US3898511A - Fluorescent lamp containing amalgam-forming material for reducing stabilization time - Google Patents

Fluorescent lamp containing amalgam-forming material for reducing stabilization time Download PDF

Info

Publication number
US3898511A
US3898511A US463004A US46300474A US3898511A US 3898511 A US3898511 A US 3898511A US 463004 A US463004 A US 463004A US 46300474 A US46300474 A US 46300474A US 3898511 A US3898511 A US 3898511A
Authority
US
United States
Prior art keywords
lamp
heat shield
mercury
amalgam
forming material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US463004A
Inventor
Walter A Johnson
Howard W Milke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
GTE Sylvania Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Sylvania Inc filed Critical GTE Sylvania Inc
Priority to US463004A priority Critical patent/US3898511A/en
Application granted granted Critical
Publication of US3898511A publication Critical patent/US3898511A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/045Thermic screens or reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury

Definitions

  • a very high output fluorescent lamp having an electrode mount structure sealed in each end which includes a cathode coil supported on a pair of lead wires. At least one of the mount structures further includes a heat shield plate attached thereto and supported transversely in the tubular lamp envelope between the cathode coil and its respective end of the lamp.
  • a quantity of amalgam-forming material such as indium, is coated on the side of the heat shield plate facing away from the cathode coil and toward the end of the lamp for absorbing mercury when the lamp is turned off, holding the mercury on the heat shield while the lamp is inoperative, and, when the lamp is ignited, quickly releasing the mercury into the relatively cool end chamber of the lamp.
  • the light output of a fluorescent lamp is a function of the mercury vapor pressure, which in turn often depends upon the temperature of the coldest region of the glass envelope of the lamp. It is further known that the envelope cold spot temperature for most efficient lamp operation is approximately 40C, which causes a mercury vapor pressure of approximately 4 to 6 X 10 Torr to occur inside the lamp. Often, due to high lamp loading or high ambient temperatures, the envelope temperatures and mercury vapor pressure rise above the optimum value.
  • VHO fluorescent lamps are designed to operate at a power loading of approximately l0 watts per foot of lamp length and reach peak light output at an ambient temperature of approximately 25C when operated at this loading
  • VHO fluorescent lamps have been developed and are presently being marketed, particularly for reprographic applications, such as use in the light compartment of photocopying apparatus.
  • These lamps (when made in the Tl 2 size) operate at loadings of approximately 25 watts per foot. Since the mercury vapor pressure increases as the loading and the operating temperatures of the lamp increase, means to compensate for this condition in such highly-loaded lamps must be provided to prevent excessive vapor pressure and a resulting drop in light output and efficiency.
  • One method commonly used for providing such compensation in VHO lamps is to employ one or two heat shields in the lamp.
  • Each heat shield is customarily attached to the mount structure and located between the electrode and the end of the envelope at one end or both ends of the fluorescent lamp.
  • the function of the heat shield is to provide cool end chambers in the lamp for maintaining the condensed pool of excess mercury at the proper temperature. This, in turn, controls the mercury vapor pressure and keeps it within the aformentioned range for optimum efficiency and light output.
  • heat shields are generally located in VHO lamps in order to provide a light output level which would not be possible if the central bulb-temperature controlled the mercury vapor pressure.
  • heat shields are believed to be responsible for this phenomenon due to the fact that they impede the circulation of gases to the extremities of the lamp and thereby make it difficult for the mercury vapor to come in contact with the coolest regions of the glass envelope of the lamp.
  • a principal object of the invention is to reduce the amount of time required for a heavily loaded fluorescent lamp to reach a state of stabilized light output.
  • the present invention remedies the above-described stabilization problem by providing means for retaining most of the mercury between the heat shield and the end of the lamp, even when the lamp is not in operation but is subjected to motion or cooling conditions that would normally displace the mercury from the position it occupies during stabilized lamp operation.
  • amalgam-forming materials have been used in fluorescent lamps to control the mercury vapor pressure of operating lamps, and thus optimize light output.
  • An undesirable feature of such a use of amalgam-forming material is that in non-operating lamps, the mercury vapor pressure is so low that starting becomes difficult.
  • secondary deposits of an amalgam-forming metal, such as indium, are placed at various hot spot locations to serve as a starting aid.
  • the present invention differs from such prior art teachings relative to amalgam lamps in the the amalgam-forming material is employed to store mercury, while the lamp is inoperative, in such a location that when the lamp is ignited, the mercury will be released rapidly into the cool end chamber where the operating mercury vapor. pressure will be controlled by the envelope wall temperature.
  • FIG. 1 is an elevational view, partly in section, of a fluorescent lamp embodying the present invention, a portion of the bulb being removed for convenience;
  • FIG. 2 is a cross-sectional view taken along line 22 of FIG. 1:
  • FIG. 3 shows comparative curves of relative light output vs. time.
  • a fluorescent lamp comprising an elongated tubular glass envelope 10 having the customary coating II of phosphor on its inner surface and electrode mounts I2 sealed into each of its ends.
  • the lighttransmitting envelope is filled with a small amount of rare gas, such as argon, at low pressure, e.g., one to three-Torr, and a small quantity of mercury, say 5-75 mgs., afterswhieh it is hermetically sealed inthe usual manner by tipping off an exhaust tube (not shown) at one or both ends of the lamp.
  • rare gas such as argon
  • Each mount sturcture 12 includes the typical reenthe usual alkaline-earth oxide (electron-emissive) coating and is supported on a pair of lead wires 18 and 19 sealed through the stem press 16.
