WO2003022918A1 - Thermoplastische formmassen auf der basis von polyamiden sowie ein- und mehrstückige kunststoffformkörper aus diesen thermoplastischen formmassen - Google Patents

Thermoplastische formmassen auf der basis von polyamiden sowie ein- und mehrstückige kunststoffformkörper aus diesen thermoplastischen formmassen Download PDF

Info

Publication number
WO2003022918A1
WO2003022918A1 PCT/EP2002/009722 EP0209722W WO03022918A1 WO 2003022918 A1 WO2003022918 A1 WO 2003022918A1 EP 0209722 W EP0209722 W EP 0209722W WO 03022918 A1 WO03022918 A1 WO 03022918A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic molding
molding compositions
weight
plastic
compositions according
Prior art date
Application number
PCT/EP2002/009722
Other languages
English (en)
French (fr)
Inventor
Michael Fischer
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP2003526987A priority Critical patent/JP2005502755A/ja
Priority to EP02772247A priority patent/EP1427777B1/de
Priority to US10/487,547 priority patent/US20040235987A1/en
Priority to DE50210896T priority patent/DE50210896D1/de
Publication of WO2003022918A1 publication Critical patent/WO2003022918A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1034Manufacturing and assembling intake systems
    • F02M35/10347Moulding, casting or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10314Materials for intake systems
    • F02M35/10321Plastics; Composites; Rubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10314Materials for intake systems
    • F02M35/10334Foams; Fabrics; Porous media; Laminates; Ceramics; Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/08Thermoplastics

