WO2002101337A1 - Dispositif de detection de niveau de liquide - Google Patents

Dispositif de detection de niveau de liquide Download PDF

Info

Publication number
WO2002101337A1
WO2002101337A1 PCT/JP2002/005842 JP0205842W WO02101337A1 WO 2002101337 A1 WO2002101337 A1 WO 2002101337A1 JP 0205842 W JP0205842 W JP 0205842W WO 02101337 A1 WO02101337 A1 WO 02101337A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid level
liquid
detecting device
light emitting
Prior art date
Application number
PCT/JP2002/005842
Other languages
English (en)
French (fr)
Inventor
Naoyuki Omatoi
Original Assignee
Naoyuki Omatoi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naoyuki Omatoi filed Critical Naoyuki Omatoi
Priority to JP2003504052A priority Critical patent/JP3607698B2/ja
Priority to US10/480,443 priority patent/US7199388B2/en
Priority to EP02738663A priority patent/EP1445589A4/en
Publication of WO2002101337A1 publication Critical patent/WO2002101337A1/ja
Priority to HK04109769A priority patent/HK1066855A1/xx

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2922Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2922Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms
    • G01F23/2924Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms for several discrete levels, e.g. with more than one light-conducting sensing element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2922Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms
    • G01F23/2925Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms using electrical detecting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2922Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms
    • G01F23/2925Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms using electrical detecting means
    • G01F23/2927Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms using electrical detecting means for several discrete levels, e.g. with more than one light-conducting sensing element

Definitions

  • the present invention relates to a liquid level detecting device for detecting a liquid level which is contained in a container such as a tank, a pipe, or a drum, and cannot be easily confirmed from the outside. Field about what to detect
  • FIG. 7 is a cross-sectional view of an example of a conventional liquid level detecting device using reflection of light by a prism.
  • the liquid level detection apparatus 100 shown in FIG. 7 is a light transmitting member 100 made of a rod-shaped fluororesin or glass having one end (hereinafter, referred to as a prism 101) cut into a predetermined shape.
  • Light emitting means 103 emitting light in the longitudinal direction of the light transmitting member 102 toward the prism 101, and light emitted by the light emitting means 103 is reflected by the prism 101,
  • the light receiving means 104 for receiving the reflected light returning in the longitudinal direction of the light transmitting member 102 from the prism 101 and the light amount of the reflected light received by the light receiving means 104 are measured, and the measurement is performed.
  • IC 105 that outputs the result.
  • a predetermined shape of the prism portion 101 is set so that the light receiving portion 104 can efficiently receive the light emitted from the light emitting portion 103.
  • the emitted light is It is set so that the light is totally reflected at 01 and the totally reflected light returns to the light receiving means 104.
  • the refractive index outside the prism 101 changes (usually the liquid 106 Since the refractive index is higher than that of air, the external refractive index increases.) Changes.
  • the light emitting means 103 is emitted into the liquid 106, and the amount of light returning to the light receiving means 104 is greatly reduced. By measuring this change in the amount of light, it is detected that the liquid surface 107 has come into contact with the lower end.
  • liquid level detection device 100 in FIG. 7 has a liquid level detection portion in the prism portion 101 at the lower end, if the liquid level of the liquid 106 is detected once, However, liquid droplets may continue to adhere, causing malfunctions in liquid level detection, or inability to detect liquid level.
  • the liquid level detection device that attempts to improve this problem is the liquid level detection device shown in Fig. 8 below.
  • FIG. 8 is a cross-sectional view of an example of a conventional liquid level detecting device using total reflection light.
  • the liquid level detection device 200 shown in FIG. 8 is composed of a light transmitting member 201 made of a rod-shaped fluororesin or glass having a hollow inside, and an optical fiber installed in the hollow portion inside the same.
  • the light emitting means 202 and the light receiving means 203, the light shielding wall 204 for preventing the light from the light emitting means 202 from directly irradiating the light receiving means 203, and the light receiving means 203 It comprises an IC 205 that measures the amount of received light and outputs the measurement result.
  • the light emitting means 202 and the light receiving means are so arranged that the light is totally reflected by the outer wall on the side of the light transmitting member 201.
  • the light emitting means 202 is provided so that light is incident at a larger incident angle, and the light receiving means 203 can efficiently receive the total reflection light from the outer wall of the light transmitting member 201. It is installed at a position where the angle of reflection is the same as the angle of incidence from the light emitting means 202.
  • the light from the light emitting means 202 is totally reflected by the outer wall of the light transmitting member 201 and is received by the light receiving means 203.
  • the liquid surface 207 comes into contact with a place where the light on the side of the surface 201 totally reflects (hereinafter referred to as a total reflection part), the refractive index outside the light transmitting member 201 changes.
  • the critical angle 0 Q changes.
  • light from the light emitting means 202 is emitted into the liquid 206, and the amount of light returning to the light receiving means 203 is greatly reduced.
  • liquid level detection using such total reflection when liquid 206 is present in the total reflection area, total reflection of light does not occur, and the amount of reflected light changes dramatically. I do. Therefore, the amount of change in the amount of light by the light receiving means is large, and highly accurate liquid level detection can be performed.
  • Japanese Patent Application Laid-Open No. 2000-3296907 and Japanese Patent Application Laid-Open No. 2000-321116 disclose propagation light scattering by measuring propagation light attenuation.
  • a liquid level sensor for measuring and detecting a liquid level is disclosed.
  • Japanese Patent Application Laid-Open No. 2000-320296 discloses a liquid level sensor 300 using scattered light obtained by scattering propagating light as shown in FIG.
  • the liquid level sensor 300 transmits and scatters the transmitted light in the light scattering member (granular body) 301 to form scattered light, and the scattered light is transmitted from the sensing unit 302 to the outside. It detects the liquid level by emitting scattered light and measuring the amount of attenuation of propagating light that is attenuated by the effect of the liquid present outside.
  • FIG. 9 for example, as shown in FIG. 10, there is also disclosed one in which a light-transmitting substance having a different refractive index is disposed over the entire U-shaped portion.
  • the liquid level detector shown in Fig. 8 performs liquid level detection by total reflection.
  • the liquid level of a highly viscous liquid is detected once, and the liquid level detector is used again.
  • the liquid droplets will adhere to the total reflection area, so total reflection at the total reflection area will not occur, and unless the liquid drop is removed, liquid level detection will not be possible.
  • a malfunction may occur if an oil film or dirt adheres to the total reflection portion.
  • the liquid level detection device shown in FIG. 8 in order to set a critical angle that defines total reflection in the prism portion or the total reflection portion, the angle of the prism portion, the installation position of the light emitting means and the light receiving means, and It is necessary to set various conditions such as the installation angle, the distance from the light emitting means to the light receiving means (that is, the distance in the longitudinal direction of the light shielding wall), the light emitting angle and the light receiving angle, and for example, one of these conditions is missing. Is very weak against damage or damage caused by external impact, such as deterioration of the liquid level detection device caused by various use conditions such as acid-basic properties. There is a problem. In addition, since it is necessary to set these various conditions, there is a problem that the production of the liquid level detecting device becomes precise and difficult.
  • liquid level detection device for example, in the initial state where the outside of the liquid level detection unit is air, total reflection occurs, and within a predetermined detection target (liquid), total reflection occurs. Set to not happen.
  • detection targets differ depending on the environment in which they are used. According to For example, critical angle 0.
  • liquids with a high refractive index can be detected, but liquids with a low refractive index cannot be detected.
  • the conventional liquid level detecting device has a problem that a malfunction occurs when a detection target is a colored liquid.
  • the liquid level detector shown in Fig. 8 can detect, for example, the interface between two layers of air and liquid.However, when detecting the interface between three layers of air, oil, and water , A liquid level detector that is set to change the presence or absence of total reflection at the interface between air and oil, and a liquid surface level that is set to change whether or not total reflection occurs at the interface between oil and water There is a problem that two types of liquid level detectors must be used. In this specification, an interface between a liquid phase and a gas phase and an interface between two different liquid phases are referred to as a liquid surface.
  • the liquid level sensor shown in FIG. 9 has a structure in which light emitted from the light emitting means directly enters the light receiving means, and the light receiving means has a considerable amount even before the liquid level detection. Is received. Light directly entering the light receiving means from the light emitting means does not contribute to the liquid level detection, but also greatly reduces the accuracy of the liquid level detection.
