FR3038348A1 - Machine hydraulique a pistons radiaux a distribution en harmonique - Google Patents

Machine hydraulique a pistons radiaux a distribution en harmonique Download PDF

Info

Publication number
FR3038348A1
FR3038348A1 FR1556203A FR1556203A FR3038348A1 FR 3038348 A1 FR3038348 A1 FR 3038348A1 FR 1556203 A FR1556203 A FR 1556203A FR 1556203 A FR1556203 A FR 1556203A FR 3038348 A1 FR3038348 A1 FR 3038348A1
Authority
FR
France
Prior art keywords
isolation
arc
phase
cam
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1556203A
Other languages
English (en)
Other versions
FR3038348B1 (fr
Inventor
Ante Bozic
Nicolas Ternoy
Christophe Gouzou
Sebastien Gonzalez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poclain Hydraulics Industrie
Original Assignee
Poclain Hydraulics Industrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poclain Hydraulics Industrie filed Critical Poclain Hydraulics Industrie
Priority to FR1556203A priority Critical patent/FR3038348B1/fr
Priority to EP16744448.8A priority patent/EP3317537B1/fr
Priority to PCT/FR2016/051667 priority patent/WO2017001802A1/fr
Priority to CN201680039312.0A priority patent/CN107709769B/zh
Priority to US15/740,874 priority patent/US11067066B2/en
Publication of FR3038348A1 publication Critical patent/FR3038348A1/fr
Application granted granted Critical
Publication of FR3038348B1 publication Critical patent/FR3038348B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0452Distribution members, e.g. valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/0403Details, component parts specially adapted of such engines
    • F03C1/0435Particularities relating to the distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/047Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement the pistons co-operating with an actuated element at the outer ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/047Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement the pistons co-operating with an actuated element at the outer ends of the cylinders
    • F03C1/0472Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement the pistons co-operating with an actuated element at the outer ends of the cylinders with cam-actuated distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/22Reciprocating-piston liquid engines with movable cylinders or cylinder
    • F03C1/24Reciprocating-piston liquid engines with movable cylinders or cylinder in which the liquid exclusively displaces one or more pistons reciprocating in rotary cylinders
    • F03C1/247Reciprocating-piston liquid engines with movable cylinders or cylinder in which the liquid exclusively displaces one or more pistons reciprocating in rotary cylinders with cylinders in star- or fan-arrangement, the connection of the pistons with an actuated element being at the outer ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/047Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the outer ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/10Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary
    • F04B1/107Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary with actuating or actuated elements at the outer ends of the cylinders
    • F04B1/1071Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary with actuating or actuated elements at the outer ends of the cylinders with rotary cylinder blocks

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydraulic Motors (AREA)
  • Reciprocating Pumps (AREA)

Abstract

La machine hydraulique comprend une came (4) et un bloc-cylindres avec des pistons (14) coopérant avec les lobes de la came, lesquels ont chacun deux rampes (50A, 50B) s'étendant entre des arcs de point mort haut et bas (PH, PB). Les cylindres sont alternativement reliés à une alimentation et à un échappement, selon les séquences séparées par des phases de commutation comprenant une phase d'isolement par rapport aux conduits principaux d'alimentation et d'échappement. La position angulaire de début ou de fin d'au moins une première phase d'isolement par rapport à l'arc de point mort correspondant est différente de la position angulaire de début ou de fin d'au moins une deuxième phase d'isolement par rapport à son arc de point mort correspondant, ces arcs de point mort étant tous les deux des arcs de point mort haut ou bas.

