the rotor 10, from the peripheral surface 13 of the latter up to the longitudinal bore 19 and which are intended to form a guide for the back and forth movement of the rods.
  • the admission rods 38, 138 form a contact element, which is movable, between the control shaft 9 and one side of the pivoting arms 31, 131.
  • pushers 36, 136 which are provided with a return means 37, 137, for example a spring.
  • the pushers 36, 136 can be moved back and forth in the radial bores 34, 134 and they are intended to act on the pivoting arms 31, 131, in particular on the straightened part 73.
  • the whole is made integral by means fixing 39, 139 housed in the radial bore 34, 134, for example a retaining screw closing the pushers 36, 136 from the peripheral surface of the rotor.
  • the shape and dimensions of the recess 85 are pre ⁇ seen so as to ensure a free movement of mutual rotation of the pivoting arms 31, 131, in the recess 85 around pivots 33, 133.
  • Each pivoting arm 31, 131 has a surface facing the other pivoting arm, hereinafter designated the inner surface of the arm, and an opposite surface, hereinafter designated the outer surface of the arm.
  • the pivoting arms 31, 131 have a sickle shape, the cutting edge of which forms a contact area 72 between the above-mentioned interior surfaces has a notch 35, 135.
  • the shape and size of the notches 35, 135 are provided so as to leave an opening 32 between the two pivoting arms 31, 131, whatever the relative position of the pivoting arms 31, 131.
  • the recesses 35, 135 advantageously have the shape of a semicircle whose radius practically corresponds to that of the generating semicircle of the lateral inlet orifice 111.
  • a bead 71 extending along the respective notches 35, 135.
  • the aforementioned beads form a body with the pivoting arms as shown. ⁇ ble in FIG. 5.
  • the pivoting arms 31, 131 are arranged in such a way that the opening 32 coincides appreciably with the lateral intake orifice 111 in the position away from the pivoting arms 31, 131 corresponding to a speed operational rotation.
  • the width of the recess 85, measured along the longitudinal axis of the rotor 10, is provided so as to ensure flawless guiding of the pivoting arms 31, 131.
  • the pivots 33 and 133 are advantageously arranged practically radially and in alignment with the passage of the longitudinal axis of the rotor, the pivot 33 of the pivoting arm 31 being provided between the other pivot 133 and the passage of the aforementioned axis.
  • the handle portion 73 of the pivoting arm 31 is bent so that the pivoting arm 31 is not hindered in its rotational movement by the non-recessed central part 99, which completely surrounds the central bore 19
  • the handle portion of the pivoting arm 131 is straight.
  • the positions of extreme spacing of the handle part of the pivoting arm 131 and of the handle part 73 of the pivoting arm 31 both determine the shape of the recess 85 practically in the angular sector having a point located on the straight line connecting the pivots 33 and 133, slightly outside the periphery of the rotor 10.
  • the hollow 85 in the angular sector is practically symmetrical with respect to the straight line connecting the pivots 33 and 133, which shares the angular sector in two zones of substantially the same size which forms a zone of movement for each swivel arm.
  • the angle at the top of the angular sector corresponds practically to the maximum spacing angle of the pivoting arms 31 and 131, which is preferably between 45 ° and 75 °, for example 60 °.
  • the effect of this arrangement is that the two pivoting arms rotate in the same plane, thus reducing the width of the recess 85, thus ensuring perfect guidance of the pivoting arms 31, 131.
  • the intake rods 38, 138 are supported by their rounded end on a section of in ⁇ lower diameter 92 of the control shaft 9 and the arms pivots 31, 131 are kept in contact with the opposite end of the intake rods 38, 138 by the pushers 36, 136 under the action of return means 37, 137.
  • the end contact of the pushers 36, 136 with the pivoting arms has a rounded shape to ensure better contact between the pushers and the arms during their rotation.
  • the aperture 32 left by the pivoting arms 31, 131 rejoi ⁇ gnant and shown in phantom, only partially covers the lateral inlet orifice 111, thereby limiting the useful opening of the orifice.
  • the opening 32 completely discovers the lateral orifice of ad ⁇ mission 111 so as to obtain a maximum useful opening for the orifice considered. A possibility of adjusting the minimum and maximum opening is thus obtained thanks to an adjustable spacing of the pivoting arms 31, 131.
  • the shape of the orifices 111, 112, 117, 118 is studied so as to ensure an excellent flow of the combustion gases.
  • the lateral intake 111 and exhaust 112 orifices have the shape of a bean obtained by the displacement of the two halves of a circle on an arc of a circle having an angular opening taken between 5 ° and 45 ° surroundings, for example.
  • the contour of the lateral orifices 111 and 112 is then formed by the two semicircles displaced one relative to the other and arcs of a circle connecting the oppo ⁇ ed ends of the semicircles having the pivot of rotation.
  • the contour of the peripheral openings 117, 118 corresponds to that of a tongue with rounded ends and parallel lateral sides extending transversely to the axis of the rotor 10, at an angle of approximately 180 °, for example.
  • FIG. 7 illustrates the particular internal configuration of the rotor 10 seen from the median plane thereof.
  • the lateral intake 111 and exhaust 112 orifices are offset with respect to each other so that their extensions in the midplane of the figure do not overlap while being separated only by a narrow portion of material 16.
  • the internal inlet 113 and escapement channels 114 are provided so as to leave a projection of material 14 extending from the narrow portion of said material 16 up to the central bore 19 for the control shaft 9.
  • the channels 113, 114 are formed in the mass of the rotor so as to be completely separated from each other by a part 15 of the rotor forming a partition and projecting with respect to the projecting element 14 of the rotor. This configuration ensures excellent flow of the gas mixture through the internal channels 113, 114.
  • a radial bore 44 is pierced in the above-mentioned projection 14 and the partition 15.
  • the radial bore 44 forms a guide for the back-and-forth movement of the rod 48 of the second cover means 40.
  • the partition 15 delimits and isolates the internal inlet 113 and exhaust 114 l channels. one over the other.
  • the reciprocating movement of the rod 48 printed at one end preferably rounded off of the latter by the sliding of the control shaft 9 is transmitted to the retractable valves 41, 42 by a connecting member rigid 45, for example a dowel or a screw, arranged between the rod 48 and the valves.
  • the connecting member 45 consists of a pin connecting the two valves 41, 42 by the rod 48.
  • a buttonhole 43 so as to allow a back-and-forth movement of the connecting member 45 over a distance corresponding at least to the difference between the diameters of the sections of smaller diameter 92 and greater 93 of the control shaft 9, thus ensuring full transmission of the sliding of the control bre 9 to the valves 41, 42.
