WO2003001856A1 - Betriebsgerät für leuchtstoffröhren mit eingebauter kühlstelle - Google Patents

Betriebsgerät für leuchtstoffröhren mit eingebauter kühlstelle Download PDF

Info

Publication number
WO2003001856A1
WO2003001856A1 PCT/DE2001/004138 DE0104138W WO03001856A1 WO 2003001856 A1 WO2003001856 A1 WO 2003001856A1 DE 0104138 W DE0104138 W DE 0104138W WO 03001856 A1 WO03001856 A1 WO 03001856A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating device
heating
fluorescent tube
temperature
cooling point
Prior art date
Application number
PCT/DE2001/004138
Other languages
English (en)
French (fr)
Inventor
Wilhelm Wilken
Jürgen Schneider
Ewald Ehmen
Original Assignee
Neosave Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neosave Gmbh filed Critical Neosave Gmbh
Priority to EP01274324A priority Critical patent/EP1400156B1/de
Priority to JP2003508111A priority patent/JP2004531040A/ja
Priority to DE50114631T priority patent/DE50114631D1/de
Priority to CA002451590A priority patent/CA2451590A1/en
Priority to SK15962003A priority patent/SK15962003A3/sk
Priority to HU0401456A priority patent/HUP0401456A2/hu
Priority to DE20122035U priority patent/DE20122035U1/de
Publication of WO2003001856A1 publication Critical patent/WO2003001856A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling

Definitions

  • This invention relates to an electronic operating device according to the preamble of patent claim 1.
  • the mercury vapor pressure increases exponentially with temperature.
  • the luminous flux of the fluorescent tube initially increases with the mercury vapor pressure and the temperature, because with increasing pressure, more mercury atoms are available to generate light.
  • the self-absorption losses increase with temperature, which leads to a drop in luminous flux. In between there is an optimal operating temperature.
  • the new T5 fluorescent tubes 14 to 35 W and 24 to 80 W are equipped with a cooling point behind a heating coil, namely the heating coil on the stamped side of the fluorescent tube, so that they allow regulation of the mercury vapor pressure by heating this coil and thus the cooling point.
  • T5 fluorescent tubes are designed in such a way that they can reach their optimal operating temperature of 35 ° at an ambient temperature in the luminaire from . Reach 25 °.
  • T5 fluorescent tubes in particular are particularly sensitive to temperature fluctuations and react with a high luminous flux drop if the optimal operating temperature is not maintained, i.e. if the mercury vapor pressure is not optimally set.
  • the operating temperature is maintained when using the 15 fluorescent lamps with newer, non-dimmable control gear, which are also referred to as electronic ballasts.
  • the temperature of the fluorescent tube drops due to the lower lamp output.
  • the ambient temperature of the fluorescent tubes i.e. the temperature in the luminaires
  • the luminous flux also drops.
  • some dimmable electronic ballasts heat the heating coil of the fluorescent lamps with a filament heating current that is independent of dimming. The result is that with electrical dimming by pulse width modulation to 10%, the luminous flux also drops to 10% of the maximum luminous flux. Due to the filament heating current, which is independent of dimming, lamps reach operating temperatures of approx. 45 ° C undimmed. As explained above, the self-absorption losses increase when the operating temperature is too high. This is why these ECGs deliver worse maximum luminous flux values than the non-dimmable ECGs.
  • Neither dimmable nor non-dimmable electronic ballasts for T5 lamps on the market are able to maintain the optimal lamp temperature at different ambient temperatures.
  • An advantage of measuring the temperature of the cooling point - or a temperature in the vicinity of the cooling point and heating the coil on the cooling point side, so that the measured temperature remains constant - is that this means that an optimal mercury vapor pressure is independent of the dimming of the lamp and of ambient temperature fluctuations is observed.
  • the best and most reliable way to set the optimal vapor pressure is to measure the temperature of the aluminum lamp cap above the cooling point, the temperature of which determines the mercury vapor pressure in the lamp.
  • the control according to the invention advantageously sets the maximum luminous efficacy at all ambient temperatures and degrees of dimming within the framework of what is physically possible for lamps.
  • Fig. 1 is a block diagram of an operating device according to the invention.
  • FIG. 2 shows a circuit diagram of an operating device which contains circuits for assemblies of the operating device according to the invention.
  • the operating device comprises a line filter 1, a rectifier bridge circuit 2, an HF generator 3 (HF: radio frequency), a pulse width modulator 4, an FET power amplifier 5, an assembly 6 for safety shutdown and fuel voltage control, a low-voltage power supply 9, a filament heating control 10, a turning heating element 11, a dimming factor stabilization 8 and a temperature sensor 15.
  • HF radio frequency
  • FET field-effect transistor
  • the operating device comprises a line filter 1, a rectifier bridge circuit 2, an HF generator 3 (HF: radio frequency), a pulse width modulator 4, an FET power amplifier 5, an assembly 6 for safety shutdown and fuel voltage control, a low-voltage power supply 9, a filament heating control 10, a turning heating element 11, a dimming factor stabilization 8 and a temperature sensor 15.
  • the line filter 1 can be implemented, for example, by the double chokes 25 and 26 shown in FIG. 2 and the capacitors 27 and 28.
  • a further choke 24 and a further capacitor 21 can be provided in the line filter 1.
  • the rectifier bridge 2 preferably consists of four diodes 31, 32, 33 and 34. To further suppress high-frequency interference when switching the diodes on and off, capacitors 29 and 30 can be provided.
  • the rectifier bridge circuit 2 contains one or more electrolytic capacitors 35 and 36 for reducing the ripple of the rectified voltage.
  • the high-frequency generator 3 is implemented by the integrated circuit 43 in conjunction with resistors 50 and 52 and capacitors 51 and 42. How to construct a pulse width modulator 4 is known from the prior art.
  • the FET power amplifier 5 (FET: field effect transistor) preferably consists of FETs 38 and 40. Furthermore, the resistors 39 and 41 can be provided, which protect the integrated circuit 43 against excessive currents when the FETs 38 and 40 are switched on and off.
  • the FET power amplifier 5 further includes a capacitor 37 to suppress the DC voltage component and a choke 63 to supply an output voltage loaded with an impedance to the fluorescent tube. The control of the. Fluorescent tube with an impedance-loaded voltage is necessary because the fluorescent tube has a negative differential resistance, so that the current increases in the typical operating range despite falling voltage. The reason for using high frequency is that as the frequency increases, coils with lower inductance generate sufficient reactance. Consequently, the size of the inductor 63 decreases with increasing frequency.
  • One electrode of the capacitor 37 is connected to both FETs, the other to a connection of the inductor 63. Between the other connection of the inductor 63 and an operating voltage of the FET power amplifier, the operating voltage 16 for the fluorescent tube can
  • the assembly 6, the. Safety shutdown and the burning voltage control implemented, is implemented in the preferred embodiment by resistors 48, 58, 66, tyristor 54, capacitors 57 and 59 and diodes 53, 55, 56 and 60.
  • Resistor 66 and diodes 53 and 55 ensure that the control gear is switched off if the voltage supplied by the mains is too high, which can destroy the control gear and / or the fluorescent tube.
  • resistors 58, 61, 62, diodes 56, 60 and capacitors 57 and 59 monitor the burning voltage.
  • the power amplifier As long as the fluorescent tube has not yet ignited, the power amplifier generates an operating voltage of approximately 800 V between the two due to the resonant circuit possibly formed by capacitors 37 and 65 and coil 63 Filaments of the fluorescent tube. After the fluorescent tube has been ignited, this voltage collapses to about 200 to 300 V by damping the resonant circuit through the fluorescent tube.
  • the internal voltage control in module 6 switches off the pulse width modulator and thus also the power amplifier if the ignition voltage does not collapse to ' 200 to 300 V within 0.5 to 1 s after switching on the internal voltage, i.e. the fluorescent tube has not ignited.
  • the lighting of the fluorescent tube is determined by measuring the drain current through a power transistor. When igniting, this current increases on average over time.
  • a resistor is preferably connected between the negative supply voltage and the drain in transistor 40 and the voltage drop across this transistor is fed via diode 60 to the operating voltage control.
  • the mains voltage controller 7 also influences the pulse width modulator.
  • the mains voltage controller changes the pulse width modulation in such a way that the fluorescent tube shines equally brightly despite fluctuations in the mains voltage. This is particularly useful because the nominal mains voltage fluctuates between 220 and 240 V in individual European countries and the USA. In this way, country-specific peculiarities are compensated for by the mains voltage controller 7.
  • the low-voltage power supply unit generates a DC voltage of 15 V for the dimming factor stabilization 8 and the filament heating control 10.
  • a potentiometer or a photocell for dimming the fluorescent tube can be connected to the dimming factor stabilization 8 via dimming input 16.
  • the dimming factor stabilization can measure a voltage or a resistance at the dimming input.
  • the filament heating control 10 controls the filament heating 11 when switched on so that both filaments 13 and 14 are heated at full power for 0.3 to 0.5 s before the FET power amplifier 5 applies a burning voltage to the fluorescent tube.
  • Preheating the filament is referred to as a so-called warm start.
  • the warm start reduces the wear on the heating coils 13 and 14.
  • the service life of a fluorescent tube without starting operations is approximately 20,000 operating hours. Frequent cold starts, i.e. starts without preheating the heating coils, reduce this to about 5,000 operating hours.
  • the heating coil 13 After starting the fluorescent tube, only the heating coil 13 is heated in a preferred embodiment.
  • the heating coil 14 is completely separated from the coil heating, so that the coil heating itself does not constitute a short circuit for the power amplifier 5 when the power amplifier supplies an operating voltage.
  • the filament heating can be carried out by alternating current and a transformer can be provided in the filament heating which has two secondary windings, namely one for each heating filament.
  • the heating power in the heating coil is controlled by the coil heating control 10 so that the temperature measured by the temperature sensor 15 remains constant.
  • the output signal of the temperature sensor is fed to the filament heating control 10.
  • the filament heating control system receives a control signal from the dimming factor stabilization 8. The latter signal ensures improved control during transient dimming processes. If the dimming is suddenly increased or decreased, the temperature sensor 15 reacts only with a delay to the temperature in the aluminum cap that changes with the lamp power.
  • the filament heating controller can be a PID controller. P stands for proportional, D for differential and I for integral.
  • the differential component for the controller is calculated from the signal obtained from the dimming factor stabilization.
  • the dimming factor stabilization influences the pulse width modulator in accordance with the dimming.
  • not only the heating coil 13 but also the heating coil 14 is preferably heated during operation with the same heating power.
  • This embodiment keeps the temperature in the fluorescent tube and thus the mercury vapor pressure in the optimal range, particularly in the case of strong fluctuations in ambient temperature.
  • the heating coil 14 is not heated even when starting. This embodiment enables the saving of components in the filament heating and an electrical connection to the heating filament 14. This embodiment is particularly advantageous if the fluorescent tube is rarely switched on and off. Such a connection of the fluorescent tube is shown in FIG. 2.
  • Figure 2 shows a non-dimmable electronic ballast for fluorescent tubes. Due to the one-sided decoupling of the high-frequency circuit by HF isolating transformer 64 from the mains input, the mains is no longer loaded with HF.
  • the isolating transformer 64 has two identical windings, so that a transformation ratio of 1: 1 results. These measures make it possible to dispense with the expensive coupling capacitors across the bridge rectifier, which is formed from the diodes 31-34. Only low-frequency alternating current is present at the bridge rectifier.
  • a decoupling capacitor in the RF circuit can be omitted because the DC voltage component is absorbed by the resonant circuit capacitor 37.
  • the reactive current component of the choke 63 is almost completely compensated for by suitable dimensioning.
  • the network pollution caused by high-frequency interference is reduced, so that higher operating frequencies can be used by the integrated circuit 43 and the power amplifier formed by the transistors 38 and 40.
  • a choke with low inductance and thus small size can be used.
  • the radiation of high frequency is kept particularly low if the connection between transformer 64 and the unheated heating coil of fluorescent tube 20 is kept short, that is to say the operating device is mounted near this heating coil.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Betriebsgerät für Lampen mit eingebauter Kühlstelle, deren Quecksilberdampfdruck sich durch Heizen der Kühlstelle regulieren lässt, wobei die Temperatur der Kühlstelle oder eine Temperatur in der Umgebung der Kühlstelle mittels eines Temperatursensors (15) gemessen wird und die Wendelheizleistung so geregelt wird, dass die Temperatur der Lampe in einem optimalen Bereich bleibt.