  • the fluctuation rate of the received light amount by the light receiving means (The amount of received light / the amount of received light before liquid level detection) becomes very small, and it is very difficult to measure the variation, which is not practical.
  • a light-transmitting substance with a different refractive index is placed over the entire U-shape, and the liquid level sensor that emits light at the U-shape has an extremely bent light transmission path.
  • the liquid level sensor that emits light at the U-shape has an extremely bent light transmission path.
  • the present invention can be used in various detection targets and use environments without choosing a detection target.For example, even for a liquid having a high viscosity, the liquid level can be reliably detected. It is another object of the present invention to provide a liquid level detecting device which can be continuously performed and has excellent durability and is easy to manufacture. It is also an object of the present invention to provide a liquid level detecting device capable of efficiently irradiating a liquid level detecting portion with light to detect a change in the amount of light received by a light receiving means with high sensitivity, and capable of actually performing liquid level detection with high sensitivity. With the goal.
  • the present invention provides a light shielding means so that light from the light emitting means does not directly irradiate the light receiving means, and a part of the scattered light scattered by the light scattering means is provided at the liquid level of the light emitting means. While the light is radiated to the outside at the detection site, the scattered light reflected and returned without being received is received by the light receiving means, and the change in the amount of received light is detected.
  • the liquid level of the liquid existing outside is detected.
  • Liquid level detecting device Liquid level detecting device
  • Light emitting means for emitting light for emitting light
  • a light scattering unit that scatters light emitted by the light emitting unit; and a light emitting unit that has a liquid level detection part that emits a part of the scattered light scattered by the light scattering unit to the outside of the light scattering unit.
  • Light shielding means for shielding the light from the light emitting means so as not to directly irradiate the light receiving means
  • a liquid level detection device is provided.
  • the light emitting unit or the light receiving unit is arranged at a predetermined angle.
  • the plurality of light receiving units are arranged on a substantially horizontal plane.
  • the light shielding means is covered with a light reflecting film in order to prevent light absorption by the light shielding means. Further, it is possible to set a reference light receiving amount in the light receiving unit according to the type of the liquid, and by comparing the light receiving amount of the light receiving unit with the reference light receiving amount, the liquid level of the liquid is determined. Performing detection is a preferred embodiment of the present invention. Further, it is a preferred embodiment of the present invention to dispose the light scattering means around a light emitting portion of the light emitting means.
  • the light scattering means is a silicone rubber.
  • the light emitting means is perfluoroalkoxy.
  • a tungsten lamp is used for the light emitting means and a glass optical fiber is used for the light receiving means. Further, the light emitting means is immersed in the liquid. Further, detecting the liquid level of the liquid is a preferred embodiment of the present invention.
  • the light emitting means is provided on an outer wall of a container having a light transmitting property and the liquid surface level of the liquid contained in the container is detected.
  • FIG. 1 is a schematic diagram showing a use state of the liquid level detecting device of the present invention
  • FIG. 2 is a cross-sectional view showing a first embodiment of the liquid level detecting device of the present invention
  • FIG. 3 shows a liquid level detector of the liquid level detector of the present invention shown in FIG. Schematic diagram in the vicinity of
  • FIG. 4 is a schematic graph showing a change in the amount of light received by the light receiving means when the liquid level is detected by the liquid level detecting device of the present invention
  • FIG. 5 is a sectional view showing a second embodiment of the liquid level detecting device according to the present invention.
  • FIG. 6 is a sectional view showing a third embodiment of the liquid level detecting device according to the present invention.
  • FIG. 7 is a cross-sectional view of an example of a conventional liquid level detecting device using light reflection by a prism.
  • FIG. 8 is a cross-sectional view of an example of a conventional liquid level detecting device using total reflection light.
  • FIG. 9 is a cross-sectional view of an example of a conventional liquid level detecting device using scattered light. Sectional view of another example of a conventional liquid level detecting device using light,
  • FIG. 11 is a schematic view showing a first example of a use state of the liquid level detection device of the present invention.
  • FIG. 12 (A) is a schematic diagram showing a first example in which liquid level detecting portions are provided at different heights in the liquid level detecting device of the present invention.
  • FIG. 12 (B) is a schematic diagram showing a second example in which the liquid level detecting portions are provided at different heights in the liquid level detecting device of the present invention.
  • FIG. 12 (C) is a schematic diagram showing a third example in which liquid level detecting portions are provided at different heights in the liquid level detecting device of the present invention.
  • FIG. 13 is a sectional view showing a fourth embodiment of the liquid level detecting device according to the present invention.
  • FIG. 14 is a view showing a case where a plurality of glass optical fibers are provided in the liquid level detecting device shown in FIG. 13;
  • FIG. 15 is a schematic diagram showing a second example of the use state of the liquid level detecting device of the present invention.
  • FIG. 1 is a schematic diagram showing a use state of the liquid level detection device of the present invention
  • FIG. 2 is a cross-sectional view showing a first embodiment of the liquid level detection device of the present invention.
  • FIG. 2 is an enlarged view of a dotted line portion in FIG.
  • the liquid level detection device 10 according to the present invention is, for example, a method in which a columnar portion is inserted substantially vertically from above a container such as a tank, and the liquid 17 is brought into contact with a liquid level detection portion below the liquid level. Perform level detection.
  • the liquid level detecting device 10 of the present invention shown in FIG. 2 has a total length of about several tens of cm, and has a light transmitting member (light emitting means, light Transmission means) 1, Light emitting means such as an optical fiber or a light emitting diode (LED) installed in a cavity inside the light receiving means. 1, Light receiving means for converting optical energy into electric energy such as electric signals.
  • a light transmitting member light emitting means, light Transmission means
  • Light emitting means such as an optical fiber or a light emitting diode (LED) installed in a cavity inside the light receiving means.
  • Light receiving means for converting optical energy into electric energy such as electric signals.
  • a light-shielding wall that prevents light from directly irradiating the light-receiving means 13, an IC (Integrated Circuit) that measures the amount of light received by the light-receiving means 13 and outputs the measurement result
  • a light-scattering member light-scattering means, silicon rubber
  • the light emitting means 12 is an optical fiber, it is connected to a light supply means, and when the light emitting means 12 is a light emitting diode, it is connected to a power supply.
  • the light scattering member 16 Silicon rubber 16 having an adhesive property for fixing the light means 12 or the light receiving means 13 is preferable, and a translucent soft silicone sealant having moisture-absorbing curability and heat resistance is most preferable.
  • the wavelength of the light used for the liquid level detection is not particularly limited, and a visible region, an infrared region, an ultraviolet region, and other regions can be used.
  • a prism or the like so that the light from the light emitting means 12 or the light received by the light receiving means 13 has directivity, so that light is efficiently emitted or received.
  • the light transmitting member 11 has high durability against chemicals, for example, PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxy), FEP (fluorescent ethylene propylene), ETFE (ethylenetetrafluoroethylene).
  • the light transmitting member 11 has a light transmitting property and serves as a liquid level detecting portion for emitting light to an external environment, the light transmitting member 11 is sometimes referred to as a light emitting means 11. Further, since the light transmitting member only has a role of protecting the apparatus from the external environment, the light scattering member 16 is directly exposed to the external environment without providing the light transmitting member 11 near the liquid level detecting portion. (That is, the light emitting means 11 and the light scattering means 16 are the same), it is possible to achieve the object of the present invention.
  • FIG. 3 is a schematic diagram in which the vicinity of the liquid level detecting unit of the liquid level detecting device of the present invention shown in FIG. 2 is enlarged.
  • a substance such as silicon rubber 16 is a translucent substance in which a large number of fine particles are scattered irregularly.
  • the light is scattered inside the silicon rubber 16. Therefore, the light emitted from the light emitting means 1 2
  • the particles are scattered by particles inside 6 and spread in random directions. Then, the scattered light repeats scattering by the fine particles, and returns to, for example, the direction in which the light emitting means 12 is present again, or goes to the inner wall of the light transmitting member 11.
  • the silicone rubber 16 it is also possible to use a substance or a member having a property of scattering the irradiated light.