  • This distance also corresponds to the stroke of the valves 41, 42.
  • return means 47 for example a spring, are provided to act on the rod 48.
  • each of the peripheral orifices 117, 118 is also adjustable, thanks to the second variable cover means 40 constituted in the example described of the system with retractable valves 41, 42.
  • FIG. 8 illustrates a view practically similar to that of FIG. 6, in which, however, the covering means 50 of the lateral exhaust orifice 112 are shown. Another difference lies in the fact that it is here a maximum rotation speed corresponding to a position separated from the pivoting arms 51, 151 under the action of the rods 58, 158.
  • the pivoting arms 51, 151 are maintained under pressure under the action of return means 57, 157 acting by means of pushers 56, 156.
  • the pivoting arms 51, 151 which have a shape analogous to the pivoting arms 31, 131 described above, rotate around respective pivots 53, 153 in a recess 86 similar to the recess 85 in FIG. 6, leaving an opening 52 between their respective indentations 55, 155 coinciding practically with the lateral exhaust orifice 112.
  • the different sections 92, 93, 94 of the control shaft 9 have a length, measured along the axis, such as the rods 38, 138; 48; 58, 158 move in synchronism.
  • a control device visible in FIG. 1, comprising a sensor 100 arranged on the intake pipe 115 to control the load and a detector 101 of the engine rotation speed.
  • the load sensor 100 and the speed detector 101 lead to a control unit 102 which controls a servomotor 103.
  • the latter gives a sliding movement to the control shaft 9 in the direction of the arrow F at one end of the latter, the opposite end pressing against a return means 95, for example a spring.
  • control shaft 9 with its variable section on the one hand and the covering means 30, 40, 50 on the other hand, the ac- tion of these with progressive opening or closing of their cover members 31, 131; 41, 42; 51, 151 by the sliding movement of the control ar ⁇ ber 9.
  • the control system described above can advantageously be replaced by a system directly connected to the accelerator control.
  • the operation of the device for rota ⁇ tive distribution according to the invention is described below.
  • the rotors 10 must realize in a complete rotation all the times of an engine cycle, for example four times.
  • the rotors 10 allow excellent filling of the respective cylinders.
  • the rotors 10 retain an excellent compression ratio.
  • the rotors promote the evacuation of the burnt gases. Thanks to the continuous rotary movement and to an appropriate choice of the sec ⁇ tion width of the internal channels 113, 114 of the rotors 10, a considerable power gain is obtained, a remarkable increase in the nervousness of the motor and an appreciable reduction in the manufacturing costs.
  • Figures 9 to 12 on the one hand and Figures 13 to 16 on the other hand each illustrate an engine time respec ⁇ tively at the minimum rotation speed and the maximum rotation speed.
  • admission takes place while the rotor 10 is located in a determined position.
  • the intake port 111 located on the lateral intake side 11 of the rotor is located opposite the intake duct 115 of the cylinder head.
  • the inlet peripheral orifice 117 located on the peripheral surface 13 of the rotor, is positioned opposite the orifice 22 of the compression chamber 21 of the cylinder 20.
  • the lateral orifice of inlet 111 and the peripheral inlet orifice 117 communicate with each other via the internal inlet channel 113.
  • This position of the rotor 10 allows the cylinder 20 to be completely and perfectly filled according to the arrow designated by the letter A.
  • the gas mixture 150 or the air will therefore pass through the rotor 10 via the aforementioned orifices.
  • This engine time is effected during the first rotation of a quarter turn of the rotor 10. During this quarter turn, there will be a gradual transition from closure to full opening and then to complete closure of the above-mentioned orifices.
  • the orifice 22 of the compression chamber 21 of the cylinder 20 must be closed. Also, is the peripheral surface 13 of the rotor 10 which passes in front of the orifice 22 of the cylinder 20 full (area full of the peripheral surface 13 of the rotor designated by the reference 17 in FIGS. 3 and 4). The seals, if any, placed on the rotor 10 help to maintain all the compression in the cylinder 20.
  • the exhaust takes place when the exhaust orifice 112 situated on the lateral exhaust face 12 of the rotor 10 is opposite of the exhaust duct 116 of the cylinder head and that the peripheral exhaust orifice on the peripheral surface 13 of the rotor is positioned opposite the orifice 22 of the compression chamber 21 of the cylinder 20.
  • the orifices located on the lateral and periphery surfaces of the rotor 10 allow a certain amount of gaseous mass to pass. When the speed of rotation increases, these same orifices allow less gaseous mixture to pass if the dimensions of these remain unchanged. This reveals the quite considerable advantage of the variable geometry of the orifices of the rotor, obtained by means of the device according to the present inven ⁇ tion. Thus, with the present device, the more the speed of rotation increases, the more the orifices get larger, this in order to maintain the same flow rate and therefore the same quantity of gaseous mass. Thus, on the lateral surfaces 11, 12 of the rotor, the system of pivoting arms discovers a larger portion of the corresponding lateral orifices. It is the same for the peripheral surface 13 of the rotor. At this point, these are the retractable valves which make it possible to enlarge the surface of the opening of the peripheral orifices as a function of the increase in the speed of rotation.
  • valve system 40 and the sickle system 30, 50 are in the closed position and open gradually as soon as the rotation speed increases to be completely open at the maximum speed.
  • Another important advantage results from the arrangement with variable geometry of the lateral orifices 111, 112 and peripheral by the fact that it allows an angular extension of the intake and exhaust times, which normally correspond each to a quarter of turn, i.e. 90 ° in the example described. Thanks to the aforementioned variable geometry arrangement, an advance of up to 10 ° is obtained at admission, for example before the top dead center (TDC) and a delay of up to 20 ° for example after the point low dead (PMB), a total angular extension for the intake engine time of approximately 30 ° with respect to the quarter turn.
  • TDC top dead center
  • PMB point low dead
  • the covering means 30, 40, 50 described above comprising rods 38, 138; 48; 58, 158, which command the opening of the pivoting arms 31, 131; 51, 151 as well as the lifting of the valves 41, 42 against the peripheral surface of the rotor 10, can advantageously be replaced by a hydraulic system.
  • the realization of the openings initially takes into account small losses. These cannot be amplified. An initial correction on the openings can therefore be envisaged in order to maintain a very precise flow rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