Description

La présente invention concerne une machine hydraulique ayant des pistons, montés dans un bloc-cylindres, et coopérant avec une came, les cylindres dans lesquels coulissent les pistons étant séquentiellement reliés à une alimentation en fluide hydraulique et à un échappement de fluide hydraulique pour provoquer la rotation relative du bloc-cylindres et de la came.
Il peut s'agir en particulier d'un moteur hydraulique ou d'une pompe.
Dans ce type de machine, la pression dans les cylindres subit des variations intenses, à des cadences élevées. Ces chocs de pression produisent des vibrations de la machine et des émissions sonores.
Les émissions sonores ont une fréquence fondamentale, liée au nombre de pistons et à la vitesse de la machine, cette fréquence fondamentale étant déterminée par le nombre d'alternance entre les états de pression élevée et les états de basse pression sur une rotation complète du rotor de la machine, à cadence régulière. Une partie significative des émissions sonores, qui a tendance à générer un bruit de sirène, est due à l'excitation harmonique de cette fréquence fondamentale très étroite. Cela crée un spectre harmonique qualifié de pauvre, avec des pics de fréquence espacés et de haut niveau. Ainsi, un aspect important de la réduction des émissions sonores consiste à éviter ou au moins à limiter l'excitation harmonique à partir d'une fréquence fondamentale étroite, car le bruit de sirène que cette fréquence fondamentale et ses fréquences harmoniques génèrent est jugé comme particulièrement désagréable et contribue fortement à l'impression générale de nuisance sonore.
Dans le cas d'une machine hydraulique à pistons axiaux, la demande de brevet européen n° 0 665 364 propose de décaler aléatoirement les orifices de communication des cylindres, par lesquels ceux-ci sont alternativement reliés à l'alimentation et à l'échappement, par rapport aux axes de ces cylindres qui, s'agissant d'une machine à pistons axiaux, sont parallèles à l'axe de rotation du rotor de la machine (ci-après: "axe de la machine"). La demande WO 2014 199041, reprenant cette idée, cherche à l'améliorer en prévoyant un décalage qui ne soit pas aléatoire, mais soit alternativement à l'une ou à l'autre extrémité d'une plage de décalage.
Cependant, ces décalages ne sont pas applicables à une machine hydraulique de type à pistons radiaux, pour laquelle les axes des cylindres sont au contraire perpendiculaires à l'axe de la machine.
Pour une machine de type à pistons radiaux, les demandes de brevet PCT WO 03/056171 et WO 03/056172 concernent un moteur hydraulique ayant un distributeur de fluide dont la face de distribution (dans laquelle se trouvent des orifices de distribution raccordés soit à l'alimentation soit à l'échappement) est perpendiculaire à Taxe de rotation et en appui contre la face de communication du bloc-cylindres (dans laquelle débouchent les orifices de communication des cylindres de manière à communiquer séquentiellement avec les orifices de distribution). Ces demandes de brevet proposent de prévoir des agencements particuliers sur les bords des orifices de distribution ou sur les bords des orifices de communication, de manière à permettre le passage d'un volume de fluide de compensation de pression au moment du début et/ou de la fin de la correspondance entre un orifice de communication et un orifice de distribution.
Ces dispositions permettent d'éviter les chocs de pression à l'ouverture et à la fermeture de la connexion entre les orifices de distribution et les orifices de communication, et réduisent donc l'intensité initiale des émissions sonores à la fréquence fondamentale, mais elles ne permettent pas de réduire en elles-mêmes les excitations harmoniques de ces émissions à partir de la fréquence fondamentale.
La présente invention vise, dans le cas d'une machine hydraulique à pistons radiaux, à améliorer l'état de la technique précité pour réduire les émissions sonores, en agissant particulièrement sur les phénomènes d'excitation de la machine à une fréquence fondamentale, pour la rendre moins harmonique. En particulier, en faisant en sorte que les commutations se produisent à une cadence moins régulière que dans l'art antérieur, l'invention vise à élargir la plage de fréquences couverte par excitations fondamentales, évitant ainsi de générer une fréquence fondamentale pratiquement pure, c'est-à-dire très étroite ; ceci contribue à baisser les niveaux sonores de l'excitation fondamentale et des harmoniques qui sont générés. Les harmoniques se combinant entre eux sont plus nombreux, mais d'une manière générale de plus bas niveau, ce qui rend l'effet sonore plus faible et plus agréable. En particulier, cela contribue à diminuer les bruits de sirène ou de modulations stridentes.
Ainsi, la présente invention concerne une machine hydraulique à pistons radiaux comprenant une came et un bloc-cylindres aptes à tourner l'un par rapport à l'autre autour d'un axe de rotation, le bloc-cylindres présentant des cylindres radiaux reliés à des orifices de communication du bloc-cylindres, des pistons montés coulissants dans les cylindres étant aptes à coopérer avec la came, cette dernière présentant plusieurs lobes ayant chacun deux rampes qui s'étendent chacune entre un arc de point mort haut et un arc de point mort bas, la machine comprenant, en outre, un distributeur de fluide apte à relier les orifices de communication à un premier ou un deuxième conduit principal, d'alimentation ou d'échappement, selon des séquences comprenant des phases de liaison au premier conduit principal et des phases de liaison au deuxième conduit principal séparées par des phases de commutation qui comprennent successivement la fermeture de la liaison à l'un des conduits principaux, une phase d'isolement par rapport aux deux conduits principaux, et l'ouverture de la liaison à l'autre conduit principal, chaque phase d'isolement se produisant, pour l'orifice de communication d'un cylindre donné, alors que le piston monté dans ce cylindre est en appui sur un arc de point mort donné, qui est défini comme étant l'arc de point mort lié à la phase d'isolement considérée, la position angulaire de début ou de fin d'une phase d'isolement par rapport à l'arc de point mort lié à cette phase d'isolement étant définie comme étant l'écart angulaire entre ledit début ou ladite fin et la bissectrice de l'angle couvert par ledit arc de point mort lié à cette phase d'isolement.
Dans cette machine, la position angulaire de début ou de fin d'au moins une première phase d'isolement par rapport à l'arc de point mort lié à cette première phase d'isolement est différente de la position angulaire de début ou de fin d'au moins une deuxième phase d'isolement par rapport à l'arc de point mort lié à cette deuxième phase d'isolement au cours d'un cycle de révolution de la machine, et les arcs de point mort liés auxdites première et deuxième phases d'isolement sont de même nature, c'est-à-dire qu'ils sont tous les deux des arcs de point mort haut ou des arcs de point mort bas.
Les lobes de la came de la machine hydraulique à pistons radiaux selon l'invention présentent chacun deux rampes qui s'étendent chacune entre un arc de point mort haut et un arc de point mort bas. Dans ces arcs de point mort, la distance du lobe de came par rapport à l'axe de la machine est constante, c'est-à-dire que lorsqu'un piston est en contact avec l'arc de point mort (ce contact s'opérant en général via un galet que porte le piston), son extrémité distale en appui sur la came reste à une distance fixe par rapport à l'axe de rotation. Ainsi, dans cet arc de point mort, le cylindre dans lequel se trouve le piston n'est en principe relié ni à l'alimentation de fluide ni à l'échappement de fluide. Il s'agit d'une plage de sécurité, sur laquelle la communication entre le cylindre et l'alimentation ou l'échappement de fluide est fermée. En particulier, lorsque la zone de contact du piston avec la came arrive dans l'arc de point mort haut, la communication du cylindre dans lequel coulisse ce piston avec l'alimentation de fluide se ferme, le cylindre reste isolé de l'alimentation sur une partie de l'arc de point mort correspondant à la phase d'isolement puis, lorsque le piston arrive vers la fin de l'arc de point mort, le cylindre est relié à l'échappement de fluide. Le même phénomène se produit de manière inversée lorsque le piston coopère avec un arc de point mort bas, puisque c'est alors d'abord la communication du cylindre avec l'échappement de fluide qui se ferme, puis la communication de ce cylindre avec l'alimentation de fluide qui s'ouvre à l'issue de la phase d'isolement. Les phases d'isolement qui se produisent sur les arcs de point mort haut ou bas correspondent à des sécurités, évitant un court-circuit entre l'alimentation et l'échappement de fluide.
Selon l'invention, on met à profit la plage angulaire couverte par les arcs de point mort pour décaler légèrement les phases d'isolement les unes par rapport aux autres, afin d'éviter une répétitivité régulière, à une fréquence donnée, des moments de l'ouverture ou de la fermeture de la liaison entre les cylindres et les conduits principaux d'alimentation ou d'échappement.
De plus, selon l'invention, ce décalage entre les phases d'isolement est réalisé pour les arcs de point mort de même nature, c'est-à-dire que les phases d'isolement de différents arcs de point mort haut et/ou les phases d'isolement de différents arcs de point mort bas sont décalées les unes par rapport aux autres au cours d'un cycle de rotation. En effet, c'est entre des arcs de point mort de même nature, haut ou bas, que les phénomènes de répétitivité à une fréquence donnée risquent le plus de conduire à l'excitation de la machine à une fréquence fondamentale. Ceci est en particulier vrai pour tous les arcs de point mort bas, en particulier pour les cadences des ouvertures des liaisons au conduit principal d'alimentation, et pour tous les arcs de point mort haut, en particulier pour les cadences des ouvertures des liaisons au conduit principal d'échappement.
Ainsi, selon l'invention, dans le cas d'une machine hydraulique à pistons radiaux, on limite le bruit harmonique dû aux ouvertures/ fermetures des conduits de cylindre sur des arcs de point mort de même nature.
Optionnellement, pour chaque phase de commutation, l'écart entre la position angulaire de début de la phase d'isolement et le début de l'arc de point mort lié à cette phase d'isolement, et l'écart entre la position angulaire de fin de la phase d'isolement et la fin dudit arc de point mort est au moins égal à l/20è, de préférence à l/10è, de l'angle couvert par ledit arc de point mort. En particulier, lorsque l'écart précité est entre l/80è et 1/2 voire entre l/20è et 1/3, voire encore entre l/10è et l/6è de l'angle couvert par l'arc de point mort, on assure une marge intéressante pour réaliser le décalage entre les phases d'isolement, tout en obtenant une excellente marge de sécurité vis-à-vis des risques de court-circuit puisque l'on conserve une plage angulaire d'arc de point mort disponible pour les phases d'isolement qui soit suffisamment grande. Dans le même temps, puisque la phase d'isolement débute après l'arc de point mort et se termine avant l'arc de point mort, on évite les phénomènes de chocs et de cavitation qui résulteraient d'une perte momentanée de l'appui en pression du piston sur la came.
Optionnellement, pour chaque phase de commutation, la longueur d'arc entre la position angulaire de début de la phase d'isolement et le début de l'arc de point mort lié à cette phase d'isolement, et la longueur d'arc entre la position angulaire de fin de la phase d'isolement et la fin dudit arc de point mort sont au moins égales à 0,1 mm.
Ainsi, pour réaliser le décalage entre les première et deuxième phases d'isolement, on dispose de la marge fournie par les valeurs précitées entre le début ou la fin des phases d'isolement et le début ou la fin des arcs de point mort.
Pour une machine hydraulique à pistons radiaux, de type à basse vitesse et à fort couple, on compte en général de 5 à 16 pistons, selon la cylindrée de la machine et le couple souhaités. Pour une telle machine à pistons radiaux de type connu, ayant par exemple une cylindrée comprise entre 50 cm3 et 25000 cm3 (la cylindrée s'entendant comme étant le volume de fluide passant dans les cylindres de la machine pour un tour complet de rotation du rotor), on obtient une excellente marge de sécurité vis-à-vis des risques de court-circuit tout en conservant une longueur d'arc de point mort disponible pour les phases d'isolement qui soit suffisamment longue lorsque les longueurs d'arc entre le début ou la fin de l'arc de point mort et le début ou la fin de la phase d'isolement sont de l'ordre de 0,1 mm à 0,5 mm, en particulier de l'ordre de 0,1 à 0,2 mm.
Optionnellement, la valeur absolue de la différence entre les positions angulaires de début ou de fin des première et deuxième phases d'isolement est au moins égale à l/20è, de préférence à l/10è de l'angle couvert par le plus petit des arcs de point mort liés aux première et deuxième phases d'isolement.
Dans certaines machines, la longueur d'arc couverte par tous les arcs de point mort de même nature, haut ou bas, est analogue. Dans certaines machines, la plage angulaire couverte par tous les arcs de point mort, hauts ou bas, est analogue. Dans d'autres machines, les lobes de came peuvent être dissymétriques ou différents les uns des autres, de sorte que la longueur d'arc des arcs de point mort de même nature ou leur plage angulaire peuvent varier. On a constaté que le décalage entre les première et deuxième phases d'isolement citées ci-dessus permet de réduire significativement l'excitation des fréquences harmoniques, tout en préservant les marges de sécurité nécessaires.