Description

Betriebsgerät für Leuchtstoffröhren mit eingebauter Kühlsteile
Diese Erfindung betrifft ein elektronisches Betriebsgerät gemäß dem Oberbegriff des Patentanspruchs 1.
Bei herkömmlichen Leuchtstoffröhren steigt der Quecksilberdampfdruck mit der Temperatur exponentiell an. Bei tiefen Temperaturen steigt der Lichtstrom der Leuchtstoffröhre mit dem Quecksilberdampfdruck und der Temperatur zunächst an, weil mit steigendem Druck mehr Quecksilberatome zur Lichterzeugung zur Verfügung stehen. Bei höheren Temperaturen und höherem Quecksilberdruck steigen die Selbstabsorptionsverluste mit der Temperatur, was zu einem Lichtstromabfall führt. Dazwischen gibt es eine optimale Betriebstemperatur.
Die neue T5-Leuchtstoffröhren 14 bis 35 W und 24 bis 80 W sind mit einer Kühlstelle hinter einer Heizwendel, nämlich der Heizwendel auf der gestempelten Seite der Leuchtstoffröhre ausgestattet, so dass sie eine Regelung des Quecksilberdampfdrucks durch Heizung dieser Wendel und damit der Kühlstelle erlauben.
T5-Leuchtstoffröhren sind so konstruiert, dass sie ohne Wendelheizung ihre optimale Betriebstemperatur von 35° bei einer Umgebungstemperatur in der Leuchte von.25° erreichen. Gerade T5-Leuchtstoffröhren sind besonders empfindlich gegen Temperaturschwankungen und reagieren mit hohem Lichtstromabfall, wenn die optimale Betriebstemperatur nicht eingehalten wird, also der Quecksilberdampfdruck nicht optimal eingestellt ist. Die Betriebstemperatur wird bei Verwendung der 15- Leuchtstofflampen mit neueren, nicht dimmbaren Betriebsgeräten eingehalten, die auch als elektronische Vorschaltgeräte (EVGs) bezeichnet werden.
Werden die Leuchtstoffröhren gedimmt, sinkt die Temperatur der Leuchtstoffröhre aufgrund der geringeren Lampenleistung. Bei 10% des maximalen Lichtstroms sinkt die Umgebungstemperatur der Leuchtstoffröhren, also die Temperatur in den Leuchten, bis auf ca.25° ab. Hierdurch sinkt der Lichtstrom zusätzlich ab. Um ein zusätzliches Absinken des Lichtstroms aufgrund der nicht optimalen Temperatur zu vermeiden, heizen manche dimmbare EVGs die Heizwendel der Leuchtstofflampen mit einem von der Dimmung unabhängigen Wendelheizstrom. So wird erreicht, dass bei einer elektrischen Dimmung durch Pulsbreitenmodulation auf 10% auch der Lichtstrom auf 10% des maximalen Lichtstroms abfällt. Aufgrund des von der Dimmung unabhängigen Wendelheizstroms erreichen Lampen ungedimmt Betriebstemperaturen von ca. 45°C. Wie oben ausgeführt, nehmen bei einer zu hohen Betriebstemperatur die Selbstabsorptionsverluste zu. Deshalb liefern diese EVGs schlechtere maximale Lichtstromwerte als die nicht dimmbaren EVGs.
Um diesen Nachteil zu überwinden, wurden EVGs entwickelt, bei denen die Wendelheizleistung abhängig vom Dimmgrad und vom Lampentyp eingestellt wird.
Weder dimmbare noch nicht dimmbare, auf dem Markt befindliche EVGs für T5- Lampen sind in der Lage, die optimale Lampentemperatur bei unterschiedlichen Umgebungstemperaturen aufrechtzuerhalten.
Es ist die Aufgabe der Erfindung, ein energiesparendes Betriebsgerät anzugeben.
Bevorzugte Ausführungsformen der Erfindung sind Gegenstand der abhängigen Ansprüche.
Vorteilhaft an einer Messung der Temperatur der Kühlstelle -oder einer Temperatur in der Nähe der Kühlstelle und einer Heizung der Wendel auf der Kühlstellenseite, so dass die gemessene Temperatur konstant bleibt, ist, dass hierdurch ein optimaler Quecksilberdampfdruck unabhängig von der Dimmung der Lampe und von Umgebungstemperaturschwankungen eingehalten wird.
Die beste und zuverlässigste Möglichkeit, den optimalen Dampfdruck einzustellen, ist die Messung der Temperatur der Aluminiumlampenkappe über der Kühlstelle, deren Temperatur den Quecksilberdampfdruck in der Lampe bestimmt. Die erfindungsgemäße Regelung stellt in vorteilhafter Weise bei allen Umgebungstemperaturen und Dimmgraden im Rahmen des lampenphysikalisch Möglichen die jeweils maximale Lichtausbeute ein.
Im folgenden werden bevorzugte Ausführungsformen anhand der beiliegenden Zeichnungen näher erläutert. Dabei zeigen
Fig. 1 ein Blockschaltbild eines erfindungsgemäßen Betriebsgeräts, und
Fig. 2 ein Schaltbild eines Betriebsgeräts, das Schaltungen für Baugruppen des erfindungsgemäßen Betriebs^eräts enthält.
Fig. 1 zeigt ein erfindungsgemäßes Betriebsgerät. Es steuert vorzugsweise eine T5- Leuchtstoffröhre 12 an. Diese enthält die Heizwendeln 13 und 14, wobei die Kühlstelle hinter der Wendel 13 angeordnet ist. Das Betriebsgerät umfasst ein Netzfilter 1 , eine Gleichrichterbrückenschaltung 2, einen HF-Generator 3 (HF: Hochfrequenz), einen Pulsbreitenmodulator 4, einen FET-Leistungsverstärker 5, eine Baugruppe 6 zur Sicherheitsabschaltung und Brennspannungskontrolle, ein Niedervoltnetzteil 9, eine Wendelheizungssteuerung 10, eine Wendeiheizung 11 , eine Dimmfaktorstabilisierung 8 sowie einen Temperaturseπsor 15.
