WO2003052331A1 - Kältemaschine mit einem druckseitigen kältemittelsammler - Google Patents

Kältemaschine mit einem druckseitigen kältemittelsammler Download PDF

Info

Publication number
WO2003052331A1
WO2003052331A1 PCT/EP2002/013816 EP0213816W WO03052331A1 WO 2003052331 A1 WO2003052331 A1 WO 2003052331A1 EP 0213816 W EP0213816 W EP 0213816W WO 03052331 A1 WO03052331 A1 WO 03052331A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
collector
outlet
refrigerant collector
evaporator
Prior art date
Application number
PCT/EP2002/013816
Other languages
English (en)
French (fr)
Inventor
Wolfgang Nuiding
Original Assignee
BSH Bosch und Siemens Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeräte GmbH filed Critical BSH Bosch und Siemens Hausgeräte GmbH
Priority to EP02792913A priority Critical patent/EP1459016A1/de
Priority to BR0215001-8A priority patent/BR0215001A/pt
Publication of WO2003052331A1 publication Critical patent/WO2003052331A1/de
Priority to US10/873,499 priority patent/US7520141B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Definitions

  • the present invention relates to a refrigeration machine in which a refrigerant collector is arranged on a high-pressure side of the refrigerant circuit, and to a refrigeration device, in particular a household refrigeration device, which is equipped with such a refrigeration machine.
  • Such a refrigerator according to the preamble of claim 1 and such a refrigerator are known from EP 0 703 421 B1.
  • a 3/2-way solenoid valve is arranged between the condenser and a series connection of evaporators, which allows refrigerant coming from the condenser to be supplied to the evaporators either directly or via a refrigerant collector.
  • the refrigerant that flows through the solenoid valve from the condenser is partly gaseous, partly liquid.
  • the ratio of gaseous to liquid refrigerant in this corresponds to the ratio at the outlet of the condenser, and all the refrigerant present in the refrigeration machine circulates through the evaporators.
  • the refrigerant is fed directly from the directional control valve to the evaporators, bypassing the refrigerant collector, a lower temperature is set in the refrigerant collector, which leads to condensation of the refrigerant in it. This is withdrawn from the refrigerant circuit, which thus works in an underfill condition. While the liquid refrigerant is sufficient to cool the row of evaporators to the end when the refrigerant collector flows through, an evaporator at the end of the row remains uncooled in this underfilled state. Depending on the state of the directional control valve, it is possible to switch between cooling all compartments of the refrigerator and selective cooling of individual compartments.
  • a dryer cartridge arranged between the condenser and the inlet of the solenoid valve serves to absorb from the liquid refrigerant a residual water content that results when the refrigerant circuit is filled.
  • Such a dryer cartridge usually also contains a fine sieve which is intended to hold a dryer substance used in the cartridge in place, but which also serves to remove dirt particles or flux residues which are essentially dependent on the Assemble the refrigerant circuit, intercept the refrigerant flow, which would otherwise reach the solenoid valve and could interfere with its functionality.
  • the dryer cartridge only has an important function in an early phase in the life of the refrigeration machine, its flow resistance impedes the circulation of the refrigerant throughout the life of the machine.
  • the object of the invention is to further develop the refrigeration machine known from EP 0 703 421 B1 in such a way that effective protection of the solenoid valve from contamination is achieved with the smallest possible contribution of the dryer cartridge to the overall flow resistance of the refrigerant circuit.
  • the collecting strainer provided according to the invention in the refrigerant collector can have different effects depending on the structure of the entire refrigerant circuit of the refrigerator.
  • the collecting strainer in the refrigerant collector if it has the required fineness, makes it possible to dispense with a fine strainer for trapping impurities in the dryer and thus reducing the pressure drop in the refrigerant circuit; In order to intercept residual moisture and impurities resulting from the assembly of the refrigerant circuit, it is sufficient in an initial phase of operation to pass the refrigerant through the refrigerant collector until the contaminants and the moisture in the dryer are completely absorbed.
  • a fine screen is preferably also provided on the dryer, and the dryer is connected upstream of the directional control valve.
  • impurities of different particle sizes can be trapped on two different sieves with an appropriate mesh size, which reduces the pressure drop compared to the use of a single sieve, in which the risk of clogging with particles of different sizes cannot be ruled out.
  • the secondary line preferably starts from a second outlet arranged in the upper region of the refrigerant collector, and the first outlet of the refrigerant collector is arranged in a lower area of the same.
  • Figure 1 is a perspective view of a household refrigerator with three temperature zones, which can be provided with a refrigerator according to the invention.
  • Fig. 2 is a schematic representation of the refrigerant circuit according to the invention and the electronics provided for its control.
  • a household cooling device 10 is shown, on the heat-insulating housing 11 three doors 12 to 14 are pivoted about vertical axes of rotation. These serve to close compartments 17 to 19 which are arranged one above the other and are produced by two spaced-apart intermediate walls 15 and 16 and are thermally separated therefrom and which have different storage temperatures.
  • the overhead compartment 17, which can be closed with the door 12 is designed as a normal cooling compartment
  • the middle compartment 18, which is separated by the intermediate wall 15 and can be covered by the door 13 is designed as a cold storage compartment