Optionnellement, la différence entre les positions angulaires de début ou de fin des première et deuxième phases d'isolement couvre un arc ayant une longueur au moins égale à 0,1 mm.
Optionnellement, le distributeur de fluide peut être un distributeur ayant, pour chaque cylindre ou chaque groupe de cylindres, une valve de distribution commandée pour raccorder le ou les orifices de communication reliés au cylindre ou au groupe de cylindres en question au premier ou au deuxième conduit principal, selon la position, par rapport aux lobes de la came, du ou des pistons qui coulissent dans ce ou ces cylindres.
Un tel distributeur est par exemple connu par la demande de brevet français n° 2 940 672.
Selon une autre option, le distributeur de fluide comprend des orifices de distribution aptes à être reliés à l'un ou l'autre des conduits principaux et à être successivement en regard avec les orifices de communication du bloc-cylindres au cours de la rotation relative du bloc-cylindres et de la came, chaque orifice de distribution correspondant à une rampe de la came.
On considère alors qu'il s'agit d'un distributeur de type hydraulique. Il peut par exemple s'agir d'un distributeur de type central, disposé à l'intérieur du bloc-cylindres, et dont les orifices de distribution s'ouvrent sur une face axiale externe, qui est cylindrique, les orifices de communication du bloc-cylindres étant situés sur la périphérie axiale interne de ce dernier qui coopère avec la face axiale externe du distributeur.
Il peut encore s'agir d'un distributeur de type plan, dont les orifices de distribution s'ouvrent dans une face radiale perpendiculaire à l'axe de la machine, en appui contre une face radiale du bloc-cylindres dans laquelle s'ouvrent les orifices de communication. Un distributeur de ce type est par exemple décrit dans les demandes PCT WO 03/056171 et WO 03/056172 et est représenté sur la figure 1 décrite ci-après.
Optionnellement, la première et la deuxième phase d'isolement concernent l'orifice de communication d'un même cylindre, la position angulaire de début ou de fin de la première phase d'isolement qui se produit alors que le piston monté dans ledit même cylindre est en appui sur un premier arc de point mort étant décalée par rapport à la position angulaire de début ou de fin de la deuxième phase d'isolement qui se produit alors que le piston monté dans ledit même cylindre est en appui sur un deuxième arc de point mort différent du premier.
Ainsi, le décalage des première et deuxième phases d'isolement est réalisé par la came, c'est-à-dire qu'il est constaté entre deux lobes de came différents. En particulier, lorsque le distributeur de fluide est du type hydraulique, ce décalage peut être réalisé par des décalages appropriés des positions des orifices de distribution. En particulier, pour un distributeur de type hydraulique faisant partie d'une machine hydraulique à pistons radiaux, le distributeur comprend un orifice de distribution pour chaque rampe de chaque lobe de came, et chaque orifice de distribution est normalement centré sur la bissectrice de l'angle couvert par la rampe du lobe de came à laquelle l'orifice considéré correspond. Dans ce cas, le décalage précité selon l'invention peut être réalisé en décentrant certains des orifices de distribution par rapport à ces bissectrices.
Ainsi, on peut choisir que, le premier et le deuxième arc de point mort étant respectivement situés à une extrémité d'une première rampe et à une extrémité d'une deuxième rampe, la position, par rapport à la bissectrice de l'angle couvert par ladite première rampe, de l'orifice de distribution correspondant à la première rampe et la position, par rapport à la bissectrice de l'angle couvert par ladite deuxième rampe, de l'orifice de distribution correspondant à la deuxième rampe présentent un premier décalage l'une par rapport à l'autre.
Ceci est en particulier valable pour des machines dans lesquelles lobes de came sont symétriques, c'est-à-dire que les rampes de chaque lobe de came sont symétriques par rapport à un rayon passant par le sommet du lobe et, en particulier, pour des machines dont tous les lobes de came sont identiques. Cependant, ceci peut également s'appliquer à des machines à lobes de came dissymétriques, non nécessairement identiques les uns aux autres.
Les première et deuxième rampes de came précitées peuvent être des rampes de même nature, c'est-à-dire être toutes les deux soit des rampes montantes, soit des rampes descendantes, considérées dans un sens de rotation du rotor de la machine.
Dans ce cas, on peut également choisir que, la première et la deuxième rampe étant respectivement des rampes d'un premier et d'un deuxième lobe de came, la position, par rapport à la bissectrice de l'angle couvert par l'autre rampe du premier lobe de came, de l'orifice de distribution correspondant à cette autre rampe, et la position, par rapport à la bissectrice de l'angle couvert par l'autre rampe du deuxième lobe de came, de l'orifice de distribution correspondant à cette autre rampe présentent, l'une par rapport à l'autre, le même décalage que le premier décalage.
De même que précédemment indiqué, ceci est applicable à des machines hydrauliques dont tous les lobes de came sont identiques, à des machines dont tous les lobes de came sont symétriques sans être nécessairement identiques, ou encore à des machines dont les lobes de came sont dissymétriques, qu'ils soient identiques ou non.
Optionnellement, la première et la deuxième phase d'isolement concernent un même arc de point mort, la position angulaire de début ou de fin de la première phase d'isolement qui se produit alors qu'un piston monté dans un premier cylindre est en appui sur ledit même arc de point mort étant décalée par rapport à la position angulaire de début ou de fin de la deuxième phase d'isolement qui se produit alors que qu'un piston monté dans un deuxième cylindre différent du premier cylindre est en appui sur ledit même arc de point mort.
Il s'agit alors d'un décalage des première et deuxième phases d'isolement opéré "par les cylindres", dû à un décalage des orifices de communication.
Dans ce cas, on peut choisir que les orifices de communication des premier et deuxième cylindres aient des configurations différentes par rapport aux axes respectifs desdits premier et deuxième cylindres.
Cette différence de configuration peut être réalisée en choisissant des orifices de communication de même forme, mais avec des positions différentes. En particulier, pour une machine hydraulique dont tous les lobes de came sont identiques, un décalage de ce type n'est pas obtenu si tous les orifices de communication identiques sont espacés régulièrement les uns par rapport aux autres. Dans ce cas, à partir d'une telle machine, un décalage peut être obtenu en modifiant légèrement l'espacement entre certains des orifices de communication, de sorte que l'espacement devient irrégulier.
La différence de configuration précitée peut également être obtenue en jouant sur la forme des orifices de communication.
Optionnellement, les positions angulaires de début ou de fin d'au moins trois phases d'isolement, dites phases d'isolement décalées, sont différentes, des valeurs différentes d'au moins l'un des paramètres choisis parmi l'amplitude des phases d'isolement et les décalages angulaires des positions de début ou de fin des phases d'isolement décalées, en nombre inférieur au nombre de phases d'isolement décalées, étant réparties entre lesdites phases d'isolement décalées, avantageusement selon la méthode PRBS.
Par exemple, on peut prendre en compte toutes les phases d'isolement et trois indices de décalage: -1, 0 et + 1. Parmi ces indices, l'indice 0 correspond en fait à un valeur nulle de décalage (aucun décalage), tandis que les indices +1 et -1 correspondent à une valeur absolue donnée de décalage (mesurée soit en longueur d'arc de point mort, soit en plage angulaire) opérée soit dans le sens de rotation des aiguilles d'une montre, soit en sens inverse. Ces trois valeurs de décalage peuvent alors être affectées à différentes phases d'isolement de manière aléatoire, ou bien par une méthode de répartition PRBS (pour "Pseudo Random Binary Sequence", ou "séquence binaire pseudo aléatoire"). On peut raisonner de la même manière avec seulement des valeurs 0 et 1 ou bien avec seulement les valeurs +1 et -1, ou bien encore avec un nombre différent de valeurs de décalage, par exemple en choisissant plusieurs indices de décalage, qui sont en particulier mais non exclusivement des nombres premiers ou des nombres premiers entre eux, positifs ou négatifs, et une valeur absolue de décalage multipliée par ces indices.
Ainsi, les positions angulaires de début ou de fin d'au moins trois phases d'isolement sont différentes et présentent ainsi des décalages angulaires les unes par rapport aux autres, ces décalages ayant la même valeur absolue et ayant des sens différents, ces sens étant avantageusement répartis selon la méthode PRBS.
Optionnellement, pour toutes les phases d'isolement dont les positions angulaires de début ou de fin de course sont différentes, les décalages sont dans le même sens, les décalages étant avantageusement répartis selon la méthode PRBS .
Par exemple, la séquence suivante peut être mise en oeuvre pour le choix des indices de décalage des phases d'isolement concernant une rampe de came et les différents pistons d'une machine venant successivement au contact de cette rampe (il s'agit donc, dans cet exemple, d'un décalage « par les pistons »).
Cette séquence est représentée par le tableau 1 qui suit. Il s'agit d'une séquence de type PRBS 23, c'est-à-dire que l'on part des deux indices 0 ou 1 répartis sur 7 états successifs en « position 1 » et « position 2 », dont la répartition se répète donc à partir du 8è état, la séquence 23 donnant la « position 3 » et l'indice de décalage retenu est alors celui que donne la séquence PRBS pour cette « position 3 ». Pour appliquer la séquence à un décalage par les pistons, on numérote les pistons conformément aux états successifs, en parcourant le bloc-cylindres dans un sens de rotation à partir d'un piston d'origine. Si, comme dans l'exemple ci-dessous, il y a plus de 7 pistons, on recommence la numérotation des états au 8è piston. Pour les phases d'isolement concernant les pistons pour lesquels la « position 3 » dans le tableau ci-dessous est 1, il y a un décalage de 1 fois la valeur absolue de décalage déterminée, tandis que, pour les phases d'isolement concernant les pistons pour lesquels la « position 3 » dans le tableau ci-dessous est 0, il n'y a pas de décalage. L'exemple donné est celui d'une machine à 12 pistons radiaux, numérotés de 1 à 12, en parcourant le bloc-cylindres dans un sens de rotation donné, à partir d'un piston choisi comme origine. Bien entendu, la même séquence serait envisageable pour un décalage par la came, entre les différents orifices de distribution considérés successivement en parcourant le distributeur dans un sens donné. Par exemple, avec 12 états successifs comme dans le tableau 1, on peut définir un décalage par la came pour une machine ayant 12 rampes de came c'est-à-dire 6 lobes de came.
Dans une séquence 23, la « position 3 » (qui est ici la valeur retenue pour l'indice de décalage) se répète par groupes de 7 états successifs, le 8è état étant identique au premier. C'est pourquoi les états 1 à 7 sont encadrés dans le tableau 1 ci-dessous.
Tableau 1
Le tableau 2 qui suit illustre quant à lui une séquence PBRS de type 24, c'est-à-dire partant de 2 valeurs (0 ou 1), on définit 15 états qui se répètent à partir du 16è état, et on détermine 4 positions, la « position 4 » étant la valeur retenue pour l'indice de décalage. Pour un décalage par les pistons, les états correspondent aux pistons successifs. Pour un décalage par la came, les états correspondent aux rampes de came successives. Le tableau 2 prend l'exemple d'un décalage par les pistons, pour une machine ayant 16 pistons ou bien celui d'un décalage par la came pour une machine ayant 8 lobes de came, c'est-à-dire 16 rampes. On peut d'ailleurs considérer ces rampes par groupes. En effet, les 16 rampes sont formées par 8 rampes montantes (le cylindre d'un piston qui coopère avec une telle rampe est en phase d'alimentation) et 8 rampes descendantes (le cylindre d'un piston qui coopère avec une telle rampe est en phase d'échappement). On peut considérer que l'orifice de distribution correspondant à une rampe montante et l'orifice de distribution correspondant à une rampe descendante adjacente à cette rampe montante forment un groupe ayant le même décalage angulaire. Ceci permet d'obtenir le même effet en marche avant et en marche arrière (les rampes qui sont respectivement montantes et descendantes en marche avant, devenant à l'inverse des rampes respectivement descendantes et montantes en marche arrière).
Dans une séquence 24, la « position 4 » (qui est ici la valeur retenue pour l'indice de décalage) se répète par groupes de 15 états successifs, le 16è état étant identique au premier. C'est pourquoi les états 1 à 15 sont encadrés dans le tableau 2 ci-dessous.
Tableau 2
