WO2003004731A1 - Production method and device for optical fiber-use metal coupler - Google Patents

Production method and device for optical fiber-use metal coupler Download PDF

Info

Publication number
WO2003004731A1
WO2003004731A1 PCT/JP2001/009962 JP0109962W WO03004731A1 WO 2003004731 A1 WO2003004731 A1 WO 2003004731A1 JP 0109962 W JP0109962 W JP 0109962W WO 03004731 A1 WO03004731 A1 WO 03004731A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
cylindrical
optical fiber
inner diameter
metal connector
Prior art date
Application number
PCT/JP2001/009962
Other languages
English (en)
French (fr)
Inventor
Takahiko Mukouda
Original Assignee
Takahiko Mukouda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahiko Mukouda filed Critical Takahiko Mukouda
Priority to JP2003510484A priority Critical patent/JP4106625B2/ja
Priority to KR10-2003-7017231A priority patent/KR20040015306A/ko
Priority to MXPA04000107A priority patent/MXPA04000107A/es
Priority to EP01982782A priority patent/EP1411150A4/en
Priority to CA002452394A priority patent/CA2452394A1/en
Priority to IL15957401A priority patent/IL159574A0/xx
Publication of WO2003004731A1 publication Critical patent/WO2003004731A1/ja
Priority to IL159574A priority patent/IL159574A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/02Tubes; Rings; Hollow bodies
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49174Assembling terminal to elongated conductor
    • Y10T29/49181Assembling terminal to elongated conductor by deforming
    • Y10T29/49183Assembling terminal to elongated conductor by deforming of ferrule about conductor and terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49991Combined with rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5185Tube making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5193Electrical connector or terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53209Terminal or connector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53987Tube, sleeve or ferrule