  • the lead wires extend to terminal pins 20 and 21 insulatively mounted in the lamp bases 22 attached to each end of the hermetically sealed, light-transmitting envelope 10.
  • the lamp further includes a heat shield 23 disposed at some point in the envelope between the cathode coil electrode 17 and its respective end of the lamp. More specifically, as illustrated, the heat shield 23 may comprise a thin circular metal plate attached, such as by a spot weld 24 to lead wire 18 and supported transversely in the envelope between the coil 17 and stem press 16. The other lead wire 19 passes through a hole in the heat shield plate 23 and is electrically isolated from the metal heat shield by an insulator sleeve 25.
  • the heat shield may be made of a nonconducting material, such as glass or ceramics, and be fused to both lead wires.
  • metal is the preferred material for the heat shield, particularly nickel or nickel-plated iron.
  • suitable metals are stainless steel, iron, steel, aluminum or titanium.
  • the heat shield may be clamped to the glass stem 14, rather than being attached to a lead wire.
  • the purpose of the heat shield is to retard the flow of heat (in an operating lamp) from the hot coil 17 and the hot plasma between electrodes to the cooler gas filled region and envelope wall that are between the heat shield and the base of the lamp.
  • the envelope wall between electrodes will be hotter than the envelope wall between the heat shield and the base, and the mercury vapor pressure in the lamp will be determined by the temperature of the posed on a surface within the lamp proximate the heat shield 23 in the region between the heat shield and its respective end of the lamp i.e., the indium is placed on one'or more hot spots in the cool end chamber.
  • possible locations would be on the inner leads, the stem, the envelope wall between the heat shield and base'but close to the heat shield.
  • a preferred location is to coat the amalgamforming material 26 on the heat shield 23 itself. on the side thereof facing away from the coil 17 and toward its respective end of the lamp; ln such case, a metal heat shield is preferred-as the amalgam-forming materialadheres better to metal than to glass or ceramic.
  • amalgam-forming material 26 When the lamp is not in operation. most of the mercury will be absorbed and retained by the amalgamforming material 26 and thereby prevented from migrating to the central region of the lamp.
  • the heat shield 23 heats up quickly due to its proximity to thev coil 17, and the mercury is driven from the amalgam directly into the cool chamber at the end of the lamp. It should be noted that the amalgam-forming material does not have to be used at both ends of the lamp, even if both ends have a heat shield.
  • a nickel heat shield 23 coated with 45 mgs. of indium is employed at one end of a 22 inch VHO fluorescent lamp designed for operation at 25 watts per foot by using a T12 envelope (1.500 inches o.d.) and having a neon/30% argon fill at 2.5-2.9 Torr and containing 5 mgs. of mercury.
  • Other amalgam-forming materials such as cadmium, may be employed, and the total amount of amalgam forming material disposed in the lamp may have a weight ratio to the mercury in the lamp of from about 1:4 to 30:l, although the preferred ratio is approximately 9:1.
  • Curve A is a plot of relative light output versus burning time for a conventional VHO lamp, i.e., of the type described above but not containing the indium 26.
  • the time from turn-on at t to stabilization at I is variable for different samples but may ,take as long as 24 hours.
  • Curve B was obtained from the same lamp type as A except that lamp B contained 45 mgs. of indium attached to the heat shield in accordance with the invention. Lamp B required only 7 minutes from turn-on at 1,, to stabilization at r,,.
  • Curve C shows that the path to stabilization for lamps containing amalgam-forming material according to the invention is not necessarily the same as shown in B but may go through a peak. Whether a particular lamp follows a B or C type path will be determined .by the temperature of the cold region of the bulb during lamp operation. If the cold spot temperature is 40C or less. it will follow a B type path. If above 40C. it will follow a C type path.
  • T12 lamps having a loading of 1.500 ma. can also be advantageously useful in, for example, T5 lamps having a loading of 250 ma. or greater, T8 lamps having a loading of 550 ma. or greater, Tl2 lamps having a loading of l,000 ma. or greater, and T 17 lamps having a loading of 1,500 ma. or greater.
  • a low-pressure mercury vapor discharge lamp comprising:
  • a mount structure including a stem sealed to and extending inwardly from each end of said envelope and an electrode supported at the inward end of each of said stems,
  • At least one of said mount structures having attached thereto a fixed heat shield disposed between the electrode thereof a fixed heat shield disposed between the electrode thereof and its respective end of said lamp for providing a relatively cool end chamber in said lamp during the operation thereof,
  • amalgam-forming material disposed on a surface within said lamp proximate said heat shield and solely in the region between said heat shield and its respective end of said lamp, whereby said amalgam-forming material is operative to absorb and store mercury in said region while the lamp is inoperative and rapidly release the mercury into said region when the lamp is ignited, whereupon the mercury vapor pressure is controlled by said cool end chamber and the time required to reach a state of stabilized light output is reduced.
  • a lamp according to claim 1 wherein said heat shield is a thin circular plate supported transversely in said envelope.
  • a lamp according to claim 3 wherein said amalgam-forming material is coated on the side of said heat shield plate facing its respective end of said lamp.
  • a lamp according to claim 1 wherein said heat shield is made of nickel, nickel-plated iron, stainless steel, iron, steel, aluminum or titanium.
  • a lamp according to claim 1 wherein said electrode comprises a cathode coil supported on a pair of lead wires sealed through said stem.
  • said heat shield comprises a thin circular metal plate attached to one of said pair of lead wires and supported transversely in said envelope, the other of said lead wires passing through a hole in said heat shield plate, and further including means insulating said other of the lead wires from said metal heat shield plate.
  • a lamp according to claim 1 wherein said lamp is a very high output fluorescent lamp adapted for a power loading of at least about 25 watts per foot, and the total amount of said amalgam-forming material disposed in said lamp has a weight ratio to the mercury in said lamp of about 9:1.