Comme indiqué précédemment, les liaisons entre les orifices de communication et les conduits principaux de la machine sont fermées pendant les phases d'isolement. Ainsi, au début d'une phase d'isolement, la liaison de l'orifice de communication considéré avec l'un des conduits principaux vient de se fermer tandis que, à la fin d'une phase d'isolement, la liaison de l'orifice de communication considéré avec l'autre des conduits principaux va s'ouvrir. Dans une certaine mesure, et en particulier s'il est important, le décalage entre des phases d'isolement peut occasionner des pertes de charge au moment de l'ouverture de la liaison de l'orifice de communication considéré avec l'un des conduits principaux. Ces pertes de charge peuvent affecter la vitesse de rotation du rotor de la machine hydraulique. Si l'on prend l'exemple d'une machine hydraulique dont tous les lobes de came sont identiques et dépourvus de décalage (par exemple en ayant tous les orifices de communication régulièrement répartis les uns par rapport aux autres et, pour un distributeur de type hydraulique, dont tous les orifices de distribution sont analogues et centrés par rapport aux bissectrices des rampes de came correspondantes), le décalage selon l'invention peut être vu comme une avance ou un retard du début des phases d'isolement pour certains arcs de point mort, dans un sens de rotation donné du rotor de la machine. Considéré dans ce sens de rotation, le retard de certaines phases d'isolement occasionne un retard de l'ouverture de la liaison entre l'orifice de communication concerné et les conduits principaux de la machine, ce retard pouvant affecter la capacité maximale de vitesse de rotation de ce rotor. Au contraire, considéré dans l'autre sens de rotation du rotor, ce retard se traduit comme une avance de la phase d'isolement, qui peut ainsi avancer la fermeture de la liaison entre certains orifices de communication et les conduits principaux, sans affecter la vitesse de rotation du rotor dans cet autre sens de rotation.
En choisissant que tous les décalages soient dans le même sens, c'est-à-dire que, considérés dans un sens donné de rotation du rotor de la machine, tous les décalages correspondent à une avance des phases d'isolement, ces décalages n'affectent pas la vitesse de rotation du rotor de la machine dans ce sens donné de rotation. On peut ainsi choisir volontairement de réaliser tous les décalages dans le même sens pour une machine ayant un sens préférentiel de rotation, correspondant par exemple, lorsque la machine est un moteur d'entraînement d'un organe de déplacement d'un véhicule, à un fonctionnement en marche avant, le sens de décalage correspondant à une avance des phases d'isolement dans ce sens de fonctionnement. Ainsi, c'est lors d'un fonctionnement dans le sens non préférentiel, par exemple en marche arrière, que le décalage pourra affecter la vitesse maximale de la machine. Ces décalages peuvent être répartis de manière aléatoire ou bien, par exemple, selon une méthode pseudo aléatoire de type PRBS.
La notion de "décalage dans le même sens", avance ou retard, s'apprécie par contraste avec une machine dépourvue de décalage. Par exemple, le décalage peut s'apprécier par comparaison avec une machine dont tous les lobes de came sont identiques, dont les orifices de communication sont régulièrement répartis et dont les orifices de distribution (pour un distributeur de type hydraulique) sont analogues et centrés par rapport aux rampes des lobes de came (c'est-à-dire que les centres de ces orifices sont alignés sur les bissectrices de ces rampes). Par rapport à une telle machine, pour une machine analogue ayant des décalages "dans le même sens" opéré par la came, certains des orifices de distribution peuvent rester centrés sur les bissectrices de leurs rampes de came respectives, tandis que certains autres sont décalés, en étant alors tous décalés du même côté des bissectrices de leurs rampes de came respectives, c'est-à-dire par exemple tous décalés dans le sens de rotation des aiguilles d'une montre. Dans ce qui précède, on entend par "machine analogue" une machine en tous points identique, sauf en ce qui concerne le décalage.
Optionnellement, les positions angulaires de début ou de fin d'au moins trois phases d'isolement qui se produisent alors que des pistons montés dans différents cylindres sont en appui sur le même arc de point mort sont différentes et présentent ainsi des décalages angulaires les unes par rapport aux autres, les valeurs de ces décalages augmentant lorsque l'on considère successivement les orifices de communication desdits différents cylindres dans un sens de rotation.
Du point de vue de la fabrication de la machine, ceci est une façon simple de réaliser le décalage, en le faisant "progressivement" d'une phase d'isolement à l'autre.
Optionnellement, les bords d'au moins certains des orifices de communication présentent des entailles.
Des entailles peuvent être d'ailleurs formées par des agencements de bord des orifices de distribution et/ou des orifices de communication, par exemple comme décrit dans les demandes PCT WO 03/056171 et WO 03/056172.
Optionnellement, les pistons comprennent au moins un groupe de pistons associés pour lesquels, pendant un cycle de rotation relative du bloc-cylindres et de la came, il existe au moins une situation de simultanéité pendant laquelle lesdits pistons associés coopèrent avec des lobes de came identiques et se trouvent, durant toute leur coopération avec ces lobes de cames identiques, dans des positions identiques par rapport auxdits lobes de came ; et, pour chacun de ces lobes de came identiques, les positions angulaires de début et de fin des phases d'isolement par rapport aux arcs de point mort desdits lobes liés à ces phases d'isolement, sont identiques.
Les pistons associés sont ceux qui, par leur coopération avec la came, fournissent le même effort au même moment. Il est en général souhaitable que ces efforts s'équilibrent les uns des autres, c'est-à-dire que la résultante des contraintes exercées radialement par les pistons sur la came soit nulle, pour ne pas créer d'efforts parasites transversalement à l'axe de la machine hydraulique. Ces efforts parasites peuvent être également une source de vibration, d'à-coups de couple et de bruit. Le fait de choisir que les décalages soient les mêmes pour les pistons associés permet de minimiser les efforts parasites, en quelque sorte en synchronisant les séquences d'ouverture et de fermeture des orifices de communication de leur cylindre.
En référence aux tableaux 1 et 2 décrits plus haut, on a donné des exemples pour des séquences de décalage, notamment pour un décalage par les pistons. Dans le cas où la machine comprend un ou plusieurs groupes de pistons associés tels que définis ci-dessus, on peut appliquer les séquences de décalage présentées dans ces tableaux, mais en sautant les pistons associés dans la numérotation successive des pistons, à l'exception du premier, c'est-à-dire en affectant à chacun des pistons associés entre eux, le même numéro que le numéro de celui de ces pistons associés qui vient en premier dans la numérotation des pistons. L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit de modes de réalisation représentés à titre d'exemples non limitatifs.
La description se réfère aux dessins annexés sur lesquels : - la figure 1 est une vue en coupe axiale d'une machine hydraulique à pistons radiaux, à laquelle l'invention peut être appliquée ; - la figure 2 est une vue en coupe selon la ligne brisée II-II de la figure 1 ; - la figure 3 est un agrandissement de la zone III de la figure 2 illustrant les positions relatives entre un orifice de communication et un orifice de distribution, au cours de la rotation relative entre le bloc-cylindres et le distributeur ; - la figure 4 est une coupe selon la ligne IV-IV de la figure 1; - la figure 5 est un agrandissement de la zone V de la figure 4, montrant en outre une variante de réalisation; - la figure 6 illustre, pour un arc de point mort haut, les différentes plages angulaires concernées par une phase de commutation; - les figures 7A et 7B illustrent les phases de communication pour deux arcs de point mort haut; et - la figure 8 montre, selon une variante, le bloc-cylindres d'une machine conforme à l'invention.
La figure 1 montre une machine hydraulique, moteur ou pompe, comprenant un carter fixe en trois parties, 2A, 2B et 2C, assemblées par des vis 3.
Bien entendu, l'invention n'est pas limitée aux machines hydrauliques à carter fixe, mais elle s'applique également aux machines hydrauliques à carter tournant qui sont bien connues de l'homme du métier.
La partie 2C du carter est fermée axialement par une plaque radiale 2D également fixée par des vis. Une came de réaction ondulée 4 est réalisée sur la partie 2B du carter.
La machine comprend un bloc-cylindres 6 qui est monté à rotation relative autour d'un axe 10 par rapport à la came 4 et qui comporte une pluralité de cylindres radiaux 12, susceptibles d'être alimentés en fluide sous pression et à l'intérieur desquels sont montés coulissants les pistons radiaux 14. Ce bloc-cylindres est donc le rotor de la machine.
Le bloc-cylindres 6 entraîne en rotation un arbre 5 qui coopère avec lui par des cannelures 7. Cet arbre porte une bride de sortie 9.
La machine comprend encore un distributeur interne de fluide 16 qui est solidaire du carter vis-à-vis de la rotation autour de l'axe 10. Entre le distributeur 16 et la face axiale interne de la partie 2C du carter, sont formées des gorges de distribution, respectivement une première gorge 18, une deuxième gorge 19 et une troisième gorge 20. Les conduits de distribution du distributeur 16 sont répartis en un premier groupe de conduits qui, comme le conduit 21, sont tous reliés à la gorge 18, un deuxième groupe de conduits (non représentés) qui sont reliés à la gorge 19 et un troisième groupe de conduits qui, comme le conduit 22, sont reliés à la gorge 20. La première gorge 18 est reliée à un premier conduit principal 24 auquel sont donc reliés tous les orifices de distribution des conduits de distribution du premier groupe, tels que l'orifice 21A. La troisième gorge 20 est reliée à un deuxième conduit principal 26 auquel sont donc reliés tous les orifices de distribution des conduits du troisième groupe, tels que l'orifice 22A du conduit 22.
Selon le sens de rotation du rotor (en l'espèce, le bloc-cylindres) de la machine, les conduits principaux 24 et 26 sont respectivement un conduit d'échappement et un conduit d'alimentation en fluide, ou l'inverse.
Les conduits de distribution débouchent dans une face de distribution 28 du distributeur 16, qui est en appui contre une face de communication 30 du bloc-cylindres, ces deux faces étant perpendiculaires à l'axe 10. Chaque cylindre 12 a un conduit de cylindre 32 qui débouche dans cette face de communication de telle sorte que, lors de la rotation relative du bloc-cylindres et de la came, les conduits de cylindres sont alternativement en communication avec les conduits de distribution des différents groupes.
La machine de la figure 1 comporte encore un dispositif de sélection de la cylindrée qui, en l'espèce, comprend un alésage 40, qui s'étend axialement dans la partie 2C du carter et dans lequel est disposé un tiroir de sélection 42 axialement mobile. L'alésage 40 comprend trois voies de communication, respectivement 44, 46 et 48, qui sont respectivement reliées aux gorges 18, 19 et 20, par des conduits de liaison, respectivement 44', 46' et 48'. Le tiroir 42 est mobile entre deux positions extrêmes à l'intérieur de l'alésage 40 dans lesquelles il fait communiquer les voies 44 et 46 ou les voies 46 et 48 par sa gorge 43.
La coupe radiale de la figure 2 est prise selon la ligne brisée II-II de la figure 1 qui, dans ses portions éloignées de l'axe 10, passe par le bloc-cylindres et qui, dans sa portion proche de l'axe 10, passe par la face de distribution 28 du distributeur 16. Ainsi, on voit sur cette coupe les positions des pistons 14 par rapport à la came 4 et les orifices de distribution.
Par exemple, comme le montre la figure 2, les orifices de distribution, considérés successivement dans le sens de rotation relative entre le bloc-cylindres et le distributeur, comprennent une paire d'orifices 21A, 23A, respectivement reliés aux gorges 18 et 19, et une paire d'orifices 21A, 22A, respectivement reliés aux gorges 18 et 20. Dans la position du sélecteur 42 représentée sur la figure 1, les gorges 19 et 20 communiquent toutes deux avec l'alimentation de fluide. On comprend que, lors de la rotation relative du bloc-cylindres et du distributeur, un orifice de communication 32A est successivement mis à la haute et à la basse pression en communiquant avec les orifices des deux paires précitées. Lorsque, en revanche, le sélecteur 42 est déplacé dans le sens de la flèche F de manière à faire communiquer entre elles les gorges 18 et 19, alors les deux orifices de distribution 21A, 23A de la première paire précitée sont tous les deux mis à la même pression. Cette paire est donc inactivée puisque, lorsqu'un orifice de communication passe de l'un à l'autre des deux orifices de distribution de cette paire, la pression dans le conduit de cylindre raccordé audit orifice de communication ne change pas. En revanche, la paire suivante est active, puisqu'un orifice de communication communiquant respectivement avec les deux orifices 21A, 22A de cette paire est successivement placé à la haute et à la basse pression.
La situation représentée sur la figure 1 est donc une situation de grande cylindrée, tandis que celle dans laquelle le sélecteur 42 est déplacé dans le sens de la flèche F pour faire communiquer les gorges 18 et 19 est une situation de petite cylindrée. Dans une telle situation, les paires d'orifices 21A et 23A sont inactives, tandis que les paires d'orifices 21A et 22A sont actives.
Lorsque le bloc-cylindres tourne par rapport au distributeur dans le sens de rotation RI indiqué sur la figure 3, les portions B1 des bords des orifices de distribution constituent des portions d'attaque, par lesquelles commence la mise en communication d'un orifice de communication avec un orifice de distribution, tandis que les portions B2 des bords des orifices de distribution constituent des portions de séparation, par lesquelles cette mise en communication cesse. Bien entendu, lorsque la rotation relative s'effectue dans le sens inverse R2, ce sont les portions B2 qui constituent les portions d'attaque et les portions B1 qui constituent les portions de séparation.
