WO2003041301A1 - Procede de transfert avec coupure inter-frequence dans un systeme de communication mobile - Google Patents

Procede de transfert avec coupure inter-frequence dans un systeme de communication mobile Download PDF

Info

Publication number
WO2003041301A1
WO2003041301A1 PCT/JP2002/011274 JP0211274W WO03041301A1 WO 2003041301 A1 WO2003041301 A1 WO 2003041301A1 JP 0211274 W JP0211274 W JP 0211274W WO 03041301 A1 WO03041301 A1 WO 03041301A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal
training signal
training
reception
Prior art date
Application number
PCT/JP2002/011274
Other languages
English (en)
French (fr)
Inventor
Toshihiro Hayata
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to KR10-2004-7006275A priority Critical patent/KR20040045934A/ko
Priority to US10/494,666 priority patent/US20040258020A1/en
Priority to EP20020775421 priority patent/EP1445878A1/en
Publication of WO2003041301A1 publication Critical patent/WO2003041301A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/288TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account the usage mode, e.g. hands-free, data transmission, telephone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • the present invention relates to a mobile communication system, a base station, a mobile station, and an inter-frequency HHO method used in the mobile communication system. nd Over) method.
  • a mobile station uses a CP ICH and a common pilot signal (common pilot signal) to transmit a downlink signal at the HHO destination frequency. Is being monitored.
  • the compressed mode compressed mode to enable measurement of cells of different frequencies when performing inter-frequency handovers.
  • the mobile station uses the transmission gap in the compressed mode to receive a part of the CPICH transmitted at the HHO destination frequency. As a result, the mobile station confirms that the reception quality is maintained at the HHO destination and learns the reception timing of the downlink signal.
  • the base station can receive the downlink signal of the HHO destination frequency before performing the inter-frequency HHO, but the base station monitors the uplink signal of the HHO destination frequency. There was no. Therefore, when the frequency is switched from the HHO source to the HHO destination, the initial transmission power of the uplink signal at the HHO destination may not be sufficient to guarantee appropriate reception quality. Also, at the HHO destination frequency Because it is difficult to know the signal reception timing, it may take time to capture the upstream signal, the communication quality may be poor, or the signal may not be received.
  • An object of the present invention is to solve the above-mentioned problems and to realize a mobile communication system, a base station, a mobile station, and an inter-frequency used for the mobile communication system capable of smoothly and stably switching frequencies.
  • CDMA Code Division Multiple Access
  • a mobile communication system including a compressed mode that is an existing intermittent communication mode, wherein the mobile device includes means for transmitting a training signal in an uplink direction using the transmission gap.
  • a base station provided with a means for performing training on reception timing and transmission power using the training signal.
  • the inter-frequency HHO method includes a CDMA (Code Division Mu) including a compressed mode which is a mode of intermittent communication in which a transmission gap in which communication is not performed exists between a mobile station and a base station.
  • ltiple Access is an inter-frequency HHO (Hard Hand Over) method of a mobile communication system in which communication is performed,
  • the mobile communication system of the present invention is applied to a W-CDMA (Wideband—Code Division Multiple Access) system. It provides a method for realizing a stable inter-frequency HHO (Hard Handover).
  • W-CDMA Wideband—Code Division Multiple Access
  • the mobile communication system provides a compressed mode (compressed mode) in communication between a base station (BTS) and a mobile station (MS: Mobile Station).
  • BTS base station
  • MS Mobile Station
  • the training signal is transmitted upstream at the frequency of the HHO destination.
  • This training signal allows the base station to perform inter-frequency HHO pre-training on the reception of the HHO destination frequency, so confirm the uplink reception timing and transmission power before performing the inter-frequency HHO. This makes it possible to perform smooth and stable switching between frequencies, that is, frequency switching.
  • FIG. 1 is a timing chart showing the operation of a conventional mobile communication system.
  • FIG. 2 is a block diagram showing a system configuration of the mobile communication system according to one embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of the base station in FIG.
  • FIG. 4 is a block diagram showing a configuration of the base station in FIG.
  • FIG. 5 is a block diagram showing a configuration of the mobile device of FIG.
  • FIG. 6 is a timing chart showing the operation of the mobile communication system according to one embodiment of the present invention.
  • FIG. 7 is a flowchart showing the operation of the mobile communication system according to one embodiment of the present invention.
  • FIG. 8 is a flowchart showing the operation of the mobile communication system according to one embodiment of the present invention.
  • 9 (a) to 9 (d) are diagrams for explaining the inter-frequency HH ⁇ .
  • FIG. 10 (a) and 10 (b) show the data exchange between different base stations.
  • FIG. 2 is a block diagram showing a system configuration of a mobile communication system according to one embodiment of the present invention.
  • a mobile communication system according to one embodiment of the present invention includes base stations (BTS: basestations) 1 and 2, a mobile station (MS: mobilestation) 3, and a base station control station (RNC: Radio Station). two rk control 1 er).
  • BTS basestations
  • MS mobile station
  • RNC Radio Station
  • the mobile station 3 When the monitoring of the downlink signal ends, the mobile station 3 informs the base station 1 that the monitoring of the downlink signal has ended using the original frequency of the HHO (Hard Handover: hard handover), and performs training for the uplink. ) Notify the transmission gap (gap) time [frame (frame), time slot (S: time slot)] to start signal transmission. This transmission gap is reported from mobile station 3 to base station 2 via base station 1 and base station control station 4 (see FIG. 2).
  • HHO Hard Handover: hard handover
  • the mobile station 3 performs uplink training at the HHO destination frequency.
  • the signal is transmitted to the base station 2 ((2) in FIG. 2).
  • Base station 2 receives N ACK (negative ackno 1 edg eme nt) ffe if it does not receive an uplink training signal at a designated time from mobile station 3, and A CK (ac kn ow led g eme) if it receives an uplink training signal. (nt) signal to the mobile station 3 via the base station 1 and the base station control station 4, respectively ((3) in FIG. 2).
  • Inter-frequency HHO ⁇ It is possible to check the timing and transmission power, and it is possible to perform smooth and stable HHO between frequencies, that is, frequency switching. After this, mutual communication is performed between the mobile station 3 and the base station 2 ((4) in FIG. 2).
  • FIG. 3 is a block diagram showing a configuration of the base station 1 of FIG.
  • a base station 1 includes a receiving section 11, a search / decoding section 12, an HHO control section 13, an ACK / NACK transmitting section 14, and an LO (Local Oscillator) 15 And a transmission unit 16.
  • a base station 1 includes a receiving section 11, a search / decoding section 12, an HHO control section 13, an ACK / NACK transmitting section 14, and an LO (Local Oscillator) 15 And a transmission unit 16.
  • LO Local Oscillator
  • FIG. 4 is a block diagram showing a configuration of the base station 2 in FIG.
  • base station 2 includes a receiving unit 21, a search / decoding unit 22, an uplink training signal receiving unit 23, a training signal information holding unit 24, an HHO control unit 25, an L026, and a transmitting unit 27. It is composed of Although not shown, the base stations 1 and 2 have the respective blocks shown in FIGS. However, there may be only one overlapping part such as the transmitting / receiving unit.
  • FIG. 5 is a block diagram showing a configuration of the mobile device 3 in FIG.
  • mobile station 3 includes a receiving section 31, a search / decoding section 32, a downlink signal monitoring section 33, an HHO control section 34, an uplink training signal transmitting section 35, an L036, and a transmitting section 37. It is configured.
  • FIG. 6 is a timing chart showing the operation of the mobile communication system according to one embodiment of the present invention.
  • FIGS. 7 and 8 are flowcharts showing the operation of the mobile communication system according to one embodiment of the present invention.
  • (a) to (d) are diagrams for explaining the inter-frequency HH ⁇
  • FIGS. 10 (a) and 10 (b) are diagrams showing data exchange between different base stations.
