WO1993017224A1 - Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps - Google Patents

Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps Download PDF

Info

Publication number
WO1993017224A1
WO1993017224A1 PCT/FR1993/000162 FR9300162W WO9317224A1 WO 1993017224 A1 WO1993017224 A1 WO 1993017224A1 FR 9300162 W FR9300162 W FR 9300162W WO 9317224 A1 WO9317224 A1 WO 9317224A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
machine according
chamber
axes
coordination
Prior art date
Application number
PCT/FR1993/000162
Other languages
English (en)
Inventor
Roumen Antonov
Original Assignee
Roumen Antonov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roumen Antonov filed Critical Roumen Antonov
Priority to CA002130260A priority Critical patent/CA2130260A1/fr
Priority to DE69300818T priority patent/DE69300818T2/de
Priority to BR9305927A priority patent/BR9305927A/pt
Priority to EP93905403A priority patent/EP0627042B1/fr
Priority to RU94038044/06A priority patent/RU2102612C1/ru
Priority to CZ941983A priority patent/CZ285414B6/cs
Priority to KR1019940702906A priority patent/KR100266999B1/ko
Priority to AU36359/93A priority patent/AU672389B2/en
Priority to US08/290,854 priority patent/US5419292A/en
Priority to JP51458293A priority patent/JP3366635B2/ja
Publication of WO1993017224A1 publication Critical patent/WO1993017224A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating

Definitions

  • volumetric machine with plunging pistons, in particular four-stroke engine.
  • the present invention relates to a volumetric machine in which swaying pistons define between them a variable volume chamber.
  • FR-A-2 651 019 discloses a volumetric machine comprising four elements connected in a deformable parallelogram. Each element comprises a convex cylindrical surface and a concave cylindrical surface, each centered on one of the articulation axes of the element, and cooperating in sealed manner with the concave cylindrical surface of one of the neighboring elements and respectively with the convex cylindrical surface of the other neighboring element.
  • One of the axes of articulation of the parallelogram is fixed, and the opposite axis is animated in a circular movement. This simultaneously causes a variation of the angles at the top of the parallelogram and an oscillation of the parallelogram around its fixed axis.
  • the variation of the angles of the parallelogram varies the volume of a chamber defined between the four convex cylindrical surfaces.
  • the oscillation around the fixed axis allows this chamber to communicate selectively with an intake port and an exhaust port. This produces a heat engine performing the four times
  • the object of the invention is to provide a volumetric machine which overcomes these drawbacks.
  • the invention thus relates to a volumetric machine comprising, between two opposite faces, flat and parallel, two first opposite elements articulated to two
  • the machine is characterized in that each first element rigidly carries the two convex cylindrical walls whose axes intersect the longitudinal axis of this first element, in that each convex cylindrical wall forms with the convex cylindrical wall intersecting the same line, a pair of cylindrical walls belonging to different first elements, in that each first element comprises closing means extending between its two convex cylindrical walls, and in that the machine comprises dynamic sealing means between the convex cylindrical walls of the same pair.
  • the main function of the second elements is to maintain a constant distance between the centers of the convex cylindrical walls of the same pair.
  • the volumetric machine according to the invention is designed to operate as a four-stroke thermal engine, and it comprises in particular combustion initiator means positioned to correspond with the chamber at least when the latter is in a first volume position. minimal.
  • the machine according to the invention performs, like that of the prior art, the four times in a single crank turn. But its size is reduced, and there are only two dynamic seals around the chamber, between the convex cylindrical walls of the same pair. In addition, these seals can be reduced to a simple tangent contact between convex cylindrical walls, which is a particularly simple solution, and very reliable even at very high speeds. In particular, this kind of close relationship is unlikely to seize up. In addition, the relative velocity between the convex cylindrical walls of
  • REPLACEMENT SHEET same pair is particularly reduced, for a given speed of rotation of the crank.
  • FIG. 1 is a view of an elementary machine according to the invention, along the plane I-I of Figure 3;
  • FIG. 2 is a partial sectional view along II-II of Figure 1;
  • FIG. 3 is a view of the machine in section along the line III-III of Figure 1;
  • FIG. 6 is a schematic view illustrating one of the maximum volume positions of the chamber
  • Figures 8 and 9 are views corresponding to Figures 5 and 1 respectively, but with a different setting of the compression ratio
  • FIG. 10 is a view similar to Figure 4 but corresponding to an alternative embodiment
  • FIG. 11 to 13 are similar views at the bottom of Figures 1, 10 and 5 respectively, but relating to a second alternative embodiment
  • FIG. 14 is a schematic view of the inner face of a cylinder head 4, according to a third alternative embodiment
  • FIG. 15 is a partial sectional view of the machine along the line XV-XV of Figure 14;
  • REPLACEMENT SHEET - Figure 16 is a view similar to Figure 4 but relating to a fourth alternative embodiment
  • FIG. 17 and 18 are two schematic views of a fifth variant of the invention in a position of maximum volume and respectively in a position of minimum volume;
  • FIG. 19 is a perspective view of a sealing body of the machine of Figures 17 and 18;
  • FIG. 20 is a schematic view of the four elements of a sixth version of the invention, '
  • FIG. 21 is a view similar to Figure 5, but relating to another embodiment
  • - Figure 22 is a detail of Figure 21, on an enlarged scale;
  • - Figure 23 is an exploded perspective view of a first element of Figure 21, and of certain parts which it carries, with sections and cutaway;
  • FIG. 24 is a sectional view along XXIV-XXIV of Figure 21;
  • FIG. 25 is a partial view of another embodiment of the first element.
  • FIG. 26 is a view of the first element in section along the lines XXVIa-XXVIa at the top of the figure and XXVIb-XXVIb at the bottom of the figure.
  • a real machine can comprise a single elementary machine, or several elementary machines, for example two elementary machines 1 as shown in FIG. 3, where the elementary machine at the bottom corresponds to an alternative embodiment which will be described in detail below.
  • FIGS. 1 and 2 As shown in the upper part of the figure
  • the machine comprises a casing 2 which defines for each elementary machine two flat and parallel faces 3a and 3b located opposite.
  • the flat faces 3a are at least partly defined by two opposite cylinder heads 4 of the casing 2, while the two faces 3b are constituted by two opposite faces of an intermediate partition 6 placed at equal distance between the two faces 3a.
  • the distance between each cylinder head 4 and the intermediate partition 6 is defined by a respective peripheral wall 7.
  • a part 3c of the flat face 3a of the elementary machine from the top of FIG. 3 is defined by a turret 8, in the form of a plate, which is rotatably mounted in an appropriate recess of the corresponding cylinder head 4, for reasons which will appear more far.
  • the cylinder heads 4, the intermediate partition 6 and the peripheral walls 7 together form a frame for the machine.
  • the turret 8 is movable relative to this frame,
  • REPLACEMENT SHEET but, as an element defining the volumes inside the machine, is considered to belong to the casing 2.
  • each elementary machine 1 comprises, between the flat faces 3a and 3b, two first opposite elements 9a and 9b, and two second opposite elements 11a and 11b.
  • Each first element 9a or 9b is articulated to the two second elements 11a and 11b according to two distinct axes of articulation. There are therefore four distinct articulation axes, A1, A2, A3, A4, which are all mutually parallel and perpendicular to the plane faces 3a and 3b.
  • each element 9a, 9b, 11a, 11b is called the side of the parallelogram, Da, Db, Ea, Eb, respectively, which joins the two axes of articulation of the element considered, for example the axes of articulation A1 and A2 for the first element 9a having the longitudinal axis Da.
  • FIG. 2 shows the structure of the articulation of axis A4 between the elements 9b and 11b.
  • the end of the first element 9b is made with two parallel ears 12, forming a yoke, between which is engaged a single ear 13 of the second element 11b.
  • a tubular axis 14 is fitted through the two ears 12 and the ear 13 to make the articulated connection.
  • Each first element 9a or 9b carries on its side facing the other first element, two convex cylindrical walls SI, S2, and respectively, S3, S4 defined by attached linings 16.
  • each cylindrical wall SI, S2, S3 or S4 intersects the longitudinal axis Da o Db of the first element 9a or 9b of which the cylindrical wall is integral.
  • each cylindrical wall SI, - S4 forms with a cylindrical wall of the other first element, a pair of cylindrical walls whose axes
  • REPLACEMENT SHEET intersect the same line L14 or L23 parallel to the longitudinal axes Ea and Eb of the second elements 11a and 11b.
  • the cylindrical walls SI and S4 together form a pair whose axes Cl and C4 intersect the same line L14 parallel to the axes Ea and Eb
  • the walls S2 and S3 form a pair whose axes C2 and C3 intersect a same line L23 parallel to the longitudinal axes Ea and Eb.
  • the axes Cl, C2, C3, C4 are at the four vertices of a second parallelogram whose sides C1 C2 and C3 C4 are always coincident with the longitudinal axes Da and Db of the first elements 9a and 9b and whose sides Cl C4 and C2 C3 (lines L14 and L23) are always parallel to the axes Ea and Eb.
  • the axes C1 and C2 are located between the axes A1 and A2 of the corresponding first element 9a, and the axes C3 and C4 are located between the axes A3 and A4 of the corresponding first element 9b.
  • each second element 11a, 11b has a curved shape which is concave towards the inside of the parallelogram in order, in particular in the extreme position shown in FIG. 1, to follow the contour of the cylindrical wall SI or S3 respectively which is then the closest. This minimizes congestion. This is also true for the walls S2 and S4 in another extreme position shown in FIG. 5.
  • the four elements 9a, 9b, 11a, 11b are movable relative to each other, from the extreme position shown in the figure 1 and can thus take on different attitudes, some of which are shown in FIGS. 4, 5, 6 (schematic) and 7.
  • a chamber 17 has formed between the first two elements 9a and 9b.
  • the chamber 17 is delimited by the part of each cylindrical wall S1 ... S4 which is located inside the parallelogram Cl, C2, C3 r C4, as well as by means of closure constituted by two concave cylindrical surfaces 18 each carried rigidly by one of the first elements 9a and 9b and connecting the two convex cylindrical walls SI and S2 or respectively S3 and S4 of the first element considered.
  • Each concave cylindrical surface 18 is complementary to each of the convex cylindrical walls of the other first element.
  • the cylindrical wall S2 of the first element 9a fits into the concave surface 18 of the first element 9b
  • the cylindrical wall S4 of the first element 9b fits into the concave surface 18 of the first element 9a, which brings the chamber to a substantially zero volume.
  • the situation shown in Figure 1 corresponds to the end of the exhaust or the start of the intake. The cancellation of the volume of the chamber at this stage of the cycle makes it possible to completely exhaust the exhaust gases and to perfectly separate these from the gases which will be admitted for the following engine cycle.
  • the chamber 17 is further closed by dynamic sealing means.
  • these dynamic sealing means reside in a choice of dimension: the radii RI, R2, R3, R4 of the convex cylindrical walls SI ... 4 are chosen so that the sum of the radii of the cylindrical walls of the same pair is equal to the distance between the axes of the cylindrical surfaces of the same pair.
  • the radii R1 ... R4 are equal to each other and equal to half the distance between the axes C1 and C4 or between the axes C2 and C3.
  • the cylindrical walls of the same pair, SI and S4 or S2 and S3, are permanently in a close proximity relationship, which ensures a substantially sealed closure of the chamber 17.
  • the chamber 17 is closed by the flat and parallel faces 3a and 3b ( Figure 3), except in certain attitudes ( Figures 4 and 6) where the chamber 17 communicates with an intake port 19 ( Figure 4) or with an exhaust port 21 ( Figure 6) .
  • REPLACEMENT SHEET intake 19 and exhaust 21 are formed through the rotary turret 8. They selectively communicate the chamber 17 with an intake 22, for example a carburetor, and respectively an exhaust 23.
  • the turret 8 comprises a central hole 24 in which project the electrodes of a spark plug 25 screwed into the cylinder head 4.
  • the central hole 24 further communicates the chamber 17 with a backpressure space 26 which is formed between a rear face of the turret 8 and the cylinder head 4.
  • a seal 27 peripherally delimits the back-pressure space 26 and separates it from the inlet 19 and exhaust 21 orifices located radially outside.
  • the periphery of the rotary turret 8 completely surrounds the chamber 17 in all the attitudes of the four elements 9a and 9b.
  • the gap surrounding the turret 8 can never constitute a line of flight for the chamber 17.
  • the situation represented in FIG. 1 is a situation of minimum volume corresponding to the end of the exhaust and the start of the intake.
  • the chamber 17 has grown above the intake port 19. Consequently the chamber has sucked in fresh gas.
  • the chamber 17 expands again (FIG. 6) to achieve an engine time or gas expansion time, then comes to communicate with the exhaust orifice 21 until its volume becomes zero again as shown in FIG. figure 1.
  • the movements of the elements 9a, 9b, 11a, 11b relative to each other as well as the movements of the assembly that they form inside the peripheral wall 7 are defined by coordination means which vary the position of a first coordination axis Kl, integral with the first element 9a, relative to a second axis of coordination K2 integral with the second element 11b.
  • the second coordination axis K2 is the axis of a pivoting link 28 which connects the element 11b to the frame of the machine.
  • the coordination axis K2 is located equidistant from the axes of articulation A1 and A4 of the second element 11b, and outside the parallelogram A1, A2, A3, A4.
  • the coordination axis K1 is the articulation axis between the element 9a and an eccentric pin 29 of a crank 31 pivotally mounted along an axis J relative to the frame of the machine.
  • the coordination axis K1 is close to the articulation axis A2 by which the first element 9a is articulated with the second element 11a other than that to which the coordination axis K2 is linked.
  • the coordination axes Kl and K2 are perpendicular to the faces 3a and 3b and therefore parallel to the other axes A1 ... A4, C1 ... C4.
  • the radius of gyration of the coordination axis K1 i.e. the distance between the axes J and K1 is smaller than the distance between the coordination axis K2 and the articulation axis A1 between the two elements 9a and 11b connected to the coordination axes Kl and K2.
  • the rotations of the crank 31 produce angular back and forth 0 of the second element 11b around the pivoting link 28.
  • the crank is designed so that the position of the coordination axis Kl, in the first position of minimum volume (FIG. 5), corresponding to the start of combustion, is such that the volume of the chamber 17 in this position is non-zero and on the contrary corresponds to the compression ratio that we want to give to the machine, and so that the position of the coordination axis Kl in the second position of minimum volume or end of exhaust position, shown in Figure 1 is such that the volume of the chamber 17 is zero in this position.
  • the two aforementioned conditions give the two positions of the axis Kl on the line M to achieve the two positions of minimum volume of the chamber 17, and consequently give the position of the axis J located on the line M midway between the two positions of Kl.
  • the axis Al is not far from the line M.
  • the angle B which separates the axes Kl and K2 seen from the axis Al is therefore close to 180 °.
  • the directions F and G of rotation of the crank 31 and respectively of the element 11b from this position of minimum volume are the same. Given these conditions, a relatively small angular displacement of the crank 31 produces on the second element 11b a relatively large angular displacement, more than proportional to the ratio of the radii of gyration of the axes Kl and Al.
  • the angle B is much larger than the corresponding angle Ql, close to 120 ° in the example.
  • the angular travel to be performed by the element 11b so that the parallelogram passes from the first position of minimum volume (FIG. 5) to the next position of maximum volume (FIG. 6) in which the parallelogram is a rectangle is about 30 °, therefore relatively small. It is therefore sufficient, for two cumulative reasons, a relatively short angular stroke of the crank 31 so that the element 11b performs around the axis K2 the rotation of about 30 ° which is necessary for the parallelogram Al, A2 , A3, A4 becomes a rectangle and therefore the chamber 17 reaches its maximum volume.
  • crank 31 it suffices for the crank 31 to perform a rotation TD (FIG. 6) of approximately 75 ° so that the elements 9a, 9b, 11a, 11b pass from the first position of minimum volume (FIG. 5) at the next maximum volume position in which the parallelogram A1, A2, A3, A4 is a rectangle.
  • the amplitude of the oscillating movement of the second element 11b is only about 90 ° between the two positions of minimum volume of the chamber 17 shown in Figures 1 and 5. This is obtained by giving the radius of gyration of the axis of articulation Al around the second coordination axis K2 a length that is sufficiently large with respect to the radius of gyration of the coordination axis Kl around the axis J of the crank 31.
  • FIG. 6 represents the situation of maximum volume of the chamber at the end of expansion, with display of the angle TD which has been traversed by the coordination axis K1 from the first position of minimum volume (start of combustion), and of the TE angle, about 105 ° which remains
  • REPLACEMENT SHEET to be covered up to the second minimum volume position, as well as the two angles UD and UE covered by the articulation axis A1 around the coordination axis K2. Thanks to the geometry chosen, the two angles TD and TE, which are very different from each other, produce for the axis A1 two respective displacement angles UD and UE substantially equal.
  • crank 31 is connected to an output shaft 30 to which can be connected, in a conventional manner, a flywheel and a multiple ratio transmission device to form a motor propulsion unit of a motor vehicle. Also, in a conventional manner, a flywheel and a multiple ratio transmission device to form a motor propulsion unit of a motor vehicle. Also, in a conventional manner, a flywheel and a multiple ratio transmission device to form a motor propulsion unit of a motor vehicle. Also
  • REPLACEMENT SHEET conventional, this flywheel, and / or the inertial load constituted by the vehicle, provide the crank 31 with the energy necessary to maintain the operation during the energy consuming phases (intake, compression, exhaust).
  • the crank 31 comprises two eccentric pins 32, one for each elementary machine 1, offset by 180 ° relative to each other around the axis J to cancel the main components of the inertial forces of each elementary machine 1 A more perfect cancellation is carried out if the two elementary machines 1 are entirely offset with respect to each other by 180 ° around the axis J so that all the movements in each elementary machine 1 are symmetrical with those in the other elementary machine 1 with respect to the J axis
  • the machine of FIGS. 1 to 6 comprises adjustment means making it possible to optimize its operation.
  • the pivoting link 28 comprises a pin 32 (FIG. 1) around which the second element 11b pivots and which is carried by an eccentric 33 rotatably mounted in the frame.
  • the eccentric 33 is oriented so that the pin 32 is as close as possible to the axis J of the crank 31, the angle B and therefore the angle Ql are also small as possible in the first position of minimum volume of chamber 17 ( Figure 5). Consequently, the volume of the chamber 17 in the first position of minimum volume is as large as possible, which corresponds to the minimum compression ratio for the machine, since the maximum volume of the chamber 17, defined by the rectangular configuration of the parallelogram A1, A2, A3, A4 (FIG. 6), is independent of the position of the pin 32.
  • this position of the pin 32 again corresponds to the smallest possible value for the angle Q1, and
  • REPLACEMENT therefore at the smallest possible volume for the chamber 17, that is to say the zero volume in the example.