Dans la mesure où la came et le distributeur sont solidaires en rotation, la position de chaque orifice de distribution par rapport aux lobes de la came est fixe.
Chaque lobe de la came 4 comprend deux rampes 50A et 50B, qui présentent chacune une région convexe et une région concave. Considérées dans le sens de rotation RI, la rampe 50A est une rampe montante et la rampe 50B est une rampe descendante, les cylindres étant reliés à l'alimentation en fluide lorsque leurs pistons coopèrent avec une rampe montante et étant reliés à l'échappement de fluide lorsque leurs pistons coopèrent avec une rampe descendante. Sur la figure 3, on voit l'une de ces rampes 50A, dont la région convexe, plus proche de l'axe de rotation 10, est désignée par la référence 51, et dont la région concave, moins proche de cet axe, est désignée par la référence 52.
Un orifice de distribution est associé à chaque rampe de la came. Il existe donc une correspondance angulaire entre chaque orifice de distribution et une rampe de la came. Bien que les orifices de distribution ne se trouvent pas dans un même plan radial que la came, on a illustré sur les figures 2 et 3 la correspondance angulaire entre les orifices de distribution 23A et la rampe 50 de la came. En l'espèce, les orifices de distribution représentés sur la figure 2 sont circulaires et chacun de ces orifices est centré sur la bissectrice B de la rampe de la came à laquelle il correspond, comme on l'a illustré pour les rampes 50B, 50A' et 50B' et les orifices de distribution 21A, 23A et 21A correspondant. La bissectrice B de chaque rampe de la came est la bissectrice de l'angle a couvert par la rampe entre le point bas PI médian entre deux lobes adjacents et le point haut P2 médian entre les deux rampes d'un même lobe.
Cette configuration est celle des orifices de distribution d'une machine du type précité, dont les phases d'isolement ne sont pas décalées ou, du moins, pas décalées par la came.
Pour mieux comprendre la notion de phase d'isolement, on se reporte à la figure 3. Sur cette figure, pour la clarté du dessin, on n'a pas respecté les proportions, les orifices de communication et de distribution étant représentés plus proches de la came que dans la réalité. L'orifice de distribution 23A visible sur cette figure est en l'espèce un orifice ayant des entailles 54A et 54B, respectivement sur sa portion B1 et sur sa portion B2. De telles entailles sont décrites en détails dans la demande de brevet PCT WO 03/056172. Globalement, l'orifice 23A est disposé de manière à s'inscrire dans un cercle passant par les extrémités des entailles et dont le centre passe par la bissectrice B de l'angle couvert par la rampe 50A.
Ainsi, dans cet exemple, l'orifice 23A est "centré" sur cette bissectrice. Dans la conception des machines hydrauliques à pistons radiaux, les orifices de distribution peuvent cependant être positionnés autrement, à condition que le distributeur soit positionné angulairement en conséquence, car les conduits de cylindres qui relient les cylindres aux orifices de communication du bloc-cylindres peuvent avoir des formes variées. Ainsi, un orifice de communication peut ne pas être centré sur l'axe du cylindre correspondant et, dans ce cas, les orifices de distribution qui communiquent alternativement avec les orifices de communication au cours de la rotation relative du bloc-cylindres et de la came, peuvent alors eux-mêmes ne pas être centrés sur les bissectrices des angles couverts par les lobes de came. De manière générale, dans un positionnement non décalé d'un orifice de distribution par rapport à une rampe de came, sa surface de communication avec un orifice de communication également non décalé est maximale (ou les centres des orifices de distribution et de communication considérés sont confondus) quand le point d'appui sur la came, du piston qui coulisse dans le cylindre ayant cet orifice de communication, passe par la bissectrice de l'angle couvert par cette rampe de came.
Pour simplifier, on décrit ci-après le décalage d'un orifice de distribution en prenant comme orifice de distribution de référence, un orifice de distribution centré sur la bissectrice du lobe de came correspondant.
La figure 3 permet également de mieux comprendre la conformation des lobes de came. Le lobe de came visible sur cette figure comprend deux rampes, 50A et 50B formant respectivement, dans le sens de rotation R2, une rampe descendante et une rampe montante. Ces deux rampes sont reliées (dans leurs zones les plus éloignées de Taxe de rotation de la machine) par une zone de fond de came 58 qui forme un arc de point mort haut PH. Sur toute la longueur d'arc de cet arc de point mort, la distance entre la surface du lobe et l'axe de rotation de la machine est sensiblement constante. Il en résulte qu'un piston en contact avec cet arc reste à distance constante de cet axe de rotation et n'est donc pas sollicité en déplacement radial. On a représenté l'amorce de la rampe montante 50B' qui fait partie du lobe de came suivant, dans le sens de rotation R2. La rampe descendante 50A est reliée à cette rampe montante 50B' par une zone de sommet de came 56 qui forme un arc de point mort bas. De même, sur toute la longueur d'arc de cet arc de point mort, la distance entre la surface du lobe et l'axe de rotation de la machine est sensiblement constante et le piston en contact avec cette zone n'est pas sollicité en déplacement radial. Les zones de sommet de came (dans lesquelles se trouvent les arcs de point mort bas) sont celles dans lesquelles la distance radiale de la came à l'axe de rotation est minimale, tandis que les zones de fond de came (dans lesquelles se trouvent les arcs de point mort haut) sont celles dans lesquelles la distance radiale de la came à l'axe de rotation est maximale. Dans la définition des arcs de point mort qui précède, on considère que la distance entre la surface du lobe de came et l'axe de rotation est "sensiblement" constante si, lorsqu'un piston coopère avec un arc de point mort, sa course radiale est nulle ou sensiblement nulle, par exemple en étant au maximum de 0,5% de l'amplitude radiale de la course d'un piston au cours de la rotation relative du bloc-cylindres et de la came.
On a également représenté sur la figure 3 les différentes positions d'un orifice de communication 32A par rapport à l'orifice de distribution 23A au cours de la rotation relative du bloc-cylindres et du distributeur, ainsi que l'orifice de distribution 23A qui correspond à la rampe 50A. On a également amorcé les orifices de distribution 21A qui correspondent aux rampes 50B et 50B'.
En considérant la figure 3 de la droite vers la gauche, on explique le fonctionnement de la machine en pleine cylindrée, pour une alimentation dans le sens de rotation R2, les orifices de distribution (comme les orifices 21A) correspondant aux rampes montantes étant reliés à l'alimentation et les orifices de distribution (comme l'orifice 23A) correspondant aux rampes descendantes étant reliés à l'échappement.
Le bloc-cylindres tournant dans le sens R2, le piston considéré (celui qui coulisse dans le cylindre dont les différentes positions, 32A1, 32A2 et 32A3 de l'orifice de communication 32A sont représentées sur la figure 3) est d'abord en contact avec la rampe montante 50B, pendant que s'opère une phase de liaison de l'orifice de communication avec le conduit principal d'alimentation, via l'orifice de distribution 21A qui correspond à cette rampe.
Ensuite, le piston vient au contact de l'arc de point mort haut PH et s'opère alors une phase de commutation, pendant laquelle la liaison de l'orifice de communication 32A à l'orifice de distribution 21A est fermée, puis pendant laquelle se déroule une phase d'isolement de l'orifice de communication avec tout orifice de distribution, puis pendant laquelle la liaison de l'orifice de communication 32A à l'orifice de distribution 23A qui correspond à la rampe 50A est ouverte.
Ensuite, le piston est au contact de la rampe descendante 50A pendant une phase de liaison de l'orifice de communication avec le conduit principal d'échappement, via l'orifice de distribution 23A.
Ensuite, le piston vient au contact de l'arc de point mort bas PB et s'opère alors une nouvelle phase de commutation, pendant laquelle la liaison de l'orifice de communication 32A à l'orifice de distribution 23A est fermée, puis pendant laquelle se déroule une phase d'isolement de l'orifice de communication avec tout orifice de distribution, puis pendant laquelle la liaison de l'orifice de communication 32A à l'orifice de distribution 21A qui correspond à la rampe montante 50B' du lobe suivant est ouverte.
Plus précisément, dans la position 32A1 de l'orifice de communication 32A, le piston est au contact de l'arc de point mort haut PH et cet orifice de communication est isolé de tout orifice de distribution; on est alors pendant la phase d'isolement. On voit en effet que, dans cette position, l'orifice 32A est séparé de la pointe de l'entaille 54B de l'orifice 23A par une distance angulaire a1, par exemple de l'ordre de 1° et qu'il est également séparé de l'entaille 54B de l'orifice de distribution 21A précédent, en l'espèce par la même distance angulaire a1. Lors de la rotation du bloc-cylindres par rapport au distributeur dans le sens R2, l'orifice de communication 32A vient peu à peu recouvrir l'orifice de distribution 23A en commençant par son entaille 54B. En l'espèce, lorsqu'il recouvre totalement l'orifice 23A, l'orifice de communication est dans sa position 32A2 et son contour forme un cercle qui passe par les extrémités des entailles et dont le centre passe par la bissectrice B de l'angle couvert par la rampe 50A.
Lorsque la rotation dans le sens R2 se poursuit, la section de communication diminue et l'orifice de communication finit par quitter la portion de séparation B1 de l'orifice de distribution 23A, par son entaille 54A.
La rotation se poursuivant, l'orifice de communication atteint une position 32A3 dans laquelle il ne communique plus avec aucun orifice de distribution 23A, en étant séparé de cet orifice et de l'orifice de distribution suivant dans le sens de rotation R2, par des distances angulaires a1.
Sur la figure 3, l'arc de point mort haut PH couvre une plage angulaire aHde part et d'autre de sa bissectrice BH (il couvre donc un angle égal à 2aH au total). De même, l'arc de point mort bas PB couvre une plage angulaire aB de part et d'autre de sa bissectrice BB (il couvre donc un angle égal à 2aB au total).
Sur la figure 4, on a représenté une coupe radiale prise dans le bloc-cylindres de la machine. On voit les positions des orifices de communication 32A. En l'espèce, chaque orifice est centré sur l'axe du cylindre dont il constitue l'orifice de communication. Cela est la configuration la plus simple. Cependant, comme indiqué précédemment, des orifices de communication pourraient être décalés par rapport aux axes de leurs cylindres respectifs. En l'espèce, les différents orifices de communication 32A sont espacés régulièrement, en correspondance avec les espacements angulaires entre les axes des cylindres. Dans l'exemple de la figure 4, les orifices de communication 32A ont des sections circulaires.
Dans la variante illustrée sur la figure 5, les orifices de communication 32A ont des portions d'attaque et de bord pourvues d'entailles, respectivement 154A et 154B. Ces orifices peuvent en effet avoir la forme décrite dans la demande PCT WO 03/056171. La figure 5 montre des positions par rapport à la came de trois pistons, respectivement 14,14' et 14". Le piston 14 est en phase d'isolement, il est au contact du point mort haut et l'on voit que son orifice de communication 32 est isolé de tout orifice de distribution, selon une plage angulaire al, de part et d'autre. Par ailleurs, les entailles 154A et 154B des bords de cet orifice couvrent chacune une plage angulaire a2. En revanche, pour une rotation du bloc-cylindres dans le sens R2, le piston 14' commence à aborder la rampe montante 50B'. On voit que la communication de son orifice de communication 32Ά avec un orifice de distribution 21A commence à s'opérer. Ce piston 14' vient en effet de quitter la phase d'isolement du point mort bas PB dans laquelle son orifice de communication était isolé des orifices de distribution 21A et 23B. Quant au piston 14", il arrive vers le bas d'une rampe descendante 50A', et son orifice de communication 32"A ne communique plus que par son entaille 154B avec l'orifice de distribution 22A. Sur la figure 5, les orifices de distribution 21A, 22A et 23A sont indiqués en traits interrompus, car ils ne sont pas dans le plan de cette figure.