Das Netzfilter 1 kann beispielsweise durch die in Fig. 2 dargestellten mit einem Kern versehenen Doppeldrosselπ 25 und 26 sowie die Kondensatoren 27 und 28 realisiert werden. Darüber hinaus kann eine weitere Drossel 24 sowie ein weiterer Kondensator 21 im Netzfilter 1 vorgesehen sein. Die Gleichrich-terbrücke 2 besteht vorzugsweise aus vier Dioden 31 , 32, 33 sowie 34. Zur weiteren Unterdrückung hochfrequenter Störungen beim Ein- und Ausschalten der Dioden können Kondensatoren 29 und 30 vorgesehen sein. Daneben enthält die Gleichrichterbrückenschaltung 2 einen oder mehrere Elektrolytkondensatoren 35 und 36 zur Reduzierung der Welligkeit der gleichgerichteten Spannung. Der Hochfrequenzgenerator 3 wird durch die integrierte Schaltung 43 in Verbindung mit Widerständen 50 und 52 sowie Kondensatoren 51 und 42 realisiert. Wie ein Pulsbreitenmodulator 4 aufzubauen ist, ist aus dem Stand der Technik bekannt. Der FET-Leistungsverstärker 5 (FET: Feldeffekttransistor) besteht vorzugsweise aus FETs 38 und 40. Ferner können die Widerstände 39 und 41 vorgesehen sein, die die integrierte Schaltung 43 vor zu hohen Strömen beim Ein- und Ausschalten der FETs 38 und 40 schützen. Ferner enthält der FET-Leistungsverstärker 5 einen Kondensator 37, um den Gleichspannungsanteil zu unterdrücken und eine Drossel 63 um eine mit einer Impedanz belastete Ausgangsspannung an die Leuchtstoffröhre zu liefern. Die Ansteuerung der . Leuchtstoffröhre mit einer impedanzbelasteten Spannung ist notwendig, weil die Leuchtstoffröhre einen negativen differentiellen Widerstand aufweist, so dass im typischen Betriebsbereich trotz sinkender Spannung der Strom zunimmt. Der Grund für die Verwendung von Hochfrequenz liegt darin, dass mit steigender Frequenz Spulen mit geringerer Induktivität einen ausreichenden Blindwiderstand erzeugen. Folglich sinkt mit steigender Frequenz die Baugröße der Drossel 63. Eine Elektrode des Kondensators 37 ist mit beiden FETs verbunden, die andere mit einem Anschluss der Drossel 63. Zwischen dem anderen Anschluss der Drossel 63 und einer Betriebsspannung des FET- Leistungsverstärkers kann die Brennspannung 16 für die Leuchtstoffröhre abgegriffen werden.
Die Baugruppe 6, die die. Sicherheitsabschaltung und die Brennspannungskontrolle realisiert,, wird in der bevorzugten Ausführungsform durch Widerstände 48, 58, 66, Tyristor 54, Kondensatoren 57 und 59 sowie Dioden 53, 55, 56 und 60 realisiert. Insbesondere. Widerstand 66 sowie Dioden 53 und 55 sorgen für eine Abschaltung des Betriebsgeräts, falls vom Netz eine zu hohe Spannung geliefert wird, die zur Zerstörung des Betriebsgeräts und/oder der Leuchtstoffröhre führen kann. Insbesondere Widerstände 58, 61 , 62, Dioden 56, 60 sowie Kondensatoren 57 und 59 überwachen die Brennspannung.
Solange die Leuchtstoffröhre noch nicht gezündet hat, erzeugt der Leistungsverstärker aufgrund des durch Kondensatoren 37 evtl. und 65 sowie Spule 63 gebildeten Schwingkreises eine Brennspannung von ca. 800 V zwischen den beiden Wendeln der Leuchtstoffröhre. Nach dem Zünden der Leuchtstoffröhre bricht diese Spannung durch Dämpfung des Schwingkreises durch die Leuchtstoffröhre auf etwa 200 bis 300 V zusammen. Die Brennspannungskontrolle in Baugruppe 6 schaltet den Pulsbreitenmodulator und damit auch den Leistungsverstärker ab, falls die Zündspannung nicht innerhalb von 0,5 bis 1 s nach Einschalten der Brennspannung auf '200 bis 300 V zusammengebrochen ist, also die Leuchtstoffröhre nicht gezündet hat.
In einer anderen Ausführungsform wird das Zünden der Leuchtstoffröhre durch Messen des Drainstroms durch einen Leistungstransistor ermittelt. Beim Zünden steigt dieser Strom im zeitlichen Mittel an. Hierzu sind vorzugsweise ein Widerstand zwischen die negative Versorgungsspannung und das Drain im Transistor 40 geschaltet und die über diesen Transistor abfallende Spannung über Diode 60 der Brennspannungskontrolle zugeführt.
Der Netzspannungscontroler 7 beeinflusst ebenfalls den Pulsbreitenmodulator. Der Netzspannungscontroler verändert die Pulsbreitenmodulation so, dass trotz Schwankungen der Netzspannung die Leuchtstoffröhre gleich hell leuchtet. Dies ist insbesondere deshalb sinnvoll, da die Netzsollspannung in einzelnen europäischen Ländern und den USA zwischen 220 und 240 V schwankt. Auf diese Weise werden landespezifische Besonderheiten durch den Netzspannungscontroler 7 kompensiert.