  • the light-shielding wall 14 prevents the light-receiving means 13 from directly receiving light from the light-emitting means 12. As a result, light is not directly irradiated from the light emitting means 12 to the light receiving means 13, and it is possible to shield light that hinders liquid level detection.
  • the fact that the light is not directly irradiated from the light emitting means 12 to the light receiving means 13 means that the light emitting means 12 and the light receiving means 13 are not directly irradiated with the light regardless of the presence or absence of the silicone rubber 16. That is, they are relatively arranged.
  • a portion of the light transmitting member 11 that emits a part of the scattered light to the outside between the light emitting means 12 and the light receiving means 13 (hereinafter, referred to as a light transmitting member 11). , Called the liquid level detection part). It is possible to increase the average irradiation light amount in the vicinity, and similarly, it is possible to increase the light receiving efficiency by arranging the light receiving means at a predetermined angle. As a result, the accuracy of liquid level detection can be improved. '
  • the accuracy of the liquid level detection can be similarly improved. It is.
  • the length of the liquid level detection site is about several mm.
  • the light-shielding wall 14 is made white or covered with a film such as silver or aluminum to increase the light reflectance of the light-shielding wall 14. It is also possible to do so.
  • Fluororesins such as PFA and PFA are not strictly transparent (that is, translucent) and have the property of scattering light. Will be ignored.
  • the light that is reflected by the inner or outer wall of the light transmitting member 11 and returns to the inside of the light transmitting member 11 is further scattered in the silicon rubber 16 existing inside the light transmitting member 11 and the light shielding wall. Repeat the reflection at 14. As a result, some light reaches the outer wall of the light transmitting member 11 again, and is transmitted through the outer wall and emitted to the outside. In this way, the light emitted by the light emitting means 12 is scattered by the silicon rubber 16 and finally exits the light transmitting member 11 and returns to the inside of the light transmitting member 11 It is roughly divided into two. Then, a part of the light that repeatedly scatters inside the light transmitting member 11 is received by the light receiving means 13.
  • the average amount of light in a static state is constant, the amount of radiation to the outside of the light transmitting member 11 (average amount of radiation), and the amount of light received by the light receiving means 13 (Average received light amount) is constant.
  • the amount of light received by the light receiving means 13 is constant.
  • the external environment changes, for example, when the liquid level 18 rises and the liquid level approaches the liquid level detection site (or the light transmitting member 11 is inserted into the liquid 17).
  • the amount of received light changes.
  • the amount of light received by the light receiving means largely depends not only on the refractive index of the external liquid 17 but also on the absorption / reflection spectrum characteristics of the liquid 17.
  • a white liquid such as milk, a liquid metal such as mercury, and the like have a property of reflecting visible light.
  • the liquid level can be detected by selecting the wavelength region of the light to be used according to the absorption / reflection spectrum characteristics of the liquid to be detected.
  • FIG. 4 is a schematic graph showing a change in the amount of light received by the light receiving means when the liquid level is detected by the liquid level detecting device of the present invention.
  • the liquid 17 having a refractive index higher than that of air rises and the liquid level 18 reaches the liquid level detection site part of the scattered light that has been reflected on the outer wall of the light transmitting member 11 until then Will be emitted into the liquid 17. That is, the refractive index of the medium existing in the external environment increases, the light reflection and transmission characteristics at the interface between the liquid 17 and the light transmitting member 11 change, and the amount of light radiated into the medium increases. . As a result, the amount of light reflected at the boundary between the liquid 17 and the light transmitting member 11 and returning to the inside of the light transmitting member 11 decreases, and the amount of light received by the light receiving means 13 also decreases. Thus, by measuring the change in the amount of received light attenuated during propagation, the liquid level of the liquid 17 can be detected.
  • the light emitted from the light emitting means 12 is scattered in the silicon rubber 16, so that the light is emitted from many light sources in random directions. It has the same effect as the emitted light.
  • the range in which the liquid level is detected (the range in which light exits and the range in which light once exits returns) becomes very wide, and droplets and liquids are detected near the liquid level detection site. Even if a film is adhered, ignore these effects and measure the change in light quantity due to the change in the liquid level to ensure that the liquid level Level detection can be performed.
  • the IC 15 should be set to output a signal indicating liquid level detection.
  • the predetermined amount of received light can be easily adjusted by adjusting means such as a trimmer, and by setting a different predetermined amount of received light depending on the type of liquid, it is possible to achieve the following. It is possible to detect the liquid level of various types of liquids. In addition, by setting a plurality of values as the predetermined amount of received light, it is possible to detect each interface of the liquid 17 in a plurality of layers. Also, for example, by measuring the fluctuation of the amount of light received by the light receiving means 13, if the fluctuation exceeds a predetermined value, set the IC 15 to output a signal indicating the liquid level detection. It is also possible.
  • the liquid 17 having the property of reflecting light such as the white liquid described above, radiates to the outside of the light transmitting member 11 until then. All the light that has been returned comes back, and the amount of light received by the light receiving means 13 increases. Therefore, for example, by setting the IC 15 to output a signal indicating the liquid level detection when the light receiving amount of the light receiving means 13 becomes equal to or more than a predetermined light receiving amount, the liquid level detection can be performed. It becomes possible to notify outside.
  • the variation in the amount of light received by the light receiving means 13 is the object of measurement, it is not necessary to strictly define the installation positions of the light emitting means 12 and the light receiving means 13. If it is installed so as to be able to receive light, this is the conventional light level detection device that measures the presence or absence of total reflection as shown in FIG. There is a great difference from the fact that the installation position must be strictly defined by the critical angle of total reflection. It is a point that has become.
  • the light emitting means 12 and the light receiving means 13 are provided with directivity near the liquid level detection site, and the light from the light emitting means 12 is efficiently radiated near the liquid level detection area, and In a preferred mode, the light receiving means 13 is installed so that light coming from near the surface level detection site can be efficiently received.
  • the silicone rubber 16 is added to the entire vicinity of the liquid level detection portion and is attached to the light emitting means 12 and the light receiving means 13, whereby the light emitting means 12,
  • the light receiving means 13 and the light shielding wall 14 can be fixed with the silicone rubber 16.
  • silicone rubber 16 has high bonding properties with fluoroplastics such as PFA and PTFE, and it is possible to stably install each means near the liquid level detection site, and as a result, the liquid level The detection operation can be stabilized.
  • FIG. 5 is a sectional view showing a second embodiment of the liquid level detecting device according to the present invention.
  • the liquid level detecting device 10 of the present invention shown in FIG. 5 is similar to the liquid level detecting device of FIG. 2, and includes a light transmitting member 21, a light emitting unit 22, a light receiving unit 23, a light shielding wall 24, and a silicone rubber.
  • the liquid level detecting device 10 of the present invention shown in FIG. 5 is configured to emit light by the silicon rubber 26. The light from the means 22 becomes scattered light, and the scattered light is applied to the liquid level detection site.
  • the light reflected back at the liquid level detection site propagates toward the light receiving means 23 while repeating the reflection in the gap between the light shielding wall 24 and the light transmitting member 21, for example.
  • the liquid level detection by means 23 becomes possible. Therefore, the first Similar to the liquid level detection device 10 described in the embodiment, it becomes possible to irradiate the liquid level detection part with scattered light, and by measuring the change in the amount of light received by the light receiving means 23 Thus, the liquid level of the liquid 17 can be detected.
  • the light emitted from the light emitting means 22 is scattered in the silicon rubber 26 disposed on the light emitting means 22, It has the same effect as light emitted from a large number of light sources in random directions.
  • the range in which the liquid level is detected becomes very wide, and even if a droplet or liquid film adheres near the liquid level detection site, these effects are ignored and the liquid level is detected.
  • By measuring the change in light intensity due to the fluctuation it is possible to reliably detect the liquid level.
  • FIG. 6 is a sectional view showing a third embodiment of the liquid level detecting device according to the present invention.
  • the liquid level detecting device 10 of the present invention shown in FIG. 6 is similar to the liquid level detecting device of FIG. 2, and includes a light transmitting member 31, a light emitting means 32, a light receiving means 33, a light shielding wall 34, and a silicone rubber.
  • the silicon rubber 36 is provided only on the entire inner wall of the light transmitting member 31 (in the vicinity of the liquid level detection part).