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

A very high output fluorescent lamp having an electrode mount structure sealed in each end which includes a cathode coil supported on a pair of lead wires. At least one of the mount structures further includes a heat shield plate attached thereto and supported transversely in the tubular lamp envelope between the cathode coil and its respective end of the lamp. A quantity of amalgam-forming material, such as indium, is coated on the side of the heat shield plate facing away from the cathode coil and toward the end of the lamp for absorbing mercury when the lamp is turned off, holding the mercury on the heat shield while the lamp is inoperative, and, when the lamp is ignited, quickly releasing the mercury into the relatively cool end chamber of the lamp.

Description

United States Patent 119 Johnson et al.
1 1 FLUORESCENT LAMP CONTAINING AMALGAM-FORMING MATERIAL FOR REDUCING STABILIZATION TIME [75] Inventors: Walter A. Johnson, Beverly;
Howard W. Milke, Danvers, both of Mass.
[73] Assignee: GTE Sylvania Incorporated,
Danvers, Mass.
1221 Filed: Apr. 22, 1974 121 1 Appl. No.: 463,004
[ Aug.5, 1975 3,619,697 11/1971 Evans 313/174 Primary ExaminerPalmer C. Demeo Attorney, Agent, or FirmEdward J. Coleman 571 I ABSTRACT A very high output fluorescent lamp having an electrode mount structure sealed in each end which includes a cathode coil supported on a pair of lead wires. At least one of the mount structures further includes a heat shield plate attached thereto and supported transversely in the tubular lamp envelope between the cathode coil and its respective end of the lamp. A quantity of amalgam-forming material, such as indium, is coated on the side of the heat shield plate facing away from the cathode coil and toward the end of the lamp for absorbing mercury when the lamp is turned off, holding the mercury on the heat shield while the lamp is inoperative, and, when the lamp is ignited, quickly releasing the mercury into the relatively cool end chamber of the lamp.
9 Claims, 3 Drawing Figures PATENTEU 5M5 3,898,531 1 RELATIVE LIGHT OUTPUT 1 FLUORESCENT LAMP CONTAINING AMALGAM-FORMING MATERIAL FOR REDUCING STABILIZATION TIME BACKGROUND OF THE INVENTION This invention relates to low-pressure mercury vapor discharge lamps and, more particularly, to very high output (VHO) fluorescent lamps employing one or more heat shields for creating a cool region at one or both ends of the lamp.
It is well known that the light output of a fluorescent lamp is a function of the mercury vapor pressure, which in turn often depends upon the temperature of the coldest region of the glass envelope of the lamp. It is further known that the envelope cold spot temperature for most efficient lamp operation is approximately 40C, which causes a mercury vapor pressure of approximately 4 to 6 X 10 Torr to occur inside the lamp. Often, due to high lamp loading or high ambient temperatures, the envelope temperatures and mercury vapor pressure rise above the optimum value.
Conventional T12 1.5 inches diameter) fluorescent lamps are designed to operate at a power loading of approximately l0 watts per foot of lamp length and reach peak light output at an ambient temperature of approximately 25C when operated at this loading In an effort to provide more light with a smaller number of lamps and'fixtures, so-called very high output (VHO) fluorescent lamps have been developed and are presently being marketed, particularly for reprographic applications, such as use in the light compartment of photocopying apparatus. These lamps (when made in the Tl 2 size) operate at loadings of approximately 25 watts per foot. Since the mercury vapor pressure increases as the loading and the operating temperatures of the lamp increase, means to compensate for this condition in such highly-loaded lamps must be provided to prevent excessive vapor pressure and a resulting drop in light output and efficiency. One method commonly used for providing such compensation in VHO lamps is to employ one or two heat shields in the lamp. Each heat shield is customarily attached to the mount structure and located between the electrode and the end of the envelope at one end or both ends of the fluorescent lamp. The function of the heat shield is to provide cool end chambers in the lamp for maintaining the condensed pool of excess mercury at the proper temperature. This, in turn, controls the mercury vapor pressure and keeps it within the aformentioned range for optimum efficiency and light output. Thus heat shields are generally located in VHO lamps in order to provide a light output level which would not be possible if the central bulb-temperature controlled the mercury vapor pressure.
A difficulty created by the use of heat shields, however, is the long time required for stabilization of light output in a new lamp. That is, upon installation. it requires a long time for the mercury to migrate to the cool zone provided. For example, it is common for VHO fluorescent lamps operating at 1500 ma. to require from o to 24 hours to stabilize. Subsequently, if such a lamp is not moved and not subject to drafts and- /or cooling devices, it is possible that a prolonged prestabilization period will not be necessary each time the lamp is turned on. However. if the lamp moves or is subject to cooling, in such a manner that the mercury is displaced from the position it occupies during stabilized operation, the lamp might require a prolonged pre-stabilization period each time it is turned on.
The presence of heat shields is believed to be responsible for this phenomenon due to the fact that they impede the circulation of gases to the extremities of the lamp and thereby make it difficult for the mercury vapor to come in contact with the coolest regions of the glass envelope of the lamp.
SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to provide an improved low-pressure mercury vapor discharge lamp.