  • a mobile communication system according to an embodiment of the present invention will be described with reference to FIGS.
  • the W-CDMA communication system is a third-generation mobile communication system discussed in 3GPP (3rd Generation Partnership Project).
  • the base station 1 holds a plurality of frequencies, and communicates with the mobile station 3 using one of the frequencies.
  • mobile station 3 communicating with frequency f1 in cell A, which is the communication area of base station 1, has a base station that has only frequency f2.
  • cell B which is the communication area of station 2
  • the method of changing the frequency f1 to the frequency f2 includes a method of changing the frequency f1 to the frequency f2 within the area of the base station 1 [see FIG. 9 (b)]. There is a method of changing the frequency f1 of base station 1 to the frequency f2 of base station 2 in the area where area 2 overlaps [see Fig. 9 (c)].
  • the present embodiment can be applied to change the frequency from the frequency f1 to the frequency f2 [see FIG. 9 (d)]. In this case, a method of changing the frequency f1 to the frequency f2 in the area of the base station 1 is used.
  • the mobile device 3 Before performing the inter-frequency HHO, the mobile device 3 enters a mode called a compressed mode in which intermittent communication is performed.
  • the frequency is switched from the HHO source frequency (f1) to the HHO destination frequency (f2) during the transmission gap (gap), which is the time interval during which no communication is performed in this compressed mode, and base station 2 transmits all frequencies.
  • the compressed mode is an intermittent communication mode in which there is no communication, unlike the normal communication mode, as shown in Fig. 1.
  • mobile unit 3 has only one LO 36, but if that is the case, It is configured such that it is not possible to receive the CCICH of the frequency HHO destination while communicating at the frequency f1 and the frequency transmitted at the HHO destination frequency f2 '.
  • a transmission gap gap which is a time interval during which communication is not performed, is provided, and the HHO source frequency f 2 is switched from the HHO source frequency f 1 to the HHO destination frequency f 2 in that time interval.
  • Figure 6 shows the transmission gap ga in the compressed mode in the W-CDMA communication system.
  • the figure shows a situation in which the mobile station 3 and the base station 2 perform training for HHO at the position p using the frequency (f 2) of the HHO destination.
  • the mobile station 3 for which the monitoring of the downstream signal has been completed by the downstream signal monitoring unit 33 notifies the base station 1 that the monitoring of the downstream signal has been completed using the HHO source frequency, and transmits the signal from the upstream training signal transmitting unit 35.
  • the base station 1 is notified of the time [frame (frame) and time slot (TS: time slot)] of the transmission gap (gap) at which transmission of the uplink training signal starts.
  • the content of this notification is notified from the base station 1 to the base station control station 4, and from the base station control station 4 to the base station 2.
  • This ACK signal includes the difference ( ⁇ SIR) between the target SIR and the received SIR.
  • the base station 2 transmits the NACK signal to the base station via the base station control station 4 using the HHO source frequency. 1 and the ACK / NACK transmitting section 14 of the base station 1 notifies the mobile station 3.
  • the transmission power of the (N + 1) th uplink training signal is represented by the following equation.
  • the number of retransmissions retx is a predetermined value.
  • Nmax the transmission power of the training signal is returned to TxPower and retransmission is performed.
  • the mobile device 3 that has received the ACK signal changes the frequency to the HHO destination frequency by inter-frequency HHO and starts transmission / reception.
  • the uplink transmission power is a value calculated by the following equation.
  • Transmission power Tx P 0 w + ⁇ S I R
  • TxPower is the transmission power of the upstream training signal when the AC signal can be received.
  • base station 2 can receive the signal at target SIR (SIR—trgt) which is transmission power at which sufficient reception quality can be obtained.
  • SIR—trgt target SIR
  • the search and decoding unit 22 searches the vicinity thereof in a focused manner, so that the base station 2 can quickly transmit the uplink signal with good reception quality. Can be received.
  • First mobile device 3 to perform the inter-frequency HHO as shown in FIG. 1, in the compressed mode transmission gap (g a p) section, a reference signal the base station 1 is transmitting continuously for all frequencies CP
  • ICH common pilot signal
  • the reception timing of the downlink signal at the HHO destination frequency is grasped, and the monitoring of the downlink signal by the downlink signal monitoring unit 33 is completed (step S1 in FIG. 7).
  • the mobile station 3 sets the transmission gap (gap) position (frame number, time slot number) at which the monitoring of the downlink signal ends at the HHO source frequency and the transmission of the uplink training signal via the base station 1 and the base station control station 4 via the base station.
  • Notify station 2 (Fig. 7, step S2).
  • the mobile station 3 sets the transmission power TXP 0 w to the initial value TxPow_i ni at the notified transmission gap (gap) position (step S 3 in FIG. 7), and performs uplink training. Transmit the signal (Fig. 7, step S5). At this time, the mobile station 3 initializes the number of retransmissions r e t X to 0 (step S 4 in FIG. 7).
  • the base station 2 is waiting for the uplink training signal at the position of the transmission gap (gap) notified from the mobile station 3, and if it cannot receive the signal (steps S11 to S13 in FIG. 8), The NACK signal is notified to the mobile device 3 at the HHO source frequency (step S14 in FIG. 8).
  • the mobile station 3 that has received the NACK signal compares the number of retransmissions r e tx with a predetermined maximum number of retransmissions Nmax (FIG. 8, steps S6 and S7). Therefore, when the number of retransmissions retx is smaller than the maximum number of retransmissions N max, the mobile station 3 adds the transmission power Tx P ow to the previous transmission power by ATx P ow and increases the number of retransmissions retx by one (Fig. 8 Step S8).
  • the transmission power TxPow is set to the initial value TxP0w_ini and the number of retransmissions retx is initialized to 0 (FIG. 8, step S9). ). This is to prevent the transmission power TxPow from increasing without reproduction and having a large adverse effect on the reception characteristics of the other mobile station 3. In this way, the mobile station 3 updates the transmission power TXP ow and the number of retransmissions retx. Then, at the position of the transmission gap (gap) again, transmit the uplink training signal with the transmission power TxPow (FIG. 7, step S5).
  • the base station 2 calculates the Pos_rv (uplink training signal reception timing) and the SI R_rV (uplink training signal reception SIR). The two are calculated and stored in the training signal information storage unit 24 (step S15 in FIG. 8).
  • the base station 2 compares the target SIR (SIR—trgt) and the received SIR (SIR—rv) that can obtain a predetermined sufficient uplink reception characteristic, and calculates a difference ( ⁇ SIR) between the target SIR and the received SIR. Is calculated by the following equation (Step S16 in FIG. 8).
  • the base station 2 transmits the ACK signal to the mobile device 3 at the HHO original frequency (step S17 in FIG. 8). However, it is assumed that the ACK signal also includes information on the value of the difference between the target SIR and the received SIR (ASIR).
  • the mobile station 3 that has received the ACK signal performs inter-frequency HHO, switches the frequency, starts receiving the down signal, and transmits the up signal with the transmission power represented by the following equation (step S in FIG. 7). Ten) .
  • Uplink transmission power Tx P ⁇ w + ⁇ S I R
  • the base station 2 also performs inter-frequency HHO, and searches for an upstream signal from the mobile station 3 near the timing (Pos_rv) at which the upstream training signal was received at the above HHO destination frequency (step S in FIG. 8). 18). This allows base station 2 to quickly receive the uplink signal.
  • the above-described control regarding the inter-frequency HHO is performed by the HHO control units 13, 25, and 34 of the base stations 1 and 2 and the mobile device 3.
  • a training signal is transmitted upstream at the frequency of the HHO destination at the position of the transmission gap (gap) in the compressed mode.
  • the base station 2 performs training on the HHO destination frequency before performing inter-frequency HHO with respect to reception of the HHO destination frequency, so that frequency switching is performed smoothly and stably. be able to.
  • the communication mode is the intermittent communication mode in which the transmission gap exists.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