Definitions

  • the present invention mainly relates to the production of a metal connector for an optical fiber used for optical communication and the like.
  • the present invention relates to a method of obtaining the metal connector from a circular electrode layer grown by an electric mirror.
  • the present invention relates to a method and an apparatus for manufacturing a metal connector for optical fiber.
  • the connector structure that connects optical fibers to each other which has been developed mainly for optical communications, has traditionally included various circular connectors (ferrules: the ends of optical fibers and wires are coaxially butted, Cylindrical parts for holding).
  • the connector has been formed by molding a mixture of zirconia powder and resin into a cylindrical shape by injection molding or extrusion molding, and then firing at around 50 Ot: to decompose the resin component. It is manufactured by removing and firing at about 1200 ° C. After that, the through hole of the connector (fired product) is polished with diamond and the hole diameter is finely adjusted to within an allowable error. At the same time, machining such as grinding is performed on the center of the through hole so that the outer periphery of the connector becomes a perfect circle.
  • the ceramic-based connector has a convex spherical surface, an obliquely convex spherical surface, or a flat surface corresponding to the physical contact connection (hereinafter abbreviated as “PC connection”).
  • PC connection physical contact connection
  • Such an electrodeposition method is used to form a connector made of metal.
  • a step of depositing metal around a core wire (same outer diameter as the inner diameter of the ferrule) immersed in the cell to form a cylindrical electrode layer, and from the cylindrical electrode layer to the core wire And a step of obtaining a required ferrule by cutting the formed electrode layer to a required dimension (length).
  • the length of the cylindrical electrode layer (that is, the portion of the core wire neo which is immersed in the electrolyte) is limited by the depth of the cell, so that one electrodeposition is performed. Since the amount obtained in the process is small, and the work of dipping and removing many core wires is a batch-type electroforming process, mass productivity is lacking.
  • the distance between the core wire as the cathode and the anode for the electrode must be kept constant. It is difficult to keep the roundness, cylindricity, surface roughness, etc. of the cylindrical electrode layer within the target accuracy because the arrangement and structure need to be devised.
  • the present invention has been made in view of the above circumstances, and an object thereof is to improve mass productivity and reduce costs by continuously manufacturing metal connectors for optical fibers by an electrolysis method.
  • an optical fiber that can ensure uniformity of the inner and outer diameters of the electrode layer such as concentricity, roundness, cylindricality, and electrodeposition degree. It is an object of the present invention to provide a method and an apparatus for manufacturing a metal connector for use.
  • Another object of the present invention is to provide a method for forming a cylindrical electro-optic layer, in which a metal connector (a ferrule) for an optical fiber that can be actually used can be obtained. Is to provide connectors.
  • Still another object of the present invention is to eliminate bubbles in the cylindrical electrode layer by removing bubbles in the electrode solution at the initial stage of the electrode and improving the wettability of the surface of the core wire.
  • Another purpose of this effort is to use a multi-tiered battery tank to change the water pressure in the vertical direction, replace the anode, facilitate maintenance,
  • An object of the present invention is to provide an apparatus for manufacturing a metal connector for an optical fiber, which enables confirmation of the growth condition of the optical fiber. Disclosure of the invention
  • an electrode for growing a metal connector in an electrode process as a cathode facing an anode provided in a cell in order to achieve the above object, an electrode for growing a metal connector in an electrode process as a cathode facing an anode provided in a cell.
  • an inner diameter forming member having the same outer diameter as the inner diameter of the cylindrical metal connector to be manufactured is used as a growth guide, and an electrode layer having a cylindrical hole is grown on the cathode side in the cell.
  • the metal connector is manufactured by cutting the cylindrical electrode layer, which has grown to a required outer diameter in the process of pulling the electrode layer out of the cell, to a required size outside the cell. It is characterized by doing.
  • the outer diameter of the cylindrical metal connector to be manufactured is the same as the outer diameter.
  • the inner diameter forming member is supplied upward as the cathode core member through the bottom of the cell, and a cylindrical electrode layer having a cylindrical inner hole is provided around the cell in the cell # 1.
  • the cylindrical electrode layer grown to a required outer diameter is removed from the outside of the cell.
  • the metal connector is manufactured by cutting to a required size in the above.
  • the cylindrical side having the same inner diameter as the inner diameter of the cylindrical metal coupler to be manufactured is provided on the cathode side opposed to the anode provided in the cell.
  • the material is supplied upward as a P core pole member through the bottom of the electrostat tank, and a cylindrical electrode layer having a cylindrical inner hole is grown on the cathode side in the cell around the perimeter.
  • the cylindrical electrode layer that has grown to a required outer diameter is removed together with the cylindrical member outside the cell.
  • the metal connector is manufactured by cutting to a required size.
  • the cathode having the same outer diameter as the inner diameter of the cylindrical metal coupler to be produced is provided on the cathode side opposed to the anode provided in the cell.
  • An inner diameter forming member is supplied upward through the bottom of the cell, and a cylindrical electrode layer having a cylindrical inner hole is grown on the cathode side in the cell at the periphery thereof.
  • the inner diameter forming member pulled up together with the formed cylindrical electrode layer is provided with spacers at a predetermined pitch in advance, and upper and lower ends of the metal connector to be manufactured are provided at upper and lower ends of the spacer. It is characterized by forming the required surface.
  • the cylindrical electrode layer grown by the electrode is rotated at a required speed in the pulling process to secure a uniform thickness in the circumferential direction. It is effective to do.
  • the outer diameter of the cylindrical electrode layer lifted from the cell is measured to control the pulling speed of the cylindrical electrode layer, and the outside of the cell is controlled. It is effective to maintain the specified outer diameter at the raised position.
  • a cathode core member having the same outer diameter and the same outer diameter as the inner diameter forming member is so formed as to be in contact with the upper end of the inner diameter forming member at the start of power supply. It is characterized in that the dummy is supported vertically in the above-mentioned cell and a cylindrical electrode layer is grown on its surface as a dummy of the lower layer.
  • the inner diameter forming member and / or the cathode core member may be provided with a power source (such as a DC power source or a constant voltage between the cathode and the anode) so as to apply a cathode side voltage to the grown electrode layer.
  • a power source such as a DC power source or a constant voltage between the cathode and the anode
  • the cathode core member may be rod-shaped, but is preferably circular, and a required pressure is applied to the inside thereof, so that the voltage in the electric field tank is reduced. It is also effective to prevent the liquid from entering the inside of the electrode layer during the growth process.
  • a small-diameter member is continuously provided on the top of the inner diameter forming member, and this member is passed through a cylindrical cathode core member, extended upward, and an upward tension is applied thereto. It is preferable to maintain the verticality of the inner diameter forming member by applying a load, and to make the inner diameter forming member free from fluctuations (thereby increasing the roundness, concentricity, and cylindricity of the growing electrode layer).
  • the diameter forming member rises at a required speed in a process of pulling up the grown cylindrical electrode layer within a range of the outer diameter dimensional accuracy at which the consumption thereof is allowed at the bottom of the electric tank. It needs to be controlled.
  • only the cylindrical electrode layer is cut without cutting the inner diameter forming member.
  • the inner diameter forming member having the same outer diameter as the inner diameter of the cylindrical metal connector to be manufactured is formed as a cathode core member. (If only the metal connector is removed after cutting) Force or Cut the cylindrical electrode layer together with the inner diameter forming member (with the same inner diameter as the inner diameter of the cylindrical metal connector to be manufactured)
  • the cylindrical member is used as the cathode core member and is left inside the metal connector).
  • it is effective to include a step of removing air bubbles generated in the early stage of the continuous electrode, and thereby to prevent the occurrence of nests in the continuous electrode layer.
  • the connector used for connecting the optical fiber manufactured by these manufacturing methods is formed of a cylindrical metal layer having a through hole having an inner diameter that can pass through the optical fiber, Has good workability and excellent productivity.
  • the apparatus for manufacturing a metal connector for an optical fiber according to the present invention has the same diameter as the inner diameter of a cylindrical metal connector to be manufactured in an electrode tank against an anode.
  • means for pulling up the cylindrical electrode layer grown in the electrode cell Means for measuring the outer diameter of the electrolytic layer outside the electrode tank in the process of raising the electrolytic layer, and controlling the lifting speed of the lifting means using the measurement result as a predicted measurement value. Control means.
  • an inner diameter forming member having the same outer diameter as the inner diameter of the metal connector is provided in the electrode bath, and the inner electrode forming member is used as a growth guide to form the cylindrical electrode layer.
  • the inner electrode forming member is used as a growth guide to form the cylindrical electrode layer.
  • a cylindrical member having the same inner diameter as the inner diameter of the metal connector is adopted as the cathode core member, and this is used as it is as an internal constituent member of the grown tubular electrode layer. You can also.
  • a means for cutting the cylindrical electrode layer, which has grown to a required outer diameter in the process of being lifted from the cell, to a required size outside the cell, is used to manufacture the metal connector. Is good.
  • the inner diameter forming member pulled up together with the grown cylindrical electrode layer is provided with spacers at a predetermined pitch in advance, and the upper and lower ends of the spacer are provided with metal connectors to be manufactured. And a means for removing the cylindrical electrode layer formed between the spacers from the inner diameter forming member when pulling up the inner diameter forming member. This is effective as an embodiment of the present invention.
  • an anode facing the electrode layer is disposed while maintaining a constant distance from the electrode layer, and improves the roundness, concentricity, and cylindricity of the electrode layer. This is important in the present invention, and therefore, it is effective to use an insoluble electrode such as Pt, Au, or Ti for the anode.
  • a means for rotating the cylindrical electrode layer grown by the electrode at a required speed in the process of pulling up is provided, and by securing a uniform thickness in the circumferential direction, the electrode is provided. It is important in the embodiment of the present invention to improve the roundness, concentricity and cylindricity of the layer.
  • the above-mentioned object is achieved by forming the battery cell into a multi-stage structure.
  • FIG. 1 is a schematic longitudinal sectional view of an electro-optical device for manufacturing a metal connector for an optical fiber according to an embodiment of the present invention
  • FIG. FIG. 3 is a perspective view showing a main part of the rotating means
  • FIG. 4 is a perspective view showing a main part of the cutting means
  • FIG. 5 is a perspective view of the present invention
  • 6 is a schematic longitudinal sectional side view of a main part (electrolytic tank) showing a second embodiment of the present invention
  • FIG. FIG. 8 is a perspective view showing a main part of a cutting means to be cut.
  • FIG. 8 is a schematic longitudinal sectional side view of a main part (an electric spear tank) showing a third embodiment of the present invention.
  • FIG. 10 is a schematic vertical sectional side view of a main part (electrolytic tank) showing a fourth embodiment of the present invention.
  • Fig. 10 is a schematic vertical sectional side view showing a multi-stage structure of the electro-optical tank of the present invention.
  • Yes, Fig. 11 is a cross-sectional view showing an example of the structure.
  • the apparatus for manufacturing a metal connector for an optical fiber according to the present invention includes an anode 2 (Pt, Au, Ti, etc.) in an electrode tank 1.
  • a cylindrical metal connector (ferrule) to be manufactured has a cylindrical electrode layer (ferrule material) FE having an inner hole having the same diameter as the inner diameter of the F
  • the means for growing the cylindrical electrode layer FE grown in the electrode tank 1, and the outer diameter of the electrode layer FE is determined by raising the electrolytic layer.
  • the anode 2 facing the electrode layer FE keeps a constant distance from the electrode layer (cathode side).
  • a shape such as a circular shape, an arc shape, etc., which surrounds the electrode tank so as to improve the roundness, concentricity, and cylindricity of the electrode layer (Note that a spherical aggregate of nickel can also be used as the anode material.)
  • an inner diameter forming member 6 having the same outer diameter as the inner diameter of the metal connector F is provided in the electrolysis tank 1, and the cylindrical electroscope layer FE is formed using this as a growth guide.
  • the inner diameter forming member 6 also functions as a cathode, and the material thereof is a high-rigid material such as a cemented carbide with corrosion resistance, stainless steel, or the like).
  • a through-hole 1 a is provided at the bottom of the battery tank 1, through which the inner diameter forming member 6 protrudes vertically into the battery tank 1 from the lower side of the battery tank 1.
  • a supporting means 7 for vertically supporting the inner diameter forming member 6 is provided.
  • the supporting means 7 includes a known clamping mechanism for clamping the inner diameter forming member 6 from the surroundings. Adopted.
  • an elevating means 8 for example, a known elevating device is employed for elevating and lowering the support means 7 is provided, and a control system 9 of the present invention (computer control system, In response to a control signal S1 from the control means 5 (including the control means 5), the inner diameter forming member 6 is raised at a required minute speed via the lifting means 8.
  • the support means 7 receives the control signal S7 from the control system 9 and switches between clamp and release.
  • the electrolytic tank 1 is supplied with the electrolytic solution from the storage tank 11 via a pump 10.
  • the electrolytic tank is Electrolyte can overflow from the overflow part lb provided at the upper edge of 1.
  • the overflowed electro-optical solution is received in a receiving tank 12 provided below the electrolytic tank 1.
  • the receiving tank 12 is configured to receive the electrolytic solution flowing down from the through-hole 1a (this improves the wettability of the surface of a cathode core member (dummy) described later in the initial stage of the power application).
  • the electrolytic solution in the receiving tank 12 is fed back to the storage tank 11 by the pump 13 via the finole letter 14.
  • a liquid-tight seal member 15 is provided in the guide hole 12a for passing the inner diameter forming member 6 (the diameter forming member 6 is slidable with respect to the seal member 15). is there).
  • the drive control of the pumps 10 and 13 is based on the control signal S from the control system 9 described above. Done in 2.
  • the cathode core member 16 having the same outer diameter and the same outer diameter as the inner diameter forming member 6 is used as a dummy of the cylindrical electrode layer FE so that the upper end of the inner diameter forming member 6 abuts at the start of the electroscope. It can be inserted from above into the inside, and can be raised by the above-mentioned lifting means 3 in the course of power supply.
  • the lifting means 3 comprises upper and lower two-stage supporting means 17, 17 ′ arranged above the battery tank 1 (this includes a known clamping mechanism for clamping the cathode core member 16 from the surroundings). And lifting means 18 (for example, a well-known lifting device is used).
  • the supporting means 17 is moved up and down by the elevating means 18, but the supporting means 17 'is fixedly held at that level by a frame (not shown). Then, the dummy is vertically supported via the support means 17, and the cylindrical electrode layer FE is grown on the surface of the electrolyte in the electrolyte while the elevating means 18 is raised.
  • the cathode member 16 (or the electrode layer FE) is raised at a required speed via the support means 17 by the control signals S 3 and S 3 ′ from the control system 9 of the present invention. Or it is going down.