Definitions

  • thermoplastic molding compounds based on polyamides as well as single and multi-piece plastic molded articles made from these thermoplastic molding compounds
  • the present invention relates to thermoplastic molding compositions containing
  • the invention further relates to the use of these thermoplastic molding compositions for the production of one- and multi-piece plastic moldings or hollow plastic bodies, in particular of intake manifold modules made of plastic, and these plastic moldings.
  • Intake manifold modules made of thermoplastic materials, in particular of fiber-reinforced polyamides, are already known to those skilled be ⁇ . Intake manifold modules with structurally less demanding design elements are regularly out. two or more ⁇ A welded together zel Swissen. Vibration welding has established itself for this.
  • the weak point of such intake manifold modules is regularly the weld seam, because regardless of the welding process used for glass fiber reinforced components, the glass fibers show the tendency to be transported or oriented in the direction of the melt flowing out of the joint plane, so that no or only one, especially in the area of the weld seam there is a low proportion of glass fibers. Accordingly, such intake manifold modules have a low burst pressure.
  • Intake manifold modules also have a seam geometry that is not suitable for welding, for example due to the lack of stiffening ribs, which are usually intended to absorb the bending stress when pressed together with the molded parts, as well as the tendency to warp that is often observed in injection molded molded parts, which leads to inconsistent joining distances, and an incorrectly set welding pressure ,
  • WO 99/45071 describes a glass fiber-reinforced polyamide mixture of a polycaprolactam and an aliphatic polyamide co- or terpolymer, which has very good flow properties and provides vibration-welded intake manifold modules with good burst pressure behavior.
  • WO 99/16829 a mixture of aromatic polyamides with low monomer residues and aliphatic polyamides leads to moldings which are easier to weld and are resistant to hydrolysis.
  • WO 95/20630 also goes in the same direction.
  • WO 97/10303 discloses that welded intake manifold modules with improved burst pressure behavior are obtained with polyamide molding compositions which have a low proportion of a plasticizing material.
  • Polyethylene glycol ethers, ethylene oxide derivatives, lactam derivatives, sulfonamides, esters and diols are mentioned as suitable plasticizing materials.
  • WO 98/11164 specifies that long-chain alkyl polyesters and low molecular weight polyethylene glycols are particularly suitable as suitable plasticizing materials in order to ensure high burst pressures in welded components.
  • the present invention was therefore based on the object to provide molding compositions which can be used universally in the production of plastic moldings, in particular hollow plastic bodies, enable short cycle times and ensure very good mechanical properties and in particular a very high burst pressure even under continuous load at very high temperatures , Accordingly, thermoplastic molding compositions have been found
  • thermoplastic molding compositions contain
  • thermoplastic molding compositions for the production of fibers, films and plastic moldings, in particular for the production of hollow plastic bodies, for example of intake manifold modules, has been found.
  • molded plastic articles in particular hollow plastic articles containing the aforementioned thermoplastic molding compositions, have been found.
  • thermoplastic molding compositions according to the invention contain at least one polyamide as component A).
  • Polyamides with aliphatic partially crystalline or partially aromatic as well as amorphous structure of any kind and their blends are suitable, including polyether amides such as polyether block amides.
  • polyamides are understood to mean all known polyamides.
  • Such polyamides generally have a viscometers' tuschshoff from 90 to 350, preferably 110 to 240 ml / g, determined in a 0.5 wt .-% - solution in 96 wt .-% - sulfuric acid at 25 ° C according to ISO 307.
  • Semi-crystalline or amorphous polyamide resins with a molecular weight (weight average) of at least 5,000 g / mol are preferred.
  • Examples include polyamides which are derived from lactams with 7 to 13 ring members, such as polycaprolactam, polycapryllactam and polylaurine lactam, and also polyamides which are obtained by reacting dicarboxylic acids with diamines.
  • Alkanedicarboxylic acids having 6 to 12, in particular 6 to 10, carbon atoms and aromatic dicarboxylic acids can be used as dicarboxylic acids.
  • Suitable diamines are particularly alkanediamines having 6 to 12, into ⁇ particular 6 to 8 carbon atoms and also m-xylylenediamine, di (4-aminophenyl) methane, di- (4-aminocyclohexyl) methane, 2,2-di- (4 -aminophenyl) propane or 2,2-di- (4-aminocyclohexyl) propane.
  • Preferred polyamides are polyhexaethylene adipamide (PA 66) and polyhexamethylene sebacamide (PA 610), polycaprolactam (PA 6) and copolyamides 6/66, in particular with a proportion of 5 to 95% by weight of caprolactam units.
  • PA 6 PA 66 and copolyamides 6/66 are particularly preferred.
  • Polyamide 6 (PA 6) is very particularly preferred.
  • Polyamides may also be mentioned, e.g. can be obtained by condensing 1,4-diaminobutane with adipic acid at elevated temperature (polyamide-4, 6). Manufacturing processes for polyamides of this structure are e.g. in EP-A 38 094, EP-A 38 582 and EP-A 39 524.
  • polyamides which can be obtained by copolymerizing two or more of the aforementioned monomers, or mixtures of two or more polyamides, the mixing ratio being arbitrary.
  • partially aromatic copolyamides such as PA 6 / 6T and PA 66 / 6T have proven particularly advantageous, the triamine content of which is less than 0.5, preferably less than 0.3% by weight (see EP-A 299 444).
  • the partially aromatic copolyamides with a low triamine content can be prepared by the processes described in EP-A 129 195 and 129 1.96.
  • PA 46 tetramethylene diamine, adipic acid
  • PA 66 hexamethylenediamine, adipic acid
  • PA 69 hexamethylene diamine, azelaic acid
  • PA 610 hexamethylene diamine, sebacic acid
  • PA 612 hexamethylene diamine, decanedicarboxylic acid
  • PA 613 hexamethylene diamine, undecanedicarboxylic acid
  • PA 1212 (1, 12-dodecanediamine, decanedicarboxylic acid)
  • PA 1313 (1,13-diaminotridecane, undecanedicarboxylic acid)
  • PA MXD6 m-xylylenediamine, adipic acid
  • PA TMDT trimethylhexamethylene diamine, terephthalic acid
  • PA 7 (ethanolactam)
  • PA 8 (capryllactam)
  • PA 9 (9-aminopelargonic acid)
  • PA 11 (11-aminoundecanoic acid)
  • PA 12 ((Laurinlacta)
  • the polymerization or polycondensation of the starting monomers is preferably carried out by the customary methods.
  • the polymerization of caprolactam can be carried out by the continuous processes described in DE-A 14 95 198 and DE-A 25 58 480.
  • the polymerization of AH salt to produce PA 66 can be carried out by the customary batch process (see: Polymerization Processes pp. 424-467, in particular pp. 444-446, Interscience, New York, 1977) or by a continuous process, e.g. according to EP-A 129 196.
  • chain regulators can also be used in the polymerization.
  • Suitable chain regulators are, for example, triacetone diamine compounds (see WO-A 95/28443), monocarboxylic acids such as acetic acid, propionic acid and benzoic acid, and bases such as hexamethylenediamine, benzyla in and 1,4-cyclohexyl diamine.
  • C 4 -C -o-dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid; Cs-Cs-cycloalkanedicarboxylic acids such as cyclohexane-1,4-dicarboxylic acid; Benzene and naphthalenedicarboxylic acids such as isophthalic acid, terephthalic acid and naphthalene-2, 6-dicarboxylic acid are suitable as chain regulators.
  • the polymer melt obtained is discharged from the reactor, cooled and granulated.
  • the granules obtained are subjected to postpolymerization. This is done in a manner known per se by heating the granules to a temperature T below - below the melting temperature T s or crystallite melting temperature T k of the polyamide.
  • the final molecular weight of the polyamide (measurable as viscosity number VZ, see details on VZ above) is established by post-polymerization. Postpolymerization usually lasts from 2 to 24 hours, in particular from 12 to 24 hours. When the desired molecular weight is reached, the granules are cooled in the usual way.
  • Appropriate polyamides are obtainable under the trade name Ultramid ® from BASF. Of course, any mixtures of the aforementioned polyamide types can also be used as component A).
  • thermoplastic molding composition according to the invention has sized treated fibrous fillers B).
  • the fibrous fillers are present in the thermoplastic molding compositions preferably in amounts of 0.1 to 50, particularly preferably 10 to 45 and in particular 25 to 40% by weight, based on the total weight of the thermoplastic molding compositions.
  • Glass fibers, carbon fibers, aramid fibers, potassium titanate fibers and basalt fibers may be mentioned as preferred fibrous fillers, glass fibers made of E-glass being particularly preferred. These can be used as rovings or cut glass in the commercially available forms.
  • the fibrous fillers have been pretreated with a size for better compatibility with the polyamide A).
  • Preferred sizing components are silane compounds.
  • Suitable silane compounds are those of the general formula (I)
  • n is an integer from 2 to 10, preferably 3 to 4 m is an integer from 1 to 5, preferably 1 to 2 k is an integer from 1 to 3, preferably 1
  • Preferred silane compounds for the connection of the glass fiber to polyamides are aminosilane compounds such as aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes which contain a glycidyl group as substituent X.
  • the silane compounds are generally used in amounts of 0.05 to 5, preferably 0.5 to 1.5 and in particular 0.8 to 1% by weight (based on B)) for the surface coating.
  • the size preferably also contains additives to polymeric film formers, such as polyurethanes.
  • polymeric film formers such as polyurethanes.
  • the proportion of polymeric film formers is preferably in the range from 5 to 15% by weight, based on the total weight of the size.
  • the size particularly preferably has chain extenders.
  • chain extenders come e.g. inorganic compounds such as hypophoshites, e.g. Alkali or alkaline earth hypophosphites such as sodium or magnesium hypophosphite, optionally also as monohydrate, or organic compounds which can react with polyamides with chain extension, into question.
  • Such organic connections include e.g.
  • Sizing agents and / or antistatic agents may also be added.
  • Fibrous fillers with an average arithmetic fiber length of 150 ⁇ m to 10 mm, preferably 200 ⁇ m to 7 mm and in particular 220 ⁇ m to 5 mm are preferred.
  • the average diameter is generally from 3 to 30 ⁇ m, preferably from 5 to 20 ⁇ m and in particular 8 to 14 ⁇ m.
  • the desired fiber length can e.g. can be adjusted by grinding in a ball mill, whereby a fiber length distribution arises.
  • the average fiber length is ⁇ 200 ⁇ m, a further reduction in the fiber length leads to a free-flowing bulk material that can be mixed into the polymer like a powder. Due to the short fiber length, there is only a slight further shortening of the fiber length during incorporation.
  • the fiber content is usually determined after the polymer has been incinerated.
  • the ash residue is generally taken up in silicone oil and photographed at a 20x magnification of the microscope.
  • the length of at least 500 fibers can be measured on the images and the arithmetic mean (dso) can be calculated from them.
  • the chopped glass fiber, the commercial products Chop Van PPG Industries were days ® 3540, 3545, 3660 and 3786 of the company. Inc. called.
  • acicular mineral fillers which are mineral fillers with a pronounced acicular character.
  • An example is needle-shaped wollastonite.
  • the mineral preferably has an L / D (length / diameter) ratio of 8: 1 to 35: 1, preferably 8: 1 to 11: 1.
  • the mineral filler is also pretreated with the size mentioned above, unless a size-treated fiber is used at the same time.
  • Amorphous silica, magnesium carbonate (chalk), kaolin (especially calcined kaolin), powdered quartz, mica, talc, feldspar and in particular calcium silicates such as wollastonite are suitable as particulate fillers.
  • Any fiber and / or filler mixtures can also be used.
  • Straight-chain saturated carboxylic acid salts with chain lengths (including the terminal carboxyl carbon atom) of at least 20 and preferably at least 24 C atoms are present as component C) in the molding compositions according to the invention. Suitable amounts are in the range from 0.01 to 10, preferably 0.05 to 1.5 and particularly preferably 0.1 to 0.5% by weight, based on the total weight of the thermoplastic molding composition.
  • the salts of montanic acid are particularly preferred, for the purposes of the present invention montanic acid is understood to mean both the compound CH 3 (CH 2 ) 26 CO 2 H and a mixture of straight-chain saturated fatty acids having 24 to 32 carbon atoms.
  • Alkaline and alkaline earth metal ions such as lithium, sodium or calcium, preferably act as cationic counterions in the carboxylic acid salts mentioned.
  • the aluminum cation or transition metal cations such as zinc or non-metallic cations such as ammonium, phosphonium or arsenium ions can also be used.
  • the cations of the alkaline earth metals, in particular the calcium cation are particularly suitable. Any mixtures of the aforementioned straight-chain saturated carboxylic acid salts can also be used.
  • calcium montanate is used as component C).
  • Such products are commercially available, for example, under the name Licomont VaV 102 (Clariant).
  • a component of copper (I) compounds and alkali metal halides is present as component D) in the thermoplastic molding compositions according to the invention. Suitable amounts of this mixture are in the range from at least 0.05% by weight, preferably in the range from 0.05 to 7, particularly preferably from 0.3 to 5 and in particular from 0.5 to 3% by weight, based on the total weight of the thermoplastic molding composition.
  • Copper (I) compounds are advantageously introduced into the thermoplastic molding compositions in the form of copper (I) halides.
  • Preferred copper (I) halides are copper (I) chloride and copper (I) bromide, and in particular copper (I) iodide or mixtures thereof. Together with the copper (I) compounds, alkali metal halides are used in component D).
  • the fluorides, chlorides, bromides and iodides of lithium, sodium, potassium and cesium are suitable as alkali metal halides.
  • Potassium iodide, in particular potassium bromide, is preferably used.
  • Mixtures of alkali metal halides can also be used.
  • the alkali metal halides are advantageously present in a molar excess.
  • the molar ratio of alkali metal halides to copper halides is accordingly preferably in the range from 10: 1 to 1: 100 and particularly preferably in the range from 1: 1 to 1:50.
  • Thermoplastic molding compositions in which copper in the form of a copper (I) compound is present in an amount of at least 10 ppm, based on the total weight of the thermoplastic molding composition, have proven to be particularly suitable.
  • This amount of copper is preferably in the range from 50 to 1000 ppm, particularly preferably in the range from 80 to 500 ppm and in particular in the range from 250 to 400 ppm.
  • triphenylphosphine can also be used as a stabilizer component in a further embodiment.
  • thermoplastic molding compositions according to the invention can contain up to 5% by weight, particularly preferably up to 2% by weight, of soluble dye, based on the total weight of the thermoplastic molding compositions, as component E).
  • soluble dyes are dyes that are soluble in polyamide A).
  • Suitable as soluble dyes are e.g. organic compounds containing a chromophore, for example amine dyes such as the commercial product nigrosine.
  • Impact modifiers can be contained in the molding compositions according to the invention in amounts of up to 35, preferably up to 25,% by weight.
  • Impact modifiers are also among those skilled in the art the names rubber-elastic polymers, elastomers or rubbers known.
  • elastomers are the so-called ethylene-propylene (EPM) or ethylene-propylene-diene (EPDM) rubbers.
  • EPM rubbers generally have practically no more double bonds, while EPDM rubbers can have 1 to 20 double bonds / 100 carbon atoms.
  • diene monomers for EPDM rubbers are conjugated dienes such as isoprene and butadiene, non-conjugated dienes having 5 to 25 carbon atoms such as penta-l, 4-diene, hexa-l, 4-diene, hexa-l, 5 -diene, 2, 5-dimethylhexa-l, 5-diene and octa-l, 4-diene, cyclic dienes such as cyclopentadiene, cyclohexadienes, cyclooctadienes and dicyclopentadiene and alkenylnorbornenes such as 5-ethylidene-2-norbornene, 5- Butylidene-2-norbornene, 2-methallyl-5-norbornene, 2-isopropenyl-5 ⁇ norbornene and tricyclodienes such as 3-methyl-tricyclo (5.2.1.0.2.6) -3, 8-decadiene or mixtures thereof.
  • Hexa-1,5-diene-5-ethylidene-norbornene and dicyclopentadiene are preferred.
  • the diene content of the EPDM rubbers is preferably 0.5 to 50, in particular 1 to 8,% by weight, based on the total weight of the rubber.
  • ⁇ PM or EPDM rubbers can preferably also be grafted with reactive carboxylic acids or their derivatives.
  • reactive carboxylic acids or their derivatives e.g. Acrylic acid, methacrylic acid and their derivatives, e.g. Glycidyl (eth) acrylate, as well as maleic anhydride.
  • Another group of preferred rubbers are copolymers of ethylene with acrylic acid and / or methacrylic acid and / or the esters of these acids.
  • the rubbers can carboxylic acids such as maleic acid and fu aric acid or derivatives of these acids, for example esters and anhydrides, and / or monomers containing epoxy groups.
  • dicarboxylic acid derivatives or monomers containing epoxy groups are preferably incorporated into the rubber by adding monomers M containing dicarboxylic acid or epoxy groups to the monomer mixture.