Dispositif pour distribution rotative comprenant des rotors (10) présentant un alésage central longitudinal (19) et des orifices latéraux d'admission (111) et d'échappement (112) ainsi que des orifices périphériques d'admission (117) et d'échappement (118). Un arbre de commande (9) comportant en alternance des tronçons (92, 93) de diamètres différents et reliés entre eux par des surfaces de transition (94), est agencé pour coulisser dans l'alésage longitudinal (19). A la surface latérale (11, 12) de chaque rotor (10) sont agencés des premiers et seconds moyens (30, 40, 50) pour couvrir partiellement et découvrir de manière réglable les orifices latéraux (111, 112) et périphériques (117, 118), lesdits moyens (30, 40, 50) sont agencés de manière à coopérer avec les tronçons (92, 93) et les surfaces de transition (94) de l'arbre de commande.

Description

DISPOSITIF POUR DISTRIBUTION ROTATIVE
Domaine technique
La présente invention se rapporte à un dispositif pour distribution rotative, en particulier dans les moteurs à combustion interne.
La distribution rotative est utilisée pour pallier les inconvénients liés à l'utilisation de soupapes. L'in¬ convénient majeur de la distribution par soupapes rési- de dans le fait qu'au-delà d'un certain régime du mo¬ teur, la durée de rappel des soupapes est pratiquement constante par rapport à la vitesse de rotation du mo¬ teur, parce que le rappel se fait sous l'action d'un ressort de force constante. En outre, les soupapes sont bruyantes et elles gênent le passage des gaz en les forçant à parcourir autour d'elles un trajet sinueux. Par ailleurs, dans leur mouvement typiquement alterna¬ tif, la levée et l'abaissement des soupapes commencent ou se terminent progressivement, de sorte que les gaz subissent localement une compression au début ou à la fin du mouvement. On a donc cherché à se libérer des soupapes en utilisant des dispositifs de distribution rotative.
Technique antérieure
Les dispositifs de distribution rotative connus pré¬ sentent l'inconvénient d'être d'une réalisation déli- cate ou d'avoir des passages de gaz trop étroits pour permettre la circulation facile de ceux-ci. A cet égard, un dispositif de distribution des gaz de combustion utilisant uniquement des pièces rotatives se trouve décrit dans le document FR-A-2 417 636. Il s'agit principalement d'un dispositif de distribution rotative pour moteurs à quatre temps comprenant un dis¬ tributeur rotatif avec des orifices d'admission et d'échappement des gaz qui présentent une ouverture préétablie. Un canal de transfert réunit les deux orifices suivant une courbe adaptée pour permettre un passage commode des gaz.
L'inconvénient de ce dispositif de distribution rota¬ tive connu est que l'ouverture des orifices d'admission et d'échappement est préétablie. Cela a pour effet que, lorsque la vitesse de rotation du distributeur rotatif augmente, le débit de gaz a tendance à diminuer suite à une réduction de passage effectif par les orifices d'admission et d'échappement liée à une augmentation de la vitesse de rotation. Il en résulte une limitation considérable de la possibilité d'augmentation rapide de la vitesse de rotation du moteur ainsi que de l'éléva¬ tion du régime de rotation du moteur.
Exposé de l'invention
La présente invention a pour but d'éliminer l'inconvé¬ nient précité. A cet effet, il est proposé un disposi¬ tif de distribution rotative comprenant au moins un rotor pourvu d'un alésage central longitudinal et pré- sentant des orifices latéraux d'admission et d'échappe¬ ment, ainsi que des orifices périphériques d'admission et d'échappement. Un arbre de commande présente en al¬ ternance des tronçons ayant des diamètres différents, ces tronçons étant reliés entre eux par des surfaces de transition. L'arbre de commande est agencé à coulissement dans l'alésage. A la surface latérale de chaque rotor, des premiers moyens sont prévus pour couvrir partiellement et de manière réglable les orifices latéraux et des seconds moyens sont prévus pour couvrir au moins par¬ tiellement et de manière réglable les orifices péri¬ phériques, lesdits premiers et seconds moyens étant agencés de manière à coopérer avec les tronçons et les surfaces de transition de l'arbre de commande.
Les premiers moyens précités permettent de couvrir ou de découvrir, suivant un réglage préétabli du système, une portion réglable des orifices latéraux du distribu¬ teur rotatif. Par ailleurs, les seconds moyens précités permettent une adaptation des orifices périphériques du distributeur rotatif suivant l'invention.
Le dispositif de distribution rotative suivant l'inven¬ tion offre ainsi l'avantage considérable de présenter des orifices d'admission et d'échappement et des orifi¬ ces périphériques qui présentent une géométrie variable et adaptable suivant les besoins instantanés. Cela per¬ met une croissance plus rapide de la vitesse de rota¬ tion ainsi qu'une élévation accrue du régime de rota- tion du moteur. Le fonctionnement plus régulier du dis¬ positif ainsi obtenu assure en outre une réduction de la consommation spécifique d'énergie. De plus, l'agen¬ cement à géométrie variable précité permet, à l'admis¬ sion, une avance par rapport au point mort haut (PMH) et un retard par rapport au point mort bas (PMB) et, à l'échappement, une avance par rapport au PMB et un re¬ tard par rapport au PMH.
De manière générale, le dispositif de distribution ro- tative selon l'invention s'applique à un moteur à combustion interne, quel qu'en soit le nombre de cylin¬ dres, et en particulier aux moteurs à quatre temps (essence, injection essence, injection diesel ou au¬ tres) , par exemple des moteurs de hors-bord, pour véhicule automobile, moto, aéronef, etc.
D'autres avantages et particularités de l'invention ressortiront de la description qui suit, accompagnée de dessins.
Brève description des dessins
La figure 1 représente une vue latérale en arrachement, d'un dispositif de distribution rotative suivant l'in¬ vention.
La figure 2 représente une vue en coupe partielle du dispositif de la figure 1. Les figures 3 et 4 représentent des vues en perspective avant et arrière d'un rotor du dispositif suivant la figure 1.
La figure 5 représente une vue à brisures partielles, à échelle agrandie, d'un rotor chevauchant un arbre de commande. La figure 6 représente une vue en coupe transversale d'un rotor de la figure 3, montrant des premiers moyens de couverture de l'orifice d'admission du rotor au ré¬ gime de rotation minimum. La figure 7 représente une vue analogue à celle de la figure 6, montrant des seconds moyens de couverture d'orifices périphériques du rotor au régime de rotation minimum.
La figure 8 représente une vue analogue à celle de la figure 6, montrant les premiers moyens de couverture de l'orifice d'échappement du rotor au régime de rotation maximum.
Les figures 9 à 12 représentent chacune une vue schéma¬ tique d'un rotor dans une position de rotation détermi¬ née par rapport au cylindre correspondant, au régime de rotation minimum.
Les figures 13 à 16 représentent des vues schématiques analogues à celles des figures 9 à 12 respectivement, au régime de rotation maximum.
Description d'un exemple de réalisation de l'invention
La figure 1 montre une vue d'ensemble d'un dispositif conforme à l'invention, monté sur un bloc-moteur com- prenant quatre cylindres 20 en ligne. La culasse du moteur est composée d'une demi-culasse supérieure 1 et d'une demi-culasse inférieure 2 et renferme quatre rotors pratiquement identiques 10, agencés en série et surmontant chacun un cylindre 20.
La demi-culasse inférieure 2 comporte des chambres de compression ayant le volume nécessaire au taux de com¬ pression souhaité. Des bougies 18 ou des chambres de précompression et des bougies de préchauffage pour le moteur diesel prendront également place dans la demi- culasse inférieure 2.
L'admission s'effectue par trois conduits 115 donnant sur une face latérale de la demi-culasse supérieure 1 située à l'avant par rapport au plan du dessin. Ces mêmes conduits 115 traversent la demi-culasse inférieu¬ re 2 et aboutissent dans des logements réservés aux rotors 10. L'échappement s'effectue par deux conduits 116 partant des logements réservés aux rotors 10 dans la demi-culasse supérieure l. Ces deux conduits 116 aboutissent sur l'autre face latérale de la demi- culasse supérieure 1 située à l'arrière par rapport au plan du dessin. Les admissions s'effectuent donc d'un côté de la culasse et les échappements de l'autre.
Les rotors 10 sont régulièrement décalés l'un par rap¬ port à l'autre afin de conserver un ordre d'allumage prédéterminé ainsi que l'équilibre de masse de l'ensem¬ ble des rotors 10. Dans l'exemple illustré, les rotors, au nombre de quatre, sont décalés d'un quart de tour l'un par rapport à l'autre pour réaliser un ordre d'al¬ lumage dit 1-3-4-2. Les rotors 10 sont prévus pour tourner dans un rapport de réduction de 1/2 par rapport à la vitesse de rotation du vilebrequin 3 au moyen d'un élément de transmission 4 tel qu'une courroie crantée par exemple, une chaîne de distribution ou des pignons. Les rotors 10 sont directement reliés au vilebrequin 3.