A principal object of the invention is to reduce the amount of time required for a heavily loaded fluorescent lamp to reach a state of stabilized light output.
These and other objects, advantages and features are attained, in accordance with the principles of this invention, by disposing a quantity of amalgam-forming material on a'surface within the lamp proximate the heat shield in the region between the heat shield and its respective end of the lamp. In this manner, the present invention remedies the above-described stabilization problem by providing means for retaining most of the mercury between the heat shield and the end of the lamp, even when the lamp is not in operation but is subjected to motion or cooling conditions that would normally displace the mercury from the position it occupies during stabilized lamp operation.
Heretofore, amalgam-forming materials have been used in fluorescent lamps to control the mercury vapor pressure of operating lamps, and thus optimize light output. An undesirable feature of such a use of amalgam-forming material is that in non-operating lamps, the mercury vapor pressure is so low that starting becomes difficult. As a result, secondary deposits of an amalgam-forming metal, such as indium, are placed at various hot spot locations to serve as a starting aid.
The present invention differs from such prior art teachings relative to amalgam lamps in the the amalgam-forming material is employed to store mercury, while the lamp is inoperative, in such a location that when the lamp is ignited, the mercury will be released rapidly into the cool end chamber where the operating mercury vapor. pressure will be controlled by the envelope wall temperature.
BRIEF DESCRIPTION OF THE DRAWINGS This invention will be more fully described hereinafter in conjunction with the accompanying drawings in which:
FIG. 1 is an elevational view, partly in section, of a fluorescent lamp embodying the present invention, a portion of the bulb being removed for convenience;
FIG. 2 is a cross-sectional view taken along line 22 of FIG. 1: and
FIG. 3 shows comparative curves of relative light output vs. time.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. I, a fluorescent lamp is shown comprising an elongated tubular glass envelope 10 having the customary coating II of phosphor on its inner surface and electrode mounts I2 sealed into each of its ends. The lighttransmitting envelope is filled with a small amount of rare gas, such as argon, at low pressure, e.g., one to three-Torr, and a small quantity of mercury, say 5-75 mgs., afterswhieh it is hermetically sealed inthe usual manner by tipping off an exhaust tube (not shown) at one or both ends of the lamp.
' Each mount sturcture 12 includes the typical reenthe usual alkaline-earth oxide (electron-emissive) coating and is supported on a pair of lead wires 18 and 19 sealed through the stem press 16. The lead wires extend to terminal pins 20 and 21 insulatively mounted in the lamp bases 22 attached to each end of the hermetically sealed, light-transmitting envelope 10.
Referring also to FIG. 2, the lamp further includes a heat shield 23 disposed at some point in the envelope between the cathode coil electrode 17 and its respective end of the lamp. More specifically, as illustrated, the heat shield 23 may comprise a thin circular metal plate attached, such as by a spot weld 24 to lead wire 18 and supported transversely in the envelope between the coil 17 and stem press 16. The other lead wire 19 passes through a hole in the heat shield plate 23 and is electrically isolated from the metal heat shield by an insulator sleeve 25.
of course, the heat shield may be made of a nonconducting material, such as glass or ceramics, and be fused to both lead wires. ln the present application,
however, metal is the preferred material for the heat shield, particularly nickel or nickel-plated iron. Other suitable metals are stainless steel, iron, steel, aluminum or titanium. Further, the heat shield may be clamped to the glass stem 14, rather than being attached to a lead wire.
The purpose of the heat shield is to retard the flow of heat (in an operating lamp) from the hot coil 17 and the hot plasma between electrodes to the cooler gas filled region and envelope wall that are between the heat shield and the base of the lamp. Thus, under operating conditions, the envelope wall between electrodes will be hotter than the envelope wall between the heat shield and the base, and the mercury vapor pressure in the lamp will be determined by the temperature of the posed on a surface within the lamp proximate the heat shield 23 in the region between the heat shield and its respective end of the lamp i.e., the indium is placed on one'or more hot spots in the cool end chamber. For example, possible locations would be on the inner leads, the stem, the envelope wall between the heat shield and base'but close to the heat shield. or a combination of these locations. As illustrated in FIGS. 1 and 2, however. a preferred location is to coat the amalgamforming material 26 on the heat shield 23 itself. on the side thereof facing away from the coil 17 and toward its respective end of the lamp; ln such case, a metal heat shield is preferred-as the amalgam-forming materialadheres better to metal than to glass or ceramic.
When the lamp is not in operation. most of the mercury will be absorbed and retained by the amalgamforming material 26 and thereby prevented from migrating to the central region of the lamp. When the lamp is switched on, the heat shield 23 heats up quickly due to its proximity to thev coil 17, and the mercury is driven from the amalgam directly into the cool chamber at the end of the lamp. It should be noted that the amalgam-forming material does not have to be used at both ends of the lamp, even if both ends have a heat shield.