  • the light reaching the boundary surface between the liquid 17 and the light transmitting member 31 is made to be scattered light by the silicone rubber 36. Therefore, similarly to the liquid level detecting devices described in the first and second embodiments shown in FIGS. 2 and 5, it is possible to irradiate the liquid level detecting portion with the scattered light. By measuring the change in the amount of light received by the means 33, the liquid level of the liquid 17 can be detected.
  • the light emitted from the light emitting means 32 is scattered in the silicon rubber 36 arranged on the entire inner wall of the light transmitting member 31. This has the same effect as light emitted from a large number of light sources in random directions.
  • the range in which the liquid level is detected becomes very wide, and even if a droplet or liquid film adheres to the vicinity of the liquid level detection site, these effects are ignored and the liquid level is detected.
  • By measuring the change in light quantity due to the level change it is possible to reliably detect the liquid level.
  • FIG. 13 is a sectional view showing a fourth embodiment of the liquid level detecting device according to the present invention.
  • the liquid level detection device 10 of the present invention shown in FIG. 13 includes a light transmitting member 41, a light emitting means 42, a light shielding wall 44, and a silicone rubber 46, similarly to the liquid level detection device of FIG.
  • a glass optical fiber 51 is used as the light receiving means 13 shown in FIG.
  • the glass optical fiber 51 has advantages such as high resistance to high temperatures as described later.
  • FIG. 14 is a view showing a case where a plurality of glass optical fibers of the liquid level detecting device shown in FIG. 13 are provided, and is a cross-sectional view taken along the line XY of FIG. In this way, it is also possible to arrange a plurality of glass optical fibers 51 and receive light reflected by the liquid level detection portion and returned by the glass optical fibers 51.
  • FIG. 14 a plurality (12 in FIG. 14) of glass optical fibers 51 having a diameter of l mm are arranged. As a result, even if water droplets adhere to the vicinity of the liquid level detection site, the effect of the water droplets is ignored, and the change in the amount of light accompanying the fluctuation of the liquid surface level is measured. Detection can be performed.
  • the light emitted from the light emitting means 42 is scattered in the silicon rubber 46, so that the light is emitted from many light sources in random directions. It has the same effect as the emitted light. As a result, the range in which the liquid level is detected becomes extremely wide, and even if a droplet or liquid film adheres to the vicinity of the liquid level detection site, these effects are ignored and the liquid level is detected. By measuring the change in the light amount due to the fluctuation, it is possible to reliably detect the liquid level.
  • the light receiving portions of the plurality of glass optical fibers 51 are arranged in a substantially horizontal plane along the inner wall of the light transmitting member 41, thereby forming a substantially horizontal plane. It is possible to detect the level of the liquid level with high accuracy and prevent malfunctions due to droplets and liquid films.
  • FIG. 14 shows an arrangement pattern in which the light receiving sections of the plurality of glass optical fibers 51 are arranged along the inner wall of the light transmitting member 41, the arrangement pattern of the light receiving sections of the present invention is shown.
  • One is not limited to the above arrangement pattern.
  • the arrangement pattern is adapted to the shape of the pressurized tank 91.
  • FIG. 11 is a schematic view showing a first example of a use state of the liquid level detection device of the present invention.
  • the liquid level detection device 10 is connected to a controller 90 for controlling its operation and processing the measurement results, and the device of the present invention is inserted into the liquid 17 in the pressurized tank 91. Is shown in the figure.
  • the columnar portion has a maximum length of about 33 Omm, and in a drum and the like, the columnar portion has a length of approximately 800 mm.
  • FIG. 12 is a schematic diagram showing an example in which liquid level detecting portions are provided at different heights in the liquid level detecting device of the present invention.