  • the rotary adjustment of the eccentric 33 for adjusting the compression ratio of the machine can be carried out manually, even when running, or can be carried out automatically.
  • the eccentric 33 can be connected to a device for measuring the depression in the inlet 22 to increase the compression rate when this depression is high (low absolute pressure) and to reduce the compression rate when the absolute pressure in admission 22 becomes stronger.
  • Such an automatic adjustment would be particularly advantageous in the case of a supercharged engine.
  • This angular offset will also place the intake orifice 19 in a position in which it will begin to communicate with the chamber 17 a little earlier before the end of the exhaust time, which is also sought for high speeds, in particular if, as shown in FIG 9 r the volume of the chamber 17 in the second minimum-volume position is not zero: thus obtained, in known manner, a scavenging effect of the last flue gases to the exhaust by fresh gas coming in through the inlet.
  • the control of the angular position of the turret 8 can be manual or on the contrary automatic depending on the speed of rotation of the crank 31 and on the inlet pressure 22.
  • the precise adjustments to be made as a function of these two parameters may be determined by the skilled person according to his usual knowledge. It should however be noted that taking into account the large cross-sections of gas passage, permitted by the invention, the advances at the opening of the orifices, and delays at their closing are less great than in conventional piston and cylinder engines.
  • the engine cooling means comprising for example various cavities 37 (FIG. 3) in the intermediate partition 6 and in the cylinder heads 4, nor the means of lubrication of the joints will not be described in detail either.
  • FIG. 10 and at the bottom of FIG. 3 a simplified version capable of operating without a lubrication circuit thanks to a supply of oil + petrol + air mixture 38 entering through a fitting.
  • REPLACEMENT SHEET inlet 39 in a part 40 of the peripheral space located between the elements 9a, 11a, 9b, 11b and the inner face of the peripheral wall 7 of the casing 2.
  • the inlet orifice 19 is constituted by a non-recess crossing formed in the face 3a and through which the chamber 17 communicates selectively, during the admission time, with another part 41 of the aforementioned peripheral space.
  • the inner face of the peripheral wall 7 is profiled so as to be in quasi contact with the elements 9a ... 11b on the one hand in the vicinity of the articulation axis A1, the trajectory of which is circular around the axis. of coordination K2, and on the other hand in the vicinity of the diametrically opposite axis A3 on part of the trajectory of the latter.
  • the volume of the chamber 17 increases during the admission time, these two quasi-contacts, forming a sealing barrier, separate the regions 40 and 41 of the peripheral space from one another, and the volume of the region 41 decreases, which compresses the intake gas and drives it towards the chamber 17 through the orifice 19. This achieves a kind of forced admission, or even overfeeding of the chamber 17.
  • FIGS. 1 start of admission
  • 10 emission in progress
  • the air-fuel-oil mixture bathes the entire mechanism located in the housing 2, which provides lubrication without separate lubrication circuit.
  • the first element 9b opposite to that connected to the coordination means (crank 31) carries
  • REPLACEMENT SHEET rigidly two pallets 56, 57 adjacent each of one of the axes of articulation A3, A4 of this first element.
  • the peripheral face of the inner peripheral wall 7 has two notches 58 and 59 whose profile corresponds to the envelope of the positions of the end of the pallets 56 and 57 during the admission time (FIG. 11: start of admission, Figure 12: end of admission).
  • the volume of the region 41 of the peripheral space of the casing, located between the two pallets 56 and 57 decreases very sharply. Its volume reduction can be equal for example to 650 cm3 for an engine whose chamber 17 has a maximum volume of 400 cm3.
  • the element 9b forms with the peripheral wall 7 of the casing a mechanical compressor for boosting the engine.
  • the pallets 56 and 57 are offset from the walls of the notches 58 and 59, which allows the region 41 to suck up gas 38 entered by the connector 39 (as shown in Figure 10) .
  • the pallets should be placed on the element 9a, in order to produce a region whose volume decreases during the admission time. But this would be less advantageous since it would be necessary to seal the bearings of the crank 31.
  • the face 3a is entirely formed on the corresponding cylinder head 4 and the inlet 19 and exhaust ports 21 are therefore no longer adjustable around the axis of the central hole 24.
  • a circular groove 42 for example centered around the axis of the hole 24.
  • This groove is partially occupied by a flat ring 43 , having a radial slot 44.
  • the ring 43 has an outside diameter substantially equal to the outside diameter of the groove 42. Its axial thickness and its radial width are respectively less than the axial depth and the radial width of the groove 42.
  • REPLACEMENT SHEET of the ring 43 are chosen so that the proximity lines 46 between the first elements 9a and 9b are located radially between the radially outer edge 42b of the groove 42 and the radially inner edge 43a of the ring 43, at least for the positions of the crank 31 for which the chamber 17 must be isolated from the peripheral space surrounding the elements inside the peripheral wall 7.
  • the elements 9a and 9b are designed to, at least in such positions of the crank 31, completely cover the radially inner edge 43a of the ring 43 with the exception of the parts of this edge which are opposite the chamber 17.
  • the edge 43a must not be visible by an observer placed in the peripheral space of the housing.
  • the slot 44 should not appear in this space either.
  • the high pressures of the chamber 17 penetrate into the groove 42 and cause, on the radially inner face 43a of the ring 43 a thrust directed radially outwards which presses the ring 43 in a substantially sealed manner against the radially outer edge 42b of the groove 42, as well as, on a rear face 43b of the ring 43, a thrust directed axially towards the elements 9a and 9b which provides a seal between the ring 43 and these elements.
  • the slot 44 of the ring 43 allows the ring 43 to increase in diameter and to bear against the radially outer edge 42b under the pressure of the gases exerted on its radially inner face 43a.
  • the ring 43 prevents the gases from the chamber 17 from passing behind the proximity lines 46, therefore in the peripheral space, in s' escaping along the face 3a.
  • the axial thrust on the ring 43 is transmitted by the ring 43 to the elements 9a and 9b and applies these against the face 3b which achieves a seal by contact between the face 3b and the elements 9a and 9b.
  • REPLACEMENT SHEET prevents the gases from leaking from the chamber 17 towards the peripheral space along the face 3b.
  • An elastic element such as a corrugated washer or the like, can be placed between the rear face 43b of the ring 43 and the bottom of the groove 42 to provide the initial support between the ring 43 and the elements 9a and 9b, and consequently prevent the gas from pressing the ring 43 against the bottom of the groove 42 instead of pressing it against the elements 9a and 9b.
  • the total area of the rear face 43b of the ring 43 is chosen to be sufficient for the axial force generated by the gases on the ring 43 to be sufficient.
  • FIG. 16 will only be described with regard to its differences from that of FIGS. 1 to 9.
  • the first elements 9a and 9b are extended and they have towards each other three convex cylindrical surfaces SI, S2, S5 and respectively S3, S4 and S6.
  • the axes C5 and C6 of the surfaces S5 and S6 intersect the same line L56 located at equal distance between the lines L14 and L23, parallel to the latter.
  • the surfaces S5 and S6 therefore form a pair of convex cylindrical walls which is located between the pair SI,, S4 and the pair S2, S3 already described.
  • the radius R5 and R6 of the surfaces S5 and S6 is slightly smaller than the radii R1 ... R4, all equal, of the surfaces S1 ... S4. There is thus a slight clearance 47 between the surfaces S5 and S6.
  • REPLACEMENT SHEET A machine is thus produced in a very simple manner and in a reduced footprint, the volume capacity of which is double that of FIGS. 1 to 9.
  • the intake and exhaust ports may have a slightly different relative shape and layout for the two chambers (this is not shown).
  • the assembly formed by the four elements 9a, 9b, 11a and 11b is the same as in FIGS. 1 to 9, with two convex cylindrical walls SI, S2 and respectively S3, S4 on each of the first elements 9a and 9b.
  • the dynamic sealing means between the convex cylindrical walls of the same pair SI and S4, and respectively S2 and S3, instead of being constituted by a simple proximity relationship, comprise, for each pair, a floating bar 48 having a Z-shaped profile, each base of which is terminated by a slightly re-entrant fin 49.
  • Such a floating strip constitutes an easy approximation in place of a biconcave body which would have two opposite concave cylindrical faces matching the two convex cylindrical walls such that S2 and S3 to be sealed against each other.
  • Each bar 48 is forced to center on the corresponding line L14 or L23 because the two regions of the bar located on either side of this line are wider than the distance remaining between the two cylindrical walls along this line.
  • each floating bar 48 which slides at the same time on the two cylindrical walls of the same pair, such as S2 and S3, which it makes watertight relative to each other, is always automatically positioned in a suitable manner for ensuring this seal, whatever the attitude of the four elements 9a, 9b, 11a and 11b with respect to each other.
  • the floating bars 48 have, at each longitudinal end, in the extension of the bases of the Z, tongues 53 bent towards the interior of the chamber 17 in order to press tightly against the faces 3a and 3b of the housing.
  • the embodiment of Figures 17 to 19 further differs from that of Figures 1 to 9 by its coordination means which include, in addition to the crank 31 connected to the motor shaft (not shown) a second crank 51 which is connected to the crank 31 by two gears 52 connected in cascade so that the second crank 51 has rotated at the same speed and in the opposite direction of the crank 31.
  • the crank 31 rotates the first coordination axis K1, which in this example coincides with the hinge axis A2.
  • the second crank 51 rotates the second coordination axis K2 which, in this example, coincides with the articulation axis A4 opposite the axis A2.
  • the coordination axes Kl and K2 are therefore symmetrical with respect to the center of the parallelogram Al, A2, A3, A4 which coincides with the axis of the hole 24 for the spark plug.
  • the whole machine has symmetry with respect to this center, including the axes Jl and J2 of rotation of the cranks 31 and 51.
  • FIG. 17 the machine is shown in a position of maximum volume of the chamber 17.
  • the positions of minimum volume are obtained when the axes K1 and K2 are on the line N intersecting the axes J1 and J2.
  • Figure 18 the machine is shown in the vicinity of such a position of minimum volume.
  • the distance between the axes Kl and J2 of the two cranks 31 and 51 is defined in each of the two positions of minimum volume of the chamber 17, and it is therefore possible, as in the modes
  • a very good quality balancing can be achieved for all the inertial forces generated by this combination of movements by providing a machine comprising two elementary machines stacked one on the other (substantially as shown in FIG. 3) with between them a 180 ° offset from the crank angle 31.
  • each sealing bar 48 is stationary relative to the lines L14 and L23.
  • the variant embodiment of FIG. 20 exploits this observation.
  • the second elements are articulated to the first elements along the axes of the corresponding convex cylindrical walls S1 ... S4.
  • the axes Al and Cl, ... A4 and C4 are two by two combined.
  • the longitudinal axis Ea or E of each second element 11a or 11b is merged with the line L23 or L14 respectively.
  • Each dynamic sealing body 54 is therefore immobile with respect to one of the second elements 11a and 11b. This made it possible to produce a rigid connection between each sealing body 54 and a respective one of the second elements 11a and 11b.
  • Each sealing body has a biconcave shape matching the two convex cylindrical walls between which it performs dynamic sealing. This makes it possible to produce a high quality seal between each sealing body 54 and the two cylindrical walls with which it cooperates,
  • REPLACEMENT SHEET suitable for example for operation according to the diesel cycle.
  • the coordination axes Kl and K2 are each linked to one of the second elements 11a and 11b respectively, in positions symmetrical relative to the center W of the parallelogram ⁇ l, A2, A3 , A4.
  • the axes Kl and K2 are rotated by two cranks such as 31 and 51 of Figures 17 and 18 symmetrical with respect to the center W and connected to each other to rotate in opposite directions.
  • the production of the machines according to the invention is particularly simple, the large functional surfaces can all be produced in a planar or cylindrical manner.
  • the sealing relationships are carried out under zero or low load and wear and tear on the machine is therefore reduced.
  • the speed of movement relative to the locations of the lines or sealing surfaces is remarkably low compared to the speed of rotation of the crank.
  • a given crank rotation speed makes it possible to perform twice as many cycles per unit of time as a traditional piston and cylinder engine.
  • the double speed and the doubling of the number of cycles per turn of the crank allows in theory to have a volume capacity (“cubic capacity") four times lower, which limits the surfaces of thermal leaks and consequently limits still heat losses.
  • first and second elements 9a, 9b, 11a, 11b against the faces 3a and 3b is a swirling movement without stopping point, which is particularly favorable for achieving perfect lapping on these surfaces, making the surfaces in question particularly resistant to wear and
  • the cylindrical walls SI to S4 are defined by shells 61 which, in each pair, are directly pressed against each other along a sealing line 60 forming one of the ends of the chamber 17.
  • Each shell has a free inner edge 62 always situated in the chamber 17 and an outer edge 63 always situated outside of the chamber 17.
  • the outer edge 63 is adjacent to a fixing region 64 of the shell 61
  • the region 64, always located outside the chamber 17, is fixed in leaktight manner to the first element 9a or 9b with which it is associated.
  • Each first element therefore carries two shells 61 directed towards each other from their respective attachment region 64.
  • the shell 61 made for example of steel, floats by elastic bending. Its support against the other shell 61 of the same pair results from an elastic prestress during assembly.
  • This gas passes into the intermediate space 66 to reinforce the mutual support of the two shells 61 of each pair.
  • the rear faces of the shells 61 are permanently exposed over their entire length to the pressure of the chamber 17.
  • their front faces that is to say the cylindrical walls SI to S4, are not exposed to the pressure of the chamber 17 only over a reduced and variable length. So when room 17 has either of its two
  • each shell 61 comprises along each face 3a or 3b a lateral edge formed by an edge 68 defined by the corresponding cylindrical wall, such as S3, and a bevelled wall 69 forming an angle of approximately 45 ° with the cylindrical wall S3.
  • the inner edge 62 and the edges 68, as well as the cylindrical wall which they frame, move relative to the body of the first corresponding element.
  • the edge 68 is in mobile proximity relation. And substantially sealed with the adjacent face 3a or 3b.
  • the gas located in the intermediate space 66 cannot easily leak as shown by the arrow 70 in FIG. 22.
  • each connecting wall 18 is integral with the body of the element (9a) which carries it. It is also terminated by two lateral edges 71 but these edges 71 have a certain
  • each segment .72 has a bevel face 74 which is parallel to the bevel face 69 of the shell 61 while having a certain distance from it.
  • This beveled face 74, as well as a lateral face 76 and a rear face 77 of each segment, are subjected to the pressure prevailing in the intermediate space 66, which thus contributes to applying the segment 72 against the opposite face 3a or 3b and against a bearing face 78 of the body of the corresponding element, 9b in FIG. 24.
  • This double sealed support prevents the pressurized gas from escaping through a zone 79 located between the body of the first element 9a or 9b and each opposite face 3a or 3b.
  • each segment 72 and the associated spring 73 extend continuously between the two fixing regions 64 of the two shells 61 associated with the corresponding element 9a or 9b.
  • the spring 73 can be constituted by a wavy elastic strip.
  • the element 9a or 9b has, opposite each face 3a or 3b, a profiled groove 80 receiving the corresponding part of the length of the segment 72 and of the spring 73.
  • This groove 80 communicates with the chamber 17 by the slots 67 between which it extends and also by the spacing existing between the edges 71 (FIG. 24) and the faces 3a and 3b.
  • the pressure applies the segments 72 against the faces 3a and 3b and against the bearing face 78 of the elements 9a and 9b. There is thus, between room 17 and regions 79, continuity
  • the embodiment which has just been described has the advantage of achieving controlled sealing conditions between the cylindrical walls SI to S4 and this in a manner largely independent of the state of wear of the engine and of the precision. of its component parts.
  • the shells 61 dampen the vibrations of the first elements relative to each other, and prevent these vibrations from producing shocks between the cylindrical surfaces SI to S4. This greatly improves the longevity of these surfaces and contributes to the maintenance, over time, of the good quality of sealing along the lines 60.
  • segments 81 have been added along the side edges of the shells 61, to further reduce the possibility of leakage along a path as illustrated by arrow 70 in Figure 22
  • the segment 72 subsists all along each first element 9a or 9b, as described with reference to FIGS. 21 to 24.
  • the intermediate space 66 is defined between the two segments 72 and 81.
  • the pressure of the gases assisted by a preloading spring 82, tends to separate the two segments from one another and
  • REPLACEMENT SHEET applying them sealingly against the face 78 of the body of the first element 9b and respectively against a sealing face 83 provided at the rear of the shell 61.
  • the pressure assisted by a similar prestressing spring 84 at the spring 73, permanently applies the segment 81 against the corresponding opposite face, 3b in FIG. 26.
  • the segment 72 remains alone. It is pushed by the gas pressure and prestressed by the springs 73 and 82 as described above.
  • REPLACEMENT SHEET Similarly, in the example in FIG. 20, the means of coordination could be different.
  • the invention could be used to produce a compressor or a pump or else an expansion machine operating at two cycles per revolution, or even a two-stroke engine operating at two cycles per revolution. In these different cases, it will generally be arranged so that the two minimum volume positions correspond to identical volumes, so that the two cycles of each crank turn are identical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Transmission Devices (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Supercharger (AREA)
  • Hydraulic Motors (AREA)
  • Reciprocating Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