移動通信システムにおける周波数間 H H 0方法 技術分野
本発明は、 移動通信システム、 基地局、 移動機及びそれらに用いる周波数間 H HO方法に関し、 特に W— CDMA (Wi d e b a n d— C o d e D i v i s i o n Mu l t i p l e Ac c e s s) システムにおける周波数間 HHO ( Ha r d Ha n d Ov e r) 方法に関する。
背景技術
従来の周波数間 HHO方法では、 図 1に示すように、 移動機 (MS : Mo b i 1 e S t a t i o n) は、 CP I CH 、c o mm o n p i l o t c n a n n e l :共通パイロット信号) を用いて HHO先周波数における下り信号の受信 タイミングをモニタしている。
ここで、 基地局 (BTS : b a s e s t a t i o n) と移動機との間の通常 送信時に生ずるデータを送信しない区間は、 その長さや位置に規則性はない。 こ れに対し、 異周波ハンドオーバを行う際に異周波数のセルの測定を可能とするた めのコンプレストモ一ド (c omp r e s s e d mo d e) 日寺に生ずるデータ を送信しない区間 (送信ギャップ) は、 その長さや位置が予め定められたパター ンにしたがっており、 規則的になっている。
このコンプレストモード時の送信ギャップを利用して、 移動機は HHO先周波 数で送信されている CP I CHの一部を受信する。 これによつて、 移動機は、 H HO先で受信品質が保たれることを確認するとともに、 下り信号の受信タイミン グを学習している。
上述した従来の周波数間 HHO方法では、 基地局は、 周波数間 HHOを行う前 に HHO先周波数の下り信号を予め受信することはできたが、 HHO先周波数の 上り信号を基地局がモニタする仕組みがなかった。 そのため、 HHO元から HH O先へ周波数が切替わった際に、 HHO先での上り信号の初期送信電力が適切な 受信品質を保証するのには十分でない可能性もある。 また、 HHO先周波数での 信号の受信タイミングが判らないために、 上り信号を捕捉するのに時間がかかつ たり、 通信品質が悪くなつたり、 受信することができなかったりすることがある
発明の開示
本発明の目的は上記の問題点を解消し、 周波数の切替えを円滑かつ安定して行 うことができる移動通信システム、 基地局、 移動機及びそれらに用いる周波数間
HHO方法を提供することにある。
本発明による移動通信システムは、 移動機と基地局との間で CDMA (Co d e D i v i s i o n Mu l t i p l e Ac c e s s) 通信が行われていて 、 この CDMA通信中には、 通信を行っていない送信ギャップの存在する間欠通 信のモードであるコンプレストモ一ドが含まれている移動通信システムであって 前記送信ギヤップを使用して上り方向にトレーニング信号を送信する手段が設 けられた移動機と、
前記トレーニング信号にて受信タイミング及び送信電力のトレーニングを行う 手段が設けられた基地局とを備えている。
本発明による周波数間 HHO方法は、 移動機と基地局との間で、 通信を行って いない送信ギャップの存在する間欠通信のモードであるコンプレストモ一ドを含 む CDMA (Co d e D i v i s i o n Mu l t i p l e Ac c e s s) 通信が行われている移動通信システムの周波数間 HHO (Ha r d Ha n d Ov e r) 方法であって、
前記送信ギヤップを使用して前記移動機から上り方向にトレーニング信号を送 信するステップと、
前記トレーニング信号にて前記基地局における受信タイミング及び送信電力の トレーニングを行うステップとを備えている。
すなわち、 本発明の移動通信システムは、 W— CDMA (W i d e b a n d— Co d e D i v i s i o n Mu l t i p l e Ac c e s s) システムにお いて、 安定した周波数間 HHO (Ha r d Ha n d Ov e r :ハードハンド オーバ) の実現方法を提供するものである。
より具体的に説明すると、 本発明の移動通信システムは、 基地局 (BTS : b a s e s t a t i o n) と移動機 (MS : Mo b i l e S t a t i o n) と の間の通信におけるコンプレストモ一ド (c omp r e s s e d mo d e) 時 の送信ギヤップの位置において、 HHO先の周波数にて上りにトレーニング信号 を送信する。
このトレーニング信号によって、 基地局が HHO先周波数の受信に関して、 周 波数間 HHO前トレーニングを行うことが可能となるので、 周波数間 HHOを行 う前に上り受信タイミング及ぴ送信電力の確認を行うことが可能となり、 周波数 間 HH〇、 つまり周波数の切替えを円滑かつ安定して行うことが可能となる。 図面の簡単な説明
図 1は、 従来例による移動通信システムの動作を示すタイミングチャートであ る。
図 2は、 本発明の一実施例による移動通信システムのシステム構成を示すプロ ック図である。
図 3は、 図 2の基地局の構成を示すブロック図である。
図 4は、 図 2の基地局の構成を示すプロック図である。
図 5は、 図 2の移動機の構成を示すブロック図である。
図 6は、 本発明の一実施例による移動通信システムの動作を示すタイミングチ ヤートである。
図 7は、 本発明の一実施例による移動通信システムの動作を示すフローチヤ一 トである。
図 8は、 本発明の一実施例による移動通信システムの動作を示すフローチヤ一 トである。
図 9 (a) 〜図 9 (d) は周波数間 HH〇を説明するための図である。
図 1 0 (a) 、 図 10 (b) は異なる基地局間におけるデータのやりとりを示 す図である。 発明を実施するための最良な形態
次に、 本発明の一実施例について図面を参照して説明する。 図 2は本発明の一 実施例による移動通信システムのシステム構成を示すプロック図である。 図 2に おいて、 本発明の一実施例による移動通信システムは基地局 (BTS : b a s e s t a t i o n) 1、 2と、 移動機 (MS : mo b i l e s t a t i o n) 3と、 基地局制御局 (RNC : R a d i o Ne two r k C o n t r o l 1 e r ) から構成されている。