According to one specific embodiment, a nickel heat shield 23 coated with 45 mgs. of indium (on the side away from the coil) is employed at one end ofa 22 inch VHO fluorescent lamp designed for operation at 25 watts per foot by using a T12 envelope (1.500 inches o.d.) and having a neon/30% argon fill at 2.5-2.9 Torr and containing 5 mgs. of mercury. Other amalgam-forming materials such as cadmium, may be employed, and the total amount of amalgam forming material disposed in the lamp may have a weight ratio to the mercury in the lamp of from about 1:4 to 30:l, although the preferred ratio is approximately 9:1.
A specific test result is shown by Curves A and B in FIG. 3. Curve A is a plot of relative light output versus burning time for a conventional VHO lamp, i.e., of the type described above but not containing the indium 26. The time from turn-on at t to stabilization at I is variable for different samples but may ,take as long as 24 hours. Curve B was obtained from the same lamp type as A except that lamp B contained 45 mgs. of indium attached to the heat shield in accordance with the invention. Lamp B required only 7 minutes from turn-on at 1,, to stabilization at r,,.
Curve C shows that the path to stabilization for lamps containing amalgam-forming material according to the invention is not necessarily the same as shown in B but may go through a peak. Whether a particular lamp follows a B or C type path will be determined .by the temperature of the cold region of the bulb during lamp operation. If the cold spot temperature is 40C or less. it will follow a B type path. If above 40C. it will follow a C type path.
ln summary, we employ an amalgam-forming material on hot spots between the heat shields and the bases of a fluorescent lamp for the purpose of absorbing mercury when the lamp is turned off and holding it in a location that is relatively close to that part of the lamp that controls light output during lamp operation. Such a location also permits fast heat-up and mercury release when thelamp is turned on. As a result, stabilization time is reduced. The mercury vapor pressure during lamp operation is controlled by the lamp cool end chamber and not by the amalgam spot. During long periods of lamp storage the mercury will remain behind the heat shield and within the cool end chamber. During normal lamp shipment and under normal vibration stresses caused by lamp shipment, the mercury will remain physically located within the cool end chamber. The deposition of either excess and/or free mercury on the bulb wall, which causes irregular light output profiles that are quite undesirable for reprographic applications. will be minimized. And'the placement and control of mercury for those lamps manufactured for the reprographic'industry becomes less critical.
Although the invention has been described with respect to specific embodiments. it will be appreciated that modificationsand changes may be made by those skilled in the art without departing from the true spirit and scope of the invention. Accordingly, the invention is not limited to the described T12 lamps having a loading of 1.500 ma. but can also be advantageously useful in, for example, T5 lamps having a loading of 250 ma. or greater, T8 lamps having a loading of 550 ma. or greater, Tl2 lamps having a loading of l,000 ma. or greater, and T 17 lamps having a loading of 1,500 ma. or greater.
What we claim is:
l. A low-pressure mercury vapor discharge lamp comprising:
an hermetically sealed, elongated light-transmitting envelope containing an inert ionizable fill gas and a quantity of mercury,
a mount structure including a stem sealed to and extending inwardly from each end of said envelope and an electrode supported at the inward end of each of said stems,
at least one of said mount structures having attached thereto a fixed heat shield disposed between the electrode thereof a fixed heat shield disposed between the electrode thereof and its respective end of said lamp for providing a relatively cool end chamber in said lamp during the operation thereof,
and
a quantity of amalgam-forming material disposed on a surface within said lamp proximate said heat shield and solely in the region between said heat shield and its respective end of said lamp, whereby said amalgam-forming material is operative to absorb and store mercury in said region while the lamp is inoperative and rapidly release the mercury into said region when the lamp is ignited, whereupon the mercury vapor pressure is controlled by said cool end chamber and the time required to reach a state of stabilized light output is reduced.
2. A lamp according to claim 1 wherein said amalgam-forming material is disposed on said heat shield.
3. A lamp according to claim 1 wherein said heat shield is a thin circular plate supported transversely in said envelope.
4. A lamp according to claim 3 wherein said amalgam-forming material is coated on the side of said heat shield plate facing its respective end of said lamp.
5. A lamp according to claim 1 wherein said heat shield is made of nickel, nickel-plated iron, stainless steel, iron, steel, aluminum or titanium.
6. A lamp according to claim 5 wherein said amalgam-forming material is indium.
7. A lamp according to claim 1 wherein said electrode comprises a cathode coil supported on a pair of lead wires sealed through said stem.
8. A lamp according to claim 8 wherein said heat shield comprises a thin circular metal plate attached to one of said pair of lead wires and supported transversely in said envelope, the other of said lead wires passing through a hole in said heat shield plate, and further including means insulating said other of the lead wires from said metal heat shield plate.
9. A lamp according to claim 1 wherein said lamp is a very high output fluorescent lamp adapted for a power loading of at least about 25 watts per foot, and the total amount of said amalgam-forming material disposed in said lamp has a weight ratio to the mercury in said lamp of about 9:1.