Das Niedervoltnetzteil erzeugt eine Gleichspannung von 15 V für die Dimmfaktorstabilisierung 8 und die Wendelheizungssteuerung 10. An die Dimmfaktorstabilisierung 8 kann über Dimmeingang 16 ein Potentiometer oder eine Fotozelle zum Difnmen der Leuchtstoffröhre angeschlossen werden. Die Dimmfaktorstabilisierung kann am Dimmeingang eine Spannung oder einen Widerstand messen. Die Wendelheizungssteuerung 10 steuert die Wendelheizung 1 1 beim Einschalten so, dass beide Heizwendel 13 und 14 für 0,3 bis 0,5 s mit voller Leistung beheizt werden, bevor durch den FET-Leistungsverstärker 5 eine Brennspannung an die Leuchtstoffröhre gelegt wird. Das Vorheizen der Glühwendel wird als sogenannter Warmstart bezeichnet. Der Warmstart reduziert den Verschleiß der Heizwendel 13 und 14. Die Lebensdauer einer Leuchtstoffröhre ohne Startvorgänge beträgt etwa 20.000 Betriebsstunden. Durch häufige Kaltstarts, also Starts ohne Vorheizen der Heizwendeln reduziert sich diese etwa auf 5.000 Betriebsstunden.
Nach dem Starten der Leuchtstoffröhre wird in einer bevorzugten Ausführungsform lediglich die Heizwendel 13 beheizt. Die Heizwendel 14 wird komplett von der Wendelheizung getrennt, so dass die Wendelheizung selbst keinen Kurzschluss für den Leistungsverstärker 5 darstellt, wenn der Leistungsverstärker eine Brennspannung liefert.
Um das Problem des Kurzschlusses des Leistungsverstärkers durch die Wendelheizung weiter zu reduzieren, kann die Wendelheizung durch Wechselstrom erfolgen und in der Wendelheizung ein Transformator vorgesehen sein, der zwei Sekundärwicklungen, nämlich für jede Heizwendel eine, aufweist.
Nach dem Starten wird die Heizleistung in der Heizwendel durch die Wendelhei- zungssteueruπg 10 so gesteuert, dass die vom Temperatursensor 15 gemessene Temperatur konstant bleibt. Hierzu wird das Ausgangssignal des Temperatursensors der Wendelheizungssteuerung 10 zugeführt. Darüber hinaus erhält die Wendelheizungssteuerung ein Steuersignal von der Dimmfaktorstabilisierung 8. Das Letztere Signal sorgt für eine verbesserte Regelung bei transienten Dimmvorgängen. Wird die Dimmung plötzlich herauf- oder heruntergeregelt, reagiert der Temperatursensor 15 nur mit Verzögerung auf die sich mit der Lampenleistung ändernde Temperatur in der Aluminiumkappe. Anders ausgedrückt kann die Wendelheizungssteuerung einen PID-Regler darstellen. Dabei steht P für proportional, D für differential und I für Integral. Insbesondere der Differentialanteil für den Regler wird aus dem von der Dimmfaktorstabilisierung erhaltenen Signal berechnet. Darüber hinaus beeinflusst die Dimmfaktorstabilisierung den Pulsbreitenmodulator entsprechend der Dimmung.
In einer anderen bevorzugten Ausführungsform wird nicht nur Heizwendel 13 sondern auch Heizwendel 14 während des Betriebs vorzugsweise mit der gleichen Heizleistung beheizt. Diese Ausführungsform hält insbesondere bei starken Umgebungstemperaturschwankungen die Temperatur in der Leuchtstoffröhre und damit den Quecksilberdampfdruck im optimalen Bereich.
In einer weiteren bevorzugten Ausführungsform wird die Heizwendel 14 auch beim Starten nicht beheizt. Diese Ausführungsform ermöglicht die Einsparung von Bauteilen in der Wendelheizung sowie einer elektrischen Verbindung zur Heizwendel 14. -Diese Ausführungsform ist besonders dann vorteilhaft, wenn die Leuchtstoffröhre selten ein- und ausgeschaltet wird. Eine solche Beschaltung der Leuchtstoffröhre ist in Fig. 2 gezeigt.
Figur 2 zeigt ein nicht dimmbares elektronisches Vorschaltgerät für Leuchtstoffröhren. Durch die einseitige Abkopplung des Hochfrequenzstromkreises durch HF- Trenntrafo 64 vom Netzeingang wird das Stromnetz nicht mehr mit HF belastet. Der Trenntrafo 64 weist zwei identische Wicklungen auf, so dass sich ein Übersetzungsverhältnis von 1 : 1 ergibt. Durch diese Maßnahmen können die teueren Auskoppelkondensatoren über dem Brückengleichrichter entfallen, der aus den Dioden 31 -34 gebildet wird. Am Brückgleichrichter liegt nämlich nur noch niederfrequenter Netzwechselstrom an. Ein Abkoppelkondensator im HF-Kreis kann entfallen, weil der Gleichspannungsanteii vom Schwingkreiskohdensator 37 aufgenommen wird. Durch geeignete Dimensionierung wird die Blindstromkomponeπte der Drossel 63 fast vollständig kompensiert. Durch die Auskopplung der Hochfrequenz durch den Transformator 64 wird die Netzverschmutzung durch hochfrequente Störungen reduziert, so dass höhere Betriebsfrequenzen durch integrierte Schaltung 43 und den durch die Transistoren 38 und 40 gebildeten Leistungsverstärker verwendet werden können. Wie oben ausgeführt, kann folglich eine Drossel mit geringer Induktivität .und somit kleiner Baugröße verwendet werden. Die Abstrahlung von Hochfrequenz wird dann besonders gering gehalten, wenn die Verbindung zwischen Transformator 64 und der nicht beheizten Heizwendel von Leuchtstoffröhre 20 kurz gehalten wird, also das Betriebsgerät nahe dieser Heizwendel montiert wird.
Die oben erläuterte Sicherheitsabschaltung durch die Baugruppe 6 wurde soweit verbessert, dass ein Zerstören der Leistungstransistoren 38 und 40 bei einem Defekt der Leuchtstoffröhre 20 vermieden wird.