  • FIGS. 12 (A) and 12 (B) it is possible to provide a plurality of columnar portions having different lengths so that the liquid level can be detected at different heights.
  • the liquid level detector 10 shown in FIG. 12 (A) can detect the liquid level at two different points, and the liquid level detector 10 shown in FIG. Liquid level detection at a point is possible.
  • a plurality of pillars are provided in this manner, it becomes difficult to use them in a small tank or the like.
  • Fig. 12 (C) one pillar has different heights.
  • FIG. 15 is a schematic diagram showing a second example of a use state of the liquid level detecting device of the present invention.
  • the liquid level detection part of the liquid level detection level detection device 10 of the present invention is directly inserted into the liquid 17 so that the liquid level 18 is detected.
  • a liquid level detection site is installed in the level gauge pipe 93 of the pressurized tank 91, which is generally used for visual observation of the liquid level, etc. Surface 18 is detected.
  • the liquid level detection site is immersed in the liquid 17 If liquid 17 is difficult to remove, or if liquid 17 is a dangerous substance (eg, highly reactive, hot or cold substance), the liquid level can be reduced without direct immersion in liquid 17. It is possible to detect.
  • a liquid level detection site is directly installed in the container 91. It is also possible.
  • a fixing means (belt) 92 for fixing the liquid level detection site on the outer wall of the container 91 containing the liquid.
  • a fixing means (belt) 92 for fixing the liquid level detection site on the outer wall of the container 91 containing the liquid.
  • the belt 92 by using the belt 92 and wrapping the belt 92 around the outer periphery of the container, it is possible to fix the liquid level detection portion at a predetermined position of the container 91.
  • an adhesive surface having tackiness as the fixing means 92, and to adhere the liquid level detection site to the container 91 with the adhesive surface.
  • light shielding means is provided to prevent light from the light emitting means from directly irradiating the light receiving means, and a part of the scattered light scattered by the light scattering means is emitted by the light emitting means.
  • the scattered light that is emitted to the outside of the scattering means or the light transmission means at the liquid level detection part of the above is received by the light receiving means while reflected and returned without being emitted, and the change in the amount of received light is detected. It can be used in various detection targets and usage environments regardless of the detection target.Efficiently irradiates the liquid level detection site with light, and can detect fluctuations in the amount of light received by the light-receiving means with high sensitivity and durability. This makes it possible to realize a practically usable liquid level detection device that is excellent in quality and easy to manufacture.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

液面レベル検出装置
技術分野
本発明は、 タンクやパイプ、 ドラム缶などの容器内に入れられ、 外側 からは容易に確認できない液体明の液面レベルを検出する液面レベル検出 装置に関し、 特に、 散乱光を用いて液面レベル検出を行うものに関する 田
背景技術
図 7は、 プリズムによる光の反射を用いた従来の液面レベル検出装置 の一例の断面図である。 図 7に示す液面レベル検出装置 1 0 0は、 所定 の形状に切られた一端 (以下、 プリズム部 1 0 1と呼ぶ) を有する棒状 のフッ素樹脂又はガラスなどからなる光透過部材 1 0 2と、 プリズム部 1 0 1に向けて光透過部材 1 0 2の長手方向に光を発する発光手段 1 0 3と、 発光手段 1 0 3により発された光がプリズム部 1 0 1で反射され 、 プリズム部 1 0 1から光透過部材 1 0 2の長手方向に戻ってくる反射 光を受光する受光手段 1 0 4と、 受光手段 1 0 4で受光した反射光の光 量を測定し、 その測定結果を出力する I C 1 0 5とにより構成されてい る。
また、 発光手段 1 0 3で発された光を効率良く受光手段 1 0 4が受光 できるよう、 プリズム部 1 0 1における所定の形状が設定されており、 例えば、 発された光がプリズム部 1 0 1で全反射して、 その全反射光が 受光手段 1 0 4まで戻ってくるよう設定されている。 すなわち、 光透過 部材 1 0 2の屈折率を n t、 空気の屈折率を n s ( n s = 1 ) とすると、 発光手段 1 0 3からの光の照射角が sin 0 Q = n s / n tとなるよう、プリ ズム部 1 0 1の下端の所定の形状や発光手段 1 0 3及び受光手段 1 0 4 の設置位置が設定されている。
プリズム部 1 0 1の光が照射されている部分に液体 1 0 6の液面 1 0 7が接触した場合、 プリズム部 1 0 1の外部の屈折率が変化し (通常、 液体 1 0 6の屈折率は空気よりも大きいので、 外部の屈折率が大きくな る)、 全反射角 0。が変化する。 これにより、 発光手段 1 0 3からの光が 液体 1 0 6内部に放射するようになり、 受光手段 1 0 4に戻ってくる光 量が大きく減少する。 この光量の変化を測定して、 下端に液面 1 0 7が 接触したことを検出する。
しかしながら、 図 7の液面レベル検出装置 1 0 0は、 下端のプリズム 部 1 0 1に液面レベル検出部位が存在しているため、 液体 1 0 6の液面 レベルを一度検出した場合には、 液滴が付着し続けてしまい、 液面レべ ル検出に誤作動が起こったり、 液面レベル検出が行えなくなってしまつ たりすることがある。 この問題点を改良しょうとする液面レベル検出装 置が、 下記の図 8に示す液面レベル検出装置である。
図 8は、 全反射光を用いた従来の液面レベル検出装置の一例の断面図 である。 図 8に示す液面レベル検出装置 2 0 0は、 内部が空洞である棒 状のフッ素樹脂又はガラスなどからなる光透過部材 2 0 1と、 その内部 の空洞部に設置された光ファイバなどによる発光手段 2 0 2及び受光手 段 2 0 3と、 発光手段 2 0 2からの光が受光手段 2 0 3に直接照射しな いようにする遮光壁 2 0 4と、 受光手段 2 0 3で受光した光量を測定し 、 その測定結果を出力する I C 2 0 5とにより構成されている。