Ainsi qu'il ressort de la figure 2, les rotors 10 sont, conformément à l'invention, couplés à un arbre de co - mande 9 qui présente à intervalles réguliers sur toute sa longueur, des tronçons 92 de diamètre inférieur al¬ ternant avec des tronçons 93 de diamètre supérieur. La transition entre les tronçons 92 de diamètre inférieur et les tronçons 93 de diamètre supérieur est de préfé- rence pratiquement linéaire et forme un angle avec l'axe de l'arbre de commande 9, créant ainsi un jeu de rampes 94. L'arbre 9 est agencé pour coulisser dans les rotors 10.
L'arbre de commande 9 coopère avec et agit sur des moyens agencés pour couvrir partiellement et découvrir de manière réglable les orifices d'admission et d'échappement des rotors. Avant de décrire ce mécanisme en détails, on se repor¬ tera aux figures 3 et 4 qui représentent des vues en perspective, respectivement côté admission et côté échappement, de l'un des rotors 10. Le rotor consiste en un corps de forme pratiquement cylindrique présen¬ tant deux surfaces latérales 11, 12 et une surface pé¬ riphérique 13. Chacune des surfaces latérales 11, 12 présente des orifices d'admission 111 et d'échappement 112. La surface périphérique 13 présente, quant à elle, deux orifices périphériques, l'un d'admission 117 et l'autre d'échappement 118 également visibles sur la figure 1, lesquels sont destinés à communiquer avec l'un des quatre cylindres 20 en face duquel le rotor 10 est agencé. Les orifices 111, 112, 117, 118 précités sont en communication l'un avec l'autre par l'intermé¬ diaire de canaux intérieurs d'admission 113 et d'échap¬ pement 114. Les canaux intérieurs d'admission 113 et d'échappement 114 sont formés dans la masse usinée ou moulée du rotor 10.
Sur son axe longitudinal, chacun des rotors 10 est per¬ cé de part en part d'un alésage central longitudinal 19 et il présente des embouts pratiquement cylindriques 60 faisant saillie par rapport aux surfaces latérales 11, 12 à partir desquelles il s'étend. Les embouts 60 se terminent par des extrémités en relief permettant un emboîtement fiable des différents rotors 10 placés en ligne. Un emboîtement simple constructivement, qui est à la fois sûr et rapide, consiste en un jeu de tenons 61 et de mortaises 62 croisés approximativement à un angle de 360/n (où n représente le nombre de cylindres) respectivement côté admission et côté échappement, ou inversement. Dans l'exemple d'un moteur à quatre cylin¬ dres comme illustré dans les dessins, l'angle de croi- sèment est de 90° environ. Les rotors 10 sont ainsi rendus solidaires les uns des autres par tenons- mortaises 61, 62 autour de l'arbre de commande 9. Des moyens de support,63 sont agencés de manière périphéri¬ que par rapport aux embouts 60 : ils consistent par exemple en coussinets sur lesquels les embouts 60 reposent par l'intermédiaire de demi-coquilles. Des bourrages 64 sont également prévus pour permettre l'étanchéité de la lubrification des moyens de support 63. Il ressort encore clairement des figures 3 et 4 que les orifices latéraux d'admission et d'échappement sont décalés l'un par rapport à l'autre.
Les rotors 10 sont avantageusement fabriqués à partir de matériaux composites à noyaux métalliques ou à par- tir de céramiques ou de carbone-carbone, par exemple. Ils peuvent également être fabriqués à partir de maté¬ riaux classiques ainsi que de matériaux divers.
Revenant à la figure 2, l'arbre de commande 9 coopère avec un système de tiges telles que 38, 48, 58 agencées pour transmettre le mouvement de coulissement de l'ar¬ bre de commande 9 à des organes agencés pour décrire des mouvements de rotation ou de va-et-vient transver- sal (par exemple les organes 31, 131, 51, 151 et 41, 141 visibles sur les figures 5 à 8) ainsi qu'il sera exposé de manière détaillée plus loin. Les tiges repré¬ sentées schématique ent sur la figure 2 sont disposées pratiquement radialement et perpendiculairement à l'ar- bre de commande 9, à hauteur de l'admission et de l'échappement de chaque rotor 10 ainsi qu'au centre de ceux-ci. Les tiges situées côté admission (par exemple 38 et 138) et côté échappement (par exemple 58 et 158) sont agencées par paire, les tiges de chaque paire for- ant entre elles un angle inférieur à 180°, de préfé- rence un angle compris entre 100 et 140° ainsi qu'il ressort des figures 6 et 8. Les paires de tiges à l'admission 38, 138 et à l'échappement sont décalées l'une par rapport à l'autre ainsi qu'il ressort de la figure 7. Dans le plan central de chaque rotor 10 n'est prévu qu'une seule tige 48 (voir figure 7) . Chaque tige vient en appui par l'une de ses extrémités sur l'arbre de commande 9.
La figure 5 illustre l'engagement de l'arbre de comman¬ de 9 dans l'alésage 19 de l'un des rotors 10, les tiges 38, 48, 58, (138, 158) se trouvant dans une position limite de transition entre un tronçon 92 ou 93 et une surface de transition 94 de l'arbre de commande 9. L'angle o des surfaces de transition 94 est compris de préférence entre 30 et 50°, par exemple 45°, permettant ainsi un passage progressif et en douceur des tiges 38, 138, 48, 58, 158 d'un tronçon à l'autre de l'arbre de commande 9. A cet égard, l'extrémité précitée des tiges présente avantageusement une forme arrondie, à la ma¬ nière d'un doigt.
L'orifice périphérique d'admission 117 laisse apparaî¬ tre les moyens-de couverture variable 40 des orifices périphériques d'admission 117 et d'échappement 118, ces moyens consistant par exemple en un dispositif à cla¬ pets comprenant un clapet d'admission et un clapet d'échappement coopérant chacun avec la tige 48. Sur la figure, la tige 48 est en position de retrait par rap- port à l'arbre de commande 9, tandis que les tiges d'admission 38, 138 et d'échappement 58, 158 sont en position engagée par rapport à l'arbre de commande. Le dispositif à clapets 40 sera décrit plus loin à l'aide de la figure 7. Les deux paires de tiges 38, 138 et 58, 158 font respectivement partie des moyens de couverture d'admission 30 et d'échappement 50, lesquels seront dé¬ crits plus loin à la lumière des figures 6 et 8.
Sur la surface périphérique 13 sont prévues des rainu- res 81, 82, 83 s'étendant pratiquement transversalement et longitudinalement par rapport à l'axe longitudinal du rotor 10. Les rainures transversales 81, 82 et lon¬ gitudinales 83 sont destinées à loger des joints de compression permettant d'assurer une excellente étan- chéité à l'ensemble. Toutefois, il est également possi¬ ble de réaliser les rotors 10 en une matière qui permet à ceux-ci de faire office de joint d'étanchéité, ce qui simplifierait la fabrication des rotors 10.
Les moyens de couverture variable 30 situés côté admis¬ sion pour régler la lumière de l'orifice latéral d'ad¬ mission 111 du rotor 10 suivant l'invention sont repré¬ sentés sur la figure 6. Ces moyens de couverture varia¬ ble comprennent la paire de tiges d'admission 38, 138 et au moins un bras pivotant 31, 131 coopérant chacun avec une tige d'admission respective. L'exemple illus¬ tré comporte deux bras pivotants 31 et 131. Ceux-ci sont destinés à régler l'ouverture de l'orifice latéral d'admission 111 en pivotant autour des pivots 33 et 133, entre une position de contact mutuel et une posi¬ tion écartée, en fonction de la position des tiges d'admission 38, 138 par rapport à l'arbre de commande 9. Les moyens de couverture variable d'admission 30 sont agencés dans un évidement 85 qui sont destinés à former un guidage pour le mouvement de va-et-vient des tiges. Les tiges d'admission 38, 138 en forme de doigt s'étendent dans des alésages radiaux 34, 134 qui sont percés dans la masse du rotor 10, de la surface péri¬ phérique 13 de celui-ci jusqu'à l'alésage longitudinal 19 et qui sont destinés à former un guidage pour le mouvement de va-et-vient des tiges. Les tiges d'admis¬ sion 38, 138 forment un élément de liaison par contact, qui est mobile, entre l'arbre de commande 9 et un côté des bras pivotants 31, 131. Dans le prolongement des tiges 38, 138 sont prévus des poussoirs 36, 136 qui sont pourvus d'un moyen de rappel 37, 137, par exemple un ressort. Les poussoirs 36, 136 sont déplaçables à va-et-vient dans les alésages radiaux 34, 134 et ils sont destinés à agir sur les bras pivotants 31, 131, en particulier sur la partie redressée 73. Le tout est rendu solidaire par un moyen de fixation 39, 139 logé dans l'alésage radial 34, 134, par exemple une vis de maintien obturant les poussoirs 36, 136 depuis la sur¬ face périphérique du rotor.