Sur la figure 6, on a représenté schématiquement un point mort haut PH, qui couvre un secteur angulaire aH de part et d'autre de sa bissectrice BH. En considérant que la rotation du bloc-cylindres s'opère dans le sens R2 par rapport à la came, et partant de droite sur la figure 6, on a représenté en trait plein fort la course CA de contact entre le piston et la came pendant laquelle le conduit de communication du cylindre dans laquelle coulisse le piston est relié à l'alimentation en fluide. On voit que l'alimentation en fluide cesse alors que le piston est déjà dans l'arc de point mort PH, après avoir parcouru un secteur angulaire ad après le début PHd de l'arc de point mort. Ensuite, lorsque la rotation continue dans le sens R2, le piston cesse d'être relié à l'alimentation et n'est pas encore relié à l'échappement, jusqu'à ce qu'il parvienne un peu avant la fin PHf de l'arc de point mort PH et qu'il soit alors relié à l'échappement de fluide. En effet, la liaison de l'orifice de communication avec l'échappement de fluide s'opère alors que le piston parcourt la course CE indiquée en trait fin. La communication avec l'échappement de fluide commence avec un écart angulaire af par rapport à la fin de l'arc de point mort PHf. Ainsi, la plage angulaire ai disponible pour la phase d'isolement correspond à la plage angulaire totale de l'arc de point mort 2aH, moins l'écart angulaire ad entre le début de la phase d'isolement et le début de l'arc de point mort PH, et moins l'écart angulaire af entre la fin de la phase d'isolement et la fin PHf de l'arc de point mort. Les écarts angulaires ad et af sont au moins égaux à l/20eme, de préférence au moins égaux à l/10eme de l'angle total 2aH couvert par l'arc de point mort. Ces écarts angulaires fournissent des délais de sécurité, permettant d'éviter que la communication avec l'alimentation de fluide ne cesse trop tôt et que la communication avec l'échappement de fluide ne commence trop tard, ceci afin d'éviter les phénomènes de cavitation et de choc. Bien entendu, les mêmes écarts s'appliquent mutatis mutandis aux arcs de point mort bas, pour lesquels la communication avec l'échappement cesse avec un léger écart angulaire par rapport au début de l'arc de point mort et la communication avec l'alimentation commence avec un léger écart angulaire avant la fin de l'arc de point mort.
Ainsi, en revenant à la figure 6, on constate que la phase d'isolement, pendant laquelle l'orifice de communication est isolé de tout orifice de distribution, peut s'opérer sur la course angulaire ai du piston sur l'arc de point mort PH. Pour éviter tout court-circuit entre l'alimentation et l'échappement, on préserve de plus une plage de sécurité aS de la phase d'isolement pour assurer la bonne fermeture de la liaison avant la phase d'isolement, et la bonne ouverture de la liaison à l'issue de la phase d'isolement. Sur les machines hydrauliques classiques, les phases d'isolement sont centrées par rapport aux bissectrices BH des lobes de came et couvrent par exemple la plage angulaire ai ou une plage angulaire a'i légèrement inférieure, tel qu'indiqué sur la figure 6. Pour les raisons qui viennent d'être évoquées, on dispose en fait d'une plage angulaire ai moins as pour réaliser une phase d'isolement en toute sécurité. Ainsi, la phase d'isolement pourrait ne commencer qu'alors que le piston parcourt la course indiquée par le prolongement de la courbe CA en traits interrompus, ou bien elle pourrait se terminer alors que le piston parcourt la course indiquée par le prolongement de la course CE en traits interrompus.
On peut ainsi, conformément à l'invention, décaler le début et/ou la fin de la phase d'isolement, pour autant que ce début et cette fin se trouvent sur la plage angulaire ai moins as. C'est ce que montrent les figures 7A et 7B. Sur la figure 7A, pour un premier piston, le début de la phase d'isolement s'opère alors que le piston a parcouru une course angulaire adl depuis le début PHt de l'arc de point mort PH, comme le montre la courbe CA en traits pleins. Pour ce même piston, la phase d'isolement cesse alors que le piston est à une distance angulaire afl de la fin PHf de l'arc de point mort, comme le montre la courbe CE.
Sur la figure 7B, pour un même piston de la même machine, on voit que la phase d'isolement commence alors que le piston est à une distance angulaire ad2 du début PHd de l'arc de point mort, et que la phase d'isolement se termine alors que le piston est encore à une distance angulaire af2 de la fin PHf de l'arc de point mort PH. Ainsi, la première phase d'isolement représentée sur la figure 7A et la deuxième phase d'isolement représentée sur la figure 7B sont décalées l'une par rapport à l'autre. Par ailleurs, si le piston dont la phase d'isolement est représentée sur la figure 6 appartient au même moteur, on voit que l'on a en fait décalé les unes par rapport aux autres trois phases d'isolement.
Au sens de la présente description, la position angulaire de début ou de fin d'une phase d'isolement par rapport à l'arc de point mort reliée à cette phase d'isolement est définie comme étant l'écart angulaire entre ce début ou cette fin et la bissectrice d'angle couvert par l'arc de point mort relié à cette phase d'isolement. En se reportant à la figure 6, on voit donc que, pour la phase d'isolement ai, la position angulaire de début de la phase d'isolement est définie par l'angle dl, tandis que la position angulaire de fin de la phase d'isolement est définie par l'angle fl. Si la phase d'isolement de ce piston correspond à l'angle a'1, alors la position angulaire de début de la phase d'isolement est définie par l'angle d'1 et la fin de cette plage angulaire est définie par l'angle fl. En revanche, sur la figure 7A, la position angulaire de début de la phase d'isolement est définie par l'angle d2, qui est négatif puisque le piston a alors déjà dépassé la bissectrice BH, et la position angulaire de fin de la phase d'isolement est définie par l'angle f2. Dans le cas de la figure 7B, la position angulaire de début de la phase d'isolement est définie par l'angle d3, et la position angulaire de fin de la phase d'isolement est définie par l'angle f3, cet angle étant positif puisque le piston n'a pas encore dépassé la bissectrice BH. Ainsi, si l'on considère les pistons dont les phases d'isolement sont illustrées par les figures 6, 7A et 7B, les décalages entre les débuts et les fins des phases d'isolement pour ces différents pistons sont définis par la différence entre les angles dl, d2 et d3, et entre les angles fl, f2 et f3.
On peut par exemple prévoir trois indices de décalage possible : -1, 0 et +1. L'indice de décalage 0 correspond à des pistons synchronisés, par exemple tous conformes à ce qu'illustre la figure 6, tandis que les indices + 1 et -1 correspondent à des décalages en sens inverse, pour une valeur absolue de décalage (mesurée en plage angulaire ou en longueur d'arc), soit avec un retard du début de la phase d'isolement, comme illustré sur la figure 7A, soit avec une avance, comme illustré sur la figure 7B. Ceci correspondrait, en comparant les figures 7A et 7B, à avoir les mêmes valeurs absolues pour les angles d2 et f3, et avoir les mêmes valeurs absolues pour les angles f2 et d3.
Les décalages illustrés sur les figures 6A, 7A et 7B peuvent être réalisés "par les cylindres" ou "par la came". Pour un décalage "par les cylindres", on peut considérer que le lobe de came représenté sur ces trois figures est le même et que les décalages des phases d'isolement sont réalisés par des décalages des orifices de communication. Pour un décalage "par la came", on peut considérer que les trois lobes de came sont différents, et que les phases d'isolement illustrées sur ces figures se produisent pour un même piston, selon qu'il coopère avec l'un ou l'autre de ces lobes de cames.
Pour obtenir un décalage par la came, ce sont les orifices de distribution qui sont décalés les uns par rapport aux autres. Ainsi, sur les figures 2 et 3, les orifices de distribution sont chacun centré sur la bissectrice de la rampe correspondante d'un lobe de came. C'est le cas des orifices de distribution représentés en traits pleins sur la figure 2. Cependant, certains orifices de distribution peuvent être légèrement décalés, comme indiqué pour les orifices de distribution 22Ά, 2ΓΑ, 23Ά et 2ΓΑ représentés en traits interrompus, ces orifices correspondant respectivement aux lobes de came 50A', 50B', 50A et 50B. Par exemple, si l'on considère sur la figure 2 les deux rampes 50B et 50B' aux extrémités desquelles sont respectivement définies les arcs de point mort PHI et PH2, on voit que les orifices de distribution 2ΓΑ correspondant à ces deux rampes sont décalés l'un par rapport à l'autre, c'est-à-dire qu'ils sont chacun positionné différemment par rapport à la bissectrice de l'angle couvert par la rampe considérée. De même, les orifices de distribution 22Ά et 23Ά correspondant respectivement aux lobes de came 50A' et 50A sont décalés l'un par rapport à l'autre. En l'espèce, si l'on considère que d'autres orifices de distribution dits "de référence" sont dans les positions représentées en trait plein (centrés sur les bissectrices de leurs lobes de came correspondants respectifs), on a seulement deux valeurs de décalage par rapport à ces orifices de référence, soit dans un sens (pour les orifices 2ΓΑ et 23Ά), soit dans l'autre (pour les orifices 22Ά et 23Ά).
Bien entendu, s'agissant d'un décalage par les pistons, selon le nombre de pistons que comprend la machine, on peut avoir plus ou moins de valeurs de décalage, et affecter ces différentes valeurs de manière aléatoire aux différents pistons, ou bien de manière pseudo-aléatoire, par exemple par la méthode PBRS, ou bien encore par incrément, les pistons qui se suivent dans le sens de rotation ayant des décalages qui vont en augmentant, à partir d'un premier piston, comme illustré sur la figure 4.
Sur la figure 4, on a représenté une coupe faite dans le bloc-cylindres d'une machine hydraulique à pistons radiaux sans décalage, les positions des conduits de distribution, matérialisées par leurs orifices 32A représentés en trait plein sur la figure 4, n'étant pas décalées les unes par rapport aux autres. Sur la même figure, on a représenté en traits interrompus, des positions d'orifice de communication 32A pouvant permettre un décalage par les cylindres. Par exemple, l'orifice de communication 32A de l'un des cylindres reste en position initiale, par exemple en étant centré sur l'axe du cylindre, tandis que les orifices suivants sont décalés, respectivement dans les positions 01, 02, 03, 04, 05 et 06, pour les six autres cylindres. En l'espèce, le décalage est réalisé dans le même sens, c'est-à-dire que par rapport aux axes de cylindre, les décalages tendent tous à déporter les orifices de communication du même côté de ces axes. En l'espèce, on voit que le décalage augmente en parcourant le bloc-cylindres dans le sens RI. Il en résulte que, pour un même arc de point mort, la position angulaire de début ou de fin de la phase d'isolement sera différente selon le piston qui coopère avec cet arc de point mort.
Sur la figure 8, on a représenté schématiquement les positions des orifices de communication 132A à 1321 du bloc-cylindres dans une machine selon l'invention. Sur la figure 8, on a seulement représenté les positions de ces orifices et schématisé les cylindres correspondants et leurs pistons. Sur une machine classique, les orifices 132A à 1321 sont espacés régulièrement, les angles β mesurés entre les rayons passant par les centres des orifices étant identiques entre tous les orifices adjacents.
Comme on l'a indiqué, chaque orifice de communication est celui d'un cylindre dans lequel coulisse un piston, de sorte que chaque orifice de communication correspond à un piston.
Dans cette machine, des pistons sont dits "associés". Ces pistons associés se trouvent tous, durant un cycle de rotation relatif du bloc-cylindres de la came, dans la même position par rapport au lobe de came avec lequel il coopère avec un moment donné. Ceci permet d'équilibrer les efforts radiaux exercés sur la came. Par exemple, dans le cas d'espèce, neuf pistons correspondant aux neuf orifices de communication sont répartis en trois groupes de pistons associés, un premier groupe comprenant les pistons 14A, 14D et 14G correspondant aux orifices 132A, 132D et 132G, le deuxième groupe comprenant les pistons 14B, 1A4E et 14Hcorrespondant aux orifices 132B, 132E et 132H, et le troisième groupe comprenant les pistons 14C, 14F et 141 correspondant aux orifices 132C, 132F et 1321.
Par exemple, ces pistons peuvent rester associés pendant tout un cycle de rotation, c'est-à-dire que, pendant tout ce cycle, ils restent chacun dans la même position relative par rapport au lobe de came avec lequel il coopère un moment donné, ce qui suppose que tous les lobes de came soient identiques. Il est également possible d'avoir des pistons associés qui varient d'un lobe de came à l'autre, par exemple à un moment donné, trois pistons associés coopérant avec des lobes de came analogues sont tous dans la même position relative par rapport aux lobes de came en question, puis lorsqu'ils passeront dans le lobe de came suivant, d'autres pistons seront associés.
La machine représentée schématiquement sur la figure 8 peut être modifiée pour être réalisée conformément à l'invention, en réalisant un décalage par les cylindres. Par exemple, les orifices de communication des cylindres des pistons du premier groupe restent en position inchangée, toujours centrés sur l'axe des pistons correspondants. En revanche, les orifices de communication 132B', 132E' et 132H' des cylindres dans lesquels coulissent les pistons du deuxième groupe sont tous décalés, comme indiqué en traits interrompus, les angles g2 du décalage de leurs centres par rapport aux centres des orifices initiaux étant tous identiques. De même, les orifices de communication 132C', 132F' et 1321' des cylindres dans lesquels coulissent les pistons du troisième groupe sont tous décalés de manière identique, les angles g3 du décalage des centres des orifices étant tous identiques.
Ainsi, si, en parallèle, aucun décalage par la came n'est réalisé, les pistons associés ont les mêmes positions angulaires de début et de fin des phases d'isolement par rapport aux arcs de point mort des lobes liés à ces phases d'isolement, durant toute leur coopération avec la came. Comme indiqué précédemment, les pistons associés peuvent être identifiés comme tels seulement du point de vue de leurs coopérations avec un groupe de lobes de came identiques pendant une partie du cycle de rotation, et, dans ce cas, ce qui vient d'être décrit permet de faire en sorte que les débuts et les fins des phases d'isolement lorsque les pistons associés coopèrent avec les arcs de point mort de ces lobes de came identiques sont les mêmes.