  • the cylindrical electrode layer FE (including the dummy to be raised) and the inner diameter forming member 6 which are grown by the electric power are moved by the control signals S 5 and S 5 ′ from the control system 9 in the process of raising.
  • Means 19 (1 9 ') for rotation at the required speeds R1 and R2 are provided.
  • the rotating means 19 (1 9 ′) may be configured as shown in FIG. 3, for example.
  • Each of the elements has, for example, gear teeth formed on the periphery thereof, and is electrically driven through a suitable gear transmission system (not shown). It is linked to a motor M (for example, a stepping motor), and receives control of its drive, stop, and speed by the control signals S5 and S5 'from the control system 9 as described above.
  • clamping means 193 (193 ') are provided with a rotor 193b (193b') that supports a drum-shaped roller 193a (193a ') on the aforementioned rotor. 193c (193c,), and a swingable pivot, and a tension coil spring 193d (193d ') is stretched between levers 193b (193b'). I have.
  • the electrode layer FE (dummy) and the inner diameter forming member 6 can be sandwiched between the rollers 193a (193a '), and the rotation of the rotor 191 (191') can be suppressed. Can be transmitted to the electrode layer FE (dummy) and the inner diameter forming member 6.
  • the rotating means of the electrophoresis layer FE and the rotating means of the inner diameter forming member 6 may have the same structure and may have a separate structure, or may be replaced with a known appropriate means.
  • a cutting means 20 is provided as a ferrule to be used for cutting the electrode layer FE to a required length in a process of raising the electrode layer FE.
  • the cutting means 20 is configured to advance and cut the cutter 201 from the left and right sides of the electrophoresis layer FE.
  • Each cutter 201 is a reciprocating actuator 202, Driven in the direction.
  • a control signal S 6 to the actuator 202 is supplied from the control system 9.
  • the control means 9 firstly clamps the supporting means 17 ', and the cutting is started. Is done. After that, the holding means 17 in the lifting means 3 is changed over to the electrode layer FE (the clamp position is lowered). Therefore, the clamp of the supporting means 17 is released by the control signal S 4 ′ from the control system 9, and then the elevating means 18 is lowered by the control signal S 3 ′. Then, after the supporting means 17 is clamped by the horric Pi symbol S4, the supporting means 17 'releases the clamp.
  • the outer diameter of the electrode layer FE is measured outside the electrode tank 1 by means of an optical sensor using a laser beam (for example, a light emitting diode). It is recommended to use a measuring instrument that uses such a method.
  • the measuring means 4 here is not limited to the optical sensor described above (a usable measuring instrument may be used).
  • reference numeral 21 denotes a voltage applied between the anode 2 and the cathode layer FE (DC voltage or AC voltage adjusted so as to apply a constant bias voltage between the cathode and the anode).
  • Power source this may be a rechargeable battery or one obtained from a commercially available AC power source via an AC-DC converter, and a power source such as the regulated AC power source described above may be used).
  • 2.2 is a voltage regulator.
  • the control signal S 6 of the control system 9 is involved in the control of the voltage regulator 22.
  • the cathode core member 16 (dummy) clamped by the supporting means 17 (see FIG. 1) is moved by the lifting and lowering means 18 (see FIG. 1). Is inserted into the battery case 1 and abuts against the inner diameter forming member 6 facing the bottom of the battery case 1.
  • the small-diameter portion 6a is formed at the tip of the inner diameter forming member 6, and the tip of the dummy is detachably and rotatably fitted thereto (or
  • the inner diameter of the dummy may correspond to the outer diameter of the inner diameter forming member 6 and may be slidably fitted to the distal end side of the inner diameter forming member 6).
  • the metal layer is formed by the electrode. (See (2) in Fig. 5).
  • Required thickness (Even though the dummy is rotated by the rotating means 19 and the torsion force is applied to the metal layer between the non-rotating inner diameter forming member 6 and the inner layer, the metal layer is
  • the electrode layer FE grows to a thickness that does not cause cracks or other damage, for example, a thickness of about 0.5 ⁇ , it peels off smoothly and rotates with the dummy side.
  • the rotation means 19 is driven to rotate, and the lifting means 3 pulls up the dummy.
  • the rotation means 19 ′ is also rotated, and the electric motor of each rotation means 19 (19 ′) is controlled by a control signal from the control system 9 so that the rotation difference between them becomes zero or a required value.
  • the driving speed of each is controlled separately.
  • the lower end of the dummy is separated from the upper end of the inner diameter forming member 6, but the cylindrical electrophoretic layer FE formed by the use of an electro-mirror is grown while maintaining the inner diameter of the inner diameter forming member 6. (See (3) in Fig. 5).
  • the cylindrical electrode layer FE reaches the level of the measuring means 4 (see (4) and (5) in FIG.
  • the outer diameter of the cylindrical electrode layer FE is reduced from that stage. Measured.
  • the lifting speed by the lifting means 3 determines the outer diameter of the tubular electrode layer FE pulled up from the electrolytic solution. Then, as a result of measuring the outer diameter of the biased return layer FE by the measuring means 4 and reaching a predetermined set value (ferrule outer diameter), the feeder is controlled via the control system 9 so as to maintain the value.
  • the lifting speed of the lifting means 3 is controlled by the pack control. In this way, the value measured by the measuring means 4 is used as a predicted value (corresponding to a set value) for keeping the outer diameter of the tubular electrode layer FE constant.
  • the support means 17 In response to a control signal from the control system 9, the support means 17 'clamps immediately above the cut portion of the tubular electrode layer FE. In this state, the cutting means 20 is driven by the control signal from the control system 9, and the tubular electrode layer FE is cut. After that, the support means 17 is switched by the control signal from the control system 9 (that is, the clamp is released by the support means 17 ⁇ the descent of the elevating means 18-the new one by the supporting means 17). Re-clamping in different positions).
  • the support means 17 is changed after the cutting, but after the support means 17 'is clamped, the support means 17 may be changed first, and then cut.
  • the portion of the first tubular electrode layer cut (including the dummy) is removed by appropriate means after releasing the clamp of the support means 17 ′, and then the cut tubular electrode layer is cut off.
  • the slices of the FE layer FE are also collected by appropriate means as ferrule F to the intended storage location. Then, after that, in the process of growing the cylindrical electrode layer FE again, the lifting / lowering means 18 is raised while holding the clamped state by the supporting means 17 (as described above, the supporting means 17 ′ And the clamp is released).
  • the dummy is hollow, and the upper end of the dummy is pressurized gas (empty). Gas, etc.) is supplied to prevent infiltration of the electrolytic solution into the electrode layer in the electrolytic cell 1.
  • known means can be used as the pressure gas supply means (not shown). This is because the state in which the inner diameter of the cylindrical electrode layer FE is accurately held by the inner diameter forming member 6 is not violated by the electrolytic solution.
  • a small-diameter member (not shown) is provided at the top of the inner diameter forming member 6, and this member is passed through a cylindrical cathode core member (dummy) and extended upward.
  • the tension is applied to maintain the verticality of the inner diameter forming member 6 so that it does not fluctuate (thus increasing the roundness, concentricity, and cylindricity of the growing electrode layer). It can also be configured. Also, in consideration of the fact that the tip of the inner diameter forming member 6 (the portion exposed in the electroscope tank 1) gradually becomes thinner in the course of the electric power, it is set within the allowable range ⁇ in the formed cylindrical electrophoresis layer. It is also effective to control the inner diameter forming member 6 to rise at a very low speed by the elevating means 8 so as to advance.
  • the control of the lifting / lowering means 8 is performed by a control signal S 1 from a control system 9.
  • the diameter of the cylindrical electro-optical layer FE to be manufactured in this embodiment is, for example, 0.05 to 0.13 mm, and the outer diameter is, for example, 1 mm to 1.2 mm. I do.
  • the electrode layer includes, for example, nickel, iron, copper, cobalt, tungsten, and alloys thereof. Therefore, the electrolyte contains a metal component as described above in the state of a solution or a floating night (suspension), such as nickel sulfamate, nickel chloride, nickel sulfate, and ferrous sulfamate.
  • An aqueous solution containing a sulfamate is extremely useful as an electrolytic solution because it is easily electrolyzed, chemically stable, and easily dissolved.
  • the metal component of the electrolyzing liquid is used as it is as the metal material constituting the metal coupler for the optical fiber of the present invention
  • the metal component for the optical fiber used for the PC connection is used.
  • nickel or a nickel alloy such as nickel-cobalt alloy, which is easy to grind.
  • a wire of a stainless alloy such as SUS304 in JIS
  • the anode 2 connected to the power source and the cathode-side cylindrical electrode layer FE electrically connected to the power source via the inner diameter forming member 6 and the cathode core member 16 are connected to the positive and negative electrodes, respectively.
  • a direct current is applied, and the current density at this time is usually 4 to 20 A / dm.
  • the electrolyte is maintained at pH on the acidic side (pH 3 to 6), preferably pH 4 to 5. In this case, although it differs depending on the depth of the electrolyte, for example, within 12 hours from the start of energization, usually 3 to
  • the tubular electrode layer FE can be thickened to a predetermined diameter in the electric tank 1.
  • organic impurities are periodically removed from the electrolyte using, for example, activated carbon.
  • another cathode such as a nickel-plated iron corrugated plate, is immersed in the electrolyte, and direct current is applied between the anode 2 and the anode 2 at a low current density of about 0.2 A / dm.
  • inorganic impurities such as steel from the electrolytic solution in advance.
  • the tubular electrode layer can be cut into a predetermined length according to the application, and then used as it is as a metal connector for an optical fiber. (Within ⁇ 0.), Grinding to a perfect circle.
  • the eccentricity of the metal coupler for optical fiber as a product can be easily set to within 0.5 / m. it can.
  • the eccentricity can be reduced even if the deposition thickness is increased by rotating the cylindrical electrode layer with the rotating means 19. Can be kept small.
  • a second embodiment according to the present invention will be described below.
  • the cathode core member 16 (dummy) shown in the first embodiment is not used and the anode provided in the cell 1 is opposed to the anode.
  • an inner diameter forming member 6 having the same outer diameter as the inner diameter of the circular metal connector to be manufactured is supplied upward through the bottom of the cell, and the upper end is directly supported by the support means 1.
  • a spiral electrode layer FE having a cylindrical inner hole is grown on the cathode side in the electrolytic cell 1 around the electrolytic solution (see FIG. 6).
  • the supporting means 7 and the elevating means 8 are not used. Note that other configurations and controls are the same as those of the first embodiment, and a description thereof will not be repeated.
  • the cutting means 20 should preferably form a cutting edge so as to cut only the tubular electrode layer FE without cutting the inner diameter forming member 6, for example, as shown in FIG. . Then, the cut pieces (ferrules) of the tubular electric cycling layer after the cutting are pulled out upward by an appropriate means when the supporting means 17 is changed. Thus, the inner diameter forming member 6 can be reused.
  • a cylindrical member 6 ′ having an inner diameter of a required optical fiber metal connector (a ferrule) is used (the second embodiment). See Figure 8).
  • the material is preferably the same as the metal deposited around the member 6 ′ by the electrode (for example, when depositing a nickel alloy, the member 6 ′ is also made of the same material).
  • the cutting means 20 has the configuration shown in the first embodiment (see FIG. 4), and cuts the member 6 ′ together with the surrounding electrode layer FE.
  • the member 6 ' is left in the electrode layer FE as a part of the ferrule. Note that the other configuration and control thereof are the same as those of the first embodiment, and a description thereof will not be repeated.
  • a spacer (a nonconductive material, for example, ceramics) S is provided at a predetermined pitch in advance on the diameter forming member 6 that is pulled up together with the grown cylindrical electrode layer FE.
  • the required surfaces tapeered surface, back
  • a cylindrical electrode layer is deposited and formed between the spacers.
  • a suitable means for removing the formed cylindrical electrode layer FE from the inner diameter forming member is provided.
  • the inner diameter forming member 6 and the cylindrical electrode layer FE of a predetermined length are combined with the inner diameter forming member 6 by devising the spacer in advance, for example, by dividing the spacer into a split type, particularly a vertical split type. Then, a method of extracting the cylindrical electrode layer FE from the inner diameter forming member 6 is adopted. Note that the other configuration and its control are the same as those of the first embodiment, and a description thereof will be omitted.
  • the battery tank 1 is simply configured in combination with the receiving tank 12, but as shown in FIG. It may be configured as a split type.
  • the gap between the through hole 1a through which the inner diameter forming member passes and the inner diameter forming member forms a flow of the electrolytic solution from the upper tank to the lower tank.
  • the overflow from the upper stage to the lower stage may be performed similarly to the first embodiment (the overflow causes the electrolyte to flow to the lowermost shell tank (not shown)). ).
  • This solves the problem of changes in water pressure in the vertical direction, and facilitates replacement of the anode and maintenance.
  • by measuring the diameter of the electrode layer FE during the growth process between the tanks it is possible to confirm the degree of growth of the electromirror layer during the electrode process.
  • the multistage electrolytic cell 1 is a combination of a semi-cylindrical body, and the force of screwing with a flange portion 101 formed there is provided. (See (b) in Fig. 11) Or, hinges 102 are provided on one side to open sideways.
  • the anode 2 is preferably formed in a semi-cylindrical shape along the inner wall of the electrolytic cell 1 (see (c) in FIG. 11).
  • the cathode core member Dummy 16, inner diameter forming member 6, or cylindrical member 6
  • the following method can be used while controlling the liquid temperature.
  • the cathode the dummy 16 as the K member and the inner diameter forming member (cylindrical member) 6 are the inner diameter of the metal coupler for the optical fiber, that is, the diameter of the through-hole into which the single optical fiber is inserted. Since this is to be determined, high accuracy is required for the uniformity of the thickness, roundness (the degree of approximation of the desired diameter of the cathode core member to the actual diameter), and linearity.
  • a dummy 16 as a cathode core member and an inner diameter forming member (cylindrical member) 6 may be used. It is also possible to adjust the rotation speed or change the value of the current applied during electrolysis when rotating.
  • the residence time of the electrode layer in the electrolyte should be prolonged in the process where the diameter of the electrode layer is insufficient based on the measured value by the measuring means. It is recommended that control be performed such as reducing the bow I lifting speed.
  • the electrodes are parallel to each other. It is important to install it in
  • the metal coupler for optical fiber of the present invention thus configured is extremely useful in a wide variety of applications using an optical element as a component for temporarily or permanently connecting terminals of the optical fiber. It can be used advantageously. Further, if necessary, the metal connector for optical fiber of the present invention can reduce the outer diameter as much as possible as compared with the conventional ferrule, and therefore, for example, a plug type connector, a jack type connector, etc. As a multi-core connector (Ferrule) in a wide variety of connectors, such as cables, adapters, and receptacles, the mounting density of optical fibers can be increased. Similarly, the eccentricity is extremely small Therefore, the optical fiber can be connected with higher accuracy, and the loss of the optical signal due to the connection can be reduced.
  • a multi-core connector In a wide variety of connectors, such as cables, adapters, and receptacles, the mounting density of optical fibers can be increased. Similarly, the eccentricity is extremely small Therefore, the optical fiber can be connected with higher accuracy,
  • the length of the metal coupler (ferrule) for an optical fiber is appropriately selected and set according to the structure of the connector.
  • one or both of the end faces of the metal connector may be added to, for example, a flat shape, or an optical fiber may be easily inserted therein, depending on the application. For this purpose, it is advisable to machine the back tape surface at an appropriate angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

