WO2003022902A1 - Strahlenhärtbare urethanacrylate auf basis einer mischung verschieden oxalkylierter polyole - Google Patents

Strahlenhärtbare urethanacrylate auf basis einer mischung verschieden oxalkylierter polyole Download PDF

Info

Publication number
WO2003022902A1
WO2003022902A1 PCT/EP2002/009500 EP0209500W WO03022902A1 WO 2003022902 A1 WO2003022902 A1 WO 2003022902A1 EP 0209500 W EP0209500 W EP 0209500W WO 03022902 A1 WO03022902 A1 WO 03022902A1
Authority
WO
WIPO (PCT)
Prior art keywords
urethane acrylates
acid
mixture
radiation
polyol
Prior art date
Application number
PCT/EP2002/009500
Other languages
English (en)
French (fr)
Inventor
Jan Weikard
Wolfgang Fischer
Manfred Müller
Thomas Fäcke
Herbert Witossek
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP02797924A priority Critical patent/EP1456273B1/de
Priority to CA2459358A priority patent/CA2459358C/en
Priority to DK02797924.4T priority patent/DK1456273T3/da
Priority to HU0402239A priority patent/HU228390B1/hu
Priority to BRPI0212331-2A priority patent/BR0212331B1/pt
Priority to KR1020047003340A priority patent/KR100897985B1/ko
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to MXPA04002119 priority patent/MX246814B/es
Priority to DE50214841T priority patent/DE50214841D1/de
Priority to JP2003526973A priority patent/JP4253584B2/ja
Priority to AT02797924T priority patent/ATE493455T1/de
Publication of WO2003022902A1 publication Critical patent/WO2003022902A1/de
Priority to HK05104459A priority patent/HK1071763A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • C08F299/065Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes from polyurethanes with side or terminal unsaturations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/68Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the invention relates to new low-viscosity radiation-curable urethane acrylates which cure to give coatings with improved abrasion resistance, and to their use as coating agents, in particular for materials for floors.
  • urethane acrylates Radiation-curable coating compositions based on reaction products of hy (oxyfunctional esters of (meth) acrylic acid and diisocyanates are referred to as urethane acrylates and are known, for example, from P.K.T. Oldring
  • Such coating compositions usually have a high dynamic viscosity of typically over 10,000 mPa s (at 23 ° C) and are therefore diluted with low molecular weight esters of acrylic acid (reactive thinners) and with the addition of photoinitiators and optionally additives by various methods such as e.g. a roller application is applied to substrates to be coated and then hardened by the action of UV radiation. Due to the dilution with reactive thinners, the urethane acrylates often lose important ones
  • urethane acrylates Properties such as abrasion resistance and toughness. It is therefore advisable to use particularly low-viscosity urethane acrylates in order to keep the proportion of reactive diluents low.
  • the hydroxy-functional esters of (meth) acrylic acid used to prepare the urethane acrylates are 2-hydroxyethyl and 2-hydroxypropyl acrylate or methacrylate as industrially readily available preliminary products.
  • the resulting urethane acrylates are undiluted but highly viscous (cf. examples from EP-A 168173).
  • EP-A 53749 teaches the production of low-viscosity urethane acrylates based on di- or polyisocyanates, hydroxy-functional acrylic acid esters of 3 to 4.5 times oxalkylated trimethylolpropane and optionally a hydroxyalkyl acrylate.
  • the cited application is shown by comparative tests that even with a degree of oxethylation of 7, corresponding products are insufficient in their resistance to polar solvents.
  • the object of the present invention was to provide low-viscosity and solvent-resistant urethane acrylates with improved abrasion resistance compared to the prior art.
  • urethane acrylates based on di- or polyisocyanates and hydroxy-functional (meth) acrylic acid esters of mixtures of highly and lowly alkoxylated polyols are low-viscosity, resistant to solvents and particularly resistant to abrasion. This was surprising because it was not to be expected that there would be a significant difference between urethane acrylates, which contain, for example, a seven-fold ethoxylated triol, and urethane acrylates, which contain a mixture of higher and lower ethoxylated triols, which corresponds on average to a seven-fold ethoxylated triol.
  • the invention therefore relates to low-viscosity radiation-curable urethane acrylates which can be obtained by reacting a di- and / or polyisocyanate with a hydroxy-functional partial ester of acrylic and / or methacrylic acid based on a
  • Mixture of differently oxalkylated polyols with three or more hydroxyl groups characterized in that the mixture of the oxalkylated polyols consists of 25 to 75 mol% polyol with a degree of oxalkylation between 3 and 5 and 75 to 25 mol% polyol with a degree of oxalkylation between 8 and 25.
  • the invention also relates to a process for the preparation of the urethane acrylates according to the invention by a two-stage preparation process, characterized in that in the first stage oxalkylated polyols are partially esterified with acrylic and / or methacrylic acid [hereinafter referred to as (meth) acrylic acid] and in the second stage be reacted with di- and / or polyisocyanates.
  • the invention also relates to the use of the urethane acrylates as a constituent of coating compositions which cure under the influence of high-energy radiation.
  • the base of the oxyalkylated polyols are trihydric and higher alcohols
  • Molecular weight range 92 to 254 such as Glycerin, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol or sorbitol and mixtures thereof are used. Glycerol and trimethylolpropane are preferred. Oxalkylations take place according to methods known per se for the production of polyethers.
  • the monomers used here are ethylene oxide, propylene oxide and tetrahydrofuran, preferably ethylene oxide and / or propylene oxide, mixtures or different monomers being used one after the other (production of “blocks”).
  • the degree of oxyalkylation is based on the amount of oxyalkylation monomer Substantial alcohol referred to (for example 7.0 ol ethylene oxide per mol trimethylolpropane would correspond to a degree of oxyalkylation of 7.0).
  • the mixture of the oxyalkylated polyols is esterified with (meth) acrylic acid by methods known per se, preferably by one of the methods in which water of reaction is removed by distillation by a solvent which forms an azeotrope with water (azeotropic entrainer). It is also possible to esterify the various oxyalkylated polyols separately and then to mix the esters with polyisocyanates or before the further reaction. If necessary, the reaction of residual amounts of acid with epoxides can still continue after the esterification respectively. Such processes are described, for example, in EP-A 54105, EP-A 126341 and EP-A 900778.
  • Acrylic acid and / or methacrylic acid are based on the hydroxyl groups of the oxyalkylated polyols in an equivalent ratio of acid to hydroxide from 1 to 1.1 to 1 to 2.4, preferably from 1 to 1.2 to 1 to 1.8, particularly preferably from 1 to 1.3 to 1 to 1.5 used.
  • their anhydrides or oligomerization products such as methacrylic anhydride or dimeric acrylic acid can also be used, if accessible.
  • Suitable azeotropic entraining agents are hydrocarbons and their halogen or nitro substitution products, as well as other solvents which neither react with the reactants nor change under the influence of the acidic catalysts.
  • Unsubstituted hydrocarbons are preferably used. Examples include: aliphatic hydrocarbons, such as hexane, heptane, octane, gasoline fractions from various boiling ranges, cycloaliphatic hydrocarbons, such as cyclopentane, cyclohexane, methylcyclohexane, or aromatic hydrocarbons, such as benzene, toluene or the isomeric xylenes. Those solvents which boil in the range from 70-120 ° C.
  • the water-immiscible solvent can also be a mixture of the above substances. It is used in an amount of 10-100% by weight, preferably 15-50% by weight, particularly preferably 20-40% by weight, based on the weight of the reaction components to be esterified.
  • Inorganic or organic acids can be used as acidic esterification catalysts in an amount of 0.1-3.0% by weight, preferably 0.5-1.5% by weight, based on the weight of the reaction components to be esterified.
  • esterification catalysts are sulfuric acid, phosphoric acid, pyrophosphoric acid, p-toluenesulfonic acid, styrene-chvinylbenzenesulfonic acid, chlorosulfonic acid,
  • Chloroformic acid preferably sulfuric acid and p-toluenesulfonic acid.
  • Farther acidic catalysts bound to solid resins, for example ion exchangers, can also be used.
  • the reaction can be carried out in the presence of one or more polymerization inhibitors in an amount of 0.01-1% by weight, preferably 0.1-0.5% by weight, based on the mixture to be esterified.
  • polymerization inhibitors are described, for example, in Houben-Weyl, Methods of Organic Chemistry, 4th Edition, Volume XTV / 1, Georg Thieme Verlag, Stuttgart 1961, page 433 ff.
  • Examples include: sodium dithionite, sodium hydrogen sulfide, sulfur, hydrazine, phenylhydrazine, hydrazobenzene, N-phenyl- ⁇ -naphthylamine, N-phenylethanol diamine,
  • an oxygen-containing gas preferably air, is introduced into the solvent-containing reaction mixture.
  • the esterification of the (meth) acrylic acid is first carried out in a temperature range of 60-140 ° C., preferably 70-120 ° C., particularly preferably at the boiling point of the solvent used.
  • solvent is continuously removed from the reaction mixture by distillation, condensed outside of the reaction vessel in a water separator, separated from the water which has been dragged out and then returned to the reaction mixture.
  • the end of the reaction is reached when an amount of water corresponding to the desired degree of conversion of the reaction has been separated off or the acid number of the reaction mixture has dropped to the value corresponding to the desired degree of conversion.
  • the acid number is then between 0.1 and 15, preferably between 1 and 5 mg of potassium hydroxide per gram of reaction mixture.
  • the esterification catalyst can then optionally be neutralized, precipitated and / or filtered off, if appropriate the solvent can be distilled off and residual acid can be reacted with epoxy compounds which may optionally bear unsaturated groups.
  • 0.8 to 1.5, preferably 0.9 to 1.1 mol of glycidyl methacrylate is added per mole of residual acid and then reacted at 70 to 130, preferably 80 to 110 ° C. until an acid number of less than 3, preferably less than 1 mg Potassium hydroxide per gram of reaction mixture is reached.
  • the solvent has not been distilled off before the reaction with the epoxy compound, it is removed after this reaction. Distillation is preferably carried out under reduced pressure until the flash point of a sample is above 100.degree.
  • re-esterification processes can also be used instead of the esterification of acid and polyol.