La forme et les dimensions de l'évidement 85 sont pré¬ vues de manière à assurer un libre mouvement de rota¬ tion mutuel des bras pivotants 31, 131, dans l'évide¬ ment 85 autour de pivots 33, 133. Chaque bras pivotant 31, 131 présente une surface tournée vers l'autre bras pivotant, désignée ci-après surface intérieure du bras, ainsi qu'une surface opposée, désignée ci-après surface extérieure du bras. Les bras pivotants 31, 131 présen¬ tent une forme en faucille dont le tranchant formant zone de contact 72 entre les surfaces intérieures pré¬ citées présente une échancrure 35, 135. La forme et la dimension des échancrures 35, 135 sont prévues de manière à laisser une ouverture 32 entre les deux bras pivotants 31, 131, quelle que soit la position relative des bras pivotants 31, 131. A cette fin, les échancru¬ res 35, 135 présentent avantageusement la forme d'un demi-cercle dont le rayon correspond pratiquement à celui du demi-cercle générateur de l'orifice latéral d'admission 111. Sur le bord intérieur des bras pivotants 31, 131 en forme de faucille, il est avantageusement prévu un bourrelet 71 s'étendant le long des échancrures respectives 35, 135. De préférence, les bourrelets pré- cités forment corps avec les bras pivotants comme visi¬ ble sur la figure 5. Les bras pivotants 31, 131 sont agencés de manière que l'ouverture 32 coïncide sensi¬ blement avec l'orifice latéral d'admission 111 en position écartée des bras pivotants 31, 131 correspon- dant à un régime de rotation opérationnel. La largeur de l'évidement 85, mesurée suivant l'axe longitudinal du rotor 10, est prévue de manière à assurer un guidage irréprochable des bras pivotants 31, 131. A cette fin, les pivots 33 et 133 sont avantageusement disposés pra- tiquement radialement et en alignement avec le passage de l'axe longitudinal du rotor, le pivot 33 du bras pivotant 31 étant prévu entre l'autre pivot 133 et le passage de l'axe précité.
Par ailleurs, la portion de manche 73 du bras pivotant 31 est coudée de sorte que le bras pivotant 31 ne soit pas entravé dans son mouvement de rotation par la par¬ tie centrale non évidée 99, laquelle entoure complète¬ ment l'alésage central 19. En revanche, la portion de manche du bras pivotant 131 est droite. Les positions d'écartement extrême de la partie de manche du bras pivotant 131 et de la partie de manche 73 du bras pivo¬ tant 31 déterminent la forme de l'évidement 85 prati¬ quement en secteur angulaire ayant pour sommet un point situé sur la droite reliant les pivots 33 et 133, légè¬ rement à l'extérieur du pourtour du rotor 10. L'évide¬ ment 85 en secteur angulaire est pratiquement symétri¬ que par rapport à la droite reliant les pivots 33 et 133, qui partage le secteur angulaire en deux zones sensiblement de même grandeur qui forme une zone de mouvement pour chaque bras pivotant. L'angle au sommet du secteur angulaire correspond pratiquement à l'angle d'écartement maximum des bras pivotants 31 et 131, lequel est, de préférence, compris entre 45° et 75°, par exemple 60°. Cet agencement a pour effet que les deux bras pivotants tournent dans un même plan permet¬ tant ainsi de réduire la largeur de l'évidement 85 assurant ainsi un guidage parfait des bras pivotants 31, 131.
A l'état d'admission à rotation minimum illustré par la figure 6, les tiges d'admission 38, 138 s'appuient par leur extrémité arrondie sur un tronçon de diamètre in¬ férieur 92 de l'arbre de commande 9 et les bras pivo- tants 31, 131 sont maintenus en contact avec l'extrémi¬ té opposée des tiges d'admission 38, 138 par les pous¬ soirs 36, 136 sous l'action de moyens de rappel 37, 137. Avantageusement, l'extrémité de contact des pous¬ soirs 36, 136 avec les bras pivotants présente une for- me arrondie pour assurer un meilleur contact entre les poussoirs et les bras lors de la rotation de ceux-ci.
Lorsque les bras 31 et 131 se trouvent rapprochés, po¬ sition correspondant à un régime de ralenti, l'ouvertu- re 32 laissée par les bras pivotants 31, 131 se rejoi¬ gnant et représentée en trait mixte, ne couvre que par¬ tiellement l'orifice latéral d'admission 111, limitant ainsi l'ouverture utile de l'orifice. En revanche, lorsque les bras pivotants 31, 131 sont écartés, l'ou- verture 32 découvre entièrement l'orifice latéral d'ad¬ mission 111 de manière à obtenir une ouverture utile maximale pour l'orifice considéré. On obtient ainsi une possibilité de réglage de l'ouverture minimale et maxi¬ male grâce à un écartement réglable des bras pivotants 31, 131. La forme des orifices 111, 112, 117, 118 est étudiée de manière à assurer un excellent écoulement des gaz de combustion. Il en va de même pour les canaux intérieurs 113, 114 dont la section est suffisamment large pour assurer, de concert avec le mouvement de rotation continu des rotors 10, notamment un gain de puissance sensible pour le moteur.
En particulier, les orifices latéraux d'admission 111 et d'échappement 112 présentent la forme d'un haricot obtenue par le déplacement des deux moitiés d'un cercle sur un arc de cercle ayant une ouverture angulaire com¬ prise entre 5° et 45° environs, par exemple. Le contour des orifices latéraux 111 et 112 est alors formé par les deux demi-cercles déplacés l'un par rapport à l'au¬ tre et des arcs de cercle reliant les extrémités oppo¬ sées des demi-cercles ayant pour centre le pivot de rotation. Le contour des ouvertures périphériques 117, 118 correspond à celui d'une languette aux extrémités arrondies et aux côtés latéraux parallèles s'étendant transversalement à l'axe du rotor 10, sur un angle de 180° environ, par exemple.
La figure 7 illustre la configuration interne particu- lière du rotor 10 vue depuis le plan médian de celui- ci. On y distingue notamment le parcours des mélanges gazeux à l'intérieur du rotor 10 entre le prolongement des orifices latéraux d'admission 111 et d'échappement 112 par les canaux intérieurs d'admission 113 et d'échappement 114, en passant par les orifices périphé¬ riques d'admission 117 et d'échappement 118. Il ressort de la figure 7 que les orifices latéraux d'admission 111 et d'échappement 112 sont décalés l'un par rapport à l'autre de façon que leurs prolongements dans le plan médian de la figure ne se chevauchent pas tout en n'étant séparés que d'une étroite portion de matière 16. Les canaux intérieurs d'admission 113 et d'échappe¬ ment 114 sont prévus de manière à laisser une saillie de matière 14 s'étendant depuis la portion étroite de matière précitée 16 jusqu'à l'alésage central 19 pour l'arbre de commande 9. Par ailleurs, les canaux 113, 114 sont formés dans la masse du rotor de manière à être complètement séparés l'un de l'autre par une partie 15 du rotor formant cloison et faisant saillie par rapport à l'élément en saillie 14 du rotor. Cette configuration assure un excellent écoulement du mélange gazeux par les canaux intérieurs 113, 114. Dans la saillie 14 et la cloison 15 précitées est percé un alésage radial 44.
L'alésage radial 44 forme un guidage pour le mouvement de va-et-vient de la tige 48 des seconds moyens de cou¬ verture 40. La cloison 15 délimite et isole les canaux intérieurs d'admission 113 et d'échappement 114 l'un par rapport à l'autre. Le mouvement de va-et-vient de la tige 48 imprimé à une extrémité de préférence arron¬ die de celle-ci par le coulissement de l'arbre de com¬ mande 9 est transmis aux clapets escamotables 41, 42 par un organe de liaison rigide 45, par exemple une cheville ou une vis, agencé entre la tige 48 et les clapets. De manière à rendre les clapets 41, 42 mutu¬ ellement solidaires dans leur mouvement, l'organe de liaison 45 est constitué d'une cheville reliant les deux clapets 41, 42 par la tige 48. Dans la cloison 15 est prévue une boutonnière 43 de manière à permettre un déplacement en va-et-vient de l'organe de liaison 45 sur une distance correspondant au moins à la différence entre les diamètres des tronçons de diamètre inférieur 92 et supérieur 93 de l'arbre de commande 9, assurant ainsi une pleine transmission du coulissement de l'ar- bre de commande 9 aux clapets 41, 42. Cette distance correspond également à la course des clapets 41, 42. A l'extrémité opposée de la tige 48, des moyens de rappel 47, par exemple un ressort, sont prévus pour agir sur la tige 48.
Ainsi, l'ouverture de chacun des orifices périphériques 117, 118 est également réglable, grâce aux seconds moyens de couverture variable 40 constitués dans l'exemple décrit du système à clapets escamotables 41, 42.
Il est encore à noter qu'il y a correspondance quant à la position angulaire de l'orifice latéral d'admission 111 sur les figures 3, 6 et 7, illustrant le fait qu'une grande partie du contour de l'orifice 111 se prolonge au-delà de l'évidement 85 jusque dans le plan médian du rotor 10, la partie restante du contour de l'orifice 111 se confondant dans le canal intérieur d'admission 113.
La figure 8 illustre une vue pratiquement analogue à celle de la figure 6, dans laquelle toutefois les moyens de couverture 50 de l'orifice latéral d'échappe- ment 112 sont représentés. Une autre différence réside dans le fait qu'il s'agit ici d'un régime de rotation maximum correspondant à une position écartée des bras pivotants 51, 151 sous l'action des tiges 58, 158. Les bras pivotants 51, 151 sont maintenus sous pression sous l'action de moyens de rappel 57, 157 agissant par l'intermédiaire de poussoirs 56, 156.