明 細 書 光ファイバ一用金属結合子の製造方法および装置 技術分野
本発明は、 主として、 光通信などに用いる光ファイバ一用金属結合子の製造に関する ものであり、 特に、 前記金属結合子を、 電鏡によって成長させた円倚状の電铸層から得 るようにした光ファイバ一用金属結合子の製造方法および装置に関する。 背景技術
主として、 光通信用に開発された光ファイバ一相互を接続するコネクタ構造には、 旧 来、 種々の円简状結合子 (フエルール:光ファイバ一素線相互の端末を同軸上に突き合 わせ、 保持するための円筒状の部品) が採用されている。
前記結合子は、 これまで、 ジルコニァ粉末と樹脂との混合物を、 射出成形または押出 成形によって、 円筒状に形成.し、 その後、 5 0 O t:前後で焼成することによって、 榭脂 分を分解除去し、 さらに、 1 , 2 0 0 °C前後で焼成して製造されるが、 その後に、 前記 結合子 (焼成物) の貫通孔をダイヤモンド研磨して、 その孔径を許容誤差内に微調整す るとともに、 その貫通孔の中心に対して、 前記結合子の外周が真円になるように、 研削 などの機械加工が行われる。
しかしながら、 このような製造方法によって、 結合子を得る場合には、 以下のような 問題がある。
( 1 ) 射出成形や押出成形に、 高価な成形装置や金型を必要とする上に、 金型がジルコ ユア粉末により摩耗し易いため、 金型の成形面を超硬質合金とするなどの特殊加工が必 要となり、 また、 常に、 摩耗状態を観察して、 必要に応じ、 金型補修や、 交換をしなけ ればならない。
( 2 ) 貫通孔のダイヤモンド研磨に手間と熟練を要し、 生産性を上げ難い。 ( 3 ) 高'温で焼成するので、 多大のエネルギーコストがかかる。
( 4 ) セラミックを原料とする結合子は、 フィジカル ·コンタクト接続 (以下、 「P C接 続」 と略記する。) に対応して、その端面を、凸球面、斜めに傾いた凸球面、フラット面、 斜めに傾いたフラット面などに加工する必要があるが、 その材質 (セラミックであるこ と) が原因で、 加工が難しい。
これらの問題を解決するために、 例えば、 P C T/ J P 9 9 / 0 6 5 7 0号公報 (発 明の名称 「光ファイバ一コネクタ及びそれに用いられるフェルール並びにフェルールの 製造方法」) に示されたような、 電鍀法が用いられ、金属を素材とする結合子が形成され ている。 ここでは、 電錄槽内に浸漬した芯線材 (フェルールの内径と同外径) の周囲に 金属を堆積させて、 円筒状電鍀層を形成する工程と、 その円筒状電铸層から芯線材を除 去する工程と、 形成された電鍀層を所要寸法 (長さ) に切断加工することで所要のフエ ルールを得る工程とを含んでいる。
しかしながら、 この電鍀法では、 円筒状電錄層 (即ち、 電鐯液に浸漬されている芯線 ネオの部分) の長さが、 電铸槽の深さによって制約されるので、 1回の電錄で得られる量 が少なく、 また、 多くの芯線材を浸漬し、 取り出す作業を繰り返すバッチ式の電铸加工 なので、 量産性に欠ける。 また、 内外径の同芯度、 真円度、 円筒度を向上させるために は、陰極としての芯線材と、電铸のための陽極との距離を一定に保つ必要から、電鍀槽、 電極配置、 構造などに工夫が必要であり、 円筒状電鎵層の真円度、 円筒度、 表面粗さな どを、 目標精度内に納めることが難しい。
本発明は、 上記事情に基づいてなされたもので、 その目的とするところは、 光フアイ バー用金属結合子を、 電铸法により連続製造することで、 量産性を向上し、 コストダウ ンを図るとともに、 円筒状電踌層を製造する過程で、 その電鐃層の内外径について、 同 芯度、 真円度、 円筒度、 電铸堆積度などの均一性を確保することもできる光ファイバ一 用金属結合子の製造方法および装置を提供することである。
本発明の他の目的とするところは、円筒状電鏡層の形成過程において、実際に使用する 光ファイバ一用金属結合子 (フヱルール) の取得することができる光ファイバ一用金属 結合子を提供することである。
本発明の更に他の目的とするところは、 電铸初期における電鎵液內の気泡を除去し、 芯線材の表面の濡れ性を向上させることにより、 円筒状電鎵層での巣発生を、 特に、 電 鍚層内壁でのそれを防止し、 光ファイバ一接続に際して、 結合子の個所における光信号 の減衰を最小にすることを意図した、光ファイバ一用金属結合子を提供することである。 また、 本努明の別の目的とするところは、 電铸槽を多段構造として、 上下方向におけ る水圧の変化の問題、 陽極の交換、 メンテナンス上の便宜、 電錄過程での電铸層の成長 具合の確認を可能にする光ファイバ一用金属結合子の製造装置を提供することである。 発明の開示
上記目的を達成するために、 本発明の光ファイバ一用金属結合子の製造方法では、 電 錶槽内に装備された陽極に対向する陰極として、 金属結合子を電铸過程で成長させる電 錶方式おいて、 製造すべき円筒状の金属結合子の内径と同外径の内径形成部材を成長ガ イドとして、 円筒状の內孔を有する電铸層を電铸槽内の陰極側で成長させると共に、 該 電铸層を前記電鎵槽から引き上げる過程で所要外径へと成長した筒状電錡層を、 前記電 錶槽外で所要の寸法に切断することにより、 前記金属結合子を製造することを特徴とす る。
また、 本発明の光ファイバ一用金属結合子の製造方法では、 電铸槽内に装備された陽 極に対抗する陰極側において、 製造すべき円筒状の金属結合子の内径と同外径の内径形 成部材を、 陰極芯部材として、 前記電鎵槽底部を貫通して上方に供給し、 その周囲にお いて、 円筒状の内孔を有する筒状電鍀層を電 1#槽内の陰極側で成長させると共に、 該筒 状電鐯層を前記内怪形成部材と共に前記電錄槽から引き上げる過程で、 所要外径へと成 長した前記筒状電铸層を、 前記電铸槽外で所要の寸法に切断することにより、 前記金属 結合子を製造することを特徴とする。
また、 本発明の光ファイバ一用金属結合子の製造方法では、 電錄槽內に装備された陽 極に対抗する陰極側において、 製造すべき円筒状の金属結合子の内径と同内径の円筒状 部材を、 P衾極芯部材として、 前記電鏡槽底部を貫通して上方に供給し、 その周囲におい て、 円筒状の内孔を有する筒状電鍀層を電錡槽内の陰極側で成長させると共に、 該筒状 電鎵層を前記円筒状部材と共に前記電鍚槽から引き上げる過程で、 所要外径へと成長し た前記筒状電铸層を前記円筒状部材と共に前記電錄槽外で所要の寸法に切断することに より、 前記金属結合子を製造することを特徴とする。
更に、 本発明の光ファイバ一用金属結合子の製造方法では、 電鍀槽内に装備された陽 極に対抗する陰極側において、 製造すべき円筒状の金属結合子の内径と同外径の内径形 成部材を、 前記電鎵槽底部を貫通して上方に供給し、 その周囲において、 円筒状の内孔 を有する筒状電鍚層を電鍚槽内の陰極側で成長させると共に、 成長された前記筒状電極 層と共に引き上げられる前記内径形成部材に、 予め、 所定ピッチで、 スぺーサを備えて おり、 該スぺーサの上下端に、 製造されるべき金属結合子の上下端末の所要面を形成し ていることを特徴とする。
これらの光ファイバ一用金属結合子の製造方法では、 電铸によって成長している前記 筒状電铸層を、 前記引き上げの過程において、 所要速度で回転させ、 円周方向に均等厚 さを確保することが有効である。
同様に、 これらの製造方法では、 前記電鍚槽から引き上げられた筒状電铸層の外径を 測定することで、 前記筒状電鍚層の引き上げ速度を制御し、 前記電铸槽外に引き上げら れた個所の所定外径寸法を維持することが有効である。
また、 本発明に係わる第 1の実施の形態として、 前記内径形成部材の上端と電錶開始 時に当接するように、 前記内径形成部材と同外径、 同軸心の陰極芯部材を、 前記筒状電 铸層のダミーとして、 前記電踌槽内に鉛直に支持し、 その表面に筒状電鎵層を成長させ ることを特 ί敫とする。
この場合、 前記内径形成部材および/あるいは陰極芯部材には、 成長された前記電鐃 層に陰極側電圧を印加するように、 電源 (これには、 直流電源や、 陰極一陽極間に一定 のバイアス電圧を負荷するように調整した交流電源が採用される) が接続されているこ とが好ましい。 また、 その実施の形態として、 前記陰極芯部材は、 棒状であっても良いが、 好ましく は円简状であって、 その内部に所要の気圧を掛けてあって、 前記電界槽内の電錄液が、 成長過程での前記電鎵層の内部に侵入するのを防止することも、 有効である。
更に、 その実施の形態として、 前記内径形成部材の頂部に、 細径の部材を連設して、 この部材を円筒状陰極芯部材に通して、 上方に延長し、 これに上向きのテンションを負 荷して、前記内径形成部材の鉛直度を維持し、揺らぎのない状態にする(それによつて、 成長する電鍚層の真円度、 同芯度、 円筒度を高める) のがよい。
また、 前記內径形成部材は、 前記電鐃槽底部での、 その消耗が許容される外径寸法精 度の範囲で、 成長した筒状電鍚層が引き上げられる過程で、 所要の速度で上昇制御され ることが必要である。 また、 前記筒状電鎵層のみを、 前記内径形成部材を切断しない状 態で、 切断する (製造すべき円筒状の金属結合子の内径と同外径の内径形成部材を、 陰 極芯部材として使用し、 切断後に、 金属結合子のみを取り外す場合) 力 あるいは、 前 記筒状電鎵層を、 前記内径形成部材と共に切断する (製造すべき円筒状の金属結合子の 内径と同内径の円筒状部材を陰極芯部材として使用し、 金属結合子の内部に残す場合) ことが行われる。 . 特に、 前記連続電鍚の開始初期に発生する気泡を除去する工程を含み、 これにより前 記連続電铸層内での巣の発生を防止することが有効である。
これらの製造方法によって製造される、 光ファイバ一の接続に用いられる結合子は、 前記光ファイバ一を揷通することができる内径の貫通孔を有する筒状金属層で構成され ているので、 その後の加工性が良く、 生産性に優れる。
更に、 上述の目的を達成するために、 本発明の光ファイバ一用金属結合子の製造装置 は、 電極槽内において、 陽極に対抗して、 製造すべき円筒状の金属結合子の内径と同径 の内孔を有する筒状電铸層を、 前記電铸槽内の陰極側で成長させる光ファイバ一用金属 結合子の製造装置において、 前記電極槽内で成長した筒状電解層を引き上げる手段と、 前記電解層の外径を、 その電解層の引き上げの過程において、 前記電極槽外で計測する 手段と、その計測結果を予測計測値として前記引き上げ手段の引き上げ速度を制御する 制御手段とを具備している。
この場合、前記金属結合子の内径と同外径の内径形成部材を、前記電錄槽内に装備し、 これを成長ガイ ドとして、 前記筒状電鎵層を形成すること、 前記内径形成部材を、 前記 電铸槽底部を貫通して上方に供給する手段を装備し、 その周囲において、 円筒状の内孔 を有する筒状電铸層を、 電鎵槽内の陰極側で成長させることは、 本発明の実施の形態と して、 好ましい。 また、 内径形成部材に代えて、 前記金属結合子の内径と同内径の円筒 状部材を、 陰極芯部材として採用し、 これを、 成長した筒状電鎳層の内部構成部材とし てそのまま、 使用することもできる。
なお、 前記電铸槽から引き上げる過程で所要外径へと成長した筒状電錶層を、 前記電 铸槽外で所要の寸法に切断する手段を具備し、 これにより、 前記金属結合子を製造する のがよい。
また、 成長された前記筒状電極層と共に引き上げられる前記内径形成部材に、 予め、 所定ピッチで、 スぺーサを備えており、 該スぺ一サの上下端に、 製造されるべき金属結 合子の上下端末の所要面を形成していて、 前記内径形成部材の引き上げにおいて、 前記 スペ^ "サ間に形成された円筒状電錶層を前記内径形成部材から取り外す手段を具備して いること力 S、 本発明の実施の形態として、 有効である。
更に、 前記電鎳層に対向する陽極が、 前記電錡層との間の距離を一定に保持して配置 されていて、前記電鐃層の真円度、同芯度および円筒度を向上させるようにすることは、 本発明において重要であり、 このため、 陽極には、 P t、 A u、 T iなどの不溶解電極 を用いることが有効である。
また、 電錡によって成長している前記筒状電铸層を、 前記引き上げの過程において、 所要速度で回転させる手段を装備し、 その円周方向に関して均等な厚さを確保すること により、 前記電鎢層の真円度、 同芯度および円筒度を向上させるようにしたことは、 本 発明の実施の形態において、 重要である。
更に、 本発明の実施の形態として、 電铸槽を多段構造とすることで、 先述の目的を達 成するのである。 図面の簡単な説明
第 1図は、 本発明に係わる実施の形態を示す光ファイバ一用金属結合子の電錄式製造 装置の概略的縦断面図であり、 第 2図は、 同じく、 電鎵槽部分の平面図であり、 第 3図 は、 同じく、 回転手段の要部を示す斜視図であり、 第 4図は、 同じく、 切断手段の要部 を示す斜視図であり、 第 5図は、 本発明の第 1の実施形態を示す工程順の図解であり、 第 6図は、 本発明の第 2の実施形態を示す要部 (電錶槽) の概略縦断側面図であり、 第 7図は、 ここで使用する切断手段の要部を示す斜視図であり、 第 8図は、 本発明の第 3 の実施形態を示す要部 (電鎗槽) の概略縦断側面図であり、 第 9図は、 本発明の第 4の 実施形態を示す要部 (電鎵槽) の概略縦断側面図であり、 第 1 0図は、 本発明の電鏡槽 の多段構造を示す概略縦断側面図であり、 第 1 1図は、 同じく、 その構造例を示す横断 面図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して、 具体的に説明する。