  • Preferred dicarboxylic acid or epoxy monomers M are maleic acid, maleic anhydride and epoxy group-containing esters of acrylic acid and / or methacrylic acid, such as glycidyl acrylate, glycidyl methacrylate, and the esters with tertiary alcohols, such as t-butyl acrylate there are no free carboxyl groups, but their behavior is close to that of the free acids and are therefore referred to as monomers with latent carboxyl groups.
  • the copolymers advantageously consist of 50 to 98% by weight of ethylene, 0.1 to 20% by weight of monomers containing epoxy groups and / or monomers containing methacrylic acid and / or monomers containing acid anhydride groups and the remaining amount of (meth) acrylic acid esters.
  • esters of acrylic and / or methacrylic acid are methyl, ethyl, propyl and i-. or t-butyl ester.
  • vinyl esters and vinyl ethers can also be used as comonomers.
  • the ethylene copolymers described above can be prepared by processes known per se, preferably by statistical copolymerization under high pressure and elevated temperature. Appropriate methods are generally known.
  • Preferred elastomers are also emulsion polymers, the production of which e.g. in Blackley, Emulsion Polymerization, Applied Science Publishers, London 1975.
  • the emulsifiers and catalysts which can be used are known per se.
  • homogeneous elastomers or those with a shell structure can be used.
  • the term schalenar ⁇ A TRUCTURE is determined by the order of addition of the individual monomers; The morphology of the polymers is also influenced by this order of addition.
  • the monomers for the production of the rubber part of the elastomers are only representative of acrylates such as n-butyl acrylate and 2-ethylhexyl acrylate, corresponding methacrylates, butadiene and isoprene and mixtures thereof.
  • These monomers Kgs ⁇ NEN with other monomers such as styrene, acrylonitrile, vinyl esters thern and other acrylates or methacrylates, such as Methylmetha- acrylate, methyl acrylate, ethyl acrylate and propyl acrylate are copolymerized.
  • the soft or rubber phase (with a glass transition temperature of below 0 ° C) of the elastomers can be the core, the outer shell or a middle shell (in the case of elastomers with more than two layers). in the case of multi-layer elastomers, several shells can also consist of a rubber phase.
  • one or more hard components are involved in the construction of the elastomer, these are generally made by polymerizing styrene, acrylonitrile, methacrylonitrile, ⁇ -methylstyrene, p-methylstyrene, acrylic acid esters and methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as main monomers. In addition, smaller proportions of further comonomers can also be used here.
  • emulsion polymers which have reactive groups on the surface.
  • groups are e.g. Epoxy, carboxyl, latent carboxyl, amino or amide groups as well as functional groups which are obtained by using monomers of the general formula (II)
  • R 1 is hydrogen or a C 1 -C 4 -alkyl group
  • R 2 is hydrogen, a Ci to Cs alkyl group or an aryl group, in particular phenyl,
  • R 3 is hydrogen, a C ⁇ ⁇ to Cio-alkyl, a C e - to C 12 aryl group or -0R 4
  • R 4 is a C 1 to C 8 alkyl or C 6 to C 2 aryl group, which can optionally be substituted by 0 or N-containing groups, Q is a chemical bond, a C ⁇ ⁇ to C ⁇ 0 alkylene or Cs-Ci 2 arylene group or
  • Z is a Ci to C ⁇ 0 alkylene or C 6 - to C ⁇ 2 arylene group.
  • the graft monomers described in EP-A 208 187 are also suitable for introducing reactive groups on the surface.
  • Acrylic id, methacrylamide and substituted esters of acrylic acid or methacrylic acid such as (Nt-butylamino) ethyl methacrylate, (N, N-dimethylamino) ethyl acrylate, (N, N-dimethylamino) methyl acrylate and (N, N-diethyla - Mino) called ethyl acrylate.
  • the particles of the rubber phase can also be crosslinked.
  • Monomers acting as crosslinking agents are, for example, buta-l, 3-diene, divinylbenzene, diallyl phthalate and dihydrodicyclopentadienyl acrylate and the compounds described in EP-A 50 265.
  • So-called graft-linking monomers can also be used, i.e. Monomers with two or more polymerizable double bonds, which react at different rates during the polymerization.
  • Compounds are preferably used in which at least one reactive group polymerizes at approximately the same rate as the other monomers, while the other reactive group (or reactive groups) e.g. polymerizes much more slowly (polymerize).
  • the different polymerization rates result in a certain proportion of unsaturated double bonds in the rubber. If a further phase is subsequently grafted onto such a rubber, the double bonds present in the rubber react at least partially with the graft monomers to form chemical bonds, i.e. the grafted phase is at least partially linked to the graft base via chemical bonds.
  • graft-crosslinking monomers examples include monomers containing allyl groups, in particular allyl esters of ethylenically unsaturated carboxylic acids such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding corresponding monoallyl compounds of these dicarboxylic acids.
  • allyl groups in particular allyl esters of ethylenically unsaturated carboxylic acids such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding corresponding monoallyl compounds of these dicarboxylic acids.
  • graft-crosslinking monomers for further details, reference is made here, for example, to US Pat. No. 4,148,846.
  • the proportion of these crosslinking monomers in the impact-modifying polymer is up to 5% by weight, preferably not more than 3% by weight, based on the impact-modifying polymer.
  • graft polymers with a core and at least one outer shell are to be mentioned, which have the following structure:
  • graft polymers with a multi-layer structure instead of graft polymers with a multi-layer structure, homogeneous, i.e. single-shell elastomers of buta-l, 3-diene, isoprene and n-butyl acrylate or their copolymers are used. These products can also be prepared by using crosslinking monomers or monomers with reactive groups.
  • Examples of preferred emulsion polymers are outer n-butyl acrylate / (meth) acrylic acid copolymers, n-butyl acrylate / glycidyl acrylate or n-butyl acrylate / glycidyl methacrylate copolymers, fropfpolyme- risate with an inner core of n-butyl acrylate or Buta ⁇ diene-based and Shell from the above Copolymers and copolymers of ethylene with comonomers that provide reactive groups.
  • the elastomers described can also be made by other conventional methods, e.g. by suspension polymerization.
  • Silicone rubbers as described in DE-A 37 25 576, EP-A 235 690, DE-A 38 00 603 and EP-A 319 290 are also preferred.
  • the molding compositions according to the invention can contain up to 30% by weight, preferably up to 15% by weight, of further additives as component G).
  • Examples include amounts of 0 to 2% by weight of fluorine-containing ethylene polymers. These are polymers of ethylene with a fluorine content of 55 to 76% by weight, preferably 70 to 76% by weight.
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene copolymers or tetrafluoroethylene copolymers with smaller proportions (generally up to 50% by weight) of copolymerizable ethylenically unsaturated monomers.
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene copolymers or tetrafluoroethylene copolymers with smaller proportions (generally up to 50% by weight) of copolymerizable ethylenically unsaturated monomers.
  • fluorine-containing ethylene polymers are homogeneously distributed in the molding compositions and preferably have a particle size (number average) in the range from 0.05 to 10 ⁇ m, in particular from 0.1 to 5 ⁇ m. These small particle sizes can particularly preferably be obtained by using aqueous dispersions of fluorine-containing ethylene polymers and incorporating them, e.g. achieve in a polyamide melt.
  • additives which may be mentioned are heat and light stabilizers, lubricants and mold release agents, colorants, such as insoluble dyes and pigments in customary amounts.
  • Additional pigments and insoluble dyes are generally present in amounts up to 2, preferably up to 1 and in particular up to
  • Such pigments lead, for example, to a deepening of color or to different matt gradations of black color and are generally known, see, for example, R. Gumbleter and H. Müller, Taschenbuch der Kunststoffadditive, Carl Hanser Verlag, 1983, pp. 494 to 510.
  • White pigments such as zinc oxide are to be mentioned as the first preferred group of pigments , Zinc sulfide, lead white
  • Black color pigments that can be used according to the invention are iron oxide black (Fe 3 ⁇ 4 ), spinel black (Cu, (Cr, Fe) 2 0 4 ), manganese black (mixture of manganese dioxide, silicon dioxide and iron oxide), cobalt black and antimony black and particularly preferably soot, which is mostly used in the form of furnace or gas black (see G. Benzing, Pigments for Paints, Expert Verlag (1988), pp.78ff
  • Oxidation retarders and heat stabilizers which can be added to the thermoplastic compositions according to the invention are e.g. Zinc fluoride and zinc chloride.
  • sterically hindered phenols, hydroquinones, substituted representatives of this group, secondary aromatic amines, optionally in combination with phosphorus-containing acids or their salts, so-called HALS types (hindered amine light stabilizer) and mixtures of these compounds, preferably in concentrations up to 1% by weight, based on the weight of the mixture, can be used.
  • Synergistic components such as triphenylphosphine can also be used.
  • UV stabilizers are various substituted resorcinols, salicylates, benzotriazoles and benzophenones, which are generally used in amounts of up to 2% by weight.
  • Antistatic agents include coconut fat diethanolamine and sodium alkyl sulfonates.
  • Lubricants and mold release agents which are generally added in amounts of up to 1% by weight of the thermoplastic composition, are stearic acid, stearyl alcohol, octadecyl alcohol, alkyl stearates and amides, ethylene bisstearylamide and esters of pentaerythritol with long-chain fatty acids. Salts of calcium, zinc or aluminum of stearic acid and dialkyl ketones, e.g. Distearyl ketone can be used.
  • flame retardants examples include red phosphorus, phosphorus compounds, melamine cyanurate, alkaline earth metal carbonates, magnesium hydroxide or halogen-containing compounds such as decabromodiphenylethane. which can be used in amounts of up to 20, preferably up to 15% by weight.
  • the additives also include stabilizers that prevent the red phosphorus from decomposing in the presence of moisture and atmospheric oxygen.
  • stabilizers that prevent the red phosphorus from decomposing in the presence of moisture and atmospheric oxygen.
  • Compounds of cadmium, zinc, aluminum, tin, magnesium, manganese and titanium may be mentioned as examples.
  • Particularly suitable connections are e.g. Oxides of the metals mentioned, and also carbonates or oxicarbonates, hydroxides and salts of organic or inorganic acids such as acetates or phosphates or hydrogen phosphates.
  • Low molecular weight polymers are also suitable as additives, with polyethylene wax being particularly preferred as a lubricant.
  • Inorganic and organic chain extenders such as sodium hypophosphite (possibly as a monohydrate) or polymers with end groups reactive towards polyamides such as epoxy, hydroxyl, ester and carboxy end groups as well as compounds with acidic H atoms, e.g. Polyethylene glycol 2-ethyl alkyl ester.
  • the molding compositions according to the invention can be produced by processes known per se. For example, all components A) to D) and optionally E) to G) can be dry mixed and then melted and converted into the thermoplastic molding compositions according to the invention. Furthermore, the glass fibers provided with the size can already be present in the polyamide granules used. According to a preferred embodiment, the preparation is carried out by adding components B) to D) and optionally E) to G) to the melt of component A). In a preferred embodiment, components B) and optionally F) are metered in separately to the melt of component A). Components C) and D) and optionally E) and G) can be introduced into the melt separately or, preferably, as a premix. Expediently, extruders, e.g. Single screw or twin screw extruders or other conventional plasticizing devices such as Brabender mills or Banbury mills.
  • extruders e.g. Single screw or twin screw extruders or other conventional plasticizing devices such as Brabender mills or
  • the polyamide mixture obtained can optionally be subjected to a further thermal treatment, ie a wet condensation in solid form.
  • a further thermal treatment ie a wet condensation in solid form.
  • Temperaggregaten for example a Taumler- mixer, or a continuous or batch conditioning annealing the present in the respective processing form molding material until the desired viscosity number VN he ⁇ is sufficient.
  • the temperature range for the tempering depends on Melting point of the pure component A). Preferred temperatures for the tempering are in the range from 5 to 50, preferably 20 to 30 ° C. below the respective melting point of component A).
  • the tempering process is preferably carried out under an inert gas atmosphere, preferably with nitrogen or superheated steam as inert gases.
  • the residence times are generally 0.5 to 50, preferably 4 to 20 hours.
  • the invention also relates to molded plastic articles, in particular
  • the plastic hollow bodies can be produced both in one piece by the melt core technology and from several plastic molded bodies by means of welding techniques known to the person skilled in the art, such as ultrasound, laser, heating element and vibration welding.
  • plastic components which comprise two or more plastic moldings containing the molding compositions according to the invention, which are welded by one of the abovementioned methods, also fall under the subject of the invention. In the production of these plastic components, one observes' in the area of
  • ⁇ ⁇ weld polymer melts from the molding compositions of the invention with a high viscosity.
  • a very high entanglement density is achieved in the seam or joining area.
  • Plastic moldings welded according to the previously described method deliver plastic components with an egg
  • thermoplastic molding compositions according to the invention are notable for very good flowability.
  • the melt stability is excellent under normal processing conditions and
  • molding compounds can be used to form plastic moldings, e.g. Plastic hollow body with an excellent surface obtained, which is characterized by excellent mechanical properties, e.g. are characterized by a very high burst pressure, which does not drop even under permanent load at high temperatures 5.
  • thermoplastic molding compositions according to the invention are suitable for the production of fibers, foils and plastic moldings of any kind.
  • the moldings or plastic moldings obtained with the thermoplastic molding compositions according to the invention have very smooth surfaces which are not impaired by glass fiber ends emerging from the surface. A graying effect 5 due to such glass fiber ends is not observed.
  • Plastic moldings produced from the thermoplastic molding compositions according to the invention are distinguished by a greatly improved impact strength (determined after IS0179 / leU) as well as a greatly improved tensile strength (determined according to ISO 527-2), both before and after heat storage, e.g. at 150 ° C for a period of 1000 h in a convection oven.
  • the molding compositions according to the invention are also suitable for the production of hollow plastic bodies, for example suction tube modules.
  • hollow plastic bodies for example made of two half-shells, vibration-welded hollow spheres, are characterized - likewise before and after the heat storage described above - by a greatly improved bursting pressure. Improvements in the range of 10 to 20% and also above are easily achievable for the aforementioned parameters of impact resistance, tensile strength and burst pressure.
  • Another advantage is that highly resilient hollow plastic parts or plastic components can be obtained, regardless of whether they are obtained using the melt core technique or by means of suitable welding processes.
  • the molding compositions according to the invention allow hollow bodies with a complex geometry, for example very narrow flow paths or very narrow sprues, to be reached via the melt core technology.
  • Another advantage is that the injection molded plastic moldings can be removed from the mold at very high temperatures without being damaged and thus enable very short cycle times. Because of these very short cycle times, the thermoplastic molding compositions according to the invention are also suitable for a so-called on-line production process, ie the injection molded plastic molding or hollow plastic body is not temporarily stored, but is integrated directly into the automated manufacturing process, for example an intake manifold module.
  • Component C calcium montanate component D) CuI / KI complex (molar ratio 1/5) component G) carbon black pigment BP 880
  • Test specimens were produced as described in Example 1, but instead of component B used in Example 1, a chopped glass fiber PPG 3545 from PPG Fiber Glass, and instead of component C used in Example 1, calcium stearate was used.
  • the average impact strength was 85 kJ / m 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Prostheses (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Thermoplastische Formmassen, enthaltend (A) ein oder mehrere Polyamide, (B) schlichtebehandelte faserförmige Füllstoffe, (C) geradkettige gesättigte Carbonsäuresalze mit Kettenlängen (einschliesslich des endständigen Carboxylkohlenstoffatoms) von mindestens 20, bevorzugt mindestens 24 C-Atomen und (D) Alkalimetallhalogenide und Kupfer (I) Verbindungen sowie gegebenenfalls (E) einen in Polyamid löslichen Farbstoff, (F) Schlagzähmodifier und/oder (G) weitere Zusatzstoffe, sowie aus diesen Formmassen hergestellte ein- und mehrstückige Kunststoffformkörper, insbesondere Kunststoffhohlkörper.