Claims

Patentansprüche :
1. Betriebsgerät für Leuchtstoffröhren (12) mit eingebauter Kühlstelle, deren Quecksilberdampfdruck sich durch Heizen der Kühlstelle regulieren lässt, dadurch gekennzeichnet, dass die Temperatur der Kühlstelle oder eine Temperatur in der Umgebung der Kühlstelle mittels eines Temperatursensors (15) gemessen wird und die Wendelheizleistung so geregelt wird, dass die Temperatur der Lampe (12) in einem optimalen Bereich bleibt.
2. Betriebsgerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Temperatursensor (15) in einer Lampenkappe nahe der Kühlstelle angeordnet ist.
3. Betriebsgerät nach Anspruch 1 , dadurch gekennzeichnet, dass das Betriebsgerät für T5-Leuchtstoffröhren vorgesehen ist.
4. Betriebsgerät nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass die Leuchtstoffröhre mit Hochfrequenz betrieben wird, die durch einen Hochfrequenzgenerator (3) und einen Leistungsverstärker (5) erzeugt wird, wobei ferner ein Pulsbreitenmodulator (4) vorgesehen ist, um die Pulsbreite der Hochfrequenz und damit den Leuchtstrom zu steuern.
5. Betriebsgerät nach Anspruch 4, dadurch gekennzeichnet, dass ferner ein Netzspannungscontroler (7) vorgesehen ist, der ein Ausgaπgssignal erzeugt, das dem Pulsbreitenmodulator (4) zugeführt wird und den Pulsbreitenmodulator so steuert, dass ein von einer angeschlossenen Leuchtstoffröhre (12) erzeugter Lichtstrom von der Höhe der Netzspannung unabhängig ist.
6. Betriebsgerät nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Betriebsgerät ferner eine Dimmfaktorstabilisierung (8) aufweist, die ebenfalls ein Ausgangssignai für den Pulsbreitenmodulator (4) erzeugt, so dass der Lichtstrom einer angeschlossenen Leuchtstoffröhre (12) entsprechend einem an ei- nem Dimmeingang (16) angeschlossenen Widerstand oder einer am Dimmeingang (16) angelegten Spannung gedimmt wird.
7. Betriebsgerät nach Anspruch 6, dadurch gekennzeichnet,, dass ferner eine Wendelheizungssteuerung (10) vorgesehen ist, der ein Ausgangssignal des Temperatursensors (15) zugeführt wird, um die Wendelheizleistung für Heizwendel (13) zu regeln, wobei der Wendelheizungssteuerung (10) femer ein Signal von der Dimmfaktorstabilisierung (8) zugeführt wird.
8. Betriebsgerät für eine Leuchtstoffröhre mit:
einem Gleichrichter (2; 31 , 32, 33, 34); und
einem HF-Generator (3)
dadurch gekennzeichnet, dass
das Ausgangssigna! des HF-Generators (3) einem HF-Transformator (64) zugeführt wird, wobei ein Ende der Sekundärwicklung des HF-Transformators mit einem Anschluss für eine Heizwendel und das andere Ende der Sekundärwicklung mit einem Anschluss für die andere Heizwendel der Leuchtstoffröhre verbunden ist.
PCT/DE2001/004138 2001-06-20 2001-11-02 Betriebsgerät für leuchtstoffröhren mit eingebauter kühlstelle WO2003001856A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP01274324A EP1400156B1 (de) 2001-06-20 2001-11-02 Betriebsgerät für leuchtstoffröhren mit eingebauter kühlstelle
JP2003508111A JP2004531040A (ja) 2001-06-20 2001-11-02 内部冷位置を有する管形蛍光灯の操作装置
DE50114631T DE50114631D1 (de) 2001-06-20 2001-11-02 Betriebsgerät für leuchtstoffröhren mit eingebauter kühlstelle
CA002451590A CA2451590A1 (en) 2001-06-20 2001-11-02 Ballast device for fluorescent tubes comprising an integrated cooling point
SK15962003A SK15962003A3 (en) 2001-06-20 2001-11-02 Ballast device for fluorescent tubes comprising an integrated cooling point
HU0401456A HUP0401456A2 (en) 2001-06-20 2001-11-02 Ballast device for fluorescent tubes comprising an integrated cooling point
DE20122035U DE20122035U1 (de) 2001-06-20 2001-11-02 Betriebsgerät für Leuchtstoffröhren mit eingebauter Kühlstelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10129755A DE10129755A1 (de) 2001-06-20 2001-06-20 Betriebsgerät für Leuchtstoffröhren mit eingebauter Kühlstelle
DE10129755.6 2001-06-20