(第 1の実施の形態)
以下、 本発明に係わる第 1の実施の形態について、 図面を参照して、 具体的に説明す る。 即ち、 本発明の光ファイバ一用金属結合子の製造装置は、 第 1図ないし第 4図に示 すように、 電極槽 1内において、 陽極 2 ( P t、 A u、 T iなどの不溶解陽極が好まし い) に対抗して、 製造すべき円筒状の金属結合子 (フ-ルール) Fの内径と同径の内孔 を有する筒状電铸層 (フエルール素材) F Eを、 電鎵槽 1内の陰極側で成長させるもの であって、 特に、 電極槽 1内で成長した筒状電铸層 F Eを引き上げる手段 3と、 電铸層 F Eの外径を、 その電解層の引き上げの過程にぉレ、て、 電極槽 1外で計測する計測手段 4と、 その計測結果を予測計測値として引き上げ手段 3の引き上げ速度を制御する制御 手段 5とを具備している。
なお、 電踌層 F Eに対向する陽極 2は、 前記電錡層 (陰極側) との間の距離を一定に 保持して配置されていて、 前記電鍚層の真円度、 同芯度および円筒度を向上させるよう に、 例えば、 前記電鎵槽を中心として、 これを囲む円简状、 弧状などの形状に構成され ている (なお、 陽極の素材として、 球状のニッケルの集合体を用いることもできる)。 更に詳述すると、 ここでは、 金属結合子 Fの内径と同外径の内径形成部材 6を、 電铸 槽 1内に装備し、これを成長ガイドとして、筒状電鏡層 F Eを形成するのである(なお、 ここでは、 内径形成部材 6が陰極としても機能しており、 その素材も、 耐蝕メツキを施 した超硬合金などの高剛生材、 ステンレスなどを用いる)。 このため、 電錄槽 1の底部に は貫通孔 1 aが設けてあり、 これを介して、 電铸槽 1の下側から内径形成部材 6を電鎵 槽 1内に鉛直に突出している。 なお、 この実施の形態では、 内径形成部材 6を鉛直に支 持する支持手段 7が装備してあり、 この支持手段 7には、 内径形成部材 6を周囲からク ランプする、 公知のクランプ機構が採用される。 特に、 ここでは、 支持手段 7を昇降制 御する昇降手段 8 (例えば、 公知の昇降装置が採用される) が用意されていて、 本発明 の制御系 9 (コンピュータ制御系であって、 前述の制御手段 5を含む) からの制御信号 S 1により、 所要の微速度で、 昇降手段 8を介して、 内径形成部材 6を上昇させるよう になっている。 また、 支持手段 7は制御系 9から制御信号 S 7を受けてクランプと解除 との切換を行う。
電铸槽 1には、 ポンプ 1 0を介して、 貯槽 1 1から電铸液が供給されており、 また、 電铸槽 1内の電铸液のレベルを一定に維持するために、 電錶槽 1の上縁に設けた溢流部 l bから、 電铸液をオーバ一フローさせることができる。 このオーバ一フローされた電 鏡液は、 電錡槽 1の下に設けた受け槽 1 2に受けられる。 この受け槽 1 2は、 貫通孔 1 aから流下する電铸液も受け取れるように、構成されている(これにより、電錡初期に、 後述する陰極芯部材 (ダミー) の表面の濡れ性を向上する)
また、 受け槽 1 2の電铸液は、 ポンプ 1 3により、 フイノレター 1 4を介して貯槽 1 1 にフィードバックされる。 なお、 内径形成部材 6を通すための誘導孔 1 2 aには、 液密 シ一ル部材 1 5が設けられる (內径形成部材 6は前記シ一ル部材 1 5に対して摺動自在 である)。 なお、 ポンプ 1 0および 1 3の駆動制御は、 先述の制御系 9からの制御信号 S 2で行われる。
また、 内径形成部材 6の上端と電鏡開始時に当接するように、 内径形成部材 6と同外 径、 同軸心の陰極芯部材 1 6を、 筒状電鎵層 FEのダミーとして、 電铸槽 1内に上方か ら挿入し、 電鎵の過程で、 先述の引き上げ手段 3により引き上げることができる。 この 実施の形態では、 引き上げ手段 3が、 電鎵槽 1の上方に配置した上下二段の支持手段 1 7, 17' (これには、 陰極芯部材 16を周囲からクランプする、 公知のクランプ機構が 採用される) と昇降手段 18 (例えば、 公知の昇降装置が採用される) から構成されて レ、る。 なお、 支持手段 17は、 昇降手段 18で昇降されるが、 支持手段 1 7' は、 その レベルにおいて、 フレーム (図示せず) に固定的に保持される。 そして、 支持手段 17 を介して、 ダミーを鉛直に支持し、 昇降手段 18を上昇しながら、 電铸液内で、 その表 面に筒状電錄層 F Eを成長させるのである。
なお、 ここでも、 本発明の制御系 9からの制御信号 S 3、 S 3' により、 所要の速度 で、 支持手段 1 7を介して、 陰極 部材 16 (あるいは電鎳層 FE) を上昇させ、 ある いは下降させるようになつている。 また、 支持手段 17、 17' は、 制御系 9からの制 御信号 S4、 S 4' で、 クランプあるいはその解除の動作を、 それぞれ、 独立に行う。 また、電铸によって成長している筒状電铸層 FE (引き上げ対象としてダミーを含む) および内径形成部材 6を、その引き上げの過程において、制御系 9からの制御信号 S 5、 S 5' により、 所要速度 R 1および R 2で回転させる手段 19 (1 9') が装備されてい る。 これにより、 その電鏡層の円周方向に関して均等な厚さを確保することができ、 前 記電錄層の真円度および同芯度を向上させるようにしている。ここでの回転手段 19 (1 9') は、 例えば、 第 3図に示すような構成になっているとよい。
即ち、 この実施の形態では、 筒状電铸層 FE (またはダミー) および内径形成部材 6 に共通の鉛直な軸線 Lを中心に回転する円環状の回転子 1 91 (1 91 ') 力;、 ベアリン グ 192 (192') を介して、支持フレーム(図示せず) に支持されており、 これには、 左右一対のクランプ手段 1 93 (193') が装備されている。 なお、 各回 ¾子は、 例え ば、 その周縁に歯車歯を形成していて、 適当な歯車伝導系 (図示せず) を介して、 電動 モータ M (例えば、 ステッピングモータ) に連係されており、 上述のように、 制御系 9 からの制御信号 S 5、 S 5' で、 その駆動、 停止および速度の制御を受ける。 これらク ランプ手段 193 (1 93') は、 鼓形状のロ^ "ラ 193 a ( 1 93 a ' ) を軸支したレ パー 1 93 b (1 93 b') を、 前述の回転子に設けた軸架台 193 c (193 c,) に 揺動自在に軸支しており、 また、 レバー 193 b (1 93 b ') 間に、 引張コイルスプリ ング 193 d (193 d') を張設している。
このような構成では、 ローラ 193 a (193 a') の間で、 電鍚層 FE (ダミー) お よび内径形成部材 6を挟持することができ、しかも、回転子 191 (191')の回転を、 電铸層 FE (ダミー) および内径形成部材 6に伝達することができる。 なお、 この実施 の形態では、 電鐃層 FEの回転手段と内径形成部材 6の回転手段とを同じ構造としてい る力 別々の構成としてもよく、 また、 公知の適当な手段に置き換えることもできる。 また、 この実施の形態では、 電铸層 FEを引き上げる過程で、 これを、 使用するフエ ルールとしての、 所要長さに切断するための切断手段 20を備えている。 この切断手段 20は、 例えば、 第 4図に示すように、 電鐃層 FEの左右からカッター 201を前進し て、 切断する構成であり、 各カッター 201は、 往復動ァクチユエ一タ 202で、 前後 方向に駆動される。 このァクチユエ一タ 202への制御信号 S 6が制御系 9から与えら れる。
なお、 昇降手段 18力 電鍚層 FEの切断長さ (フエルール長さ) に対応して上昇し た後、 制御系 9からの制御信号により、 先ず、 支持手段 1 7' をクランプし、 切断が行 われる。 その後、 引き上げ手段 3における支持手段 1 7の、 電踌層 FEに対する持ち替 え (クランプ位置を下げる) が行われる。 このため、 制御系 9からの制御信号 S 4' に より、 支持手段 1 7のクランプが解除され、 次いで、 制御信号 S 3 ' により、 昇降手段 18が下降する。 そして、 制徒 Pi言号 S 4により、 支持手段 17がクランプした後、 支持 手段 1 7'がクランプを解除する。
また、 電鎵層 FEの外径を、 その電解層の引き上げの過程において、 電極槽 1外で計 測する先述の手段 4には、 レーザビームを利用した光センサ (例えば、 発光ダイオード などを用いた計測器) を用いるとよい。 勿論、 ここでの計測手段 4としては、 上述の光 センサに限られるこ,とはない (使用可能な公知の計測器でもよい)。
なお、 この実施の形態において、 符号 2 1は、 陽極 2と電鐃層 F Eとの間に印加され る電圧 (直流電圧や陰極—陽極間に一定のバイァス電圧を負荷するように調整した交流 電圧) の電源 (これは充電式バッテリーでも、 市販の交流電源から交流一直流変換器を 介して得るものでもよく、 更には、 上述の調整された交流電源などの電源が採用される とよい)、 2. 2は電圧調整器である。 この電圧調整器 2 2の制御には、制御系 9の制御信 号 S 6が関与する。
次に、 本発明に係わる、 上述の製造装置を用いて、 光ファイバ一用金属結合子 Fを製 造する過程を以下に説明する。 まず、 第 5図の (1 ) に示すように、 支持手段 1 7 (第 1図参照) でクランプした陰極芯部材 1 6 (ダミー) を、 昇降手段 1 8 (第 1図参照) の動作で、 電鎢槽 1内に挿入し、 電铸槽 1の底部に臨む内径形成部材 6に当接する。 な お、 この実施の形態では、内径形成部材 6の先端に小径部 6 aを形成していて、 これに、 ダミーの先端が着脱自在かつ回転自在に嵌合するようになつている (あるいは、 ダミー の内径が、 内径形成部材 6の外径に相当して、 内径形成部材 6の先端側に摺動可能に嵌 合されるようにしてもよい)。
この状態で、 電錡を開始すると、 電铸液に浸漬された陰極芯部材 1 6の部分おょぴ電 鎵液中に突出する内径形成部材 6の外周面に、 電鎵によって、 金属層が形成されてくる (第 5図の (2 ) を参照)。 所要の厚さ (回転手段 1 9でダミーが回転されて、 回転しな い内径形成部材 6との間で、 金属層に捩れ力が加わっても、 内径形成部材 6に対して金 属層がスムーズに剥離し、 ダミー側と共に回転して、 そこでは、 亀裂などの損傷を生じ ない程度の厚さ、 例えば、 0 . 5 μ Γη程度の厚さ) に電铸層 F Eが成長した段階で、 回 転手段 1 9を回転駆動し、 また、 引き上げ手段 3によるダミーの引き上げを行う。 この 際、 回転手段 1 9 ' も回転させて、 両者の回転差をゼロもしくは所要値になるように、 制御系 9からの制御信号で、 各回転手段 1 9 ( 1 9 ' ) の電動モータ Μの駆動速度を各別 に制御する。 この引き上げ過程で、 ダミーの下端は、 内径形成部材 6の上端から離れるが、 電鏡作 用で形成された筒状電鐃層 F Eは、 内径形成部材 6の内径を維持して、 成長されて行く (第 5図の (3 ) を参照)。 ダミーが上昇して、 筒状電錶層 F Eが計測手段 4のレベルに 到達すると (第 5図の (4 ) および (5 ) を参照)、 その段階から、 筒状電鎵層 F Eの外 径が計測される。 引き上げ手段 3による引き上げ速度は、 電錶液から引き上げられた筒 状電铸層 F Eの外径を決定する。 そこで、 計測手段 4によって、 倚状電歸層 F Eの外径 が計測された結果、 所定の設定値 (フエルール外径) になると、 その値を維持するよう に、 制御系 9を介して、 フィードパック制御により、 引き上げ手段 3の引き上げ速度が 制御される。 このように、 計測手段 4による計測値を、 筒状電錶層 F Eの外径を一定に 維持する予測値 (設定値相当) として利用するのである。
計測された筒状電鎳層 F Eの外径が、 所定の設定値を維持している過程で、 引き上げ 手段 3による筒状電錡層 F Eの引き上げ長さが、 フェルールの設定長さになると、 制御 系 9からの制御信号で、支持手段 1 7 'が筒状電錶層 F Eの切断部直上をクランプする。 この状態で、 制御系 9からの制御信号で、 切断手段 2 0が駆動され、 筒状電鎵層 F Eの 切断がなされる。 その後、 制御系 9からの制御信号で、 前述した支持手段 1 7の持ち替 えがなされる (即ち、 支持手段 1 7によるクランプの解除→昇降手段 1 8の降下—支持 手段 1 7による、 新たな位置での再クランプ)。 なお、 ここでは、切断後に支持手段 1 7 の持ち替えを行ったが、 支持手段 1 7 ' のクランプ後に、 まず、 支持手段 1 7の持ち替 えを行い、 その後に切断しても良い。