Claims (9)

1. A low-pressure mercury vapor discharge lamp comprising: an hermetically sealed, elongated light-transmitting envelope containing an inert ionizable fill gas and a quantity of mercury, a mount structure including a stem sealed to and extending inwardly from each end of said envelope and an electrode supported at the inward end of each of said stems, at least one of said mount structures having attached thereto a fixed heat shield disposed between the electrode thereof a fixed heat shield disposed between the electrode thereof and its respective end of saId lamp for providing a relatively cool end chamber in said lamp during the operation thereof, and a quantity of amalgam-forming material disposed on a surface within said lamp proximate said heat shield and solely in the region between said heat shield and its respective end of said lamp, whereby said amalgam-forming material is operative to absorb and store mercury in said region while the lamp is inoperative and rapidly release the mercury into said region when the lamp is ignited, whereupon the mercury vapor pressure is controlled by said cool end chamber and the time required to reach a state of stabilized light output is reduced.
2. A lamp according to claim 1 wherein said amalgam-forming material is disposed on said heat shield.
3. A lamp according to claim 1 wherein said heat shield is a thin circular plate supported transversely in said envelope.
4. A lamp according to claim 3 wherein said amalgam-forming material is coated on the side of said heat shield plate facing its respective end of said lamp.
5. A lamp according to claim 1 wherein said heat shield is made of nickel, nickel-plated iron, stainless steel, iron, steel, aluminum or titanium.
6. A lamp according to claim 5 wherein said amalgam-forming material is indium.
7. A lamp according to claim 1 wherein said electrode comprises a cathode coil supported on a pair of lead wires sealed through said stem.
8. A lamp according to claim 8 wherein said heat shield comprises a thin circular metal plate attached to one of said pair of lead wires and supported transversely in said envelope, the other of said lead wires passing through a hole in said heat shield plate, and further including means insulating said other of the lead wires from said metal heat shield plate.
9. A lamp according to claim 1 wherein said lamp is a very high output fluorescent lamp adapted for a power loading of at least about 25 watts per foot, and the total amount of said amalgam-forming material disposed in said lamp has a weight ratio to the mercury in said lamp of about 9:1.
US463004A 1974-04-22 1974-04-22 Fluorescent lamp containing amalgam-forming material for reducing stabilization time Expired - Lifetime US3898511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US463004A US3898511A (en) 1974-04-22 1974-04-22 Fluorescent lamp containing amalgam-forming material for reducing stabilization time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US463004A US3898511A (en) 1974-04-22 1974-04-22 Fluorescent lamp containing amalgam-forming material for reducing stabilization time

Publications (1)

Publication Number Publication Date
US3898511A true US3898511A (en) 1975-08-05

Family

ID=23838547

Family Applications (1)

Application Number Title Priority Date Filing Date
US463004A Expired - Lifetime US3898511A (en) 1974-04-22 1974-04-22 Fluorescent lamp containing amalgam-forming material for reducing stabilization time

Country Status (1)