Quatre éléments (9a, 9b, 11a, 11b) sont articulés mutuellement en parallélogramme déformable selon quatre axes parallèles (A1,...A4). Une manivelle (31) provoque un mouvement circulaire d'un premier axe de coordination (K1) lié à l'un (9a) des éléments. Un autre élément (11b) est articulé au bâti selon un second axe de coordination (K2). Une chambre à volume variable (17) est définie entre des surfaces cylindriques (S1...S4) dont les axes (C1...C4) coupent les axes longitudinaux (Da, Db) des premiers éléments (9a, 9b). Des orifices de distribution (19, 21) sont sélectivement découverts et obturés par les éléments en fonction de la position angulaire de la manivelle (31). Une bougie d'allumage (25) est prévue. Chaque premier élément (9a, 9b) porte deux surfaces cylindriques convexes (S1, S2; S3, S4) liées rigidement l'une à l'autre. Chaque surface cylindrique est en relation d'étanchéité dynamique avec une surface cylindrique appartenant à l'autre élément et dont l'axe (C1...C4) coupe une même ligne (L14, L23) parallèle aux directions longitudinales (Ea, Eb) des seconds éléments (11a, 11b). Utilisation pour réaliser aisément une machine rapide, à un cycle à quatre temps par tour, et faible vitesse relative des lignes d'étanchéité dynamique.

