EP1466093B1 - Moteur hydraulique a pistons radiaux - Google Patents

Moteur hydraulique a pistons radiaux Download PDF

Info

Publication number
EP1466093B1
EP1466093B1 EP02801160A EP02801160A EP1466093B1 EP 1466093 B1 EP1466093 B1 EP 1466093B1 EP 02801160 A EP02801160 A EP 02801160A EP 02801160 A EP02801160 A EP 02801160A EP 1466093 B1 EP1466093 B1 EP 1466093B1
Authority
EP
European Patent Office
Prior art keywords
communication
orifices
orifice
distribution
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02801160A
Other languages
German (de)
English (en)
Other versions
EP1466093A1 (fr
Inventor
Bernard Allart
Louis Bigo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poclain Hydraulics Industrie
Original Assignee
Poclain Hydraulics Industrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poclain Hydraulics Industrie filed Critical Poclain Hydraulics Industrie
Publication of EP1466093A1 publication Critical patent/EP1466093A1/fr
Application granted granted Critical
Publication of EP1466093B1 publication Critical patent/EP1466093B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/0447Controlling
    • F03C1/045Controlling by using a valve in a system with several pump or motor chambers, wherein the flow path through the chambers can be changed, e.g. series-parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/0403Details, component parts specially adapted of such engines
    • F03C1/0435Particularities relating to the distribution members
    • F03C1/0444Particularities relating to the distribution members to plate-like distribution members