Les bras pivotants 51, 151, qui présentent une forme analogue aux bras pivotants 31, 131 décrits ci-dessus, tournent autour de pivots respectifs 53, 153 dans un évidement 86 analogue à l'évidement 85 de la figure 6, laissant entre leurs échancrures respectives 55, 155 une ouverture 52 coïncidant pratiquement avec l'orifice latéral d'échappement 112.
Par ailleurs, il y a également correspondance quant à la position angulaire de l'orifice latéral d'échappe¬ ment 112 sur les figures 4, 6 et 7. Ceci illustre le fait qu'une partie au moins du contour de l'orifice la- téral d'échappement 112 se prolonge depuis la face la¬ térale d'échappement 12 du rotor 10 jusqu'au plan mé¬ dian de celui-ci en traversant l'évidement 86. La par¬ tie restante du contour de l'orifice 112 se perd dans le canal intérieur d'échappement 114.
Avantageusement, les différents tronçons 92, 93, 94 de l'arbre de commande 9 présentent une longueur, mesurée suivant l'axe, telle que les tiges 38, 138; 48; 58, 158 se déplacent en synchronisme.
Pour assurer le réglage des moyens de couverture des orifices d'admission et d'échappement, il est prévu un dispositif de commande visible sur la figure 1, compre¬ nant un capteur 100 agencé sur la pipe d'admission 115 pour contrôler la charge et un détecteur 101 du régime de rotation du moteur. Le capteur de charge 100 et le détecteur de régime 101 aboutissent à une unité de contrôle 102 qui commande un servo- oteur 103. Celui-ci imprime un mouvement de coulissement à l'arbre de com- mande 9 suivant la direction de la flèche F à une extrémité de celui-ci, l'extrémité opposée s'appuyant contre un moyen de rappel 95, par exemple un ressort. Ainsi, par la coopération entre l'arbre de commande 9 avec sa section variable d'une part et les moyens de couverture 30, 40, 50 d'autre part, on obtient l'ac- tionne ent de ceux-ci avec ouverture ou fermeture pro¬ gressive de leurs organes de couverture 31, 131; 41, 42; 51, 151 par le mouvement de coulissement de l'ar¬ bre de commande 9. Il en résulte la faculté de réglage de la lumière des orifices latéraux d'admission 111 et d'échappement 112 ainsi que des orifices périphériques d'admission 117 et d'échappement 118. Le système de commande décrit plus haut peut avantageusement être remplacé par un système relié directement à la commande d'accélérateur.
Le fonctionnement du dispositif pour distribution rota¬ tive suivant l'invention est décrit ci-après. Les ro¬ tors 10 doivent réaliser en une rotation complète l'ensemble des temps d'un cycle du moteur, par exemple quatre temps. A l'admission, premier temps, les rotors 10 permettent un excellent remplissage des cylindres respectifs. Aux deuxième et troisième temps, les rotors 10 conservent un excellent taux de compression. A l'échappement, quatrième temps, les rotors favorisent l'évacuation des gaz brûlés. Grâce au mouvement rotatif continu et à un choix approprié de la largeur de sec¬ tion des canaux intérieurs 113, 114 des rotors 10, on obtient un gain de puissance considérable, une augmen- tation remarquable de la nervosité du moteur et une diminution appréciable des coûts de fabrication.
Par ailleurs, pour chaque temps du moteur, le rotor 10 effectue une fraction de tour, ici un quart de tour. Les figures 9 à 12 d'une part et les figures 13 à 16 d'autre part illustrent chacune un temps-moteur respec¬ tivement au régime de rotation minimum et au régime de rotation maximum.
Dans le premier temps, l'admission s'effectue alors que le rotor 10 se situe dans une position déterminée. L'orifice d'admission 111 situé sur la face latérale d'admission 11 du rotor se trouve en face du conduit d'admission 115 de la culasse. Au même moment, l'orifi- ce périphérique d'admission 117, situé sur la surface périphérique 13 du rotor se positionne en face de l'orifice 22 de la chambre de compression 21 du cylin¬ dre 20. L'orifice latéral d'admission 111 et l'orifice périphérique d'admission 117 communiquent entre eux par le canal intérieur d'admission 113. Cette position du rotor 10 permet le remplissage complet et parfait du cylindre 20 suivant la flèche désignée par la lettre A. Le mélange gazeux 150 ou l'air passera donc à travers le rotor 10 par l'intermédiaire des orifices précités. Ce temps-moteur s'effectue pendant la première rotation d'un quart de tour du rotor 10. Pendant ce quart de tour, on passera progressivement d'une fermeture à une ouverture totale puis à une fermeture complète des orifices précités.
Pour les deuxième et troisième temps, la compression - explosion et la détente dont la poussée est représentée par les flèches désignées par les lettres C et D res¬ pectivement, L^orifice 22 de la chambre de compression 21 du cylindre 20 doit être fermé. Aussi, la surface périphérique 13 du rotor 10 qui passe devant l'orifice 22 du cylindre 20 est-elle pleine (zone pleine de la surface périphérique 13 du rotor désignée par la ré¬ férence 17 sur les figures 3 et 4) . Les joints placés le cas échéant sur le rotor 10 contribuent à maintenir toute la compression dans le cylindre 20.
Quant au quatrième temps, l'échappement, il s'effectue lorsque l'orifice d'échappement 112 situé sur la face latérale d'échappement 12 du rotor 10 se trouve en face du conduit d'échappement 116 de la culasse et que l'orifice périphérique d'échappement sur la surface périphérique 13 du rotor se positionne en face de l'orifice 22 de la chambre de compression 21 du cylin- dre 20. Les orifices d'échappement latéral 112 et péri¬ phérique 118 du rotor, communiquant entre eux par le canal intérieur d'échappement 114, la position du rotor
10 permet une évacuation complète et parfaite des gaz brûlés suivant la flèche désignée par la lettre E.
Les orifices situés sur les faces latérales et périphé¬ rique du rotor 10 laissent passer une certaine quantité de masse gazeuse. Lorsque la vitesse de rotation aug¬ mente, ces mêmes orifices laissent passer moins de mé- lange gazeux si les dimensions de ceux-ci restent in¬ changées. Cela révèle l'avantage tout à fait considéra¬ ble de la géométrie variable des orifices du rotor, obtenue grâce au dispositif suivant la présente inven¬ tion. C'est ainsi qu'avec le présent dispositif, plus la vitesse de rotation augmente, plus les orifices s'agrandissent, ceci afin de conserver le même débit et donc la même quantité de masse gazeuse. Ainsi donc, sur les surfaces latérales 11, 12 du rotor, le système de bras pivotants découvre une plus grande portion des orifices latéraux correspondants. Il en est de même pour la surface périphérique 13 du rotor. A cet en¬ droit, ce sont les clapets escamotables qui permettent d'agrandir la surface de l'ouverture des orifices péri¬ phériques en fonction de l'augmentation de la vitesse de rotation.
11 faut considérer qu'au régime de ralenti, le système à clapets 40 et le système de faucilles 30, 50 sont en position fermée et s'ouvrent progressivement dès que le régime de rotation augmente pour être complètement ou¬ verts au régime maximum. Un autre avantage important résulte de l'agencement à géométrie variable des orifices latéraux 111, 112 et périphériques par le fait qu'elle permet une extension angulaire des temps d'admission et d'échappement, les- quels correspondent normalement chacun à un quart de tour, c'est-à-dire 90° dans l'exemple décrit. Grâce à l'agencement à géométrie variable précité, on obtient à l'admission une avance allant jusqu'à 10° par exem¬ ple avant le point mort haut (PMH) et un retard allant jusqu'à 20° par exemple après le point mort bas (PMB) , soit une extension angulaire totale pour le temps- moteur d'admission d'environ 30° par rapport au quart de tour. Côté échappement, on obtient une avance allant jusqu'à 20° par exemple avant le point mort bas (PMB) , et un retard allant jusqu'à 10° par exemple après le point mort haut (PMH) , soit une extension angulaire totale pour le temps-moteur d'échappement d'environ 30° par rapport au quart de tour.
Les moyens de couverture 30, 40, 50 décrits ci-dessus comprenant des tiges 38, 138; 48; 58, 158, qui com¬ mandent l'ouverture des bras pivotants 31, 131; 51, 151 ainsi que la levée des clapets 41, 42 contre la surface périphérique du rotor 10, peuvent être avanta- geusement remplacés par un système hydraulique. Plus la charge d'admission et plus la rotation du moteur sont élevées, plus la pression d'huile moteur est forte. Aussi, cette pression agissant sur des micro-vérins peut-elle effectuer les même tâches. La réalisation des ouvertures tient initialement compte de faibles pertes. Celles-ci ne peuvent s'amplifier. Une correction ini¬ tiale sur les ouvertures peut donc être envisagée afin de maintenir un débit très précis.
II est entendu que la présente invention ne se limite nullement aux formes de réalisation décrites ci-dessus.