また、 切断された最初の筒状電铸層の部分 (ダミーを含む) は、 支持手段 1 7 ' のク ランプを解除した上で、 適当な手段で除かれ、 その後に切断された筒状電铸層 F Eの切 断片は、 同じく、 適当な手段により、 フェル一ル Fとして、 予定した貯蔵個所へと採取 される。 そして、 その後、 再び、 筒状電踌層 F Eの成長の過程で、 支持手段 1 7による クランプ状態を保持しながら、 昇降手段 1 8が上昇される (上述のように、 支持手段 1 7 ' は、 クランプ解除状態である)。
なお、 この実施の形態では、 ダミーは、 中空であり、 その上端からは、 圧力気体 (空 気などの気体) が供給され、 電鎢槽 1内での、 简状電铸層の内部への電鎳液の浸入を防 止する。 この場合の圧力気体供給手段 (図示せず) には、 公知の手段を用いることがで きる。 これは、 内径形成部材 6により筒状電鍀層 F Eの内径が正確に保持されている状 態を電錶液で犯されないためである。
更に、 内径形成部材 6の頂部に、 細径の部材 (図示せず) を違設して、 この部材を円 筒状陰極芯部材 (ダミー) に通して、 上方に延長し、 これに上向きのテンションを負荷 して、 内径形成部材 6の鉛直度を維持し、 揺らぎのない状態にする (それによつて、 成 長する電錄層の真円度、 同芯度、 円筒度を高める) ように構成することもできる。 また、 電錡の過程で、 少しずつ内径形成部材 6の先端部 (電鏡槽 1内に露出する部分) が痩せることを考慮して、 許容範囲內で、 成形された筒状電鐃層内に進出するように、 昇降手段 8により、 内径形成部材 6を微速度で上昇させる制御も有効である。 この昇降 手段 8の制御は、 制御系 9からの制御信号 S 1で行われる。
なお、 この実施の形態において製造する対象の、 筒状電鏡層 F Eの內径は、 例えば、 0 . 0 5〜0 . 1 3 mmとし、 外径は、 例えば、 1 mm〜 1 . 2 mmとする。 また、 電 铸層には、 例えば、 ニッケル、 鉄、 銅、 コバルト、 タングステン及びそれらの合金が挙 げられる。 従って、 電铸液としては、 溶液または浮遊夜 (懸濁液) の状態において、 上 述のような金属成分を含有する、 例えば、 スルファミン酸ニッケル、 塩化ニッケル、 硫 酸ニッケル、 スルファミン酸第一鉄、 硼弗化第一鉄、 ピロリン酸銅、 硼弗化銅、 珪弗化 銅、 チタン弗化銅、 アルカノ一ルスルホン酸銅、 硫酸コバルト、 タングステン酸ナ卜リ ゥムなどの水溶液か、 あるいは、 水に炭化珪素、 炭ィ匕タングステン、 炭化硼素、 酸化ジ ルコニゥム、 窒化珪素、 アルミナ、 ダイヤモンドの微粉末を分散させてなる浮遊液 (懸 濁液) が用いられる。 なお、 スルフアミン酸塩を含有する水溶液は、 電錄が容易である こと、 化学的に安定であること、 溶解し易いことなどから、 電鎵液として極めて有用で ある。
なお、 この実施の形態において、 電涛液の金属成分は、 そのまま本発明の光ファイバ 一用金属結合子を構成する金属材料となることから、 P C接続に用いる光フアイバー用 金属結合子を所望する場合において、 研削が容易な、 例えば、 ニッケル、 あるいは、 二 ッケル zコバルト合金などのニッケル合金とすることが望ましい。
また、内径形成部材 6やダミーとしての陰極芯部材 1 6は、その材質として、例えば、 ステンレス合金(J I S規格での SUS 3 0 4など)の線材が用いられる。 このような線 材には、 ダイスによる押出し方法、 延伸による伸線方法などで製造された、 例えば、 直 径: 1 2 5. 0 ± 0. 2 μ παの精度を有するものを、 容易に入手することができる。 また、 電源に接続される陽極 2、 および、 内径形成部材 6や陰極芯部材 1 6を介して 電源に電気的に接続される陰極側の筒状電鐯層 F Eに、 各々、 正及び負の直流を印加す るが、 その際の電流密度は、 4〜20A/dm 、通常、 用いられる。 このとき、 電鎳 液を酸性側の p H (p H3〜6)、 望ましくは、 p H4〜5に維持する。 この場合には、 電铸液の深さによっても相違するが、 例えば、 通電開始から 1 2時間以内、 通常、 3〜
8時間以内に、電鐃槽 1内で、筒状電鎵層 F Eを所定の直径まで太らせることができる。 また、電鎵液から、例えば、活性炭などを用いて、定期的に有機性不純物を除去する。 また、 電铸に先立って、 例えば、 ニッケル鍍金した、 鉄製波板などの別の陰極を電錡液 に浸漬し、 陽極 2との間で、 0. 2A/dm 前後の低電流密度による直流印加を行い、 予め、 電铸液から鋼などの無機不純物を除去するとよい。
なお、 筒状電铸層は、 用途に応じた所定の長さに切断した後、 そのまま光ファイバ一 用金属結合子として用いることもできるが、 通常、 NC機械加工などにより外をサブミ クロンの精度 (± 0. 以内) で、 真円に研削加工する。 本発明においては、 筒状 電铸層の内外径の差を 2 mm以下としても、 製品としての光ファイバ一用金属結合子に おける偏心度を、 容易に 0. 5 / m以内とすることができる。 特に、 陽極 2と筒状電踌 層との間隔を一定にして、 し力 も、 筒状電铸層を回転手段 1 9で回転することで、 堆積 厚さを大きくしても、 偏心度を小さく維持できる。
(第 2の実施の形態)
本発明に係わる第 2の実施の形態について、 以下に説明する。 ここでは、 第 1の実施 の形態で示した陰極芯部材 1 6 (ダミー) を用いず、 電錡槽 1内に装備された陽極に対 抗する陰極として、製造すべき円简状の金属結合子の内径と同外径の内径形成部材 6を、 前記電鎢槽底部を貫通して上方に供給し、 その上端を直接に支持手段 1 7に支持させ、 電錡液内では、 その周囲において、 円筒状の内孔を有する简状電鍚層 F Eを電錡槽 1内 の陰極側で成長させる(第 6図を参照)。また、支持手段 7および昇降手段 8は用いない。 なお、 その他の構成および制御は、 第 1の実施の形態と同様であるから、 その説明は省 略する。
この場合、 切断手段 2 0は、 内径形成部材 6を切断しないで、 筒状電铸層 F Eのみを 切断するように、 例えば、 第 7図に示すように、 切断刃先を形成しておくと良い。 そし て、 切断後の筒状電鐃層の切断片 (フェルール) は、 支持手段 1 7の持ち替えの際に、 適当な手段で、 上方に抜き取られる。 これによつて、 内径形成部材 6は、 再使用が可能 である。
(第 3の実施の形態)
本発明に係わる第 3の実施の形態について、 以下に説明する。 ここでは、 第 2の実施 の形態において、 内径形成部材 6の代わりに、 必要とされる光ファイバ一用金属結合子 (フ-ルール) の内径を内径とする円筒状部材 6 ' を用いる (第 8図を参照)。 また、 そ の材質は、 電铸によって、 部材 6 ' の周囲に堆積される金属と同じであるのが好ましい (例えば、 ニッケル合金を堆積する際には、 部材 6 ' も同材質とする)。 この場合は、 切 断手段 2 0は、 第 1の実施の形態で示す構成 (第 4図を参照) であって、 部材 6 ' を、 その周囲の電铸層 F Eと共に切断する。 ここでは、 部材 6 ' は、 フェル一ルの一部とし て、 電鐯層 F Eの中に残される。 なお、 その他の構成およびその制御は、 第 1の実施の 形態と同様であるから、 その説明は省略する。
(第 4の実施の形態)
本発明に係わる第 4の実施の形態について、 第 9図を参照して以下に説明する。 ここ では、 成長された筒状電極層 F Eと共に引き上げられる內径形成部材 6に、 予め、 所定 ピッチで、 スぺーサ (非導電材料、 例えば、 セラミックなど) Sを備えており、 該スぺ ーサの上下端に、 製造されるべき金属結合子の上下端末の所要面 (テーパ面、 バックテ ーパ面など) を形成していて、 第 2の実施の形態に示されるように、 内径形成部材 6の 引き上げにおいて、 前記スぺ一サ間に筒状電鎵層を堆積、 形成する。
また、 電鎳槽 1の上方では、 形成された円筒状電錄層 F Eを内径形成部材から取り外 す適当な手段 (図示せず) を具備している。 例えば、 ここでは、 予め、 スぺ一サを分割 型、 特に、 縦分割型とするなど、 スぺーサの取り外しを工夫することで、 内径形成部材 6と所定長さの筒状電錶層 F Eとを残し、 その後に、 内径形成部材 6から筒状電鎵層 F Eを抜き取る手法が採られる。 なお、 その他の構成およびその制御は、 第 1の実施の形 態と同様であるから、 その説明は省略する。
(他の実施の形態)
なお、 上述の本究明に係わる実施の形態では、 電鎵槽 1は、 単に受け槽 1 2との組み 合わせで構成されているが、 第 1 0図に示すように、 上下に多段の多槽分割型に構成し ても良い。 この場合は、 内径形成部材を通す貫通孔 1 aと内径形成部材との間隙が、 上 槽から下槽への電铸液の流れを構成する。 また、 上の段から下の段へのオーバーフロー も、 第 1の実施の形態と同様に、 実施されるのがよい (オーバーフローによって最下段 の貝宁槽 (図示せず) へ電踌液をもたらす)。 これによつて、 上下方向における水圧の変化 の問題を解決し、 陽極の交換、 メンテナンス上の便宜を図ることができる。 更に、 各槽 の間で、 成長過程の電鎵層 F Eの直径を計測することにより、 電鎢過程での電鏡層の成 長具合を確認することができる。
なお、 この実施の形態では、 第 1 1図の横断面 (a ) に示すように、 多段の電解槽 1 を半円筒体の組み合わせとして、そこに形成したフランジ部 1 0 1でネジ止めする力 第 1 1図の (b ) を参照)、 あるいは、 片側にヒンジ 1 0 2を設けて、 横開きにしている。 この場合、 陽極 2は、 電解槽 1の内壁に沿う半円筒体の形状に構成されるのがよい (第 1 1図の (c ) を参照)。
また、 本発明の電铸の開始初期に、 電錄液に発生する気泡を除去することは、 堆積さ れる筒状電铸層内での巣の発生を防止する上から有効である。 特に、 陰極芯部材 (ダミ 一 1 6、 内径形成部材 6あるいは円筒状部材 6 ) の露出表面における気泡を除去させ、 濡れ性を向上させるためには、 例えば、 液温を管理しながら、 以下のような手法を用い ることができる。
( 1 ) 陰極芯部材を溶液から数回出入りさせる。
( 2 ) 陰極芯部材の下方から大き目の気泡を出させる。
( 3 ) 陰極芯部材を溶液内でオシレートさせる。
( 4 ) 陰極芯部材を高速回転させる。
ここで、 陰極: K部材としてのダミー 1 6や内径形成部材 (円筒状部材) 6は、 光ファ ィパー用金属結合子の内径、 すなわち、 光ファイバ一素線を揷入する貫通孔の孔径を決 定するものであることから、 太さの均一性、 真円度 (陰極芯部材における所期の直径と 実際の直径との近似度) 及び直線性のすべてに、 高精度が要求される。
また、本発明において、電鏡層 F Eの内外径の同芯度、真円度を目標精度内に収めるの に、 必要なら、 陰極芯部材としてのダミー 1 6や内径形成部材 (円筒状部材) 6の回転 に際して、 その回転速度を調整し、 あるいは、 電解に際して印加する電流値を変えるこ とがなされてもよレ、。
更に、 電錄層の引.き上げに際して、 計測手段による計測値に基づいて、 電鍚層の径が 不足する過程では、 電铸液中での電铸層の滞留時間を長くするように、 弓 Iき上げ速度を 低減するなどの制御がなされると良い。 また、 第 1図に示すように、 何れの実施の形態 においても、 電铸液中での電鍚層の長手方向のテーパ (堆積速度に関係する) を一定に 維持する上で、 相互を平行に設置することが肝要である。
このようにして構成された、 本発明の光ファイバ一用金属結合子は、 光ファイバ一の 端末相互を一時的または永久的に接続するための部品として、 光素子を用いる多種多様 の用途において極めて有利に用いることができる。 また、 要すれば、 本発明の光フアイ バ一用金属結合子は、 従来のフエルールと比較して、 その外径を可及的に小さくできる こと力 ら、 例えば、 プラグ型コネクタ、 ジャック型コネクタ、 アダプタ、 レセプタクル をはじめとする多種多様のコネクタにおける、 多芯用の結合子 (フエルール) として、 光ファイバ一の実装密度を高くすることができる。 同様に、 偏心度が極めて小さいこと から、 光ファイバ一をより高精度に接続し、 接続に伴う光信号の損失も低減できる。 また、 光ファイバ一用金属結合子 (フェルール) の長さは、 コネクタの構造などに応 じて、適宜に選択'設定される。 なお、本発明の金属結合子においては、用途に応じて、 例えば、 金属結合子における端面の一方若しくは両方を、 例えば、 フラットの形状に加 ェし、 あるいは、 内部に光ファイバ一を挿入し易くする目的で、 適宜角度のバックテー パ面に加工するとよい。