Description

Thermoplastische Formmassen auf der Basis von Polyamiden sowie ein- und mehrstückige Kunststoffformkörper aus diesen thermoplastischen Formmassen
Beschreibung
Die vorliegende Erfindung betrifft thermoplastische Formmassen, enthaltend
(A) ein oder mehrere Polyamide,
(B) schlichtebehandelte faserförmige Füllstoffe,
(C) geradkettige gesättigte Carbonsäuresalze mit Kettenlängen (einschließlich des endständigen Carboxylkohlenstoffatoms) von mindestens 20, bevorzugt mindestens 24 C-Atomen und
(D) Alkalimetallhalogenide und Kupfer (I) -Verbindungen, sowie gegebenenfalls
(E) einen in Polyamid löslichen Farbstoff,
(F) Schlagzähmodifier und/oder
(G) weitere Zusatzstoffe.
Die Erfindung betrifft des weiteren die Verwendung dieser thermoplastischen Formmassen für die Herstellung von ein- und mehrstük- kigen Kunststoffformkörpern oder Kunststoffhohlkorpern, insbesondere von Saugrohrmodulen aus Kunststoff sowie diese Kunststoff - formkörper.
Saugrohrmodule aus thermoplastischen Kunststoffen, insbesondere aus faserverstärkten Polyamiden sind ,dem Fachmann bereits be¬ kannt. Saugrohrmodule mit konstruktiv weniger anspruchsvollen Ge- staltungselementen werden regelmäßig aus. zwei oder mehreren Ein¬ zelstücken zusammengeschweißt. Etabliert hat sich hierfür das Vibrationsschweißen. Schwachstelle solcher Saugrohrmodule ist je- doch regelmäßig die Schweißnaht, da unabhängig vom eingesetzten Schweißverfahren bei glasfaserverstärkten Bauteilen die Glasfasern die Tendenz zeigen, in Richtung der aus der Fügeebene fließenden Schmelze transportiert bzw. orientiert zu werden, sodass gerade im Bereich der Schweißnaht keine oder nur ein geringer An- teil an Glasfasern vorliegt. Dementsprechend verfügen solche Saugrohrmodule über einen geringen Berstdruck. Nachteilig für einen hohen Berstdruck bei aus mehreren Kunststoffkomponenten geformten Saugrohrmodulen wirken sich auch eine nicht schweißgerechte Naht- geometrie, z.B. aufgrund fehlender Versteifungsrippen, die üblicherweise die Biegebelastung beim Zusammendrücken mit den Formteilen auffangen sollen, des weiteren die bei spritzgegossenen Formteilen häufig beobachtete Verzugsneigung, die zu uneinheitlichen Fügeabständen führt, sowie ein falsch eingestellter Schweißdruck aus .
In der WO 99/45071 wird eine glasfaserverstärkte Polyamidmischung aus einem Polycaprolactam und einem aliphatischen Polyamidco- oder -terpolymer beschrieben, die eine sehr gute Fließfähigkeit aufweist und vibrationsgeschweißte Saugrohrmodule mit gutem Berstdruckverhalten liefert.
Über eine Mischung aus aromatischen Polyamiden mit geringen Monomerrestgehalten und aliphatischen Polyamiden gelangt man gemäß WO 99/16829 zu Formteilen, die sich besser schweißen lassen und hydrolysebeständig sind. In dieselbe Richtung geht auch die WO 95/20630.
Die WO 97/10303 offenbart, dass man mit Polyamidformmassen, die über geringe Anteile an einem Plastifiziermaterial verfügen, geschweißte Saugrohrmodule mit verbessertem Berstdruck-Verhalten erhält. Als geeignete Plastifiziermaterialen werden Polyethylen- glycolether, Ethylenoxidderivate, Lactamderivate, Sulfonamide, Ester und Diole genannt.
Die WO 98/11164 spezifiziert, dass als geeignete Plastifizierma- terialien langkettige Alkylpolyester und niedrigmolekulare Poly- ethylenglykole besonders gut geeignet sind, um hohe Berstdrücke bei verschweißten Bauteilen sicherzustellen.
Um den Wirkungsgrad eines Verbrennungsmotors zu erhöhen und die Emission von Schadstoffen in den Abgasen zu verringern, ist man gegenwärtig bestrebt, den Verbrennungsvorgang bei möglichst hohen Temperaturen stattfinden zu lassen. Aber auch ohne diese Technik tragen Maßnahmen wie die Kompletteinkapselung des Motors aus Gründen des Schallschutzes zu einer erhöhten Temperatur im Motor- räum bei. Unterstützt wird dieser Effekt auch dadurch, dass die Bauteildichte im Motorraum stetig zunimmt.
Eine erhöhte Dauertemperaturbeanspruchung ist selbstverständlich nur mit Bauteilen aus sehr temperaturbeständigen Materialien möglich, die auch im Langzeittest bestehen und kein ausgeprägtes Al- terungsverhalten zeigen. Höhere Arbeitetemperaturen stellen gleichzeitig auch höhere Anforderungen an die Chemikalien- und Hydrolysebeständigkeit der verwendeten Materialien. Selbstver- ständlich darf unter diesen anspruchsvollen Bedingungen der Berstdruck nicht in Mitleidenschaft gezogen werden.
Schließlich werden auch an den optischen Eindruck der Bauteilo- berflächen im Motorraum immer höhere Anforderungen gestellt, da nicht zuletzt auf diese Weise die Qualität der eingesetzten Bauteile dokumentiert werden soll.
Konstruktiv sehr anspruchsvolle Saugrohrmodule mit komplexen Bau- teilgeometrien werden heutzutage verstärkt über die Schmelzkerntechnik hergestellt (s.a. "Schmelzkerntechnik für Saugrohre", Kunststoffe, 1993, 83 (9), S. 671 - 672). Die Schmelzkerntechnik liefert spritzgegossene Hohlkörper aus Kunststoff in einem Arbeitsgang und ermöglicht es, schwierige Geometrien bereits beim Spritzguss in die Gesamtform zu integrieren. Aus diesem Grund erfordert die Schmelzkerntechnik regelmäßig ein sehr fließfähiges Schmelzematerial. Fasergehalte, insbesondere hohe Fasergehalte, wie sie in Saugrohrmodulen gebraucht werden, beeinträchtigen die Viskosität der Kunststoffschmelze jedoch erheblich. Aus diesem Grunde lassen sich komplexe Saugrohrmodule, z.B. solche mit einem schmalen Anguss oder mit langen Fließwegen, mit der Schmelzkem- technik nur bei sehr hohen Schmelzetemperaturen verwirklichen. Je höher die Temperatur der Kunststoffschmelze jedoch ist, desto länger ist die Abkühlzeit, bevor das Bauteil aus der Spritzgieß - form entnommen werden kann, was zwangsläufig zu langen Zykluszeiten führt.
Ein Kunststoffmaterial, das diesen Anforderungen gerecht wird, steht bislang nicht zur Verfügung.
Wünschenswert wäre demgemäß ein Kunststoffmaterial, das auch in Gegenwart hoher Glasfaseranteile bei weniger hohen Schmelzetemperaturen hinreichend viskos ist und eine schnelle und leichte Ent- formung zulässt. Insbesondere wäre es wünschenswert, ein Kunst- Stoffmaterial einsetzen zu können, das sich gleichermaßen gut für die Schmelzkerntechnik wie auch für bekannte Schweißtechniken eignet.
Der vorliegenden Erfindung lag demgemäß die Aufgabe zugrunde, Formmassen zur Verfügung zu stellen, die bei der Herstellung von Kunststoffformkörpern, insbesondere Kunststoffhohlkorpern universell einsetzbar sind, kurze Zykluszeiten ermöglichen und auch bei Dauerbelastung unter sehr hohen Temperaturen sehr gute mechanische Eigenschaften und insbesondere einen sehr hohen Berstdruck gewährleisten. Demgemäß wurden thermoplastische Formmassen gefunden, die
(A) ein oder mehrere Polyamide,
(B) schlichtebehandelte faserförmige Füllstoffe,
(C) geradkettige gesättigte Carbonsäuresalze mit Kettenlängen (einschließlich des endständigen Carboxylkohlenstoffato s) von mindestens 20, bevorzugt mindestens 24 C-Atomen und
(D) Alkalimetallhalogenide und Kupfer (I) -Verbindungen, sowie gegebenenfalls
(E) einen in Polyamid löslichen Farbstoff,
(F) Schlagzähmodifier und/oder
(G) weitere Zusatzstoffe
enthalten.
In einer bevorzugten Ausführungsform enthalten die thermoplastischen Formmassen
(A) 1 bis 99,889 Gew.-% an Polyamid,
(B) 0,1 bis 50 Gew.-% an schlichtebehandelten faserformigen Füllstoffen,
(C) 0,01 bis 10 Gew.-% an geradkettigen gesättigten Carbonsäuresalzen mit Kettenlängen (einschließlich des endständigen Carboxylkohlenstoffatoms) von mindestens 20, bevorzugt minde¬ stens 24 C-Atomen und
(D) 0,001 bis 7 Gew.-% an einer Mischung, enthaltend Alkalime- tallhalogenide und Kupfer (I) -Halogenide, sowie
(E) 0 bis 3 Gew.-% an löslichem Farbstoff,
(F) 0 bis 35 Gew.-% an Schlagzähmodifiern und/oder
(G) 0 bis 30 Gew.- an weiteren Zusatzstoffen,
wobei die Summe der Gew.-% stets 100 ergibt. Des weiteren wurde die Verwendung dieser thermoplastischen Formmassen für die Herstellung von Fasern, Folien und Kunststoffformkörpern, insbesondere für die Herstellung von Kunststoffhohlkorpern, z.B. von Saugrohrmodulen gefunden. Außerdem wurden Kunststoffformkörper, insbesondere Kunststoffhohlkörper enthaltend die vorgenannten thermoplastischen Formmassen gefunden.
Als Komponente A) enthalten die erfindungsgemäßen thermoplastischen Formmassen mindestens ein Polyamid.
Geeignet sind Polyamide mit aliphatischem teilkristallinen oder teilaromatischen sowie amorphen Aufbau jeglicher Art und deren Blends, einschließlich Polyetheramide wie Polyetherblockamide. Unter Polyamide im Sinne der vorliegenden Erfindung sollen alle bekannten Polyamide verstanden werden.
Solche Polyamide weisen im allgemeinen eine Viskosi'tätszahl von 90 bis 350, vorzugsweise 110 bis 240 ml/g auf, bestimmt in einer 0,5 gew.-%-igen Lösung in 96 gew.-%-iger Schwefelsäure bei 25°C gemäß ISO 307.
Halbkristalline oder amorphe Polyamidharze mit einem Molekulargewicht (Gewichtsmittelwert) von mindestens 5.000 g/mol, wie sie z.B. in den amerikanischen Patentschriften 2 071 250, 2 071 251, 2 130 523, 2 130 948, 2 241 322, 2 312 966, 2 512 606 und 3 393 210 beschrieben werden, sind bevorzugt. Beispiele hierfür sind Polyamide, die sich von Lactamen mit 7 bis 13 Ringgliedern ableiten, wie Polycaprolactam, Polycapryllactam und Polylaurin- lactam, sowie Polyamide, die durch Umsetzung von Dicarbonsäuren mit Diaminen erhalten werden.
Als Dicarbonsäuren sind Alkandicarbonsäuren mit 6 bis 12, insbesondere 6 bis 10 Kohlenstoffatomen und aromatische Dicarbonsäuren einsetzbar. Hier seien Adipinsäure, Azelainsäure, Sebacinsäure, Dodecandisäure (= Decandicarbonsäure) und Terephthal- und/oder Isophthalsäure als Säuren genannt.
Als Diamine eignen sich besonders Alkandiamine mit 6 bis 12, ins¬ besondere 6 bis 8 Kohlenstoffatomen sowie m-Xylylendiamin, Di- (4-aminophenyl)methan, Di- (4-aminocyclohexyl) -methan, 2,2-Di- (4-aminophenyl)-propan oder 2,2-Di- (4-aminocyclohe- xyl) -propan. Bevorzugte Polyamide sind Polyhexa ethylenadipinsäureamid (PA 66) und Polyhexamethylensebacinsäureamid (PA 610) , Polycaprolactam (PA 6) sowie Copolyamide 6/66, insbesondere mit einem Anteil von 5 bis 95 Gew.-% an Caprolactam-Einheiten.
PA 6, PA 66 und Copolyamide 6/66 sind besonders bevorzugt. Ganz besonders bevorzugt ist Polyamid 6 (PA 6) .
Außerdem seien auch noch Polyamide erwähnt, die z.B. durch Kon- densation von 1,4-Diaminobutan mit Adipinsäure unter erhöhter Temperatur erhältlich sind (Polyamid-4, 6) . Herstellungsverfahren für Polyamide dieser Struktur sind z.B. in den EP-A 38 094, EP-A 38 582 und EP-A 39 524 beschrieben.
Weitere Beispiele sind Polyamide, die durch Copolymerisation zweier oder mehrerer der vorgenannten Monomeren erhältlich sind, oder Mischungen mehrerer Polyamide, wobei das Mischungsverhältnis beliebig ist.
Weiterhin haben sich solche teilaromatischen Copolyamide wie PA 6/6T und PA 66/6T als besonders vorteilhaft erwiesen, deren Triamingehalt weniger als 0,5, vorzugsweise weniger als 0,3 Gew.-% beträgt (siehe EP-A 299 444). Die Herstellung der teilaromatischen Copolyamide mit niedrigem Triamingehalt kann nach den in den EP-A 129 195 und 129 1.96 beschriebenen Verfahren erfolgen.
Die nachfolgende nicht abschließende Aufzählung enthält die genannten, sowie weitere Polyamide im Sinne der Erfindung (in Klam- mern sind die Monomeren angegeben) :
PA 46 (Tetramethylendiamin, Adipinsäure)
PA 66 (Hexamethylendiamin, Adipinsäure)
PA 69 (Hexamethylendiamin, Azelainsäure) PA 610 (Hexamethylendiamin, Sebacinsäure)
PA 612 (Hexamethylendiamin, Decandicarbonsäure)
PA 613 (Hexamethylendiamin, Undecandicarbonsäure)