  • the bottom compartment is formed by the intermediate wall 16 from the cold storage compartment 18 thermally separated compartment 19 serves as a freezer compartment and can be closed with the door 14.
  • the subject-specific storage temperature prevailing in the individual compartments 17 to 19 is generated and maintained by a single refrigerant circuit.
  • this refrigerant circuit 20 is equipped with three evaporators 21 to 23 arranged one behind the other in series within the refrigerant circuit and equipped with different cooling capacities, of which the highest refrigerating capacity having evaporator 21 is assigned to the freezer compartment 19 and an injection point for the Has refrigerant.
  • the evaporator 22 Downstream of the freezer compartment evaporator 21 in the refrigerant flow direction is the evaporator 22 used to cool the cold storage compartment 18, to which the evaporator 23 associated with the normal refrigeration compartment 17 and having the lowest cooling capacity is connected.
  • a dryer cartridge 26 On the output side of the condenser 25 there is a dryer cartridge 26, in which hygroscopic material is prevented from escaping by a fine sieve 27.
  • the inlet of a refrigerant collector 28 is connected to the outlet of the dryer cartridge 26 via a pipeline.
  • the refrigerant collector 28 has an essentially cylindrical shape with a vertical longitudinal axis, similar to the dryer cartridge 26.
  • the inlet for the refrigerant is located at an upper end 29 of the refrigerant collector.
  • the refrigerant collector 28 has two outlets, a first outlet 30 in the area of its lower end, which the refrigerant fed into the collector can only reach after passing through a collecting strainer 31 installed in the refrigerant collector, and a second outlet 32 at the upper end 29 of the collector 28, directly Proximity to its entrance, from which a secondary line 33 extends to a first entrance of a solenoid valve 34.
  • a second input of the solenoid valve 34 is connected to the first output 30 of the refrigerant collector 28.
  • the solenoid valve 34 can be switched between two states by evaluation and control electronics 35, in which it connects either the first outlet 30 or the second outlet 32 of the refrigerant collector 28 to the freezer compartment evaporator 21 via a throttle 36.
  • Particulate impurities possibly entrained in the refrigerant flow are captured either on the fine screen 27 of the dryer cartridge 26 or the collecting screen 31 of the refrigerant collector 28. Since the fine sieve 27 is flowed through first, a larger mesh size is preferably chosen for this than for the collecting sieve 31, so that the impurities separated by particle size into two fractions are each caught on one of the two sieves without one of them becoming blocked to such an extent that this has a significant impact on the flow resistance of the refrigerant circuit.
  • the refrigerant flows through the refrigerant collector 28 from its inlet to the second outlet 32.
  • the refrigerant can reach the second outlet 32 without having to pass through the collecting sieve 31; Any solid impurities that may be entrained in the refrigerant flow decrease in the refrigerant collector 28 solely because of their high density in the refrigerant collector 28 in comparison to the refrigerant and settle on the collecting screen 31. In other words, even in this state of the solenoid valve, such contaminants are filtered out without the need to flow through the collecting sieve 31.
  • liquid refrigerant that collects at the bottom of the refrigerant collector 28 is not suctioned off; instead, it accumulates in the refrigerant collector 28, reducing the amount of refrigerant constantly circulating in the refrigerant circuit.
  • the volume of the refrigerant collector 28 is determined such that when it has reached a stationary filling state in the second position of the solenoid valve 34, the amount of refrigerant circulating in the refrigerant circuit is just sufficient to supply the freezer compartment evaporator 21 and the evaporator 22 of the cold storage compartment with liquid refrigerant , but no longer the evaporator 23 of the normal cooling compartment, which thus remains uncooled in the second position of the solenoid valve 34.
  • Control signals which determine the position of the solenoid valve 34 are generated by the evaluation and control electronics 35, which are not described in detail and which are connected to temperature sensors 37, 38 and a fan 39.
  • the temperature sensors 37, 38 are NTC sensors which are arranged in the normal cooling compartment 17 or cold storage compartment 18 for detecting the air temperature and which supply voltage signals to the electronics 36 via lines 40, 41 representative of the recorded temperatures.
  • the fan 39 arranged in the cold storage compartment 18 can be switched on and off or regulated in its speed by the electronics 35 via a further line 42 in order, if necessary, to exchange heat between the latter and the evaporator assigned to it through a more or less intensive air flow in the cold storage compartment intensify and thus cool the cold storage compartment 18 intensified.
  • the following operating options of the refrigerant circuit result depending on the temperatures detected by sensors 17, 18:
  • the different evaporators 21, 22, 23 can also be connected in parallel instead of in series and through various switch positions of the solenoid valve can be selectively supplied with refrigerant. It is also possible to use a one-piece evaporator board, of which different regions take over the tasks of the evaporators 21 to 23.
  • this evaporator plate into the evaporator 21, 22, 23 corresponding sections by physical subdivisions is not necessary; the boundary between a region corresponding to the cold storage compartment evaporator 22 and a region corresponding to the normal refrigeration compartment evaporator 23 can be determined solely from the capacity of the refrigerant collector 28 and thus from the position of the point on the uniform evaporator board at which the refrigerant has completely evaporated in the second position of the solenoid valve , result.