Description

Machine volumétrique; à pistons louvoyants, en particulier moteur à quatre temps.
La présente invention concerne une machine volumétrique dans laquelle des pistons louvoyants définissent entre-eux une chambre à volume variable.
On connaît d'après le FR-A-2 651 019 une machine volumétrique comprenant quatre éléments reliés en parallélogramme défor able. Chaque élément comprend une surface cylindrique convexe et une surface cylindrique concave, centrées chacune sur l'un des axes d'articulation de l'élément, et coopérant de manière étanche avec la surface cylindrique concave de l'un des éléments voisins et respectivement avec la surface cylindrique convexe de l'autre élément voisin. L'un des axes d'articulation du parallélogramme est fixe, et l'axe opposé est animé d'un mouvement circulaire. Ceci provoque simultanément une variation des angles au sommet du parallélogramme et une oscillation du parallélogramme autour de son axe fixe. La variation des angles du parallélogramme fait varier le volume d'une chambre définie entre les quatre surfaces cylindriques convexes. L'oscillation autour de l'axe fixe permet à cette chambre de communiquer sélectivement avec un orifice d'admission et un orifice d'échappement. On réalise ainsi un moteur thermique effectuant les quatre temps
(admission, compression, détente, échappement) en un seul tour de manivelle. Cette machine a l'inconvénient d'être relativement encombrante pour une capacité volumique donnée, et de ne pas permettre des taux de compression très élevés.
La construction de chaque élément nécessite une assez grande précision pour que l'étanchéité soit de bonne qualité sans que les frottements mécaniques deviennent prohibitifs.
Le but de l'invention est de proposer une machine volumétrique qui remédie à ces inconvénients. • L'invention vise ainsi une machine volumétrique comprenant, entre deux faces en vis à vis, planes et parallèles, deux premiers éléments opposés articulés à deux
FEUILLE DE REMPLACEMENT seconds éléments opposés selon quatre axes d'articulation perpendiculaires aux dites faces et disposés aux quatre sommets d'un parallélogramme dont chaque côté constitue l'axe longitudinal de l'un respectif des premiers et seconds éléments, les éléments portant quatre parois cylindriques convexes qui définissent entre elles une chambre à volume variable, l'axe longitudinal de chaque premier élément étant coupé par les axes de deux parois cylindriques convexes respectives, deux lignes orientées comme les axes des seconds éléments étant coupées chacune par les axes de deux parois cylindriques convexes respectives, la machine comprenant en outre des moyens de coordination reliés à deux des éléments selon deux axes de coordination, les moyens de coordination comprenant un système du type manivelle relié à un arbre de commande et à l'un de ces deux éléments pour faire conjointement osciller le parallélogramme entre les faces planes tout en faisant varier ses angles au sommet et corrélativement le volume de la chambre, des orifices de distribution étant ménagés sur l'une au moins des faces planes en vis à vis pour faire sélectivement communiquer la chambre avec une admission et un échappement en fonction de la position angulaire de la manivelle.
Suivant l'invention, la machine est caractérisée en ce que chaque premier élément porte rigidement les deux parois cylindriques convexes dont les axes coupent l'axe longitudinal de ce premier élément, en ce que chaque paroi cylindrique convexe forme avec la paroi cylindrique convexe coupant la même ligne une paire de parois cylindriques appartenant à des premiers éléments différents, en ce que chaque premier élément comporte des moyens de fermeture s'étendant entre ses deux parois cylindriques convexes, et en ce que la machine comprend des moyens d'étanchéité dynamiques entre les parois cylindriques convexes d'une même paire. Les seconds éléments ont pour principale fonction de maintenir une distance constante entre les centres des parois cylindriques convexes de même paire.
FEUILLE DE REMPLACEMENT En d'autres termes, tout ce passe comme si un parallélogramme déformable reliait les quatre axes des quatre parois cylindriques convexes. Ainsi, la distance entre les parois cylindriques convexes de même paire est toujours la même, quelle que soit la configuration du parallélogramme déformable. C'est ce qui permet de prévoir les moyens d'étanchéité dynamique, entre les parois cylindriques convexes de même paire, bien que celles-ci soient mobiles l'une par rapport à l'autre. Les parois cylindriques convexes de paires différentes et .qui sont adjacentes l'une à l'autre le long du pourtour du parallélogramme sont fixes l'une par rapport à l'autre car elles sont portées par le même premier élément, et il est donc aisé de réaliser une liaison étanche entre-elles grâce aux moyens de fermeture étanche, qui peuvent être de type statique.
On définit donc entre les quatre parois cylindriques convexes une chambre dont le pourtour est fermé de manière sensiblement étanche et dont le volume varie en fonction de la configuration du parallélogramme.
De préférence, la machine volumétrique selon 1 * invention est conçue pour fonctionner en moteur thermique à quatre temps, et elle comprend en particulier des moyens initiateurs de combustion positionnés pour correspondre avec la chambre au moins lorsque celle-ci est dans une première position de volume minimal.
La machine selon l'invention réalise, comme celle de l'art antérieur, les quatre temps en un seul tour de manivelle. Mais son encombrement est réduit, et il n'y a que deux étanchéités dynamiques autour de la chambre, entre les parois cylindriques convexes de même paire. En outre, ces étanchéités peuvent se ramener à un simple contact tangent entre parois cylindriques convexes, ce qui est une solution particulièrement simple, et très fiable même à des vitesses très élevées. En, particulier, ce genre de relation de proximité est peu susceptible de grippage. En outre, la vitesse relative entre les parois cylindriques convexes de
FEUILLE DE REMPLACEMENT même paire est particulièrement réduite, pour une vitesse de rotation donnée de la manivelle.
On peut également choisir d'interposer entre les parois cylindriques convexes de même paire un élément d'étanchéité tel qu'une barrette flottante de forme générale biconcave, ou encore un corps d'étanchéité fixé à un deuxième élément articulé aux premiers éléments selon deux axes d'articulation correspondant avec les axes des parois cylindriques de la paire considérée. D'autres particularités et avantages de l'invention ressortiront encore de la description ci-après, relative à des exemples non limitatifs. Aux dessins annexés :
- la figure 1 est une vue d'une machine élémentaire selon l'invention, selon le plan I-I de la figure 3 ;
- la figure 2 est une vue partielle en coupe selon II-II de la figure 1 ;
- la figure 3 est une vue de la machine en coupe selon la ligne III-III de la figure 1 ;
- les figures , 5 et 7 sont des vues analogues à la figure 1, mais représentant la machine à trois stades successifs de son fonctionnement ;
- la figure 6 est une vue schématique illustrant l'une des positions de volume maximal de la chambre ;
- les figures 8 et 9 sont des vues correspondant aux figures 5 et 1 respectivement, mais avec un réglage différent du taux de compression ;
- la figure 10 est une vue analogue à la figure 4 mais correpondant à une variante de réalisation ;
- les figures 11 à 13 sont des vues analogues au bas des figures 1, 10 et 5 respectivement, mais relatives à une deuxième variante de réalisation ;
- la figure 14 est une vue schématique de la face intérieure d'une culasse 4, selon une troisième variante de réalisation ;
- la figure 15 est une vue partielle en coupe de la machine selon la ligne XV-XV de la figure 14 ;
FEUILLE DE REMPLACEMENT - la figure 16 est une vue analogue à la figure 4 mais concernant une quatrième variante de réalisation ;
- les figures 17 et 18 sont deux vues schématiques d'une cinquième variante de l'invention dans une position de volume maximal et respectivement dans une position de volume minimal ;
- la figure 19 est une vue en perspective d'un corps d'étanchéité de la machine des figures 17 et 18 ;
- la figure 20 est une vue schématique des quatre éléments d'une sixième version de l'invention,'
- la figure 21 est une vue analogue à la figure 5, mais relative à un autre mode de réalisation ;
- la figure 22 est un détail de la figure 21, à échelle agrandie ; - la figure 23 est une vue en perspective éclatée d'un premier élément de la figure 21, et de certaines pièces qu'il porte, avec coupes et arrachements ;
- la figure 24 est une vue en coupe selon XXIV-XXIV de la figure 21 ;
- la figure 25 est une vue partielle d'un autre mode de réalisation du premier élément ; et
- la figure 26 est une vue du premier élément en coupe selon les lignes XXVIa-XXVIa en haut de la figure et XXVIb-XXVIb en bas de la figure.
FE ILLE DE REMPL On va maintenant décrire en référence aux figures 1 et 2 , ainsi qu ' à la partie supérieure de la figure 3 , un premier exemple de machine élémentaire selon l ' invention . Une machine réelle peut comporter une seule machine élémentaire , ou plusieurs machines élémentaires , par exemple deux machines élémentaires 1 comme cela est représenté à la figure 3 , où la machine élémentaire du bas correspond à une variante de réalisation qui sera décrite en détail plus loin . Comme le montre la partie supérieure de la figure
3 , la machine comprend un carter 2 qui définit pour chaque machine élémentaire deux faces planes et parallèles 3a et 3b situées en vis à vis . Les faces planes 3a sont au moins en partie définies par deux culasses opposées 4 du carter 2 , tandis que les deux faces 3b sont constituées par deux faces opposées d ' une cloison intermédiaire 6 placée à égale distance entre les deux faces 3a . La distance entre chaque culasse 4 et la cloison intermédiaire 6 est définie par une paroi périphérique 7 respective . Une partie 3c de la face plane 3a de la machine élémentaire du haut de la figure 3 est définie par une tourelle 8 , en forme de plaque , qui est montée rotativement dans une creusure appropriée de la culasse 4 correspondante , pour des raisons qui apparaîtront plus loin.
Les culasses 4 , la cloison intermédiaire 6 et les parois périphériques 7 forment ensemble un bâti de la machine. La tourelle 8 est mobile par rapport à ce bâti ,
FEUILLE DE REMPLACEMENT mais, en tant qu'élément définissant les volumes à l'intérieur de la machine, est considérée comme appartenant au carter 2.
Comme le montre la figure 1, chaque machine élémentaire 1 comprend, entre les faces planes 3a et 3b, deux premiers éléments opposés 9a et 9b, et deux seconds éléments opposés lia et 11b.
Chaque premier élément 9a ou 9b est articulé aux deux seconds éléments lia et 11b selon deux axes d'articulation distincts. Il y a donc quatre axes d'articulation distincts, Al, A2, A3, A4, qui sont tous parallèles entre eux et perpendiculaires aux faces planes 3a et 3b.
Ces quatre axes Al, A2, A3, A4 sont disposés aux quatre sommets d'un parallélogramme. On appelle axe longitudinal de chaque élément 9a, 9b, lia, 11b le côté du parallélogramme, Da, Db, Ea, Eb, respectivement, qui joint les deux axes d'articulation de l'élément considéré, par exemple les axes d'articulation Al et A2 pour le premier élément 9a ayant l'axe longitudinal Da.
On a représenté à la figure 2, la structure de l'articulation d'axe A4 entre les éléments 9b et 11b. L'extrémité du premier élément 9b est réalisée avec deux oreilles parallèles 12, formant chape, entre lesquelles est engagée une oreille unique 13 du deuxième élément 11b. Un axe tubulaire 14 est emmanché à travers les deux oreilles 12 et l'oreille 13 pour réaliser la liaison articulée.
Chaque premier élément 9a ou 9b porte sur son côté tourné vers l'autre premier élément, deux parois cylindriques convexes SI, S2, et respectivement, S3, S4 définies par des garnitures rapportées 16.
L'axe Cl, C2, C3 ou C4 de chaque paroi cylindrique SI, S2, S3 ou S4 coupe l'axe longitudinal Da o Db du premier élément 9a ou 9b dont la paroi cylindrique est solidaire.
En outre, chaque paroi cylindrique SI, — S4 , forme avec une paroi cylindrique de l'autre premier élément, une paire de parois cylindriques dont les axes
FEUILLE DE REMPLACEMENT coupent une même ligne L14 ou L23 parallèle aux axes longitudinaux Ea et Eb des seconds éléments lia et 11b. Ainsi, les parois cylindriques SI et S4 forment ensemble une paire dont les axes Cl et C4 coupent une même ligne L14 parallèle aux axes Ea et Eb, et de même, les parois S2 et S3 forment une paire dont les axes C2 et C3 coupent une même ligne L23 parallèle aux axes longitudinaux Ea et Eb.
On voit donc que les axes Cl, C2, C3, C4 sont aux quatre sommets d'un deuxième parallélogramme dont les côtés Cl C2 et C3 C4 sont toujours confondus avec les axes longitudinaux Da et Db des premiers éléments 9a et 9b et dont les côtés Cl C4 et C2 C3 (lignes L14 et L23) sont toujours parallèles aux axes Ea et Eb.
Dans l'exemple, les axes Cl et C2 sont situés entre les axes Al et A2 du premier élément 9a correspondant, et les axes C3 et C4 sont situés entre les axes A3 et A4 du premier élément 9b correspondant. Ceci est une disposition pratique avantageuse, avec toutes les parois cylindriques S1...S4 situées entre les seconds éléments lia et 11b.
Dans l'exemple représenté, chaque deuxième élément lia, 11b a une forme courbe qui est concave vers l'intérieur du parallélogramme pour, notamment dans la position extrême représentée à la figure 1, épouser le contour de la paroi cylindrique SI ou respectivement S3 qui se trouve alors la plus proche. On minimise ainsi les encombrements. Ceci est vrai aussi pour les parois S2 et S4 dans une autre position extrême représentée à la figure 5. Les quatre éléments 9a, 9b, lia, 11b sont mobiles les uns par rapport aux autres, à partir de la position extrême représentée à la figure 1 et peuvent ainsi prendre différentes attitudes, dont certaines sont représentées aux figures 4, 5, 6 (schématique) et 7.
Dans la situation représentée à la figure 4, une chambre 17 s'est formée entre les deux premiers éléments 9a et 9b. La chambre 17 est délimitée par la partie de chaque paroi cylindrique S1...S4 qui est située en dedans du parallélogramme Cl, C2, C3r C4, ainsi que par des moyens de fermeture constitués par deux surfaces cylindriques concaves 18 portées rigidement chacune par l'un des premiers éléments 9a et 9b et reliant les deux parois cylindriques convexes SI et S2 ou respectivement S3 et S4 du premier élément considéré. Chaque surface cylindrique concave 18 est complémentaire de chacune des parois cylindriques convexes de l'autre premier élément. Ainsi, dans l'attitude représentée à la figure 1, la paroi cylindrique S2 du premier élément 9a s'emboîte dans la surface concave 18 du premier élément 9b, et la paroi cylindrique S4 du premier élément 9b s'emboîte dans la surface concave 18 du premier élément 9a, ce qui ramène la chambre à un volume sensiblement nul. La situation représentée à la figure 1 correspond à la fin de l'échappement ou au début de l'admission. L'annulation du volume de la chambre à ce stade du cycle permet d'évacuer complètement les gaz d'échappement et de parfaitement séparer ceux-ci des gaz qui vont être admis pour le cycle moteur suivant. Revenant à la figure 4, la chambre 17 est en outre fermée par des moyens d'étanchéité dynamique. Dans l'exemple, ces moyens d'étanchéité dynamique résident dans un choix de dimension : les rayons RI, R2, R3, R4 des parois cylindriques convexes SI...4 sont choisis de manière que la somme des rayons des parois cylindriques d'une même paire est égale à la distance entre les axes des surfaces cylindriques d'une même paire.
Dans l'exemple, les rayons R1...R4 sont égaux entre eux et égaux à la moitié de la distance entre les axes Cl et C4 ou entre les axes C2 et C3. Ainsi, les parois cylindriques d'une même paire, SI et S4 ou S2 et S3, sont en permanence dans une relation de proximité tengeante, qui assure une fermeture sensiblement étanche de la chambre 17. Par ailleurs, la chambre 17 est fermée par les faces planes et parallèles 3a et 3b (figure 3) , sauf dans certaines attitudes (figures 4 et 6) où la chambre 17 communique avec un orifice d'admission 19 (figure 4) ou avec un orifice d'échappement 21 (figure 6) . Les orifices
FEUILLE DE REMPLACEMENT d'admission 19 et d'échappement 21 sont ménagés à travers la tourelle rotative 8. Ils font sélectivement communiquer la chambre 17 avec une admission 22, par exemple un carburateur, et respectivement un échappement 23. La tourelle 8 comprend un trou central 24 dans lequel font saillie les électrodes d'une bougie d'allumage 25 vissée dans la culasse 4. Le trou central 24 fait en outre communiquer la chambre 17 avec un espace de contre- pression 26 qui est ménagé entre une face arrière de la tourelle 8 et la culasse 4. Un joint 27 délimite périphériquement l'espace de contre-pression 26 et le sépare des orifices d'admission 19 et d'échappement 21 situés radialement à l'extérieur. Le pourtour de la tourelle rotative 8 entoure complètement la chambre 17 dans toutes les attitudes des quatre éléments 9a et 9b. Ainsi, l'interstice entourant la tourelle 8 ne peut jamais constituer une ligne de fuite pour la chambre 17. La pression régnant dans la chambre 17, notamment lorsque celle-ci est forte, créée dans l'espace de contre-pression 26 une contre-pression qui appuie la tourelle 8 contre les premiers éléments 9a, 9b et les presse contre la face plane 3b. On assure ainsi un contact d'étanchéité suffisant entre les éléments 9a, 9b et chacune des faces planes 3a et 3b tout autour de la chambre 17 quelle que soit sa configuration. "Pour que la contre-pression dans l'espace 26 engendre une force pressante supérieure à la pression dans la chambre 17, il suffit que l'aire délimitée par le joint 27 autour du trou 24 soit supérieure à la plus grande aire que peut avoir la chambre 17 lorsque celle-ci est sous pression, c'est-à-dire essentiellement pendant les temps de compression et de détente.
Comme déjà indiqué, la situation représentée à la figure 1 est une situation de volume minimal correspondant à la fin de l'échappement et au début de l'admission. Dans la situation représentée à la figure 4, la chambre 17 s'est agrandie au-dessus de l'orifice d'admission 19. Par conséquent la chambre a aspiré du gaz frais.
FEUILLE DE REMPLACEMENT Dans la situation représentée à la figure 5 correspondant à la fin de la compression et au début de la combustion, on est de nouveau dans une situation de volume minimal dans laquelle la chambre 17 est isolée des orifices d'admission 19 et d'échappement 21 et elle communique avec le trou central 24 dans lequel se trouvent les électrodes de la bougie d'allumage. On voit que dans cette situation de volume minimal les angles Ql et Q3 du parallélogramme adjacents aux axes Al et A3, qui étaient aigus dans la situation de fin d'échappement (figure 1) sont devenus obtus dans la situation de début de combustion (figure 5) , et inversement en ce qui concerne les angles Q2 et Q4 adjacents aux axes A2 et A4.
Ensuite, la chambre 17 s'agrandit de nouveau (figure 6) pour réaliser un temps moteur ou temps de détente des gaz, puis vient communiquer avec l'orifice d'échappement 21 jusqu'à ce que son volume redevienne nul comme représenté à la figure 1.
On voit que les situations de la figure 4 (admission) et de la figure 6 (échappement) correspondent à des attitudes sensiblement identiques des quatre éléments 9a, 9b, lia, 11b l'un par rapport à l'autre. Le fait que la chambre 17 communique avec l'orifice d'admission 19 dans la situation de la figure 4 et avec l'orifice d'échappement 21 dans la situation de la figure 6 tient au fait que l'ensemble des quatre éléments 9a, 9b, lia, 11b n'est pas à la même place dans l'espace défini par la face périphérique intérieure de la paroi périphérique 7. Les mouvements des éléments 9a, 9b, lia, 11b les uns par rapport aux autres ainsi que les mouvements de l'ensemble qu'ils forment à l'intérieur de la paroi périphérique 7 sont définis par des moyens de coordination qui font varier la position d'un premier axe de coordination Kl, solidaire du premier élément 9a, par rapport à un second axe de coordination K2 solidaire du deuxième élément 11b. Le second axe de coordination K2 est l'axe d'une liaison pivotante 28 qui relie l'élément 11b au bâti de la machine. L'axe de coordination K2 est situé à égale distance des axes d'articulation Al et A4 du second élément 11b, et en dehors du parallélogramme Al, A2, A3, A4.