移動機 3は下り信号のモニタが終了すると、 HHO (Ha r d Ha n d O v e r :ハードハンドオーバ) 元周波数を使用して基地局 1に下り信号の監視が 終了したことを伝えるとともに、 上り トレーニング (t r a i n i n g) 信号の 送信を開始する送信ギャップ (g a p) の時間 [フレーム (f r ame) 、 タイ ムスロット (丁 S : t i me s l o t) ] を通知する。 この送信ギャップは移 動機 3から基地局 1及び基地局制御局 4を通つて基地局 2に通知される (図 2の
(1) ) 。
移動機 3は指定した時間になると、 つまり自機と基地局 1との間の通信におけ るコンプレストモード (c omp r e s s e d mo d e) 時の送信ギャップの 位置において、 HHO先周波数にて上り トレーニング信号を基地局 2に送信する (図 2の (2) ) 。
基地局 2は移動機 3から指定された時間に上り トレーニング信号を受信しなけ れば N ACK (n e g a t i v e a c k n o 1 e d g eme n t) ffe号を、 上り トレーニング信号を受信すれば A CK (a c kn ow l e d g eme n t) 信号をそれぞれ基地局 1及び基地局制御局 4を介して移動機 3に通知する (図 2 の (3) )。
これによつて、 基地局 2は移動機 3からの上り トレーニング信号を受信するこ とができれば、 HHO先周波数の受信に関して、 周波数間 HHOを行う前にトレ 一ユングを行うことが可能となるので、 周波数間 HHO ¾行う前に上り受信タイ ミング及ぴ送信電力の確認を行うことが可能となり、 周波数間 HHO、 つまり周 波数の切替えを円滑かつ安定して行うことが可能となる。 この後、 移動機 3と基 地局 2との間で相互通信が行われる (図 2の (4) ) 。
図 3は図 2の基地局 1の構成を示すブロック図である。 図 3において、 基地局 1は受信部 1 1と、 サーチ ·復号部 12と、 HH O制御部 13と、 AC K/NA CK送信部 14と、 LO (L o c a l O s c i l a t o r :局部発信機) 15 と、 送信部 16とから構成されている。
図 4は図 2の基地局 2の構成を示すブロック図である。 図 4において、 基地局 2は受信部 21と、 サーチ ·復号部 22と、 上り トレーユング信号受信部 23と 、 トレーニング信号情報保持部 24と、 HHO制御部 25と、 L026と、 送信 部 27とから構成されている。 尚、 図示していないが、 基地局 1、 2は図 3及び 図 4に示す各ブロックを備えている。 伹し、 送受信部のように重複する部分は一 つでよい。
図 5は図 2の移動機 3の構成を示すブロック図である。 図 5において、 移動機 3は受信部 31と、 サーチ ·復号部 32と、 下り信号監視部 33と、 HH O制御 部 34と、 上り トレーニング信号送信部 35と、 L036と、 送信部 37とから 構成されている。
図 6は本発明の一実施例による移動通信システムの動作を示すタイミングチヤ ートであり、 図 7及び図 8は本発明の一実施例による移動通信システムの動作を 示すフローチャートであり、 図 9 (a) 〜 (d) は周波数間 HH〇を説明するた めの図であり、 図 10 (a) 、 図 10 (b) は異なる基地局間におけるデータの やりとりを示す図である。 これら図 2〜図 10を参照して本発明の一実施例によ る移動通信システムについて説明する。
ま 、 W— C DMA ^w i d e b a n d— c o d e d i v i s i o n mu 1 t i p 1 e a c c e s s) 通信方式における周波数間 HHOの手順について 説明する。 W— CDMA通信方式とは、 3GPP (3 r d Ge n e r a t i o n P e r t o n e r s h i p P r o j e c t) で議論されている第 3世代の 移動体通信方式である。 通常、 基地局 1は複数の周波数を保持し、 移動機 3とはいずれかの周波数を使 用して通信を行う。 し力 しながら、 図 9 (a) に示すように、 基地局 1の通信領 域であるセル Aにおいて周波数 f 1で通信を行っている移動機 3が、 周波数 f 2 しか有していない基地局 2の通信領域であるセル Bへ移動する際には、 受信周波 数を周波数 f 1から周波数 f 2へ変更する必要がある。 これが、 「周波数間 HH OJ と呼ばれる動作である。
尚、 周波数 f 1から周波数 f 2へ変更する方法には、 基地局 1の領域内で周波 数 f 1から周波数 f 2へ変更する方法 [図 9 (b) 参照] 、 基地局 1と基地局 2 との領域が重なっている領域で基地局 1の周波数 f 1から基地局 2の周波数 f 2 へ変更する方法 [図 9 (c) 参照] という 2つの方法があるが、 いずれの方法を とってもよレ、。
また、 基地局 1の通信領域であるセル Aにおいて、 移動機 3が周波数 f 1で通 信を行っている場合、 基地局 1で移動機 3を収容しきれなかったり、 故障や保守 によって周波数 f 1での処理が不可能となった場合に、 周波数を周波数 f 1から 周波数 f 2へ変更する際にも本実施例を適用することができる [図 9 (d) 参照 ] 。 この場合には上記の基地局 1の領域内で周波数 f 1から周波数 f 2へ変更す る方法が用いられる。
移動機 3は周波数間 HHOを行う前に、 コンプレストモードと呼ばれる、 間欠 通信を行うモードになる。 このコンプレストモードにおいて通信を行っていない 時間区間である送信ギャップ (g a p) に、 周波数を HHO元周波数 (f 1) か ら HHO先周波数 (f 2) に切替えて、 基地局 2が全ての周波数にて常に送信し ている基準信号である CP I CH (C ommo n P i l o t Ch a nn e l :共通パイロット信号) を受信する。 これによつて、 HHO先の周波数に移って も、 移る前と同じ受信品質が得られること、 つまり受信品質を得られる電力が出 ていることと、 HHO先での信号の受信タイミングとを確認する。
コンプレストモードとは、 図 1に示すように、 通常の通信モードとは異なり、 通信を行っていない時間の存在する間欠通信のモードである。