Abstract

Eine Kältemaschine für ein Kältegerät, insbesondere ein Haushalts-Kältegerät umfasst einen Verdichter (24), einen Verflüssiger (25), ein Wegeventil (34) zum selektiven Lenken des Kältemittelstroms durch einen Kältemittelsammler (28) von einem Eingang zu einem ersten Ausgang (30) desselben oder durch eine Nebenleitung (33) unter Umgehung des ersten Ausgangs (30) und wenigstens einen ersten Verdampfer (21, 22). Zwischen dem Eingang und dem ersten Ausgang (30) des Kältemittelsammlers (28) ist ein Sammelsieb (31) zum Abfangen von Verunreinigungen des Kältemittelstroms angeordnet.

Description

Kältemaschine mit einem druckseitigen Kaltemittelsammler
Die vorliegende Erfindung betrifft eine Kältemaschine, bei der ein Kaltemittelsammler an einer Hochdruckseite des Kältemittelkreislaufs angeordnet ist, sowie ein Kältegerät, insbesondere Haushalts-Kaltegerat, das mit einer solchen Kältemaschine ausgestattet ist.
Eine solche Kältemaschine nach dem Oberbegriff des Anspruchs 1 bzw. ein solches Kältegerät sind aus EP 0 703 421 B1 bekannt. Bei dieser bekannten Kältemaschine ist zwi- sehen dem Verflüssiger und einer Reihenschaltung von Verdampfern ein 3/2-Wege- Magnetventil angeordnet, das es erlaubt, vom Verflüssiger kommendes Kältemittel wahlweise direkt oder über einen Kaltemittelsammler den Verdampfern zuzuführen. Das Kältemittel, das vom Verflüssiger kommend das Magnetventil durchströmt, ist teils gasförmig, teils flüssig. Wenn es den Kaltemittelsammler durchströmt, entspricht in diesem das Ver- hältnis von gasförmigem zu flüssigem Kältemittel dem Verhältnis am Ausgang des Verflüssigers, und das gesamte in der Kältemaschine vorhandene Kältemittel zirkuliert durch die Verdampfer. Bei direkter Zuführung des Kältemittels vom Wegeventil zu den Verdampfern unter Umgehung des Kältemittelsammlers, stellt sich im Kaltemittelsammler eine niedrigere Temperatur ein, die zur Kondensation von Kältemittel in diesem führt. Die- ses wird dem Kältemittelkreislauf entzogen, der somit in einen Zustand der Unterfüllung arbeitet. Während bei Durchströmung des Kältemittelsammlers das flüssige Kältemittel ausreicht, um die Reihe der Verdampfer bis zum Ende hin zu kühlen, bleibt in diesem unterfüllten Zustand ein Verdampfer am Ende der Reihe ungekühlt. So kann je nach Zustand des Wegeventils zwischen der Kühlung aller Fächer des Kältegeräts und der selek- tiven Kühlung einzelner Fächer umgeschaltet werden.
Eine zwischen dem Verflüssiger und dem Eingang des Magnetventils angeordnete Trocknerpatrone dient dazu, einen Restwassergehalt, der sich beim Befüllen des Kältemittelkreislaufs ergibt, aus dem flüssigen Kältemittel zu absorbieren. Eine solche Trocknerpatrone enthält üblicherweise auch ein Feinsieb, das dazu vorgesehen ist, eine in der Patrone verwendete Trocknersubstanz an Ort und Stelle zu halten, das aber auch dazu dient, Schmutzpartikel oder Flussmittelrückstände, die im wesentlichen vom Zu- sammenbau des Kältemittelkreislaufs herrühren, aus dem Kältemittelstrom abzufangen, die anderenfalls zum Magnetventil gelangen und dessen Funktionsfähigkeit stören könnten.
Obwohl somit die Trocknerpatrone im wesentlichen nur in einer frühen Phase der Le- bensdauer der Kältemaschine eine wichtige Funktion hat, erschwert ihr Strömungswiderstand den Umlauf des Kältemittels während der gesamten Lebensdauer der Maschine.
Aufgabe der Erfindung ist, die aus EP 0 703 421 B1 bekannte Kältemaschine so weiter zu entwickeln, dass ein wirksamer Schutz des Magnetventils vor Verunreinigungen bei mög- liehst geringem Beitrag der Trocknerpatrone zum Gesamtströmungswiderstand des Kältemittelkreislaufs erreicht wird.
Die Aufgabe wird gelöst durch eine Kältemaschine mit den Merkmalen des Anspruchs 1.