また、 外部に液体 2 0 6が存在しない場合 (すなわち、 外部が空気の 場合) には、 光透過部材 2 0 1側面の外壁で光が全反射するよう、 この 発光手段 2 0 2及び受光手段 2 0 3の角度が設定されている。 すなわち 、 光透過部材 2 0 1の屈折率を n t、 空気の屈折率を n s ( n s = 1 ) と すると、発光手段 2 0 2からの光の照射角が sin 0。 = n s Z n tで定まる 臨界角 ø。より大きな入射角で光が入射されるよう発光手段 2 0 2が設 置されており、 また、 受光手段 2 0 3も光透過部材 2 0 1の外壁からの 全反射光を効率良く受光できるよう、 発光手段 2 0 2からの入射角と同 一の反射角となる位置に設置されている。
上記のように、 外部が空気の場合、 発光手段 2 0 2からの光は、 光透 過部材 2 0 1の外壁に全反射されて受光手段 2 0 3により受光されてい るが、 光透過部材 2 0 1の側面の光が全反射をしている場所 (以下、 全 反射部位と呼ぶ) に液面 2 0 7が接触した場合、 上記光透過部材 2 0 1 の外部の屈折率が変化し、 臨界角 0 Qが変化する。 これにより、 発光手 段 2 0 2からの光が液体 2 0 6内部に放射するようになり、 受光手段 2 0 3に戻ってくる光量が大きく減少する。 この光量の変化を測定して、 全反射部位に液面 2 0 7が接触したことを検出する。 このような全反射 を用いた液面レベル検出は、 全反射部位に液体 2 0 6が全反射部位に存 在する場合には、 光の全反射が起こらなくなり、 その反射光量が劇的に 変化する。 したがって、 受光手段による光量の変化量が大きく、 精度の 高い液面レベル検出を行うことができる。
また、 特開 2 0 0 0— 3 2 9 6 0 7号公報ゃ特開 2 0 0 0— 3 2 1 1 1 6号公報には、 伝搬光を散乱させることによって伝搬光の減衰量を計 測し、 液面レベルを検出する液面レベルセンサが開示されている。 例え ば、 特開 2 0 0 0— 3 2 9 6 0 7号公報には、 図 9に示すような伝搬光 を散乱させた散乱光を用いた液面レベルセンサ 3 0 0が開示されている この液面レベルセンサ 3 0 0は、 光散乱部材 (粒状体) 3 0 1内に伝 搬光を通過、 散乱させて散乱光を作り、 センシング部 3 0 2から外部に 散乱光を放射させて、 外部に存在する液体の影響で減衰する伝搬光の減 衰量を測定することによって液面レベルを検出するものである。 また、 この図 9の他にも、 例えば、 図 1 0のように、 U字部分全体に屈折率が 異なる光透過性物質を配置するものも開示されている。
しかしながら、 図 8に示す液面レベル検出装置では、 全反射による液 面レベル検出を行うので、 例えば、 粘性率の高い液体の液面レベル検出 を一度行い、 再度、 その液面レベル検出装置を用いて液面レベル検出を 行う場合には、 全反射部位に液滴が付着することになるので、 全反射部 位における全反射が起こらなくなり、 その液滴を除去しない限り、 液面 レベル検出が不可能となるという問題点がある。 また、 全反射部位に油 膜や汚れが付着した場合も同様に、 誤作動を起こす可能性があるという 問題点がある。
また、 図 8に示す液面レベル検出装置は、 プリズム部や全反射部位に おいて、 全反射を規定する臨界角の設定を行うため、 プリズム部の角度 、 発光手段及び受光手段の設置位置及び設置角度、 発光手段から受光手 段までの距離 (すなわち、 遮光壁の長手方向の距離)、 発光角度及び受光 角度など、 様々な条件を設定する必要があり、 例えば、 これらの条件の 1つが欠落しただけでも液面レべル検出が行えなくなるなど、 外部から の衝撃による傷や損傷、 酸塩基性など様々な使用条件によって起こる液 面レベル検出装置の劣化などへの耐久性が非常に弱いという問題点があ る。 また、 こうした様々な条件を設定する必要があるため、 液面レベル 検出装置の製造も精密かつ難しいものとなるという問題点がある。
また、 図 8に示す液面レベル検出装置は、 例えば、 液面レベル検出部 位の外部が空気であるという初期状態に関して、 全反射が起こり、 所定 の検出対象 (液体) 内では、 全反射が起こらないよう設定される。 一方 、 こうした検出対象は、 利用する環境によって異なってくる。 したがつ て、 例えば、 臨界角 0。の設定によっては、 屈折率の高い液体は検出可 能であるが、 屈折率の低い液体の検出は不可能であるという問題点があ る。 また、 従来の液面レベル検出装置は、 検出対象が着色された液体の 場合に誤作動を起こすという問題点がある。
また、 図 8に示す液面レベル検出装置は、 例えば、 空気と液体の 2層 の界面の検出を行うことは可能であるが、 空気、 油、 水の 3層の界面を 検出しょうとする場合、 空気と油との界面で全反射の有無の変化が起こ るよう設定された液面レベル検出装置、 及び、 油と水との界面で全反射 の有無の変化が起こるよう設定された液面レベル検出装置の 2種類の液 面レベル検出装置を用いなければならないという問題点がある。 なお、 本明細書では、 液相と気相との界面、 異なる 2つの液相の界面を液面と 呼ぶことにする。
また、 図 9に示す液面レベルセンサは、 発光手段から発された光が受 光手段に直接入るような構造となっており、 受光手段は、 液面レベル検 出の前においても、 相当量の伝搬光を受光している。 この発光手段から 受光手段に直接入る光は、 液面レベル検出に寄与しないばかりか、 液面 レベル検出の精度を大きく落とすものとなる。 特に、 液面レベル検出時 に、 センシング部から外部に放射される散乱光量 (すなわち、 受光手段 による伝搬光の減衰量) が少ない場合、 受光手段による受光量の変動率 ( =液面レベル検出後の受光量/液面レベル検出前の受光量) が非常に 小さくなり、 その変動を計測するのは非常に困難であって、 現実的では ないという問題点がある。
したがって、 特に、 液面レベル検出の精度を向上させるためにセンシ ング部の距離 Lを短くした場合、 必然的にセンシング部から外部に放射 される散乱光量は少なくなるので、 受光手段による受光量の変動率はさ らに小さくなる。 したがって、 この液面レベルセンサは、 センシング部 の距離 Lをかなり大きく取らなければ液面レベル検出は不可能なもので あり、 液面レベル検出の精度は非常に低いものであるという問題点があ る。
また、 図 1 0のように、 U字部分全体に屈折率の異なる光透過性物質 が配置され、 U字部分で光を放射する液面レベルセンサは、 光の伝送路 が極端に曲げられた構造となっており、 伝搬光のほとんどが散乱光とし て外部に漏れてしまい、 受光手段の受光量が非常に少なくなつてしまう 。 また、 さらに、 液面レベルを検出した場合でも、 正確に液面レベルを 特定することは不可能なので、 極めて精度の低い液面レベル検出しか行 えず、 現実的ではないという問題点がある。 発明の開示
本発明は、 上記問題点に鑑み、 検出対象を選ばずに様々な検出対象及 び使用環境において使用可能であり、 また、 例えば、 粘性率の高い液体 に関しても、 確実にその液面の検出を続けて行うことが可能であり、 さ らに、 耐久性に優れて製造も容易な液面レベル検出装置を提供すること を目的とする。 また、 液面レベル検出部位に効率良く光を照射し、 受光 手段の受光量の変動を感度高く検出できるようにし、 実際に感度の良い 液面レベル検出を行える液面レベル検出装置を提供することを目的とす る。
本発明は、 上記目的を達成するため、 発光手段からの光が受光手段に 直接照射しないよう遮光手段を設けて、 光散乱手段で散乱された散乱光 の一部を光放射手段の液面レベル検出部位で外部に放射する一方、 放射 せず反射して戻ってきた散乱光を受光手段で受け、 その受光量の変化の 検出を行うようにする。
すなわち、 本発明によれば、 外部に存在する液体の液面レベルを検出 する液面レベル検出装置であって、
光を発する発光手段と、
前記発光手段により発せられた光を散乱させる光散乱手段と、 前記光散乱手段によって散乱された散乱光の一部を前記光散乱手段の 外部に放射する液面レベル検出部位を有する光放射手段と、
前記光放射手段によって放射せず、 前記光散乱手段又は前記光放射手 段の外部との境界面で反射して戻ってきた前記散乱光を受ける受光手段 と、
前記発光手段からの光が前記受光手段に直接照射しないよう遮光する 遮光手段とを有し、
前記外部に前記液体が存在する場合、 前記光放射手段の外部への放射 光量が変化し、 その変化を前記受光手段の受光量により検出することに より、 前記液体の前記液面レベルを検出する液面レベル検出装置が提供 される。
また、 さらに、 所定の角度を設けて、 前記発光手段又は受光手段を配 置することは、 本発明の好ましい態様である。
また、 さらに、 前記受光手段を複数配置することは、 本発明の好まし い態様である。
また、 さらに、 前記複数の受光手段を略水平面上に配列することは、 本発明の好ましい態様である。
また、 さらに、 前記遮光手段による光の吸収を防ぐため、 前記遮光手 段を光反射用フィルムで覆うことは、 本発明の好ましい態様である。 また、 さらに、 前記液体の種類に応じた前記受光手段における基準の 受光量の設定を可能とし、 前記受光手段の受光量と前記基準の受光量と の比較によって、 前記液体の前記液面レベルの検出を行うことは、 本発 明の好ましい態様である。 また、 さらに、 前記発光手段の発光部位周辺に、 前記光散乱手段を配 置することは、 本発明の好ましい態様である。
また、 さらに、 前記発光手段からの前記光が照射される前記液面レべ ル検出部位周辺に、 前記光散乱手段を配置することは、 本発明の好まし い態様である。
また、 さらに、 前記光散乱手段が、 シリコンゴムであることは、 本発 明の好ましい態様である。
また、 さらに、 前記光放射手段が、 パーフロロアルコキシであること は、 本発明の好ましい態様である。
また、 さらに、 前記発光手段にタングステンランプを用い、 前記受光 手段にガラス光ファイバを用いることは、 本発明の好ましい態様である また、 さらに、 前記液体内に前記光放射手段を浸漬させることによつ て、 前記液体の前記液面レベルを検出することは、 本発明の好ましい態 様である。