通常、 移動機 3は LO 36を 1つしか有していないが、 それだと、 HHO元周 波数 f 1で通信を行いながら、 かつ、 HHO先周波数 f 2'で送信されている周波 数 HHO先の CP I CHを受信することはできないようになっている。
そこで、 図 1に示すように、 通信を行っていない時間区間である送信ギャップ g a pを設け、 その時間区間で HHO元周波数 f 1から HHO先周波数 f 2に切 替えることによって、 HHO先周波数 f 2の下り信号のモニタを可能にしている コンプレストモードの詳細に関しては、 3GPP (3 r d Ge n e r a t i o n P e r t o n e r s h i p P r o j e c t) 仕様の 「T S 25. 212 v 3. 5. 0 4. 4 Comp r e s s e d Mo d eJ や、 「TS 25. 215 v 3. 5. 0 6. 1. 1 Comp r e s s e d Mo d eJ に記載 されている。
尚、 通常モードにおいても、 送信すべきデータが無い部分では送信を停止する 間欠通信が行われる。 但し、 通常モードにおける間欠送信は、 送信を停止する区 間の位置、 長さ力 送信するデータの挙動に依存してしまうが、 コンプレストモ ードでは、 データに関係なく、 予め定められたパターンにしたがって一定の規則 の下、 必ずデータの送信を停止する点が異なる。
この方法によって、 下りに関しては、 HHO元周波数 f 1から HHO先周波数 f 2に変更しても、 適切な受信品質の信号をすぐに移動機 3で受信することがで さる。
しかしながら、 上りに関しては、 移動機 3が送信する HHO先周波数 f 2の信 号を基地局 2がモニタする仕組みがないために、 下りとは逆に、 HHO先での上 りの初期送信電力が適切な受信品質を保証するものではないかもしれないこと、 HHO先での信号の受信タイミングが判らないために、 上り信号を捕捉するのに 時間がかかることという問題が生じる。
このために、 HHO元周波数 f 1から HHO先周波数 f 2へ移行した際に、 受 信品質が悪くて上りの通信が切れてしまったり、 受信信号の捕捉に時間がかかり 、 通信が途絶えたりしてしまう可能性がある。
図 6は W— CDMA通信方式においてコンプレストモードの送信ギャップ g a pの位置において、 HHO先の周波数 (f 2) を使用して、 移動機 3と基地局 2 との間で HHOのためのトレーニングを行う様子を示している。
そこで、 図 6に示すように、 通常、 HHO先周波数の下り信号を移動機 3がモ ユタするのに使用する送信ギャップ (g a p) 区間において、 下り信号のモニタ 終了後、 逆に HHO先周波数でトレーニング用上り信号 (以下、 上りトレーニン グ信号とする) を送信することによって、 基地局 2でのトレーニングを可能にす る。
下り信号監視部 33で下り信号のモニタが終了した移動機 3は、 HHO元周波 数を使用して基地局 1に下り信号の監視が終了したことを伝えるとともに、 上り トレーニング信号送信部 35からの上り トレーニング信号の送信を開始する送信 ギャップ (g a p) の時間 [フレーム (f r ame) 、 タイムスロット (T S : t i me s l o t) ] を基地局 1に通知する。 この通知内容は基地局 1から基 地局制御局 4へ、 基地局制御局 4から基地局 2へと通知される。
移動機 3は基地局 2に指定した時間になると、 上り トレーニング信号送信部 3 5から予め指定された送信電力 (=TxP ow) にて、 上り トレーニング信号を 送信し、 基地局 2はその信号の受信を試みる。
基地局 2の上り トレーニング信号受信部 23で上り トレーニング信号を受信す ることができた場合には、 その時の受信タイミング (=P o s— r v) 及び受信 S I R (S i g n a l I n t e r f e r e n c e Ra t i o) (= S I R— r v) を上り トレーニング信号受信部 23で測定し、 上り トレーニング信号情報 保持部 24に保持する。
次に、 上り トレーニング信号受信部 23は予め定められた十分な受信品質を得 るのに必要な目標 S I R (=S I R— t r g t) と受信 S I Rとの差 [Δ S I R = (S I R_t r g t) ― (S I R— r v) ] を算出し、 HHO元周波数を使用 して、 A CK信号を基地局制御局 4を介して基地局 1へ通知し、 基地局 1の AC K/NACK送信部 14から移動機 3へ通知する。 この ACK信号には目標 S I Rと受信 S I Rとの差 (Δ S I R) が含まれる。
一方、 上り トレーニング信号が通知された送信ギャップ (g a p) の時間に基 地局 2の上り トレーニング信号受信部 23が上り トレーニング信号を受信するこ とができなかった場合、 基地局 2は HHO元周波数を使用して、 NACK信号を 基地局制御局 4を介して基地局 1へ通知し、 基地局 1の A C K/NAC K送信部 14から移動機 3へ通知する。
NACK信号を受信した移動機 3は先の上り トレーニング信号の送信電力に、 予め定められたオフセット電力 (=ATxP ow) を加算し、 その電力にて上り トレーニング信号を送信する。 この上り トレーニング信号は ACK信号を受信す ることができるまで、 その再送が糸 続される。
すなわち、 NACK信号を N回受信した場合、 (N+ 1) 回目の上り トレーェ ング信号の送信電力は、 下記の式で示される。
送信電力 =T X Ρ 0 + ATxP owXN
但し、 再送回数 r e t xが多くなり、 上り トレーニング信号の送信電力が大き くなり過ぎると、 他のユーザに対する干渉量が増加し、 受信特性に悪影響を及ぼ すので、 再送回数 r e t xが予め定められた値 ( = Nma x) に到達したら、 上 り トレーニング信号の送信電力を TxP owに戻して再送を行うこととする。
A C K信号を受信した移動機 3は周波数間 HH Oによって、 周波数を HH O先 周波数に変更して送受信を開始する。 その際、 上りの送信電力は、 下記の式によ り算出される値とする。
送信電力 =Tx P 0 w+Δ S I R
この式において、 TxP owは AC Κ信号を受信することができた際の上り ト レーニング信号の送信電力である。