Publications (1)

Publication Number Publication Date
WO2003001856A1 true WO2003001856A1 (de) 2003-01-03

Family

ID=7688844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/004138 WO2003001856A1 (de) 2001-06-20 2001-11-02 Betriebsgerät für leuchtstoffröhren mit eingebauter kühlstelle

Country Status (13)

Country Link
EP (1) EP1400156B1 (de)
JP (1) JP2004531040A (de)
AT (1) ATE419734T1 (de)
CA (1) CA2451590A1 (de)
CZ (1) CZ20033517A3 (de)
DE (3) DE10129755A1 (de)
ES (1) ES2320092T3 (de)
HU (1) HUP0401456A2 (de)
PL (1) PL204319B1 (de)
RU (1) RU2004101293A (de)
SK (1) SK15962003A3 (de)
TR (1) TR200302237T1 (de)
WO (1) WO2003001856A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253600B (zh) 2005-08-31 2013-06-19 特洛伊科技有限公司 紫外射灯及放射源模组以及含有该紫外射灯的处理系统
DE102010064032A1 (de) * 2010-12-23 2012-06-28 Tridonic Gmbh & Co. Kg Geregelte Wendelheizung für Gasentladungslampen
DE102012109519B4 (de) 2012-10-08 2017-12-28 Heraeus Noblelight Gmbh Verfahren zum Betreiben einer Lampeneinheit zur Erzeugung ultravioletter Strahlung sowie geeignete Lampeneinheit dafür
DE102016120672B4 (de) 2016-10-28 2018-07-19 Heraeus Noblelight Gmbh Lampensystem mit einer Gasentladungslampe und dafür angepasstes Betriebsverfahren
EP4210086A1 (de) * 2018-01-24 2023-07-12 Xylem Europe GmbH Keimtötende amalgamlampe mit temperatursensor für optimierten betrieb

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2094720A5 (de) * 1970-06-30 1972-02-04 Fedorenko Anatoly
DE2138793A1 (de) * 1971-08-03 1973-02-22 Patra Patent Treuhand Quecksilberdampfniederdruckentladungslampe mit amalgam
US3898511A (en) * 1974-04-22 1975-08-05 Gte Sylvania Inc Fluorescent lamp containing amalgam-forming material for reducing stabilization time
US4694215A (en) * 1984-09-05 1987-09-15 Patent-Treuhand Gesellschaft Fur Elektrische Gluhlampen Mbh Compact, single-ended fluorescent lamp with fill vapor pressure control
US4827313A (en) * 1988-07-11 1989-05-02 Xerox Corporation Mechanism and method for controlling the temperature and output of an amalgam fluorescent lamp
EP0478342A2 (de) * 1990-09-28 1992-04-01 Xerox Corporation Fluoreszenzlampeneinrichtung
US5173643A (en) * 1990-06-25 1992-12-22 Lutron Electronics Co., Inc. Circuit for dimming compact fluorescent lamps
US5274305A (en) * 1991-12-04 1993-12-28 Gte Products Corporation Low pressure mercury discharge lamp with thermostatic control of mercury vapor pressure
EP0768812A2 (de) * 1995-10-16 1997-04-16 General Electric Company Elektronisches Vorschaltgerät mit hohem Leistungsfaktor
DE19702285A1 (de) * 1997-01-23 1998-07-30 Josef Hoffmann Stromsparende Leuchtstofflampe
US5808418A (en) * 1997-11-07 1998-09-15 Honeywell Inc. Control mechanism for regulating the temperature and output of a fluorescent lamp
EP1017257A1 (de) * 1998-12-31 2000-07-05 Honeywell Inc. Beleuchtungssteuerung einer Hinterbeleuchtung
WO2000072641A1 (en) * 1999-05-19 2000-11-30 Koninklijke Philips Electronics N.V. Circuit arrangement
US6172452B1 (en) * 1997-09-10 2001-01-09 Matsushita Electronics Corporation Low pressure mercury vapor discharge lamp with heat conductive component