PA 1212 (1, 12-Dodecandiamin, Decandicarbonsäure)
PA 1313 (1,13-Diaminotridecan, Undecandicarbonsäure) PA MXD6 (m-Xylylendiamin, Adipinsäure)
PA TMDT (Trimethylhexamethylendiamin, Terephthalsäure)
PA 4 (Pyrrolidσn)
PA 6 (ε-Caprolactam)
PA 7 (Ethanolactam) PA 8 (Capryllactam)
PA 9 (9-Aminopelargonsäure)
PA 11 (11-Aminoundecansäure) PA 12 ( (Laurinlacta )
Diese Polyamide und ihre Herstellung sind bekannt. Einzelheiten zu ihrer Herstellung findet der Fachmann z.B. in Ullmanns Ency- klopädie der Technischen Chemie, 4. Auflage, Bd. 19, S. 39-54, Verlag Chemie, Weinheim 1980, sowie Ullmanns Encyclopedia of In- dustrial Chemistry, Vol. A21, S. 179-206, VCH Verlag, Weinheim 1992, sowie Stoeckhert, Kunststofflexikon, 8. Auflage, S. 425-428, Hanser Verlag München 1992 (Stichwort "Polyamide" und folgende) .
Auf die Herstellung der bevorzugten Polyamide PA6, PA 66 und Co- polyamid 6/66 wird nachfolgend kurz eingegangen.
Die Polymerisation bzw. Polykondensation der Ausgangs onomere wird vorzugsweise nach den üblichen Verfahren durchgeführt. So kann die Polymerisation des Caprolactams beispielsweise nach den in der DE-A 14 95 198 und DE-A 25 58 480 beschriebenen kontinuierlichen Verfahren erfolgen. Die Polymerisation von AH-Salz zur Herstellung von PA 66 kann nach dem üblichen diskontinuierlichen Verfahren (siehe: Polymerization Processes S. 424-467, insbesondere S. 444-446, Interscience, New York, 1977) oder nach einem kontinuierlichen Verfahren, z.B. gemäß EP-A 129 196, erfolgen.
Bei der Polymerisation können übliche Kettenregler mitverwendet werden. Geeignete Kettenregler sind z.B. Triacetondiaminverbin- dungen (siehe WO-A 95/28443), Monocarbonsäuren wie Essigsäure, Propionsäure und Benzoesäure, sowie Basen wie Hexamethylendiamin, Benzyla in und 1,4-Cyclohexyldiamin. Auch C4-Cιo-Dicarbonsäuren wie Adipinsäure, Azelainsäure, Sebacinsäure, Dodecandisäure; Cs-Cs-Cycloalkandicarbonsäuren wie Cyclohexan-1 , 4-dicarbonsäure; Benzol- und Naphthalindicarbonsäuren wie Isophthalsäure, Tereph- thalsäure und Naphthalin-2, 6-dicarbonsäure, sind als Kettenregler geeignet.
Die erhaltene Polymerschmelze wird aus dem Reaktor ausgetragen, gekühlt und granuliert. Das erhaltene Granulat wird einer Nachpolymerisation unterworfen. Dies geschieht in an sich bekannter Weise durch Erwärmen des Granulats auf eine Temperatur T unter-- halb der Schmelztemperatur Ts bzw. Kristallitschmelztemperatur Tk des Polyamids. Durch die Nachpolymerisation stellt sich das endgültige Molekulargewicht des Polyamids (messbar als Viskositäts- zahl VZ, siehe Angaben zur VZ weiter oben) ein. Üblicherweise dauert die Nachpolymerisation 2 bis 24 Stunden , insbesondere 12 bis 24 Stunden. Wenn das gewünschte Molekulargewicht erreicht ist, wird das Granulat in üblicher Weise abgekühlt. Entsprechende Polyamide sind unter dem Handelsnamen Ultramid® von BASF erhältlich. Selbstverständlich können auch beliebige Mischungen der vorgenannten Polyamidtypen als Komponente A) eingesetzt werden.
Die erfindungsgemäße thermoplastische Formmasse verfügt über schlichtebehandelte faserförmige Füllstoffe B) . Die faserför igen Füllstoffe liegen in den thermoplastischen Formmassen bevorzugt in Mengen von 0,1 bis 50, besonders bevorzugt 10 bis 45 und ins- besondere 25 bis 40 Gew.-%, bezogen auf das Gesamtgewicht der thermoplastischen Formmassen, vor.
Als bevorzugte faserförmige Füllstoffe seien Glasfasern, Kohlen- stoffasern, Aramid-Fasern, Kaliu titanat-Fasern und Basalt-Fasern genannt, wobei Glasfasern aus E-Glas besonders bevorzugt sind. Diese können als Rovings oder Schnittglas in den handelsüblichen Formen eingesetzt werden.
Die faserförmigen Füllstoffe sind zur besseren Verträglichkeit mit dem Polyamid A) mit einer Schlichte vorbehandelt. Bevorzugte Schlichtebestandteile stellen Silanverbindungen dar.
Geeignete Silanverbindungen sind solche der allgemeinen Formel (I)
(X-(CH2 ) n ) k-Si-(0-CmH2m+ι)4-k in der die Substituenten folgende Bedeutung haben:
X NH2, CH2 CH , HO-
\ /
mit
n eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4 m eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2 k eine ganze Zahl von 1 bis 3, bevorzugt 1.
Bevorzugte Silanverbindungen für die Anbindung der Glasfaser an Polyamide sind Aminosilanverbindungen wie Aminopropyltrimethoxy- silan, Aminobutyltrimethoxysilan, A inopropyltriethoxysilan, Ami- nobutyltriethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten. Die Silanverbindungen werden im allgemeinen in Mengen von 0,05 bis 5, vorzugsweise 0,5 bis 1,5 und insbesondere 0,8 bis 1 Gew.-% (bezogen auf B) ) zur Oberflächenbeschichtung eingesetzt.
Neben den Silanverbindungen enthält die Schlichte vorzugsweise auch Zusätze an polymeren Filmbildnern wie Polyurethanen. Bevorzugt liegt der Anteil an polymeren Filmbildnern im Bereich von 5 bis 15 Gew.-%, bezogen auf das Gesamtgewicht der Schlichte. Besonders bevorzugt verfügt die Schlichte über Kettenverlängerer . Als Kettenverlängerer kommen z.B. anorganische Verbindungen wie Hypophoshite, z.B. Alkali- oder Erdalkalihypophosphite wie Natrium- oder Magnesiumhypophospit, gegebenenfalls auch als Monohy- drat, oder organische Verbindungen, die mit Polyamiden unter Kettenverlängerung reagieren können, in Frage. Unter solche organi- sehe Verbindungen fallen z.B. Verbindungen, die mindestens eine, bevorzugt mindestens zwei gegenüber Polyamiden reaktive funktioneile Gruppen wie die Epoxy-, Hydroxy-, Ester- und Carboxy- oder Maleinsäureanhydridgruppe alleine oder in Mischung enthalten. Hierunter fallen auch Verbindungen mit aeiden H-Atomen, z.B. Po- lyethylenglykol-2-ethyl-alkylester. Des weiteren können der
Schlichte auch oberflächenaktive Substanzen und/oder Antistatika zugesetzt sein.
Bevorzugt sind faserförige Füllstoffe mit einer mittleren arith- metischen Faserlänge von 150 μm bis 10 mm, bevorzugt 200 μm bis 7 mm und insbesondere 220 μm bis 5 mm. Der mittlere Durchmesser beträgt im allgemeinen von 3 bis 30 μm, bevorzugt von 5 bis 20 μm und insbesondere 8 bis 14 μm. Die gewünschte Faserlänge kann z.B. durch Mahlen in einer Kugelmühle eingestellt werden, wobei eine Faserlängenverteilung entsteht.
Eine weitere Reduzierung der Faserlänge führt, wenn die mittlere Faserlänge <200 μm ist, zu einem rieselfähigen Schüttgut, das wie ein Pulver in das Polymer eingemischt werden kann. Aufgrund der geringen Faserlänge tritt beim Einarbeiten nur noch eine geringe weitere Verkürzung der Faserlänge ein.
Der Fasergehalt wird üblicherweise nach Veraschen des Polymeren bestimmt. Zur Bestimmung der Faserlängenverteilung wird im allge- meinen der Ascherückstand in Silikonöl aufgenommen und bei 20-fa- cher Vergrößerung des Mikroskops fotografiert. Auf den Bildern können bei mindestens 500 Fasern die Länge ausgemessen und der arithmetische Mittelwert (dso) daraus berechnet werden. Exemplarisch seien als besonders geeignete schlichtebehandelte Glasfasern B) die Schnittglasfaser die Handelsprodukte Chop Van- tage® 3540, 3545, 3660 und 3786 der Fa. PPG Industries Inc. genannt .
Geeignet sind weiterhin nadeiförmige mineralische Füllstoffe, unter welchen mineralische Füllstoffe mit stark ausgeprägtem nadeiförmigen Charakter verstanden werden sollen. Als Beispiel sei nadeiförmiger Wollastonit genannt. Vorzugsweise weist das Mineral ein L/D- (Länge/Durchmesser) -Verhältnis von 8 : 1 bis 35 : 1, bevorzugt von 8 : 1 bis 11 : 1 auf. Der mineralische Füllstoff ist ebenfalls mit der vorstehend genannten Schlichte vorbehandelt, es sei denn, gleichzeitig wird eine schlichtebehandelte Faser eingesetzt.
Als teilchenförmige Füllstoffe-eignen sich amorphe Kieselsäure, Magnesiumcarbonat (Kreide) , Kaolin (insbesondere kalzinierter Kaolin) , gepulverter Quarz, Glimmer, Talkum, Feldspat und insbesondere Calciumsilikate wie Wollastonit.
Es können auch beliebige Faser- und/oder Füllstoffmischungen eingesetzt werden.
Als Komponente C) liegen in den erfindungsgemäßen Formmassen ge- radkettige gesättigte Carbonsäuresalze mit Kettenlängen (einschließlich des endständigen Carboxylkohlenstoffatoms) von mindestens 20 und bevorzugt mindestens 24 C-Atomen vor. Geeignete Mengen liegen im Bereich von 0,01 bis 10, bevorzugt 0,05 bis 1,5 und besonders bevorzugt 0,1 bis 0,5 Gew.-%, bezogen auf das Gesamtge- wicht an thermoplastischer Formmasse. Besonders bevorzugt sind die Salze der Montansäure, wobei im Sinne der vorliegenden Erfindung unter Montansäure sowohl die Verbindung CH3 (CH2) 26C02H wie auch ein Gemisch an geradkettigen gesättigten Fettsäuren mit 24 bis 32 Kohlenstoffatomen verstanden werden soll. Als kationische Gegenionen fungieren in den genannten Carbonsäuresalzen bevorzugt Alkali- und Erdalkalikationen, wie Lithium, Natrium oder Calciu . Selbstverständlich können auch das Aluminiumkation oder Übergangsmetallkationen wie Zink oder nicht-metallische Kationen wie Ammonium-, Phosphonium- oder Arseniumionen verwendet werden. Be- sonders geeignet sind die Kationen der Erdalkalimetalle, insbesondere das Calcium-Kation. Es können auch beliebige Mischungen der vorgenannten geradkettigen gesättigten Carbonsäuresalze eingesetzt werden. In einer besonders bevorzugten Ausführungsform kommt als Komponente C) Calcium-Montanat zum Einsatz. Solche Pro- dukte sind im Handel z.B. unter dem Namen Licomont VaV 102 (Fa. Clariant) erhältlich. Als Komponente D) liegt in den erfindungsgemäßen thermoplastischen Formmassen ein Gemisch an Kupfer (I) -Verbindungen und Alkalimetallhalogeniden vor. Geeignete Mengen dieses Gemisches liegen im Bereich von mindestens 0,05 Gew.-%, bevorzugt im Bereich von 0,05 bis 7, besonders bevorzugt von 0,3 bis 5 und insbesondere von 0,5 bis 3 Gew.-%, bezogen auf das Gesamtgewicht der thermoplastischen Formmasse. Kupfer (I) -Verbindungen werden vorteilhafterweise in Form von Kupfer (I) -Halogeniden in die thermoplastischen Formmassen eingebracht. Als bevorzugte Kupfer (I) -Halogenide kommen Kupfer (I) -Chlorid und Kupfer (I) -Bromid sowie insbesondere Kupfer (I) -Iodid oder deren Mischungen in Frage. Zusammen mit den Kupfer (I) -Verbindungen werden in der Komponente D) Alkalimetall- halogenide eingesetzt. Geeignet als Alkalimetallhalogenide sind die Fluoride, Chloride, Bromide und Iodide des Lithiums, Natri- ums, Kaliums und Cäsiums. Bevorzugt wird auf Kaliumiodid, insbesondere Kaliumbromid zurückgegriffen. Es können auch Mischungen an Alkalimetallhalogeniden eingesetzt werden. In der vorgehend beschriebenen Stabilisatormischung liegen die Alkalimetallhalogenide vorteilhafterweise im molaren Überschuss vor. Das molare Verhältnis von Alkalimetallhalogeniden zu Kupferhalogeniden liegt demgemäß vorzugsweise im Bereich von 10:1 bis 1:100 und besonders bevorzugt im Bereich von 1:1 bis 1:50. Als besonders geeignet haben sich thermoplastische Formmassen erwiesen, in denen Kupfer in Form einer Kupfer (I) -Verbindung in einer Menge von mindestens 10 ppm, bezogen auf das Gesamtgewicht der thermoplastischen Formmasse, vorliegt. Vorzugsweise liegt diese Kupfermenge im Bereich von 50 bis 1000 ppm, besonders bevorzugt im Bereich von 80 bis 500 ppm und insbesondere im Bereich von 250 bis 400 ppm.
Zusätzlich zu den Alkalimetallhalogeniden kann man in einer weiteren Ausführungsform auch Triphenylphosphin als Stabilisatorbestandteil mitverwenden.