  • the principle of this process is described, for example, in DE-A 4019788.
  • (meth) acrylic acid its esters are mixed with low molecular weight alcohols such as e.g. Methanol or ethanol used. No water is then split off, but rather the low molecular weight alcohol is removed from the reaction mixture by distillation. With this method, the azeotropic entrainer can be dispensed with.
  • the resulting hydroxy-functional partial esters made from various oxyalkylated polyols and (meth) acrylic acid usually have a dynamic viscosity of less than 1000 mPa s at 23 ° C, are clear and light water or slightly colored. These products are reacted in a second reaction stage with a di- and / or polyisocyanate - hereinafter referred to as polyisocyanate.
  • urethane acrylates In addition to the hydroxy-functional partial esters composed of differently alkoxylated polyols and (Mefh) acrylic acid, further compounds reactive with isocyanates can optionally be used. However, the amount of the urethane acrylates according to the invention is limited: less than 0.4 equivalents, preferably less than 0.2 equivalents, of further compounds reactive with isocyanates are used per isocyanate equivalent.
  • Such compounds can be: a free hydroxyl group-containing ester of acrylic acid or methacrylic acid with dihydric alcohols such as 2-hydroxyethyl, 2- or 3-hydroxypropyl or 2-, 3- or 4-hydroxybutyl (meth) acrylate, and their reaction products with lactones such as ⁇ -caprolactone or any mixture of such compounds, (cyclo) alkanediols (ie dihydric alcohols with (cyclo) aliphatic hydroxyl groups) in the molecular weight range 62 to 286, such as ethanediol, 1,2- and 1, 3-propanediol, 1,2-, 1,3- and 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, cyclohexane-1,4-dimethanol, 1,2- and 1,4 -Cyclohexanediol, 2-ethyl-2-butyl
  • ether oxygen such as Diethylene glycol, triethylene glycol, tetraefhylene glycol, dipropylene glycol, tripropylene glycol, polyethylene, polypropylene or polybutylene glycols with a maximum molecular weight of approximately 2000, preferably approximately
  • polyester diols from the above diols and aromatic and / or preferably (cyclo) aliphatic dicarboxylic acids or their anhydrides such as e.g. Phthalic acid, phthalic anhydride, isophthalic acid, tetrahydrophthalic acid, tetra-hydrophilic acid anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, cyclohexanedicarboxylic acid, maleic anhydride, fumaric acid, dicarboxylic acid, sorbic acid, dicarboxylic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid, adipic acid
  • Suitable polyisocyanates are any organic polyisocyanates known per se from polyurethane chemistry with aliphatic, cycloaliphatic and / or aromatic table-bound isocyanate groups, which preferably have a molecular weight of 144 to 1000, preferably 168 to 300.
  • isophorone isocyanate IPDI
  • Bis (4,4'-isocyanatocyclohexyl) methane H ⁇ MDI
  • These derivatives generally have an average molecular weight of up to approximately 1,000.
  • the preparation of such derivatives is described, for example, in US Pat. No. 3,124,605, US Pat. No. 3,183,112, US Pat. No. 3,919,218, US Pat. No. 4,324,879 or EP-A 798 299.
  • HDI, TPDI, TDI, HI MDI and / or polyisocyanates containing isocyanate groups and obtained by trimerization of HDI, TDI or IPDI are preferably used.
  • HDI and IPDI and their mixture are particularly preferred.
  • the polyisocyanates are used in an equivalent ratio of isocyanate to hydroxyl group of 1 to 1 to 1 to 3, preferably 1 to 1 to 1 to 2, particularly preferably 1 to 1 to 1 to 1.5.
  • the degree of conversion is usually monitored by monitoring the isocyanate content of the reaction mixture. For this purpose, both spectroscopic measurements (infrared or near infrared spectra) and chemical analyzes (titrations) of samples taken can be carried out.
  • the reaction is preferably carried out up to an isocyanate content of 0.2% or less. Reaction temperatures of 20 to 100 ° C, particularly preferably 50 to 80 ° C are maintained.
  • the starting components can be reacted in any order during the implementation.
  • the implementation takes place preferably in the presence of suitable catalysts for the urethanization reaction, such as, for example, tin (II) octoate, dibutyltin dilaurate or tertiary amines such as diazabicyclooctane.
  • suitable catalysts for the urethanization reaction such as, for example, tin (II) octoate, dibutyltin dilaurate or tertiary amines such as diazabicyclooctane.
  • coating agents may also contain additives and adjuvants, e.g. initiators known per se, which can trigger free-radical polymerization after irradiation with high-energy radiation, for example UV light.
  • initiators known per se
  • photoinitiators are described, for example, in P.K.T. Oldring (Ed.), Chemistry & Technology of UV & EB
  • Examples are 1-hydroxycyclohexyl- ⁇ henyl ketone, benzil ketals such as e.g. Benzil dimethyl ketal, acylphosphine oxides such as e.g. Bis- (2,4,6-trimethylbenzoyl) phenylphosphine oxide, diacylphosphine oxides, benzophenone and its derivatives. They are used alone or in a mixture, if appropriate together with others
  • Accelerators or coinitiators as additives are used in amounts of 0.1 to 10 parts by weight, preferably 2 to 7 parts by weight, particularly preferably 3 to 4 parts by weight.
  • the photopolymerization can also be used in Inert gas atmosphere can be carried out, the amount of photo-initiators can be selected significantly smaller than when curing in air. If the coating agents are to be hardened by means of electron beams, photoinitiators can be dispensed with.
  • the coating agents can be mixed with diluents as additives, which also (co) polymerize during UV curing.
  • Reactive diluents are described in PKT Oldring (Ed.), Chemistry & Technology of UV & EB Formulations For Coatings, Inks & Paints, Vol. 2, 1991, SITA Technology, London, pp. 237-285.
  • the esters of Acrylic acid or methacrylic acid preferably the acrylic acid of the following alcohols.
  • Monohydric alcohols are the isomeric butanols, pentanols, hexanols, heptanols,
  • Octanols, nonanols and decanols also cycloaliphatic alcohols such as iso- bornol, cyclohexanol and alkylated cyclohexanols, dicyclopentanol, arylaliphatic alcohols such as phenoxyethanol and nonylphenylethanol, as well as tetrahydrofurfuryl alcohols. Alkoxylated derivatives of these alcohols can also be used.
  • dihydric alcohols are alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, diethylene glycol, dipropylene glycol, which are isomers
  • Preferred dihydric alcohols are 1,6-hexanediol, dipropylene glycol and tripropylene glycol.
  • Trihydric alcohols are glycerol or trimethylolpropane or their alkoxylated derivatives. Propoxylated glycerol is preferred. Since the urethane acrylates according to the invention are comparatively low-viscosity, less reactive diluent is often required in comparison to urethane acrylates of the prior art in order to set the same viscosity.
  • Additive agents of various types are mixed. These include fillers, pigments, dyes, smoothing agents, matting agents, deaerating agents such as polyacrylates, adhesion promoters such as aminoalkyltrialkoxysilanes and leveling agents such as polysiloxanes, which are used in the amounts customary in coating technology.
  • fillers pigments, dyes, smoothing agents, matting agents, deaerating agents such as polyacrylates, adhesion promoters such as aminoalkyltrialkoxysilanes and leveling agents such as polysiloxanes, which are used in the amounts customary in coating technology.
  • UV absorbers such as UV absorbers and sterically hindered amines can be added in the usual amounts. If UV absorbers are used, a type with a wave-wave absorption must usually be used as the photoinitiator.
  • the use of light protection agents and the different types are described by way of example in A. Valet,
  • the coating compositions containing the urethane acrylates according to the invention are suitable for producing high-quality coatings, coatings and varnishes on various substrates, such as paper, cardboard, leather, textile, glass, plastics, metal, for example aluminum or steel sheets, which may have been subjected to a pretreatment, Metal also in the form of so-called "coils", wood in particular parquet or wood-based materials such as, for example, medium-density fiberboard, plastic materials such as polycarbonate or polyvinyl chloride foils (PVC), mineral materials such as cement, clay, minerals, ceramics or such substrates made from the materials mentioned substrates which consist of several of the materials mentioned can also be coated, the coating compositions of the invention are particularly suitable for the abrasion-resistant coating of materials used for floors
  • the coating agent is applied to the material to be coated using the methods which are customary and known in coating technology, such as spraying, knife coating, rolling, pouring, dipping, spinning and spraying (vacuum).
  • the liquid coating agent is cured by irradiation using ultraviolet radiation or electron beams. For this, the coated
  • UV radiation curing is carried out in a known manner and is described, for example, in PKT Oldring (Ed.), Chemistry & Technology of UV & EB Formulations For Coatings, Inks & Paints, Vol. 1, 1991, SITA Technology, London, S. 167-269. Examples
  • the reaction mixture is heated to the reflux temperature (about 94-108 ° C.) and kept under strong reflux until the acid number has reached a value of less than 4.5. During this time, approximately 77 g of water are separated. The batch is then cooled to 50 ° C. Vacuum is slowly applied at 50 ° C and the solvent is distilled off until nothing changes at 90 ° C and vacuum ( ⁇ 50 mbar). After aeration, 26.3 g of glycidyl methacrylate is added rapidly with stirring. The mixture is stirred for one hour at 100 ° C, the acid number of the product is below 2, the hydroxyl number between 80 and 90.
  • the partial esters of oxyalkylated polyol and acrylic acid, and 0.1% by weight are in each case in an apparatus with stirrer, gas inlet and thermometer while passing air (single apparatus volume per hour) and nitrogen (twice the apparatus volume per hour) Weighed 2,6-di-tert-butyl-4-methylphenol and 0.05% by weight of total tin (II) ethylhexoate and heated to 55 ° C. with stirring. The corresponding isocyanates are then added dropwise in such a way that a temperature of 55 to 60 ° C. is maintained with the exothermic reaction. After metering has ended (approx. 1 h), the temperature is set to 60 ° C. and held until the NCO content is below 0.1% (approx. 8 h).
  • MDF medium-density fiberboard
  • lifts were made as follows: once hand coater # 2 [approx. 18 ⁇ m], 2 passes at a belt speed of 15 m / min, then two hand coaters # 3 [approx. 30 ⁇ m] and 1 pass 5 rn / min belt speed. The layer thickness achieved was determined microscopically (light section microscopy). For the durability test, lifts were approx. 120 ⁇ m by means of a spiral squeegee
  • the abrasion test was carried out using a Taber Abraser Model 5130 and a Taber Abraser Grit Feeder, Model 155, both from Erichsen, with aluminum oxide (Alodur®