Das erfindungsgemäß im Kaltemittelsammler vorgesehene Sammelsieb kann je nach Aufbau des gesamten Kältemittelkreises der Kältemaschine unterschiedliche Wirkungen haben. Zum einen ermöglicht es das Sammelsieb im Kaltemittelsammler, wenn es die erforderliche Feinheit aufweist, auf ein Feinsieb zum Abfangen von Verunreinigungen im Trockner zu verzichten und so den Druckabfall im Kältemittelkreislauf zu reduzieren; um Restfeuchtigkeit und Verunreinigungen abzufangen, die vom Zusammenbau des Kältemittelkreises herrühren, genügt es, in einer Anfangsphase des Betriebs das Kältemittel so lange durch den Kaltemittelsammler zu führen, bis in diesem die Verunreinigungen und im Trockner die Feuchtigkeit vollständig abgefangen sind.
Vorzugsweise ist dennoch auch ein Feinsieb am Trockner vorgesehen, und der Trockner ist dem Wegeventil vorgeschaltet. Auf diese Weise können Verunreinigungen unterschiedlicher Teilchengröße an zwei verschiedenen Sieben mit angepasster Maschenweite abgefangen werden, was den Druckabfall gegenüber der Verwendung eines einzelnen Siebes reduziert, bei dem die Gefahr des Verstopfens mit Teilchen unterschiedlicher Grö- ße nicht ausgeschlossen werden kann.
Vorzugsweise geht die Nebenleitung von einem im oberen Bereich des Kältemittelsammlers angeordneten zweiten Ausgang aus, und der erste Ausgang des Kältemittelsammlers ist in einem unteren Bereich desselben angeordnet. Dies erlaubt eine Trennung auszusiebender Verunreinigungen im Kaltemittelsammler allein nach deren Gewicht, ohne dass das Kältemittel das Sammelsieb durchqueren uss: Verunreinigungen, die dichter als das Kältemittel sind, sinken im Kaltemittelsammler von sich aus ab und lagern sich an dessen Sammelsieb ab, auch wenn das eingespeiste Kältemittel den Sammler über dessen zwei- ten Ausgang wieder verläßt, ohne das Sammelsieb zu durchqueren.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels mit Bezug auf die beigefügten Figuren. Es zeigen:
Fig. 1 eine perspektivische Ansicht eines Haushalts-Kühlgerätes mit drei Temperaturzonen, das mit einer Kältemaschine gemäß der Erfindung versehen sein kann; und
Fig. 2 eine schematische Darstellung des Kältemittelkreises gemäß der Erfindung und der zu seiner Regelung vorgesehen Elektronik.
In Fig. 1 ist ein Haushalts-Kühlgerät 10 gezeigt, an dessen wärmeisolierendem Gehäuse 11 drei um vertikale Drehachsen verschwenkbare Türen 12 bis 14 angeschlagen sind. Diese dienen zum Verschließen von übereinander angeordneten, durch zwei beabstande- te Zwischenwände 15 und 16 erzeugten und durch diese thermisch von einander getrenn- ten Fächern 17 bis 19, welche unterschiedliche Lagertemperaturen aufweisen. Von den Fächern 17 bis 19 ist das oben liegende, mit der Tür 12 verschließbare Fach 17 als Normalkühlfach, das mittlere, durch die Zwischenwand 15 davon getrennte und durch die Tür 13 abdeckbare Fach 18 als Kaltlagerfach ausgebildet, während das unten liegende, durch die Zwischenwand 16 vom Kaltlagerfach 18 thermisch getrennte Fach 19 als Gefrierfach dient und mit der Tür 14 verschließbar ist. Die in den einzelnen Fächern 17 bis 19 herrschende fachspezifische Lagertemperatur wird durch einen einzigen Kältemittelkreis erzeugt und aufrecht erhalten.