Des weiteren können die erfindungsgemäßen thermoplastischen For - massen als Komponente E) bis zu 5 Gew.-%, besonders bevorzugt bis zu 2 Gew.-%, bezogen auf das Gesamtgewicht der thermoplastischen Formmassen, an löslichem Farbstoff enthalten. Hierbei handelt es sich um solche Farbstoffe, die im Polyamid A) löslich sind. Geeignet als lösliche Farbstoffe sind z.B. organische Verbindungen enthaltend ein Chromophor, beispielsweise Aminfarbstoffe wie das Handelsprodukt Nigrosin.
Schlagzähmodifier (Komponente F) ) können in den er indungsgemäßen Formmassen in Mengen bis zu 35, vorzugsweise bis zu 25 Gew.-% enthalten sein. Schlagzähmodifier sind dem Fachmann auch unter den Bezeichnungen kautschukelastische Polymerisate, Elastomere oder Kautschuke bekannt.
Ganz allgemein handelt es sich dabei um (Co) Polymerisate, die be- vorzugt aus mindestens zwei der folgenden Monomeren aufgebaut sind: Ethylen, Propylen, Butadien, Isobuten, Isopren, Chloropren, Vinylacetat, Styrol, Acrylnitril und Acryl- bzw. Methacrylsäuree- ster mit 1 bis 18 C-Atomen in der Alkoholkomponente.
Derartige Polymere werden z.B. in Houben-Weyl, Methoden der organischen Chemie, Bd. 14/1 (Georg-Thieme-Verlag, Stuttgart, 1961) , Seiten 392 bis 406 und in der Monographie von C.B. Bucknall, "Toughened Plastics" (Applied Science Publishers, London, 1977) , beschrieben.
Im folgenden werden einige bevorzugte Arten solcher Elastomerer vorgestellt.
Bevorzugte Arten von Elastomeren sind die sog. Ethylen-Propylen (EPM) bzw. Ethylen-Propylen-Dien- (EPDM) -Kautschuke.
EPM-Kautschuke haben im allgemeinen praktisch keine Doppelbindungen mehr, während EPDM-Kautschuke 1 bis 20 Doppelbindungen/100 C- Atome aufweisen können.
Als Dien-Monomere für EPDM-Kautschuke seien beispielsweise konjugierte Diene wie Isopren und Butadien, nicht-konjugierte Diene mit 5 bis 25 C-Atomen wie Penta-l,4-dien, Hexa-l,4-dien, Hexa-l,5-dien, 2, 5-Dimethylhexa-l, 5-dien und Octa-l,4-dien, cy- clische Diene wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopentadien sowie Alkenylnorbornene wie 5-Ethyli- den-2-norbornen, 5-Butyliden-2-norbornen, 2-Methallyl-5-norbor- nen, 2-Isopropenyl-5~norbornen und Tricyclodiene wie 3-Methyl- tricyclo (5.2.1.0.2.6) -3, 8-decadien oder deren Mischungen genannt . Bevorzugt werden Hexa-1, 5-dien-5-ethyliden-norbornen und Dicyclopentadien. Der Diengehalt der EPDM-Kautschuke beträgt vorzugsweise 0,5 bis 50, insbesondere 1 bis 8 Gew.^%, bezogen auf das Gesamtgewicht des Kautschuks.
ΞPM- bzw. EPDM-Kautschuke können vorzugsweise auch mit reaktiven Carbonsäuren oder deren Derivaten gepfropft sein. Hier seien z.B. Acrylsäure, Methacrylsäure und deren Derivate, z.B. Glycidyl- ( eth) acrylat, sowie Maleinsäureanhydrid genannt.
Eine weitere Gruppe bevorzugter Kautschuke sind Copolymere des Ethylens mit Acrylsäure und/oder Methacrylsäure und/oder den Estern dieser Säuren. Zusätzlich können die Kautschuke noch Di- carbonsäuren wie Maleinsäure und Fu arsäure oder Derivate dieser Säuren, z.B. Ester und Anhydride, und/oder Epoxy-Gruppen enthaltende Monomere enthalten. Diese Dicarbonsäurederivate bzw. Epoxygruppen enthaltende Monomere werden vorzugsweise durch Zugabe von Dicarbonsäure- bzw. Epoxygruppen enthaltenden Monomeren M zum Mo- nomerengemisch in den Kautschuk eingebaut.
Bevorzugte Dicarbonsäure- bzw. Epoxy-Monomere M sind Maleinsäure, Maleinsäureanhydrid und Epoxygruppen-enthaltende Ester der Acryl- säure und/oder Methacrylsäure, wie Glycidylacrylat, Glycidylme- thacrylat und die Ester mit tertiären Alkoholen, wie t-Butylacry- lat. Letztere weisen zwar keine freien Carboxylgruppen auf, kommen in ihrem Verhalten aber den freien Säuren nahe und werden deshalb als Monomere mit latenten Carboxylgruppen bezeichnet.
Vorteilhaft bestehen die Copolymeren aus 50 bis 98 Gew.-% Ethylen, 0,1 bis 20 Gew.-% Epoxygruppen enthaltenden Monomeren und/ oder Methacrylsäure und/oder Säureanhydridgruppen enthaltenden Monomeren sowie der restlichen Menge an (Meth) crylsäureestern.
Weitere bevorzugte Ester der Acryl- und/oder Methacrylsäure sind die Methyl-, Ethyl-, Propyl- und i-. bzw. t-Butylester. Daneben können auch Vinylester und Vinylether als Comonomere eingesetzt werden.
Die vorstehend beschriebenen Ethylencopolymeren können nach an sich bekannten Verfahren hergestellt werden, vorzugsweise durch statistische Copoly erisation unter hohem Druck und erhöhter Temperatur. Entsprechende Verfahren sind allgemein bekannt.
Bevorzugte Elastomere sind auch Emulsionspolymerisate, deren Herstellung z.B. in Blackley, Emulsion Polymerisation, Applied Science Publishers, London 1975, beschrieben wird. Die verwendbaren Emulgatoren und Katalysatoren sind an sich bekannt.
Grundsätzlich können homogen aufgebaute Elastomere oder aber solche mit einem Schalenaufbau eingesetzt werden. Der schalenar¬ tige Aufbau wird durch die Zugabereihenfolge der einzelnen Monomeren bestimmt; auch die Morphologie der Polymeren wird von die- ser Zugabereihenfolge beeinflusst.
Nur stellvertretend seien hier als Monomere für die Herstellung des Kautschukteils der Elastomeren Acrylate wie z.B. n-Butylacry- lat und 2-Ethylhexylacrylat, entsprechende Methacrylate, Butadien und Isopren sowie deren Mischungen genannt. Diese Monomeren kön¬ nen mit weiteren Monomeren wie z.B. Styrol, Acrylnitril, Vinyle- thern und weiteren Acrylaten oder Methacrylaten wie Methylmetha- crylat, Methylacrylat, Ethylacrylat und Propylacrylat copolymeri- siert werden.
Die Weich- oder Kautschukphase (mit einer Glasübergangstemperatur von unter 0°C) der Elastomeren kann den Kern, die äußere Hülle oder eine mittlere Schale (bei Elastomeren mit mehr als zweischa- ligem Aufbau) darstellen; bei mehrschaligen Elastomeren können auch mehrere Schalen aus einer Kautschukphase bestehen.
Sind neben der Kautschukphase noch eine oder mehrere Hartkomponenten (mit Glasübergangstemperaturen von mehr als 20°C) am Aufbau des Elastomeren beteiligt, so werden diese im allgemeinen durch Polymerisation von Styrol, Acrylnitril, Methacrylnitril, α-Me- thylstyrol, p-Methylstyrol, Acrylsäureestern und Methacrylsäuree- stern wie Methylacrylat, Ethylacrylat und Methylmethacrylat als Hauptmonomeren hergestellt. Daneben können auch hier geringere Anteile an weiteren Comonomeren eingesetzt werden.
In einigen Fällen hat es sich als vorteilhaft herausgestellt, Emulsionspolymerisate einzusetzen, die an der Oberfläche reaktive Gruppen aufweisen. Derartige Gruppen sind z.B. Epoxy-, Carboxyl-, latente Carboxyl-, A ino- oder Amidgruppen sowie funktioneile Gruppen, die durch Mitverwendung von Monomeren der allgemeinen Formel (II)
Rl R2
CH2 = C— Q N — C— R3 II ,
II 0
eingeführt werden könnnen,
wobei die Substituenten folgende Bedeutung haben:
R1 Wasserstoff oder eine Cι~ bis C4-Alkylgruppe,
R2 Wasserstoff, eine Ci- bis Cs-Alkylgruppe oder eine Arylgruppe, insbesondere Phenyl,
R3 Wasserstoff, eine Cχ~ bis Cio-Alkyl-, eine Ce- bis C12-Aryl- gruppe oder -0R4
R4 eine Cι~ bis C8-Alkyl- oder C6- bis Ci2~Arylgruppe, die gege- benenfalls mit 0- oder N-haltigen Gruppen substituiert sein können, Q eine chemische Bindung, eine Cι~ bis Cι0-Alkylen- oder Cs-Ci2-Arylengruppe oder
0 ||
— C — Y Y O-Z oder NH-Z und
Z eine Ci- bis Cι0-Alkylen- oder C6- bis Cι2-Arylengruppe.
Auch die in der EP-A 208 187 beschriebenen Pfropfmonomeren sind zur Einführung reaktiver Gruppen an der Oberfläche geeignet.
Als weitere Beispiele seien noch Acryla id, Methacrylamid und substituierte Ester der Acrylsäure oder Methacrylsäure wie (N-t-Butylamino) -ethylmethacrylat, (N,N-Dimethylamino) ethylacrylat, (N,N-Dimethylamino) -methylacrylat und (N,N-Diethyla- mino) ethylacrylat genannt.
Weiterhin können die Teilchen der Kautschukphase auch vernetzt sein. Als Vernetzer wirkende Monomere sind beispielsweise Buta-l,3-dien, Divinylbenzol, Diallylphthalat und Dihydrodicyclo- pentadienylacrylat sowie die in der EP-A 50 265 beschriebenen Verbindungen.
Ferner können auch sogenannten pfropfvernetzende Monomere (graft- linking monomers) verwendet werden, d.h. Monomere mit zwei oder mehr polymerisierbaren Doppelbindungen, die bei der Polyme- risation mit unterschiedlichen Geschwindigkeiten reagieren. Vorzugsweise werden solche Verbindungen verwendet, in denen mindestens eine reaktive Gruppe mit etwa gleicher Geschwindigkeit wie die übrigen Monomeren polymerisiert, während die andere reaktive Gruppe (oder reaktive Gruppen) z.B. deutlich langsamer polymeri- siert (polymerisieren) . Die unterschiedlichen Polymerisationsgeschwindigkeiten bringen einen bestimmten Anteil an ungesättigten Doppelbindungen im Kautschuk mit sich. Wird anschließend auf einen solchen Kautschuk eine weitere Phase aufgepfropft, so reagieren die im Kautschuk vorhandenen Doppelbindungen zumindest teil- weise mit den Pfropfmonomeren unter Ausbildung von chemischen Bindungen, d.h. die aufgepfropfte Phase ist zumindest teilweise über chemische Bindungen mit der Pfropfgrundlage verknüpft.
Beispiele für solche pfropfvernetzende Monomere sind Allylgruppen enthaltende Monomere, insbesondere Allylester von ethylenisch ungesättigten Carbonsäuren wie Allylacrylat, Allylmethacrylat, Diallylmaleat, Diallylfumarat, Diallylitaconat oder die entspre- chenden MonoallylVerbindungen dieser Dicarbonsäuren. ' Daneben gibt es eine Vielzahl weiterer geeigneter pfropfvernetzender Monome- rer; für nähere Einzelheiten sei hier beispielsweise auf die US-PS 4 148 846 verwiesen.
Im allgemeinen beträgt der Anteil dieser vernetzenden Monomeren an dem schlagzäh modifizierenden Polymer bis zu 5 Gew.-%, vorzugsweise nicht mehr als 3 Gew.-%, bezogen auf das schlagzäh modifizierende Polymere.
Nachfolgend seien einige bevorzugte Emulsionspolymerisate aufgeführt. Zunächst sind hier Pfropfpolymerisate mit einem Kern und mindestens einer äußeren Schale zu nennen, die folgenden Aufbau haben:
Figure imgf000017_0001
Anstelle von PfropfPolymerisaten mit einem mehrschaligen Aufbau können auch homogene, d.h. einschalige Elastomere aus Buta-l,3-dien, Isopren und n-Butylacrylat oder deren Copolymeren eingesetzt werden. Auch diese Produkte können durch Mitverwendung von vernetzenden Monomeren oder Monomeren mit reaktiven Gruppen hergestellt werden.
Beispiele für bevorzugte Emulsionspolymerisate sind n-Butylacrylat/ (Meth) acrylsäure-Copolymere, n-Butylacrylat/Glycidylacrylat- oder n-Butylacrylat/Glycidylmethacrylat-Copolymere, fropfpolyme- risate mit einem inneren Kern aus n-Butylacrylat oder auf Buta¬ dienbasis und einer äußeren Hülle aus den vorstehend genannten Copolymeren und Copolymere von Ethylen mit Comonomeren, die reaktive Gruppen liefern.
Die beschriebenen Elastomere können auch nach anderen üblichen Verfahren, z.B. durch Suspensionspolymerisation, hergestellt werden.
Siliconkautschuke, wie in der DE-A 37 25 576, der EP-A 235 690, der DE-A 38 00 603 und der EP-A 319 290 beschrieben, sind eben- falls bevorzugt.
Selbstverständlich können auch Mischungen der vorstehend aufgeführten Kautschuktypen eingesetzt werden.
Als Komponente G) können die erfindungsgemäßen Formmassen bis zu 30 Gew.-%, vorzugsweise bis zu 15 Gew. -% weiterer Zusatzstoffe enthalten.
Als Beispiel seien in Mengen von 0 bis 2 Gew.-% fluorhaltige Ethylenpolymerisate genannt. Hierbei handelt es sich um Polymerisate des Ethylens mit einem Fluorgehalt von 55 bis 76 Gew.-%, vorzugsweise 70 bis 76 Gew.-%.
Beispiele hierfür sind Polytetrafluorethylen (PTFE) , Tetrafluore- thylen-Copolymere oder Tetrafluorethylen-Copolymerisate mit kleineren Anteilen (in der Regel bis zu 50 Gew.-%) copolymerisierba- rer ethylenisch ungesättigter Monomerer. Diese werden z.B. von Schildknecht in "Vinyl and Related Polymers", Wiley-Verlag, 1952, Seiten 484 bis 494, und von Wall in "Fluorpolymers" (Wiley Inter- scienσe, 1972) beschrieben.