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)
  • Dental Preparations (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung betrifft neue niederviskose strahlenhärtbare Urethanacrylate, die zu Beschichtungen mit verbesserter Abriebbeständigkeit aushärten, sowie ihre Verwendung als Beschichtungsmittel insbesondere von Materialien für Fussböden.

Description

STRAHLENHÄRTBARE URETHANACRYLATE AUF BASIS EINER MISCHUNG VERSCHIEDEN
OXALKYLIERTER POLYOLE
Die Erfindung betrifft neue niederviskose strahlenhärtbare Urethanacrylate, die zu Beschichtungen mit verbesserter Abriebbeständigkeit aushärten, sowie ihre Verwendung als Beschichtungsmittel insbesondere von Materialien für Fußböden.
Strahlungshärtbare Beschichtungsmittel auf Basis von Umsetzungsprodukten von hy( oxyfunktionellen Estern der (Meth)Acrylsäure und Diisocyanaten werden als Urethanacrylate bezeichnet und sind beispielsweise bekannt aus P. K. T. Oldring
(Ed.), Chemistry & Technology of UV & EB Formulations For Coatings, Inks & Paints, Vol. 2, 1991, SITA Technology, London, S. 73 - 123. Sie werden häufig zur Beschichtung von Parkett und anderen Materialien, die als Fußböden verwendet werden, genutzt. Solche Beschichtungsmittel zeigen meist eine hohe dynamischen Viskosität von typischerweise über 10000 mPa s (bei 23 °C) und werden daher mit niedermolekularen Estern der Acrylsäure (Reaktivverdünnern) verdünnt und mit Zusatz von Fotoinitiatoren und gegebenenfalls von Additiven durch verschiedene Verfahren wie z.B. eine Walzapplikation auf zu beschichtende Substrate aufgebracht und anschließend durch Einwirkung von UV-Strahlung gehärtet. Durch die Ver- dünnung mit Reaktiwerdünnern verlieren die Urethanacrylate häufig an wichtigen
Eigenschaften wie Abriebfestigkeit und Zähelastizität. Es ist daher zweckmäßig, besonders niederviskose Urethanacrylate einzusetzen, um den Anteil an Reaktivverdünner gering zu halten. Als hydroxyfunktionelle Ester der (Meth)Acrylsäure kommen zur Herstellung der Urethanacrylate in den meisten Fällen 2-Hydroxyethyl- sowie 2-Hydroxypropylacrylat oder -methacrylat als industriell gut verfügbare Vorprodukte zum Einsatz. Die resultierenden Urethanacrylate sind unverdünnt jedoch hochviskos (vgl. Beispiele aus EP-A 168173).
Die EP-A 53749 lehrt die Herstellung von niederviskosen Urethanacrylaten auf Basis von Di- oder Polyisocyanaten, hydroxyfunktionellen Acrylsäureestern von 3 bis 4,5- fach oxalkyliertem Trimethylolpropan und optional eines Hydroxyalkylacrylats. In der zitierten Anmeldung wird durch Vergleichsversuche gezeigt, dass schon bei einem Oxethylierungsgrad von 7 entsprechende Produkte in ihren Beständigkeiten gegenüber polaren Lösungsmitteln unzureichend sind.
Aufgabe der vorliegenden Erfindung war es, niederviskose und gegen Lösungsmittel beständige Urethanacrylate mit gegenüber dem Stand der Technik verbesserten Abriebfestigkeiten bereitzustellen.
Es wurde gef nden, dass Urethanacrylate auf Basis von Di- oder Polyisocyanaten und hydroxyfunktionellen (Meth)acrylsäureestern von Mischungen von hoch- und niedrig oxalkylierten Polyolen niederviskos, beständig gegen Lösungsmittel und besonders abriebfest sind. Dies war überraschend, weil nicht zu erwarten war, dass ein wesentlicher Unterschied zwischen Urethanacrylaten besteht, die ein beispielsweise siebenfach ethoxyliertes Triol enthalten, und Urethanacrylaten, die eine Mischung aus höher und niedriger ethoxyliertem Triol enthalten, welche im Mittel einem siebenfach ethoxyliertem Triol entspricht.
Gegenstand der Erfindung sind daher niederviskose strahlenhärtbare Urethanacrylate erhältlich durch Umsetzung eines Di- und/oder Polyisocyanats mit einem hydroxy- funktioneilen Partialester der Acryl- und/oder Methacrylsäure auf Basis einer
Mischung verschieden oxalkylierter Polyole mit drei oder mehr Hydroxylgruppen, dadurch gekennzeichnet, dass die Mischung der oxalkylierten Polyole aus 25 bis 75 mol% Polyol eines Oxalkylierungsgrads zwischen 3 und 5 sowie 75 bis 25 mol% Polyol eines Oxalkylierungsgrads zwischen 8 und 25 besteht.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung der erfindungsgemäßen Urethanacrylate durch ein zweistufiges Herstellverfahren dadurch gekennzeichnet, dass in der ersten Stufe oxalkylierte Polyole teilweise mit Acryl- und/oder Methacrylsäure [im folgenden als (Meth)acrylsäure bezeichnet] verestert und in der zweiten Stufe mit Di- und/oder Polyisocyanaten zur Reaktion gebracht werden. Gegenstand der Erfindung ist auch die Verwendung der Urethanacrylate als Bestandteil von Beschichtungsmitteln, die unter dem Einfluss von energiereicher Strahlung aushärten.
Als Basis der oxalkylierten Polyole werden drei- und höherwertige Alkohole des
Molekulargewichtsbereichs 92 bis 254 wie z.B. Glycerin, Trimethylolpropan, Penta- erythrit, Ditrimethylolpropan, Dipentaerythrit oder Sorbit sowie deren Mischungen verwendet. Bevorzugt werden Glycerin und Trimethylolpropan. Oxalkylierungen finden nach an sich bekannten Methoden der Herstellung von Polyethern statt. Hier- bei kommen als Monomere Ethylenoxid, Propylenoxid und Tetrahydrofuran, bevorzugt Ethylenoxid und/oder Propylenoxid zum Einsatz, wobei auch Mischungen bzw. verschiedene Monomere nacheinander (Erzeugung von „Blöcken") verwendet werden. Als Oxalkylierungsgrad wird die Stoffinenge Oxalkylierungs-Monomer bezogen auf die Stoff enge Alkohol bezeichnet (z.B. 7,0 ol Ethylenoxid pro mol Trimethylolpropan entspräche einem Oxalkylierungsgrad von 7,0).
Wesentlich ist, dass zwei unterschiedlich oxalkylierte Polyole eingesetzt werden. Zum einen werden 25 bis 75 mol%, bevorzugt 30 bis 45 mol% Polyol eines Oxalkylierungsgrads zwischen 3 und 5 verwendet, zum anderen werden die zu 100 mol% fehlenden Teile, also 75 bis 25 mol%, bevorzugt 70 bis 55 ol% Polyol eines
Oxalkylierungsgrads zwischen 8 und 25, bevorzugt zwischen 8 und 15, besonders bevorzugt zwischen 10 und 13 verwendet.
Die Mischung der oxalkylierten Polyole wird nach an sich bekannten Verfahren mit (Meth)Acrylsäure verestert, bevorzugt nach einem der Verfahren, bei dem Reaktionswasser durch ein Lösungsmittel, welches mit Wasser ein Azeotrop bildet (azeotropes Schleppmittel), destillativ entfernt wird. Es ist auch möglich, die verschiedenen oxalkylierten Polyole getrennt zu verestern und die Ester anschließend bzw. vor der weiteren Umsetzung mit Polyisocyanaten zu mischen. Gegebenfalls kann weiterhin nach der Veresterung noch die Umsetzung von Restmengen Säure mit Epoxiden erfolgen. Solche Verfahren sind beispielsweise beschrieben in EP-A 54105, EP-A 126341 und EP-A 900778.
Acrylsäure und/oder Methacrylsäure werden bezogen auf die Hydroxygruppen der oxalkylierten Polyole in einem Equivalentverhältnis von Säure zu Hydroxid von 1 zu 1,1 bis 1 zu 2,4, bevorzugt von 1 zu 1,2 bis 1 zu 1,8, besonders bevorzugt von 1 zu 1,3 bis 1 zu 1,5 eingesetzt. Anstelle der reinen Säuren können - soweit zugänglich - auch deren Anhydride oder Oligomerisierungsprodukte wie Methacrylsäureanhydrid oder dimere Acrylsäure verwendet werden.