Claims

REVENDICATIONS
1. Dispositif pour distribution rotative comprenant au moins un rotor (10) pourvu d'un alésage central longi¬ tudinal et présentant des orifices latéraux d'admission (111) et d'échappement (112) ainsi que des orifices pé- riphériques d'admission (117 et d'échappement (118) , caractérisé en ce qu'il comprend un arbre de commande (9), qui présente en alternance des tronçons (92, 93) ayant des diamètres différents et étant reliés entre eux par des surfaces de transition (94) , ledit arbre (9) étant agencé à coulissement dans l'alésage central, et à la surface latérale (11, 12) de chaque rotor (10) , des premiers moyens (30, 50) pour couvrir partiellement et de manière réglable les orifices latéraux (111, 112) et des seconds moyens (40) pour couvrir au moins par¬ tiellement et de manière réglable les orifices périphé¬ riques (117, 118), lesdits premiers et seconds moyens (30, 40, 50) étant agencés de manière à coopérer avec les tronçons (92, 93) et les surfaces de transition (94) de l'arbre de commande (9).
2. Dispositif suivant la revendication 1, caractérisé en ce que les premiers moyens (30, 50) précités com¬ prennent chacun deux premiers organes de transmission (38, 138; 58, 158), des moyens de rappel (37, 137; 57, 157), deux bras pivotants (31, 131; 51, 151) agencés pour coopérer ensemble de manière à former un diaphrag¬ me réglable suivant l'écartement des deux bras pivo¬ tants (31, 131; 51, 151) , les premiers organes de transmission (38, 138; 58, 158) étant agencés pour faire pivoter mutuellement les bras pivotants (31, 131; 51, 151).
3. Dispositif suivant la revendication 2, caractérisé en ce que les bras pivotants (31, 131; 51, 151) présen¬ tent chacun à leur extrémité libre une saillie qui s'étend depuis les bras pivotants (31, 131; 51, 151) vers les bras pivotants opposés (51, 151; 31, 131) et qui est pourvue d'une échancrure (35, 135; 55, 155) , lesdites échancrures (35, 135; 55, 155) étant orientées l'une (35; 55) vers l'autre (135; 155) de manière que l'ouverture (32; 52) formée entre les échancrures res- pectives chevauche les orifices latéraux d'admission (111) et d'échappement (112) .
4. Dispositif suivant l'une des revendications 1 à 3, caractérisé en ce que les premiers organes de transmis- sion sont formés par des premières tiges (38, 138; 58, 158) orientées radialement dont une extrémité s'appuie sur la surface périphérique de l'arbre de commande (9) , lesdites premières tiges étant agencées à coulissement radial et s'appuyant sur l'arbre de commande (9) , l'ex- trémité opposée des premières tiges précitées étant agencée pour écarter mutuellement les bras pivotants (31, 131; 51, 151), et en ce que des poussoirs (36, 136; 56, 156) sont agencés dans le prolongement des tiges (38, 138; 58, 158) pour ramener les bras pivo- tants (31, 131; 51, 151) l'un vers l'autre sous l'ac¬ tion des moyens de rappel précités (37, 137; 57, 157).
5. Dispositif suivant l'une quelconque des revendica¬ tions 1 à 4, caractérisé en ce que les seconds moyens précités (40) comprennent au moins un clapet (41, 42) , un deuxième organe de transmission (48) agencé pour dé¬ placer radialement vers la surface périphérique (13) du rotor le ou les clapets (41, 42) et un moyen de rappel (47) destiné à ramener le ou les clapets (41, 42) vers l'intérieur du rotor (10).
6. Dispositif suivant la revendication 5, caractérisé en ce que le deuxième organe de transmission (48) est formé par une deuxième tige orientée radialement dont l'une des extrémités s'appuie sur la surface périphéri- que de l'arbre de commande (9) et l'autre extrémité coopère avec le moyen de rappel (47) , ladite deuxième tige étant agencée à coulissement radial et synchronisé avec les premières tiges (38, 138; 58, 158).
7. Dispositif suivant l'une quelconque des revendica¬ tions 1 à 6, caractérisé en ce que les surfaces de transition (94) présentent une allure tronconique sui¬ vant l'axe de l'arbre de commande (9) avec une orienta¬ tion alternée.
8. Rotor pour dispositif suivant l'une quelconque des revendications 1 à 7, pourvu d'un alésage central lon¬ gitudinal et présentant des surfaces latérales d'admis¬ sion (11) et d'échappement (12) , munies d'orifices la- téraux d'admission (111) et d'échappement (112) , ainsi qu'une surface périphérique (13) munie d'orifices péri¬ phériques d'admission (117) et d'échappement (118) s'étendant sur une partie de la surface périphérique (13) transversalement par rapport à l'axe du rotor, ca- ractérisé en ce qu'il comprend à chaque surface latéra¬ le (11, 12), des premiers moyens (30, 50) pour couvrir partiellement et de manière réglable les orifices laté¬ raux (111, 112) et des seconds moyens (40) pour couvrir au moins partiellement et de manière réglable les ori- fices périphériques (117, 118).
9. Rotor suivant la revendication 8, caractérisé en ce que les premiers moyens (30, 50) précités comprennent chacun deux premiers organes de transmission (38, 138; 58, 158), des moyens de rappel (37, 137; 57, 157), deux bras pivotants (31, 131; 51, 151) agencés pour coopérer ensemble de manière à former un diaphragme réglable suivant l'écartement des deux bras pivotants (31, 131; 51, 151), les premiers organes de transmission (38, 138; 58, 158) étant agencés pour faire pivoter mutelle- ment les bras pivotants (31, 131; 51, 151) .
10. Rotor suivant la revendication 9, caractérisé en ce que chaque bras pivotant (31, 131; 51, 151) présente à son extrémité libre une partie qui s'étend vers le bras pivotant opposé et est pourvue d'une échancrure (35, 135; 55, 155), les échancrures des bras opposés (par exemple 35 et 135; 55 et 155) étant orientées l'une vers l'autre de manière que l'ouverture (32; 52) formée entre les échancrures correspondantes chevauche l'ori¬ fice latéral d'admission (111) ou d'échappement (112) .
11. Rotor suivant l'une quelconque des revendications 8 à 10, caractérisé en ce que les premiers organes de transmission sont formés par des premières tiges (38, 138; 58, 158) agencées à coulissement radial pour écar¬ ter mutuellement les bras pivotants (31, 131; 51, 151) , et en ce que des poussoirs (36, 136; 56, 156) sont agencés dans le prolongement des tiges (38, 138; 58, 158) pour ramener les bras pivotants (31, 131; 51, 151) l'un vers l'autre sous l'action des moyens de rappel précités (37, 137; 57, 157).
12. Rotor suivant l'une quelconque des revendications 8 à 11, caractérisé en ce que les seconds moyens préci¬ tés (40) comprennent au moins un clapet (41, 42) , un deuxième organe de transmission (48) agencé pour dépla¬ cer radialement vers la surface périphérique (13) du rotor le ou les clapets (41, 42) et un moyen de rappel (47) destiné à ramener le ou les clapets (41, 42) vers l'intérieur du rotor (10).
13. Rotor suivant la revendication 12, caractérisé en ce que le deuxième organe de transmission (48) est for¬ mé par une deuxième tige orientée radialement dont l'une des extrémités coopère avec le moyen de rappel (47) , ladite deuxième tige étant agencée à coulissement radial et synchronisé avec les premières tiges (38, 138; 58, 158).
14. Rotor suivant l'une quelconque des revendications 8 à 13, caractérisé en ce qu'il comprend au moins une rainure transversale (81, 82) et/ou longitudinale (83) par rapport à son axe destinée à loger un élément d'étanchéité.
15. Rotor suivant l'une quelconque des revendications 8 à 14, caractérisé en ce qu'il présente sur chaque surface latérale (11, 12) un embout (60) central et longitudinal, se terminant à chacune des surfaces la¬ térales (11, 12) par des éléments d'emboîtement (61, 62).
16. Rotor suivant la revendication 15, caractérisé en ce que les éléments d'emboîtement sont formés à l'une des surfaces latérales précitées (11, 12) par un tenon (61) et à l'autre par une mortaise (62) , ceux-ci se croisant approximativement à un angle de 360/n, où n représente le nombre de cylindres.
17. Rotor suivant l'une quelconque des revendications 8 à 16, caractérisé en ce que les orifices latéraux d'admission (111) et d'échappement (112) présentent pratiquement la forme d'un haricot s'étendant de maniè¬ re périphérique et dont le dos est tourné vers l'exté¬ rieur.
18. Rotor suivant l'une quelconque des revendications 8 à 17, caractérisé en ce que les orifices périphéri¬ ques d'admission (117) et d'échappement (118) présen¬ tent un contour ayant pratiquement la forme d'une lan¬ guette aux extrémités arrondies vers l'extérieur, gau- chie longitudinalement.
19. Rotor suivant l'une quelconque des revendications 8 à 18, caractérisé en ce que les orifices latéraux d'admission (111) et d'échappement (112) sont décalés l'un par rapport à l'autre angulairement de manière à ce que leurs positions angulaires respectives ne se chevauchent pas et en ce que lesdits orifices latéraux (111, 112) sont respectivement reliés aux orifices pé¬ riphériques d'admission (117) et d'échappement (118) par des canaux intérieurs d'admission (113) et d'échap¬ pement (114) isolés l'un de l'autre.
20. Rotor suivant la revendication 19, caractérisé en ce que les canaux intérieurs (113, 114) sont formés dans la masse du rotor par le prolongement longitidinal des orifices latéraux précités (111, 112) jusqu'à une distance prédéterminée des surfaces latérales respecti¬ ves (11, 12) et par des conduits reliant lesdits pro¬ longements longitudinaux aux orifices périphériques (117, 118) en passant autour de l'alésage précité (19) de manière à former une saillie (14) s'étendant entre les canaux intérieurs (113, 114) précités, autour de l'alésage (19), les canaux intérieurs d'admission (113) et d'échappement étant mutuellement isolés par une cloison (15) faisant corps avec la saillie (14) préci¬ tée.
21. Rotor suivant l'une quelconque des revendications 15 à 20, caractérisé en ce que des supports sont prévus sur le pourtour des embouts (60) précités de manière à permettre un support extérieur du rotor (10) .
PCT/BE1993/000032 1992-06-10 1993-06-10 Dispositif pour distribution rotative WO1993025802A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE9200538 1992-06-10
BE9200538A BE1005985A3 (fr) 1992-06-10 1992-06-10 Dispositif pour distribution rotative.