Diese fluorhaltigen Ethylenpolymerisate liegen homogen verteilt in den Formmassen vor und weisen bevorzugt eine Teilchengröße so (Zahlenmittelwert) im Bereich von 0,05 bis 10 μm, insbesondere von 0,1 bis 5 μm auf. Diese geringen Teilchengrößen lassen sich besonders bevorzugt durch Verwendung von wässrigen Dispersionen von fluorhaltigen Ethylenpoly erisaten und deren Einarbeitung z.B. in eine Polyamidschmelze erzielen.
Als weitere Zusatzstoffe seien genannt Hitze- und Lichtstabilisatoren, Gleit- und Entformungsmittel, Färbemittel, wie nicht lösliche Farbstoffe und Pigmente in üblichen Mengen.
Zusätzliche Pigmente und nicht lösliche Farbstoffe sind allgemein in Mengen bis zu 2, bevorzugt bis 1 und insbesondere bis
0,5 Gew.-% in den thermoplastischen Formmassen enthalten. Derartige Pigmente führen beispielsweise zu einer Farbvertiefung oder zu unterschiedlichen matten Abstufungen der schwarzen Farbe und sind allgemein bekannt, siehe z.B. R. Gächter und H. Müller, Taschenbuch der Kunststoffadditive, Carl Hanser Verlag, 1983, S. 494 bis 510. Als erste bevorzugte Gruppe von Pigmenten sind Weisspigmente zu nennen wie Zinkoxid, Zinksulfid, Bleiweiss
(PbCθ3-Pb(OH)2) , Lithopone, Antimonweiss und Titandioxid. Von den beiden gebräuchlichsten Kristallmodifikationen (Rutil- und Ana- tas-Typ) des Titandioxids wird insbesondere die Rutilform zur Nuancierung der erfindungsgemäßen Formmassen verwendet.
Schwarze Farbpigmente, die erfindungsgemäß eingesetzt werden können, sind Eisenoxidschwarz (Fe3θ4) , Spinellschwarz (Cu, (Cr,Fe) 204) , Manganschwarz (Mischung aus Mangandioxid, Silici- umdioxid und Eisenoxid) , Kobaltschwarz und Antimonschwarz sowie besonders bevorzugt Ruß, der meist in Form von Furnace-oder Gasruß eingesetzt wird (siehe hierzu G. Benzing, Pigmente für Anstrichmittel, Expert-Verlag (1988), S..78ff
Oxidationsverzögerer und Wärmestabilisatoren, die den thermoplastischen Massen gemäß der Erfindung zugesetzt werden können, sind z.B. Zinkfluorid und Zinkchlorid. Ferner sind sterisch gehinderte Phenole, Hydrochinone, substituierte Vertreter dieser Gruppe, sekundäre aromatische Amine, gegebenenfalls in Verbindung mit phosphorhaltigen Säuren bzw. deren Salze, sog. HALS-Typen (hinde- red amine light stabilizer) und Mischungen dieser Verbindungen, vorzugsweise in Konzentrationen bis zu 1 Gew.%, bezogen auf das Gewicht der Mischung, einsetzbar. Synergistische Komponenten wie Triphenylphosphin können ebenso Verwendung finden.
Beispiele für UV-Stabilisatoren sind verschiedene substituierte Resorcine, Salicylate, Benzotriazole und Benzophenone, die im allgemeinen in Mengen bis zu 2 Gew.% eingesetzt werden.
Als Antistatika seien beispielsweise Kokosfettdiethanolamin und Natriumalkylsulfonate genannt.
Gleit- und Entformungsmittel, die in der Regel in Mengen bis zu 1 Gew.% der thermoplastischen Masse zugesetzt werden, sind Stearinsäure, Stearylalkohol, Octadecylalkohol, Stearinsäurealkylester und -amide, Ethylenbisstearylamid sowie Ester des Pentaerythrits mit langkettigen Fettsäuren. Es können auch Salze des Calciums, Zinks oder Aluminiums der Stearinsäure sowie Dialkylketone, z.B. Distearylketon, eingesetzt werden.
Als Flammschutzmittel seien beispielsweise roter Phosphor, Phosp- horverbindungen, Melamincyanurat, Erdalkalicarbonate, Magnesiumhydroxid oder halogenhaltige wie Decabromdiphenylethan genannt, welche in Mengen bis zu 20, vorzugsweise bis zu 15 Gew.-% eingesetzt werden können.
Unter den Zusatzstoffen sind auch Stabilisatoren, die die Zerset- zung des roten Phosphors in Gegenwart von Feuchtigkeit und Luft- sauerstoff verhindern. Als Beispiele seien Verbindungen des Cad- miums, Zinks, Aluminiums, Zinns, Magnesiums, Mangans und Titans genannt. Besonders geeignete Verbindungen sind z.B. Oxide der genannten Metalle, ferner Carbonate oder Oxicarbonate, Hydroxide sowie Salze organischer oder anorganischer Säuren wie Acetate oder Phosphate bzw. Hydrogenphosphate.
Auch niedermolekulare Polymere kommen als Zusatzstoffe in Betracht, wobei Polyethylenwachs als Gleitmittel besonders bevor- zugt ist.
Als Zusatzstoffe kommen weiterhin anorganische und organische Kettenverlängerer wie Natriumhypophosphit (ggfs. als Monohydrat) oder Polymere mit gegenüber Polyamiden reaktiven Endgruppen wie Epoxy-, Hydroxy-, Ester- und Carboxy-Endgruppen sowieVerbindungen mit aciden H-Atomen, z.B. Polyethylenglykol-2-ethyl-alkylester, in Betracht.
Die Herstellung der erfindungsgemäßen Formmassen kann nach an sich bekannten Verfahren erfolgen. Beispielsweise können sämtli- ehe Komponenten A) bis D) und gegebenenfalls E) bis G) trocken vermischt und anschließend aufgeschmolzen und in die erfindungs- gemäßen thermoplastischen Formmassen überführt werden. Des weiteren können die mit der Schlichte versehenen Glasfasern bereits im eingesetzten Polyamidgranulat vorliegen. Nach einer bevorzug- ten Ausführungsform erfolgt die Herstellung durch Zugabe der Komponenten B) bis D) sowie gegebenenfalls E) bis G) zur Schmelze der Komponente A) . Hierbei werden in einer bevorzugten Ausführungsform die Komponenten B) und gegebenenfalls F) getrennt zu der Schmelze der Komponente A) zudosiert. Die Komponenten C) und D) sowie gegebenenfalls E) und G) können getrennt oder vorzugsweise als Vormischung in die Schmelze eingebracht werden. Zweckmäßigerweise verwendet man hierzu Extruder, z.B. Einschneckenoder Zweischnecken-Extruder oder andere herkömmliche Plastifizie- rungsvorrichtungen wie Brabender-Mühlen oder Banbury-Mühlen.
Die erhaltene Polyamidmischung kann man gegebenenfalls einer weiteren thermischen Behandlung, d.h. einer Naσhkondensation in fester Form unterwerfen. In Temperaggregaten, z.B. einem Taumler- Mischer, oder kontinuierlich sowie diskontinuierlich betriebenen Temperrohren tempert man die in der jeweiligen Bearbeitungsform vorliegende Formmasse, bis die gewünschte Viskositätszahl VZ er¬ reicht ist. Der Temperaturbereich für die Temperung hängt vom Schmelzpunkt der reinen Komponente A) ab. Bevorzugte Temperaturen für die Temperung liegen im Bereich von 5 bis 50, vorzugsweise 20 bis 30°C unterhalb des jeweiligen Schmelzpunktes von Komponente A) . Das Temperverfahren erfolgt vorzugsweise unter einer Inertga- 5 satmosphare, vorzugsweise mit Stickstoff oder überhitztem Wasserdampf als Inertgasen. Die Verweilzeiten betragen im allgemeinen 0,5 bis 50, vorzugsweise 4 bis 20 Stunden.
Gegenstand der Erfindung sind auch Kunststoffformkörper, insbe-
1x0u sondere Kunststoffhohlkörper aus den erfindungsgemäßen Formmassen. Die Kunststoffhohlkörper können sowohl einstückig nach der Schmelzkerntechnik, als auch aus mehreren Kunststoffformkörpern mittels dem Fachmann bekannter Schweißtechniken wie dem Ultraschall-, Laser-, Heizelement- und dem Vibrationsschweißen gefer-
" tigt sein. Des weiteren fallen auch Kunststoffbauteile, die zwei oder mehrere nach einem der vorgenannten Verfahren verschweißte Kunststoffformkörper, enthaltend die erfindungsgemäßen Formmassen, umfassen, unter den Gegenstand der Erfindung. Bei der Herstellung dieser Kunststoffbauteile beobachtet man' im Bereich der
^υ Schweißnaht Polymerschmelzen aus den erfindungsgemäßen Formmassen mit einer hohen Viskosität. Mit den erfindungsgemäßen Formmassen wird im Naht- bzw. Fügebereich eine sehr hohe Verschlaufungs - dichte erzielt. Nach den vorgehend beschriebenen Verfahren verschweißte Kunststoffformkörper liefern Kunststoffbauteile mit ei¬
25 ner sehr guten Stabilität und Festigkeit im Fügebereich.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine sehr gute Fließfähigkeit aus. Die Schmelzestabilität ist unter üblichen Verarbeitungsbedingungen ausgezeichnet und
30 weitgehend unabhängig von den gewählten Bedingungen. Mit diesen Formmassen lassen sich Kunststoffformkörper, z.B. Kunststoffhohlkörper mit einer hervorragenden Oberfläche erhalten, die sich durch exzellente mechanische Eigenschaften, z.B. einen sehr hohen Berstdruck, der auch bei Dauerbelastung unter hohen Temperaturen 5 nicht einbricht, auszeichnen.
Demgemäß eignen sich die erfindungsgemäßen thermoplastischen Formmassen zur Herstellung von Fasern, Folien und Kunststoffform- 0 körpern jeglicher Art. Die mit den erfindungsgemäßen thermoplastischen Formmassen erhaltenen Formteile bzw. Kunststoffformkörper verfügen über sehr glatte Oberflächen, die nicht durch an der Oberfläche heraustretende Glasfaserenden beeinträchtigt werden. Ein auf solche Glasfaserenden zurückgehender Vergrauungseffekt 5 wird nicht beobachtet. Aus den erfindungsgemäßen thermoplastischen Formmassen hergestellte Kunststoffformkörper zeichnen sich durch eine stark verbesserte Schlagzähigkeit (bestimmt nach IS0179/leU) sowie durch eine stark verbesserte Zugfestigkeit (bestimmt nach ISO 527-2) aus, und zwar sowohl vor, als auch nach einer Wärmelagerung, z.B. bei 150°C für einen Zeitraum von 1000 h im Umluftofen. Insbesondere eignen sich die erfindungsgemäßen Formmassen auch für die Herstellung von Kunststoffhohlkorpern, beispielsweise von Saugrohrmodulen. Diese Kunststoffhohlkörper, beispielsweise aus zwei Halbschalen vibrationsgeschweißte Kugelhohlkörper, zeichnen sich - ebenfalls vor wie auch nach der vorgehend beschriebenen Wärmelagerung - durch einen stark verbesser- ten Berstdruck aus. Verbesserungen im Bereich von 10 bis 20 % und auch darüber sind für die vorgenannten Parameter Schlagzähigkeit, Zugfestigkeit und Berstdruck ohne weiteres zu erreichen. Von Vorteil ist weiterhin, dass sich hoch belastbare Kunststoffhohlkörper bzw. Kunststoffbauteile erhalten lassen, unabhängig davon, ob sie nach der Schmelzkerntechnik oder mittels geeigneter Schweiß- verfahren erhalten werden. Beispielsweise erlauben es die erfindungsgemäßen Formmassen, über die Schmelzkerntechnik zu Hohlkörpern mit komplexer Geometrie, z.B. sehr schmalen Fließwegen oder sehr engen Angüssen, zu gelangen. Von Vorteil ist weiterhin, dass sich die spritzgegossenen Kunststoffformkörper bei sehr hohen Temperaturen entformen lassen, ohne beschädigt zu werden, und so sehr kurze Zykluszeiten ermöglichen. Aufgrund dieser sehr kurzen Zykluszeiten kommen die erfindungsgemäßen thermoplastischen Formmassen auch für einen sogenannten On-Line-Fertigungsprozess in Frage, d.h. der spritzgegossene Kunststoffform- oder Kunststoff- hohlkörper wird nicht zwischengelagert, sondern direkt in den automatisierten Herstellprozess, beispielsweise eines Saugrohrmoduls, integriert.
Beispiel 1:
Komponente A) : Polycaprolactam mit einer relativen Lösungs- viskosität RV (1,0 g/dl) von 2,73 Komponente B) : Schnittglasfaser PPG 3660 der Fa. PPG Fiber Glass
Komponente C) Calciummontanat Komponente D) CuI/KI-Komplex (molares Verhältnis 1/5) Komponente G) Rußpigment BP 880
64,147 Gew.-% A, 35 Gew.-% B, 0,35 Gew.-% C, 0,003 Gew.-% Cu in Form der Komponente D und 0,5 Gew.-% G, jeweils bezogen auf das Gesamtgewicht aller Komponenten, wurden in einem ZweiSchnecken- extruder ZSK 40 der Fa. Werner & Pfleiderer bei 275°C gemischt. Das erhaltenen Granulat wurde gemäß ISO 179/leU zu Probekörpern verarbeitet, an denen die Schlagzähigkeit bestimmt wurde. Der Mittelwert für die an 10 Probekörpern bestimmte Schlagzähigkeit betrug 109 kJ/m2.
Vergleichsbeispiel :
Wie in Beispiel 1 beschrieben wurden Probekörper hergestellt, wobei jedoch anstelle der in Beispiel 1 eingesetzten Komponente B eine Schnittglasfaser PPG 3545 der Fa. PPG Fiber Glass, und anstelle der in Beispiel 1 eingesetzten Komponente C Calciumstearat eingesetzt wurde. Der Mittelwert für die Schlagzähigkeit betrug 85 kJ/m2.