Als azeotrope Schleppmittel kommen Kohlenwasserstoffe sowie deren Halogenoder Nitro-Substitutionsprodukte in Betracht, sowie weitere Lösungsmittel, die weder mit den Reaktionspartnern reagieren noch sich unter dem Einfluß der sauren Katalysatoren verändern. In bevorzugter Weise werden nicht substituierte Kohlen- Wasserstoffe eingesetzt. Beispielhaft seien genannt: aliphatische Kohlenwasserstoffe, wie Hexan, Heptan, Octan, Benzinfraktionen verschiedener Siedebereiche, cycloali- phatische Kohlenwasserstoff, wie Cyclopentan, Cyclohexan, Methyl-cyclohexan, oder aromatische Kohlenwasserstoffe, wie Benzol, Toluol oder die isomeren Xylole. In bevorzugter Weise werden solche Lösungsmittel eingesetzt, die im Bereich von 70-120°C sieden. Insbesondere seien hier Cyclohexan, Toluol oder Benzinfraktionen im Siedebereich von 70-120°C genannt. Das mit Wasser nicht mischbare Lösungsmittel kann auch ein Gemisch der obengenannten Stoffe sein. Es wird in einer Menge von 10-100 Gew.-%, bevorzugt 15-50 Gew.-%, besonders bevorzugt 20-40 Gew.-%, bezogen auf das Gewicht der zu veresternden Reaktionskomponenten, eingesetzt.
Als saure Veresterungskatalysatoren können anorganische oder organische Säuren in einer Menge von 0,1-3,0 Gew.-%, bevorzugt 0,5-1,5 Gew.-% bezogen auf das Gewicht der zu veresternden Reaktionskomponenten, eingesetzt werden. Beispiele für solche Veresterungskatalysatoren sind Schwefelsäure, Phosphorsäure, Pyrophos- phorsäure, p-Toluolsulfonsäure, Styrol-chvinylbenzolsulfonsäure, Chlorsulfonsäure,
Chlorameisensäure, bevorzugt Schwefelsäure und p-Toluolsulfonsäure. Weiterhin können auch saure Katalysatoren, die auf Festharzen gebunden sind, z.B. lonen- tauscher verwendet werden.
Die Umsetzung kann in Gegenwart eines oder mehrerer Polymerisationsinhibitoren in einer Menge von 0,01-1 Gew.-%, bevorzugt 0,1 - 0,5 Gew. -% bezogen auf das zu veresternde Gemisch durchgeführt werden. Solche Inhibitoren sind beispielsweise in Houben-Weyl, Methoden der organischen Chemie, 4. Auflage, Band XTV/1, Georg Thieme Verlag, Stuttgart 1961, Seite 433 ff. beschrieben. Als Beispiele seien genannt: Natriumdithionit, Natriurnhydrogensulfid, Schwefel, Hydrazin, Phenyl- hydrazin, Hydrazobenzol, N-Phenyl-ß-naphthylamin, N-Phenyl-ethanoldiamin,
Dinitrobenzol, Picrinsäure, p-Nitroso-dimethylanilin, Diphenylnitrosamin, Phenole, wie p-tert-Butyl-brenzcatecbin, 2,5-Di-tert.-amyl-hydrochinon, Nitroxylverbin- dungen, p-Alkoxyphenole, Di-tert.-buty ydrochinon, Tetramemyl-thiuramdisulfid, 2-Mercaptobenzthiazol und Dimethyl-ditMocarbaminsäure-natriumsalz. Weiterhin wird in einer bevorzugten Variante ein sauerstoffhaltiges Gas, vorzugsweise Luft, in das lösungsmittelhaltige Reaktionsgemisch eingeleitet.
Es wird zunächst die Veresterung der (Meth)Acrylsäure in einem Temperaturbereich von 60 - 140°C, bevorzugt 70 - 120°C, besonders bevorzugt beim Siedepunkt des eingesetzten Lösungsmittels durchgeführt. Hierbei wird ständig Lösungsmittel aus dem Reaktionsgemisch destillativ abgezogen, außerhalb des Reaktionsgefäßes in einem Wasserabscheider kondensiert, von herausgeschleppten Wasser abgetrennt und danach wieder in das Reaktionsgemisch zurückgeführt. Das Ende der Reaktion ist erreicht, wenn eine dem gewünschten Umsetzungsgrad der Reaktion entsprechende Menge Wasser abgetrennt wurde oder die Säurezahl des Reaktionsge ischs auf den dem gewünschten Umsetzungsgrad entsprechenden Wert gefallen ist. Die Säurezahl beträgt dann zwischen 0,1 und 15, bevorzugt zwischen 1 und 5 mg Kaliumhydroxid pro Gramm Reaktionsgemisch. Im Anschluß kann gegebenenfalls der Veresterungkatalysator neutralisiert, gefällt und/oder abfiltriert werden, gegebenenfalls kann das Lösungsmittel abdestilliert werden und Restsäure mit Epoxyverbindungen, die gegebenenfalls ungesättigte Gruppen tragen können, umgesetzt werden. In einer bevorzugten Variante wird pro Mol Restsäure 0,8 bis 1,5, bevorzugt 0,9 bis 1,1 mol Glycidylmethacrylat zugegeben und anschließend bei 70 bis 130, bevorzugt 80 bis 110°C umgesetzt, bis eine Säurezahl unter 3, bevorzugt unter 1 mg Kaliurnhydroxid pro Gramm Reaktionsgemisch erreicht wird.
Sollte das Lösungsmittel noch nicht vor der Reaktion mit der Epoxyverbindung abdestilliert worden sein, so wird es nach dieser Reaktion entfernt. Bevorzugt wird dabei solange bei vermindertem Druck destilliert, bis der Flammpunkt einer Probe oberhalb 100°C liegt.
In einer ebenfalls im Prinzip bekannten Variante können statt der Versterung von Säure und Polyol auch Umersterungsverfahren angewandt werden. Das Prinzip dieser Verfahren ist beispielsweise beschrieben in DE-A 4019788 Hierbei werden statt der (Meth)Acrylsäure deren Ester mit niedermolekularen Alkoholen wie z.B. Methanol oder Ethanol eingesetzt. Es wird dann auch kein Wasser abgespalten, sondern vielmehr der niedermolekulare Alkohol dem Reaktionsgemisch destillativ entzogen. Bei diesem Verfahren kann auf das azeotrope Schleppmittel verzichtet werden.
Die entstandenen hycfroxyrunktionellen Partialester aus verschieden oxalkylierten Polyolen und (Meth)acrylsäure zeigen übhcherweise eine dynamische Viskosität von unter 1000 mPa s bei 23°C, sind klar und wasserhell oder leicht gefärbt. Diese Produkte werden in einer zweiten Reaktionsstufe mit einem Di- und/oder Polyiso- cyanat - im folgenden als Polyisocyanat bezeichnet - umgesetzt.
Gegebenenfalls können neben den hydroxyfunktionellen Partialestern aus verschieden oxalkylierten Polyolen und (Mefh)acrylsäure weitere mit Isocyanaten reaktive Verbindungen eingesetzt werden. Für die erfindungsgemäßen Urethanacrylate ist deren Menge jedoch begrenzt: pro Isocyanat-Equivalent kommen weniger als 0,4 Equivalente, bevozugt weniger als 0,2 Equivalente weiterer mit Isocyanaten reaktive Verbindungen zum Einsatz. Solche Verbindungen können sein: eine fieie Hydroxylgruppe aufweisende Ester der Acrylsäure oder Methacrylsäure mit zweiwertigen Alkoholen wie beispielsweise 2- Hydroxyethyl-, 2- oder 3-Hydroxypropyl oder 2-, 3- oder 4-Hydroxybutyl-(meth)- acrylat, sowie deren Umsetzungsprodukte mit Lactonen wie z.B. ε-Caprolacton oder auch beliebige Gemische aus derartigen Verbindungen, (Cyclo)Alkandiole (d.h. zweiwertige Alkohole mit (cyclo)aliρhatisch gebundenen Hydroxylgruppen) des Molekular-gewichtsbereichs 62 bis 286, wie z.B. Ethandiol, 1,2- und 1,3-Propandiol, 1,2-, 1,3- und 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, Neopentylglykol, Cyclohexan- 1,4-dimethanol, 1,2- und 1,4-Cyclohexandiol, 2-Ethyl-2-butylproρandiol, 2- Diethyl-l,3-propandiol, 2,2-Dimethyl-l,3-propandiol, 2-Ethyl-l,3-hexandiol, 2,5-