Wie aus Fig. 2 ersichtlich ist, ist dieser Kältemittelkreis 20 zur Aufrechterhaltung der Tem- peratur in den einzelnen Fächern 17 bis 19 mit drei in Reihenschaltung innerhalb des Kältemittelkreises hintereinander angeordneten, mit unterschiedlicher Kälteleistung ausgestatteten Verdampfern 21 bis 23 ausgestattet, wovon der die höchste Kälteleistung aufweisende Verdampfer 21 dem Gefrierfach 19 zugeordnet ist und eine Einspritzstelle für das Kältemittel aufweist. Dem Gefrierfachverdampfer 21 ist ausgangsseitig in Kältemittelflussrichtung der zur Kühlung des Kaltlagerfachs 18 dienende Verdampfer 22 nachgeschaltet, an welchen sich der dem Normalkühlfach 17 zugeordnete, die geringste Kälteleistung aufweisende Verdampfer 23 anschließt. Dieser ist ausgangsseitig an die Saugseite eines Kältemittelverdichters 24 angeschlossen, welchem druckseitig in Kältemittelflussrichtung ein Verflüssiger 25 nachgeschaltet ist, der beispielsweise auf der von den Türen 12 bis 14 abgewandten Rückseite des Gehäuses 11 angeordnet ist.
An den Verflüssiger 25 schließt sich ausgangsseitig eine Trocknerpatrone 26 an, in der hygroskopisches Material durch ein Feinsieb 27 am Entweichen gehindert ist.
An den Ausgang der Trocknerpatrone 26 ist über eine Rohrleitung der Eingang eines Kältemittelsammlers 28 angeschlossen. Der Kaltemittelsammler 28 hat bei der hier beschriebenen Ausgestaltung eine im wesentlichen zylindrische Form mit vertikaler Längsachse, ähnlich der Trocknerpatrone 26. Der Eingang für das Kältemittel befindet sich an einem oberen Ende 29 des Kältemittelsammlers. Der Kaltemittelsammler 28 hat zwei Ausgänge, einen ersten Ausgang 30 im Bereich seines unteren Endes, den in den Sammler eingespeistes Kältemittel erst nach Passieren eines im Kaltemittelsammler angebrachten Sammelsiebes 31 erreichen kann, und einen zweiten Ausgang 32 am oberen Ende 29 des Sammlers 28, in unmittelbarer Nähe von dessen Eingang, von dem aus sich eine Nebenleitung 33 zu einem ersten Eingang eines Magnetventils 34 erstreckt. Ein zweiter Eingang des Magnetventils 34 ist mit dem ersten Ausgang 30 des Kältemittelsammlers 28 verbunden.
Das Magnetventil 34 ist durch eine Auswerte- und Regelelektronik 35 zwischen zwei Zu- ständen umschaltbar, in denen es entweder den ersten Ausgang 30 oder den zweiten Ausgang 32 des Kältemittelsammlers 28 mit dem Gefrierfachverdampfer 21 über eine Drossel 36 verbindet.
In einem ersten Schaltzustand des Magnetventils, in dem der erste Ausgang 30 des Käl- temittelsammlers 28 mit dem Gefrierfachverdampfer 21 verbunden ist, wird das gesamte Innenvolumen des Kältemittelsammlers 28 von einem vom Verflüssiger 25 herrührenden Gemisch von gasförmigem und flüssigen Kältemittel durchströmt. Das Verhältnis von flüssigem zu gasförmigem Kältemittel im Sammler 25 entspricht dabei praktisch dem am Ausgang des Verflüssigers 25. Unter diesen Bedingungen ist der Durchsatz an flüssigem Kältemittel durch den Sammler 28 so groß, dass am Verdampfer 23 des Kühlfachs noch flüssiges Kältemittel ankommt, welches darin verdunstet und diesen so kühlt.
Im Kältemittelstrom eventuell mitgeführte teilchenförmige Verunreinigungen werden dabei entweder am Feinsieb 27 der Trocknerpatrone 26 oder dem Sammelsieb 31 des Kältemittelsammlers 28 abgefangen. Da das Feinsieb 27 zuerst durchströmt wird, wird für dieses vorzugsweise eine größere Maschenweite als für das Sammelsieb 31 gewählt, so dass die Verunreinigungen nach Teilchengröße in zwei Fraktionen aufgetrennt jeweils an einen der zwei Siebe abgefangen werden, ohne dass eines von diesen in solchem Umfange verstopft, dass sich dies auf den Strömungswiderstand des Kältemittelkreises wesentlich auswirkt.
In einer zweiten Schaltstellung des Magnetventils 34 durchströmt das Kältemittel den Kaltemittelsammler 28 von dessen Eingang zum zweiten Ausgang 32. Das Kältemittel kann den zweiten Ausgang 32 erreichen, ohne dass es hierfür das Sammelsieb 31 durchqueren muss; im Kältemittelstrom eventuell mitgeführte feste Verunreinigungen sinken im Kaltemittelsammler 28 allein aufgrund ihrer im Vergleich zum Kältemittel hohen Dichte im Kaltemittelsammler 28 ab und setzen sich auf dem Sammelsieb 31 ab. D.h., auch in diesem Zustand des Magnetventils werden solche Verunreinigungen ausgefiltert, ohne dass hierfür aber das Sammelsieb 31 durchströmt werden muss.