Country Link
US (1) US3898511A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4308650A (en) * 1979-12-28 1982-01-05 Gte Products Corporation Method of making a mercury dispenser, getter and shield assembly for a fluorescent lamp
EP0081263A2 (en) * 1981-12-04 1983-06-15 Koninklijke Philips Electronics N.V. Method of producing a low-pressure mercury vapour discharge lamp
US4495440A (en) * 1982-08-23 1985-01-22 Gte Products Corporation Arc-extinguishing ampul and fluorescent lamp having such ampul mounted on each electrode structure
GB2295721A (en) * 1994-12-01 1996-06-05 Masonlite Ltd Discharge lamps
US5754000A (en) * 1994-12-01 1998-05-19 Masonlite Limited Apparatus for providing radiation
US5909085A (en) * 1997-03-17 1999-06-01 Korry Electronics Co. Hybrid luminosity control system for a fluorescent lamp
WO1999046799A1 (en) * 1998-03-09 1999-09-16 Koninklijke Philips Electronics N.V. Low-pressure mercury vapour discharge lamp
US6445118B1 (en) * 1999-03-30 2002-09-03 Matsushita Electric Industrial Co., Ltd. Lamp having conductor structure and non-conductor structure provided between filaments
EP1253623A2 (en) * 2001-04-26 2002-10-30 General Electric Company Low-wattage fluorescent lamp
WO2003001856A1 (en) * 2001-06-20 2003-01-03 Neosave Gmbh Ballast device for fluorescent tubes comprising an integrated cooling point
US6646365B1 (en) * 1999-11-24 2003-11-11 Koninklijke Philips Electronics N.V. Low-pressure mercury-vapor discharge lamp
US6890235B2 (en) * 2000-04-25 2005-05-10 Wen-Tsao Lee Method for manufacturing a multi-tube fluorescent discharge lamp
US20070170863A1 (en) * 2006-01-25 2007-07-26 General Electric Company High output fluorescent lamp
US20070170834A1 (en) * 2006-01-25 2007-07-26 General Electric Company High output fluorescent lamp with improved phosphor layer
US20070216282A1 (en) * 2006-03-16 2007-09-20 Kiermaier Ludwig P Lamp electrode and method for delivering mercury
US20070216308A1 (en) * 2006-03-16 2007-09-20 Kiermaier Ludwig P Lamp electrode and method for delivering mercury
US20090213584A1 (en) * 2008-02-27 2009-08-27 General Electric Company T8 fluorescent lamp
DE102011006700A1 (en) 2011-04-04 2012-10-04 Osram Ag Discharge lamp, in particular low-pressure mercury discharge lamp, and method for producing a discharge lamp
US8487523B2 (en) 2011-03-30 2013-07-16 Osram Sylvania Inc. Reduced wattage gas discharge lamp
US8869992B2 (en) * 2008-02-28 2014-10-28 Brown University Lighting apparatus for capturing and stabilizing mercury
EP3267466A1 (en) * 2016-07-08 2018-01-10 Xylem IP Management S.à.r.l. Uv mercury low-pressure lamp with amalgam deposit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215882A (en) * 1962-12-31 1965-11-02 Sylvania Electric Prod Fluorescent lamp with noble metal amalgamated electrode
US3227907A (en) * 1962-12-31 1966-01-04 Sylvania Electric Prod Electric discharge lamp with integral pressure regulator
US3562571A (en) * 1969-06-12 1971-02-09 Westinghouse Electric Corp Mercury-vapor discharge lamp with amalgam-type vapor-pressure regualtor and integral fail-safe and fast warmup compone
US3619697A (en) * 1964-07-09 1971-11-09 Westinghouse Electric Corp Mercury vapor discharge lamp and pressure-regulating means therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215882A (en) * 1962-12-31 1965-11-02 Sylvania Electric Prod Fluorescent lamp with noble metal amalgamated electrode
US3227907A (en) * 1962-12-31 1966-01-04 Sylvania Electric Prod Electric discharge lamp with integral pressure regulator
US3619697A (en) * 1964-07-09 1971-11-09 Westinghouse Electric Corp Mercury vapor discharge lamp and pressure-regulating means therefor
US3562571A (en) * 1969-06-12 1971-02-09 Westinghouse Electric Corp Mercury-vapor discharge lamp with amalgam-type vapor-pressure regualtor and integral fail-safe and fast warmup compone