Definitions

  • the present invention relates to a radial piston hydraulic motor as defined in the preamble of claim 1 comprising a cam and a cylinder block able to rotate relative to each other about an axis of rotation, the block cylinders having radial cylinders connected by cylinder ducts to communication ports located in a communication face of the cylinder block which is perpendicular to the axis of rotation, pistons slidably mounted in the cylinders being adapted to cooperate with the cam , the latter having several lobes each having two ramps, the motor further comprising a fluid dispenser having a dispensing face which is perpendicular to the axis of rotation and which is able to bear against the communication face of the cylinder block, this distribution face having dispensing orifices comprising orifices capable of being connected to a fluid supply and orifices adapted to be connected to a fluid outlet, the fluid distributor being rotatably connected to the cam so that a ramp of the cam corresponds to each dispensing orifice, said
  • each communication orifice is successively opposite a dispensing orifice connected to the fluid supply and facing a dispensing orifice connected to the fluid outlet.
  • the connection to the dispensing orifice which is connected to the supply has the effect of pushing radially outwardly the piston contained in the cylinder connected to the communication port in question, while the connection of the same communication port to a dispensing orifice connected to the fluid outlet makes it possible to retract this piston into its cylinder, towards the axis of the engine.
  • each piston cooperates successively with the different parts of the lobes of the cam to allow the relative rotation of the cylinder block and the cam.
  • the spacings between the dispensing orifices and the spacings between the communication orifices are such that a communication orifice is not simultaneously connected to two dispensing orifices respectively connected to the fluid supply and to the fluid outlet.
  • the engine components in particular the crankcase, are subjected to load variation which causes noise-generating vibrations, the intensity of the noise produced being mainly dependent on the speed of the increase and the pressure drops in the crankcase. working rooms.
  • the pressure difference between the fluid supply and the fluid outlet is important.
  • a piston contributing to the engine torque reaches the end of its stroke, towards its position farthest from the axis of the engine (top dead center), because of the connection of the port of communication of its cylinder to an orifice
  • the same communication port is isolated from the dispensing port connected to the fluid supply, and is then connected to another dispensing orifice which, this time, is itself connected to the fluid outlet.
  • the detents that occur are generating shock or shock sensations, and noises such as clicks.
  • the invention aims to provide an alternative solution to avoid or limit the aforementioned shock phenomena.
  • edges of at least some communication ports each have at least one notch capable of establishing a small communication section with a dispensing orifice.
  • a radial piston hydraulic motor comprises a dispensing orifice for each of the ramps. its cam lobes, that is to say it has twice as many dispensing orifices as cam lobes.
  • the engine however comprises a communication port for each cylinder. Therefore, when the aforementioned ratio is close to 1, the engine has about twice as many distribution orifices than communication ports. The fact of making the cuts on the edges of the communication ports is therefore significantly less expensive than would be the realization, for the same type of engine notches on the edges of the dispensing orifices.
  • each communication orifice has at least one notch, such as one where only some of these orifices have their edges provided with at least one notch.
  • the dimensions of the notches are chosen to allow, through these notches, during the relative rotation of the cylinder block and the fluid distributor, the gradual passage of a volume of fluid between the orifices at different pressures, said volume of corresponding pressure compensation, for given operating pressures and rotational speeds, to the decompression or expansion of the maximum volume of the working chamber, obtained at the top dead center of the piston on the cam.
  • the passage of a volume of pressure compensation fluid through the restriction that constitutes a notch, before the open communication between the communication orifice and a dispensing orifice is established, allows to gradually vary the pressure of the pressure. fluid to the communication port to gradually bring it to the pressure of the fluid at the dispensing orifice.
  • the length of time during which a notch allows the passage of fluid between the communication orifice and the dispensing orifice during the rotation of the cylinder block and the distributor depends on the speed of rotation of the engine. This is why the operating pressures and the speed of rotation are parameters to be taken into account in the definition of the notch.
  • each communication port comprises a leading portion through which the communication between the communication port and the dispensing orifices opens during relative rotation between the cylinder block and the distributor in a direction of rotation. relative given, as well as a separation portion through which the communication between the communication port and the dispensing orifices closes during the relative rotation between the cylinder block and the distributor in the same direction of relative rotation.
  • At least some communication orifices have a leading portion and a separating portion each having a notch capable of establishing a small communication section with a dispensing orifice.
  • the notches are particularly useful when the communication between the dispensing orifices and the communication orifices opens because, at this moment, the pressure of the fluid contained in the working chambers and that of the fluid contained in the distribution ducts (whether the supply pressure or the exhaust pressure) are significantly different and it is this pressure difference which, if the opening of the distribution ports is too abrupt, is generator of shocks and noises.
  • the presence of the notches is particularly desirable on the leading portions of the communication ports.
  • the motor always or almost always rotates in the same direction of rotation. This is for example the case when it is used to drive mills, conveyor belts or concrete mixers. In this case, it may be sufficient that only the portions of the edges of the communication orifices which, in this direction of rotation, form the leading portions of these edges, bear notches.
  • the motor is reversible, in two opposite directions of rotation. This is for example the case when used to drive a turret shovel.
  • two opposite portions of the edges of the communication orifices may, depending on the direction of rotation of the motor, be a leading portion or a separation portion. It is therefore desirable that these two portions are each provided with a notch.
  • the motors are reversible and have no preferential direction of operation. This is for example the translation of certain types of gear, particularly crawler gear.
  • the notches of the leading portions and separation of the edges of said communication orifices are symmetrical.
  • Some reversible motors have a preferred direction of operation.
  • machine translation engines can operate primarily at high speed in the forward direction while speed is limited in reverse.
  • the large notches allow communication sections with the dispensing ports which are larger than those allowed by the small notches, for example in proportion to the ratio between the highest speeds of rotation of the motor respectively allowed in the preferential sense and respectively in the non-preferential sense of the latter.
  • each ramp of the cam comprises a convex portion and a concave portion, two adjacent ramps being interconnected either by a cam crown area extending between their respective convex regions, or by a zone of cam bottom extending between their respective concave regions, said areas of cam peaks and cam bottom are substantially circular arcs centered on the axis of rotation, so that when the pistons cooperate with said zones, their Radial strokes are substantially zero.
  • the dispensing orifices and the communication orifices advantageously have dimensions such that, during the relative rotation of the cylinder block and the distributor, each dispensing orifice remains momentarily isolated from any communication orifice.
  • the cam and cam bottom regions are substantially circular arcs centered on the axis of rotation, which means that the radii of curvature of these zones, measured between their ends, are substantially equal, for the zones of cam end at the minimum radial distance from the cam to the axis of rotation and, for the cam bottom areas, to the maximum radial distance from the cam to the axis of rotation.
  • the radius of curvature of said zones may, however, be different from the minimum radius and the maximum radius of this cam, but, overall, their distances to the axis of the motor are respectively substantially equal to these minimum and maximum radii.
  • the cam top areas and the cam bottom areas do not contribute to the engine torque. They cover the weak angular sectors, for example of the order of 2 to 3 °, and they make it possible, during the relative rotation of the cylinder block and the distributor, to provide dead-time instants for each piston (neutral position). high for cam bottom zones and bottom dead center for cam top regions), during which the pressure in the working chamber of the cylinder in which the cam moves piston considered can, by the volume of compensation fluid passing through a notch, equal or approach the pressure of the dispensing orifice.
  • the lapse of time during which a given communication port is in communication with a dispensing orifice only by the notch that the edge of this communication port has be located within the time period during which wherein the piston fed by this communication port cooperates with either a cam-top region or with a cam bottom area. It is indeed advantageous to use this moment during which the piston does not develop a torque to gradually vary the pressure in the working chamber through the notch of the edge of the communication port.
  • the angular sectors covered by a cam-top region and by a cam bottom zone are substantially equal to each other, and substantially equal to 2 to 3 °.
  • FIG. 1 shows a hydraulic motor comprising a fixed casing in three parts, 2A, 2B and 2C, assembled by screws 3.
  • the invention is not limited to hydraulic motors with fixed housing, but it also applies to hydraulic motors with rotating housing which are well known to those skilled in the art.
  • Part 2C of the housing is closed axially by a 2D radial plate also fixed by screws.
  • a corrugated reaction cam 4 is formed on the part 2B of the housing.
  • the engine comprises a cylinder block 6 which is mounted relative to rotation about an axis of rotation 10 with respect to the cam 4 and which comprises a plurality of radial cylinders which can be supplied with fluid under pressure and within which the radial pistons 14 are slidably mounted.
  • the cylinder block 6 rotates a shaft 5 which cooperates with it by splines 7.
  • This shaft carries an outlet flange 9.