Claims

Patentansprüche
1. Thermoplastische Formmassen, enthaltend
(A) ein oder mehrere Polyamide,
(B) schlichtebehandelte faserförmige Füllstoffe,
(C) geradkettige gesättigte Carbonsäuresalze mit Kettenlängen (einschließlich des endständigen Carboxylkohlenstoffatoms) von mindestens 20, bevorzugt mindestens 24 C-Atomen und
(D) Alkalimetallhalogenide und Kupfer (I) -Verbindungen sowie gegebenenfalls
(E) einen in Polyamid löslichen Farbstoff,
(F) Schlagzähmodifier und/oder
(G) weitere Zusatzstoffe.
2. Thermoplastische Formmassen, enthaltend
(A) 1 bis 99,889 Gew.-% an Polyamid,
(B) 0,1 bis 50 Gew.-% an schlichtebehandelten faserförmigen Füllstoffen,
(C) 0,01 bis 10 Gew.-% an geradkettigen gesättigten Carbonsäuresalzen mit Kettenlängen (einschließlich des endständigen Carboxylkohlenstoffatoms) von mindestens 20, bevorzugt mindestens 24 C-Atomen und
(D) 0,001 bis 7 Gew.-% an einer Mischung, enthaltend Alkalimetallhalogenide und Kupfer (I) -Halogenide, sowie
(E) 0 bis 3 Gew.-% an löslichem Farbstoff,
(F) 0 bis 35 Gew.-% an Schlagzähmodifiern und/oder
(G) 0 bis 30 Gew.-% an weiteren Zusatzstoffen, wobei die Summe der Gew.-% stets 100 ergibt.
3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass man als Polyamid ein Polycaprolac- tam (PA 6) oder ein Polyhexamethylenadipinsäureamid (PA 66) verwendet.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass man als Glasfaser eine Type E- Glasfaser verwendet.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass man als geradkettiges ungesättigtes Carbonsäuresalze ein Salz der Montansäure verwendet.
6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, da- durch gekennzeichnet, dass man als löslichen Farbstoff Nigro- sin verwendet.
7. Thermoplastische Formmassen nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass in diesen eine Kupfer (I) -Verbin- düng in einer Menge von mindestens 10 ppm, insbesondere im Bereich von 250 bis 400 ppm, bezogen auf das Gesamtgewicht der thermoplastischen Formmasse, vorliegt.
8. Verwendung der thermoplastischen Formmassen gemäß den Ansprü- chen 1 bis 7 für die Herstellung von Faser, Folien und Kunststoffformkörpern.
9. Verwendung nach Anspruch 8, wobei der Kunststoffformkörper einen Kunststoffhohlkörper, insbesondere ein Saugrohrmodul, oder ein Bauteil desselben darstellt.
10. Kunststoff ormkörper oder einstückige Kunststoffhohlkörper, insbesondere Saugrohrmodule, enthaltend thermoplastische Formmassen gemäß den Ansprüchen 1 bis 7.
11. Kunststoffbauteile, insbesondere mehrstückige Kunststoffhohlkörper, umfassend mindestens zwei mittels Ultraschall-, Laser-, Heizelement- oder Vibrationsschweißens verbundene Kunststoffformkörper, enthaltend thermoplastische Formmassen gemäß den Ansprüchen 1 bis 7.
PCT/EP2002/009722 2001-09-06 2002-08-30 Thermoplastische formmassen auf der basis von polyamiden sowie ein- und mehrstückige kunststoffformkörper aus diesen thermoplastischen formmassen WO2003022918A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003526987A JP2005502755A (ja) 2001-09-06 2002-08-30 ポリアミドベースの熱可塑性成形材料および該熱可塑性成形材料からなる一体形および複数部材からなるプラスチック成形体
EP02772247A EP1427777B1 (de) 2001-09-06 2002-08-30 Verwendung thermoplastischer formmassen auf der basis von polyamiden
US10/487,547 US20040235987A1 (en) 2001-09-06 2002-08-30 Polyamide-based thermoplastic molding materials and single-piece and multiple-piece plastic shaped bodies made from said thermoplastic molding materials
DE50210896T DE50210896D1 (de) 2001-09-06 2002-08-30 Verwendung thermoplastischer formmassen auf der basis von polyamiden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10143818A DE10143818A1 (de) 2001-09-06 2001-09-06 Thermoplastische Formmassen auf der Basis von Polyamiden sowie ein- und mehrstückige Kunststoffformkörper aus diesen thermoplastischen Formmassen
DE10143818.4 2001-09-06

Publications (1)

Publication Number Publication Date
WO2003022918A1 true WO2003022918A1 (de) 2003-03-20

Family

ID=7697993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/009722 WO2003022918A1 (de) 2001-09-06 2002-08-30 Thermoplastische formmassen auf der basis von polyamiden sowie ein- und mehrstückige kunststoffformkörper aus diesen thermoplastischen formmassen

Country Status (7)

Country Link
US (1) US20040235987A1 (de)
EP (1) EP1427777B1 (de)
JP (1) JP2005502755A (de)
AT (1) ATE373044T1 (de)
DE (2) DE10143818A1 (de)
ES (1) ES2291499T3 (de)
WO (1) WO2003022918A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307756A (ja) * 2003-04-10 2004-11-04 Asahi Kasei Chemicals Corp 耐衝撃性樹脂組成物
FR2914370A1 (fr) * 2007-03-29 2008-10-03 Peugeot Citroen Automobiles Sa Repartiteur d'admission d'air a volume variable.
CN104610173A (zh) * 2015-01-13 2015-05-13 青岛双桃精细化工(集团)有限公司 一种苯胺黑的循环生产工艺
CN104610175A (zh) * 2015-01-13 2015-05-13 青岛双桃精细化工(集团)有限公司 一种用于生产苯胺黑的循环装置
CN104610174A (zh) * 2015-01-13 2015-05-13 青岛双桃精细化工(集团)有限公司 一种苯胺黑生产过程中气相潜热的综合利用装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848827B2 (ja) * 2006-04-25 2011-12-28 三菱エンジニアリングプラスチックス株式会社 繊維強化熱可塑性樹脂組成物およびこれを成形してなる樹脂成形体
JP5020567B2 (ja) * 2006-08-18 2012-09-05 三菱エンジニアリングプラスチックス株式会社 レーザーマーキング用熱可塑性樹脂組成物及び熱可塑性樹脂成形体、並びにレーザーマーキング方法
EP2468809A1 (de) * 2010-12-23 2012-06-27 LANXESS Deutschland GmbH Zusammensetzungen
KR20160094724A (ko) 2015-02-02 2016-08-10 현대자동차주식회사 탄소 장섬유 강화 열가소성 수지 조성물 및 이에 의해 제조된 성형품
EP3356468A4 (de) 2015-09-29 2019-06-05 Ascend Performance Materials Operations LLC Copolyamidzusammensetzungen mit reduzierten kristallisationsraten
KR101816434B1 (ko) * 2016-09-06 2018-01-08 현대자동차주식회사 발포사출용 탄소 장섬유 강화 열가소성 수지 조성물 및 이를 사용하여 제조된 성형품

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413258A1 (de) * 1989-08-16 1991-02-20 BASF Aktiengesellschaft Flammfeste thermoplastische Formmassen auf der Basis von Polyamiden und Polyester-Elastomeren
EP0591731A1 (de) * 1992-09-24 1994-04-13 BASF Aktiengesellschaft Fliessfähige Polyamidformmassen
EP1088852A1 (de) * 1999-09-29 2001-04-04 Toyo Boseki Kabushiki Kaisha Anorganisch verstärkte Polyamid Zusammensetzungen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413258A1 (de) * 1989-08-16 1991-02-20 BASF Aktiengesellschaft Flammfeste thermoplastische Formmassen auf der Basis von Polyamiden und Polyester-Elastomeren
EP0591731A1 (de) * 1992-09-24 1994-04-13 BASF Aktiengesellschaft Fliessfähige Polyamidformmassen
EP1088852A1 (de) * 1999-09-29 2001-04-04 Toyo Boseki Kabushiki Kaisha Anorganisch verstärkte Polyamid Zusammensetzungen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307756A (ja) * 2003-04-10 2004-11-04 Asahi Kasei Chemicals Corp 耐衝撃性樹脂組成物
JP4484443B2 (ja) * 2003-04-10 2010-06-16 旭化成ケミカルズ株式会社 耐衝撃性樹脂組成物
FR2914370A1 (fr) * 2007-03-29 2008-10-03 Peugeot Citroen Automobiles Sa Repartiteur d'admission d'air a volume variable.
CN104610173A (zh) * 2015-01-13 2015-05-13 青岛双桃精细化工(集团)有限公司 一种苯胺黑的循环生产工艺
CN104610175A (zh) * 2015-01-13 2015-05-13 青岛双桃精细化工(集团)有限公司 一种用于生产苯胺黑的循环装置
CN104610174A (zh) * 2015-01-13 2015-05-13 青岛双桃精细化工(集团)有限公司 一种苯胺黑生产过程中气相潜热的综合利用装置
CN104610175B (zh) * 2015-01-13 2017-01-04 青岛双桃精细化工(集团)有限公司 一种用于生产苯胺黑的循环装置

Also Published As

Publication number Publication date
JP2005502755A (ja) 2005-01-27
ES2291499T3 (es) 2008-03-01
DE10143818A1 (de) 2003-03-27
DE50210896D1 (de) 2007-10-25
EP1427777B1 (de) 2007-09-12
US20040235987A1 (en) 2004-11-25
EP1427777A1 (de) 2004-06-16
ATE373044T1 (de) 2007-09-15

Similar Documents

Publication Publication Date Title
EP2057223B1 (de) Polyamidformmassen mit verbesserter wärmealterungs- und hydrolysebeständigkeit
DE60002236T2 (de) Polyamidzusammensetzung
DE60119452T2 (de) Polyamidharzzusammensetzung
EP1994075B1 (de) Teilaromatische Copolyamide mit hoher Kristallinität
EP2562219B1 (de) Thermoplastische formmassen mit erhöhter hydrolyse-beständigkeit
DE60300996T2 (de) Polyamidharzzusammensetzung
WO2007042446A1 (de) Flammgeschütze formmassen
DE102005005847A1 (de) Wärmealterungsbeständige Polyamide
WO2003022918A1 (de) Thermoplastische formmassen auf der basis von polyamiden sowie ein- und mehrstückige kunststoffformkörper aus diesen thermoplastischen formmassen
JP5667625B2 (ja) マスターバッチペレットおよびその製造方法ならびに該マスターバッチペレットを含むポリアミド樹脂組成物
JP2011074361A (ja) ポリアミド組成物を含む電気部品
DE202018006637U1 (de) Thermostabilisierte Zusammensetzung
WO2003091336A1 (de) Flammgeschützte schwarze thermoplastische formmassen
CN112457664A (zh) 一种阻燃聚酰胺复合材料及其制备方法和应用
DE69925106T2 (de) Polyamidharzzusammensetzung und verfahren zu deren herstellung
DE60312099T2 (de) Polyamidharzmischung für einen Teil eines Motorwasserkühlsystems und der diese Mischung enthaltende Teil des Systems
EP2831159B1 (de) Thermoplastische formmassen mit erhöhter hydrolyse-beständigkeit
WO2006010543A1 (de) Wärmestabilisierte polyamide
EP1292641B1 (de) Verwendung von Polyamid Mischungen
EP1030888A2 (de) Dimensionsstabile thermoplastische formmassen
DE4231928A1 (de) Fließfähige Polyamidformmassen
JP2002121279A (ja) ポリアミド樹脂組成物の製造方法
DE102008053797A1 (de) Thermoplastische Formmassen mit verbesserter thermischer Stabilität
DE102008052055A1 (de) Thermoplastische Formmassen mit verbesserter thermischer Stabilität
JPH10278065A (ja) ポリアミド成形品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002772247

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10487547

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003526987

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002772247

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002772247

Country of ref document: EP