上記の上り トレーニング信号でのトレーニングによって、 この送信電力で上り を送信すれば、 基地局 2では十分な受信品質が得られる送信電力である目標 S I R (S I R— t r g t) で受信することができる。
また、 先のトレーニングによって、 受信タイミングも P o s— r Vと分かって いるので、 サーチ、 復号部 22がその近傍を重点的にサーチすることによって、 受信品質の良い上り信号を基地局 2で迅速に受信することができる。
次に、 図 7及ぴ図 8を参照して本発明の一実施例による移動通信システムの動 作について説明する。 周波数間 HHOを行う移動機 3はまず、 図 1に示すように 、 コンプレストモードの送信ギャップ (g a p) 区間において、 基地局 1が全て の周波数で常時送信している基準信号である CP I CH (共通パイロット信号) を受信することによって、 H H O先周波数での下り信号の受信タイミングを把握 し、 下り信号監視部 33による下り信号の監視を終了する (図 7ステップ S 1) 次に、 移動機 3は HHO元周波数にて下り信号の監視終了、 上り トレーニング 信号の送信を行う送信ギャップ (g a p) 位置 (フレーム番号、 タイムスロット 番号) を基地局 1及び基地局制御局 4を介して基地局 2へ通知する (図 7ステツ プ S 2) 。
その後に、 移動機 3は、 図 6に示すように、 通知した送信ギャップ (g a p) 位置にて、 送信電力 TXP 0 wを初期値 Tx P o w_i n iとし (図 7ステップ S 3) 、 上り トレーニング信号を送信する (図 7ステップ S 5) 。 その際に、 移 動機 3は再送回数 r e t Xを 0で初期化しておく (図 7ステップ S 4) 。
基地局 2は移動機 3から通知された送信ギャップ (g a p) 位置で上り トレー ニング信号を待ち受けており、 もし、 受信することができなかった場合 (図 8ス テツプ S 1 1〜S 13) 、 HHO元周波数にて N AC K信号を移動機 3へ通知す る (図 8ステップ S 14) 。
この N AC K信号を受信した移動機 3は再送回数 r e t xを予め定められた最 大再送回数 Nm a Xと比較する (図 8ステップ S 6、 S 7) 。 そこで、 移動機 3 は再送回数 r e t xが最大再送回数 N ma xよりも小さい場合、 送信電力 Tx P o wを前回の送信電力に対して、 ATxP ow加算し、 再送回数 r e t xを 1増 やす (図 8ステップ S 8) 。
一方、 再送回数 r e t xが最大再送回数 N ma x以上の場合には、 送信電力 T xP o wを初期値の TxP 0 w_i n iにするとともに、 再送回数 r e t xを 0 に初期化する (図 8ステップ S 9) 。 これは送信電力 TxP owが再現なく増加 して、 他の移動機 3の受信特性に大きな悪影響を及ぼすことを防ぐためである。 このようにして、 移動機 3は送信電力 T X P o wや再送回数 r e t xを更新し たら、 再び送信ギャップ (g a p) 位置において、 送信電力 TxP owで上り ト レーニング信号を送信する (図 7ステップ S 5) 。
もし、 基地局 2が上り トレーニング信号を受信したら (図 8ステップ S 1 3) 、 基地局 2は P o s_r v (上り トレーニング信号の受信タイミング) 及び S I R_r V (上り トレーニング信号の受信 S I R) の 2つを算出し、 トレーニング 信号情報保持部 24に保持する (図 8ステップ S 15 ) 。
基地局 2は予め定められた十分な上り受信特性を得ることのできる目標 S I R (S I R— t r g t) と受信 S I R (S I R—r v) とを比較し、 目標 S I Rと 受信 S I Rとの差 (Δ S I R) を、 下記の式により算出する (図 8ステップ S 1 6) 。
厶 S I R = (S I R_ t r g t) 一 (S I R一 r v )
基地局 2は移動機 3に対して A C K信号を HHO元周波数にて送信する (図 8 ステップ S 17) 。 伹し、 ACK信号には目標 S I Rと受信 S I Rとの差 (AS I R) の値に関する情報も含まれるものとする。
ACK信号を受信した移動機 3は周波数間 HHOを行い、 周波数を切替え、 下 り信号の受信を開始するとともに、 下記の式により示される送信電力にて、 上り 信号を送信する (図 7ステップ S 10) 。
上り送信電力 =Tx P ο w+Δ S I R
基地局 2も周波数間 HHOを行い、 上記の HHO先周波数にて上り トレーニン グ信号を受信したタイミング (P o s_r v) 近傍において、 移動機 3からの上 り信号をサーチする (図 8ステップ S 18) 。 これによつて、 基地局 2は上り信 号を迅速に受信することができる。 上述した周波数間 HHOに関する制御 (周波 数間 HH〇を行う前のトレーニング制御も含む) は基地局 1、 2及び移動機 3の HHO制御部 13、 25、 34によって行われる。
尚、 図 9 cに示す方法のように、 HH〇元周波数を送信している基地局 1と H HO先周波数を送信している基地局 2とが異なる場合、 図 10 (a) 、 図 10 ( b) に示すように、 基地局 1.の上位に位置している基地局制御局 4を介して、 上 りタイミング信号の受信の成功 (ACK) 、 失敗 (NACK) 、 A S I R等の情 報を基地局 1、 2間でやりとりする。
このように、 W— C DMA方式の移動通信システムにおいて、 周波数間 HH O を行う際に、 コンプレストモードの送信ギャップ (g a p ) の位置において、 H H O先の周波数にて上りにトレーニング信号を送信し、 この上り トレーニング信 号によつて基地局 2が HHO先周波数の受信に関して、 周波数間 HHOを行う前 に、 HHO先周波数でトレーニングを行うことによって、 周波数の切替えを円滑 、 かつ、 安定して行うことができる。
以上説明したように本実施例は、 移動機と基地局との間の通信において通信を 行っていない送信ギャップの存在する間欠通信のモードであるコンプレストモ一 ドを含む移動通信システムにおいて、 送信ギヤップを使用して移動局から上り方 向にトレーニング信号を送信し、 そのトレーニング信号にて基地局における受信 タイミング及ぴ送信電力のトレーニングを行うことによって、 周波数の切替えを 円滑かつ安定して行うことができるという効果が得られる。