また、 さらに、 光透過性を有する容器の外壁に前記光放射手段を設置 し、 前記容器内に収容されている前記液体の前記液面レベルを検出する ことは、 本発明の好ましい態様である。
また、 さらに、 前記容器の外壁に前記光放射手段を固定可能とする固 定手段を有することは、 本発明の好ましい態様である。 図面の簡単な説明
図 1は、 本発明の液面レベル検出装置の使用状態を示す模式図、 図 2は、 本発明の液面レベル検出装置に係る第 1の実施の形態を示す 断面図、
図 3は、 図 2に示す本発明の液面レベル検出装置の液面レベル検出部 位付近を拡大した模式図、
図 4は、 本発明の液面レベル検出装置により液面を検出する場合にお ける受光手段の受光量の変化を示す模式的なグラフ、
図 5は、 本発明の液面レベル検出装置に係る第 2の実施の形態を示す 断面図、
図 6は、 本発明の液面レベル検出装置に係る第 3の実施の形態を示す 断面図、
図 7は、 プリズムによる光の反射を用いた従来の液面レベル検出装置 の一例の断面図、
図 8は、 全反射光を用いた従来の液面レベル検出装置の一例の断面図 図 9は、 散乱光を用いた従来の液面レベル検出装置の一例の断面図、 図 1 0は、 散乱光を用いた従来の液面レベル検出装置の別の一例の断 面図、
図 1 1は、 本発明の液面レベル検出装置の使用状態の第 1の例を示す 模式図、
図 1 2 (A) は、 本発明の液面レベル検出装置において、 異なる高さ に液面レベル検出部位を設けた第 1の例を示す模式図、
図 1 2 (B) は、 本発明の液面レベル検出装置において、 異なる高さ に液面レベル検出部位を設けた第 2の例を示す模式図、
図 1 2 (C) は、 本発明の液面レベル検出装置において、 異なる高さ に液面レベル検出部位を設けた第 3の例を示す模式図、
図 1 3は、 本発明の液面レベル検出装置に係る第 4の実施の形態を示 す断面図、
図 1 4は、 図 1 3に示す液面レベル検出装置のガラス光ファイバを複 数設けた場合の図であり、 図 1 3の X— Y断面図、 図 1 5は、 本発明の液面レベル検出装置の使用状態の第 2の例を示す 模式図である。 発明を実施するための最良の形態
ぐ第 1の実施の形態 >
以下、 図面を参照しながら、 本発明の液面レベル検出装置について説 明する。 まず、 本発明の液面レベル検出装置に係る第 1の実施の形態に ついて説明する。 図 1は本発明の液面レベル検出装置の使用状態を示す 模式図であり、 図 2は、 本発明の液面レベル検出装置に係る第 1の実施 の形態を示す断面図である。 なお、 図 2は、 図 1の点線部の拡大図であ る。 本発明の液面レベル検出装置 1 0は、 例えば、 タンクなどの容器の 上から略垂直に柱状部を挿入して、 下方にある液面レベル検出部位に液 体 1 7を接触させて液面レベル検出を行う。
図 2に示す本発明の液面レベル検出装置 1 0は、 全長が数十 c m程度 のものであり、 内部が空洞である棒状のフッ素樹脂又はガラスなどから なる光透過部材 (光放射手段、 光透過手段) 1 1、 その内部の空洞部に 設置された光ファイバや発光ダイオード (L E D ) などによる発光手段 1 2、 光学エネルギーを電気信号などの電気エネルギーに変換する受光 手段 1 3、 発光手段からの光が、 受光手段 1 3に光が直接照射しないよ うにする遮光壁 (遮光手段) 1 4、 受光手段 1 3で受光した光量を測定 し、 その測定結果を出力する I C (Integrated Circuit:集積回路) 1 5、 発光手段 1 2及び受光手段 1 3の先端全体を覆い、 照射された光を 散乱する性質を有する光散乱部材 (光散乱手段、 シリコンゴム) 1 6に より構成されている。 なお、 例えば、 発光手段 1 2が光ファイバの場合 には、 光供給手段と接続しており、 発光手段 1 2が発光ダイオードの場 合には、 電源などと接続している。 また、 光散乱部材 1 6としては、 発 光手段 1 2又は受光手段 1 3の固定を行う接着性を有するシリコンゴム 1 6が好適であり、 特に、 吸湿硬化性及び耐熱性を有する半透明軟質シ リコンシーラントが最適である。
なお、 この液面レベル検出に用いられる光の波長は、 特に限定される ものではなく、 可視領域、 赤外領域、 紫外領域や、 その他の領域を用い ることが可能である。 また、 プリズムなどを配置して、 発光手段 1 2か らの光又は受光手段 1 3で受ける光に指向性を持たせ、 効率良く発光又 は受光するようにすることが可能である。 また、 光透過部材 1 1として は、 化学薬品に対して耐久性が高い、 例えば、 P T F E (ポリテトラフ ルォロエチレン)、 P F A (パーフロロアルコキシ)、 F E P (蛍光ェチ レンプロピレン)、 E T F E (エチレンテトラフルォロエチレン) などの フッ素樹脂を用いることが好ましく、 特に、 高温でも溶融せず安定な P T F Eや、 安価で加工が容易な P F Aなどを用いることが好ましい。 ま た、 光透過部材 1 1は光透過性を有し、 外部環境に光を放射する液面レ ベル検出部位となるので、 光透過部材 1 1を光放射手段 1 1と呼ぶこと もある。 また、 光透過部材は、 外部環境から装置を保護する役割のみを 有しているので、 液面レベル検出部位付近に光透過部材 1 1を設けず、 光散乱手段 1 6が外部環境に直接さらされるようにしても (すなわち、 光放射手段 1 1と光散乱手段 1 6とを同一のものにする)、本発明の目的 を果たすことも可能である。
図 3は、 図 2に示す本発明の液面レベル検出装置の液面レベル検出部 位付近を拡大した模式図である。 図 3を参照しながら、 液面レベル検出 における動作及び光の流れを説明する。 例えばシリコンゴム 1 6のよう な物質は、 多数の微粒子が不規則に散在する半透明物質であり、 このシ リコンゴム 1 6に光を照射すると、 光はシリコンゴム 1 6内部で散乱さ れる。 したがって、 発光手段 1 2から照射された光は、 シリコンゴム 1 6の内部の微粒子によって散乱され、 ランダムな方向に拡がる。 そして 、 散乱光は、 微粒子による散乱を繰り返して、 例えば、 再び発光手段 1 2が存在する方向に戻ったり、 光透過部材 1 1の内壁に向かったりする 。 なお、 シリコンゴム 1 6の代わりに、 照射された光を散乱させる性質 を有する物質又は部材を用いることも可能である。
また、 遮光壁 1 4によって、 受光手段 1 3が、 発光手段 1 2からの光 を直接受光しないようにしている。 これにより、 発光手段 1 2から受光 手段 1 3に光が直接照射されず、 液面レベル検出の邪魔となる光を遮蔽 することが可能となる。 なお、 発光手段 1 2から受光手段 1 3に光が直 接照射されないという意味は、 シリコンゴム 1 6の有無にかかわらず、 光が直接照射されないよう、 発光手段 1 2と受光手段 1 3とが相対的に 配置されているということである。 また、 所定の角度を設けて発光手段 を配置することにより、 発光手段 1 2と受光手段 1 3との間で外部に散 乱光の一部を放射する光透過部材 1 1の一部位 (以下、 液面レベル検出 部位と呼ぶ) 付近への平均照射光量を高めることが可能となり、 同様に 、 所定の角度を設けて受光手段を配置することにより、 受光の効率を高 めることが可能となって、 液面レベル検出の精度を向上させることがで さる。 '
さらに、 遮光壁 1 4に傾斜を設け、 光反射板の役割を果たすようにし たり、 独立して光反射板を設けたりしても、 同様に、 液面レベル検出の 精度を向上させることが可能である。 なお、 この液面レベル検出部位の 長さは、 数 mm程度である。 また、 遮光壁 1 4に光が吸収されてしまう ことを防ぐため、 遮光壁 1 4を白色にしたり、 銀やアルミなどのフィル ムで覆ったりして、 遮光壁 1 4の光反射率を高めるようにすることも可 能である。
光透過部材 1 1の内壁に到達した光は、 その一部は内壁に反射される ものの、 光透過部材 1 1の内部を透過して光透過部材 1 1の外壁に達す る。 光透過部材 1 1の外部 (外部環境) に液体 1 7が存在しない場合 ( すなわち、 外部が空気の場合)、 光透過部材 1 1の外壁の法線に対して、 臨界角より小さな角度の入射光は、 外部との境界面を透過して外部に放 射され (ただし、 その一部は外壁で反射する)、 一方、 臨界角以上の角度 の入射光は、 外壁において全反射を起こす。 なお、 光透過部材 1 1の内 壁及び外壁では、 光の進路はその境界面で反射屈折の法則に従う。 なお
、 P F Aなどのフッ素樹脂は、 厳密には透明であるとは言えず (すなわ ち半透明)、光を散乱させる性質を有しているが、説明を簡単にするため 、 ここでは、 その効果の説明は無視することにする。
光透過部材 1 1の内壁又は外壁で反射して光透過部材 1 1の内部に戻 る光は、 さらに、 光透過部材 1 1の内部に存在するシリコンゴム 1 6内 での散乱や、 遮光壁 1 4での反射を繰り返す。 その結果、 再び、 光透過 部材 1 1の外壁に達し、 その外壁を透過して外部に放射される光も存在 する。 このようにして、 発光手段 1 2により照射された光は、 シリコン ゴム 1 6によって散乱され、 最終的に、 光透過部材 1 1の外部に出るも のと、 光透過部材 1 1の内部に戻るものとの 2つに大別される。 そして 、 光透過部材 1 1の内部で散乱を繰り返す光のうちの一部が、 受光手段 1 3により受光される。 なお、 散乱光はランダムな方向を有するので、 静的な状態での平均光量は一定であり、 光透過部材 1 1の外部への放射 光量 (平均放射光量)、 受光手段 1 3が受光する光量 (平均受光量) は一 定である。
上記のように、 外部環境が変化しない場合、 受光手段 1 3が受光する 受光量は一定である。 しかし、 例えば、 液面 1 8が上昇して液面レベル 検出部位に液面が近づく (または、 光透過部材 1 1を液体 1 7内部に挿 入していく) など、 外部環境が変化することによって、 受光手段 1 3の 受光量は変化する。