L'axe de coordination Kl est l'axe d'articulation entre l'élément 9a et un tourillon excentré 29 d'une manivelle 31 montée pivotante selon un axe J relativement au bâti de la machine. L'axe de coordination Kl est voisin de l'axe d'articulation A2 par lequel le premier élément 9a est articulé avec le second élément lia autre que celui auquel est lié l'axe de coordination K2. Les axes de coordination Kl et K2 sont perpendiculaires aux faces 3a et 3b et par conséquent parallèles aux autres axes Al...A4, C1...C4.
Considérant la ligne M (figure 1) passant par l'axe J de rotation de la manivelle 31 et l'axe de coordination K2, les deux positions de volume minimal de la chambre 17, qui correspondent aux valeurs extrêmes pour les angles du parallélogramme, sont obtenues lorsque le premier axe de coordination Kl est situé sur la ligne M, entre les axes K2 et J à la figure 1, ou au-delà de l'axe J à la figure 5. En effet, c'est dans cette position que la distance entre les axes Kl et K2 est la plus faible et respectivement la plus forte, et par conséquent l'angle Ql le plus petit et respectivement le plus grand.
Le rayon de giration de l'axe de coordination Kl, 5 c'est-à-dire la distance entre les axes J et Kl, est plus petit que la distance entre l'axe de coordination K2 et l'axe d'articulation Al entre les deux éléments 9a et 11b reliés aux axes de coordination Kl et K2. Ainsi, les rotations de la manivelle 31 produisent des aller et retour 0 angulaires du second élément 11b autour de la liaison pivotante 28.
La manivelle est conçue de façon que la position de l'axe de coordination Kl, dans la première position de volume minimal (figure 5) , correspondant au début de la 5 combustion, soit telle que le volume de la chambre 17 dans cette position soit non nul et corresponde au contraire au taux de compression que l'on veut donner à la machine, et pour que le position de l'axe de coordination Kl dans la seconde position de volume minimal ou position de fin d'échappement, représentée à la figure 1 soit telle que le volume de la chambre 17 soit nul dans cette position. Si l'on suppose définie la position de l'axe de coordination K2, l'orientation de la ligne M passant par l'axe de coordination K2 et la position de l'axe Kl sur le premier élément 9a, les deux conditions précitées donnent les deux positions de l'axe Kl sur la ligne M pour réaliser les deux positions de volume minimal de la chambre 17, et donnent par conséquent la position de l'axe J situé sur la ligne M à mi-distance entre les deux positions de Kl.
Dans aucune des deux positions de volume minimal (figures 1 et 5) , l'axe d'articulation Al entre les deux éléments 9a et 11b reliés aux moyens de coordination 28, 31, n'est situé sur la ligne M. Ainsi, en ces positions le sens de pivotement du deuxième élément 11b autour de l'axe de coordination K2 change nécessairement. Si les axes Al et Kl passaient ensemble sur la ligne M il y aurait indétermination sur le sens de rotation du deuxième élément 11b à partir de cette position.
Cependant, dans la première position de volume minimal (figure 5) correspondant au début de la combustion, l'axe Al est peu éloigné de la ligne M. L'angle B qui sépare les axes Kl et K2 vus de l'axe Al est donc proche de 180°. En outre, les sens F et G de rotation de la manivelle 31 et respectivement de l'élément 11b à partir de cette position de volume minimal sont les mêmes. Compte tenu de ces conditions, un déplacement angulaire relativement faible de la manivelle 31 produit sur le second élément 11b un déplacement angulaire relativement important, plus que proportionnel au rapport des rayons de giration des axes Kl et Al. De plus, comme les axes Kl et K2 sont tous les deux situés en dehors du parallélogramme, l'angle B est beaucoup plus grand que l'angle Ql correspondant, voisin de 120° dans l'exemple. Ainsi, la course angulaire à effectuer par l'élément 11b pour que le parallélogramme passe de la première position de volume minimal (figure 5) à la position suivante de volume maximal (figure 6) dans laquelle le parallélogramme est un rectangle est d'environ 30°, donc relativement faible. Il suffit donc, pour deux raisons cumulatives, d'une course angulaire relativement courte de la manivelle 31 pour que l'élément 11b effectue autour de l'axe K2 la rotation d'environ 30° qui est nécessaire pour que le parallélogramme Al, A2, A3, A4 devienne un rectangle et que par conséquent la chambre 17 atteigne son volume maximal.
Dans l'exemple représenté, il suffit à la manivelle 31 d'effectuer une rotation TD (figure 6) d'environ 75° pour que les éléments 9a, 9b, lia, 11b passent de la première position de volume minimal (figure 5) à la position de volume maximal suivante dans laquelle le parallélogramme Al, A2, A3, A4 est un rectangle. On voit encore que dans la situation de la figure
7 correspondant à une rotation de 90° de la manivelle 31 à partir de la première position de volume minimal, la configuration rectangulaire du parallélogramme Al, A2, A3, A4 est nettement dépassée, c'est-à-dire que l'angle Ql est déjà réduit à une valeur d'environ 75°.
Ceci est avantageux car la détente des gaz peut s'effectuer très rapidement, pour une vitesse de rotation donnée de la manivelle, et ceci minimise le temps pendant lequel la chaleur est évacuée par les parois métalliques, et minimise par conséquent les déperditions thermiques.
L'amplitude du mouvement oscillant du deuxième élément 11b n'est que d'environ 90° entre les deux positions de volume minimal de la chambre 17 représentées aux figures 1 et 5. Ceci est obtenu en donnant au rayon de giration de l'axe d'articulation Al autour du second axe de coordination K2 une longueur suffisamment grande par rapport au rayon de giration de l'axe de coordination Kl autour de l'axe J de la manivelle 31.
La figure 6 représente la situation de volume maximal de la chambre en fin de détente, avec visualisation de l'angle TD qui a été parcouru par l'axe de coordination Kl depuis la première position de volume minimal (début de la combustion), et de l'angle TE, d'environ 105° qui reste
FEUILLE DE REMPLACEMENT à couvrir jusqu'à la deuxième position de volume minimal, ainsi que les deux angles UD et UE couverts par l'axe d'articulation Al autour de l'axe de coordination K2. Grâce à la géométrie choisie, les deux angles TD et TE, très différents l'un de l'autre, produisent pour l'axe Al deux angles de déplacement respectifs UD et UE sensiblement égaux.
Dans la première position de volume minimal (figure 5) la pression des gaz s'exerçant sur l'élément 9a a une résultante P qui s'exerce sur le tourillon 29 de la manivelle 31 selon une direction qui est sensiblement tangentielle par rapport à la trajectoire circulaire de l'axe Kl du tourillon 29, et qui est dirigée dans le sens F de rotation de la manivelle 31. Cette résultante est donc très efficace pour transmettre le couple moteur à la manivelle 31 sans produire d'efforts parasites dans le mécanisme. Ceci est dû à la faible valeur de l'angle V entre l'axe longitudinal Da de l'élément 9a, direction à laquelle la résultante P est sensiblement perpendiculaire, et la ligne M qui correspond dans cette position à la direction du bras de levier de la manivelle 31. Une autre cause de l'application favorable de l'effort des gaz sur la manivelle 31 est le sens convenable choisi pour la rotation de la manivelle 31. Si l'on avait choisi pour la manivelle 31 un sens de rotation inverse du sens F, le onctionnemen serait également possible puisqu'à partir de la position d la figure 5 la chambre 17 augmenterait également de volume pour revenir à la situation représentée à la figure 4. Mai la transmission de l'effort à la manivelle se ferait de manière extrêmement indirecte par l'intermédiaire du premier élément 9b, et du deuxième élément 11b fonctionnan en levier inverseur tirant sur l'élément 9a vers la gauche de la figure 5.
Comme le montre la figure 3, la manivelle 31 est reliée à un arbre de sortie 30 auquel peut être relié, de manière classique, un volant d'inertie et un dispositif de transmission à rapport multiple pour former un groupe moto propulseur de véhicule automobile. De manière également
FEUILLE DE REMPLACEMENT classique, ce volant d'inertie, et/ou la charge inertielle constituée par le véhicule, fournissent à la manivelle 31 l'énergie nécessaire pour entretenir le fonctionnement pendant les phases consommatrices d'énergie (admission, compression, échappement) .
La manivelle 31 comprend deux tourillons excentrés 32, un pour chaque machine élémentaire 1, décalés de 180° l'un par rapport à l'autre autour de l'axe J pour annuler les principales composantes des forces d'inertie de chaque machine élémentaire 1. Une annulation plus parfaite est réalisée si les deux machines élémentaires 1 sont entièrement décalées l'une par rapport à l'autre de 180° autour de l'axe J de manière que tous les mouvements dans chaque machine élémentaire 1 soient symétriques de ceux dans l'autre machine élémentaire 1 par rapport à l'axe J
(en négligeant le décalage axial d'une machine par rapport à l'autre le long de l'axe J) .
La machine des figures 1 à 6 comprend des moyens de réglage permettant d'optimiser son fonctionnement. En particulier, la liaison pivotante 28 comprend un tourillon 32 (figure 1) autour duquel pivote le second élément 11b et qui est porté par un excentrique 33 monté rotativement dans le bâti. Lorsque, comme représenté à la figure 1, l'excentrique 33 est orienté de façon que le tourillon 32 soit le plus proche possible de l'axe J de la manivelle 31, l'angle B et par conséquent l'angle Ql sont aussi petits que possible dans la première position de volume minimal de la chambre 17 (figure 5). Par conséquent, le volume de la chambre 17 dans la première position de volume minimal est aussi grand que possible, ce qui correspond au taux de compression minimal pour la machine, puisque le volume maximal de la chambre 17, défini par la configuration rectangulaire du parallélogramme Al, A2, A3, A4 (figure 6) , est indépendant de la position du tourillon 32.
Dans la deuxième position de volume minimal (figure 1), cette position du tourillon 32 correspond là encore à la plus petite valeur possible pour l'angle Ql, et
REMPLACEMENT par conséquent au plus petit volume possible pour la chambre 17, c'est-à-dire le volume nul dans l'exemple.
Si, comme représenté aux figures 8 et 9, l'excentrique 33 est tourné de 180° pour que le tourillon 32 soit aussi éloigné que possible de l'axe J de la manivelle 31, l'angle Ql dans la première (figure 8) et dans la seconde (figure 9) position de volume minimal est augmenté. Ceci correspond à une réduction du volume de la chambre 17 dans la première position de volume minimal, et par conséquent à une augmentation du taux de compression de la machine, et à une augmentation du volume de la chambre 17 dans la deuxième position de volume minimal (figure 8) . Cette augmentation, relativement peu importante, peut être considérée comme un inconvénient puisqu'elle fait apparaître un volume mort dont les gaz d'échappement ne peuvent pas être chassés mécaniquement.
Le réglage en rotation de l'excentrique 33 pour régler le taux de compression de la machine peut être effectué manuellement, même en marche, ou être réalisé automatiquement. Par exemple l'excentrique 33 peut être relié à un appareil de mesure de la dépression dans l'admission 22 pour augmenter le taux de compression lorsque cette dépression est importante (faible pression absolue) et pour réduire le taux de compression lorsque la pression absolue dans l'admission 22 devient plus forte. Un tel réglage automatique serait particulièrement avantageux dans le cas d'un moteur suralimenté.
Comme l'on sait, il est avantageux de modifier le calage de la distribution d'un moteur thermique en fonction de ses paramètres de fonctionnement, en particulier la vitesse de rotation et la charge.
Ceci est permis selon l'invention, par rotation de la tourelle 8 autour de l'axe du trou central 24. Dans l'exemple schématique représenté, cette rotation est assurée par un pignon 34 engrenant avec une denture 36 prévue sur une partie de la périphérie de la tourelle 8 (figure 3) .
FEUILLE DE REMPLACEMENT On voit en observant la figure 7 que si à partir de la position représentée, on avait fait tourner la tourelle 8 dans le sens indiqué par les flèches H, l'orifice d'échappement 21 aurait été découvert plus tôt par l'élément 9a et par conséquent la chambre 17 aurait communiqué plus précocement avec l'échappement. Ceci correspond à une condition recherchée lorsque la vitesse de rotation du moteur est plus élevée. Ce décalage angulaire va également placer l'orifice d'admission 19 dans une position dans lequel il commencera de communiquer avec la chambre 17 un peu plus tôt avant la fin du temps d'échappement, ce qui est également recherché pour les hautes vitesses, notamment si, comme représenté à la figure 9r le volume de la chambre 17 dans la deuxième position de volume minimal n'est pas nul : on obtient ainsi, de manière connue, un effet de balayage des derniers gaz brûlés vers l'échappement par les gaz frais arrivant par l'orifice d*admission.
La commande de la position angulaire de la tourelle 8 peut être manuelle ou au contraire automatique en fonction de la vitesse de rotation de la manivelle 31 et de la pression à l'admission 22. Les réglages précis à effectuer en fonction de ces deux paramètres pourront être déterminés par l'homme de métier d'après ses connaissances usuelles. Il est toutefois à noter que compte tenu des grandes sections de passage des gaz, permises par l'invention, les avances à l'ouverture des orifices, et retards à leur fermeture sont moins grands que dans les moteurs à pistons et cylindres classiques. On ne décrira pas non plus en détail les moyens de refroidissement du moteur, comprenant par exemple diverses cavités 37 (figure 3) dans la cloison intermédiaire 6 et dans les culasses 4, ni les moyens de lubrification des articulations. On a représenté à la figure 10 et en bas de la figure 3 une version simplifiée capable de fonctionner sans circuit de graissage grâce à une alimentation en mélange huile + essence + air 38 pénétrant par un raccord
FEUILLE DE REMPLACEMENT d'admission 39 dans une partie 40 de l'espace périphérique situé entre les éléments 9a, lia, 9b, 11b et la face intérieure de la paroi périphérique 7 du carter 2. L'orifice d'admission 19 est constitué par un évidement non traversant ménagé dans la face 3a et par lequel la chambre 17 communique sélectivement, pendant le temps d'admission, avec une autre partie 41 de l'espace périphérique précité.
En outre, la face intérieure de la paroi périphérique 7 est profilée pour être en quasi contact avec les éléments 9a...11b d'une part au voisinage de l'axe d'articulation Al dont la trajectoire est circulaire autour de l'axe de coordination K2, et d'autre part au voisinage de l'axe diamétralement opposé A3 sur une partie de la trajectoire de ce dernier. Pendant que le volume de la chambre 17 augmente au cours du temps d'admission, ces deux quasi contacts, formant barrière d'étanchéité, séparent l'une de l'autre les régions 40 et 41 de l'espace périphérique, et le volume de la région 41 diminue, ce qui comprime le gaz d'admission et le chasse vers la chambre 17 par l'orifice 19. Ceci réalise une sorte d'admission forcée, voire même de suralimentation de la chambre 17. On peut prendre conscience de la variation de volume de la région 41 en comparant les figures 1 (début de l'admission) et 10 (admission en cours) . On voit d'après les figures 5 et 7 que, pendant la compression et la détente, la région 41 augmente à nouveau de volume et l'axe A3 s'écarte nettement de la face périphérique intérieure de la paroi périphérique 7, ce qui permet à la région 41 de réaspirer du gaz en provenance de la région 40.
Selon la variante de la figure 10 et du bas de la figure 3, le mélange air-essence-huile baigne tout le mécanisme situé dans le carter 2, ce qui assure la lubrification sans circuit de graissage séparé. Dans l'exemple des figures 11 à 13, qui ne sera décrit qu'en ce qui concerne ses différences par rapport à celui de la figure 10, le premier élément 9b opposé à celui relié aux moyens de coordination (manivelle 31) porte
FEUILLE DE REMPLACEMENT rigidement deux palettes 56, 57 voisines chacune de l'un des axes d'articulation A3, A4 de ce premier élément. La face périphérique de la paroi périphérique intérieure 7 présente deux encoches 58 et 59 dont le profil correspond à l'enveloppe des positions de l'extrémité des palettes 56 et 57 pendant le temps d'admission (figure 11 : début de l'admission, figure 12 : fin de l'admission).
De plus, pendant le temps d'admission, le volume de la région 41 de l'espace périphérique du carter, située entre les deux palettes 56 et 57 diminue très fortement. Sa réduction de volume peut être égale par exemple à 650 cm3 pour un moteur dont la chambre 17 a un volume maximal de 400 cm3. Ainsi, l'élément 9b forme avec la paroi périphérique 7 du carter un compresseur mécanique de suralimentation du moteur.
Ensuite, pendant le temps de détente des gaz, les palettes 56 et 57 sont décalées des parois des encoches 58 et 59, ce qui permet à la région 41 de réaspirer du gaz 38 entré par le raccord 39 (comme représenté à la figure 10) . Si l'on inversait le sens de rotation de la manivelle 31, il faudrait placer les palettes sur l'élément 9a, pour réaliser une région dont le volume diminue pendant le temps d'admission. Mais ceci serait moins avantageux car il faudrait rendre étanches les paliers de la manivelle 31. Dans l'exemple représenté aux figures 14 et 15, la face 3a est entièrement formée sur la culasse 4 correspondante et les orifices d'admission 19 et d'échappement 21 ne sont donc plus réglables autour de l'axe du trou central 24. Il est prévu dans la face 3a une gorge circulaire 42, par exemple centrée autour de l'axe du trou 24. Cette gorge est partiellement occupée par une bague plate 43, ayant une fente radiale 44. La bague 43 a un diamètre extérieur sensiblement égal au diamètre extérieur de la gorge 42. Son épaisseur axiale et sa largeur radiale sont inférieures respectivement à la profondeur axiale et à la largeur radiale de la gorge 42.
En outre, la position de la gorge 42, le diamètre de son bord radialement extérieur 42b et la largeur radiale
FEUILLE DE REMPLACEMENT de la bague 43 sont choisis pour que les lignes de proximité 46 entre les premiers éléments 9a et 9b se -.ent situées radialement entre le bord radialement extérieur 42b de la gorge 42 et le bord radialement intérieur 43a de la bague 43, au moins pour les positions de la manivelle 31 pour lesquelles la chambre 17 doit être isolée de l'espace périphérique entourant les éléments à l'intérieur de la paroi périphérique 7. En outre, les éléments 9a et 9b sont conçus pour, au moins dans de telles positions de la manivelle 31, couvrir complètement le bord radialement intérieur 43a de la bague 43 à l'exception des parties de ce bord qui sont en regard de la chambre 17. Autrement dit, le bord 43a ne doit pas être visible par un observateur placé dans l'espace périphérique du carter. De préférence, la fente 44 ne doit pas non plus apparaître dans cet espace.
Ainsi, les fortes pressions de la chambre 17 pénètrent dans la gorge 42 et provoquent, sur la face radialement intérieure 43a de la bague 43 une poussée dirigée radialement vers l'extérieur qui appuie de manière sensiblement étanche la bague 43 contre le bord radialement extérieur 42b de la gorge 42, ainsi que, sur une face arrière 43b de la bague 43 une poussée dirigée axialement vers les éléments 9a et 9b qui réalise une étanchéité entre la bague 43 et ces éléments.