In dieser zweiten Schaltstellung des Magnetventils 34 wird flüssiges Kältemittel, das sich am Boden des Kältemittelsammlers 28 sammelt, nicht abgesaugt; statt dessen akkumuliert es im Kaltemittelsammler 28, wodurch sich die Menge an ständig im Kältemittelkreis zirkulierendem Kältemittel reduziert. Das Volumen des Kältemittelsammlers 28 ist so festgelegt, dass wenn dieser in der zweiten Stellung des Magnetventils 34 einen stationären Füllungszustand erreicht hat, die im Kältemittelkreis zirkulierende Kältemittelmenge so eben noch ausreicht, um den Gefrierfachverdampfer 21 und den Verdampfer 22 des Kaltlagerfachs mit flüssigem Kältemittel zu versorgen, nicht aber mehr den Verdampfer 23 des Normalkühlfachs, das somit in der zweiten Stellung des Magnetventils 34 ungekühlt bleibt. Steuersignale, die die Stellung des Magnetventils 34 festlegen, werden von der nicht im einzelnen beschriebenen Auswerte- und Regelelektronik 35 erzeugt, die mit Temperaturfühlern 37, 38 und einem Ventilator 39 verbunden ist. Die Temperaturfühler 37, 38 sind NTC-Fühler, die zum Erfassen der Lufttemperatur im Normalkühlfach 17 bzw. Kaltlagerfach 18 angeordnet sind und für die erfassten Temperaturen repräsentative Spannungs- Signale über Leitungen 40, 41 an die Elektronik 36 liefern.
Der im Kaltlagerfach 18 angeordnete Ventilator 39 ist durch die Elektronik 35 über eine weitere Leitung 42 ein- und ausschaltbar bzw. in seiner Geschwindigkeit regelbar, um im Bedarfsfalle durch eine mehr oder weniger intensive Luftströmung im Kaltlagerfach den Wärmeaustausch zwischen diesem und dem ihm zugeordneten Verdampfer zu intensivieren und so das Kaltlagerfach 18 verstärkt zu kühlen. Es resultieren folgende Betriebsmöglichkeiten des Kältemittelkreises in Abhängigkeit von den von den Fühlern 17, 18 erfassten Temperaturen:
a) Betrieb des Verdichters 24 in der ersten Stellung des Magnetventils 34, Kühlung aller drei Verdampfer 21 bis 23;
b) Betrieb des Verdichters 24 in der ersten Stellung des Magnetventils 34 mit eingeschaltetem Ventilator 39: Kühlung aller drei Fächer 17 bis 19 unter Bevorzugung des Kaltlagerfachs 18;
c) Betrieb in der zweiten Stellung des Magnetventils 34 bei ausgeschaltetem Ventilator 39: Kühlung von Gefrierfach 19 und Kaltlagerfach 18; und
d) Betrieb in zweiter Stellung des Magnetventils 34 mit eingeschaltetem Ventilator 39: Kühlung von Gefrierfach 19 und Kaltlagerfach 18 unter Bevorzugung des Kaltlagerfachs 18.
Diese vier Betriebsarten erlauben eine Regelung der Temperaturen in den drei Fächern 17 bis 19 in weitgehender Unabhängigkeit voneinander.
Selbstverständlich können als Abwandlung des oben geschilderten Beispiels die verschiedenen Verdampfer 21 , 22, 23 auch parallel anstatt in Reihe verbunden und durch verschiedene Schaltstellungen des Magnetventils selektiv mit Kältemittel versorgbar sein. Es ist auch möglich, eine einteilige Verdampferplatine zu verwenden, von der jeweils verschiedene Regionen die Aufgaben der Verdampfer 21 bis 23 übernehmen. Dabei ist eine Unterteilung dieser Verdampferplatte in den Verdampfer 21 , 22, 23 entsprechende Abschnitte durch physische Unterteilungen nicht erforderlich; die Grenze zwischen einem dem Kaltlagerfachverdampfer 22 entsprechenden Bereich und einem dem Normalkühlfachverdampfer 23 entsprechenden Bereich kann sich allein aus dem Fassungsvermögen des Kältemittelsammlers 28 und damit aus der Lage des Punktes auf der einheitlichen Verdampferplatine, an der in der zweiten Stellung des Magnetventils das Kältemittel vollständig verdampft ist, ergeben.