Dimethyl-l,6-hexandiol, 2,2,4-Trimethyl-l,3-pentandiol, (3-Hydroxy-2,2-dimethyl- propyl)-3-hydroxy-2,2-dimethylρropionat, Ethersauerstoff enthaltende Diole, wie z.B. Diethylenglykol, Triethylenglykol, Tetraefhylenglykol, Dipropylenglykol, Tripropylenglykol, Polyethylen-, Polypropylen- oder Polybutylenglykole mit einem maximalen Molekulargewicht von ca. 2000, vorzugsweise ca. 1000 und besonders bevorzugt ca. 500. Umsetzungsprodukte der zuvor genannten Diole mit ε-Capro- lacton oder anderen Lactonen können ebenfalls als Diole zum Einsatz gelangen. Weiterhin sind an sich bekannte Polyester-Diole aus vorstehenden Diolen und aromatischen und/oder bevorzugt (cyclo)aliphatischen Dicarbonsäuren bzw. deren Anhydriden wie z.B. Phthalsäure, Phthalsäureanhydrid, Isophthalsäure, Tetrahydro- phthalsäure, Tetra-hydroph alsäureanhydrid, Hexahydrophthalsäure, Hexahydro- phthalsämeanhydrid, Cyclohexandicarbonsäure, Maleinsäureanhydrid, Fumarsäure, Malonsäure, Bernsteinsäure, Bernsteinsäureanhydrid, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Sebacinsäure, Dodecandisäure, hydrierte Dimerfettsäuren verwendbar.
Besonders bevorzugt ist jedoch der Verzicht auf obige, weitere mit Isocyanaten reaktive Verbindungen.
Geeignete Polyisocyanate sind beliebige, aus der Polyurethanchemie an sich bekannte, organische Polyisocyanate mit aliphatisch, cycloaliphatisch und/oder aroma- tisch gebundenen Isocyanatgruppen, die vorzugsweise ein Molekulargewicht von 144 bis 1000, vorzugsweise 168 bis 300 aufweisen. Geeignet sind beispielsweise Butylendiisocyanat, Hexamethylendiisocyanat (HDI), Isophorondisocyanat (IPDI), 3(4)-Isocyanatomethyl-methylcyclohexyl-isocyanat (IMCI), Trimethylhexamethylen- diisocyanat (=2,2,4 und/oder 2,4,4-Trimethylhexamethylendiisocyanat), die isomeren
Bis(4,4'-isocyanatocyclohexyl)methane (Hι MDI), die isomeren Bis(isocyanato- methyl)-methylcyclohexane, Isocyanatomethyl-l,8-octandiisocyanat, 1,4-Cyclo- hexylendiisocyanat, 1,4-Phenylendiisocyanat, 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), 1,5-Naphthylendiisocyanat, 2,4'- und oder 4,4'-Diphenylmethandiisocyanat (MDI), Triphenylmethan-4,4<l,4"-triisocyanat oder deren Derivate mit Urethan-,
Isocyanurat-, Allophanat-, Biuret-, Uretdion-, Innnooxadiazmdionstruktur und/oder Mischungen derselben sowie Mischungen von aliphatischen und aromatischen Di- und/oder Polyisocyanaten. Diese Derivate weisen im allgemeinen ein mittleres Molekulargewicht bis ca. 1.000 auf. Die Herstellung derartiger Derivate ist beispiels- weise in den US-A 3 124 605, US-A 3 183 112, US-A 3 919 218, US-A 4 324 879 oder EP-A 798 299 beschrieben.
Bevorzugt werden HDI, TPDI, TDI, Hι MDI und/oder durch Trimerisierung von HDI, TDI oder IPDI erhaltene, Isocyanatgruppen aufweisende Polyisocyanate ver- wendet. Besonders bevorzugt sind HDI und IPDI und deren Mischung.
Die Polyisocyanate kommen in einem Equivalentverhältnis von Isocyanat- zu Hydroxylgruppe von 1 zu 1 bis 1 zu 3, bevorzugt 1 zu 1 bis 1 zu 2, besonders bevorzugt 1 zu 1 bis 1 zu 1,5 zum Einsatz. Der Umsetzungsgrad wird üblicherweise durch Verfolgung des Isocyanat-Gehalts der Reaktionsmischung überwacht. Dazu können sowohl spektroskopische Messungen (Infrarot- oder Nahirfrarot-Spektren) als auch chemische Analysen (Titrationen) von entnommenen Proben vorgenommen werden. Bevorzugt wird die Reaktion bis zu einem Isocyanat-Gehalt von 0,2 % oder darunter durchgeführt. Reaktionstemperaturen werden von 20 bis 100°C, besonders bevorzugt 50 bis 80°C eingehalten. Die Ausgangskomponenten können bei der Durchführung in beliebiger Reihenfolge zur Reaktion gebracht werden. Die Umsetzung erfolgt vorzugsweise in Gegenwart geeigneter Katalysatoren für die Urethanisierungs- reaktion wie beispielsweise Zinn(II)octoat, Dibutylzinndilaurat oder tertiären Aminen wie Diazabicyclooctan.
Die so hergestellten Urethanacrylate sind vorteilhaft als Hauptbestandteil von
Beschichtungsmitteln zu verwenden. Diese Beschichtungsmittel können weiterhin Zuschlagstoffe und Hilfsstoff enthalten, z.B. an sich bekannte Initiatoren, die eine radikalische Polymerisation nach Bestrahlen mit energiereicher Strahlung wie zum Beispiel UV-Licht auslösen können. Solche Fotoinitiatoren sind beispielsweise beschrieben in P. K. T. Oldring (Ed.), Chemistry & Technology of UV & EB
Formulations For Coatings, Inks & Paints, Vol. 3, 1991, SITA Technology, London, (S. 61 - 325). Beispiele sind 1-Hydroxycyclohexyl-ρhenyl-keton, Benzilketale wie z.B. Benzildimethylketal, Acylphosphinoxide wie z.B. Bis-(2,4,6-trimethylbenzoyl)- phenylphosphinoxid, Diacylphosphinoxide, Benzophenon und dessen Derivate. Sie werden allein oder in Mischung gegebenenfalls auch zusammen mit weiteren
Beschleunigern oder Coinitiatoren als Zusatz berechnet auf Festkörper des Beschich- tungssyste s in Mengen von 0,1 bis 10 Gew.-Teilen, bevorzugt 2 bis 7 Gew.-Teilen, besonders bevorzugt 3 bis 4 Gew.-Teilen verwendet Die Fotopolymerisation kann auch in Inertgasatmosphäre durchgeführt werden, wobei die Menge an Foto- Initiatoren deutlich kleiner als bei Härtung an der Luft gewählt werden kann. Sollen die Beschichtungsmittel mittels Elektronenstrahlen gehärtet werden, kann auf Fotoinitiatoren verzichtet werden.
Die Beschichtungsmittel können mit Verdünnungsmitteln als Zuschlagstoffe gemischt werden, die bei der UV-Härtung ebenfalls (co)polymerisieren. Solche
Reaktivverdünner sind beschrieben in P. K. T. Oldring (Ed.), Chemistry & Technology of UV & EB Formulations For Coatings, Inks & Paints, Vol. 2, 1991, SITA Technology, London, S. 237 - 285. Als Beispiele seien genannt die Ester der Acrylsäure oder Methacrylsäure, bevorzugt der Acrylsäure der folgenden Alkohole. Einwertige Alkohole sind die isomeren Butanole, Pentanole, Hexanole, Heptanole,
Octanole, Nonanole und Decanole, weiterhin cycloaliphatische Alkohole wie Iso- bornol, Cyclohexanol und alkyherte Cyclohexanole, Dicyclopentanol, arylalipha- tische Alkohole wie Phenoxyethanol und Nonylphenylethanol, sowie Tetrahydro- furfurylalkohole. Weiterhin können alkoxylierte Derivate dieser Alkohole verwendet werden. Zweiwertige Alkohole sind beispielsweise Alkohole wie Ethylenglykol, Propandiol-1,2, Propandiol-1,3, Diethylenglykol, Dipropylenglykol, die isomeren
Butandiole, Neopentylglykol, Hexandiol-1,6, 2-Ethylhexandiol und Tripropylenglykol oder auch alkoxylierte Derivate dieser Alkohole. Bevorzugte zweiwertige Alkohole sind Hexandiol-1,6, Dipropylenglykol und Tripropylenglykol. Dreiwertige Alkohole sind Glycerin oder Trimethylolpropan oder deren alkoxylierte Derivate. Bevorzugt wird propoxyliertes Glycerin. Da die erfindungsgemäßen Urethanacrylate vergleichsweise niederviskos sind, wird im Vergleich zu Urethanacrylaten des Stands der Technik häufig weniger Reaktiwerdünner benötigt, um die gleiche Viskosität einzustellen.
Weiterhin kann das erfϊndungsgemäß hergestellte Beschichtungsmittel mit Hilfs- und
Zusatzmittehi (Zuschlagstoffe) der unterschiedlichsten Art abgemischt werden. Hierzu gehören Füllstoffe, Pigmente, Farbstoffe, Glättmittel, Mattierungsmittel, Entlüftungs ittel wie Polyacrylate, Haftvermittler wie Aminoalkyltrialkoxysilane und Verlaufsmittel wie Polysiloxane, die in den in der Beschichtungstechnologie üblichen Mengen eingesetzt werden. Zur Verbesserung der Beständigkeit gegen