Claims (17)

  1. REVENDICATIONS
    1. Machine hydraulique à pistons radiaux comprenant une came (4) et un bloc-cylindres (6) aptes à tourner l'un par rapport à l'autre autour d'un axe de rotation (10), le bloc-cylindres présentant des cylindres radiaux (12) reliés à des orifices de communication (32A) du bloc-cylindres, des pistons (14) montés coulissants dans les cylindres étant aptes à coopérer avec la came (4), cette dernière présentant plusieurs lobes ayant chacun deux rampes (50A, 50B) qui s'étendent chacune entre un arc de point mort haut (PH) et un arc de point mort bas (PB), la machine comprenant, en outre, un distributeur de fluide (16) apte à relier les orifices de communication à un premier ou un deuxième conduit principal (24, 26), d'alimentation ou d'échappement, selon des séquences comprenant des phases de liaison au premier conduit principal (24) et des phases de liaison au deuxième conduit principal (26) séparées par des phases de commutation qui comprennent successivement la fermeture de la liaison à l'un des conduits principaux, une phase d'isolement par rapport aux deux conduits principaux (24, 26) et l'ouverture de la liaison à l'autre conduit principal, chaque phase d'isolement se produisant, pour l'orifice de communication (32A) d'un cylindre donné, alors que le piston (14) monté dans ce cylindre est en appui sur un arc de point mort donné (PH, PB), qui est défini comme étant l'arc de point mort lié à la phase d'isolement considérée, la position angulaire de début ou de fin d'une phase d'isolement par rapport à l'arc de point mort lié à cette phase d'isolement étant définie comme étant l'écart angulaire entre ledit début ou ladite fin et la bissectrice de l'angle couvert par ledit arc de point mort lié à cette phase d'isolement, caractérisée en ce que la position angulaire de début ou de fin (d'I, d2, d3, fl, f2, f3) d'au moins une première phase d'isolement par rapport à l'arc de point mort (PH) lié à cette première phase d'isolement est différente de la position angulaire de début ou de fin (dl, fl) d'au moins une deuxième phase d'isolement par rapport à l'arc de point mort lié (PH) à cette deuxième phase d'isolement au cours d'un cycle de révolution de la machine et en ce que les arcs de point mort liés (PH, PB) auxdites première et deuxième phases d'isolement sont de même nature, c'est-à-dire qu'ils sont tous les deux des arcs de point mort haut ou des arcs de point mort bas.
  2. 2. Machine selon la revendication 1, caractérisée en ce que, pour chaque phase de commutation, l'écart (ad) entre la position angulaire de début de la phase d'isolement et le début (PHd) de l'arc de point mort (PH) lié à cette phase d'isolement, et l'écart (af) entre la position angulaire de fin de la phase d'isolement et la fin (PHf) dudit arc de point mort est au moins égal à l/20è, de préférence à l/10è, de l'angle (aH, aH) couvert par ledit arc de point mort (PH).
  3. 3. Machine selon la revendication 1 ou 2, caractérisée en ce que, pour chaque phase de commutation, la longueur d'arc entre la position angulaire de début (dl, d'I, d2, d3) de la phase d'isolement et le début (PHd) de l'arc de point mort (PH) lié à cette phase d'isolement, et la longueur d'arc entre la position angulaire de fin (fl, fl, f2, f3) de la phase d'isolement et la fin (PHf) dudit arc de point mort (PH) sont au moins égales à 0,1 mm.
  4. 4. Machine selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la valeur absolue de la différence entre les positions angulaires de début ou de fin des première et deuxième phases d'isolement est au moins égale à l/20è, de préférence à l/10è de l'angle couvert par le plus petit des arcs de point mort liés aux première et deuxième phases d'isolement.
  5. 5. Machine selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la différence entre les positions angulaires de début ou de fin des première et deuxième phases d'isolement couvre un arc ayant une longueur au moins égale à 0,1 mm.
  6. 6. Machine selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le distributeur de fluide (16) comprend des orifices de distribution (21A, 22A, 23A) aptes à être reliés à l'un ou l'autre des conduits principaux (24, 26) et à être successivement en regard avec les orifices de communication (32A) du bloc-cylindres (6) au cours de la rotation relative du bloc-cylindres et de la came, chaque orifice de distribution correspondant à une rampe (50A, 50B) de la came (4).
  7. 7. Machine selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la première et la deuxième phase d'isolement concernent l'orifice de communication (32A) d'un même cylindre, la position angulaire de début ou de fin de la première phase d'isolement qui se produit alors que le piston monté dans ledit même cylindre est en appui sur un premier arc de point mort étant décalée par rapport à la position angulaire de début ou de fin de la deuxième phase d'isolement qui se produit alors que le piston monté dans ledit même cylindre est en appui sur un deuxième arc de point mort différent du premier.
  8. 8. Machine selon les revendications 6 et 7, caractérisée en ce que, le premier et le deuxième arc de point mort (PHI, PH2) étant respectivement situés à une extrémité d'une première rampe (50B) et à une extrémité d'une deuxième rampe (50B1), la position, par rapport à la bissectrice (B) de l'angle couvert par ladite première rampe, de l'orifice de distribution (2ΓΑ) correspondant à la première rampe (50B) et la position, par rapport à la bissectrice (B) de l'angle couvert par ladite deuxième rampe (50B1), de l'orifice de distribution (2ΓΑ) correspondant à la deuxième rampe présentent un premier décalage l'une par rapport à l'autre.
  9. 9. Machine selon la revendication 8, caractérisé en ce que, la première et la deuxième rampe (50B, 50B1) étant respectivement des rampes d'un premier et d'un deuxième lobe de came, la position, par rapport à la bissectrice de l'angle couvert par l'autre rampe (50A) du premier lobe de came, de l'orifice de distribution (22Ά) correspondant à cette autre rampe, et la position, par rapport à la bissectrice de l'angle couvert par l'autre rampe (50A1) du deuxième lobe de came, de l'orifice de distribution (23Ά) correspondant à cette autre rampe présentent, l'une par rapport à l'autre, le même décalage que le premier décalage.
  10. 10. Machine selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la première et la deuxième phase d'isolement concernent un même arc de point mort (PH), la position angulaire de début ou de fin de la première phase d'isolement qui se produit alors qu'un piston (14) monté dans un premier cylindre (12) est en appui sur ledit même arc de point mort étant décalée par rapport à la position angulaire de début ou de fin de la deuxième phase d'isolement qui se produit alors que qu'un piston (14) monté dans un deuxième cylindre (12) différent du premier cylindre est en appui sur ledit même arc de point mort.
  11. 11. Machine selon la revendication 10, caractérisée en ce que les orifices de communication (32A) des premier et deuxième cylindres ont des configurations différentes par rapport aux axes respectifs desdits premier et deuxième cylindres.
  12. 12. Machine selon l'une quelconque des revendications 1 à 11, caractérisée en ce que les positions angulaires de début ou de fin d'au moins trois phases d'isolement, dites phases d'isolement décalées, sont différentes, des valeurs différentes d'au moins l'un des paramètres choisis parmi l'amplitude des phases d'isolement et les décalages angulaires des positions de début ou de fin des phases d'isolement décalées, en nombre inférieur au nombre de phases d'isolement décalées, étant réparties entre lesdites phases d'isolement décalées, avantageusement selon la méthode PRBS.
  13. 13. Machine selon l'une quelconque des revendications 1 à 12, caractérisée en ce que les positions angulaires de début ou de fin d'au moins trois phases d'isolement sont différentes et présentent ainsi des décalages angulaires les unes par rapport aux autres, ces décalages ayant la même valeur absolue et ayant des sens différents, ces sens étant avantageusement répartis selon la méthode PRBS.
  14. 14. Machine selon l'une quelconque des revendications 1 à 12, caractérisé en ce que, pour toutes les phases d'isolement dont les positions angulaires de début ou de fin de course sont différentes, les décalages sont dans le même sens, les décalages étant avantageusement répartis selon la méthode PRBS.
  15. 15. Machine selon l'une quelconque des revendications 1 à 14, caractérisée en ce que les positions angulaires de début ou de fin d'au moins trois phases d'isolement qui se produisent alors que des pistons (14) montés dans différents cylindres (12) sont en appui sur le même arc de point mort sont différentes et présentent ainsi des décalages angulaires les unes par rapport aux autres, les valeurs de ces décalages augmentant lorsque l'on considère successivement les orifices de communication desdits différents cylindres dans un sens de rotation.
  16. 16. Machine selon l'une quelconque des revendications 1 à 15, caractérisée en ce que les bords d'au moins certains des orifices de communication (32) présentent des entailles (154A, 154B).
  17. 17. Machine selon l'une quelconque des revendications 1 à 16, caractérisée en ce que les pistons comprennent au moins un groupe de pistons associés (14A, 14D, 14G; 14B, 14E, 14H; 14CF, 141) pour lesquels, pendant un cycle de rotation relative du bloc-cylindres (6) et de la came (4), il existe au moins une situation de simultanéité pendant laquelle lesdits pistons associés coopèrent avec des lobes de came identiques et se trouvent, durant toute leur coopération avec ces lobes de cames identiques, dans des positions identiques par rapport auxdits lobes de came, et en ce que, pour chacun de ces lobes de came identiques, les positions angulaires de début et de fin des phases d'isolement par rapport aux arcs de point mort desdits lobes liés à ces phases d'isolement, sont identiques.
FR1556203A 2015-07-01 2015-07-01 Machine hydraulique a pistons radiaux a distribution en harmonique Expired - Fee Related FR3038348B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR1556203A FR3038348B1 (fr) 2015-07-01 2015-07-01 Machine hydraulique a pistons radiaux a distribution en harmonique
EP16744448.8A EP3317537B1 (fr) 2015-07-01 2016-07-01 Machine hydraulique a pistons radiaux a distribution en harmonique
PCT/FR2016/051667 WO2017001802A1 (fr) 2015-07-01 2016-07-01 Machine hydraulique a pistons radiaux a distribution en harmonique
CN201680039312.0A CN107709769B (zh) 2015-07-01 2016-07-01 谐波分配径向活塞液压机
US15/740,874 US11067066B2 (en) 2015-07-01 2016-07-01 Harmonic distribution radial piston hydraulic machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1556203 2015-07-01
FR1556203A FR3038348B1 (fr) 2015-07-01 2015-07-01 Machine hydraulique a pistons radiaux a distribution en harmonique