Claims

Patentansprüche
1. Kältemaschine mit einem Verdichter (24), einem Verflüssiger (25), einem Wegeventil (34) zum selektiven Lenken des Kaltemittelstroms durch einen Kältemittel- Sammler (28) von einem Eingang zu einem ersten Ausgang (30) desselben oder durch eine Nebenleitung (33) unter Umgehung des ersten Ausgangs (30), und wenigstens einem ersten Verdampfer (21 , 22, 23), dadurch gekennzeichnet, dass zwischen dem Eingang und dem ersten Ausgang (30) des Kältemittelsammlers (28) ein Sammelsieb (31) zum Abfangen von Verunreinigungen des Kaltemittelstroms angeordnet ist.
2. Kältemaschine nach Anspruch 1 , dadurch gekennzeichnet, dass ein dem Wegeventil (34) vorgeschalteter Trockner (26) ein Feinsieb (27) zum Abfangen von Verunreinigungen des Kaltemittelstroms aufweist.
3. Kältemaschine nach Anspruch 1 und Anspruch 2, dadurch gekennzeichnet, dass der Trockner (26) dem Kaltemittelsammler (28) vorgeschaltet ist und dass das Sammelsieb (31) feinmaschiger als das Feinsieb (27) ist.
4. Kältemaschine nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Nebenleitung (33) sich von einem oberen Bereich (29) des Kältemittelsammlers (28) angeordneten zweiten Ausgang (32) desselben erstreckt, und dass der erste Ausgang (30) des Kältemittelsammlers (28) in einem unteren Bereich desselben angeordnet ist.
5. Kältemaschine nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das Sammelsieb (31) von Kältemittel, das vom Eingang zum zweiten Ausgang (32) des Kältemittelsammlers (28) fließt, nicht durchquert wird.
6. Kältemaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wegeventil (34) in Flussrichtung des Kältemittels stromabwärts vom Kaltemittelsammler (28) angeordnet ist.
7. Kältemaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie wenigstens einen dem ersten Verdampfer (21 , 22) nachgeschalteten zweiten Verdampfer (23) aufweist, und dass das Fassungsvermögen des Kältemittelsammlers (28) so bemessen ist, dass im gefüllten Zustand des Kältemittelsammlers (28) die über die Nebenleitung (33) zirkulierende Kältemittelmenge bei Erreichen des zweiten Verdampfers (23) bereits verdampft ist.
8. Kältegerät, gekennzeichnet durch eine Kältemaschine nach einem der vorhergehenden Ansprüche.
PCT/EP2002/013816 2001-12-19 2002-12-05 Kältemaschine mit einem druckseitigen kältemittelsammler WO2003052331A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02792913A EP1459016A1 (de) 2001-12-19 2002-12-05 Kältemaschine mit einem druckseitigen kältemittelsammler
BR0215001-8A BR0215001A (pt) 2001-12-19 2002-12-05 Refrigerador com um coletor de agente refrigerante do lado de pressão
US10/873,499 US7520141B2 (en) 2001-12-19 2004-06-21 Refrigerating machine with a pressure-side refrigerant header

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10162500A DE10162500A1 (de) 2001-12-19 2001-12-19 Kältemaschine mit einem druckseitigen Kältemittelsammler
DE10162500.6 2001-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/873,499 Continuation US7520141B2 (en) 2001-12-19 2004-06-21 Refrigerating machine with a pressure-side refrigerant header

Publications (1)

Publication Number Publication Date
WO2003052331A1 true WO2003052331A1 (de) 2003-06-26

Family

ID=7709872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/013816 WO2003052331A1 (de) 2001-12-19 2002-12-05 Kältemaschine mit einem druckseitigen kältemittelsammler

Country Status (8)

Country Link
US (1) US7520141B2 (de)
EP (1) EP1459016A1 (de)
CN (1) CN1270145C (de)
BR (1) BR0215001A (de)
DE (1) DE10162500A1 (de)
PL (1) PL200421B1 (de)
RU (1) RU2004116278A (de)
WO (1) WO2003052331A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009046765A1 (en) * 2007-10-10 2009-04-16 Electrolux Home Products Corporation N.V. Home refrigerator
WO2021083697A1 (de) * 2019-10-28 2021-05-06 BSH Hausgeräte GmbH Kältegerät mit heiz- und kühlbarem fach

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743737B2 (ja) * 2011-06-21 2015-07-01 ホシザキ電機株式会社 製氷機に搭載される制御ユニットの検査方法および当該検査方法を実行可能な制御ユニット
JP6230043B2 (ja) * 2013-07-03 2017-11-15 キッコーマン株式会社 チキンエキス含有スープ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861811A (ja) * 1994-08-23 1996-03-08 Sanyo Electric Co Ltd 冷凍装置
EP0703421A2 (de) * 1994-09-21 1996-03-27 Bosch-Siemens Hausgeräte GmbH Kühlmöbel mit wenigstens zwei Fächern unterschiedlicher Temperatur
WO2000017588A1 (de) * 1998-09-22 2000-03-30 BSH Bosch und Siemens Hausgeräte GmbH Einkreiskältesystem
JP2000213831A (ja) * 1999-01-21 2000-08-02 Mitsubishi Electric Corp 冷凍装置
JP2001141341A (ja) * 1999-11-11 2001-05-25 Matsushita Refrig Co Ltd 空気調和機
EP1147930A1 (de) * 2000-03-24 2001-10-24 Modine Manufacturing Company Kondensator für die Klimaanlage eines Kraftfahrzeuges