Claims

請 求 の 範 囲
1 . 電鎵槽内に装備された陽極に対向する陰極として、 金属結合子を電鎵過程で成長さ せる電铸方式おいて、 製造すべき円筒状の金属結合子の内径と同外径の内径形成部材を 成長ガイドとして、 円筒状の内孔を有する電錶層を電錄槽内の陰極側で成長させると共 に、 該電铸層を前記電鎵槽から引き上げる過程で所要外径へと成長した筒状電錡層を、 前記電錶槽外で所要の寸法に切断することにより、 前記金属結合子を製造することを特 徴とする光フアイパー用金属結合子の製造方法。
2 . 電鍚槽内に装備された陽極に対抗する陰極として、 製造すべき円筒状の金属結合子 の内径と同外径の内径形成部材を、 陰極芯部材として、 前記電铸槽底部を貫通して上方 に供給し、 その周囲において、 円筒状の内孔を有する筒状電錶層を電铸槽内の陰極側で 成長させると共に、 該筒状電铸層を前記内径形成部材と共に前記電鍚槽から引き上げる 過程で、 所要外径へと成長した前記筒状電铸層を、 前記電鍀槽外で所要の寸法に切断す ることにより、 前記金属結合子を製造することを特徴とする光ファィバ一用金属結合子 の製造方法。 +
3 . 電鐃槽内に装備された陽極に対抗する陰極側において、 製造すべき円筒状の金属結 合子の内径と同内径の円筒状部材を、 陰極芯部材として、 前記電铸槽底部を貫通して上 方に供給し、 その周囲において、 円筒状の内孔を有する筒状電鏡層を電铸槽内の陰極側 で成長させると共に、 該筒状電鍀層を前記円筒状部材と共に前記電鍩槽から引き上げる 過程で、 所要外径へと成長した前記筒状電錡層を前記円筒状部材と共に前記電錄槽外で 所要の寸法に切断することにより、 前記金属結合子を製造することを特徴とする光プア ィバー用金属結合子の製造方法。
4 . 電錄槽内に装備された陽極に対抗する陰極側において、 製造すべき円筒状の金属結 合子の内径と同外径の内径形成部材を、 陰極芯部材として、 前記電鎊槽底部を貫通して 上方に供給し、 その周囲において、 円筒状の内孔を有する筒状電铸層を電铸槽内の陰極 側で成長させると共に、 成長された前記筒状電極層と共に引き上げられる前記内径形成 部材に、 予め、 所定ピッチで、 スぺーサを備えており、 該スぺーサの上下端に、 製造さ れるべき金属結合子の上下端末の所要面を形成していることを特徴とする、 光ファイバ —用金属結合子の製造方法。
5 . 電錡によって成長している前記筒状電錡層を、 前記引き上げの過程において、 所要 速度で回転させ、 円周方向に均等な厚さを確保することを特徴とする、 請求の範囲第 1 項〜第 4項の何れか 1項に記載の光フアイバー用金属結合子の製造方法。
6 . 前記電錡槽から引き上げられた简状電鎵層の外径を測定することで、 前記筒状電鎵 層の引き上げ速度を制御し、 前記電錄槽外に引き上げられた個所の所定外径寸法を維持 することを特徴とする、 請求の範囲第 1項〜第 5項の何れか 1項に記載の光ファィパー 用金属結合子の製造方法。
7 . 前記内径形成部材の上端と電鍚開始時に当接するように、 前記内径形成部材と同外 径、 同軸心の陰極芯部材を、 前記筒状電鍚層のダミーとして、 前記電鎵槽内に鉛直に支 持し、 その表面に筒状電鎵層を成長させることを特徴とする、 請求の範囲第 1項、 第 5 項あるいは第 6項に記載の光ファィバ一用金属結合子の製造方法。
8 . 前記內径形成部材および/あるいは陰極芯部材には、 成長された前記電鍀層に陰極 側電圧を印加するように、 電源が接続されていることを特徴とする、 請求の範囲第 7項 に記載の光ファイバ一用金属結合子の製造方法。
9 . 前記陰極芯部材が円筒状であって、 その内部に所要の気圧が掛けてあって、 前記電 界槽内の電踌液が、 前記電踌層の内部に侵入するのを防止することを特徴とする、 請求 の範囲第 1項〜第 8項の何れか 1項に記載の光ファイバ一用金属結合子の製造方法。
1 0 . 前記内径形成部材は、 前記電錄槽底部での、 その消耗が許容される外径寸法精度 の範囲で、 成長した筒状電鎵層が引き上げられる過程で、 所要の速度で上昇制御される ことを特徴とする、 請求の範囲第 1項、 第 5項、 第 6項〜第 8項の何れか 1項に記載の 光フアイバ一用金属結合子の製造方法,:.
1 1 . 前記筒状電铸層のみを、 前記内径形成部材を切断しない状態で、 切断することを 特徴とする、 請求の範囲第 2項に記載の光ファィバー用金属結合子の製造方法。
1 2 . 前記筒状電錡層を、 前記内径形成部材と共に切断することを特徴とする、 請求の 範囲第 2項に記載の光フ了ィパー用金属結合子の製造方法。
1 3 . 前記連続電鎵の開始初期に発生する気泡を除去する工程を含み、 これにより前記 連続電鍀層内での巣の発生を防止することを特徴とする、 請求の範囲第 1項〜第 1 2項 の何れか 1項に記載の光ファィバ一用金属結合子の製造方法。
1 4 . 前記請求の範囲第 1項〜第 1 4項の何れか 1項に記載の製造方法により製造され る、 光ファイバ一の接続に用いられる結合子であって、 前記光ファイバ一を挿通するこ とができる内径の貫通孔を有する筒状金属層で構成されていることを特徴とする光ファ ィパ一用金属結合子。
1 5 . 電極槽内において、 陽極に対抗して、 製造すべき円筒状の金属結合子の内径と同 径の内孔を有する筒状電鍀層を、 前記電鏡槽内の陰極側で成長させる光ファイバ一用金 属結合子の製造装置にぉレ、て、前記電極槽内で成長した筒状電解層を引き上げる手段と、 前記電解層の外径を、 その電解層の引き上げの過程において、 前記電極槽外で計測する 手段と、その計測結果を予測計測値として前記引き上げ手段の弓 Iき上げ速度を制御する 制御手段とを具備していることを特徴とする光フアイバ 用金属結合子の製造装置。
1 6 . 前記金属結合子の内径と同外径の内径形成部材を、 前記電鍀槽内に装備し、 これ を成長ガイドとして、 前記筒状電涛層を形成することを特徴とする、 請求の範囲第 1 5 項に記載の光フアイバ一用金属結合子の製造装置。
1 7 . 前記金属結合子の内径と同外径の内径形成部材を、 前記電铸槽底部を貫通して上 方に供給する手段を装備し、 その周囲において、 円筒状の内孔を有する筒状電铸層を、 電铸槽内の陰極側で成長させることを特徴とする、 請求の範囲第 1 5項に記載の光ファ ィパー用金属結合子の製造装置。
1 8 . 前記金属結合子の内径と同內径の円筒状部材を、 陰極芯部材として、 前記電錡槽 底部を貫通して上方に供給する手段を装備し、 その周囲において、 円筒状の内孔を有す る筒状電鋒層を、 電铸槽内の陰極側で成長させることを特徴とする、 請求の範囲第 1 5 項に記載の光ファイバ一用金属結合子の製造装置。
1 9 . 前記電鎵槽から引き上げる過程で所要外径へと成長した筒状電鎵層を、 前記電錶 槽外で所要の寸法に切断する手段を具備し、 これにより、 前記金属結合子を製造するこ とを特徴とする、 請求の範囲第 1 5項〜第 1 8項の何れか 1項に記載の光ファイバ一用 金属結合子の製造装置。
2 0 . 成長された前記筒状電極層と共に引き上げられる前記内径形成部材に、 予め、 所 定ピッチで、 スぺーサを備えており、 該スぺーサの上下端に、 製造されるべき金属結合 子の上下端末の所要面を形成していて、 前記内径形成部材の引き上げにおいて、 前記ス ぺ一サ間に形成された円筒状電铸層を前記内径形成部材から取り外す手段を具備してい ることを特徴とする、 請求の範囲第 1 5項〜第 1 8項の何れか 1項に記載の光ファイバ 一用金属結合子の製造装置。
2 1 . 前記電鑄層に対向する陽極は、 前記電鏡層との間の距離を一定に保持して配置さ れていて、前記電鍀層の真円度および同芯度を向上させるようにしたことを特徴とする、 請求の範囲第 1 5項〜第 2 0項の何れか 1項に記載の光ファイバ一用金属結合子の製造
2 2 . 電鏡によって成長している前記筒状電铸層を、 前記引き上げの過程において、 所 要速度で回転させる手段を装備し、 その円周方向に関して均等厚さを確保することによ り、 前記電鍀層の真円度および同芯度を向上させるようにしたことを特徴とする、 請求 の範囲第 1 5項〜第 2 0項の何れか 1項に記載の光ファイバ一用金属結合子の製造装置。
2 3 . 前記陽極には、 P t、 A u、 T iのような、 不溶解陽極を用いることを特徴とす る請求の範囲第 1 5項〜第 2 2項の何れか 1項に記載の光ファイバ一用金属結合子の製
2 4 . 前記電鍀槽は、 上下に多段の分割型で構成され、 前記筒状電錡層を揷通する貫通 孔を介して、 電錡液を流下すると共に、 オーバ一フローによって最下段の貝宁槽へ電鎊液 をもたらすように構成されていることを特徴とする請求の範囲第 1 5項〜第 2 3項の何 れか 1項に記載の光ファィバー用金属結合子の製造装置。
2 5 . 筒状電铸層の外径を常時、 計測することにより、 フィードバック制御により、 前 記電鎵層の上昇速度を調整することを特徴とする請求の範囲第 1項〜第 2 4第の何れか 1項に記載の光フ了ィバー用金属結合子の製造方法あるいは装置。
PCT/JP2001/009962 2001-07-02 2001-11-14 Production method and device for optical fiber-use metal coupler WO2003004731A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003510484A JP4106625B2 (ja) 2001-07-02 2001-11-14 光ファイバー用金属結合子の製造方法および装置
KR10-2003-7017231A KR20040015306A (ko) 2001-07-02 2001-11-14 광섬유용 금속 페룰의 제조 방법 및 장치
MXPA04000107A MXPA04000107A (es) 2001-07-02 2001-11-14 Metodo y dispositivo para fabricar ferulas de metal usadas en fibras opticas.
EP01982782A EP1411150A4 (en) 2001-07-02 2001-11-14 METHOD OF MANUFACTURING AND DEVICE FOR METAL COUPLERS FOR LIGHT FILTER USE
CA002452394A CA2452394A1 (en) 2001-07-02 2001-11-14 Production method and device for optical fiber-use metal coupler
IL15957401A IL159574A0 (en) 2001-07-02 2001-11-14 Method and device for manufacturing metal ferrules used for optical fibers
IL159574A IL159574A (en) 2001-07-02 2003-12-25 Method and device for the production of reinforcing rings for use in optical fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09-895,388 2001-07-02
US09/895,388 US6754953B2 (en) 2001-07-02 2001-07-02 Method and device for manufacturing metal ferrules used for optical fibers