La fente 44 de la bague 43 permet à la bague 43 d'augmenter de diamètre et de s'appuyer contre le bord radialement extérieur 42b sous la pression des gaz s'exerçant sur sa face radialement intérieure 43a. Comme les lignes de proximité 46 entre les éléments 9a et 9b sont toujours en regard de la bague 43, la bague 43 empêche les gaz de la chambre 17 de passer derrière les lignes de proximité 46, donc dans l'espace périphérique, en s 'échappant le long de la face 3a. En outre, la poussée axiale sur la bague 43 est transmise par la bague 43 aux éléments 9a et 9b et applique ceux-ci contre la face 3b ce qui réalise une étanchéité par contact entre la face 3b et les éléments 9a et 9b. Ceci
FEUILLE DE REMPLACEMENT empêche les gaz de fuir de la chambre 17 vers l'espace périphérique le long de la face 3b.
Un élément élastique, tel qu'une rondelle ondulée ou analogue, peut être placé entre la face arrière 43b de la bague 43 et le fond de la gorge 42 pour réaliser l'appui initial entre la bague 43 et les éléments 9a et 9b, et éviter par conséquent que le gaz ne plaque la bague 43 contre le fond de la gorge 42 au lieu de la plaquer contre les éléments 9a et 9b. L'aire totale de la face arrière 43b de la bague 43 est choisie suffisante pour que la force axiale engendrée par les gaz sur la bague 43 soit suffisante.
L'exemple représenté à la figure 16 ne sera décrit qu'en ce qui concerne ses différences par rapport à celui des figures 1 à 9.
Les premiers éléments 9a et 9b sont rallonges et ils présentent l'un vers l'autre trois surfaces cylindriques convexes SI, S2, S5 et respectivement S3, S4 et S6. Les axes C5 et C6 des surfaces S5 et S6 coupent une même ligne L56 située à égale distance entre les lignes L14 et L23, parallèle à ces dernières. Les surfaces S5 et S6 forment donc une paire de parois cylindriques convexes qui est située entre la paire SI, ,S4 et la paire S2, S3 déjà décri es. Le rayon R5 et R6 des surfaces S5 et S6 est légèrement plus faible que les rayons R1...R4, tous égaux, des surfaces S1...S4. Il y ainsi un léger jeu 47 entre les surfaces S5 et S6. Ce jeu est sans inconvénient car les deux chambres 17 définies entre les éléments 9a et 9b de part et d'autre du jeu 47 sont toujours à la même pression et au même stade du cycle de fonctionnement dans toutes les positions angulaires de la manivelle 31. Les surfaces S5 et S6 peuvent donc être réalisées sans finition particulière et en particulier n'ont pas besoin d'être réalisées sur des pièces rapportées 16 telles que celles portant les surfaces SI...S4.
FEUILLE DE REMPLACEMENT On réalise ainsi de manière très simple et sous un encombrement réduit une machine dont la capacité volumique est double de celle des figures 1 à 9.
Comme l'amplitude des mouvements de la chambre 17 qui est la plus proche de l'axe de coordination K2 est plus faible que celle de l'autre chambre 17 située à droite de la figure 16, les orifices d'admission et d'échappement peuvent avoir une forme et une disposition relatives légèrement différentes pour les deux chambres (ceci n'est pas représenté) .
Dans l'exemple qui est représenté schématiquement aux figures 17 à 19, l'ensemble formé par les quatre éléments 9a, 9b, lia et 11b est le même qu'aux figures 1 à 9, avec deux parois cylindriques convexes SI, S2 et respectivement S3, S4 sur chacun des premiers éléments 9a et 9b. Toutefois, les moyens d'étanchéité dynamique entre les parois cylindriques convexes de même paire SI et S4, et respectivement S2 et S3, au lieu d'être constitués par une simple relation de proximité, comprennent, pour chaque paire, une barrette flottante 48 ayant un profil en Z dont chaque base est terminée par une ailette légèrement rentrante 49. Une telle barrette flottante, constitue une approximation facile à réaliser à la place d'un corps biconcave qui aurait deux faces cylindriques concaves opposées épousant les deux parois cylindriques convexes telles que S2 et S3 à rendre étanches l'une par rapport à l'autre. Chaque barrette 48 est obligée de se centrer sur la ligne L14 ou L23 correspondante car les deux régions de la barrette situées de part et d'autre de cette ligne sont plus larges que la distance subsistant entre les deux parois cylindriques le long de cette ligne.
Ainsi, chaque barrette flottante 48, qui glisse à la fois sur les deux parois cylindriques de même paire, telles que S2 et S3, qu'elle rend étanches l'une par rapport à l'autre, est toujours automatiquement positionnée de façon convenable pour assurer cette étanchéité, quelle que soit l'attitude des quatre éléments 9a, 9b, lia et 11b les uns par rapport aux autres.
FEUILLE DE REMPLACEMENT Comme le montre la figure 19, les barrettes flottantes 48 présentent à chaque extrémité longitudinale, dans le prolongement des bases du Z, des languettes 53 coudées vers l'intérieur de la chambre 17 pour s'appuyer de manière étanche contre les faces 3a et 3b du carter. Le mode de réalisation des figures 17 à 19 diffère en outre de celui des figures 1 à 9 par ses moyens de coordination qui comprennent, outre la manivelle 31 reliée à l'arbre moteur (non représenté) une seconde manivelle 51 qui est reliée à la manivelle 31 par deux pignons 52 montés en cascade de sorte que l'a seconde manivelle 51 tourne à la même vitesse et en sens contraire de la manivelle 31.
La manivelle 31 entraîne en rotation le premier axe de coordination Kl, qui est dans cet exemple confondu avec l'axe d'articulation A2. La seconde manivelle 51 entraîne en rotation le second axe de coordination K2 qui, dans cet exemple, est confondu avec l'axe d'articulation A4 opposé à l'axe A2. Les axes de coordination Kl et K2 sont donc symétriques par rapport au centre du parallélogramme Al, A2, A3, A4 qui coïncide avec l'axe du trou 24 pour la bougie d'allumage. L'ensemble de la machine présente une symétrie par rapport à ce centre, y compris les axes Jl et J2 de rotation des manivelles 31 et 51.
A la figure 17, la machine est représentée dans une position de volume maximal de la chambre 17. Les positions de volume minimal sont obtenues lorsque les axes Kl et K2 sont sur la ligne N coupant les axes Jl et J2. A la figure 18, la machine est représentée au voisinage d'une telle position de volume minimal.
En choisissant convenablement la distance entre les axes Jl et J2 des deux manivelles 31 et 51 ainsi que le rayon de giration des axes Kl et K2 autour des axes Jl et J2, on définit la distance entre les axes Kl et K2 dans chacune des deux positions de volume minimal de la chambre 17, et il est par conséquent possible, comme dans les modes
FEUILLE DE REMPLACEMENT de réalisation précédents que ces deux volumes soient différents.
En cours de onctionnement, le centre du parallélogramme Al A2 A3 A4 est immobile. Par conséquent, les mouvements des quatre éléments 9a, 9b, lia, 11b sont équivalents à des mouvements de va-et-vient des éléments 9a et 9b l'un par rapport à l'autre, avec mouvement corrélatif de pivotement des éléments lia et 11b, et mouvement superposé d'oscillation de l'ensemble autour de l'axe géométrique passant par le centre W.
On peut réaliser un équilibrage de très bonne qualité pour toutes les forces d'inertie engendrées par cette combinaison de mouvements en prévoyant une machine comprenant deux machines élémentaires empilées l'une sur l'autre (sensiblement comme représenté à la figure 3) avec entre elles un décalage de 180° d'angle de manivelle 31.
Dans l'exemple des figures 17 à 19, comme on 1 'a vu, les barrettes d'étanchéité 48 sont immobiles par rapport aux lignes L14 et L23. La variante de réalisation de la figure 20 exploite cette constatation. Les seconds éléments sont articulés aux premiers éléments selon les axes des parois cylindriques convexes S1...S4 correspondantes. En d'autre termes, les axes Al et Cl, ... A4 et C4 sont deux à deux confondus. Dans ces conditions, l'axe longitudinal Ea ou E de chaque second élément lia ou 11b est confondu avec la ligne L23 ou L14 respectivement. Chaque corps d'étanchéité dynamique 54 est donc immobile par rapport à l'un des seconds éléments lia et 11b. Ceci a permis de réaliser une liaison rigide entre chaque corps d'étanchéité 54 et l'un respectif des seconds éléments lia et 11b. Chaque corps d'étanchéité a une forme biconcave épousant les deux paroi cylindriques convexes entre lesquelles il réalise 1 'étanchéité dynamique. Ceci permet de réaliser entre chaque corps d'étanchéité 54 et les deux parois cylindriques avec lesquelles il coopère, une étanchéité de haute qualité,
FEUILLE DE REMPLACEMENT convenant par exemple pour le fonctionnement selon le cycle diesel.
En outre, dans l'exemple de la figure 20, les axes de coordination Kl et K2 sont liés chacun à l'un des seconds éléments lia et 11b respectivement, en des positions symétriques par rapport au centre W du parallélogramme λl, A2, A3, A4. Les axes Kl et K2 sont entraînés en rotation par deux manivelles telles que 31 et 51 des figures 17 et 18 symétriques par rapport au centre W et reliées l'une à l'autre pour tourner en sens contraire.
La réalisation des machines selon l'invention est particulièrement simple, les surfaces onctionnelles importantes pouvant toutes être réalisées de manière plane ou cylindrique. Les relations d'étanchéité sont réalisées sous charge nulle ou laible et l'usure ue iά machine est par conséquent réduite. La vitesse de déplacement relatif aux emplacements des lignes ou surfaces d'étanchéité est remarquablement faible par rapport à la vitesse de rotation de la manivelle. En outre une vitesse de rotation de manivelle donnée permet de réaliser deux fois plus cycles par unité de temps qu'un moteur à pistons et cylindres traditionnel. On peut ainsi envisager des vitesses de rotation doubles de celles des moteurs traditionnels, avec par conséquent quatre fois plus de cycles par unité de temps. A de telles vitesses de cycles, les temps de combustion et détente sont très brefs et les fuites thermiques particulièrement limitées. Pour une puissance donnée, la vitesse double et le dédoublement du nombre de cycles par tour de manivelle permet en théorie d'avoir une capacité volumique ("cylindrée") quatre fois plus faible, ce qui limite les surfaces de fuites thermiques et par conséquent limite encore les pertes thermiques.
On notera en outre que le mouvement des premiers et seconds éléments 9a, 9b, lia, 11b contre les faces 3a et 3b est un mouvement tournoyant sans point d'arrêt, ce qui est particulièrement favorable pour réaliser sur ces surfaces un rodage parfait, rendant les surfaces en question particulièrement résistantes à l'usure et
FEUILLE DE REMPLACEMENT particulièrement étanches par simple proximité. Le contact de grande surface entre les éléments 9a et 9b et les faces 3a et 3b favorise le refroidissement des éléments 9a et 9b. Dans l'exemple représenté aux figures 21 à 24, les parois cylindriques SI à S4 sont définies par des coquilles 61 qui, dans chaque paire, sont directement appuyées l'une contre l'autre selon une ligne d'étanchéité 60 formant l'une des extrémités de la chambre 17. Chaque coquille a un bord intérieur libre 62 toujours situé dans la chambre 17 et un bord extérieur 63 toujours situé hors de la chambre 17. Le bord extérieur 63 est adjacent à une région de fixation 64 de la coquille 61. La région 64, toujours située hors de la chambre 17, est fixée de manière étanche au premier élément 9a ou 9b auquel elle est associée. Chaque premier élément porte donc deux coquilles 61 dirigées l'une vers l'autre à partir de leur région de fixation 64 respective. A partir de la région de fixation 64, la coquille 61, réalisée par exemple en acier, flotte par flexion élastique. Son appui contre l'autre coquille 61 de la même paire résulte d'une précontrainte élastique au montage. II y a derrière chaque coquille 61 un espace intercalaire 66 qui communique avec la chambre 17 par une fente 67 adjacente au bord intérieur 62 de la coquille. Ainsi, lorsque la chambre 17 est occupée par du gaz sous pression, ce gaz passe dans l'espace intercalaire 66 pour renforcer l'appui mutuel des deux coquilles 61 de chaque paire. Les faces arrière des coquilles 61 sont en permanence exposées sur toute leur longueur à la pression de la chambre 17. Par contre, leurs faces avant, c'est à dire les parois cylindriques SI à S4, ne sont exposées à la pression de la chambre 17 que sur une longueur réduite et variable. Ainsi, lorsque la chambre 17 a l'un ou l'autre de ses deux
FEUILLE DE REMPLACEMENT volumes minimaux possibles (figure 22), l'une des parois cylindriques (SI) de chaque paire est exposée sur pratiquement toute sa longueur à la pression dans la chambre 17 tandis que l'autre paroi cylindrique (S4) n'est exposée à la pression que sur une courte partie de sa longueur. Ainsi, la force pressante s'exerçant sur cette paroi S4 ne compense que très partiellement la force pressante s'exerçant sur la face arrière de la coquille 61 associée, laquelle s'appuie donc fortement contre l'autre coquille. Cette dernière ne fléchit pas exagérément car l'appui s'effectue près de sa région de fixation 64, donc avec un faible moment de flexion.
Au contraire dans la situation non représentée où le volume de la chambre est sensiblement maximal, la force produite par la pression est à peu près la même sur les deux coquilles et elles sont donc en équilibre 1'une contre 1'autre avec une très faible déformation par rapport à l'état au repos. La déformation des coquilles est donc réduite dans tous les cas. Comme le montre la figure 24, chaque coquille 61 comporte le long de chaque face 3a ou 3b un bord latéral formé par une arête 68 définie par la paroi cylindrique correspondante, telle que S3, et une paroi en biseau 69 formant un angle d'environ 45° avec la paroi cylindrique S3. Quand la coquille 61 subit des mouvements de flexion, le bord intérieur 62 et les arêtes 68, ainsi que la paroi cylindrique qu'elles encadrent, se déplacent par rapport au corps du premier élément correspondant. L'arête 68 est en relation de proximité mobile .et sensiblement étanche avec la face 3a ou 3b adjacente. Ainsi, le gaz situé dans l'espace intercalaire 66 ne peut pas facilement fuir de la manière représentée par la flèche 70 à la figure 22.
Comme le montre la figure 24, chaque paroi de liaison 18 est solidaire du corps de l'élément (9a) qui la porte. Elle est également terminée par deux arêtes latérales 71 mais ces arêtes 71 ont un certain
FEUILLE DE REMPLACEMENT écartement par rapport aux faces 3a et 3b pour éviter tout frottement.
Du côté opposé à chaque arête 68, l'espace intercalaire 66 est limité par un segment d'étanchéité 72 (figure 24) qui est appuyé de manière mobile et étanche contre la face 3a ou 3b adjacente, au moyen d'un ressort de précontrainte 73. Chaque segment .72 a une face en biseau 74 qui est parallèle à la face en biseau 69 de la coquille 61 tout en présentant un certain écartement par rapport à elle. Cette face en biseau 74, de même qu'une face latérale 76 et une face arrière 77 de chaque segment, subissent la pression régnant dans l'espace intercalaire 66, laquelle contribue ainsi à appliquer le segment 72 contre la face en regard 3a ou 3b et contre une face d'appui 78 du corps de l'élément correspondant, 9b à la figure 24.
Ce double appui étanche empêche le gaz sous pression de s'échapper par une zone 79 située entre le corps du premier élément 9a ou 9b et chaque face en regard 3a ou 3b.
Comme le montre aussi la figure 23, chaque segment 72 et le ressort associé 73 s'étendent de manière continue entre les deux régions de fixation 64 des deux coquilles 61 associées à l'élément 9a ou 9b correspondant. Le ressort 73 peut être constitué par une baguette élastique ondulée. Derrière la paroi de liaison 18, l'élément 9a ou 9b présente en regard de chaque face 3a ou 3b une rainure profilée 80 recevant la partie correspondante de la longueur du segment 72 et du ressort 73. Cette rainure 80 communique avec la chambre 17 par les fentes 67 entre lesquelles elle s'étend et aussi par l'écartement existant entre les arêtes 71 (figure 24) et les faces 3a et 3b. Ainsi, également dans cette région, la pression applique les segments 72 contre les faces 3a et 3b et contre la face d'appui 78 des éléments 9a et 9b. Il y a ainsi, entre la chambre 17 et les régions 79, continuité
FEUILLE DE REMPLACEMENT d'étanchéité sur toute la longueur des premiers éléments 9a et 9b qui est susceptible d'être exposée à la pression.
En pratique, au voisinage de la région de fixation 64 de chaque coquille 61, on choisira de privilégier la fiabilité et la réduction des frottements plutôt qu'une étanchéité parfaite car les trajets de fuite aboutissant à cette région sont très complexes et étroits, analogues à des labyrinthes, et ne permettent de toute façon que de très faibles débits. On peut d'ailleurs augmenter encore cet effet de labyrinthe en prévoyant des aspérités sur les faces définissant les espaces intercalaires 66.
Le mode de réalisation qui vient d'être décrit a l'avantage de réaliser des conditions d'étanchéité maîtrisées entre les parois cylindriques SI à S4 et ceci d'une manière largement indépendante de l'état d'usure du moteur et de la précision de réalisation de ses pièces constitutives. En outre, les coquilles 61 amortissent les vibrations des premiers éléments l'un par rapport à l'autre, et évitent que ces vibrations produisent des chocs entre les surfaces cylindriques SI à S4. Ceci améliore grandement la longévité de ces surfaces et contribue au maintien, dans le temps, de la bonne qualité d'étanchéité le long des lignes 60.
Dans le mode de réalisation de la figure 25, des segments 81 ont été ajoutés le long des bords latéraux des coquilles 61, pour réduire encore les possibilités de fuites le long d'un trajet tel qu'illustré par la flèche 70 de la figure 22. Le segment 72 subsiste tout le long de chaque premier élément 9a ou 9b, comme décrit en référence aux figures 21 à 24. Ainsi, comme représenté au bas de la figure 26, le long de chaque face 3a ou 3b, l'espace intercalaire 66 est défini entre les deux segments 72 et 81. La pression des gaz, assistée par un ressort de précontrainte à l'écartement 82, tend à écarter les deux segments l'un de l'autre et
FEUILLE DE REMPLACEMENT à les appliquer de manière étanche contre la face 78 du corps du premier élément 9b et respectivement contre une face d'étanchéité 83 prévue à l'arrière de -la coquille 61. En outre, la pression, assistée par un ressort de précontrainte 84 analogue au ressort 73, applique en permanence le segment 81 contre la face en vis à vis correspondante, 3b à la figure 26. Le long de la paroi de liaison 18 (haut de la figure 26), le segment 72 subsiste seul. Il est poussé par la pression des gaz et précontraint par les ressorts 73 et 82 comme décrit plus haut.
Bien entendu, l'invention n'est nullement limitée aux exemples décrits et représentés. Dans l'exemple de la figure 1, on pourrait faire coïncider l'axe Kl et/ou l'axe K2 avec un et/ou un autre des axes d'articulation Al...A4.
On pourrait, en référence à la partie supérieure de la figure 3, placer les orifices de distribution 19 et 21 à travers la face 3b, par exemple en position fixe, et remplacer la tourelle pivotante 8 par une plaque non rotative ayant pour seule fonction de s'appuyer contre les éléments 9a et 9b sous l'action de la pression dans l'espace de contre-pression 26. Dans le mode de réalisation des figures 14 et 15, on peut placer la gorge 42 et la bague 43 dans la face 3b pour réaliser plus commodément les orifices 19 et 21 à travers la face 3a, si l'on désire en particulier que l'orifice d'aspiration soit un évidement tel que représenté à la figure 10, qui serait alors ménagé dans la face 3a uniquement.
Dans la réalisation des figures 17 à 19, il n'y a pas de relation de combinaison entre les barrettes flottantes 48 d'une part et les moyens de coordination réalisés sous la forme de deux vilebrequins 31 et 51 d'autre part : ces deux perfectionnements peuvent être utilisés indépendamment l'un de l'autre.
FEUILLE DE REMPLACEMENT De même, dans l'exemple de la figure 20, les moyens de coordination pourraient être différents.
L'invention pourrait être utilisée pour réaliser un compresseur ou une pompe ou encore une machine d'expansion fonctionnant à deux cycles par tour, ou encore un moteur à deux temps fonctionnant à deux cycles par tour. Dans ces différents cas, on s'arrangera en général pour que les deux positions de volume minimal correspondent à des volumes identiques, de façon que les deux cycles de chaque tour de manivelle soient identiques.
FEUILLE DE REMPLACEMENT