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476688A (en) * 1983-02-18 1984-10-16 Goddard Lawrence A Refrigerant recovery and purification system
US5440898A (en) * 1994-01-21 1995-08-15 Sporlan Valve Company Filter-dryer unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861811A (ja) * 1994-08-23 1996-03-08 Sanyo Electric Co Ltd 冷凍装置
EP0703421A2 (de) * 1994-09-21 1996-03-27 Bosch-Siemens Hausgeräte GmbH Kühlmöbel mit wenigstens zwei Fächern unterschiedlicher Temperatur
EP0703421B1 (de) 1994-09-21 2001-07-11 BSH Bosch und Siemens Hausgeräte GmbH Kühlmöbel mit wenigstens zwei Fächern unterschiedlicher Temperatur
WO2000017588A1 (de) * 1998-09-22 2000-03-30 BSH Bosch und Siemens Hausgeräte GmbH Einkreiskältesystem
JP2000213831A (ja) * 1999-01-21 2000-08-02 Mitsubishi Electric Corp 冷凍装置
JP2001141341A (ja) * 1999-11-11 2001-05-25 Matsushita Refrig Co Ltd 空気調和機
EP1147930A1 (de) * 2000-03-24 2001-10-24 Modine Manufacturing Company Kondensator für die Klimaanlage eines Kraftfahrzeuges

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 07 31 July 1996 (1996-07-31) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 11 3 January 2001 (2001-01-03) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 22 9 March 2001 (2001-03-09) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009046765A1 (en) * 2007-10-10 2009-04-16 Electrolux Home Products Corporation N.V. Home refrigerator
WO2021083697A1 (de) * 2019-10-28 2021-05-06 BSH Hausgeräte GmbH Kältegerät mit heiz- und kühlbarem fach
CN114616432A (zh) * 2019-10-28 2022-06-10 Bsh家用电器有限公司 具有可加热且可冷却的格的制冷器具
CN114616432B (zh) * 2019-10-28 2024-01-09 Bsh家用电器有限公司 具有可加热且可冷却的格的制冷器具

Also Published As

Publication number Publication date
DE10162500A1 (de) 2003-07-03
US20050005632A1 (en) 2005-01-13
CN1606679A (zh) 2005-04-13
CN1270145C (zh) 2006-08-16
PL369203A1 (en) 2005-04-18
RU2004116278A (ru) 2005-05-10
EP1459016A1 (de) 2004-09-22
BR0215001A (pt) 2004-11-09
PL200421B1 (pl) 2009-01-30
US7520141B2 (en) 2009-04-21

Similar Documents

Publication Publication Date Title
DE60113340T2 (de) Kältekreislauf mit Heissgasnebenleitungsanordnung
DE69911925T2 (de) Kühlschrank mit verdampfer im kühlfach und im tiefkühlfach
DE10244954B4 (de) Fahrzeugklimaanlage mit Wärmepumpen-Kühlzyklus
DE60114074T2 (de) Kältemittelkreislaufanlage
DE60113363T2 (de) Kälteanlage mit Phasentrennung
DE10348578A1 (de) Fahrzeugklimaanlage mit Front- und Heck-Klimatisierungseinheiten
DE69532107T2 (de) Kühlschrank
DE3900692A1 (de) Kaelteanlage
DE3422390A1 (de) Kaelteerzeugungssytem
DE102006035881A1 (de) Ejektorpumpenkühlkreis
WO2001040721A1 (de) Kältegerät
EP1876402A2 (de) Wärmepumpe mit einer Temperiereinrichtung
DE102007052839A1 (de) Trockner mit Wärmepumpenkreis
DE60108677T2 (de) Druckverminderer und Kältekreislauf zur Verwendung derselben
DE19519850C2 (de) Luftverteilungsvorrichtung für einen Kühlschrank
DE60012032T2 (de) Kühlvorrichtung mit flüssigkeit-gas-trennschleuder
CH626155A5 (de)
DE102017215488A1 (de) Kältegerät mit mehreren Temperaturzonen
DE3316646A1 (de) Zentrifugal-spargeraet fuer kaeltemaschine oder dergleichen und mit diesem geraet ausgeruestete maschine
DE4212367C2 (de) Vorrichtung zur Entfernung von Wasser in einem Kühlsystem
WO2003052331A1 (de) Kältemaschine mit einem druckseitigen kältemittelsammler
EP0862889A2 (de) Wärmepumpe für eine Geschirrspülvorrichtung
EP0789206A2 (de) Kältegerät
DE19808011C1 (de) Vorrichtung und Verfahren zur kontinuierlichen Kältetrocknung
DD294082A5 (de) Kompressionskuehlsystem mit oelabscheider

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN PL RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002792913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028254678

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10873499

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004116278

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2002792913

Country of ref document: EP