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2094720A5 (de) * 1970-06-30 1972-02-04 Fedorenko Anatoly
DE2138793A1 (de) * 1971-08-03 1973-02-22 Patra Patent Treuhand Quecksilberdampfniederdruckentladungslampe mit amalgam
US3898511A (en) * 1974-04-22 1975-08-05 Gte Sylvania Inc Fluorescent lamp containing amalgam-forming material for reducing stabilization time
US4694215A (en) * 1984-09-05 1987-09-15 Patent-Treuhand Gesellschaft Fur Elektrische Gluhlampen Mbh Compact, single-ended fluorescent lamp with fill vapor pressure control
US4827313A (en) * 1988-07-11 1989-05-02 Xerox Corporation Mechanism and method for controlling the temperature and output of an amalgam fluorescent lamp
US5173643A (en) * 1990-06-25 1992-12-22 Lutron Electronics Co., Inc. Circuit for dimming compact fluorescent lamps
EP0478342A2 (de) * 1990-09-28 1992-04-01 Xerox Corporation Fluoreszenzlampeneinrichtung
US5274305A (en) * 1991-12-04 1993-12-28 Gte Products Corporation Low pressure mercury discharge lamp with thermostatic control of mercury vapor pressure
EP0768812A2 (de) * 1995-10-16 1997-04-16 General Electric Company Elektronisches Vorschaltgerät mit hohem Leistungsfaktor
DE19702285A1 (de) * 1997-01-23 1998-07-30 Josef Hoffmann Stromsparende Leuchtstofflampe
US6172452B1 (en) * 1997-09-10 2001-01-09 Matsushita Electronics Corporation Low pressure mercury vapor discharge lamp with heat conductive component
US5808418A (en) * 1997-11-07 1998-09-15 Honeywell Inc. Control mechanism for regulating the temperature and output of a fluorescent lamp
EP1017257A1 (de) * 1998-12-31 2000-07-05 Honeywell Inc. Beleuchtungssteuerung einer Hinterbeleuchtung
WO2000072641A1 (en) * 1999-05-19 2000-11-30 Koninklijke Philips Electronics N.V. Circuit arrangement

Also Published As

Publication number Publication date
CZ20033517A3 (cs) 2004-05-12
DE10129755A1 (de) 2003-01-02
PL204319B1 (pl) 2009-12-31
RU2004101293A (ru) 2005-06-20
EP1400156B1 (de) 2008-12-31
SK15962003A3 (en) 2004-10-05
DE20122035U1 (de) 2004-05-13
TR200302237T1 (tr) 2004-12-21
CA2451590A1 (en) 2003-01-03
ES2320092T3 (es) 2009-05-19
HUP0401456A2 (en) 2004-10-28
DE50114631D1 (de) 2009-02-12
PL374148A1 (en) 2005-10-03
JP2004531040A (ja) 2004-10-07
EP1400156A1 (de) 2004-03-24
ATE419734T1 (de) 2009-01-15

Similar Documents

Publication Publication Date Title
DE3101568C2 (de) Schaltungsanordnung zum Betrieb von Niederdruckentladungslampen mit einstellbarem Lichtstrom
DE4017415C2 (de) Schaltungsanordnung zum Betrieb einer Hochdruck-Entladungslampe für einen Fahrzeugscheinwerfer
EP0748146B1 (de) Schaltungsanordnung zur Wendelvorheizung von Leuchtstofflampen
EP0422255B1 (de) Elektronisches Vorschaltgerät
DE69828484T2 (de) Entladungslampe und beleuchtungsvorrichtung
EP0490330A1 (de) Schaltungsanordnung zur Steuerung von Gasentladungslampen
DE19923945A1 (de) Elektronisches Vorschaltgerät für mindestens eine Niederdruck-Entladungslampe
WO1988009108A1 (en) Circuit arrangement for operating a gas discharge lamp on a direct current source
DE2701661A1 (de) Stromversorgung fuer leuchtstofflampen
DE3829388A1 (de) Schaltungsanordnung zum betrieb einer last
DE3445817C2 (de)
DE3211240A1 (de) Stabilisierungseinrichtung fuer gasentladungslampen
EP1635620B1 (de) Elektronisches Vorschaltgerät mit Pumpschaltung für Entladungslampe mit vorheizbaren Elektroden
EP1400156B1 (de) Betriebsgerät für leuchtstoffröhren mit eingebauter kühlstelle
EP0391383B1 (de) Vorschaltgerät für eine Entladungslampe
EP0391360B1 (de) Vorschaltgerät für eine direkt geheizte Entladungslampe
EP0697803A2 (de) Schaltungsanordnung zur Ansteuerung von Gasentladungslampen
DE69702829T2 (de) Elektronisches Vorschaltgerät einer Gasentladungslampe mit Messung der Lampenleistung durch ein Gleichstromsignal
EP0155729B1 (de) Schaltungsanordnung zum Wechselstrombetrieb von Hochdruckgasentladungslampen
DE69618568T2 (de) Schaltungsanordnung
EP1601237A2 (de) Vorschaltgerät für Entladungslampe mit Dauerbetriebs-Regelschaltung
DE10304544B4 (de) Elektronisches Vorschaltgerät
WO1990005992A1 (de) Ansteuerung für gasentladungslampen
DE10164242B4 (de) Elektronisches Vorschaltgerät mit Strombegrenzung bei Leistungsreglung
EP2468078B1 (de) Elektronisches vorschaltgerät und verfahren zum betreiben mindestens einer entladungslampe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001274324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV2003-3517

Country of ref document: CZ

Ref document number: 2451590

Country of ref document: CA

Ref document number: 15962003

Country of ref document: SK

WWE Wipo information: entry into national phase

Ref document number: 2003508111

Country of ref document: JP

Ref document number: 374148

Country of ref document: PL

Ref document number: 2003/02237

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 2002215838

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 20018235026

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2004108687

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2001274324

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2003-3517

Country of ref document: CZ

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0117056

Country of ref document: BR

Free format text: PEDIDO RETIRADO FACE A IMPOSSIBILIDADE DE ACEITACAO DA ENTRADA NA FASE NACIONAL POR TER SIDO INTEMPESTIVA. O PRAZO PARA ENTRADA NA FASE NACIONAL EXPIRAVA EM 20.02.2003( 20 MESES - BR DESIGNADO APENAS) , E A PRETENSA ENTRADA NA FASE NACIONAL SO OCORREU EM 10.12.2003

WWR Wipo information: refused in national office

Ref document number: PV2003-3517

Country of ref document: CZ