Witterungseinflüsse wie z.B. Sonnenlicht können Lichtschutzmittel wie UV- Absorber und sterisch gehinderte Amine in den üblichen Mengen zugesetzt werden. Bei Verwendung von UV-Absorbern muß als Photoinitiator meist anteilig ein lägerwellig absorbierender Typ verwendet werden. Der Einsatz von Licht- Schutzmitteln und die verschiedenen Typen sind beispielhaft beschrieben in A. Valet,
Lichtschutzmittel für Lacke, Vincentz Verlag, Hannover, 1996. Weiterhin ist die Verwendung von im Sinne der radikalischen Polymerisation inerten Lösungsmitteln möglich, die dann zwischen Beschichten und Härten gegebenenfalls durch Zufuhr von Wärme entfernt werden. Die Beschichtungsmittel enthaltend die erfindungsgemäßen Urethanacrylate sind geeignet zur Erzeugung von hochwertigen Beschichtungen, Überzügen und Lacken auf verschiedenen Substraten wie z.B. Papier, Karton, Leder, Textil, Glas, Kunststoffen, Metall, z.B. Aluminium- oder Stahlbleche, die man gegebenenfalls einer Vorbehandlung unterzogen hat, Metall auch in Form von sogenannten „Coils", Holz insbesondere Parkett oder Holzwerkstoffe wie beispielsweise mitteldichte Faserplatten, Kunststoffwerkstoffe wie z.B. Polycarbonat oder Polyvinylchloridfolien (PVC), mineralische Werkstoffe, z.B. Zement, Ton, Mineralien, Keramik oder solche Substrate aus den genannten Werkstoffen, die bereits beschichtet worden sind, z.B. Automobile oder Automobilteile. Es können auch Substrate, die aus mehreren der genannten Materialien bestehen, beschichtet werden. Besonders geeignet sind die erfindungsgemäßen Beschichtungsmittel für die abriebbeständige Beschichtung von Materialien, die für Fußböden verwendet werden. Insbesondere sind das Parketthölzer und PVC-Folien.
Das Auftragen des Beschichtungsmittels auf das zu beschichtende Material erfolgt mit den in der Lacktechnologie üblichen und bekannten Methoden wie Spritzen, Rakeln, Walzen, Gießen, Tauchen, Schleudern und Sprühen (Vakumat). Das Aushärten des flüssigen Beschichtungsmittels erfolgt durch Bestrahlen mittels ultravioletter Strahlung oder Elektronenstrahlung. Dazu wird das beschichtete
Material beispielsweise unter einem Quecksilbermitteldruckstrahler herbewegt. Das Härten mittels UV-Strahlung erfolgt in bekannter Weise und ist z.B. beschrieben in P. K. T. Oldring (Ed.), Chemistry & Technology of UV & EB Formulations For Coatings, Inks & Paints, Vol. 1, 1991, SITA Technology, London, S. 167 - 269. Beispiele
Partialester aus oxalkyliertem Polyol und Acrylsäure:
A) In eine Apparatur mit Wasserabscheider, Rührer, Gaseinleitung und Thermometer werden unter Durchleiten von Luft (einfaches Apparaturvolumen pro Stunde) und Überleiten von Stickstoff (doppeltes Apparaturvolumen pro Stunde) 860,6 g eines im Mittel 12fach ethoxilierten, Trimethylolpropan gestarteten Polyethers (Hydroxylzahl 255, dynamische Viskosität 265 mPa-s bei 23°C), 214,2 g eines im Mittel 4fach ethoxilierten, Trimethylolpropan gestarteten Polyethers (Hydroxylzahl 550, dynamische Viskosität 505 mPa-s bei 23°C), 309,6 g Acrylsäure, 9,3 g 4-Toluolsulfonsäure, 3,9 g 4-Methoxy- phenol, 0,3 g 2,5-Di-tert.butylhydrochinon und 560,1 g Isooktan eingewogen. Die Reaktionsmischung wird unter Rühren auf Rückflusstemperatur aufge- heizt (ca. 94 - 108°C) und unter starken Rückfluss gehalten, bis die Säurezahl einen Wert kleiner als 4,5 erreicht hat. Während dieser Zeit wird eine Wassermenge von etwa 77 g abgeschieden. Anschließend wird der Ansatz auf 50°C abgekühlt. Bei 50°C wird langsam Vakuum anlegt und das Lösungsmittel abdestilliert, bis bei 90°C und Vakuum (< 50 mbar) nichts mehr über- geht. Nach Belüften wird unter Rühren 26,3 g Glycidylrnethacrylat zügig zugeben. Es wird eine Stunde bei 100°C nachgerührt, die Säurezahl des Produkts liegt unter 2, die Hydroxylzahl zwischen 80 und 90.
B) Versuch A) wird wiederholt mit dem Unterschied, dass anstelle des im Mittel 4-fach ethoxilierten, Trimethylolpropan gestarteten Polyethers jetzt 214,2 g eines im Mittel 3-fach propoxilierten, Trimethylolpropan gestarteten Polyethers (Hydroxylzahl 550, dynamische Viskosität 1800 mPa-s bei 23°C) verwendet wird. Urethanacrylate
Gemäß der folgenden Tabelle werden jeweils in einer Apparatur mit Rührer, Gaseinleitung und Thermometer unter Durchleiten von Luft (einfaches Apparaturvolumen pro Stunde) und Überleiten von Stickstoff (doppeltes Apparaturvolumen pro Stunde) der Partialester aus oxalkyliertem Polyol und Acrylsäure, sowie 0,1 Gew.% auf Gesamtansatz 2,6-Di-tert.butyl-4-methylphenol und 0,05 Gew.% auf Gesamtansatz Zinn(II)ethylhexoat eingewogen und unter Rühren auf 55 °C aufgeheizt. Die entsprechenden Isocyanate werden dann so zugetropft, dass mit der exothermen Reaktion eine Temperatur von 55 bis 60°C gehalten wird. Nach Ende der Dosierung (ca. 1 h) wird die Temperatur auf 60°C eingestellt und solange gehalten, bis der NCO-Gehalt unter 0,1% liegt (ca. 8 h).
Figure imgf000014_0001
Leverkusen, DE; IPDI - Desmodur® I, Bayer AG, Leverkusen, DE. Es wurden 85 Gew. Teile Urethanacrylat mit jeweils mit 16 Gew. Teilen Dipropylen- glykoldiacrylat (BASF AG, Ludwigshafen, DE) und 2,5 Gew. Teilen Fotoinitiator Darocur® 1173, Ciba Spezialitätenchemie, Lampertheim, DE, auf gebeizte mitteldichte Faserplatten (MDF) mittels Spiralrakel aufgezogen und mittels UV-Licht (Bandanlage, 1 Strahler, 80 W/cm Lampenlänge [CK-Strahler, IST, Metzingen, DE]) gehärtet. Für die Abriebprüfung wurden Aufzüge wie folgt angefertigt: einmal Hand- coater #2 [ca. 18 μm], 2 Durchläufe mit 15 m/min Bandgeschwindigkeit, dann zweimal Handcoater #3 [ca. 30 μm] und 1 Durchlauf 5 rn/min Bandgeschwindigkeit. Die erzielte Schichtdicke wurde mikroskopisch bestimmt (Lichtschnittmikroskopie). Für die Beständigkeitsprüfung wurden Aufzüge mittels Spiralrakel ca. 120 μm auf
MDF hergestellt und mit einem Durchlauf bei 5 m/min Bandgeschwindigkeit gehärtet.
Die Abriebprüfung erfolgte mit einem Taber Abraser Modell 5130 und einem Taber Abraser Grit Feeder, Modell 155, beide Fa. Erichsen, mit Alunήhiumoxid (Alodur®
EPL) der Fa. Treibacher Sclneifmittel, Villach, AT, welches gesiebt (200 μm Maschenweite) und getrocknet (1 Stunde, 80°C) wurde. Die Abriebprüfung wurde gemäß der Bedienungsanleitung BA 155 D - VI/1995 der Fa. Erichsen bei 1000 g Belastung pro Achse, Streumenge 85 (entsprechend 34 g pro 100 Umdrehungen) dmchgeführt. Die Kalibrierung erfolgte mit einer Acrylplatte. Bei 2000 Umdrehungen wurden Abrieb 142 mg (Sollwert 127 ± 18 mg) gefunden. Gemessen wurde jeweils die Anzahl Zyklen bis zur Zerstörung der Beschichtung. Zusammen mit der gemessenen Schichtdicke resultierte die angegebene Anzahl der Zyklen pro 100 μm Schicht.
Die Beständigkeitsprüfungen wurden mit 48%igem wässrigem Ethanol und 16%iger Natronlauge durchgeführt. Es wurden jeweils getränkte Wattebäusche fiir 16 h abgedeckt auf die Beschichtungen gelegt. Anschließend wurden die Oberflächen mit einem trockenen, weichen Tuch abgewischt und visuell abgemustert. Das Ergebnis wurde in Form von Noten (0 - unverändert bis 5 zerstört) festgehalten.

Claims

Patentansprtiche:
1. Niederviskose strahlenhärtbare Urethanacrylate erhältlich durch Umsetzung eines Di- und oder Polyisocyanats mit einem hydroxyfunktionellen Partialester der Acryl- und/oder Methacrylsäure auf Basis einer Mischung verschieden oxalkylierter Polyole mit drei oder mehr Hydroxylgruppen, dadurch gekennzeichnet, dass die Mischung der oxalkylierten Polyole aus 25 bis 75 mol% Polyol eines Oxalkylierungsgrads zwischen 3 und 5 sowie 75 bis 25 mol% Polyol eines Oxalkylierungsgrads zwischen 8 und 25 besteht.
2. Urethanacrylate, gemäß Anspruch 1, dadurch gekennzeichnet, dass sie frei von Hydroxy-C1-4-alkyl-acrylaten und -methacrylaten sind.
3. Urethanacrylate gemäß Anspruch 1, dadurch gekennzeichnet, dass die Mischung der oxalkylierten Polyole aus 30 bis 45 mol% Polyol eines Oxalky- lierungsgrades zwischen 3 und 5 sowie 70 bis 55 mol% Polyol eines Oxalkylierungsgrads zwischen 8 und 15 besteht.
4. Urethanacrylate gemäß Anspruch 1, dadurch gekennzeichnet, dass eine Mischung von aliphatischen und aromatischen Di- und/oder Polyisocyanaten eingesetzt wird.
5. Verfahren zur Herstellung der niedrigviskosen strahlenhärtbaren Urethanacrylate gemäß Anspruch 1 dadurch gekennzeichnet, dass in der ersten Stufe oxalkylierte Polyole teilweise mit Acryl- und/oder Methacrylsäure [im
Folgenden als (Meth)acrylsäure bezeichnet] verestert und in der zweiten Stufe mit Di- und/oder Polyisocyanaten zur Reaktion gebracht werden.
6. Verwendung der Urethanacrylate als Bestandteil von Beschichtungsmitteln, die unter dem Einfluss von energiereicher Strahlung aushärten.
7. Verwendung der Urethanacrylate gemäss Anspruch 1 zur Beschichtung von Papier, Karton, Leder, Textil, Glas, Metall und Kunststoffen.
8. Verwendung der Urethanacrylate gemäss Anspruch 1 zur Beschichtung von Fußböden Holzböden, PVC-Böden und Parkettböden aus Holz und Kunststoffen.
PCT/EP2002/009500 2001-09-06 2002-08-26 Strahlenhärtbare urethanacrylate auf basis einer mischung verschieden oxalkylierter polyole WO2003022902A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA2459358A CA2459358C (en) 2001-09-06 2002-08-26 Radiation-hardening coating compounds
DK02797924.4T DK1456273T3 (da) 2001-09-06 2002-08-26 Strålehærdbare urethanacrylater på basis af en blanding af forskellige oxalkylerede polyoler
HU0402239A HU228390B1 (en) 2001-09-06 2002-08-26 Radiation-curable urethane acrylates, based on a blend of various oxyalkylated polyols
BRPI0212331-2A BR0212331B1 (pt) 2001-09-06 2002-08-26 acrilatos de uretano de baixa viscosidade endurecÍveis por radiaÇço e empregos dos mesmos.
KR1020047003340A KR100897985B1 (ko) 2001-09-06 2002-08-26 다양하게 옥스알킬화된 폴리올의 혼합물을 기재로 하는,방사선-경화성 우레탄 아크릴레이트
EP02797924A EP1456273B1 (de) 2001-09-06 2002-08-26 Strahlenhärtbare urethanacrylate auf basis einer mischung verschiedener oxalkylierter polyole
MXPA04002119 MX246814B (es) 2001-09-06 2002-08-26 Acrilatos de uretano curables por radiacion, basados en combinacion de varios polioles oxialquilados.
DE50214841T DE50214841D1 (de) 2001-09-06 2002-08-26 Strahlenhärtbare urethanacrylate auf basis einer mischung verschiedener oxalkylierter polyole
JP2003526973A JP4253584B2 (ja) 2001-09-06 2002-08-26 放射線硬化性コーティング組成物
AT02797924T ATE493455T1 (de) 2001-09-06 2002-08-26 Strahlenhärtbare urethanacrylate auf basis einer mischung verschiedener oxalkylierter polyole
HK05104459A HK1071763A1 (en) 2001-09-06 2005-05-27 Radiation-curable urethane acrylates, based on a blend of various oxyalkylated polyols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10143630A DE10143630A1 (de) 2001-09-06 2001-09-06 Strahlenhärtende Beschichtungsmittel
DE10143630.0 2001-09-06

Publications (1)

Publication Number Publication Date
WO2003022902A1 true WO2003022902A1 (de) 2003-03-20

Family

ID=7697883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/009500 WO2003022902A1 (de) 2001-09-06 2002-08-26 Strahlenhärtbare urethanacrylate auf basis einer mischung verschieden oxalkylierter polyole

Country Status (18)

Country Link
US (1) US6753394B2 (de)
EP (1) EP1456273B1 (de)
JP (1) JP4253584B2 (de)
KR (1) KR100897985B1 (de)
CN (1) CN1258548C (de)
AT (1) ATE493455T1 (de)
BR (1) BR0212331B1 (de)
CA (1) CA2459358C (de)
DE (2) DE10143630A1 (de)
DK (1) DK1456273T3 (de)
ES (1) ES2356731T3 (de)
HK (1) HK1071763A1 (de)
HU (1) HU228390B1 (de)
MX (1) MX246814B (de)
PL (1) PL207569B1 (de)
PT (1) PT1456273E (de)
TW (1) TWI238179B (de)
WO (1) WO2003022902A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117934A (ja) * 2004-10-15 2006-05-11 Bayer Material Science Llc 放射線硬化性組成物
EP2581396A1 (de) 2011-10-14 2013-04-17 Bayer MaterialScience AG Verfahren zur Herstellung von niedrigviskosen, wasserverdünnbaren Urethan(meth)acrylaten
EP2581397A1 (de) 2011-10-14 2013-04-17 Bayer MaterialScience AG Verfahren zur Herstellung von niedrigviskosen, wasserverdünnbaren Urethan(meth)acrylaten
CN105441049A (zh) * 2015-12-02 2016-03-30 四川安东油气工程技术服务有限公司 油气井压裂用可溶性暂堵材料、暂堵剂、压裂液及其制备方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10259673A1 (de) * 2002-12-18 2004-07-01 Basf Ag Verfahren zur Herstellung von strahlungshärtbaren Urethan(meth)acrylaten
DE10340608A1 (de) * 2003-08-29 2005-03-24 Infineon Technologies Ag Polymerformulierung und Verfahren zur Herstellung einer Dielektrikumsschicht
DE10340609A1 (de) * 2003-08-29 2005-04-07 Infineon Technologies Ag Polymerformulierung und Verfahren zur Herstellung einer Dielektrikumsschicht
EP1722765A2 (de) * 2004-01-28 2006-11-22 The Regents of The University of Michigan Osteoblasten-faktor(en) zur regulation der migration von und knocheninvasion durch menschliches prostatakarzinom
DE102004053186A1 (de) * 2004-11-04 2006-05-11 Bayer Materialscience Ag Niederviskose, wässrige, strahlenhärtbare Urethan-Bindemitteldispersionen mit hohen Festkörpergehalten
US7498061B2 (en) * 2004-12-17 2009-03-03 Ppg Industries Ohio, Inc. Method for reducing face checking of a wood product
JP4684939B2 (ja) * 2005-06-03 2011-05-18 キヤノン株式会社 シート材識別装置、および画像形成装置
ATE454369T1 (de) 2005-11-15 2010-01-15 Valspar Sourcing Inc Bruchfeste latexdeckbeschichtungszusammensetzung für faserzementsubstrate
US9783622B2 (en) 2006-01-31 2017-10-10 Axalta Coating Systems Ip Co., Llc Coating system for cement composite articles
CN101379007B (zh) * 2006-01-31 2013-03-27 威士伯采购公司 用于水泥复合制品的涂布系统
EP1979426A1 (de) 2006-01-31 2008-10-15 Valspar Sourcing, Inc. Beschichtungssystem für zementverbundartikel
WO2007090132A1 (en) * 2006-01-31 2007-08-09 Valspar Sourcing, Inc. Method for coating a cement fiberboard article
KR101362591B1 (ko) * 2006-03-17 2014-02-21 키모토 컴파니 리미티드 폴리에스테르계 필름용 바인더 조성물 및 이것을 사용한 광학 필름
CA2653048C (en) * 2006-05-19 2014-12-09 Valspar Sourcing, Inc. Coating system for cement composite articles
US7812090B2 (en) 2006-06-02 2010-10-12 Valspar Sourcing, Inc. High performance aqueous coating compositions
WO2007143622A1 (en) * 2006-06-02 2007-12-13 Valspar Sourcing, Inc. High performance aqueous coating compositions
EP2361898B1 (de) 2006-07-07 2019-02-06 Swimc Llc Beschichtungssysteme für Zementverbundartikel
JP2008074891A (ja) * 2006-09-19 2008-04-03 Daicel-Cytec Co Ltd 熱硬化性または活性エネルギー線硬化性の組成物およびフィルム
DE102006045041A1 (de) * 2006-09-25 2008-03-27 Evonik Degussa Gmbh Strahlenhärtbare Formulierung, die zu flexiblen Beschichtungen mit erhöhtem Korrosionsschutz auf Metalluntergründen führt
KR101005507B1 (ko) * 2006-12-01 2011-01-04 디아이씨 가부시끼가이샤 피혁상 시트
MX2008002220A (es) * 2007-02-16 2009-02-25 Valspar Sourcing Inc Tratamiento para articulos compuestos de cemento.
CA2683901A1 (en) * 2007-04-11 2008-10-23 Bayer Materialscience Ag Radiation-crosslinking and thermally crosslinking pu systems comprising iminooxadiazinedione
DE102007037140A1 (de) * 2007-08-07 2009-02-12 Bayer Technology Services Gmbh Verfahren zur heterogen katalysierten Veresterung von (Meth)Acrylsäure mit oxyalkylierten Polyolen
US20090130314A1 (en) * 2007-11-20 2009-05-21 Bauman Bernard D System for adhesion treatment, coating and curing of wood polymer composites
JP2011508064A (ja) * 2007-12-27 2011-03-10 バクスター・インターナショナル・インコーポレイテッド 照射硬化性コーティング
US20090176907A1 (en) 2008-01-08 2009-07-09 Ramesh Subramanian Direct-to-metal radiation curable compositions
BRPI0917455B1 (pt) * 2008-08-15 2018-11-21 Valspar Sourcing Inc composição de revestimento, método para preparar um artigo revestido, e, artigo revestido
US8304421B2 (en) * 2008-09-30 2012-11-06 Vanderbilt University Indole compounds and their use as radiation sensitizing agents and chemotherapeutic agents
US9133064B2 (en) 2008-11-24 2015-09-15 Valspar Sourcing, Inc. Coating system for cement composite articles
US8735506B2 (en) * 2009-04-03 2014-05-27 Ashland Licensing And Intellectual Property Llc Ultraviolet radiation curable pressure sensitive acrylic adhesive
EP2571948A4 (de) 2010-05-21 2014-09-03 Allnex Ip S R L Strahlungshärtbare zusammensetzungen mit schwachem glanz
CA2824945A1 (en) 2011-01-20 2012-07-26 Bayer Materialscience Llc Non-aqueous polyurethane coating compositions
EP2613318B1 (de) 2012-01-05 2014-07-30 Bayer Intellectual Property GmbH Schichtaufbau mit einer Schutzschicht und einer belichteten Photopolymerschicht
TWI640428B (zh) 2013-02-27 2018-11-11 拜耳材料科學股份有限公司 以丙烯酸酯為基底之保護塗層與黏著劑
FR3003255B1 (fr) * 2013-03-14 2015-10-02 Vencorex France Allophanate polyacrylate
US10100223B2 (en) * 2013-03-14 2018-10-16 Allnex Netherlands B.V. Methods for making elastomers, elastomer compositions and related elastomers
WO2014160762A1 (en) 2013-03-29 2014-10-02 Ashland Licensing And Intellectual Property Llc Ultraviolet curable pressure sensitive adhesives
EP3015485B1 (de) * 2014-10-28 2017-04-12 Basf Se Verfahren zur Herstellung strahlungshärtbarer Urethan(meth)acrylate
FR3043087B1 (fr) * 2015-11-02 2018-04-27 Arkema France Composition d'additif diamide gras pre-concentree et pre-activee dans un diluant reactif
EP3184565A1 (de) * 2015-12-22 2017-06-28 Allnex IP S.à.r.l. Strahlungshärtbare urethan-(meth)acrylate mit restisocyanatgruppen
KR101979784B1 (ko) 2017-07-05 2019-05-20 전남대학교산학협력단 Uv 경화용 코팅제 및 그 제조방법
KR20200110423A (ko) * 2018-01-23 2020-09-23 스테판 컴파니 저 voc 폴리우레탄 용도의 폴리올