Publications (1)

Publication Number Publication Date
WO2003004731A1 true WO2003004731A1 (en) 2003-01-16

Family

ID=25404437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009962 WO2003004731A1 (en) 2001-07-02 2001-11-14 Production method and device for optical fiber-use metal coupler

Country Status (11)

Country Link
US (2) US6754953B2 (ja)
EP (1) EP1411150A4 (ja)
JP (1) JP4106625B2 (ja)
KR (1) KR20040015306A (ja)
CN (1) CN1295382C (ja)
CA (1) CA2452394A1 (ja)
IL (2) IL159574A0 (ja)
MX (1) MXPA04000107A (ja)
MY (1) MY128375A (ja)
TW (1) TWI235260B (ja)
WO (1) WO2003004731A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060135352A (ko) * 2005-06-24 2006-12-29 히토시 미카지리 전기주조에 의한 다심관의 제조방법
JP2018188695A (ja) * 2017-05-01 2018-11-29 株式会社エムエスデー 電鋳装置
WO2023234026A1 (ja) * 2022-05-30 2023-12-07 株式会社ヨコオ 電鋳部材の製造方法、電鋳管の製造方法及び電鋳装置
WO2023234027A1 (ja) * 2022-05-30 2023-12-07 株式会社ヨコオ 電鋳部材の製造方法、電鋳管の製造方法及び電鋳装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4056941B2 (ja) * 2003-06-17 2008-03-05 Smk株式会社 光固定減衰器及びその製造方法
US7712979B2 (en) * 2005-06-28 2010-05-11 Sumiden High Precision Co., Ltd. Optical adapter
EP2526449A4 (en) 2010-01-22 2014-04-02 Genia Photonics Inc METHOD AND DEVICE FOR THE OPTICAL COUPLING OF GLASS FIBERS
CN102776533A (zh) * 2011-05-11 2012-11-14 江苏南方通信科技有限公司 一种金属镍光纤插芯的连续电铸制作方法
CN107037543B (zh) * 2016-06-18 2018-10-16 华远高科电缆有限公司 一种光纤连接头自动化生产模具、系统及方法
CN113325522B (zh) * 2021-06-08 2022-03-29 深圳意创通讯科技有限公司 一种多芯光纤连接器制作方法和设备
CN115058746B (zh) * 2022-07-07 2024-04-12 中国人民解放军陆军装甲兵学院 一种金属镀层、其制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193485A (ja) * 1997-12-26 1999-07-21 Ishikawajima Harima Heavy Ind Co Ltd 細孔チューブの製造方法
JP2001207285A (ja) * 2000-01-27 2001-07-31 Tetsuo Tanaka 電鋳に使用する芯線ホルダー
JP2001228363A (ja) * 2000-02-17 2001-08-24 Shinichi Okamoto 光ファイバコネクタ用部品の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457157A (en) * 1966-07-26 1969-07-22 Budd Co Apparatus for producing tubing by electroforming
US4267010A (en) * 1980-06-16 1981-05-12 Mobil Tyco Solar Energy Corporation Guidance mechanism
GB2097021B (en) * 1981-04-22 1984-02-22 Nippon Telegraph & Telephone Method for production of optical fiber connectors
US5194129A (en) * 1991-01-18 1993-03-16 W. R. Grace & Co.-Conn. Manufacture of optical ferrules by electrophoretic deposition
JP3145618B2 (ja) * 1995-08-31 2001-03-12 京セラ株式会社 光ファイバ用フェルール
JP3197482B2 (ja) * 1996-03-08 2001-08-13 ワイケイケイ株式会社 光ファイバコネクタ用フェルールの製造方法
WO2000031574A1 (fr) 1998-11-26 2000-06-02 Nippon Ferrule Co., Ltd. Connecteur de fibres optiques et ferrule utilisee pour ledit connecteur, et procede de production de ladite ferrule
US6447173B1 (en) * 1998-11-27 2002-09-10 Murata Manufacturing Co., Ltd. Ferrule for optical connector, metal article having a through-hole and manufacturing method therefor
JP2001091790A (ja) * 1999-09-20 2001-04-06 Totoku Electric Co Ltd 多芯フェルールの製造方法および多芯フェルール
JP4342062B2 (ja) * 1999-12-28 2009-10-14 Smk株式会社 金属フェルール形成用微細円柱の製法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193485A (ja) * 1997-12-26 1999-07-21 Ishikawajima Harima Heavy Ind Co Ltd 細孔チューブの製造方法
JP2001207285A (ja) * 2000-01-27 2001-07-31 Tetsuo Tanaka 電鋳に使用する芯線ホルダー
JP2001228363A (ja) * 2000-02-17 2001-08-24 Shinichi Okamoto 光ファイバコネクタ用部品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1411150A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060135352A (ko) * 2005-06-24 2006-12-29 히토시 미카지리 전기주조에 의한 다심관의 제조방법
JP2018188695A (ja) * 2017-05-01 2018-11-29 株式会社エムエスデー 電鋳装置
WO2023234026A1 (ja) * 2022-05-30 2023-12-07 株式会社ヨコオ 電鋳部材の製造方法、電鋳管の製造方法及び電鋳装置
WO2023234027A1 (ja) * 2022-05-30 2023-12-07 株式会社ヨコオ 電鋳部材の製造方法、電鋳管の製造方法及び電鋳装置

Also Published As

Publication number Publication date
TWI235260B (en) 2005-07-01
IL159574A0 (en) 2004-06-01
JPWO2003004731A1 (ja) 2004-10-28
EP1411150A1 (en) 2004-04-21
MY128375A (en) 2007-01-31
CN1524135A (zh) 2004-08-25
IL159574A (en) 2006-12-10
MXPA04000107A (es) 2004-05-21
CA2452394A1 (en) 2003-01-16
US20030002813A1 (en) 2003-01-02
US20050177999A1 (en) 2005-08-18
CN1295382C (zh) 2007-01-17
KR20040015306A (ko) 2004-02-18
US6754953B2 (en) 2004-06-29
US6948233B2 (en) 2005-09-27
EP1411150A4 (en) 2006-10-25
JP4106625B2 (ja) 2008-06-25

Similar Documents

Publication Publication Date Title
US6419810B1 (en) Method of manufacturing an optical fiber connector
WO2003004731A1 (en) Production method and device for optical fiber-use metal coupler
WO2002056079A1 (fr) Composant de connexion destine a une fibre optique multi-coeur, bague et leur procede de production
KR100498672B1 (ko) 금속페룰의 제조방법 및 그 제조장치
US20060011481A1 (en) Method for manufacturing multi-core metal pipe by electroforming
WO2001051687A1 (fr) Procede de production pour ferrules
JP2002146583A (ja) フェルールの製造方法
KR100447519B1 (ko) 광섬유의 금속 페룰 제조를 위한 장치 및 방법
JP2002212772A (ja) フェルールの製造方法及びそれにより得られるフェルール
JP2002212771A (ja) 光ファイバー用多層金属結合子およびその製造方法
CN102776533A (zh) 一种金属镍光纤插芯的连续电铸制作方法
JP2001249252A (ja) フェルール
US20030094371A1 (en) Method of manufacturing part for optical fiber connector
JP2003293183A (ja) フェルールの製造方法及びその製造装置
KR100434181B1 (ko) 페룰의 제조방법
JP2001192881A (ja) 金属フェルール形成用微細円柱の製法
JP2003086038A (ja) 金属被覆通電性光ファイバの製造方法
CN116162969A (zh) 一种电沉积三维中空金属构件的装置及方法
JP2003057504A (ja) 耐熱・高強度光ファイバの製造方法
JP2003248153A (ja) 耐熱・高強度光ファイバの構造及びその製造方法
JP2001192882A (ja) 金属フェルール形成用微細円柱の製法
JP2004177648A (ja) 金属製フェルールの製造方法
JP2004083971A (ja) 細径金属部材製造用の電鋳装置
JP2004177647A (ja) 金属製フェルールおよび金属製フェルール部品ならびに金属製フェルールの製造方法
JP2001290048A (ja) 光ファイバコネクタ用部品の製造方法、及びこの方法で製造した製品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003510484

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 159574

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2452394

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020037017231

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2085/CHENP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20018234380

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/000107

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2001982782

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001982782

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642