Publications (2)

Publication Number Publication Date
FR3038348A1 true FR3038348A1 (fr) 2017-01-06
FR3038348B1 FR3038348B1 (fr) 2019-08-23

Family

ID=53801097

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1556203A Expired - Fee Related FR3038348B1 (fr) 2015-07-01 2015-07-01 Machine hydraulique a pistons radiaux a distribution en harmonique

Country Status (5)

Country Link
US (1) US11067066B2 (fr)
EP (1) EP3317537B1 (fr)
CN (1) CN107709769B (fr)
FR (1) FR3038348B1 (fr)
WO (1) WO2017001802A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2579359B (en) * 2018-11-28 2021-04-14 Terex Gb Ltd Rotor positioning device of an impact crusher
NL2024476B1 (en) * 2019-12-17 2021-09-02 Delft Offshore Turbine B V Turbine and multi piston pump
EP4345284A1 (fr) * 2022-09-29 2024-04-03 Robert Bosch GmbH Machine à pistons multiples avec relation constante entre le volume de fluide et l'angle de rotation dans chaque position de rotation
CN115875186B (zh) * 2023-02-27 2023-04-28 太原科技大学 一种集成共转子结构高扭矩密度内曲线液压马达

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665364A1 (fr) * 1994-01-27 1995-08-02 Eaton Corporation Réduction de bruit aux fréquences de second ordre
WO2003056172A1 (fr) * 2001-12-24 2003-07-10 Poclain Hydraulics Industrie Moteur hydraulique a pistons radiaux
JP2004116455A (ja) * 2002-09-27 2004-04-15 Komatsu Ltd ラジアルピストンポンプまたはモータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834012B1 (fr) * 2001-12-24 2004-03-19 Poclain Hydraulics Ind Moteur hydraulique a pistons radiaux
FR2846381B1 (fr) * 2002-10-29 2005-01-28 Poclain Hydraulics Ind Mecanisme hydraulique ayant des cylindres a communications multiples
FR2896539B1 (fr) * 2006-01-26 2008-05-02 Vianney Rabhi Dispositif presseur pour moteur a rapport volumetrique variable.
FR2940672B1 (fr) 2008-12-31 2011-01-21 Poclain Hydraulics Ind Moteur hydraulique a pistons radiaux et commande par cylindre
FR3007084B1 (fr) 2013-06-12 2015-06-26 Technoboost Machine hydraulique comportant des cylindres disposant d'ouvertures decalees angulairement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665364A1 (fr) * 1994-01-27 1995-08-02 Eaton Corporation Réduction de bruit aux fréquences de second ordre
WO2003056172A1 (fr) * 2001-12-24 2003-07-10 Poclain Hydraulics Industrie Moteur hydraulique a pistons radiaux
JP2004116455A (ja) * 2002-09-27 2004-04-15 Komatsu Ltd ラジアルピストンポンプまたはモータ

Also Published As

Publication number Publication date
CN107709769B (zh) 2019-11-26
FR3038348B1 (fr) 2019-08-23
EP3317537A1 (fr) 2018-05-09
CN107709769A (zh) 2018-02-16
US11067066B2 (en) 2021-07-20
US20180187661A1 (en) 2018-07-05
WO2017001802A1 (fr) 2017-01-05
EP3317537B1 (fr) 2019-09-04

Similar Documents

Publication Publication Date Title
FR3038348B1 (fr) Machine hydraulique a pistons radiaux a distribution en harmonique
FR2770580A1 (fr) Dispositif de reglage des soupapes
EP1466093B1 (fr) Moteur hydraulique a pistons radiaux
EP0223656A1 (fr) Mécanisme, moteur ou pompe, à au moins deux cylindrées actives distinctes
EP1612411A1 (fr) Moteur hydraulique
CA2497491C (fr) Machine tournante a capsulisme
EP1573198B1 (fr) Pompe ou moteur hydraulique
EP1466092B1 (fr) Moteur hydraulique a pistons radiaux
EP0092447B1 (fr) Dispositif de distribution pour moteur axial
FR2943391A1 (fr) Machine volumetrique hydrostatique, notamment machine a pistons axiaux
FR2473660A1 (fr) Frein hydrodynamique
FR2850439A1 (fr) Dispositif pour la transformation d'un mouvement rotatif en mouvement rectiligne, et inversement, comprenant une came interagissant avec au moins un piston
WO2011098340A1 (fr) Dephaseur d'arbre a cames
WO2023052727A1 (fr) Pompe volumetrique a lobes
FR3136520A1 (fr) pompe hydraulique améliorée pour entrainement à haute vitesse
FR3099530A1 (fr) Dispositif d’amortissement vibratoire comprenant un siege avec des moyens de retenue
BE479001A (fr)
FR2862118A1 (fr) Dispositif pour le rattrapage des jeux de dents entre deux pignons et arbre d'entrainement comportant un tel dispositif
FR3053421A1 (fr) Dispositif d'accouplement en rotation
FR2931235A1 (fr) Dispositif generateur de couple acyclique pilote et arbre rotatif presentant un tel dispositif
FR2482210A1 (fr) Rotor de compresseur
FR3030647A1 (fr) Pompe a huile a debit variable.
FR3016929A1 (fr) Dispositif d'injection de carburant pour moteur a pistons a plat
FR2910526A1 (fr) Moteur a combustion interne adapte a ameliorer la vidange de ses cylindres.
FR2469575A1 (fr) Turbine multietagee de turboforeuse

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20170106

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

ST Notification of lapse

Effective date: 20210305