  • the engine further comprises an internal fluid distributor 16 which is secured to the housing with respect to the rotation about the axis 10. Between the distributor 16 and the internal axial face of the part 2C of the housing are formed grooves of distribution, respectively a first groove 18, a second groove 19 and a third groove 20.
  • the distribution ducts of the distributor 16 are distributed in a first group of ducts which, like the conduit 21, are all connected to the groove 18, a second group of ducts (not shown) which are connected to the groove 19 and a third group of ducts which, like the duct 22, are connected to the groove 20.
  • the first groove 18 is connected to a first main duct 24 to which are connected all the dispensing orifices of the distribution ducts of the first group, such as the orifice 21A.
  • the third groove 20 is connected to a second main duct 26 to which are thus connected all the distribution orifices of the ducts of the third group, such as the orifice 22A of the duct 22.
  • the main ducts. 24 and 26 are respectively an exhaust duct and a fluid supply duct, or vice versa.
  • the distribution ducts open into a distribution face 28 of the distributor 16, which bears against a communication face 30 of the cylinder block.
  • Each cylinder 12 has a cylinder duct 32 which opens into this communication face so that, during the relative rotation of the cylinder block and the cam, the cylinder ducts are alternately in communication with the distribution ducts of the different groups.
  • the engine of FIG. 1 further comprises a device for selecting the displacement, which in this case comprises a bore 40 which extends axially in the part 2C of the casing and in which is disposed an axially movable selection slide 42 .
  • the bore 40 comprises three communication channels, respectively 44, 46 and 48, which are respectively connected to the grooves 18, 19 and 20, by connecting conduits, respectively 44 ', 46' and 48 '.
  • the drawer 42 is movable between two extreme positions inside the bore 40 in which it makes the channels 44 and 46 communicate or the channels 46 and 48 through its groove 43.
  • the grooves 19 and 20 communicate, so that the dispensing orifices connected to them are at the same pressure, different from that of the dispensing orifices connected to the groove 18.
  • the drawer is moved in the direction of the arrow F, it is the distribution orifices connected to the grooves 18 and 19 which are put at the same pressure, different from that to which the orifices connected to the groove 20 are put.
  • FIG. 2 shows a cam lobe, with its two ramps, respectively 50 and 50 '. These two ramps each represent a convex portion, respectively 51 and 51 ', and a concave portion, respectively 52 and 52'.
  • the convex portions are those closest to the axis of rotation of the motor, while the concave portions are those which are the furthest away.
  • a piston 14 cooperates with the cam-top region 58, through which the concave portions 52 and 52 'of the ramps 50 and 50' meet. This piston is in its position of top dead center, that is to say that the volume of the working chamber of the cylinder in which it moves is then maximum.
  • Other pistons, 14 'and 14 " cooperate with other areas of the cam.
  • the communication port 32A by which the cylinder in which the piston 14 moves can be supplied with fluid under pressure, and by which the fluid contained in this cylinder can escape, is isolated from any dispensing orifice.
  • the communication ports of Figure 2 are all identical and each have two notches, respectively 54A and 54B, adapted to establish a small communication section between the communication port equipped with said notches and the dispensing orifices.
  • the portion B1 of the edge of the communication port 32A on which the notch 54A is made is a driving portion, that is to say that it is through this portion that opens the communication between the communication port 32A and the dispensing orifice 21A.
  • this communication is established solely by the notch 54A, for a relative rotation angle of the distributor and the cylinder block equal to the angular amplitude ⁇ 1 covered by the notch 54A.
  • the communication between the communication port 32A and the dispensing orifice 21A opens gradually, so that the pressure in the working chamber of the cylinder in which the piston 14 moves and the pressure in the distribution duct which opens to the dispensing orifice 21A can be gradually balanced.
  • the communication opens widely, as the orifices 32A and 21A overlap angularly.
  • the portion B2 of the edge of the communication port 32A which is opposite the portion B1 constitutes a separation portion, through which the communication between the orifice 32A communication and 23A distribution port closes.
  • one or the other of the notches 54A and 54B is useful in order to avoid, or at least to limit, the phenomena of shock during the setting in communication too fast of two enclosures in which different fluid pressures prevail.
  • the notches 54A and 54B are symmetrical with respect to a diameter D of the communication port 32A passing through the axis of rotation 10 of the motor. This is also seen in the section of Figure 3. As indicated above, it could however be expected that the notches are not symmetrical. In particular, if the direction of rotation R1 of the cylinder block relative to the distributor corresponds to the preferential direction of operation of the engine and if, in its non-preferential direction, the speed is less than that which can be reached by the preferential direction, then the notch 54A may be larger than the notch 54B.
  • the cam crown zone 56 and the cam bottom zone 58 respectively extend over angular sectors ⁇ 56 and ⁇ 58 , measured between spokes passing through the axis of the motor, which are substantially equal to each other and equal to about 2 to 3 °.
  • ⁇ 58 2 ( ⁇ 1 + ⁇ 2 ), the cam bottom area being symmetrical with respect to a radius R which determines an axis of symmetry for the cam lobe which includes the ramps 50 and 50 '; the angular sealing sector ⁇ 2 and the angular coverage of a notch ⁇ 1 to be appreciated, for a direction of rotation, with respect to a half-zone of cam bottom.
  • the same remark can be made about the cam vertex area 56 which is symmetrical with respect to the radius RS.
  • the communication orifices are circular.
  • the notches can be made by a displacement, in a diametral plane of the communication orifice, of a bur which slightly cuts the edges of this orifice.
  • a diameter of the cutter can be coaxial with that of the communication orifice, while to connect the dissymmetrical notches, the diameter of the cutter can be slightly offset from that of the communication orifice. .
  • the communication orifice 132A has, like the orifice 32A, a driving portion B1 and a separating portion B2, when the cylinder block rotates relative to the distributor in the direction of rotation R1.
  • the leading portion B1 and the separating portion B2 are generally convex, seen from inside the orifice.
  • the leading and separating portions substantially form arcs of circles capable of covering the edges of the dispensing orifices 21A and 23A during the relative rotation of the cylinder block to the distributor.
  • the shape of the communication orifice is substantially complementary to that of the distribution orifices 21A and 23A.
  • the communication between the communication orifice 132A and the distribution orifice 21A begins with the notch 154A which, as indicated above , establishes a small communication section to gradually balance the pressures in the respective speakers connected to the dispensing orifice and the communication port.
  • the leading portion B1 of the communication orifice exceeds the edge D1 of the dispensing orifice, in the direction R1 and, from this situation, the overlap section between the communication orifice and the dispensing orifice increases very rapidly depending on the relative rotation angle between the cylinder block and the distributor.
  • the communication between the orifices 132A and 21A can increase very quickly, with very low pressure drops. Thanks to the notch, it avoids or at least limits the shock phenomena and, thanks to the particular shape of the attack portion B1, increases the efficiency of the engine.
  • the motor has a single direction of rotation in which the cylinder block rotates in the direction R1 relative to the distributor, then it is not necessary that the partition portion B2 has a shape substantially complementary to the portion D2 of the edge of the orifice 23A through which the communication between the orifices 132A and 23A closes. If, on the other hand, the motor has two operating directions none of which is preferential, then the separating portion B2, which becomes a driving portion in the direction of rotation R2, is advantageously shaped like the portion B1, by symmetry. relative to a line L of symmetry of the orifice 132A passing through the axis of rotation of the motor.
  • the communication orifices may have, with the exception of the notches, a shape of the type described in FR-A-2 587 761. Conversely, the dispensing orifices may have such a shape while, without their notches, the communication ports would be circular.
  • Figure 5 shows another variant, in which the communication port 232A has a substantially elongate shape along a radius of the motors passing through the axis of rotation of the latter.
  • the dimension of the orifice 232A measured along a radius of the motor is greater than the dimension of this orifice measured transversely to this radius.
  • the communication orifice 232A has, like the latter, the advantage of allowing a very rapid opening of the communication between the communication orifice 232A and the distribution orifice 21A.
  • the notch 254A is larger than the notch 254B, the direction of rotation R1 of the cylinder block relative to the distributor having a preferred direction relative to the opposite direction R2.
  • the notches of the communication orifices are substantially arranged on an arc of a circle passing through the axis of rotation of the motor.
  • the engine shown in FIG. 1 has two active operating displacements, a displacement selector making it possible to put certain distribution ducts in communication with each other. Part of the pairs of communication ports consecutive has two orifices placed at the same pressure, so as to operate the engine in small displacement.
  • the deactivated pistons are generally declutched, being brought back to the axis of rotation of the engine. Be that as it may, in this situation, only the pistons remaining active contribute to generate a driving torque. In small displacement, for the same flow of fluid delivered by the pump feeding the engine, the latter rotates at a higher speed than it would have for the same flow of fluid in large displacement.
  • the communication orifices of the piston cylinders which are active in the small displacement cylinder each have at least one notch on the flange.
  • all the communication ports of these cylinders have a notch, while those of the other cylinders do not have one.
  • the communication orifices that have at least one notch have only one or on the contrary that they have two, used to the opening of the communication between said orifices and the dispensing orifices in each of the two directions of operation of the engine.
  • the maximum rotational speed being less important in large displacement than in small displacement, it can be judged that it is not necessary to make notches on the orifices of the cylinders of the pistons which are inactive in small displacement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)