Publications (1)

Publication Number Publication Date
WO1993025802A1 true WO1993025802A1 (fr) 1993-12-23

Family

ID=3886314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE1993/000032 WO1993025802A1 (fr) 1992-06-10 1993-06-10 Dispositif pour distribution rotative

Country Status (2)

Country Link
BE (1) BE1005985A3 (fr)
WO (1) WO1993025802A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016108A1 (fr) * 1993-12-08 1995-06-15 Mechadyne Limited Soupape a cycle variable
FR2717857A1 (fr) * 1994-03-25 1995-09-29 Huwarts Maurice Moteur à combustion interne, à obturateurs de distribution rotatifs.
US7213547B2 (en) 2004-12-14 2007-05-08 Massachusetts Institute Of Technology Valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002800A1 (fr) * 1982-02-05 1983-08-18 Richard Furneaux Kinnersly Organe de commande de l'ecoulement d'un fluide pour des moteurs a combustion interne
EP0423444A1 (fr) * 1989-10-16 1991-04-24 George J. Coates Soupapes rotatives sphériques pour moteur à combustion interne

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002800A1 (fr) * 1982-02-05 1983-08-18 Richard Furneaux Kinnersly Organe de commande de l'ecoulement d'un fluide pour des moteurs a combustion interne
EP0423444A1 (fr) * 1989-10-16 1991-04-24 George J. Coates Soupapes rotatives sphériques pour moteur à combustion interne

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016108A1 (fr) * 1993-12-08 1995-06-15 Mechadyne Limited Soupape a cycle variable
US5671706A (en) * 1993-12-08 1997-09-30 Mechadyne Limited Variable valve timing
FR2717857A1 (fr) * 1994-03-25 1995-09-29 Huwarts Maurice Moteur à combustion interne, à obturateurs de distribution rotatifs.
WO1995026460A1 (fr) * 1994-03-25 1995-10-05 Maurice Huwarts Moteur a combustion interne, a obturateurs de distribution rotatifs
US5690069A (en) * 1994-03-25 1997-11-25 Huwarts; Maurice Internal combustion engine having rotary distribution valves
US7213547B2 (en) 2004-12-14 2007-05-08 Massachusetts Institute Of Technology Valve

Also Published As

Publication number Publication date
BE1005985A3 (fr) 1994-04-12

Similar Documents

Publication Publication Date Title
EP0020249B1 (fr) Pompe d'injection pour un moteur à combustion interne
FR2487911A1 (fr)
EP0435730B1 (fr) Moteur à deux temps à injection pneumatique commandée
EP2279332B1 (fr) Moteur a combustion interne
EP0748415B1 (fr) Machine a pistons rotatifs utilisable notamment en tant que moteur thermique
EP0406079B1 (fr) Moteurs à deux temps à injection pneumatique et à restriction de debit dans au moins un conduit de transfert
WO1993025802A1 (fr) Dispositif pour distribution rotative
WO1996007817A1 (fr) Moteur deux temps a dispositif d'injection ameliore et procede d'injection associe
FR2518646A1 (fr) Moteur a combustion a piston rotatif
CA2130260A1 (fr) Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps
FR2464372A1 (fr) Procede et dispositif pour ameliorer le rendement d'un moteur a combustion interne par variation selective au taux de compression effectif selon le regime du moteur
FR2986558A1 (fr) Dispositif de commande variable d'au moins une soupape, par exemple pour un moteur alternatif
FR2717857A1 (fr) Moteur à combustion interne, à obturateurs de distribution rotatifs.
FR2662214A1 (fr) Moteur a deux temps a injection pneumatique de carburant et a commande d'injection par un boisseau rotatif.
FR2537659A1 (fr) Appareillage de pompage pour l'injection de carburant
WO2008107547A1 (fr) Moteur rotatif a losange deformable
FR2721684A1 (fr) Pompe doseuse d'huile pour moteurs à deux temps.
CA1145265A (fr) Moteur thermique a combustion interne et a injection
WO2022259147A1 (fr) Moteur à explosion rotatif et procédé de combustion associé
FR2562156A1 (fr) Systeme de soupape pour un moteur a combustion interne
FR2643945A1 (fr) Moteur rotatif a explosion comportant deux chambres cylindriques adjacentes
BE861936A (fr) Moteur a pistons
FR2656656A1 (fr) Moteur a deux temps a injection pneumatique commandee.
FR2716493A1 (fr) Machine à pistons rotatifs utilisable notamment en tant que moteur thermique.
FR2882398A1 (fr) Moteur rotatif a combustion interne a quatre temps simultanes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase