WO2003006430A1 - Taxol enhancer compounds - Google Patents

Taxol enhancer compounds Download PDF

Info

Publication number
WO2003006430A1
WO2003006430A1 PCT/US2002/021717 US0221717W WO03006430A1 WO 2003006430 A1 WO2003006430 A1 WO 2003006430A1 US 0221717 W US0221717 W US 0221717W WO 03006430 A1 WO03006430 A1 WO 03006430A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
methyl
nhr
phenyl
Prior art date
Application number
PCT/US2002/021717
Other languages
English (en)
French (fr)
Inventor
Keizo Koya
Lijun Sun
Shoujun Chen
Noriaki Tatsuta
Yaming Wu
Mitsunori Ono
Original Assignee
Synta Pharmaceuticals Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE60214718T priority Critical patent/DE60214718T2/de
Application filed by Synta Pharmaceuticals Corp. filed Critical Synta Pharmaceuticals Corp.
Priority to IL15977302A priority patent/IL159773A0/xx
Priority to JP2003512202A priority patent/JP4344235B2/ja
Priority to BR0211227-2A priority patent/BR0211227A/pt
Priority to KR1020107011643A priority patent/KR101060079B1/ko
Priority to NZ530963A priority patent/NZ530963A/en
Priority to CA2455453A priority patent/CA2455453C/en
Priority to KR1020047000358A priority patent/KR100990581B1/ko
Priority to MXPA04000244A priority patent/MXPA04000244A/es
Priority to SI200230432T priority patent/SI1406869T1/sl
Priority to EP02746947A priority patent/EP1406869B1/en
Priority to AU2002316626A priority patent/AU2002316626B2/en
Publication of WO2003006430A1 publication Critical patent/WO2003006430A1/en
Priority to IL159773A priority patent/IL159773A/en
Priority to IS7101A priority patent/IS2412B/is
Priority to NO20040095A priority patent/NO329457B1/no
Priority to ZA2004/01051A priority patent/ZA200401051B/en
Priority to HK04103011A priority patent/HK1060115A1/xx
Priority to CY20061101719T priority patent/CY1105811T1/el

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • A61K31/277Nitriles; Isonitriles having a ring, e.g. verapamil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/38Amides of thiocarboxylic acids
    • C07C327/56Amides of thiocarboxylic acids having nitrogen atoms of thiocarboxamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/83Thioacids; Thioesters; Thioamides; Thioimides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/10Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D261/18Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/14Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/62Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • C07D333/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D8/00Hair-holding devices; Accessories therefor
    • A45D8/004Hair-holding devices; Accessories therefor with decorative arrangements or form
    • A45D8/006Interchangeable ornaments attached to hair holding devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/04Systems containing only non-condensed rings with a four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • tumors are more responsive to treatment when anti- cancer drugs are administered in combination to the patient than when the same drugs are administered individually and sequentially.
  • anti-cancer agents often act synergistically because the tumors cells are attacked simultaneously with agents having multiple modes of action. Thus, it is often possible to achieve more rapid reductions in tumor size by administering these drugs in combination.
  • Another advantage of combination chemotherapy is that tumors are more likely to be eradicated completely and are less likely to develop resistance to the anti-cancer drugs being used to treat the patient.
  • anti-cancer agents generally have severe side effects, even when administered individually.
  • the well known anti-cancer agent taxol causes neutroperia, neuropathy, mucositis, anemia, thrombocytopenia, bradycardia, diarrhea and nausea.
  • the toxicity of anti-cancer agents is generally additive when the drugs are administered in combination.
  • certain types of anti-cancer drugs are generally not combined.
  • the combined toxic side-effects of those anti-cancer drugs that are administered simultaneously can place severe limitations on the quantities that can be used in combination. Often, it is not possible to use enough of the combination therapy to achieve the desired synergistic effects. Therefore, there is an urgent need for agents which can enhance the desirable tumor attacking properties of anti-cancer agents without further increasing their undesirable side-effects.
  • Compound (1) was used in combination with taxol (Paclitaxel) to treat tumors induced in nude mice from the human breast tumor cell line MDA-435.
  • the tumor volume was about five fold less after 24 days of treatment in mice which had been administered 5 mg/kg of taxol and 25 mg/kg of Compound (1) than in mice which had only been administered 5 mg/kg of taxol or in mice which had only been administered 50 mg/kg of Compound (1) (Example 13).
  • (I)- Y is a covalent bond, a phenylene group or a substituted or unsubstituted straight chained hydrocarbyl group.
  • Y is a covalent bond or -C(R R 8 )-.
  • Ri and R 2 are independently an aryl group or a substituted aryl group, R and
  • R 4 are independently -H, an aliphatic group, a substituted aliphatic group, an aryl group or a substituted aryl group.
  • R 5 -R 6 are independently -H, an aliphatic group, a substituted aliphatic group, an aryl group or a substituted aryl group.
  • R and R are each independently -H, an aliphatic or substituted aliphatic group, or R is -H and R 8 is a substituted or unsubstituted aryl group, or, R 7 and R 8 ⁇ taken together, are a C2-C6 substituted or unsubstituted alkylene group.
  • R ⁇ and R 2 in the compound represented by Structural Formula (I) are not both phenyl when Y is -C(R 7 R 8 )-, R 3 and I j are both phenyl and R 5 -R 8 are all -H.
  • Another embodiment of the present invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically acceptable carrier or diluent and a compound represented by Structural Formula (I).
  • the pharmaceutical composition comprises an effective concentration of the compound.
  • Yet another embodiment of the present invention is a method of treating a subject with cancer.
  • the method comprises administering to the subject an effective amount of taxol or a taxol analog and an effective amount of a compound represented by Structural Formula (I).
  • the disclosed compounds increase the anti-cancer activity of taxol and taxol analogs.
  • these compounds have minimal toxic side-effects. Consequently, it is possible to increase the effectiveness of taxol and analogs thereof when used in combination with the disclosed compounds, even when approaching the highest tolerated doses of taxol.
  • combination therapy with the compounds of the present invention will provide improved clinical outcomes for patients with cancers that are being treated with taxol.
  • Figure 1 is a graph showing the average tumor volume in milliliters over time (in days) in nude mice treated with vehicle; Compound (1) (50 mg/kg); Paclitaxel (5 mg/kg); Compound (1) (25 mg kg) and Pachtaxel (5 mg/kg); or Compound (1) (50 mg/kg) and Paclitaxel (5 mg/kg).
  • the tumors were generated from the human breast tumor cell line MDA-435.
  • Figure 2 is a graph showing the percent weight change over time in nude mice treated with vehicle; Compound (1) (50 mg/kg); Paclitaxel (5 mg/kg); Compound (1) (25 mg/kg) and Paclitaxel (5 mg/kg); or Compound (1) (50 mg/kg) and Paclitaxel (5 mg/kg).
  • the mice were being treated for tumors generated from the human breast tumor cell line MDA-435.
  • Figure 3 is the structure of taxol (Paclitaxel)
  • Figure 4 is the structure of taxotere (Docetaxel)
  • Figures 5-25 are each the structure of a taxol analog.
  • Figure 26 is the structure of a polymer comprising a taxol analog group pendent from the polymer backbone.
  • the polymer is a terpolymer of the three monomer units shown.
  • Ri-Rg in Structural Formula (U) are as described in Structural Formula (I).
  • Ar is a substituted or unsubstituted arylene group.
  • Ar is a nitrogen- containing heteroarylene group. Examples are shown below:
  • Ring A is substituted or unsubstituted.
  • Y in Structural Formula (I) is a covalent bond or a substituted or unsubstituted straight chained hydrocarbyl group.
  • R 7 and R 8 are as described for Structural Formula (I).
  • Y is a covalent bond or -C(R R 8 )-.
  • Y in Structural Formula (I) is a covalent bond or -C(R 7 R 8 )- and the compound of the present invention is represented by
  • R ⁇ -R 8 are as described for Structural Formula (I).
  • Y' is a covalent bond or -C(R 7 R 8 )- .
  • R 7 and R 8 are both methyl; R 7 and R 8 ⁇ taken together, are propylene or butylene; or R 7 is -H and R 8 is lower alkyl (preferably methyl), thienyl, phenyl, benzyl, or amino.
  • Rs-R in Structural Formula (IH) are -H and the compound is represented by Structural Formula (TV):
  • R1-R 4 in Structural Formula (TV) are as described in Structural Formula (I).
  • Y" is a covalent bond or -CH 2 -.
  • R and R 4 are both a substituted or unsubstituted aliphatic group, preferably both a substituted or unsubstituted lower alkyl group and more preferably both a methyl group or ethyl.
  • Ri and R 2 are preferably both a substituted or unsubstituted aryl group (e.g., a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted phenyl group, or a phenyl group with at least one substituent other than an aliphatic group).
  • aryl group e.g., a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted phenyl group, or a phenyl group with at least one substituent other than an aliphatic group.
  • R 3 and R/j. are both a substituted or unsubstituted heteroaryl group.
  • R 3 and R 4 in Structural Formula (JV) are both a substituted or unsubstituted heteroaryl group, then Ri and R 2 are preferably both: 1) a substituted or unsubstituted phenyl group; or 2) a substituted or unsubstituted heteroaryl group.
  • R and are both a substituted or unsubstituted phenyl group (e.g., a phenyl group substituted with at least one group other than an aliphatic group).
  • R 3 and R4 in Structural Formula (TV) are both a substituted or unsubstituted phenyl group
  • Ri and R 2 are preferably both: 1) a substituted or unsubstituted phenyl group; or 2) a substituted or unsubstituted heteroaryl group.
  • Ri and R 2 are both a substituted or unsubstituted aryl group (e.g., a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted phenyl group or a phenyl group substituted with at least one group other than an aliphatic group). More preferably, R 3 and R 4 are both methyl and the remainder of the variables are as described above.
  • the compound of the present invention is represented by Structural Formula (IH), wherein at least one of Ri-R* is a heteroaryl group, a substituted heteroaryl group, or a phenyl group substituted with at least one group other than an aliphatic group.
  • Ri-R* is a heteroaryl group, a substituted heteroaryl group, or a phenyl group substituted with at least one group other than an aliphatic group.
  • R 5 -R 8 are all -H.
  • Ri and R 2 are both phenyl, and R 3 and R are both o-CH 3 -phenyl; Rj and R are both o-CH 3 C(O)O-phenyl, and R 3 and R are phenyl; Ri and R 2 are both phenyl, and R 3 and R are both methyl; Ri and R 2 are both phenyl, and R 3 and R 4 are both ethyl; Ri and R 2 are both phenyl, and R 3 and R 4 are both n-propyl; R ⁇ and R 2 are both -cyanophenyl, and R 3 and R are both methyl; Ri and R 2 are both /j-nitro phenyl, and R and R 4 are both methyl; Ri and R 2 are both 2,5-dimethoxyphenyl, and R and I i are both methyl; Ri and R 2 are both phenyl, and R and R 4 are both n- butyl
  • Ri and R 2 are both 2-methoxyphenyl, and R 3 and P ⁇ are both methyl; Ri and R 2 are both 3-methoxyphenyl, and R 3 and R-t are both methyl; Ri and R 2 are both 2,3- dimethoxyphenyl, and R 3 and R 4 are both methyl; Ri and R 2 are both 2-methoxy-5- chlorophenyl, and R 3 and R are both ethyl; Ri and R 2 are both 2,5-difluorophenyl, and R 3 and Rj are both methyl; R ⁇ and R 2 are both 2,5-dichlorophenyl, and R 3 and R 4 are both methyl; Ri and R 2 are both 2,5-dimethylphenyl, and R 3 and .; are both methyl;
  • Ri and R 2 are both 2-methoxy-5-chlorophenyl, and R 3 and R 4 are both methyl; Ri and R 2 are both 3,6-dimethoxyphenyl, and R 3 and R 4 are both methyl; Ri and R 2 are both phenyl, and R 3 and 1 ⁇ are both 2-ethylphenyl; Ri and R 2 are both 2-methyl- 5-pyridyl, and R 3 and R 4 are both methyl; or Rj is phenyl; R 2 is 2,5- dimethoxyphenyl, and R 3 and R f . are both methyl.
  • Y in Structural Formula (I) is -C(R 7 R 8 )- and R 5 and R 6 are both -H.
  • Y is a covalent bond or -CR 7 R 8 - and R 5 and R 6 are both -H
  • the compound of the present invention is represented by Structural Formula
  • Ri-Rt, R 7 and R 8 are as described for Structural Formula (I) and Y' is a covalent bond or -CR 7 R 8 -.
  • R 7 and R 8 are the same or different.
  • R 7 and R 8 are both methyl;
  • R 7 and R 8> taken together, are propylene or butylene; or
  • Ri and R 2 are both aryl or substituted aryl groups and R 3 and R are both a lower alkyl group or a substituted lower alkyl group; preferably, Ri and R are both aryl or substituted aryl groups, R and R are both methyl or ethyl, R 7 is -H and R 8 is -H or methyl.
  • Ri and R 2 are both phenyl or substituted phenyl and R 3 and Rj are both methyl, ethyl, phenyl, or thienyl.
  • R 7 and R 8 taken together, are propylene or butylenes.
  • Y' is a covalent bond or -CR R 8 -;
  • Ri and R 2 are both a substituted or unsubstituted aryl group;
  • R 3 and R 4 are both -H, methyl or ethyl; and
  • R 7 is -H and R 8 is -H or methyl.
  • Ri and R 2 are both phenyl; R 3 and R* are both methyl; R 7 is -H, and R 8 is ethyl; Ri and R 2 are both phenyl; R 3 and Ri are both phenyl, and R 7 and R 8 are both methyl; R and R 2 are both 2-thienyl; R 3 and R 4 are both phenyl, and R 7 and R 8 are both methyl; Ri and R 2 are both 4-cyanophenyl; R 3 and R are both methyl; R 7 is -H, and R 8 is methyl; Ri and R 2 are both phenyl; R 3 and R t are both methyl; R 7 is -H, and R 8 is methyl; Rj and R 2 are both phenyl; R 3 and R 4 are both methyl; R 7 is -H, and R 8 is benzyl; Ri and R 2 are both phenyl; R 3 and R 4 are both methyl; R 7 is -H, and R 8 is benzyl; Ri
  • Y in Structural Formula (I) is a covalent bond or -CH 2 -.
  • the compound of the present invention is represented by Structural Formula (VI):
  • Ri-R ⁇ in Structural Formula (VI) are as described for Structural Formula (I).
  • R5 and R 6 are the same or different.
  • Y" is a covalent bond or -CH 2 -.
  • R 5 and Re are both a lower alkyl group (preferably methyl) or a phenyl group.
  • R 5 and R 6 are both a lower alkyl group or a phenyl group, then Ri and R 2 are preferably both phenyl or substituted phenyl and R 3 and R 4 are preferably both a lower alkyl group.
  • Ri and R 2 are the same or different; and/or R 3 and R are the same or different.
  • R ⁇ and R 2 are the same, and R 3 and R 4 are the same.
  • a “straight chained hydrocarbyl group” is an alkylene group, i.e., -(CH 2 ) X -, with one or more (preferably one) methylene groups optionally replaced with a linkage group, x is a positive integer (e.g., between 1 and about 10), preferably between 1 and about 6 and more preferably 1 or 2.
  • a “linkage group” refers to a functional group which replaces a methylene in a straight chained hydrocarbyl.
  • linkage groups examples include a ketone (-C(O)-), alkene, alkyne, phenylene, ether (-O-), thioether (-S-), or amine [-N(R a )]-, wherein R a is defined below.
  • a preferred linkage group is -C(R 7 R 8 )-, wherein R 7 and R 8 are defined above.
  • Suitable substitutents for an alkylene group and a hydrocarbaryl group are those which do not substantially interfere with the reactions described herein.
  • R 7 and Rg are preferred substituents for an alkylene or hydrocarbyl group.
  • An aliphatic group is a straight chained, branched or cyclic non-aromatic hydrocarbon which is completely saturated or which contains one or more units of unsaturation.
  • a straight chained or branched aliphatic group has from 1 to about 20 carbon atoms, preferably from 1 to about 10, and a cyclic aliphatic group has from 3 to about 10 carbon atoms, preferably from 3 to about 8.
  • An aliphatic group is preferably a straight chained or branched alkyl group, e.g, methyl, ethyl, n- propyl, z ' so-propyl, ⁇ -butyl, sec-butyl, tert-butyl, pentyl, hexyl, pentyl or octyl, or a cycloalkyl group with 3 to about 8 carbon atoms.
  • a C1-C20 straight chained or branched alkyl group or a C3-C8 cyclic alkyl group is also referred to as a "lower alkyl" group.
  • Aromatic groups include carbocyclic aromatic groups such as phenyl, naphthyl, and anthracyl, and heteroaryl groups such as imidazolyl, thienyl, furanyl, pyridyl, pyrimidy, pyranyl, pyrazolyl, pyrroyl, pyrazmyl, thiazole, oxazolyl, and tetrazole.
  • Aromatic groups also include fused polycyclic aromatic ring systems in which a carbocyclic aromatic ring or heteroaryl ring is fused to one or more other heteroaryl rings.
  • Examples include benzothienyl, benzofuranyl, indolyl, quinolinyl, benzothiazole, benzooxazole, benzimidazole, quinolinyl, isoquinolinyl and isoindolyl.
  • arylene refers to an aryl group which is connected to the remainder of the molecule by two other bonds.
  • 1,4-phenylene group is shown below:
  • Non-aromatic heterocyclic rings are non-aromatic carbocyclic rings which include one or more heteroatoms such as nitrogen, oxygen or sulfur in the ring.
  • the ring can be five, six, seven or eight-membered. Examples include tetrahydrofuranyl, tetrahyrothiophenyl, morpholino, thiomorpholino, pyrrolidinyl, piperazinyl, piperidinyl, and thiazolidinyl.
  • lower alkoxy means to -O-(lower alkyl), -C(O)-(lower alkyl), -CH 2 -O- (lower alkyl) and -CH 2 -S-(lower alkyl), respectively.
  • substituted lower alkoxy and “substituted lower acyl” mean -O-(substituted lower alkyl) and -C(O)- (substituted lower alkyl), respectively.
  • Suitable substituents on an aliphatic group, non-aromatic heterocyclic group, benzylic or aryl group are those which do not substantially interfere with the ability of the disclosed compounds to enhance the anti-cancer activity of taxol and analogs thereof.
  • a substituent substantially interferes with the ability of a disclosed compound to enhance anti-cancer activity when the enhancement is reduced by more than about 50% in a compound with the substituent compared with a compound without the substituent.
  • R a -R d are each independently an aliphatic, substituted aliphatic, benzyl, substituted benzyl, aromatic or substituted aromatic group, preferably an alkyl, benzylic or aryl group.
  • -NR a R d taken together, can also form a substituted or unsubstituted non-aromatic heterocyclic group.
  • a non-aromatic heterocyclic group, benzylic group or aryl group can also have an aliphatic or substituted aliphatic group as a substituent.
  • a substituted aliphatic group can also have a non-aromatic heterocyclic ring, a substituted a non-aromatic heterocyclic ring, benzyl, substituted benzyl, aryl or substituted aryl group as a substituent.
  • a substituted aliphatic, non-aromatic heterocyclic group, substituted aryl, or substituted benzyl group can have more than one substituent.
  • compositions described herein are pharmaceutically acceptable salts of the compounds described herein.
  • the compound of the present invention which possess a sufficiently acidic, a sufficiently basic, or both functional groups, and accordingly can react with any of a number of inorganic bases, and inorganic and organic acids, to form a salt.
  • Acids commonly employed to form acid addition salts are inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like, and organic acids such asp- toluenesulfonic acid, methanesulfonic acid, oxalic acid, -bromophenyl-sulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid, and the like.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like
  • organic acids such asp- toluenesulfonic acid, methanesulfonic acid, oxalic acid, -bromophenyl-sulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, acetic acid, and the like.
  • salts include the sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caproate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-l,4-dioate, hexyne-1,6- dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate
  • Base addition salts include those derived from inorganic bases, such as ammonium or alkali or alkaline earth metal hydroxides, carbonates, bicarbonates, and the like.
  • bases useful in preparing the salts of this invention thus include sodium hydroxide, potassium hydroxide, ammonium hydroxide, potassium carbonate, and the like.
  • Taxol also referred to as "Paclitaxel” is a well-known anti-cancer drug which acts by inhibiting microtubule formation.
  • Many analogs of taxol are known, including taxotere, the structure of which is shown in Figure 4. Taxotere is also referred to as ""Docetaxol”.
  • the structure of other taxol analogs are shown in Figures 5-25. These compounds have the basic taxane skeleton as a common structure feature and have also been shown to have the ability to arrest cells in the G2-M phases due to stabilized microtubules. Thus, it is apparent from Figures 5-25 that a wide variety of substituents can decorate the taxane skeleton without adversely affecting biological activity.
  • Double bonds have been omitted from the cyclohexane rings in the taxane skeleton represented by Structural Formula (VTf).
  • the basic taxane skeleton can include zero or one double bond in one or both cyclohexane rings, as indicated in Figures 5-25 and Structural Formulas (VIH) and (DC) below.
  • a number of atoms have also omitted from Structural Formula (VII) to indicate sites in which structural variation commonly occurs among taxol analogs. For example, substitution on the taxane skeleton with simply an oxygen atom indicates that hydroxyl, acyl, alkoxy or other oxygen-bearing substituent is commonly found at the site.
  • taxol analog is defined herein to mean a compound which has the basic taxol skeleton and which promotes disassembly of microtubules.
  • Vm Structural Formula
  • DC Structural Formula
  • (DO. Rio is a lower alkyl group, a substituted lower alkyl group, a phenyl group, a substituted phenyl group, -SR 19 , -NHR 19 or -OR 19 .
  • R ⁇ is a lower alkyl group, a substituted lower alkyl group, an aryl group or a substituted aryl group.
  • R ⁇ 2 is -H, -OH, lower alkyl, substituted lower alkyl, lower alkoxy, substituted lower alkoxy, -O-C(O)-(lower alkyl), -O-C(O)-(substituted lower alkyl), -O-CH 2 -O-(lower alkyl) -S-CH 2 -O-(lower alkyl).
  • Rj 3 is -H, -CH 3 , or, taken together with R ⁇ 4 , -CH 2 -.
  • R] is -H, -OH, lower alkoxy, -0-C(O)-(lower alkyl), substituted lower alkoxy, -O-C(O)-(substituted lower alkyl), -O-CH 2 -O-P(O)(OH) 2 , -O-CH 2 -O-(lower alkyl), -O-CH 2 -S-(lower alkyl) or, taken together with R 2 o, a double bond.
  • R16 is phenyl or substituted phenyl.
  • R ⁇ is -H, lower acyl, substituted lower acyl, lower alkyl, substituted, lower alkyl, (lower alkoxy)methyl or (lower alkyl)thiomethyl.
  • R 1 is a lower alkyl group, a substituted lower alkyl group, a phenyl group, a substituted phenyl group.
  • R 2 o is -H or a halogen.
  • R 2 ⁇ is -H, lower alkyl, substituted lower alkyl, lower acyl or substituted lower acyl.
  • the variables in Structural Formulas (VHI) and (LX) are defined as follows:
  • R ⁇ is phenyl, (CH 3 ) 2 CHCH 2 -, -2-furanyl, cyclopropyl or /j ra-toluyl;
  • Rj 2 is -H, - OH, CH 3 CO- or -(CH 2 ) 2 -N-morpholino
  • R 14 is -H, -CH 2 SCH 3 or -CH 2 -O-P(0)(OH) 2 ;
  • R 15 is CH 3 CO-;
  • R 16 is phenyl; R ⁇ -H, or, R ⁇ and R ⁇ 8 , taken together, are -O-CO-O-;
  • R ⁇ 8 is -H; R 20 is -H or -F; and R 2] is -H, -C(0)-CHBr-(CH 2 ) ⁇ 3 -CH 3 or -C(O (CH 2 ) ⁇ 4 -CH 3 ; -C(0)-CH 2 -CH(OH)-COOH, -C(O)-CH 2 -O-C(O)-CH 2 CH( ⁇ H 2 )- CONH2, -C(O)-CH 2 -O-CH 2 CH 2 OCH 3 or -C(O)-O-C(O)-CH 2 CH 3 .
  • a taxol analog can also be bonded to or be pendent from a pharmaceutically acceptable polymer, such as a polyacrylamide.
  • a pharmaceutically acceptable polymer such as a polyacrylamide.
  • a polymer of this type is shown in Figure 26.
  • the disclosed compounds are enhancers of the anti-cancer activity of taxol and taxol analogs.
  • a compound enhances the anti-cancer activity of taxol or a taxol analog when the activity of taxol or the taxol analog is greater when administered in combination with the compound than when administered alone. The degree of the increase in activity depends upon the amount of compound administered.
  • the compounds of the present invention can therefore be used in combination with taxol or taxol analogs to treat subjects with cancers. Examples include colon cancer, pancreatic cancer, melanoma, renal cancer, sarcoma, breast cancer, ovarian cancer, lung cancer, stomach cancer, bladder cancer and cervical cancer.
  • a "subject” is a mammal, preferably a human, but can also be an animal in need of veterinary treatment, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, sheep, pigs, horses, and the like) and laboratory animals (e.g., rats, mice, guinea pigs, and the like).
  • companion animals e.g., dogs, cats, and the like
  • farm animals e.g., cows, sheep, pigs, horses, and the like
  • laboratory animals e.g., rats, mice, guinea pigs, and the like.
  • an effective amount of a compound of the present invention and an effective amount of taxol or analog of taxol are administered to the subject.
  • an "effective amount” is a quantity in which anti-cancer effects are normally achieved.
  • an "effective amount” is the quantity in which a greater anti-cancer effect is achieved when the compound is co-administered with taxol or a taxol analog compared with when taxol or the taxol analog is administered alone.
  • the compound and taxol (or taxol analog) can be co-administered to the subject as part of the same pharmaceutical composition or, alternatively, as separate pharmaceutical compositions.
  • the compound or the present invention and taxol (or taxol analog) can be administered simultaneously or at different times, provided that the enhancing effect of the compound is retained.
  • the amount of compound and taxol (or taxol analog) administered to the subject will depend on the type and severity of the disease or condition and on the characteristics of the subject, such as general health, age, sex, body weight and tolerance to drugs. It will also depend on the degree, severity and type of cancer. The skilled artisan will be able to determine appropriate dosages depending on these and other factors. Effective dosages for taxol and taxol analog are well known and typically range from between about 1 mg/mm 2 per day and about 1000 mg/mm 2 per day, preferably between about 10 mg/mm 2 per day and about 500 mg/mm 2 per day. Effective amounts of a compound of the present invention typically range between about 1 mg/mm 2 per day and about 10 grams/mm 2 per day, and preferably between 10 mg/mm 2 per day and about 5 grams/mm 2 .
  • the disclosed compounds are administered by any suitable route, including, for example, orally in capsules, suspensions or tablets or by parenteral administration.
  • Parenteral administration can include, for example, systemic administration, such as by intramuscular, intravenous, subcutaneous, or intraperitoneal injection.
  • the compounds can also be administered orally (e.g., dietary), topically, by inhalation (e.g., intrabronchial, intranasal, oral inhalation or intranasal drops), or rectally, depending on the type of cancer to be treated.
  • Oral or parenteral administration are preferred modes of administration.
  • Suitable routes of administration of taxol and taxol analogs are well known in the art and include by parenteral administration, as described above for the compounds of the present invention.
  • Suitable routes of administration for taxol and analogs thereof are well known and include inter alia parenteral and oral administration.
  • the disclosed compounds can be administered to the subject in conjunction with an acceptable pharmaceutical carrier as part of a pharmaceutical composition for treatment of cancer.
  • Formulation of the compound to be administered will vary according to the route of administration selected (e.g., solution, emulsion, capsule).
  • Suitable pharmaceutical carriers may contain inert ingredients which do not interact with the compound. Standard pharmaceutical formulation techniques can be employed, such as those described in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA.
  • Suitable pharmaceutical carriers for parenteral administration include, for example, sterile water, physiological saline, bacteriostatic saline (saline containing about 0.9% mg/ml benzyl alcohol), phosphate-buffered saline, Hank's solution, Ringer's-lactate and the like.
  • compositions such as in a coating of hard gelatin or cyclodextrasn
  • Suitable formulations for taxol and taxol analogs are well known in the art.
  • the disclosed compounds can be prepared according to methods described in Examples 1-12 and also according to methods described in the co-pending US Provisional Application entitled SYNTHESIS OF TAXOL ENHANCERS U.S. Provisional Application No. 60/304,318, filed July 10, 2001. The entire teachings of this application are incorporated herein by reference.
  • N-Malonyl-bisi " N , -methyl-N'-(thiobenzoyl hvdrazide1 To a stirred solution of thiobenzoic acid N-methylhydrazide (0.166 g, 10 mmol), HOBt'H 2 O (0.15 g, 11 mmol) and malonic acid (0.052 g, 5 mmol) in DMF (2 mL) was added DCC (0.22 g, 10.7 mmol) at 0 °C. The resultant suspension was stirred at 0 °C for 1 h and at room temperature for 3 h. Precipitated material was filtered off and washed with EtOAc (3 x 15 mL).
  • " N'-methyl-N'-(thiobenzoyl)hydrazide] To a solution of thiobenzoic acid N-methylhydrazine (10 g) stirred at 0 C were added subsequently triethylamine (8.5 mL) and malonyl dichloride (3.05 mL). The reaction mixture was stirred for 10 min, washed with water (3x50 mL), dried over sodium sulfate and concentrated. Purification by recrystallization from methylene dichloride (35 mL) gave the product as light yellow crystals (9.0 g, 75%) which was identical to the product obtained in Example 6.
  • Example 12 - Compound (1) Enhances the Anti-Cancer Activity of Paclitaxel In Vivo General Procedure of In Vivo Anti-Tumor Study
  • the in vivo anti-cancer enhancing effect of novel compounds was assessed in tumor bearing mice using the tumor growth inhibition assay.
  • Tumor cells were implanted by injection of a tumor cell suspension subcutaneously in the flank of a mouse. Treatment of the tumor with an experimental compound and Paclitaxel begun after the tumor had been established (volume was about 100 mm 3 ). Animal then begun a multiple injection schedule where the compound and Paclitaxel were given by TV route of administration. Tumors were measured two times a week. During the course of this assay, animals were monitored daily for signs of toxicity including body weight loss.
  • a supplemented media was prepared from 50% DMEM/Dulbecco Modified Eagle Medium (High Glucose), 50% RPMI 1640, 10% FBS/Fetal Bovine Serum (Hybridoma Tested; Sterile Filtered), 1% L-Glutamine, 1% Penicillin-Streptomycin, 1% MEM Sodium Pyruvate and 1% MEM Non-Essential Amino Acids.
  • FBS was obtained from Sigma Chemical Co. and other ingredients were obtained from Invitrogen Life
  • the supplemental media was warmed to 37 °C and 50 ml of media was added to a 175 cm 2 tissue culture flask.
  • the cells used in the assay were MDA-435 Human Breast Carcinoma from the American Type Culture Collection. 1 vial of MDA-435 cells from the liquid nitrogen frozen cell stock was removed. The frozen vial of cells was immediately placed into a 37 °C water bath and gently swirled until thawed. The freeze-vial was wiped with 70% ethanol and cells were immediately pipetted into the 175 cm 2 tissue culture flask containing supplemented media. The cells were incubated overnight and the media was removed and replaced with fresh supplemented media the next day. The flask was incubated until flask became about 90% confluent. This took anywhere from 5-7 days.
  • the flask was washed with 10 ml of sterile room temperature phosphate buffered saline (PBS).
  • the cells were trypsinized by adding 5 ml of warmed Trypsin-EDTA (Invitrogen) to the flask of cells. The cells were then incubated for 2-3 minutes at 37 °C until cells begun to detach from the surface of the flask. An equal volume of supplemented media (5 ml) was added to the flask. All the cells were collected into 50 ml tube, and centrifuged at 1000 RPM for 5 minutes at 20° C. The supernatant was aspirated and the cell pellet was resuspended in 10 ml of supplemented media and the cells were counted.
  • PBS sterile room temperature phosphate buffered saline
  • mice (CD-I nu/nu) were obtained from Charles River Laboratories: nomenclature-. Crl:CD-l-nuBR, Age: 6-8 weeks. The mice were allowed to acclimate for 1 week prior to their being used in an experimental procedure.
  • MDA-435 tumor cell suspension took place into the corpus adiposum of the female CD-I nu/nu mouse. This fat body is located in the ventral abdominal viscera of the mouse. Tumor cells were implanted subsutaneously into the fat body located in the right quadrant of the abdomen at the juncture of the os coxae (pelvic bone) and the os femoris (femur). 5 million MDA-435 cells in 0.1 ml of sterile PBS were injected using 27 G (1/2 inch) needle. MDA-435 tumors developed 2-3 weeks after implantation.
  • Compound stock solutions were prepared by dissolving the compound in cell- culture-grade DMSO (dimethyl sulfoxide) at the desired concentration. This stock solution in DMSO was sonicated in an ultrasonic water bath until all the powder dissolved.
  • DMSO dimethyl sulfoxide
  • the Formulation Solvent was prepared as follows: 20% of Cremophore RH40 (Polyoxyl 40 Hydrogenated Castor Oil obtained from BASF corp.) in water was prepared by first heating 100 % Cremophore RH40 in a water bath at 50-60 °C until it liquefied and became clear. 10 ml of the 100 % Cremophore RH40 aliquoted into a conical centrifuge tube containing 40 ml of sterile water (1:5 dilution of Cremophore RH40). The 20% Cremophore RH40 solution was reheated until it became clear again, and mixed by inverting the tube several times.
  • Cremophore RH40 Polyoxyl 40 Hydrogenated Castor Oil obtained from BASF corp.
  • This 20 % Cremophore RH40 solution was stored at room temperature, and was kept for up to 3 months.
  • Preparation of Dosing Solution for Compound Administration The compound stock solution was diluted 1:10 with 20% Cremophore RH40: 1) 2.0 ml of 10 mg/ml dosing solution of Compound (1) was prepared by diluting 100 mg/ml Compound Stock solution with 1.8 ml of 20 % Cremophore RH40 water solution; and 2) a dosoing solution comprising 2.0 ml of 1 mg/ml of Paclitaxel (obtained from Sigma Chemical Co.) and 5 mg/ml of Compound (1) was obtained by mixing 0.1 ml of Compound 1 DMSO stock solution (50 mg/ml) and 0.1 ml of Paclitaxel DMSO stock solution (10 mg/ml) and diluting with 1.8 ml of 20 % Cremophore RH40 water solution.
  • the final formulation for the dosing solution was 10% DMSO, 18%
  • Figure 1 shows the effects of Compound (1) on enhancing anti-tumor activity of Paclitaxel (Taxol).
  • Compound (1) significantly enhanced anti-tumor activity of Paclitaxel on human breast tumor MDA-435 in nude mice.
  • Figure 2 shows the effects of Compound (1) and Paclitaxel on the body weight of nude mice bearing MDA-435 human breast tumor.
  • Compound (1) significantly enhanced anti-tumor activity of Paclitaxel without increasing toxicity.
  • Example 13 Compounds (1) and (2) Enhance the Anticancer Activity of Paclitaxel
  • Compound (2) The protocol described in Example 12 was used to test Compounds (1) and (2) for their ability to enhance the anti-cancer activity of paclitaxel in mice, except as modified as described below.
  • Dosing Schedule 3 times a week (Monday, Wednesday, Friday) for 3 weeks 5 mice were used for each group.
  • Example 14 - Compound (1) Enhances the Anticancer Activity of Paclitaxel In Vivo The protocol described in Example 12 was used to test Compound (1) for its ability to enhance the anti-cancer activity of paclitaxel in mice, except modified as described below.
  • mice 5 mice were used for each group
  • Examplel5 Compounds (3)-(5) Enhance the Anticancer Activity of Paclitaxel In Vivo
  • Example 12 The protocol described in Example 12 was used to test Compounds (3)-(5) for their ability to enhance the anti-cancer activity of paclitaxel in mice, except modified as described below.
  • mice 5 mice were used for each group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Epoxy Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Furan Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Pyridine Compounds (AREA)
  • Indole Compounds (AREA)
PCT/US2002/021717 2001-07-10 2002-07-10 Taxol enhancer compounds WO2003006430A1 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
KR1020047000358A KR100990581B1 (ko) 2001-07-10 2002-07-10 택솔 인핸서 화합물
IL15977302A IL159773A0 (en) 2001-07-10 2002-07-10 Taxol enhancer compounds
JP2003512202A JP4344235B2 (ja) 2001-07-10 2002-07-10 タキソール増強剤化合物
BR0211227-2A BR0211227A (pt) 2001-07-10 2002-07-10 Composto, composição farmacêutica e seus usos
KR1020107011643A KR101060079B1 (ko) 2001-07-10 2002-07-10 택솔 인핸서 화합물
NZ530963A NZ530963A (en) 2001-07-10 2002-07-10 Taxol enhancer compounds
SI200230432T SI1406869T1 (sl) 2001-07-10 2002-07-10 Spojine za ojacanje taksola
MXPA04000244A MXPA04000244A (es) 2001-07-10 2002-07-10 Compuestos mejoradores de taxol.
CA2455453A CA2455453C (en) 2001-07-10 2002-07-10 Taxol enhancer compounds
DE60214718T DE60214718T2 (de) 2001-07-10 2002-07-10 Verbindungen mit taxol-verstärkender wirkung
EP02746947A EP1406869B1 (en) 2001-07-10 2002-07-10 Taxol enhancer compounds
AU2002316626A AU2002316626B2 (en) 2001-07-10 2002-07-10 Taxol enhancer compounds
IL159773A IL159773A (en) 2001-07-10 2004-01-08 Compounds for increasing taxol activity
NO20040095A NO329457B1 (no) 2001-07-10 2004-01-09 Taxol-forbedringsforbindelser, farmasoytisk preparat inneholdende slike samt anvendelse av slike for fremstilling av medikament for anvendelse i kreftbehandling
IS7101A IS2412B (is) 2001-07-10 2004-01-09 Taxól-eflandi efnasambönd
ZA2004/01051A ZA200401051B (en) 2001-07-10 2004-02-09 Taxol enhancer compounds
HK04103011A HK1060115A1 (en) 2001-07-10 2004-04-29 Taxol enhancer compounds
CY20061101719T CY1105811T1 (el) 2001-07-10 2006-11-29 Ενωσεις ενισχυτη ταξολης

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30425201P 2001-07-10 2001-07-10
US60/304,252 2001-07-10
US36194602P 2002-03-06 2002-03-06
US60/361,946 2002-03-06

Publications (1)

Publication Number Publication Date
WO2003006430A1 true WO2003006430A1 (en) 2003-01-23

Family

ID=26973915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/021717 WO2003006430A1 (en) 2001-07-10 2002-07-10 Taxol enhancer compounds

Country Status (24)

Country Link
US (6) US6800660B2 (US07345094-20080318-C00031.png)
EP (3) EP1731148B1 (US07345094-20080318-C00031.png)
JP (1) JP4344235B2 (US07345094-20080318-C00031.png)
KR (2) KR101060079B1 (US07345094-20080318-C00031.png)
CN (1) CN100348580C (US07345094-20080318-C00031.png)
AT (2) ATE533483T1 (US07345094-20080318-C00031.png)
AU (1) AU2002316626B2 (US07345094-20080318-C00031.png)
BR (1) BR0211227A (US07345094-20080318-C00031.png)
CA (1) CA2455453C (US07345094-20080318-C00031.png)
CY (1) CY1105811T1 (US07345094-20080318-C00031.png)
DE (1) DE60214718T2 (US07345094-20080318-C00031.png)
DK (2) DK1406869T3 (US07345094-20080318-C00031.png)
ES (2) ES2395193T3 (US07345094-20080318-C00031.png)
HK (2) HK1060115A1 (US07345094-20080318-C00031.png)
IL (2) IL159773A0 (US07345094-20080318-C00031.png)
IS (1) IS2412B (US07345094-20080318-C00031.png)
MX (1) MXPA04000244A (US07345094-20080318-C00031.png)
NO (1) NO329457B1 (US07345094-20080318-C00031.png)
NZ (1) NZ530963A (US07345094-20080318-C00031.png)
PT (1) PT1406869E (US07345094-20080318-C00031.png)
SI (1) SI1406869T1 (US07345094-20080318-C00031.png)
TW (1) TWI332943B (US07345094-20080318-C00031.png)
WO (1) WO2003006430A1 (US07345094-20080318-C00031.png)
ZA (1) ZA200401051B (US07345094-20080318-C00031.png)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064826A1 (en) * 2003-01-15 2004-08-05 Synta Pharmaceuticals Corp. Bis (thio-hydrazide amide) compounds for treating multi-drug resistant cancer
US6924312B2 (en) 2001-07-10 2005-08-02 Synta Pharmaceuticals Corp. Taxol enhancer compounds
US7001923B2 (en) 2001-07-10 2006-02-21 Synta Pharmaceuticals Corp. Taxol enhancer compounds
WO2006033913A2 (en) * 2004-09-16 2006-03-30 Synta Pharmaceuticals Corp. Bis (thio-hydrazide amides) for treament of hyperplasia
US7037940B2 (en) 2001-07-10 2006-05-02 Synta Pharmaceuticals Corp. Taxol enhancer compounds
WO2006055747A2 (en) 2004-11-19 2006-05-26 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amides) for increasing hsp70 expression
JP2008504264A (ja) * 2004-06-23 2008-02-14 シンタ ファーマスーティカルズ コーポレイション 癌治療のためのビス(チオ‐ヒドラジドアミド)塩
WO2008024305A2 (en) * 2006-08-21 2008-02-28 Synta Pharmaceuticals Corp. Bis (thiohydrazide amides) for treating melanoma
WO2008024302A2 (en) 2006-08-21 2008-02-28 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders
WO2008082579A1 (en) * 2007-01-03 2008-07-10 Synta Pharmaceuticals Corp. Method for treating cancer
WO2009064374A2 (en) * 2007-11-09 2009-05-22 Synta Pharmaceuticals Corp. Oral formulations of bis(thiohydrazide amides)
WO2009073148A2 (en) * 2007-11-28 2009-06-11 Synta Pharmaceuticals Corp. Polymorphs of n-malonyl-bis(n'-methyl-n'-thiobenzoylhydrazide)
WO2009073147A2 (en) * 2007-11-28 2009-06-11 Synta Pharmaceuticals Corp. Process for preparing bis(thiohydrazide amides)
US7645904B2 (en) 2006-09-15 2010-01-12 Synta Pharmaceuticals Corp. Purification of bis(thiohydrazide amides)
US7652168B2 (en) 2001-07-10 2010-01-26 Synta Pharmaceuticals Corp. Synthesis of taxol enhancers
US7678832B2 (en) 2005-08-16 2010-03-16 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amide) formulation
US7709683B2 (en) 2005-05-16 2010-05-04 Synta Pharmaceuticals Corp. Synthesis of bis(thio-hydrazide amide) salts
US7939564B2 (en) 2006-08-31 2011-05-10 Synta Pharmaceuticals Corp. Combination with bis(thiohydrazide amides) for treating cancer
US8017654B2 (en) 2005-04-15 2011-09-13 Synta Pharmaceuticals Corp. Combination cancer therapy with bis(thiohydrazide) amide compounds
US9156783B2 (en) 2006-08-21 2015-10-13 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006228035B2 (en) * 2003-01-15 2010-02-18 Synta Pharmaceuticals Corp. Bis (thio-hydrazide amide) compounds for treating multi-drug resistant cancer
US20060167106A1 (en) * 2004-11-19 2006-07-27 Mei Zhang Compounds acting at the centrosome
WO2006113572A1 (en) * 2005-04-15 2006-10-26 Synta Pharmaceuticals Corp. Methods of increasing natural killer cell activity for therapy
TW200804307A (en) * 2005-10-27 2008-01-16 Synta Pharmaceuticals Corp Process for preparing mesylate salts of IL-12 inhibitory compounds
EP2059236A2 (en) * 2006-08-21 2009-05-20 Synta Pharmaceuticals Corporation Combination with bis(thiohydrazide amides) for treating cancer
WO2008024301A2 (en) * 2006-08-21 2008-02-28 Synta Pharmaceuticals Corp. Bis(thiohydrazide amides) for use in preventing or delaying the recurrence of melanoma
TW200817348A (en) * 2006-08-21 2008-04-16 Synta Pharmaceuticals Corp Compounds for the treatment of proliferative disorders
US20080118562A1 (en) * 2006-09-11 2008-05-22 Keizo Koya Bis(thiohydrazide amides) formulation
US9498528B2 (en) * 2006-09-13 2016-11-22 Genzyme Corporation Treatment of multiple sclerosis (MS)
WO2008136976A2 (en) * 2007-04-30 2008-11-13 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders
WO2009020631A2 (en) 2007-08-07 2009-02-12 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders
WO2009105257A1 (en) * 2008-02-21 2009-08-27 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders
WO2009123704A2 (en) * 2008-03-31 2009-10-08 Synta Pharmaceuticals Corp. Process for preparing bis(thiohydrazide amides)
AU2009308511B2 (en) * 2008-10-22 2013-03-07 Synta Pharmaceutical Corp. Transition metal complexes of a bis[thiohydrazide amide] compound
WO2010048284A1 (en) 2008-10-22 2010-04-29 Synta Pharmaceuticals Corp. Transition metal complexes of bis[thiohydrazide amide] compounds
US8525776B2 (en) * 2008-10-27 2013-09-03 Lenovo (Singapore) Pte. Ltd Techniques for controlling operation of a device with a virtual touchscreen
US8680100B2 (en) 2008-12-01 2014-03-25 Synta Pharmaceuticals Corp. Sulfonylhydrazide compounds for treating proliferative disorders
WO2011069159A2 (en) 2009-12-04 2011-06-09 Synta Pharmaceuticals Corp. Bis[thiohydrazide amide] compounds for treating leukemia
WO2011133673A1 (en) 2010-04-20 2011-10-27 Synta Pharmaceuticals Corp. Use of bis [thiohydrazide amide] compounds such as elesclomol for treating cancers
AU2012335105A1 (en) 2011-11-10 2014-06-19 Synta Pharmaceuticals Corp. Administration of a bis(thiohydrazide amide) compound for treating cancers
US20130149392A1 (en) 2011-12-12 2013-06-13 Synta Pharmaceuticals Corp. Method of treating non-small cell lung cancer with bis-(thiohydrazide)amide compounds
US20150057357A1 (en) 2012-01-05 2015-02-26 The Board Of Trustees Of The Leland Stanford Junior University Bis (thiohydrazide amide) compounds for treating cancers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010995A1 (fr) * 1992-11-10 1994-05-26 Rhone-Poulenc Rorer S.A. Compositions antitumorales contenant des derives du taxane
WO1999034796A1 (en) * 1997-12-31 1999-07-15 Pharmacia & Upjohn S.P.A. Synergistic antitumor composition containing a naphthalensulphonic acid derivative

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US304252A (en) 1884-08-26 Gael behee
US304318A (en) 1884-09-02 Inlet-pipe for water-works
US361946A (en) 1887-04-26 Watch arbor and pivot
US3357956A (en) 1965-03-30 1967-12-12 Du Pont Polymeric 1, 3, 4-thiadiazoles and the process for their preparation
FR2097737A5 (en) 1970-07-14 1972-03-03 Berlin Chemie Veb Virustatic 4-substd 1-acylthiosemicarbazides -from carboxylic acid - hydrazide and isothiocyanates or from carboxylic acid chloride and 4-
DE2037257A1 (en) 1970-07-28 1972-02-03 Farbwerke Hoechst AG, vorm. Meister Lucius & Brüning, 6000 Frankfurt Poly-(5-amino-1,3,4-thiadiazol-2-yl) derivs prepn - intermediates for drug and polymer prodn
GB1272920A (en) 1971-03-15 1972-05-03 Berlin Chemie Veb New thiosemicarbazides
US4012360A (en) * 1973-12-03 1977-03-15 Ciba-Geigy Corporation Bis-salicyloyl-dicarboxylic acid dihydrazides as stabilizers for polyolefines
JPS5091056A (US07345094-20080318-C00031.png) * 1973-12-17 1975-07-21
US4822777A (en) 1987-02-27 1989-04-18 Liposome Technology, Inc. Amphotericin B/cholesterol sulfate composition
JP2767241B2 (ja) 1987-04-15 1998-06-18 ロ−ム アンド ハ−ス コンパニ− 殺虫性のn−(場合により置換された)−n′−置換−n,n′−ジ置換ヒドラジン
US6013836A (en) * 1992-02-28 2000-01-11 Rohm And Haas Company Insecticidal N'-substituted-N,N'-disubstitutedhydrazines
US6753006B1 (en) 1993-02-22 2004-06-22 American Bioscience, Inc. Paclitaxel-containing formulations
US6096331A (en) 1993-02-22 2000-08-01 Vivorx Pharmaceuticals, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US5665382A (en) 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of pharmaceutically active agents for in vivo delivery
US5439686A (en) 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US5916596A (en) 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US6749868B1 (en) 1993-02-22 2004-06-15 American Bioscience, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
EP0693924B2 (en) 1993-02-22 2008-04-09 Abraxis BioScience, Inc. Methods for (in vivo) delivery of biologics and compositions useful therefor
US6537579B1 (en) 1993-02-22 2003-03-25 American Bioscience, Inc. Compositions and methods for administration of pharmacologically active compounds
US5840746A (en) 1993-06-24 1998-11-24 Merck Frosst Canada, Inc. Use of inhibitors of cyclooxygenase in the treatment of neurodegenerative diseases
US5523325A (en) 1993-09-09 1996-06-04 Jacobson; Richard M. Amidrazones and their use as pesticides
WO1995033710A1 (de) 1994-06-03 1995-12-14 Basf Aktiengesellschaft Carbamoylcarbonsäurehydrazide und ihre verwendung zur bekämpfung von schadpilzen
DE69604298T2 (de) * 1995-09-22 2000-05-18 Bioimage A/S, Soeborg Varianten des grünen fluoreszenzproteins, gfp
US5739686A (en) 1996-04-30 1998-04-14 Naughton; Michael J. Electrically insulating cantilever magnetometer with mutually isolated and integrated thermometry, background elimination and null detection
KR980008219A (ko) 1996-07-16 1998-04-30 김상응 안정화된 주사제용 약제학적 조성물
ES2202855T3 (es) * 1997-04-18 2004-04-01 Janssen Pharmaceutica Nv Uso de antagonistas 5ht3 para promover el lavado intestinal.
US6235787B1 (en) * 1997-06-30 2001-05-22 Hoffmann-La Roche Inc. Hydrazine derivatives
JP3099880B2 (ja) * 1998-08-12 2000-10-16 日本電気株式会社 半導体スイッチ及びスイッチ回路
TW479053B (en) * 1998-10-19 2002-03-11 Agro Kanesho Co Ltd Hydrazineoxoacetamide derivatives and pesticides
ES2161594B1 (es) * 1998-12-17 2003-04-01 Servier Lab Nuevos derivados de la hidrazida, su procedimiento de preparacion y las composiciones farmaceuticas que los contienen.
JP3908876B2 (ja) * 1999-07-23 2007-04-25 日東電工株式会社 粘着テープ用基材フィルム及び粘着テープまたはシート
US6322303B1 (en) * 2000-05-12 2001-11-27 David M. John Dunnage bag and method of making same
EP1164126A1 (de) * 2000-06-16 2001-12-19 Basf Aktiengesellschaft Salicylsäurehydrazid-Derivate, Verfahren und Zwischenprodukte zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung zur Bekämpfung von Schadpilzen
US6365745B1 (en) * 2000-07-14 2002-04-02 Sumika Fine Chemicals Co., Ltd. Method for producing hydrazine derivative
MXPA03006666A (es) * 2001-01-25 2004-05-31 Guilford Pharm Inc Compuestos de union de ciclofilina carbociclicos trisubstituidos y su uso.
CA2445967A1 (en) 2001-05-01 2002-11-07 Abbott Laboratories Compositions comprising lopinavir and methods for enhancing the bioavailability of pharmaceutical agents
WO2002094259A1 (en) 2001-05-03 2002-11-28 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Compounds that inhibit hsp90 and stimulate hsp70 and hsp40, useful in the prevention or treatment of diseases associated with protein aggregation and amyloid formation
US6602907B1 (en) * 2001-06-08 2003-08-05 University Of Central Florida Treatment of breast cancer
TWI252847B (en) 2001-07-10 2006-04-11 Synta Pharmaceuticals Corp Synthesis of taxol enhancers
TWI332943B (en) 2001-07-10 2010-11-11 Synta Pharmaceuticals Corp Taxol enhancer compounds
US6924312B2 (en) * 2001-07-10 2005-08-02 Synta Pharmaceuticals Corp. Taxol enhancer compounds
TWI297335B (en) 2001-07-10 2008-06-01 Synta Pharmaceuticals Corp Taxol enhancer compounds
US20050154039A1 (en) 2001-11-28 2005-07-14 Marie-Odile Glacera Contour 5-Sulphanyl-4h-1,2,4-triazole derivatives and their use as medicine
TW200408407A (en) 2001-11-30 2004-06-01 Dana Farber Cancer Inst Inc Methods and compositions for modulating the immune system and uses thereof
AU2006228035B2 (en) 2003-01-15 2010-02-18 Synta Pharmaceuticals Corp. Bis (thio-hydrazide amide) compounds for treating multi-drug resistant cancer
TWI330079B (en) 2003-01-15 2010-09-11 Synta Pharmaceuticals Corp Treatment for cancers
JP4921162B2 (ja) 2003-02-11 2012-04-25 ヴァーナリス(ケンブリッジ)リミテッド 熱ショックタンパク質の阻害剤としてのイソオキサゾール化合物類
KR100575251B1 (ko) 2003-03-03 2006-05-02 재단법인서울대학교산학협력재단 p38/JTV-1을 유효성분으로 하는 암 치료용 약학적조성물 및 암 치료용 약학적 조성물의 스크리닝 방법
EP1493445A1 (en) 2003-07-04 2005-01-05 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Inhibition of stress-induced ligand-dependent EGFR activation
AR045595A1 (es) 2003-09-04 2005-11-02 Vertex Pharma Composiciones utiles como inhibidores de proteinas quinasas
KR100544347B1 (ko) 2003-12-11 2006-01-23 한국생명공학연구원 디아릴이소옥사졸계 화합물을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물
US20050288347A1 (en) 2004-03-26 2005-12-29 Hodge Carl N Certain triazole-based compounds, compositions, and uses thereof
JP5362986B2 (ja) 2004-06-23 2013-12-11 シンタ ファーマスーティカルズ コーポレイション 癌治療のためのビス(チオ‐ヒドラジドアミド)塩
EP1773756A2 (en) 2004-07-09 2007-04-18 Elan Pharmaceuticals, Inc. Oxime derivative substituted hydroxyethylamine aspartyl protease inhibitors
WO2006033913A2 (en) 2004-09-16 2006-03-30 Synta Pharmaceuticals Corp. Bis (thio-hydrazide amides) for treament of hyperplasia
JP5204489B2 (ja) 2004-11-19 2013-06-05 シンタ ファーマスーティカルズ コーポレイション Hsp70発現を増加するためのビス(チオ‐ヒドラジドアミド)
US20060167106A1 (en) 2004-11-19 2006-07-27 Mei Zhang Compounds acting at the centrosome
SG164378A1 (en) 2005-02-17 2010-09-29 Synta Pharmaceuticals Corp Compounds for the treatment of proliferative disorders
BRPI0610219A2 (pt) * 2005-04-15 2010-06-08 Synta Pharmaceuticals Corp métodos de tratamento de um ser humano com cáncer e composição de farmacêutica
WO2006113572A1 (en) 2005-04-15 2006-10-26 Synta Pharmaceuticals Corp. Methods of increasing natural killer cell activity for therapy
WO2006113493A2 (en) 2005-04-15 2006-10-26 Synta Pharmaceuticals Corp. Methods of determining cancer prognosis via natural killer cell activity
JP2008540658A (ja) 2005-05-16 2008-11-20 シンタ ファーマシューティカルズ コーポレーション ビス(チオ−ヒドラジドアミド)塩の合成
WO2007021881A1 (en) 2005-08-16 2007-02-22 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amide) formulation
AU2007267847B2 (en) 2006-05-25 2012-04-12 Synta Pharmaceuticals Corp. Triazole compounds that modulate Hsp90 activity
WO2008024298A1 (en) 2006-08-21 2008-02-28 Synta Pharmaceuticals Corp. Bis(thiohydrazide amides) for inhibiting angiogenesis
US8497272B2 (en) 2006-08-21 2013-07-30 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders
KR20090045354A (ko) 2006-08-21 2009-05-07 신타 파마슈티칼스 코프. 증식성 장애를 치료하기 위한 화합물
JP2010501564A (ja) 2006-08-21 2010-01-21 シンタ ファーマシューティカルズ コーポレーション 黒色腫を治療するためのビス(チオヒドラジドアミド)
EP2059236A2 (en) 2006-08-21 2009-05-20 Synta Pharmaceuticals Corporation Combination with bis(thiohydrazide amides) for treating cancer
WO2008024301A2 (en) 2006-08-21 2008-02-28 Synta Pharmaceuticals Corp. Bis(thiohydrazide amides) for use in preventing or delaying the recurrence of melanoma
AU2007290490B2 (en) 2006-08-31 2011-09-08 Synta Pharmaceuticals Corp. Combination with bis(thiohydrazide amides) for treating cancer
US20080118562A1 (en) 2006-09-11 2008-05-22 Keizo Koya Bis(thiohydrazide amides) formulation
EP2059250A2 (en) 2006-09-14 2009-05-20 Synta Pharmaceuticals Corporation Compounds for the treatment of angiogenesis
TW200829543A (en) 2006-09-15 2008-07-16 Synta Pharmaceuticals Corp Purification of bis(thiohydrazide amides)
WO2008082579A1 (en) 2007-01-03 2008-07-10 Synta Pharmaceuticals Corp. Method for treating cancer
WO2008136976A2 (en) 2007-04-30 2008-11-13 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders
WO2009020631A2 (en) 2007-08-07 2009-02-12 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders
US8618170B2 (en) 2007-11-09 2013-12-31 Synta Pharmaceuticals Corp. Oral formulations of bis(thiohydrazide amides)
WO2009073148A2 (en) 2007-11-28 2009-06-11 Synta Pharmaceuticals Corp. Polymorphs of n-malonyl-bis(n'-methyl-n'-thiobenzoylhydrazide)
TW200940050A (en) 2007-11-28 2009-10-01 Synta Pharmaceuticals Corp Polymorphs of N-malonyl-bis(N'-methyl-N'-thiobenzoylhydrazide)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010995A1 (fr) * 1992-11-10 1994-05-26 Rhone-Poulenc Rorer S.A. Compositions antitumorales contenant des derives du taxane
WO1999034796A1 (en) * 1997-12-31 1999-07-15 Pharmacia & Upjohn S.P.A. Synergistic antitumor composition containing a naphthalensulphonic acid derivative

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STALTERI M.A. ET AL.: "Site-Specific Conjugation and Labeling of Prostate Antibody 7E11C5.3 (CYT-351) with Technetium-99m", EUROPEAN JOURNAL OF NUCLEAR MEDICINE, vol. 24, no. 6, 1997, pages 651 - 654, XP001117543 *
TWOMEY D.: "Anticancer Agents-IX. Derivatives of Pyridine Pyridazine and Phthalizine", PROCEEDINGS OF THE ROYAL IRISH ACADEMY, vol. 74b, no. 4, 1974, Dublin, pages 37 - 52, XP001107197 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345094B2 (en) 2001-07-10 2008-03-18 Synta Pharmaceuticals Corp. Paclitaxel enhancer compounds
US6924312B2 (en) 2001-07-10 2005-08-02 Synta Pharmaceuticals Corp. Taxol enhancer compounds
US7001923B2 (en) 2001-07-10 2006-02-21 Synta Pharmaceuticals Corp. Taxol enhancer compounds
US7671092B2 (en) 2001-07-10 2010-03-02 Synta Pharmaceuticals Corp. Paclitaxel enhancer compounds
US7037940B2 (en) 2001-07-10 2006-05-02 Synta Pharmaceuticals Corp. Taxol enhancer compounds
US7652168B2 (en) 2001-07-10 2010-01-26 Synta Pharmaceuticals Corp. Synthesis of taxol enhancers
US7750042B2 (en) 2001-07-10 2010-07-06 Synta Pharmaceuticals Corp. Paclitaxel enhancer compound
US7368473B2 (en) 2001-07-10 2008-05-06 Synta Pharmaceuticals Corp. Paclitaxel enhancer compounds
US9107955B2 (en) 2001-07-10 2015-08-18 Synta Pharmaceuticals Corp. Paclitaxel enhancer compounds
AU2004206865B2 (en) * 2003-01-15 2006-07-13 Synta Pharmaceuticals Corp. Bis (thio-hydrazide amide) compounds for treating multi-drug resistant cancer
US7763658B2 (en) 2003-01-15 2010-07-27 Synta Pharmaceuticals Corp. Treatment for cancers
WO2004064826A1 (en) * 2003-01-15 2004-08-05 Synta Pharmaceuticals Corp. Bis (thio-hydrazide amide) compounds for treating multi-drug resistant cancer
US7385084B2 (en) 2004-06-23 2008-06-10 Synta Pharmaceutical Corp. Bis(thio-hydrazide amide) salts for treatment of cancers
US7795313B2 (en) 2004-06-23 2010-09-14 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amide) salts for treatment of cancers
US8461208B2 (en) 2004-06-23 2013-06-11 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amide) salts for treatment of cancers
JP2008504264A (ja) * 2004-06-23 2008-02-14 シンタ ファーマスーティカルズ コーポレイション 癌治療のためのビス(チオ‐ヒドラジドアミド)塩
US8048925B2 (en) 2004-06-23 2011-11-01 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amide) salts for treatment of cancers
US7579503B2 (en) 2004-06-23 2009-08-25 Synta Pharmaceuticals Corp. BIS (thio-hydrazide amide) salts for treatment of cancers
WO2006033913A2 (en) * 2004-09-16 2006-03-30 Synta Pharmaceuticals Corp. Bis (thio-hydrazide amides) for treament of hyperplasia
WO2006033913A3 (en) * 2004-09-16 2006-05-04 Synta Pharmaceuticals Corp Bis (thio-hydrazide amides) for treament of hyperplasia
WO2006055747A3 (en) * 2004-11-19 2006-10-05 Synta Pharmaceuticals Corp Bis(thio-hydrazide amides) for increasing hsp70 expression
US8148426B2 (en) 2004-11-19 2012-04-03 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amides) for increasing Hsp70 expression
AU2005306471B2 (en) * 2004-11-19 2009-12-17 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amides) for increasing Hsp70 expression
WO2006055747A2 (en) 2004-11-19 2006-05-26 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amides) for increasing hsp70 expression
US8017654B2 (en) 2005-04-15 2011-09-13 Synta Pharmaceuticals Corp. Combination cancer therapy with bis(thiohydrazide) amide compounds
US7709683B2 (en) 2005-05-16 2010-05-04 Synta Pharmaceuticals Corp. Synthesis of bis(thio-hydrazide amide) salts
US8623921B2 (en) 2005-08-16 2014-01-07 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amide) formulation
US7678832B2 (en) 2005-08-16 2010-03-16 Synta Pharmaceuticals Corp. Bis(thio-hydrazide amide) formulation
WO2008024302A2 (en) 2006-08-21 2008-02-28 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders
US8497272B2 (en) 2006-08-21 2013-07-30 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders
US9156783B2 (en) 2006-08-21 2015-10-13 Synta Pharmaceuticals Corp. Compounds for treating proliferative disorders
WO2008024305A2 (en) * 2006-08-21 2008-02-28 Synta Pharmaceuticals Corp. Bis (thiohydrazide amides) for treating melanoma
WO2008024305A3 (en) * 2006-08-21 2008-06-19 Synta Pharmaceuticals Corp Bis (thiohydrazide amides) for treating melanoma
WO2008024302A3 (en) * 2006-08-21 2008-10-16 Synta Pharmaceuticals Corp Compounds for treating proliferative disorders
US7939564B2 (en) 2006-08-31 2011-05-10 Synta Pharmaceuticals Corp. Combination with bis(thiohydrazide amides) for treating cancer
US7645904B2 (en) 2006-09-15 2010-01-12 Synta Pharmaceuticals Corp. Purification of bis(thiohydrazide amides)
WO2008082579A1 (en) * 2007-01-03 2008-07-10 Synta Pharmaceuticals Corp. Method for treating cancer
WO2009064374A3 (en) * 2007-11-09 2010-05-06 Synta Pharmaceuticals Corp. Oral formulations of bis(thiohydrazide amides)
WO2009064374A2 (en) * 2007-11-09 2009-05-22 Synta Pharmaceuticals Corp. Oral formulations of bis(thiohydrazide amides)
WO2009073147A2 (en) * 2007-11-28 2009-06-11 Synta Pharmaceuticals Corp. Process for preparing bis(thiohydrazide amides)
WO2009073148A2 (en) * 2007-11-28 2009-06-11 Synta Pharmaceuticals Corp. Polymorphs of n-malonyl-bis(n'-methyl-n'-thiobenzoylhydrazide)
US8637704B2 (en) 2007-11-28 2014-01-28 Synta Pharmaceuticals Corp. Polymorphs of N-malonyl-bis(N′-methyl-N′-thiobenzoylhydrazide)
US20140350115A1 (en) * 2007-11-28 2014-11-27 Synta Pharmaceuticals Corp. Polymorphs of n-malonyl-bis(n`-methyl-n`-thiobenzoylhydrazide)
US9051250B2 (en) * 2007-11-28 2015-06-09 Synta Pharmaceuticals Corp. Polymorphs of N-malonyl-bis(N′-methyl-N′-thiobenzoylhydrazide)
WO2009073147A3 (en) * 2007-11-28 2010-04-29 Synta Pharmaceuticals Corp. Process for preparing bis(thiohydrazide amides)
WO2009073148A3 (en) * 2007-11-28 2009-10-15 Synta Pharmaceuticals Corp. Polymorphs of n-malonyl-bis(n'-methyl-n'-thiobenzoylhydrazide)

Also Published As

Publication number Publication date
CY1105811T1 (el) 2011-02-02
TWI332943B (en) 2010-11-11
ATE339402T1 (de) 2006-10-15
US20080214655A1 (en) 2008-09-04
ATE533483T1 (de) 2011-12-15
EP2289876A1 (en) 2011-03-02
BR0211227A (pt) 2004-08-10
CN1553895A (zh) 2004-12-08
IL159773A (en) 2011-11-30
EP1731148B1 (en) 2011-11-16
NO20040095L (no) 2004-02-23
US7671092B2 (en) 2010-03-02
SI1406869T1 (sl) 2007-02-28
US9107955B2 (en) 2015-08-18
US20050009920A1 (en) 2005-01-13
CA2455453C (en) 2011-02-15
DK1731148T3 (da) 2012-02-27
CA2455453A1 (en) 2003-01-23
US20060122183A1 (en) 2006-06-08
CN100348580C (zh) 2007-11-14
US20030119914A1 (en) 2003-06-26
US7345094B2 (en) 2008-03-18
IL159773A0 (en) 2004-06-20
US20150344420A1 (en) 2015-12-03
PT1406869E (pt) 2007-01-31
US6800660B2 (en) 2004-10-05
US20100280075A1 (en) 2010-11-04
NO329457B1 (no) 2010-10-25
MXPA04000244A (es) 2005-03-07
DE60214718T2 (de) 2007-09-13
US7037940B2 (en) 2006-05-02
DK1406869T3 (da) 2007-01-22
IS2412B (is) 2008-10-15
KR101060079B1 (ko) 2011-08-29
ES2271292T3 (es) 2007-04-16
HK1101543A1 (en) 2007-10-18
NZ530963A (en) 2005-08-26
JP2004534848A (ja) 2004-11-18
ES2395193T3 (es) 2013-02-11
AU2002316626B2 (en) 2005-06-02
KR20040077650A (ko) 2004-09-06
EP1406869B1 (en) 2006-09-13
HK1060115A1 (en) 2004-07-30
ZA200401051B (en) 2005-08-31
KR20100066588A (ko) 2010-06-17
IS7101A (is) 2004-01-09
DE60214718D1 (de) 2006-10-26
EP1406869A1 (en) 2004-04-14
KR100990581B1 (ko) 2010-10-29
JP4344235B2 (ja) 2009-10-14
EP1731148A1 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
EP1406869B1 (en) Taxol enhancer compounds
AU2002316626A1 (en) Taxol enhancer compounds
US6924312B2 (en) Taxol enhancer compounds
EP1406870B1 (en) Taxol enhancer compounds
AU2002354641A1 (en) Taxol enhancer compounds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 159773

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/000244

Country of ref document: MX

Ref document number: 2003512202

Country of ref document: JP

Ref document number: 2455453

Country of ref document: CA

Ref document number: 1020047000358

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 00078/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002316626

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 530963

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2004/01051

Country of ref document: ZA

Ref document number: 200401051

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2002746947

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028177339

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002746947

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 530963

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2002316626

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 530963

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2002746947

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020107011643

Country of ref document: KR