Description

  • La présente invention concerne un moteur hydraulique à pistons radiaux comme défini dans le préambule de la revendication 1 comprenant une came et un bloc-cylindres aptes à tourner l'un par rapport à l'autre autour d'un axe de rotation, le bloc-cylindres présentant des cylindres radiaux reliés par des conduits de cylindres à des orifices de communication situés dans une face de communication du bloc-cylindres qui est perpendiculaire à l'axe de rotation, des pistons montés coulissants dans les cylindres étant aptes à coopérer avec la came, cette dernière présentant plusieurs lobes ayant chacun deux rampes, le moteur comprenant, en outre, un distributeur de fluide présentant une face de distribution, qui est perpendiculaire à l'axe de rotation et qui est apte à être en appui contre la face de communication du bloc-cylindres, cette face de distribution présentant des orifices de distribution comprenant des orifices aptes à être reliés à une alimentation de fluide et des orifices aptes à être reliés à un échappement de fluide, le distributeur de fluide étant solidaire en rotation de la came de sorte qu'une rampe de la came corresponde à chaque orifice de distribution, lesdits orifices de distribution étant aptes à communiquer les uns après les autres avec les orifices de communication au cours de la rotation relative du bloc-cylindres et du distributeur. Un tel moteur est connu, voir chacun des document US-A-4522110 ou DE-A-10033264 ou DE-C-829553 ou DE-A-2634065 ou FR-A-2587761 ou EP-A-0935069.
  • Pour un moteur de ce type, fonctionnant à pleine cylindrée, chaque orifice de communication se trouve successivement en regard d'un orifice de distribution relié à l'alimentation en fluide et en regard d'un orifice de distribution relié à l'échappement de fluide. La liaison à l'orifice de distribution qui est relié à l'alimentation a pour effet de pousser radialement vers l'extérieur le piston contenu dans le cylindre relié à l'orifice de communication considéré, tandis que la liaison du même orifice de communication à un orifice de distribution relié à l'échappement de fluide permet de faire rentrer ce piston dans son cylindre, vers l'axe du moteur. Ainsi, chaque piston coopère successivement avec les différentes parties des lobes de la came pour permettre la rotation relative du bloc-cylindres et de la came.
  • Les espacements entre les orifices de distribution et les espacements entre les orifices de communication sont tels qu'un orifice de communication ne soit pas simultanément relié à deux orifices de distribution respectivement raccordés à l'alimentation de fluide et à l'échappement dé fluide.
  • Au cours de la rotation relative du bloc-cylindres et du distributeur, les chambres de travail des cylindres, c'est-à-dire les parties de ces cylindres délimitées au-dessous des pistons, sont alternativement placées à la haute pression et à la basse pression. Il se produit donc dans ces chambres de travail des changements de pression s'effectuant généralement à une cadence très rapide. Ces changements de pression soumettent les pistons à des efforts proportionnels, et ces efforts sont transmis par les pistons à la came.
  • Il en résulte que les composants du moteur, en particulier, son carter, sont soumis à la variation de charge qui provoquent des vibrations génératrices de bruit, l'intensité des bruits produits dépendant principalement de la rapidité des accroissement et des chutes de pression dans les chambres de travail.
  • Pour que le moteur fonctionne correctement, la différence de pression entre l'alimentation en fluide et l'échappement de fluide est importante. Lorsqu'un piston contribuant au couple moteur atteint l'extrémité de sa course, vers sa position la plus éloignée de l'axe du moteur (point mort haut), du fait du raccordement de l'orifice de communication de son cylindre à un orifice de distribution relié à l'alimentation de fluide, le même orifice de communication est isolé de cet orifice de distribution puis est relié à un autre orifice de distribution qui, cette fois, est lui-même raccordé à l'échappement de fluide. Il en résulte un phénomène de détente dans le cylindre du piston considéré, le fluide présent à une pression élevée dans ce cylindre étant brutalement mis en communication avec une pression nettement plus basse, qui est celle de l'échappement de fluide. A l'inverse, lorsque le piston a atteint le point mort bas de sa course (sa position la plus proche de l'axe du moteur), son cylindre est isolé de l'échappement de fluide puis est raccordé à l'alimentation en fluide pour permettre une nouvelle course centripète du piston. A cet instant, le fluide contenu dans le cylindre passe d'une faible pression à une pression beaucoup plus élevée qui est celle de l'alimentation de fluide. Un phénomène de détente se produit également, depuis l'alimentation de fluide, vers le cylindre. Dans le cas précédent, la détente se produit depuis le cylindre vers l'échappement de fluide.
  • Dans les deux cas, les détentes qui s'opèrent sont génératrices de sensations de choc ou d'à-coups, et de bruits tels que des claquements.
  • Ces phénomènes deviennent d'autant plus sensibles que l'on a amélioré la qualité des moteurs et que l'on a réduit les fuites dans ces moteurs. En effet, dans les moteurs anciens, les fuites qui y régnaient permettaient d'éviter des variations de pression trop brusques entre les différentes enceintes.
  • Pour éviter, ou tout au moins pour limiter les phénomènes de chocs dus, en particulier, aux détentes trop rapides du fluide contenu dans les chambres de travail des cylindres lorsque les conduits de communication sont mis en communication, par les orifices de distribution, avec l'alimentation de fluide, il est possible d'équiper le bord des orifices de distribution d'au moins une entaille apte à établir (voir chacun des document US-A-4522110 ou DE-A-10033264 ou DE-C-829553 ou DE-A-2634065 ou FR-A-2587761 ou EP-A-0935069), au cours de la rotation relative du bloc-cylindres et du distributeur, une faible section de communication entre les chambres de travail des cylindres et les conduits de distribution. Cette faible section de communication, ouverte pendant un temps très court, permet d'éviter les variations de pression trop brutales dans les chambres de travail.
  • La société demanderesse a toutefois constaté que cette solution n'est pas toujours aisée à mettre en oeuvre. En effet, dans certains cas, la réalisation des entailles sur les bords des orifices de distribution s'avère peu aisée et/ou coûteuse.
  • Par conséquent, l'invention vise à proposer une autre solution pour éviter ou limiter les phénomènes de choc précités.
  • Ce but est atteint grâce au fait que les bords d'au moins certains orifices de communication présentent chacun au moins une entaille apte à établir une faible section de communication avec un orifice de distribution.
  • L'invention trouve une application particulièrement intéressante pour les moteurs dans lesquels le rapport du nombre de cylindres sur le nombre de lobes de came est voisin de 1. En effet, un moteur hydraulique à pistons radiaux comprend un orifice de distribution pour chacune des rampes de ses lobes de came, c'est-à-dire qu'il a deux fois plus d'orifices de distribution que de lobes de cames. Le moteur comprend en revanche un orifice de communication pour chaque cylindre. Par conséquent, lorsque le rapport précité est voisin de 1, le moteur compte environ deux fois plus d'orifices de distribution que d'orifices de communication. Le fait de réaliser les entailles sur les bords des orifices de communication s'avère donc nettement moins coûteux que ne le serait la réalisation, pour le même type de moteur des entailles sur les bords des orifices de distribution.
  • Comme on le verra dans la suite, l'invention couvre le cas où le bord de chaque orifice de communication présente au moins une entaille, comme celui où seuls certains de ces orifices ont leurs bords pourvus d'au moins une entaille.
  • Ceci étant, dans l'un ou l'autre cas, pour un même effet technique et pour un moteur dans lequel le rapport du nombre de cylindres sur le nombre de lobes de came est voisin de 1, le nombre d'orifices de communication devant être pourvus d'entailles et nettement moindre que le nombre d'orifices de distribution devant l'être.
  • Les dimensions des entailles sont choisies pour autoriser, à travers ces entailles, lors de la rotation relative du bloc-cylindres et du distributeur de fluide, le passage progressif d'un volume de fluide entre les orifices à des pressions différentes, volume dit «de compensation de pression» correspondant, pour des pressions et des vitesses de rotation d'utilisation données, à la décompression ou à la détente du volume maximal de la chambre de travail, obtenu au point mort haut du piston sur la came. Le passage d'un volume de fluide de compensation de pression à travers la restriction que constitue une entaille, avant que la communication franche entre l'orifice de communication et un orifice de distribution ne s'établisse, permet de faire varier progressivement la pression du fluide à l'orifice de communication pour l'amener progressivement à la pression du fluide à l'orifice de distribution. Le laps de temps pendant lequel une entaille permet le passage du fluide entre l'orifice de communication et l'orifice de distribution lors de la rotation du bloc-cylindres et du distributeur dépend de la vitesse de rotation du moteur. C'est pourquoi les pressions de fonctionnement et la vitesse de rotation sont des paramètres à prendre en considération dans la définition de l'entaille.
  • Le bord de chaque orifice de communication comprend une portion d'attaque par laquelle la communication entre l'orifice de communication et les orifices de distribution s'ouvre au cours de la rotation relative entre le bloc-cylindres et le distributeur dans un sens de rotation relative donné, ainsi qu'une portion de séparation par laquelle la communication entre l'orifice de communication et les orifices de distribution se ferme au cours de la rotation relative entre le bloc-cylindres et le distributeur dans le même sens de rotation relative.
  • Selon une variante avantageuse, particulièrement adaptée aux moteurs ayant deux sens de fonctionnement, au moins certains orifices de communication ont une portion d'attaque et une portion de séparation qui présentent chacune une entaille apte à établir une faible section de communication avec un orifice de distribution.
  • La société demanderesse a constaté que les entailles sont particulièrement utiles lorsque la communication entre les orifices de distribution et les orifices de communication s'ouvre car, à ce moment, la pression du fluide contenu dans les chambres de travail et celle du fluide contenu dans les conduits de distribution (qu'il s'agisse de la pression d'alimentation ou de la pression d'échappement) sont notablement différentes et c'est cette différence de pression qui, si l'ouverture des orifices de distribution est trop brutale, est génératrice de chocs et de bruits. En d'autres termes, la présence des entailles est particulièrement souhaitable sur les portions d'attaque des orifices de communication. Dans certaines applications, le moteur tourne toujours ou pratiquement toujours dans le même sens de rotation. C'est par exemple le cas lorsqu'il sert à l'entraînement de broyeurs, de courroies transporteuses ou de bétonnières. Dans ce cas, il peut s'avérer suffisant que seules les portions des bords des orifices de communication qui, dans ce sens de rotation, forment les portions d'attaque de ces bords, portent des entailles.
  • Dans d'autres applications, le moteur est réversible, à deux sens opposés de rotation. C'est par exemple le cas lorsqu'il sert à l'entraînement d'une tourelle de pelle mécanique. Dans ce cas, deux portions opposées des bords des orifices de communication peuvent, selon le sens de rotation du moteur, être une portion d'attaque ou une portion de séparation. Il est donc souhaitable que ces deux portions soient chacune pourvues d'une entaille.
  • Dans de nombreuses applications, les moteurs sont réversibles et n'ont pas de sens préférentiel de fonctionnement. Il s'agit par exemple de la translation de certains types d'engins, en particulier des engins à chenilles.
  • Dans ce cas, avantageusement, les entailles des portions d'attaque et de séparation des bords desdits orifices de communication sont symétriques.
  • Certains moteurs réversibles ont un sens préférentiel de fonctionnement. Par exemple, des moteurs de translation d'engin peuvent fonctionner principalement à grande vitesse dans le sens de la marche avant tandis que la vitesse est limitée en marche arrière. Dans ce cas, on peut prévoir de grandes entailles sur les portions des bords des conduits de communication qui sont les portions d'attaque dans le sens préférentiel et de petites entailles sur les portions opposées de ces bords, qui sont les portions de séparation dans ce sens préférentiel et les portions d'attaque dans le sens opposé, non préférentiel.
  • Les grandes entailles autorisent des sections de communication avec les orifices de distribution qui sont plus grandes que celles qu'autorisent les petites entailles, par exemple à proportion du rapport entre les plus grandes vitesses de rotation du moteur respectivement autorisées dans le sens préférentiel et, respectivement, dans le sens non préférentiel de ce dernier.
  • Selon une variante avantageuse, dans laquelle chaque rampe de la came comprend une portion convexe et une portion concave, deux rampes adjacentes étant reliées entre elles soit par une zone de sommet de came s'étendant entre leurs régions convexes respectives, soit par une zone de fond de came s'étendant entre leurs régions concaves respectives, lesdites zones de sommets de came et de fond de came sont sensiblement des arcs de cercles centrés sur l'axe de rotation, de telle sorte que lorsque les pistons coopèrent avec lesdites zones, leurs courses radiales sont sensiblement nulles. Alors, les orifices de distribution et les orifices de communication présentent avantageusement des dimensions telles que, au cours de la rotation relative du bloc-cylindres et du distributeur, chaque orifice de distribution reste momentanément isolé de tout orifice de communication.
  • Les zones de sommet de came et de fond de came sont sensiblement des arcs de cercles centrés sur l'axe de rotation, ce qui signifie que les rayons de courbure de ces zones, mesurés entre leurs extrémités, sont sensiblement égaux, pour les zones de sommet de came à la distance radiale minimale de la came à l'axe de rotation et, pour les zones de fond de came, à la distance radiale maximale de la came à l'axe de rotation. Le rayon de courbure desdites zones peut cependant être différent du rayon minimal et du rayon maximal de cette came mais, globalement, leurs distances à l'axe du moteur sont respectivement sensiblement égales à ces rayons minimal et maximal. Lorsqu'un piston coopère avec de telles zones, sa course radiale est sensiblement nulle, ce qui signifie que cette course est nulle ou qu'elle est tout au plus de l'ordre d'environ 0,5 % de l'amplitude maximale de la course du piston. Ainsi, les zones de sommet de came et les zones de fond de came ne concourent pas au couple moteur. Elles couvrent les secteurs angulaires faibles, par exemple de l'ordre de 2 à 3°, et elles permettent, lors de la rotation relative du bloc-cylindres et du distributeur, d'offrir des instants de point mort pour chaque piston (point mort haut pour les zones de fond de came et point mort bas pour les zones de sommet de came), pendant lesquels la pression dans la chambre de travail du cylindre dans lequel se déplace le piston considéré peut, par le volume de fluide de compensation passant par une entaille, égaler ou approcher la pression de l'orifice de distribution.
  • Il est particulièrement avantageux que le laps de temps pendant lequel un orifice de communication donné est en communication avec un orifice de distribution seulement par l'entaille que présente le bord de cet orifice de communication, soit situé à l'intérieur du laps de temps pendant lequel le piston alimenté par cet orifice de communication coopère, soit avec une zone de sommet de came, soit avec une zone de fond de came. Il est en effet avantageux d'utiliser ce moment pendant lequel le piston ne développe pas un couple pour faire progressivement varier la pression dans la chambre de travail grâce à l'entaille du bord de l'orifice de communication.
  • Avantageusement, les secteurs angulaires couverts par une zone de sommet de came et par une zone de fond de came sont sensiblement égaux entre eux, et sensiblement égaux à 2 à 3°.
  • L'invention sera bien comprise et ses avantages apparaîtront mieux à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif.
  • La description se réfère aux dessins annexés sur lesquels :
    • la figure 1 est une vue en coupe axiale d'un moteur auquel l'invention peut être appliquée ;
    • la figure 2 est une vue partielle en coupe radiale selon la ligne II-II de la figure 1 ;
    • la figure 3 est une section prise selon l'arc de cercle III-III de la figure 2 ; et
    • les figures 4 et 5 montrent, en coupe radiale partielle, deux variantes de réalisation.
  • La figure 1 montre un moteur hydraulique comprenant un carter fixe en trois parties, 2A, 2B et 2C, assemblées par des vis 3.
  • Bien entendu, l'invention n'est pas limitée aux moteurs hydrauliques à carter fixe, mais elle s'applique également aux moteurs hydrauliques à carter tournant qui sont bien connus de l'homme du métier.
  • La partie 2C du carter est fermée axialement par une plaque radiale 2D également fixée par des vis. Une came de réaction ondulée 4 est réalisée sur la partie 2B du carter.
  • Le moteur comprend un bloc-cylindres 6 qui est monté à rotation relative autour d'un axe de rotation 10 par rapport à la came 4 et qui comporte une pluralité de cylindres radiaux, susceptibles d'être alimentés en fluide sous pression et à l'intérieur desquels sont montés coulissants les pistons radiaux 14.
  • Le bloc-cylindres 6 entraîne en rotation un arbre 5 qui coopère avec lui par des cannelures 7. Cet arbre porte une bride de sortie 9.
  • Le moteur comprend encore un distributeur interne de fluide 16 qui est solidaire du carter vis-à-vis de la rotation autour de l'axe 10. Entre le distributeur 16 et la face axiale interne de la partie 2C du carter sont formées des gorges de distribution, respectivement une première gorge 18, une deuxième gorge 19 et une troisième gorge 20. Les conduits de distribution du distributeur 16 sont répartis en un premier groupe de conduits qui, comme le conduit 21, sont tous reliés à la gorge 18, un deuxième groupe de conduits (non représentés) qui sont reliés à la gorge 19 et un troisième groupe de conduits qui, comme le conduit 22, sont reliés à la gorge 20. La première gorge 18 est reliée à un premier conduit principal 24 auquel sont donc reliés tous les orifices de distribution des conduits de distribution du premier groupe, tels que l'orifice 21A. La troisième gorge 20 est reliée à un deuxième conduit principal 26 auquel sont donc reliés tous les orifices de distribution des conduits du troisième groupe, tels que l'orifice 22A du conduit 22.
  • Selon le sens de rotation du moteur, les conduits principaux. 24 et 26 sont respectivement un conduit d'échappement et un conduit d'alimentation en fluide, ou l'inverse.
  • Les conduits de distribution débouchent dans une face de distribution 28 du distributeur 16, qui est en appui contre une face de communication 30 du bloc-cylindres. Chaque cylindre 12 a un conduit de cylindre 32 qui débouche dans cette face de communication de telle sorte que, lors de la rotation relative du bloc-cylindres et de la came, les conduits de cylindres sont alternativement en communication avec les conduits de distribution des différents groupes.
  • Le moteur de la figure 1 comporte encore un dispositif de sélection de la cylindrée qui, en l'espèce, comprend un alésage 40, qui s'étend axialement dans la partie 2C du carter et dans lequel est disposé un tiroir de sélection 42 axialement mobile. L'alésage 40 comprend trois voies de communication, respectivement 44, 46 et 48, qui sont respectivement reliées aux gorges 18, 19 et 20, par des conduits de liaison, respectivement 44', 46' et 48'. Le tiroir 42 est mobile entre deux positions extrêmes à l'intérieur de l'alésage 40 dans lesquelles il fait communiquer les voies 44 et 46 ou les voies 46 et 48 par sa gorge 43.
  • Lorsque le tiroir 42 est dans sa position de la figure 1, les gorges 19 et 20 communiquent, de sorte que les orifices de distribution qui leur sont reliés sont à la même pression, différente de celle des orifices de distribution reliés à la gorge 18. Lorsque le tiroir est déplacé dans le sens de la flèche F, ce sont les orifices de distribution reliés aux gorges 18 et 19 qui sont mis à la même pression, différente de celle à laquelle sont mis les orifices reliés à la gorge 20.
  • On a représenté sur la figure 2, un lobe de came, avec ses deux rampes, respectivement 50 et 50'. Ces deux rampes représentent chacune une portion convexe, respectivement 51 et 51', ainsi qu'une portion concave, respectivement 52 et 52'. Les portions convexes sont celles qui sont les plus proches de l'axe de rotation 10 du moteur, tandis que les portions concaves sont celles qui en sont le plus éloignées. Un piston 14 coopère avec la zone de sommet de came 58, par laquelle les portions concaves 52 et 52' des rampes 50 et 50' se rejoignent. Ce piston est dans sa position de point mort haut, c'est-à-dire que le volume de la chambre de travail du cylindre dans lequel il se déplace est alors maximal. D'autres pistons, 14' et 14", coopèrent avec d'autres zones de la came.
  • A cet instant, pour les raisons décrites dans la suite, l'orifice de communication 32A, par lequel le cylindre dans lequel se déplace le piston 14 peut être alimenté en fluide sous pression, et par lequel le fluide contenu dans ce cylindre peut s'échapper, est isolé de tout orifice de distribution.
  • Pour la clarté de l'explication, on a en effet représenté sur la figure 2 deux orifices de distribution, respectivement 21A et 23A, par exemple respectivement reliés aux gorges 18 et 19, bien que ceux-ci ne soient normalement pas visibles sur la coupe. On a également indiqué les positions de deux autres orifices de communication, à savoir 32'A et 32"A.
  • Les orifices de communication de la figure 2 sont tous identiques et présentent chacun deux entailles, respectivement 54A et 54B, aptes à établir une faible section de communication entre l'orifice de communication équipé desdites entailles et les orifices de distribution.
  • Si l'on considère que le bloc-cylindres se déplace par rapport au distributeur dans le sens de rotation R1, la portion B1 du bord de l'orifice de communication 32A sur laquelle est réalisée l'entaille 54A est une portion d'attaque, c'est-à-dire que c'est par cette portion que s'ouvre la communication entre l'orifice de communication 32A et l'orifice de distribution 21A. Ainsi, dans un premier temps, cette communication s'établit uniquement par l'entaille 54A, pour un angle de rotation relative du distributeur et du bloc-cylindres égal à l'amplitude angulaire α1 couverte par l'entaille 54A. Grâce à l'entaille 54A, la communication entre l'orifice de communication 32A et l'orifice de distribution 21A s'ouvre progressivement, de sorte que la pression dans la chambre de travail du cylindre dans laquelle se déplace le piston 14 et la pression dans le conduit de distribution qui débouche à l'orifice de distribution 21A peuvent être équilibrées progressivement. Lorsque la rotation continue, la communication s'ouvre largement, à mesure que les orifices 32A et 21A se recouvrent angulairement.
  • Pour la rotation du bloc-cylindres dans le sens R1 par rapport au distributeur, la portion B2 du bord de l'orifice de communication 32A qui est opposée à la portion B1, constitue une portion de séparation, par laquelle la communication entre l'orifice de communication 32A et l'orifice de distribution 23A se ferme.
  • Lorsque, en revanche, le sens de rotation du moteur est inversé de sorte que le bloc-cylindres tourne par rapport au distributeur dans le sens de rotation R2, c'est cette fois la portion B2 du bord de l'orifice de communication qui constitue une portion d'attaque. Dans ce cas, la communication entre l'orifice de communication 32A et l'orifice de distribution 23A s'ouvre par l'entaille 54B. Les pressions dans la chambre de travail du cylindre dans lequel se déplace le piston 14 et dans le conduit de distribution qui débouche à l'orifice de distribution 23A peuvent alors s'équilibrer plus progressivement que dans l'art antérieur, dans lequel les orifices de communication étaient dépourvus d'entailles.
  • Ainsi, dans le sens de rotation du moteur, l'une ou l'autre des entailles 54A et 54B est utile pour éviter, ou tout au moins pour limiter les phénomènes de choc lors de la mise en communication trop rapide de deux enceintes dans lesquelles règnent des pressions de fluide différentes.
  • Dans l'exemple de la figure 2, les entailles 54A et 54B sont symétriques par rapport à un diamètre D de l'orifice de communication 32A passant par l'axe de rotation 10 du moteur. C'est ce que l'on constate également dans la section de la figure 3. Comme indiqué précédemment, on pourrait toutefois prévoir que les entailles ne soient pas symétriques. En particulier, si le sens de rotation R1 du bloc-cylindres par rapport au distributeur correspond au sens préférentiel du fonctionnement du moteur et si, dans son sens non préférentiel, la vitesse est inférieure à celle qui peut être atteinte par le sens préférentiel, alors l'entaille 54A peut être plus grande que l'entaille 54B.
  • La zone de sommet de came 56 et la zone de fond de came 58 s'étendent respectivement sur des secteurs angulaires α56 et α58, mesurés entre des rayons passant par l'axe du moteur, qui sont sensiblement égaux entre eux et égaux à environ 2 à 3°.
  • Avantageusement, pour profiter des zones de fond de came et des zones de sommet de came pour équilibrer les pressions entre les chambres de travail des cylindres et les conduits d'alimentation ou d'échappement du moteur, on choisit que le laps de temps pendant lequel la communication entre un orifice de communication et un orifice de distribution s'opère par une entaille soit à l'intérieur du laps de temps pendant lequel le piston du cylindre alimenté par cet orifice de communication coopère avec une zone de fond ou de sommet de came. On profite ainsi des moments où les pistons ne concourent pas au couple moteur pour équilibrer les pressions.
  • Par exemple, avec un secteur angulaire d'étanchéité α2 entre le conduit 21A et le conduit 32A, on choisit que α58 = 2 (α1 + α2), la zone de fond de came étant symétrique par rapport à un rayon R qui détermine un axe de symétrie pour le lobe de came qui comprend les rampes 50 et 50' ; le secteur angulaire d'étanchéité α2 et la couverture angulaire d'une entaille α1 devant s'apprécier, pour un sens de rotation, par rapport à une demi-zone de fond de came. La même remarque peut être formulée au sujet de la zone de sommet de came 56 qui est symétrique par rapport au rayon RS.
  • On peut choisir que, exception faite de la présence des entailles, les orifices de communication soient circulaires. Dans un tel cas, les entailles peuvent être réalisées par un déplacement, dans un plan diamétral de l'orifice de communication, d'une fraise qui entaille légèrement les bords de cet orifice. Pour réaliser des entailles symétriques, un diamètre de la fraise peut être coaxial avec celui de l'orifice de communication, tandis que pour relier les entailles dissymétriques, le diamètre de la fraise peut être légèrement décalé par rapport à celui de l'orifice de communication.
  • Dans l'exemple de la figure 4, l'orifice de communication 132A présente, comme l'orifice 32A, une portion d'attaque B1 et une portion de séparation B2, lorsque le bloc-cylindres tourne par rapport au distributeur dans le sens de rotation R1. On constate toutefois que, pour l'orifice 132A, la portion d'attaque B1 et la portion de séparation B2 sont globalement convexes, vu depuis l'intérieur de l'orifice. En fait, exception faite des entailles 154A et 154B, les portions d'attaque et de séparation forment sensiblement des arcs de cercles aptes à recouvrir les bords des orifices de distribution 21A et 23A lors de la rotation relative du bloc-cylindres au distributeur. La forme de l'orifice de communication est sensiblement complémentaire de celle des orifices de distribution 21A et 23A.
  • Si l'on considère que le bloc-cylindres tourne dans le sens de rotation R1 par rapport au distributeur, alors la communication entre l'orifice de communication 132A et l'orifice de distribution 21A commence par l'entaille 154A qui, comme indiqué précédemment, établit une faible section de communication permettant d'équilibrer progressivement les pressions dans les enceintes respectivement reliées à l'orifice de distribution et à l'orifice de communication. Toutefois, dès que l'angle de rotation relative entre le bloc-cylindres et le distributeur est suffisant, la portion d'attaque B1 de l'orifice de communication dépasse le bord D1 de l'orifice de distribution, dans le sens R1 et, à partir de cette situation, la section de recouvrement entre l'orifice de communication et l'orifice de distribution augmente très rapidement en fonction de l'angle de rotation relative entre le bloc-cylindres et le distributeur. En d'autres termes, dès que la pression entre les enceintes respectivement raccordées à l'orifice de communication et à l'orifice de distribution a été relativement équilibrée par la faible section de communication autorisée par l'entaille 154A, la communication entre les orifices 132A et 21A peut augmenter très rapidement, avec de très faibles pertes de charge. Grâce à l'entaille, on évite ou tout au moins on limite les phénomènes de choc et, grâce à la forme particulière de la portion d'attaque B1, on augmente le rendement du moteur.
  • Si le moteur a un unique sens de rotation dans lequel le bloc-cylindres tourne dans le sens R1 par rapport au distributeur, alors il n'est pas nécessaire que la portion de séparation B2 présente une forme sensiblement complémentaire de la portion D2 du bord de l'orifice 23A par laquelle la communication entre les orifices 132A et 23A se ferme. Si, en revanche, le moteur a deux sens de fonctionnement dont aucun n'est préférentiel, alors la portion de séparation B2, qui devient une portion d'attaque dans le sens de rotation R2, est avantageusement conformée comme la portion B1, par symétrie par rapport à une ligne L de symétrie de l'orifice 132A passant par l'axe de rotation du moteur.
  • Bien entendu, dans le cas d'un moteur ayant deux sens de rotation dont l'un seulement est préférentiel, on peut choisir que seules les portions des bords des orifices de communication qui constituent des portions d'attaque dans un sens préférentiel, seront formées de manière sensiblement complémentaires aux portions des bords des orifices de distribution par lesquelles la communication entre les orifices de communication et les orifices de distribution s'ouvrent.
  • Lorsque les orifices de distribution sont circulaires, les orifices de communication peuvent avoir, exception faite des entailles, une forme du type de celle décrite dans FR-A-2 587 761. A l'inverse, les orifices de distribution peuvent avoir une telle forme tandis que, sans leurs entailles, les orifices de communication seraient circulaires.
  • La figure 5 montre une autre variante, selon laquelle l'orifice de communication 232A présente une forme sensiblement allongée selon un rayon des moteurs passant par l'axe de rotation de ce dernier. En d'autres termes, exception faite des entailles 254A et 254B, la dimension de l'orifice 232A mesuré selon un rayon du moteur est plus grande que la dimension de cet orifice mesuré transversalement à ce rayon. Sans présenter la forme relativement complexe de l'orifice 132A, l'orifice de communication 232A présente, comme ce dernier, l'avantage de permettre une ouverture très rapide de la communication entre l'orifice de communication 232A et l'orifice de distribution 21A ou l'orifice de distribution 23A, à partir du moment où la pression dans les enceintes reliées respectivement à l'orifice de communication et aux orifices de distribution a été sensiblement équilibrée du fait de la mise en communication limitée par l'entaille 254A ou l'entaille 254B.
  • On remarque sur la figure 5 que l'entaille 254A est plus grande que l'entaille 254B, le sens de rotation R1 du bloc-cylindres par rapport au distributeur ayant un sens préférentiel par rapport au sens opposé R2.
  • Sur les figures qui viennent d'être décrites, les entailles des orifices de communication sont sensiblement disposées sur un arc de cercle passant par l'axe de rotation du moteur.
  • Selon une variante non représentée, on peut également choisir de disposer toutes les entailles des portions d'attaque des orifices sur un premier cercle centré sur l'axe de rotation du moteur, et toutes les entailles des portions de séparation de ces orifices sur un deuxième cercle, de rayon différent du premier.
  • Comme on l'a indiqué précédemment, le moteur représenté sur la figure 1, présente deux cylindrées actives de fonctionnement, un sélecteur de cylindrée permettant de mettre en communication certains conduits de distribution entre eux. Une partie des paires d'orifices de communication consécutive présente deux orifices mis à la même pression, de manière à faire fonctionner le moteur en petite cylindrée.
  • Il existe une autre façon de faire fonctionner le moteur selon deux cylindrées différentes, qui consiste à rendre certains pistons inactifs. Ce type de commande de petite cylindrée est par exemple décrit par la demande de brevet n° FR-A-2 796 992.
  • Dans ce cas, les pistons désactivés sont en général décrabotés, en étant ramenés vers l'axe de rotation du moteur. Quoiqu'il en soit, dans cette situation, seuls les pistons restant actifs contribuent à générer un couple moteur. En petite cylindrée, pour un même débit de fluide délivré par la pompe alimentant le moteur, celui-ci tourne à une vitesse supérieure à celle qu'il aurait pour le même débit de fluide en grande cylindrée.
  • Les phénomènes de détente et de choc précités sont encore plus sensibles pour un fonctionnement à grande vitesse. Ainsi, selon l'invention, on peut prévoir que seuls les orifices de communication des cylindres de piston qui sont actifs dans la petite cylindrée de fonctionnement présentent chacun au moins une entaille sur le rebord. Dans ce cas, tous les orifices de communication de ces cylindres présentent une entaille, tandis que ceux des autres cylindres n'en présentent pas. Selon que le moteur est réversible ou non, et pour les raisons indiquées précédemment, on peut prévoir que les orifices de communication qui présentent au moins une entaille n'en aient qu'une seule ou au contraire qu'ils en aient deux, servant à l'ouverture de la communication entre lesdits orifices et les orifices de distribution dans chacun des deux sens de fonctionnement du moteur.
  • Dans ce cas, la vitesse de rotation maximale étant moins importante en grande cylindrée qu'en petite cylindrée, on peut juger qu'il n'est pas nécessaire de réaliser des entailles sur les orifices des cylindres des pistons qui sont inactifs en petite cylindrée.
  • En variante, on peut réaliser des entailles sur les bords de tous les orifices de communication. Toutefois, dans la mesure où la vitesse maximale en grande cylindrée est plus faible que la vitesse maximale en petite cylindrée, on peut prévoir que les bords des orifices de communication des cylindres dont les pistons sont actifs dans la petite cylindrée présentent des entailles plus grandes que celles des bords des orifices de communication des cylindres des pistons qui sont inactifs dans la petite cylindrée.

Claims (10)

  1. Moteur hydraulique à pistons radiaux comprenant une came (4) et un bloc-cylindres (6) aptes à tourner l'un par rapport à l'autre autour d'un axe de rotation (10), le bloc-cylindres présentant des cylindres radiaux (14) reliés par des conduits de cylindres (32) à des orifices de communication (32A ; 132A ; 232A) situés dans une face de communication (30) du bloc-cylindres qui est perpendiculaire à l'axe de rotation, des pistons (14) montés coulissants dans les cylindres (12) étant aptes à coopérer avec la came, cette dernière présentant plusieurs lobes ayant chacun deux rampes (50, 50'), le moteur comprenant, en outre, un distributeur de fluide (16) présentant une face de distribution (28), qui est perpendiculaire à l'axe de rotation et qui est apte à être en appui contre la face de communication (32) du bloc-cylindres, cette face de distribution présentant des orifices de distribution (21A, 23A) comprenant des orifices aptes à être reliés à une alimentation de fluide (26) et des orifices aptes à être reliés à un échappement de fluide (24), le distributeur de fluide (16) étant solidaire en rotation de la came (4) de sorte qu'une rampe de la came corresponde à chaque orifice de distribution, lesdits orifices de distribution étant aptes à communiquer les uns après les autres avec les orifices de communication (32A ; 132A ; 232A) au cours de la rotation relative du bloc-cylindres (6) et du distributeur (16),
    caractérisé en ce que les bords d'au moins certains orifices de communication (32A ; 132A ; 232A) présentent chacun au moins une entaille (54A, 54B ; 154A, 154B ; 254A, 254B) apte à établir une faible section de communication avec un orifice de distribution (21A, 23A).
  2. Moteur selon la revendication 1, dans lequel le bord de chaque orifice de communication (32A ; 132A ; 232A) comprend une portion d'attaque (B1) par laquelle la communication entre l'orifice de communication et les orifices de distribution (21A, 23A) s'ouvre au cours de la rotation relative entre le bloc-cylindres (6) et le distributeur (16) dans un sens de rotation relative donné (R1), ainsi qu'une portion de séparation (B2) par laquelle la communication entre l'orifice de communication et les orifices de distribution se ferme au cours de la rotation relative entre le bloc-cylindres et le distributeur dans le même sens de rotation relative, caractérisé en ce que, pour au moins certains orifices de communication (32A ; 132A ; 232A), ladite portion d'attaque et ladite portion de séparation (B1, B2) présentent chacune une entaille (54A, 54B ; 154A, 154B ; 254A, 254B) apte à établir une faible section de communication avec un orifice de distribution (21A, 23A).
  3. Moteur selon la revendication 2, caractérisé en ce que les entailles (54A, 54B) des portions d'attaque et de séparation (B1, B2) des bords desdits orifices de communication (32A) sont symétriques.
  4. Moteur hydraulique selon la revendication 2, le moteur ayant deux sens de rotation (R1, R2), dont l'un (R1) est préférentiel, caractérisé en ce que les portions des bords desdits orifices de communication (132A ; 232A) qui, dans le sens préférentiel de fonctionnement, constituent respectivement les portions d'attaque (B1) et les portions de séparation (B2) présentent respectivement des grandes entailles (154A ; 254A) et des petites entailles (154B ; 254B).
  5. Moteur hydraulique selon l'une quelconque des revendications 1 à 4, dans lequel le bord de chaque orifice de communication (132A) comprend une portion d'attaque (B1) par laquelle la communication entre l'orifice de communication et les orifices de distribution (21A, 23A) s'ouvre au cours de la rotation relative entre le bloc-cylindres (6) et le distributeur (16) dans un sens de rotation relative donné (R1), ainsi qu'une portion de séparation (B2) par laquelle la communication entre l'orifice de communication (132A) et les orifices de distribution (21A, 23A) se ferme au cours de la rotation relative entre le bloc-cylindres et le distributeur dans le même sens de rotation relative, caractérisé en ce que, pour au moins certains orifices de communication (132A), au moins la portion d'attaque (B1) présente une forme sensiblement complémentaire de la forme des portions des bords des orifices de distribution (21A, 23A) par lesquelles la communication entre les orifices de communication et les orifices de distribution s'ouvre.
  6. Moteur selon la revendication 5, dans lequel les orifices de distribution (21A, 23A) sont sensiblement circulaires, caractérisé en ce que, pour au moins certains orifices de communication (132A), la portion d'attaque (B) de l'orifice présente, vue depuis l'intérieur de l'orifice, une forme convexe.
  7. Moteur selon la revendication 6, caractérisé en ce que; pour au moins certains orifices de communication (132A), la portion d'attaque et la portion de séparation (B1, B2) sont globalement convexes, vues depuis l'intérieur de l'orifice.
  8. Moteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que chaque rampe (50, 50') de la came comprend une portion convexe (51, 51') et une portion concave (52, 52'), deux rampes adjacentes étant reliées entre elles soit par une zone de sommet de came (56) s'étendant entre leurs régions convexes respectives, soit par une zone de fond de came (58) s'étendant entre leurs régions concaves respectives, en ce que lesdites zones de sommets de came (56) et de fond de came (58) sont sensiblement des arcs de cercles centrés sur l'axe de rotation (10), de telle sorte que lorsque les pistons (14) coopèrent avec lesdites zones, leurs courses radiales sont sensiblement nulles et en ce que les orifices de distribution (21A, 23A) et les orifices de communication (32A ; 132A ; 232A) présentent des dimensions telles que, au cours de la rotation relative du bloc-cylindres et du distributeur, chaque orifice de distribution reste momentanément isolé de tout orifice de communication.
  9. Moteur selon l'une quelconque des revendications 1 à 8, le moteur ayant deux cylindrées actives de fonctionnement, à savoir une grande cylindrée dans laquelle tous les pistons sont actifs et une petite cylindrée dans laquelle seuls certains pistons (14) sont actifs, caractérisé en ce que seuls les orifices de communication des cylindres des pistons qui sont actifs dans la petite cylindrée présentent chacun au moins une entaille sur leurs bords.
  10. Moteur selon l'une quelconque des revendications 1 à 8, le moteur ayant deux cylindrées actives de fonctionnement, à savoir une grande cylindrée dans laquelle tous les pistons (14) sont actifs et une petite cylindrée dans laquelle seuls certains pistons sont actifs, caractérisé en ce que les bords de tous les orifices de communication présentent chacun au moins une entaille et en ce que les bords des orifices de communication des cylindres des pistons qui sont actifs dans la petite cylindrée présentent des entailles plus grandes que celles des bords des orifices de communication des cylindres des pistons qui sont inactifs dans la petite cylindrée.
EP02801160A 2001-12-24 2002-12-20 Moteur hydraulique a pistons radiaux Expired - Lifetime EP1466093B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0116817 2001-12-24
FR0116817A FR2834012B1 (fr) 2001-12-24 2001-12-24 Moteur hydraulique a pistons radiaux
PCT/FR2002/004491 WO2003056171A1 (fr) 2001-12-24 2002-12-20 Moteur hydraulique a pistons radiaux

Publications (2)

Publication Number Publication Date
EP1466093A1 EP1466093A1 (fr) 2004-10-13
EP1466093B1 true EP1466093B1 (fr) 2007-05-09

Family

ID=8870951

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02801160A Expired - Lifetime EP1466093B1 (fr) 2001-12-24 2002-12-20 Moteur hydraulique a pistons radiaux

Country Status (7)

Country Link
US (1) US7185579B2 (fr)
EP (1) EP1466093B1 (fr)
JP (1) JP4209330B2 (fr)
AU (1) AU2002364862A1 (fr)
DE (1) DE60220099T2 (fr)
FR (1) FR2834012B1 (fr)
WO (1) WO2003056171A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872227B1 (fr) 2004-06-28 2006-09-29 Poclain Hydraulics Ind Soc Par Moteur hydraulique
FR2891593B1 (fr) * 2005-10-03 2007-12-21 Poclain Hydraulics Ind Soc Par Dispositif de gestion de la cylindree d'un moteur hydraulique
FR2892775B1 (fr) * 2005-10-27 2010-11-05 Poclain Hydraulics Ind Moteur hydraulique a pistons radiaux avec refroidissement du bloc-cylindres
DE102006058076A1 (de) * 2006-12-07 2008-06-19 Zf Friedrichshafen Ag Hydraulischer Radialkolbenmotor
FI125367B (fi) * 2007-01-26 2015-09-15 Sampo Hydraulics Oy Ajovoimansiirron ohjausjärjestelmä
FI122115B (fi) * 2007-01-26 2011-08-31 Sampo Hydraulics Oy Mäntähydraulimoottori
FR2955903B1 (fr) * 2010-02-01 2012-03-16 Poclain Hydraulics Ind Sous-ensemble formant hydrobase pour moteurs hydrauliques et procede d'assemblage
JP5801822B2 (ja) 2010-08-17 2015-10-28 アルテミス インテリジェント パワー リミティドArtemis Intelligent Power Limited マルチローブリングカムを有する流体作動機械
FR3010741B1 (fr) * 2013-09-18 2015-09-18 Poclain Hydraulics Ind Cartouche formant un moteur ou une pompe hydraulique preassemble a pistons radiaux
FR3038348B1 (fr) * 2015-07-01 2019-08-23 Poclain Hydraulics Industrie Machine hydraulique a pistons radiaux a distribution en harmonique
KR101766773B1 (ko) * 2016-04-12 2017-08-17 박영선 유체 모터
CN107867086A (zh) * 2016-09-27 2018-04-03 扣尼数字有限公司 用于无缝纺织品的印刷机
DE112019002880T5 (de) 2018-06-07 2021-05-06 Parker-Hannifin Corporation Hydraulikmotor-Unterbaugruppenbausatz mit Träger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB604117A (en) * 1944-08-15 1948-06-29 Vickers Armstrongs Ltd Improvements in radial pumps or hydraulic motors
DE2634065A1 (de) * 1976-07-29 1978-02-02 Duesterloh Gmbh Reversierbare, hydrostatische radial- oder axialkolbenmaschine
SE456517B (sv) * 1982-09-08 1988-10-10 Hegglund & Soner Ab Hydraulisk radialkolvmotor
FR2587761B1 (fr) 1985-09-20 1988-01-15 Poclain Hydraulics Sa Mecanisme hydraulique comportant des glace et contre-glace de distribution du fluide
FR2611816B1 (fr) * 1987-02-25 1989-07-13 Poclain Hydraulics Sa Mecanisme a fluide sous pression, moteur ou pompe, a plusieurs cylindrees
DE3828131A1 (de) * 1988-08-18 1990-02-22 Rexroth Mannesmann Gmbh Radialkolbenmaschine
DE3919456A1 (de) * 1989-06-14 1990-12-20 Rexroth Mannesmann Gmbh Radialkolbenmotor
FR2651836B1 (fr) * 1989-09-14 1994-06-10 Poclain Hydraulics Sa Mecanisme, moteur ou pompe, a pistons supportant des rouleaux d'appui desdits pistons sur une came.
DE19804374B4 (de) * 1998-02-04 2004-09-30 Brueninghaus Hydromatik Gmbh Axialkolbenmaschine mit Mitteldrucköffnung
FR2796992B1 (fr) 1999-07-27 2001-10-19 Poclain Hydraulics Ind Moteur hydraulique a pistons radiaux et a selecteur de debrayage unique
DE10033264A1 (de) * 2000-04-11 2001-10-18 Mannesmann Rexroth Ag Radialkolbenmaschine
FR2834011B1 (fr) * 2001-12-24 2004-03-19 Poclain Hydraulics Ind Moteur hydraulique a pistons radiaux

Also Published As

Publication number Publication date
FR2834012A1 (fr) 2003-06-27
JP4209330B2 (ja) 2009-01-14
DE60220099T2 (de) 2008-01-10
WO2003056171A1 (fr) 2003-07-10
US20050120874A1 (en) 2005-06-09
US7185579B2 (en) 2007-03-06
EP1466093A1 (fr) 2004-10-13
DE60220099D1 (de) 2007-06-21
AU2002364862A1 (en) 2003-07-15
JP2005513350A (ja) 2005-05-12
FR2834012B1 (fr) 2004-03-19

Similar Documents

Publication Publication Date Title
EP1466093B1 (fr) Moteur hydraulique a pistons radiaux
FR2770580A1 (fr) Dispositif de reglage des soupapes
FR2572470A1 (fr) Pompe a palettes a ecoulement reversible.
EP0969205B1 (fr) Moteur hydraulique compact
EP0223656A1 (fr) Mécanisme, moteur ou pompe, à au moins deux cylindrées actives distinctes
FR2606092A1 (fr) Machine a pistons, a cylindree commutable
EP3317537B1 (fr) Machine hydraulique a pistons radiaux a distribution en harmonique
EP1573198B1 (fr) Pompe ou moteur hydraulique
EP1072791B1 (fr) Moteur hydraulique a pistons radiaux et a selecteur de debrayage unique
EP1466092B1 (fr) Moteur hydraulique a pistons radiaux
FR2940671A1 (fr) Circuit de transmission hydraulique
FR2576363A1 (fr) Mecanisme a fluide sous pression a rotor
FR2943391A1 (fr) Machine volumetrique hydrostatique, notamment machine a pistons axiaux
EP2918831B1 (fr) Machine hydraulique à deux cylindrées de fonctionnement
FR2712367A1 (fr) Variateur de vitesse continu à satellites coniques et commande centrifuge .
EP0356276B1 (fr) Système différentiel à glissement variable contrôlé
WO2000028218A1 (fr) Machine hydraulique rotative
FR2715444A1 (fr) Perfectionnement aux dispositifs à patins glissants de machine, notamment de pompes et moteurs hydrauliques.
FR2591286A1 (fr) Machine volumetrique a palette(s).
EP0597754B1 (fr) Machine à piston rotatif et procédé d'assemblage
FR2561315A1 (fr) Machine hydraulique
BE371524A (fr)
FR2516603A1 (fr) Moteur a palettes a plusieurs cylindrees muni d'un dispositif d'etancheite compense
WO2000034683A1 (fr) Moteur a combustion interne comportant des moyens perfectionnes d'equilibrage
EP2360357A1 (fr) Déphaseur d'arbre à cames

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60220099

Country of ref document: DE

Date of ref document: 20070621

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070726

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191216

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201217

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60220099

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211221

Year of fee payment: 20

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211220