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4308650A (en) * 1979-12-28 1982-01-05 Gte Products Corporation Method of making a mercury dispenser, getter and shield assembly for a fluorescent lamp
EP0081263A2 (en) * 1981-12-04 1983-06-15 Koninklijke Philips Electronics N.V. Method of producing a low-pressure mercury vapour discharge lamp
EP0081263A3 (en) * 1981-12-04 1983-09-07 N.V. Philips' Gloeilampenfabrieken Method of producing a low-pressure mercury vapour discharge lamp
US4495440A (en) * 1982-08-23 1985-01-22 Gte Products Corporation Arc-extinguishing ampul and fluorescent lamp having such ampul mounted on each electrode structure
GB2295721A (en) * 1994-12-01 1996-06-05 Masonlite Ltd Discharge lamps
US5754000A (en) * 1994-12-01 1998-05-19 Masonlite Limited Apparatus for providing radiation
GB2295721B (en) * 1994-12-01 1998-11-11 Masonlite Ltd Apparatus for providing radiation
US5909085A (en) * 1997-03-17 1999-06-01 Korry Electronics Co. Hybrid luminosity control system for a fluorescent lamp
WO1999046799A1 (en) * 1998-03-09 1999-09-16 Koninklijke Philips Electronics N.V. Low-pressure mercury vapour discharge lamp
US6445118B1 (en) * 1999-03-30 2002-09-03 Matsushita Electric Industrial Co., Ltd. Lamp having conductor structure and non-conductor structure provided between filaments
US6646365B1 (en) * 1999-11-24 2003-11-11 Koninklijke Philips Electronics N.V. Low-pressure mercury-vapor discharge lamp
US6890235B2 (en) * 2000-04-25 2005-05-10 Wen-Tsao Lee Method for manufacturing a multi-tube fluorescent discharge lamp
EP1253623A3 (en) * 2001-04-26 2006-01-25 General Electric Company Low-wattage fluorescent lamp
EP1253623A2 (en) * 2001-04-26 2002-10-30 General Electric Company Low-wattage fluorescent lamp
WO2003001856A1 (en) * 2001-06-20 2003-01-03 Neosave Gmbh Ballast device for fluorescent tubes comprising an integrated cooling point
CN101009194B (en) * 2006-01-25 2010-08-11 通用电气公司 High output fluorescent lamp with improved phosphor layer
US20070170863A1 (en) * 2006-01-25 2007-07-26 General Electric Company High output fluorescent lamp
US20070170834A1 (en) * 2006-01-25 2007-07-26 General Electric Company High output fluorescent lamp with improved phosphor layer
EP1814140A1 (en) * 2006-01-25 2007-08-01 General Electric Company High output fluorescent lamp operated at high current
US20070216282A1 (en) * 2006-03-16 2007-09-20 Kiermaier Ludwig P Lamp electrode and method for delivering mercury
US20070216308A1 (en) * 2006-03-16 2007-09-20 Kiermaier Ludwig P Lamp electrode and method for delivering mercury
US7288882B1 (en) 2006-03-16 2007-10-30 E.G.L. Company Inc. Lamp electrode and method for delivering mercury
US20090213584A1 (en) * 2008-02-27 2009-08-27 General Electric Company T8 fluorescent lamp
US7834533B2 (en) 2008-02-27 2010-11-16 General Electric Company T8 fluorescent lamp
US8869992B2 (en) * 2008-02-28 2014-10-28 Brown University Lighting apparatus for capturing and stabilizing mercury
US8487523B2 (en) 2011-03-30 2013-07-16 Osram Sylvania Inc. Reduced wattage gas discharge lamp
DE102011006700A1 (en) 2011-04-04 2012-10-04 Osram Ag Discharge lamp, in particular low-pressure mercury discharge lamp, and method for producing a discharge lamp
WO2012136510A1 (en) 2011-04-04 2012-10-11 Osram Ag Discharge lamp, in particular mercury low-pressure discharge lamp, and method for producing a discharge lamp
EP3267466A1 (en) * 2016-07-08 2018-01-10 Xylem IP Management S.à.r.l. Uv mercury low-pressure lamp with amalgam deposit
WO2018007578A1 (en) * 2016-07-08 2018-01-11 Xylem Ip Management S.À R.L. Uv mercury low-pressure lamp with amalgam deposit
US10593536B2 (en) 2016-07-08 2020-03-17 Xylem Ip Management S.À R.L. UV mercury low-pressure lamp with amalgam deposit

Similar Documents

Publication Publication Date Title
US3898511A (en) Fluorescent lamp containing amalgam-forming material for reducing stabilization time
KR910004742B1 (en) Rare gas discharge lamp
EP0646942B1 (en) Accurate placement and retention of an amalgam in an electrodeless fluorescent lamp
US3209188A (en) Iodine-containing electric incandescent lamp with heat conserving envelope
US3781586A (en) Long lifetime mercury-metal halide discharge lamps
US3859555A (en) Fluorescent lamp containing-amalgam-forming material
US5773926A (en) Electrodeless fluorescent lamp with cold spot control
US5847508A (en) Integrated starting and running amalgam assembly for an electrodeless fluorescent lamp
US3562571A (en) Mercury-vapor discharge lamp with amalgam-type vapor-pressure regualtor and integral fail-safe and fast warmup compone
US6049164A (en) Low-pressure mercury lamp with specific electrode screens
US3392298A (en) Fluorescent lamp using an indiummercury amalgam band for pressure control
US5798612A (en) Metal-halide discharge lamp for photo-optical purposes
US3356884A (en) Electrode starting arrangement having a coiled heating element connected to the retroverted portion of the electrode
US5150015A (en) Electrodeless high intensity discharge lamp having an intergral quartz outer jacket
KR940004835B1 (en) Metal vapar discharge lamp of single end type
US3860852A (en) Fluorescent lamp containing amalgam-forming material
US2959702A (en) Lamp and mount
US2924731A (en) Double ended high pressure discharge lamp
US2241345A (en) Electron emissive cathode
US3331977A (en) High output discharge lamp with vapor pressure control means
US3069581A (en) Low pressure discharge lamp
US3287587A (en) High temperature fluorescent lamp with reflector having mercury amalgamative material on its electrode stems
US2009211A (en) Gaseous electric discharge device
US3215881A (en) Start-run plural cathode structure
US2240353A (en) High-pressure metal-vapor electric discharge lamp