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053749A1 (de) * 1980-12-04 1982-06-16 Bayer Ag Strahlenhärtbare urethangruppenhaltige Acrylsäureester, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0590399A2 (de) * 1992-09-24 1994-04-06 Bayer Ag Acryloylgruppen aufweisende Polyurethane, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Bindemittel für Überzugsmassen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607084A (en) 1984-06-11 1986-08-19 Celanese Specialty Resins, Inc. Radiation curable acrylated polyurethane oligomer compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053749A1 (de) * 1980-12-04 1982-06-16 Bayer Ag Strahlenhärtbare urethangruppenhaltige Acrylsäureester, Verfahren zu ihrer Herstellung und ihre Verwendung
US4380604A (en) * 1980-12-04 1983-04-19 Bayer Aktiengesellschaft Radiation-hardenable acrylic acid esters containing urethane groups and their use
EP0590399A2 (de) * 1992-09-24 1994-04-06 Bayer Ag Acryloylgruppen aufweisende Polyurethane, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Bindemittel für Überzugsmassen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117934A (ja) * 2004-10-15 2006-05-11 Bayer Material Science Llc 放射線硬化性組成物
EP2581396A1 (de) 2011-10-14 2013-04-17 Bayer MaterialScience AG Verfahren zur Herstellung von niedrigviskosen, wasserverdünnbaren Urethan(meth)acrylaten
EP2581397A1 (de) 2011-10-14 2013-04-17 Bayer MaterialScience AG Verfahren zur Herstellung von niedrigviskosen, wasserverdünnbaren Urethan(meth)acrylaten
US8932722B2 (en) 2011-10-14 2015-01-13 Allnex Ip S.A.R.L. Process for the preparation of low-viscosity, water-dilutable urethane (meth)acrylates
US9631117B2 (en) 2011-10-14 2017-04-25 Allnex Ip S.A.R.L. Process for the preparation of low-viscosity, water-dilutable urethane (meth)acrylates
CN105441049A (zh) * 2015-12-02 2016-03-30 四川安东油气工程技术服务有限公司 油气井压裂用可溶性暂堵材料、暂堵剂、压裂液及其制备方法
CN105441049B (zh) * 2015-12-02 2018-07-10 四川安东油气工程技术服务有限公司 油气井压裂用可溶性暂堵材料、暂堵剂、压裂液及其制备方法

Also Published As

Publication number Publication date
MXPA04002119A (es) 2004-09-08
EP1456273B1 (de) 2010-12-29
ATE493455T1 (de) 2011-01-15
HU228390B1 (en) 2013-03-28
JP2005502749A (ja) 2005-01-27
BR0212331B1 (pt) 2012-12-25
EP1456273A1 (de) 2004-09-15
BR0212331A (pt) 2004-09-21
CN1258548C (zh) 2006-06-07
JP4253584B2 (ja) 2009-04-15
TWI238179B (en) 2005-08-21
HUP0402239A3 (en) 2008-06-30
US20030050390A1 (en) 2003-03-13
DK1456273T3 (da) 2011-04-18
PT1456273E (pt) 2011-02-25
DE10143630A1 (de) 2003-03-27
CN1551894A (zh) 2004-12-01
PL207569B1 (pl) 2011-01-31
KR20040033020A (ko) 2004-04-17
PL368501A1 (en) 2005-04-04
KR100897985B1 (ko) 2009-05-18
CA2459358C (en) 2010-11-02
HUP0402239A2 (hu) 2005-01-28
MX246814B (es) 2007-06-29
CA2459358A1 (en) 2003-03-20
US6753394B2 (en) 2004-06-22
HK1071763A1 (en) 2005-07-29
DE50214841D1 (de) 2011-02-10
ES2356731T3 (es) 2011-04-12

Similar Documents

Publication Publication Date Title
EP1456273B1 (de) Strahlenhärtbare urethanacrylate auf basis einer mischung verschiedener oxalkylierter polyole
EP2581396B1 (de) Verfahren zur Herstellung von niedrigviskosen, wasserverdünnbaren Urethan(meth)acrylaten
EP1138710B1 (de) Beschichtungssystem enthaltend UV-härtbare, Isocyanatgruppen aufweisende Urethan (meth) acrylate und Hydroxylgruppen aufweisende Urethan (meth) acrylate
EP1085065B1 (de) Elastisches Beschichtungssystem enthaltend UV-härtbare, Isocyanatgruppen aufweisende Urethan(meth)acrylate und seine Verwendung
EP2581397B1 (de) Verfahren zur herstellung von niedrigviskosen, wasserverdünnbaren urethan(meth)acrylaten
EP0381862B1 (de) Vervendung von hydrophilen, (Meth)Acryloylgruppen aufweisenden Polyurethanen als reaktive Emulgatoren für radikalisch härtbare Kunstharze, und ein wässriges Beschichtungsmittel auf Basis eines Gemischs radikalisch härtbarer Kunstharze.
DE10016548A1 (de) Polyurethan-Dispersionen
EP1805245A1 (de) Verwendung einer wässrigen dispersion auf basis eines ungesättigten, amorphen polyesters auf basis bestimmter dicidolisomerer
EP1655318B1 (de) Niederviskose, wässrige, strahlenhärtbare Urethan-Bindemitteldispersionen mit hohen Festkörpergehalten
EP0053749A1 (de) Strahlenhärtbare urethangruppenhaltige Acrylsäureester, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0356848B1 (de) Wasserdispergierbare Allylurethane Verfahren zu deren Herstellung und ihre Verwendung zur Herstellung von Lacken
EP1678094B1 (de) Strahlungshärtbares beschichtungsmittel, enthaltend ein aliphatisches urethan(meth)acrylat
EP1103572B1 (de) Strahlungshärtbare Isocyanatgruppen enthaltende Urethanacrylate und ihre Verwendung
EP1681324A2 (de) Dual Cure-Systeme
EP1541609B1 (de) Härter
EP1132414A1 (de) Verfahren zur Herstellung von strahlenhärtbaren Bindemitteln und die damit hergestellten Beschichtungen
DE19535936A1 (de) Acryliertes Polyetherpolyol und dessen Verwendung für strahlenhärtbare Formulierungen
DE4219767A1 (de) Reaktive, wasseremulgierbare Bindemittel und ihre Verwendung zur Herstellung von Lacken
EP0356847A2 (de) Allylurethane und ihre Verwendung zur Herstellung von Lacken

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG AE AG AL AM AT AZ BA BB BG BR BY BZ CA CH CN CO CR CZ DE DK DM DZ EC EE ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MN MX MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VC YU ZA ZM ZW GH GM KE LS MW MZ SL SZ TZ UG ZM ZW

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002797924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2459358

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/002119

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2003526973

Country of ref document: JP

Ref document number: 2002817447X

Country of ref document: CN

Ref document number: 1020047003340

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002797924

Country of ref document: EP