Claims

請求の範囲
1. 移動機と基地局との間で CDMA (C o d e D i v i s i o n M u l t i p l e Ac c e s s) 通信が行われていて、 この CDMA通信中には 、 通信を行っていない送信ギャップの存在する間欠通信のモードであるコンプレ ストモードが含まれている移動通信システムであって、
前記送信ギヤップを使用して上り方向にトレーニング信号を送信する手段が設 けられた移動機と、
前記トレーニング信号にて受信タイミング及ぴ送信電力のトレーニングを行う 手段が設けられた基地局とを備えている移動通信システム。
2. 前記移動機が、 前記送信ギャップにおける下り信号を監視する手段と 、 前記下り信号の監視終了後に、 前記トレーニング信号の送信を開始しようとす る送信ギヤップの位置を前記基地局に通知する手段とをさらに備えた請求項 1記 載の移動通信システム。
3. 前記下り信号を監視する手段は、 前記基地局が全ての周波数に対して 常に送信している基準信号である共通パイロット信号を受信して下り信号の監視 を行う請求項 2記載の移動通信システム。
4. 前記移動機が、 基地局からのトレーニング信号の受信不成功通知を受 信すると、 前回トレーニング信号を送信した際の送信電力に予め定められたオフ セット電力を加算した電力で前記トレーニング信号を再送信する手段をさらに備 えた請求項 1記載の移動通信システム。
5. 前記トレーニングを行う手段は、 前記トレーニング信号の受信成功時 にその時の受信タイミング及ぴ受信 S I R (S i g n a l I n t e r f e r e n c e Ra t i o) を測定して保持する請求項 4記載の移動通信システム。
6. 移動機との間で CDMA (C o d e D i v i s i o n Mu 1 t i p i e Ac c e s s) 通信を行っていて、 この CDMA通信中には、 通信を行 つていない送信ギャップの存在する間欠通信のモードであるコンプレストモ一ド が含まれている基地局であって、
前記移動機から送信ギヤップを使用して送信された上り方向のトレーニング信 号にて受信タイミング及び送信電力のトレーニングを行う手段を備えている基地 局。
7. 前記移動機から通知された送信ギヤップの位置を基に前記トレーエン グ信号の受信を行う手段をさらに備えている請求項 6記載の基地局。
8. 前記トレーニング信号の受信不成功を移動機に通知する手段をさらに 備えている請求項 6記載の基地局。
9. 前記トレーニング信号の受信不成功を移動機に通知する手段をさらに 備えている請求項 7記載の基地局。
10. 前記トレーニングを行う手段は、 前記トレーニング信号の受信成功 時にその時の受信タイミング及び受信 S I R (S i g n a l I n t e r f e r e n c e Ra t i o) を測定して保持する請求項 6記載の基地局。
1 1. 基地局との間で CDMA (C o d e D i v i s i o n Mu 1 t i p 1 e Ac c e s s) 通信を行っていて、 この CDMA通信中には、 通信を 行っていない送信ギャップの存在する間欠通信のモードであるコンプレストモ一 ドが含まれている移動機であって、
前記送信ギヤップを使用して上り方向にトレーニング信号を送信する手段を備 えている移動機。
1 2. 前記送信ギャップにおける下り信号を監視する手段と、 前記下り信 号の監視終了後に前記トレーニング信号の送信を開始する前記送信ギヤップの位 置を前記基地局に通知する手段とをさらに備えた請求項 1 1記載の移動機。
1 3. 前記下り信号を監視する手段は、 前記基地局が全ての周波数にて常 に送信している基準信号である共通パイロット信号を受信して監視する請求項 1 2記載の移動機。
14. 基地局からのトレーニング信号の受信不成功通知を受信すると、 前 回トレーニング信号を送信した際の送信電圧に予め定められたオフセット電力を 加算した電力で前記トレーニング信号を再送信する手段をさらに備えた請求項 1 1記載の移動機。
1 5. 前記基地局が、 前記トレーニング信号の受信成功時にその時の受信 タイミング及ぴ受信 S I R (S i g n a l I n t e r f e r e n c e Ra t i o) を測定して保持する請求項 1 1記載の移動機。
16. 移動機と基地局との間で、 通信を行っていない送信ギャップの存在 する間欠通信のモードであるコンプレストモードを含む CDMA (Co d e D i v i s i o n Mu l t i p l e Ac c e s s) 通信が行われている移動通 信システムの周波数間 HHO (H a r d Ha n d Ov e r) 方法であって、 前記送信ギヤップを使用して前記移動機から上り方向にトレーニング信号を送 前記トレーニング信号にて前記基地局における受信タイミング及び送信電力の トレーニングを行うステップとを備えている周波数間 HHO方法。
1 7. 前記送信ギャップにおける下り信号を前記移動機で監視するステツ プと、 前記下り信号の監視終了後に前記トレーニング信号の送信を開始しようとする 前記送信ギヤップの位置を前記移動機から前記基地局に通知するステップとをさ らに含む請求項 16記載の周波数間 HHO方法。
1 8. 前記下り信号を監視するステップは、 前記基地局が全ての周波数に て常に送信している基準信号である共通パイ口ット信号を受信して監視するステ ップである請求項 1 7記載の周波数間 HHO方法。
1 9. 前記基地局からの前記トレーニング信号の受信不成功通知に応答し て前記トレーニング信号をその送信電力に予め定められたオフセット電力を加算 した電力で前記移動機から送信するステップをさらに備えた請求項 16記載の周 波数間 HHO方法。
20. 前記トレーニングを行うステップは、 前記トレーニング信号の受信 成功時にその時の受信タイミング及ぴ受信 S I R (S i g n a l I n t e r f e r e n c e Ra t i o) を測定して保持するステップである請求項 16記載 の周波数間 HHO方法。
PCT/JP2002/011274 2001-11-07 2002-10-30 Procede de transfert avec coupure inter-frequence dans un systeme de communication mobile WO2003041301A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2004-7006275A KR20040045934A (ko) 2001-11-07 2002-10-30 이동 통신 시스템에서의 주파수간 ηηο 방법
US10/494,666 US20040258020A1 (en) 2001-11-07 2002-10-30 Inter-frequency hho method in a mobile communication system
EP20020775421 EP1445878A1 (en) 2001-11-07 2002-10-30 INTER−FREQUENCY HHO METHOD IN MOBILE COMMUNICATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-341331 2001-11-07
JP2001341331A JP2003143639A (ja) 2001-11-07 2001-11-07 移動通信システム、基地局、移動機及びそれらに用いる周波数間hho方法