Claims

REVENDICATIONS 1. Machine volumétrique comprenant, entre deux faces en vis à vis (3a, 3b), planes et parallèles, deux premiers éléments opposés (9a, 9b) articulés à deux seconds éléments opposés (lia, 11b) selon quatre axes d'articulation (Al,... A4) perpendiculaires aux dites faces (3a, 3b) et disposés aux quatre sommets d'un parallélogramme dont chaque côté (Da, Db, Ea, Eb) constitue l'axe longitudinal de l'un respectif des premiers et seconds éléments, les éléments portant quatre parois cylindriques convexes (SI, ...S4) qui définissent entre elles une chambre (17) à volume variable, l'axe longitudinal (Da, Db) de chaque premier élément (9a, 9b) étant coupé par les axes (Cl, C2 ; C3, C4) de deux parois cylindriques convexes respectives (SI, S2 ; S3, S4) , deux lignes (L14, L23) orientées comme les axes (Ea, Eb) des seconds éléments (lia, 11b) étant coupées chacune par les axes (Cl, C4 ; C2, C3) de deux parois cylindriques convexes respectives (SI, S4 ; S2, S3) , la machine comprenant en outre des moyens de coordination (28, 31) reliés à deux des éléments (9a, 11b) selon deux axes de coordination (Kl, K2) , les moyens de coordination comprenant un système du type manivelle (31) relié à un arbre de commande et à l'un (9a) de ces deux éléments pour faire conjointement osciller le parallélogramme entre les faces planes (3a, 3b) tout en faisant varier ses angles au sommet et corrélativement le volume de la chambre (17) , des orifices de distribution (19, 21) étant ménagés sur l'une au moins des faces planes en vis à vis (3a) pour faire sélectivement communiquer la chambre (17) avec une admission (22) et un échappement (23) en fonction de la position angulaire de la manivelle (31) , caractérisée en ce que chaque premier élément (9a, 9b) porte rigidement les deux parois cylindriques convexes dont les axes (Cl C4) coupent l'axe longitudinal (Da, Db) de ce premier élément, en ce que chaque paroi cylindrique convexe forme avec la paroi cylindrique convexe dont l'axe coupe la même ligne (L14, L23) une paire (SI, S4 ; S2, S3) de parois cylindriques appartenant à des premiers éléments (9a, 9b) différents , en ce que chaque premier élément comporte des moyens de fermeture s ' étendant entre ses deux parois cylindriques convexes , et en ce que la machine comprend des moyens d' étanchéité dynamiques entre les parois cylindriques (SI , S4 ; S2 , S3 ) convexes d' une même paire .
2. Machine selon la revendication 1 , caractérisée en ce que les moyens d ' étanchéité dynamique comprennent une relation de proximité entre les parois cylindriques d' une même paire.
3. Machine selon la revendication 1, caractérisée en ce que les moyens d'étanchéité dynamique comprennent un corps flottant (48) monté entre les parois cylindriques (SI, S4 ,- S2, S3) d'une même paire.
4. Machine selon la revendication 3, caractérisée en ce que le corps flottant (48) est une barrette à profil en Z.
5. Machine selon la revendication 1, caractérisée en ce que les moyens d'étanchéité dynamique comprennent, pour chaque second élément, un corps intermédiaire (54) ayant deux faces qui sont en contact étanche chacune avec l'une des parois cylindriques (SI, S4 ; S2, S3) d'une même paire.
6. Machine selon l'une des revendications 1 à 4, caractérisée en ce que les moyens de fermeture présentent vers la chambre une face (18) ayant un profil concave sensiblement complémentaire de celui des parois cylindriques (SI, S2, S3, S4) .
7. Machine selon l'une des revendications 1 à 6, caractérisée en ce que les axes (C1...C4) des parois cylindriques convexes (S1...S4) coïncident avec les axes d'articulation (Al...A4) entre éléments.
8. Machine selon la revendication 7, caractérisée en ce que les moyens d'étanchéité dynamique (54) sont portés par les seconds éléments (lia, 11b) .
9. Machine selon l'une des revendications 1 à 6, caractérisée en ce que les axes (C1...C4) des parois cylindriques convexes (S1...S4) sont, sur chaque axe longitudinal de premier élément (9a, 9b), situés entre les deux axes d'articulation (Al, A2 ; A3, A4) coupant cet axe longitudinal (Da, Db) .
10. Machine selon l'une des revendications 1 à 9, caractérisée en ce qu'une partie au moins des orifices de distribution (19, 21) a une position réglable par rapport à un bâti de la machine.
11. Machine selon la revendication 10, caractérisée en ce que les orifices (19, 21) sont ménagés à travers une tourelle (8) réglable par rotation, dont le pourtour extérieur entoure la chambre (17) dans toutes les positions angulaires de la manivelle (31).
12. Machine selon l'une des revendications 1 à 11, caractérisée par des moyens pour faire communiquer la chambre avec une face arrière d'une plaque (8) dont la face avant constitue une partie au moins (3c) de l'une (3a) des faces en vis à vis, cette plaque ayant par rapport au bâti une indépendance lui permettant de s'appuyer contre les premiers éléments (9a, 9b) .
13. Machine selon l'une des revendications 1 à
11, caractérisée en ce que l'une des faces en vis à vis, portée par une paroi de carter de la machine, présente une gorge annulaire (42) partiellement remplie par une bague fendue (43) , qui est exposée de la part des gaz à des forces pressantes dirigées vers les premiers éléments (9a, 9b) et radialement vers un bord périphérique extérieur (42b) de la gorge (42), et qui est capable de s'appuyer de manière étanche contre les éléments et contre ledit bord périphérique extérieur sous 1'action de ces forces pressantes.
14. Machine selon l'une des revendications 1 à 12, caractérisée en ce que l'une au moins des parois cylindriques (S1-S4) est définie par une coquille (61) qui est sollicitée élastiquement vers l'autre paroi cylindrique de la même paire, et en ce qu'un espace (66) ménagé derrière la coquille (61) communique avec la chambre (17) pour que la coquille soit en outre sollicitée vers l'autre paroi cylindrique de la même paire par la pression des gaz régnant dans la chambre.
15. Machine selon la revendication 14, caractérisée en ce que la coquille (61) est fixée de manière sensiblement étanche à l'un des premiers éléments (9a, 9b) dans une région (64) extérieure qui est toujours située en-dehors de la chambre (17) et en ce qu'un bord intérieur (62) de la coquille (61), qui est toujours situé dans la chambre (17) , ainsi que deux bords latéraux (68) de la coquille, ont une liberté de déplacement par flexion de la coquille.
16. Machine selon la revendication 14 caractérisée en ce chaque premier élément (9a, 9b) comporte en regard de chaque face en vis à vis (3aΛ 3b) des moyens d'étanchéité (72, 81) qui sont mis en pression par les gaz occupant l'espace (66) derrière la coquille (61).
17. Machine selon la revendication 16, caractérisée en ce que les moyens d'étanchéité comprennent en regard de chaque face en vis à vis un organe d'étanchéité (72) qui s'étend tout le long de la chambre entre deux régions de fixation opposées (64) appartenant à deux coquilles (61) définissant deux parois cylindriques (SI, S2 ; S3, S4) d'un même premier élément (9a, 9b)
18. Machine selon la revendication 16 ou 17, caractérisée en ce que les moyens d'étanchéité comprennent un organe d'étanchéité (81) le long de chaque bord latéral de chaque coquille (61) .
19. Machine selon l'une des revendications 14 à 17, caractérisée en ce que des bords latéraux (68) de la coquille (61) sont en relation d'étanchéité au moins approximative avec les faces en vis à vis (3a, 3b) .
20. Machine selon l'une des revendications 14 à 19, caractérisée en ce que les deux parois cylindriques (SI, S4 ; S2, S3) de l'une au moins des paires sont constituées par deux coquilles (61) similaires.
21. Machine selon l'une des revendications 1 à 20, caractérisée en ce que les moyens de fermeture entre les deux parois cylindriques convexes de chaque premier élément (9a, 9b) présentent vers l'autre premier élément une paroi ondulée définissant au moins un bossage (S5, S6) entre les deux parois cylindriques.
22. Machine selon la revendication 21, caractérisée en ce que le bossage est une troisième paroi cylindrique convexe (S5, S6) semblable aux deux autres.
23. Machine selon l'une des revendications 1 à 22, fonctionnant en moteur thermique à quatre temps, caractérisée en ce qu'elle comprend des moyens initiateurs de combustion (25) positionnés pour correspondre avec la chambre (17) au moins lorsque celle-ci est dans une première position de volume minimal.
24. Machine selon la revendication 23, caractérisée en ce que les axes de coordination (Kl, K2) sont situés en-dehors du parallélogramme (Al, A2, A3, A4) .
25. Machine selon la revendication 23 ou 24, caractérisée en ce que les moyens de coordination sont reliés aux éléments de façon que l'écart angulaire (TD) entre deux positions de la manivelle correspondant à la première position de volume minimal et respectivement une première position de volume maximal, soit inférieur à 90°.
26. Machine selon l'une des revendications 23 à 25, caractérisée en ce que les moyens de coordination sont conçus et reliés aux éléments pour que le volume de la chambre (17) soit plus grand dans la première position de volume minimal que dans une deuxième position de volume minimal, réalisée à la fin d'un temps d'échappement au cours duquel la chambre (17) communique avec un orifice d'échappement (21) faisant partie des orifices de distribution (19, 21) .
27. Machine selon la revendication 26, caractérisée en ce que dans la deuxième position de volume minimal, le volume de la chambre (17) est senisblement nul.
28. Machine selon l'une des revendications 22 à 27, caractérisée en ce que les orifices de distribution comprennent un orifice d'admission (19) constitué par un évidement pratiqué dans l'une au moins des faces planes (3a, 3b) pour faire sélectivement communiquer la chambre (17) avec un espace d'alimentation (41) situé le long d'une partie au moins de la périphérie extérieure des éléments (9a, 9b, lia, 11b) , dans un carter (2) entourant les éléments, cet espace étant relié a des moyens d'alimentation en gaz de combustion.
29. Machine selon la revendication 28, caractérisée en ce que l'espace d'alimentation (41) est délimité entre deux barrières (56, 57) espacées l'une de l'autre selon la direction périphérique du carter et qui réalisent, au moins pendant un temps d'admission, une quasi-étanchéité entre le profil intérieur du carter et les éléments, dans une région de la périphérie du carter qui est choisie pour que l'espace d'alimentation (41) réduise de volume lorsqu'il communique avec la chambre (17) .
30. Machine selon la revendication 29, caractérisée en ce que le carter a un profil intérieur dont certaines régions (58, 59) correspondent sensiblement à l'enveloppe des positions de deux régions des éléments entre lesquelles est délimité l'espace d'alimentation (41) , les deux barrières étant réalisées par une relation de proximité entre les deux régions des éléments et le profil intérieur du carter.
31. Machine selon la revendication 29, caractérisée en ce que les deux régions des éléments sont solidaires, d'un même élément (9b), et en ce que les barrières comprennent au moins une palette (56, 57) solidaire de cet élément ou du carter, et une encoche ménagée sur le carter ou respectivement sur cet élément, cette encoche ayant un profil correspondant à l'enveloppe des positions de l'extrémité de la palette par rapport à 1'encoche.
32. Machine selon l'une des revendications 28 à 30, caractérisée en ce que les barrières séparent l'espace d'alimentation d'un espace d'entrée (40) avec lequel communiquent les moyens d'alimentation (39).
33. Machine selon l'une des revendications 30 à 32, caractérisée en ce que les moyens d'alimentation sont des moyens d'alimentation en mélange air-essence-huile.
34. Machine selon l'une des revendications 24 à 33, caractérisée en ce que la manivelle (31) est disposée de manière que dans la première position de volume minimal le bras de levier de la manivelle est orienté transversalement à la direction de la force d'expansion (P) du gaz s'excerçant sur celui (9a) des deux éléments auquel la manivelle (31) est reliée, et se déplace dans le sens (F) de cette force (P) .
35. Machine selon l'une des revendications 1 à 34, caractérisée en ce que les moyens de coordination (28) sont réglables pour modifier le volume de la chambre en l'une des positions de volume minimal, et régler ainsi un taux de compression de la machine.
36. Machine selon l'une des revendications 1 à 34, caractérisée en ce que les moyens de coordination comprennent, outre le système du type manivelle (31) relié à l'un (9a) des deux éléments précités selon un premier des axes de coordination, une liaison pivotante
(28) entre l'autre (11b) des deux éléments et un bâti de la machine selon un deuxième (K2) des axes de coordination.
37. Machine selon la revendication 36, caractérisée en ce que les deux éléments auxquels les moyens de coordination sont reliés, sont, un premier (9a) et l'un des seconds éléments (11b) , et en ce que la distance entre le second axe de coordination (K2) et l'axe d'articulation (Al) entre les deux éléments (9a, 11b) est plus grande que le rayon de la manivelle.
38. Machine selon la revendication 37, caractérisée en ce que la distance entre le deuxième axe de coordination (K2) et l'axe (J) de la manivelle (31) est peu inférieure à la somme des distances séparant de l'axe d'articulation des deux éléments (Al), le deuxième axe de coordination (K2) d'une part et l'axe (J) de la manivelle d'autre part.
39. Machine selon la revendication 38, caractérisée en ce que dans la première position de volume minimal, l'axe d'articulation (Al) entre les deux éléments (9a, 11b) est situé entre les deux axes de coordination (Kl, K2) .
40. Machine selon l'une des revendications 36 à 39, caractérisée en ce qu'elle comprend des moyens pour régler la distance entre le deuxième axe de coordination (K2) et l'axe de pivotement de la manivelle (J) par rapport au bâti.
41. Machine selon l'une des revendications 1 à 35, caractérisée en ce que les moyens de coordination comprennent deux systèmes du type manivelle (31, 51) reliés chacun à l'un des deux éléments précités.
42. Machine selon la revendication 41, caractérisée en ce que les deux éléments précités sont deux éléments opposés (lia, 11b) .
43. Machine selon la revendication 41 à 42, caractérisée en ce que les deux systèmes du type manivelle sont sensiblement identiques (31, 51) , reliés entre eux pour tourner à la même vitesse en sens contraires, et sont, de même que les axes de coordination (Kl, K2), symétriques par rapport au centre (W) du parallélogramme.
PCT/FR1993/000162 1992-02-21 1993-02-18 Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps WO1993017224A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA002130260A CA2130260A1 (fr) 1992-02-21 1993-02-18 Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps
DE69300818T DE69300818T2 (de) 1992-02-21 1993-02-18 Verdrängermaschine insbesondere viertaktmotor.
BR9305927A BR9305927A (pt) 1992-02-21 1993-02-18 Motor volumétrico de pistoes oscilantes particularmente motor de quatro tempos
EP93905403A EP0627042B1 (fr) 1992-02-21 1993-02-18 Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps
RU94038044/06A RU2102612C1 (ru) 1992-02-21 1993-02-18 Машина объемного действия, в частности четырехтактной двигатель
CZ941983A CZ285414B6 (cs) 1992-02-21 1993-02-18 Objemový stroj
KR1019940702906A KR100266999B1 (ko) 1992-02-21 1993-02-18 왕복 및 회전 피스톤을 구비한, 특히 4행정 기관인 용적형 기계
AU36359/93A AU672389B2 (en) 1992-02-21 1993-02-18 Positive displacement machine with reciprocating and rotating pistons, particulary four-stroke engine
US08/290,854 US5419292A (en) 1992-02-21 1993-02-18 Positive-displacement machine with reciprocating and rotating pistons, particularly four-stroke engine
JP51458293A JP3366635B2 (ja) 1992-02-21 1993-02-18 往復および回転ピストンを有する容積式機械,特に4行程エンジン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR92/02023 1992-02-21
FR9202023A FR2687728B1 (fr) 1992-02-21 1992-02-21 Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps.

Publications (1)

Publication Number Publication Date
WO1993017224A1 true WO1993017224A1 (fr) 1993-09-02

Family

ID=9426895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000162 WO1993017224A1 (fr) 1992-02-21 1993-02-18 Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps

Country Status (15)

Country Link
US (1) US5419292A (fr)
EP (1) EP0627042B1 (fr)
JP (1) JP3366635B2 (fr)
KR (1) KR100266999B1 (fr)
AT (1) ATE130397T1 (fr)
AU (1) AU672389B2 (fr)
BR (1) BR9305927A (fr)
CA (1) CA2130260A1 (fr)
CZ (1) CZ285414B6 (fr)
DE (1) DE69300818T2 (fr)
ES (1) ES2082634T3 (fr)
FR (1) FR2687728B1 (fr)
RU (1) RU2102612C1 (fr)
TW (1) TW252179B (fr)
WO (1) WO1993017224A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474288B1 (en) * 1998-02-27 2002-11-05 Roy Albert Blom Internal combustion engine that completes four cycles in one revolution of the crankshaft
US20040241029A1 (en) * 2001-09-05 2004-12-02 Rapp Manfred Max Parallel rotating piston engine with side walls
JP2005502806A (ja) * 2001-09-05 2005-01-27 マンフレート マックス ラップ 側壁を有する平行回転ピストン機関
RU2372490C2 (ru) * 2005-04-29 2009-11-10 ТЕНДИКС ДИВЕЛОПМЕНТ, ЭлЭлСи Двигатель (варианты)
US7270106B2 (en) * 2005-06-23 2007-09-18 John Stark Free-planetary gear moderated nutating (athena) engine
TW200717939A (en) 2005-10-24 2007-05-01 Benq Corp Handheld electronic device
FR2936272B1 (fr) * 2008-09-22 2012-07-13 Vincent Genissieux Machine rotative a losange deformable multifonctions
US20100242891A1 (en) * 2008-10-30 2010-09-30 Timber Dick Radial impulse engine, pump, and compressor systems, and associated methods of operation
US8439001B2 (en) * 2009-11-18 2013-05-14 Svetlana Lapan Actuator powered by fluid and method of forming the same
US10724428B2 (en) * 2017-04-28 2020-07-28 Quest Engines, LLC Variable volume chamber device
CN110284966B (zh) * 2019-06-28 2021-04-20 长城汽车股份有限公司 下连杆及具有其的发动机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2651019A1 (fr) * 1989-08-21 1991-02-22 Benarova Gaby Moteur a combustion interne a cycle a quatre temps

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB166077A (en) * 1920-11-02 1921-07-14 Alexandre Kliaguine Improvements in heat engines
FR1379609A (fr) * 1961-03-07 1964-11-27 Machines motrices et opératrices avec arbre à vilebrequin ou à manivelle
US3315653A (en) * 1965-09-27 1967-04-25 Chicurel Ricardo Internal combustion engine
US3574494A (en) * 1969-02-07 1971-04-13 Worthington Corp Fluid machine especially adapted for high pressure applications
DE3634899A1 (de) * 1986-10-14 1987-06-25 Joachim Kokula Verbrennungsmotor ohne oszillierende teile
DE3814311A1 (de) * 1988-03-22 1989-10-05 Raoul S Dr Nakhmanson Arbeitsmaschine mit mindestens zwei arbeitskammern mit veraenderlichem volumen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2651019A1 (fr) * 1989-08-21 1991-02-22 Benarova Gaby Moteur a combustion interne a cycle a quatre temps

Also Published As

Publication number Publication date
AU672389B2 (en) 1996-10-03
ATE130397T1 (de) 1995-12-15
TW252179B (fr) 1995-07-21
RU94038044A (ru) 1996-07-10
CZ198394A3 (en) 1995-06-14
DE69300818D1 (de) 1995-12-21
KR100266999B1 (ko) 2000-09-15
JP3366635B2 (ja) 2003-01-14
BR9305927A (pt) 1998-06-23
CA2130260A1 (fr) 1993-09-02
FR2687728A1 (fr) 1993-08-27
EP0627042B1 (fr) 1995-11-15
CZ285414B6 (cs) 1999-08-11
FR2687728B1 (fr) 1994-04-29
US5419292A (en) 1995-05-30
EP0627042A1 (fr) 1994-12-07
AU3635993A (en) 1993-09-13
ES2082634T3 (es) 1996-03-16
JPH07504248A (ja) 1995-05-11
RU2102612C1 (ru) 1998-01-20
DE69300818T2 (de) 1996-05-23

Similar Documents

Publication Publication Date Title
EP0627042B1 (fr) Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps
EP1238189B1 (fr) Dispositif pour modifier le taux de compression afin d'optimiser le fonctionnement des moteurs a pistons alternatifs
EP0060822A1 (fr) Moteur à mouvement linéaire et plateau oscillant pour un tel moteur
FR2475127A1 (fr) Generateur de gaz a variation de volume
EP2279332B1 (fr) Moteur a combustion interne
EP0377672B1 (fr) Moteur a combustion interne, a distribution rotative
FR2475126A1 (fr) Perfectionnement aux moteurs volumetriques rotatifs
FR2518646A1 (fr) Moteur a combustion a piston rotatif
FR2510219A1 (fr) Dispositif convertisseur de mouvement
FR2617537A1 (fr) Dispositif de transmission de puissance a fluide
FR2566460A1 (fr) Perfectionnements aux moteurs a combustion interne
EP0052387A1 (fr) Moteur comportant au moins un piston à mouvement de translation linéaire et plateau oscillant destiné à un tel moteur
FR2619596A1 (fr) Agencement rotatif pour le deplacement de pistons
FR3005106A1 (fr) Machine volumique rotative a trois pistons
FR2690201A1 (fr) Dispositif mécanique rotatif permettant la réalisation de compresseurs, de pompes ou de moteurs et moteurs selon ce dispositif.
CH645698A5 (fr) Machine a chambres et pistons oscillants.
FR2699967A1 (fr) Pompe à palette.
FR2738285A1 (fr) Moteur rotatif thermique a rotor unique, portant quatre pistons oscillants actionnes par bielles et vilebrequin
EP3045656A1 (fr) Machine rotative a losange deformable multifonctions
EP0391866B1 (fr) Moteur à fluide avec mouvement de rotation
FR2541368A1 (fr) Machine a pistons rotatifs a couple et debit constants
EP0127694B1 (fr) Machine à chambres et pistons oscillants
FR2613770A1 (fr) Moteur a combustion interne a deux temps
FR2466609A1 (fr) Machine rotative
FR2521649A1 (fr) Machine pour l'aspiration et le refoulement d'un fluide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA CZ FI HU JP KP KR LK MG MN MW NO NZ PL RO RU SD SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
LE32 Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b)
EX32 Extension under rule 32 effected after completion of technical preparation for international publication
EX32 Extension under rule 32 effected after completion of technical preparation for international publication
LE32 Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b)
WWE Wipo information: entry into national phase

Ref document number: 08290854

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2130260

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PV1994-1983

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1993905403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993905403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1994-1983

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1993905403

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV1994-1983

Country of ref document: CZ