Publications (1)

Publication Number Publication Date
WO2003041301A1 true WO2003041301A1 (fr) 2003-05-15

Family

ID=19155366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011274 WO2003041301A1 (fr) 2001-11-07 2002-10-30 Procede de transfert avec coupure inter-frequence dans un systeme de communication mobile

Country Status (6)

Country Link
US (1) US20040258020A1 (ja)
EP (1) EP1445878A1 (ja)
JP (1) JP2003143639A (ja)
KR (1) KR20040045934A (ja)
CN (1) CN1586050A (ja)
WO (1) WO2003041301A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384899B1 (ko) * 2001-01-10 2003-05-23 한국전자통신연구원 무선통신 시스템에서 끊김없는 주파수간 하드 핸드오버 방법
WO2004112419A1 (ja) 2003-06-12 2004-12-23 Fujitsu Limited 基地局装置および移動通信システム
US7502338B1 (en) * 2003-12-19 2009-03-10 Apple Inc. De-emphasis training on a point-to-point connection
CN100413223C (zh) * 2005-04-21 2008-08-20 上海华为技术有限公司 硬切换的功率控制方法
JP4993120B2 (ja) * 2005-08-23 2012-08-08 日本電気株式会社 上りリンク無線伝送における複数基地局と移動局の同期システム及び方法
US7986661B2 (en) * 2006-03-02 2011-07-26 Qualcomm Incorporated Efficient utilization of transmission gaps for cell measurements
GB2439123B (en) * 2006-06-15 2008-05-14 Nec Technologies Handover in mobile phone network
US8483108B2 (en) * 2006-07-24 2013-07-09 Apple Inc. Apparatus and methods for de-emphasis training on a point-to-point connection
WO2010128598A1 (ja) * 2009-05-08 2010-11-11 アドコアテック株式会社 通信装置及びデータ再送処理方法
CN101990779B (zh) * 2009-11-12 2015-04-01 高通股份有限公司 用于在td-scdma切换的过程中在上行链路同步化中校正功率的方法和装置
EP2557849B1 (en) * 2011-08-10 2014-01-15 Alcatel Lucent Soft handover

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500475A (ja) * 1993-06-14 1996-01-16 テレフオンアクチーボラゲツト エル エム エリクソン Ds−cdmaシステムにおけるシームレス・ハンドオーバーのための不連続送信
JP2001136123A (ja) * 1999-08-20 2001-05-18 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置、及び送信電力制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896368A (en) * 1995-05-01 1999-04-20 Telefonaktiebolaget Lm Ericsson Multi-code compressed mode DS-CDMA systems and methods
US6667961B1 (en) * 1998-09-26 2003-12-23 Samsung Electronics Co., Ltd. Device and method for implementing handoff in mobile communication system
US6512750B1 (en) * 1999-04-16 2003-01-28 Telefonaktiebolaget Lm Ericsson (Publ) Power setting in CDMA systems employing discontinuous transmission
US6868075B1 (en) * 1999-09-28 2005-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for compressed mode communications over a radio interface
US6597679B1 (en) * 1999-12-01 2003-07-22 Telefonaktiebolat Lm Ericsson Control of compressed mode transmission in WCDMA
FI109862B (fi) * 2000-01-10 2002-10-15 Nokia Corp Menetelmä taajuudenvälisen yhteydenvaihdon valmistelemiseksi, verkkoelementti ja matkaviestin
FI112562B (fi) * 2000-02-29 2003-12-15 Nokia Corp Mittausaukkojen määrittäminen keskinäistaajuksien mittauksessa
FR2809273B1 (fr) * 2000-05-19 2002-08-30 Cit Alcatel Procede de signalisation de parametres de mode compresse a une station mobile
EP1179962B1 (en) * 2000-08-09 2004-07-14 SK Telecom Co., Ltd. Handover method in wireless telecommunication systems supporting USTS
US20030072279A1 (en) * 2001-10-15 2003-04-17 Nokia Corpration Power control during compressed mode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500475A (ja) * 1993-06-14 1996-01-16 テレフオンアクチーボラゲツト エル エム エリクソン Ds−cdmaシステムにおけるシームレス・ハンドオーバーのための不連続送信
JP2001136123A (ja) * 1999-08-20 2001-05-18 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置、及び送信電力制御方法

Also Published As

Publication number Publication date
US20040258020A1 (en) 2004-12-23
JP2003143639A (ja) 2003-05-16
KR20040045934A (ko) 2004-06-02
CN1586050A (zh) 2005-02-23
EP1445878A1 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
US11974316B2 (en) Determining and sending channel quality indicators (CQIS) for different cells
US8472958B2 (en) Wireless telecommunication system, transmitter and receiver, transmitting and receiving a plurality of data streams
US9237469B2 (en) Method and apparatus for high speed downlink packet access link adaptation
CN101843142B (zh) 触发时间处理方法和设备
EP2846592B1 (en) HSDPA CQI, ACK, NACK power offset known in node B and in SRNC
JP4197266B2 (ja) 無線制御装置及びハンドオーバ制御方法
US20080090572A1 (en) Increasing a secret bit generation rate in wireless communication
US8780754B2 (en) Method and controlling network node in a radio access network
EP2352337A1 (en) Configuration of hs-dsch serving cell change improvements
US20080069280A1 (en) Method for enhanced dedicated channel (e-dch) transmission overlap detection for compressed mode gap slots
US20060073828A1 (en) Hard handover method, controller and communication system
CN104301981A (zh) 上行链路不同步的快速下行链路通知的方法和设备
WO2003041301A1 (fr) Procede de transfert avec coupure inter-frequence dans un systeme de communication mobile
DK2266349T3 (en) TARGET-BASED HIGH SPEED CHANGE OF OPERATING CELLS
JP2007267263A (ja) 無線アクセスネットワーク及び無線通信方法
US9762359B2 (en) E-HICH information transmitting method, base station and user equipment
CN101091332A (zh) 上行链路不同步的快速下行链路通知的方法和设备

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047006275

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002775421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10494666

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028222105

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002775421

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002775421

Country of ref document: EP