また、 受光手段の受光量は、 外部の液体 1 7の屈折率だけではなく、 その液体 1 7の吸収 ·反射スぺクトル特性にも大きく依存している。 例 えば、 牛乳などの白色液体や、 水銀などの液体金属などは、 可視領域光 を反射する特性を有する。 このような場合には、 液面レベル検出の対象 となる液体の吸収 ·反射スぺクトル特性に応じて、 利用する光の波長領 域を選定することによって、 液面レベル検出を行うことが可能となる。 図 4は、 本発明の液面レベル検出装置により液面を検出する場合にお ける受光手段の受光量の変化を示す模式的なグラフである。 空気よりも 大きな屈折率を有する液体 1 7が上昇し、 その液面 1 8が液面レベル検 出部位に達すると、 それまで光透過部材 1 1の外壁で反射していた散乱 光の一部が、 液体 1 7内に放射されるようになる。 すなわち、 外部環境 に存在する媒質の屈折率が大きくなり、 液体 1 7と光透過部材 1 1との 境界面における光反射 ·透過特性が変化して、 その媒質内に放射される 光量が増大する。 その結果、 液体 1 7と光透過部材 1 1との境界面で反 射して光透過部材 1 1の内部に戻る光量は減少し、 受光手段 1 3におけ る受光量も減少する。 このように伝搬の際に減衰した受光量の変化を測 定することによって、 液体 1 7の液面レベルを検出することが可能とな る。
以上、 説明したように、 第 1の実施の形態によれば、 発光手段 1 2か ら照射された光は、 シリコンゴム 1 6内で散乱されることによって、 多 数の光源からランダムな方向に発された光と同様の効果を有するように なる。 これによつて、 液面レベルを検出する範囲 (光が外部に出る範囲 、 及び、 いったん外部に出た光が戻る範囲) が非常に広くなり、 液面レ ベル検出部位付近に液滴や液膜が付着している場合でも、 これらの影響 を無視して、 液面レベルの変動に伴う光量の変化を測定し、 確実に液面 レベル検出を行うことが可能となる。
また、 例えば、 受光手段 1 3の受光量が所定の受光量 (基準の受光量 ) 以下になった場合に、 I C 1 5が液面レベル検出を示す信号を出力す るよう設定しておくことによって、 液面レベル検出を外部に報知するこ とが可能となる。 なお、 例えば、 トリマーなどの調節手段によって所定 の受光量を簡単に調節できるようにしておくことが好ましく、 液体の種 類に応じて異なる所定の受光量を設定できるようにしておくことで、 様 々な種類の液体の液面レベル検出を行うことが可能となる。 また、 所定 の受光量として、 複数の値を設定しておくことによって、 複数の層とな つた液体 1 7の各界面の検出を行うことも可能である。 また、 例えば、 受光手段 1 3の受光量の変動を測定して、 所定値以上の変動が起きた場 合に、 I C 1 5が液面レベル検出を示す信号を出力するよう設定してお くことも可能である。
また、 上記の白色液体などのように、 光を反射する特性を有する液体 1 7などは、 その液面 1 8が液面レベル検出部位に達すると、 それまで 光透過部材 1 1の外部に放射されていた光が全て戻ってくるようになり 、 受光手段 1 3の受光量が増大することになる。 したがって、 例えば、 受光手段 1 3の受光量が所定の受光量以上になった場合に、 I C 1 5が 液面レベル検出を示す信号を出力するよう設定しておくことによって、 液面レベル検出を外部に報知することが可能となる。
また、 受光手段 1 3による受光量の変動が測定対象なので、 発光手段 1 2及び受光手段 1 3の設置位置を厳密に規定する必要はなく、 発光手 段 1 2からの光を受光手段 1 3が受光できるように設置されていればよ レ これは、 図 8に示すような全反射の有無を測定する従来の液面レべ ル検出装置において、 発光手段 2 0 2及び受光手段 2 0 3の設置位置が 、 全反射の臨界角によって厳密に規定される必要があることと大きく異 なっている点である。 また、 発光手段 1 2及び受光手段 1 3に、 液面レ ベル検出部位付近への指向性を持たせ、 発光手段 1 2からの光が効率良 く液面レベル検出部位付近に照射され、 液面レベル検出部位付近から来 る光を受光手段 1 3が効率良く受光できるように設置することが好まし い態様である。
また、 上記の第 1の実施の形態において、 シリコンゴム 1 6を液面レ ベル検出部位付近全体に加えて、 発光手段 1 2及び受光手段 1 3にまで 付着させることにより、 発光手段 1 2、 受光手段 1 3、 遮光壁 1 4など をシリコンゴム 1 6で固定することが可能となる。 特に、 シリコンゴム 1 6は、 P F Aや P T F Eなどのフッ素樹脂と接合性が高く、 液面レべ ル検出部位付近の各手段を安定して設置することが可能となり、 その結 果、 液面レベル検出の動作を安定させることが可能となる。
ぐ第 2の実施の形態 >
次に、 本発明の液面レベル検出装置に係る第 2の実施の形態について 説明する。 図 5は、 本発明の液面レベル検出装置に係る第 2の実施の形 態を示す断面図である。 図 5に示す本発明の液面レベル検出装置 1 0は 、 図 2の液面レベル検出装置と同様、 光透過部材 2 1、 発光手段 2 2、 受光手段 2 3、 遮光壁 2 4、 シリコンゴム 2 6により構成されているが 、 シリコンゴム 2 6が発光手段 2 2付近にのみ存在するようにしている この図 5に示す本発明の液面レベル検出装置 1 0では、 シリコンゴム 2 6によって発光手段 2 2からの光が散乱光となり、 その散乱光が液面 レベル検出部位に照射されるようにしている。 液面レベル検出部位で反 射して戻った光は、 例えば、 遮光壁 2 4と光透過部材 2 1との間隙で反 射を繰り返しながら受光手段 2 3の方に伝搬してくるので、 受光手段 2 3による液面レベル検出が可能となる。 したがって、 図 2に示す第 1の 実施の形態で説明した液面レベル検出装置 1 0と同様、 液面レベル検出 部位に散乱光が照射されるようにすることが可能となり、 受光手段 2 3 の受光量の変化を測定することによって、 液体 1 7の液面レベル検出す ることが可能となる。
以上、 説明したように、 第 2の実施の形態によれば、 発光手段 2 2か ら照射された光は、 発光手段 2 2に配置されたシリコンゴム 2 6内で散 乱されることによって、 多数の光源からランダムな方向に発された光と 同様の効果を有するようになる。 これによつて、 液面レベルを検出する 範囲が非常に広くなり、 液面レベル検出部位付近に液滴や液膜が付着し ている場合でも、 これらの影響を無視して、 液面レベルの変動に伴う光 量の変化を測定し、 確実に液面レベル検出を行うことが可能となる。 ぐ第 3の実施の形態 >
さらに、 本発明の液面レベル検出装置に係る第 3の実施の形態につい て説明する。 図 6は、 本発明の液面レベル検出装置に係る第 3の実施の 形態を示す断面図である。 図 6に示す本発明の液面レベル検出装置 1 0 は、 図 2の液面レベル検出装置と同様、 光透過部材 3 1、 発光手段 3 2 、 受光手段 3 3、 遮光壁 3 4、 シリコンゴム 3 6により構成されている が、 シリコンゴム 3 6が、 光透過部材 3 1の内壁 (液面レベル検出部位 付近) 全体にのみ存在するようにしている。
この図 6に示す本発明の液面レベル検出装置 1 0では、 シリコンゴム 3 6によって液体 1 7と光透過部材 3 1との境界面に到達する光が散乱 光となるようにしている。 したがって、 図 2及び図 5に示す第 1及び第 2の実施の形態で説明した液面レベル検出装置と同様、 液面レベル検出 部位に散乱光が照射されるようにすることが可能となり、 受光手段 3 3 の受光量の変化を測定することによって、 液体 1 7の液面レベル検出す ることが可能となる。 以上、 説明したように、 第 3の実施の形態によれば、 発光手段 3 2か ら照射された光は、 光透過部材 3 1の内壁全体に配置されたシリコンゴ ム 3 6内で散乱されることによって、 多数の光源からランダムな方向に 発された光と同様の効果を有するようになる。 これによつて、 液面レべ ルを検出する範囲が非常に広くなり、 液面レベル検出部位付近に液滴や 液膜が付着している場合でも、 これらの影響を無視して、 液面レベルの 変動に伴う光量の変化を測定し、 確実に液面レベル検出を行うことが可 能となる。
<第 4の実施の形態 >
さらに、 本発明の液面レベル検出装置に係る第 4の実施の形態につい て説明する。 図 1 3は、 本発明の液面レベル検出装置に係る第 4の実施 の形態を示す断面図である。 図 1 3に示す本発明の液面レベル検出装置 1 0は、 図 2の液面レベル検出装置と同様、 光透過部材 4 1、 発光手段 4 2、 遮光壁 4 4、 シリコンゴム 4 6により構成されており、 また、 図 2に示す受光手段 1 3として、 ガラス光ファイバ 5 1が用いられている 。 このガラス光ファイバ 5 1は、 後述のように、 高温に強いなどの利点 がある。
また、 図 1 4は、 図 1 3に示す液面レベル検出装置のガラス光フアイ バを複数設けた場合の図であり、 図 1 3の X— Y断面図である。 このよ うに、 複数のガラス光ファイバ 5 1を配置し、 これらのガラス光フアイ ノ ' 5 1によって、 液面レベル検出部位で反射して戻ってくる光を受ける ようにすることも可能である。
光の受光部分の面積が小さいと、 液面レベル検出部位に水滴が残って いる場合などには、 誤作動が起こりやすくなる。 一方、 液面レベル検出 装置 1 0の小型化、 軽量化を考慮した場合、 光の受光部分をあまり大き くすることはできない。 そこで、 第 4の実施の形態では、 図 1 4に示す ように、 例えば、 直径 l mmの複数 (図 1 4では 1 2本) のガラス光フ アイバ 5 1を配列する。 これによつて、 液面レベル検出部位付近に水滴 が付着している場合でも、 その水滴の影響を無視して、 液面レベルの変 動に伴う光量の変化を測定し、 確実に液面レベル検出を行うことが可能 となる。
以上、 説明したように、 第 4の実施の形態によれば、 発光手段 4 2か ら照射された光は、 シリコンゴム 4 6内で散乱されることによって、 多 数の光源からランダムな方向に発された光と同様の効果を有するように なる。 これによつて、 液面レベルを検出する範囲が非常に広くなり、 液 面レベル検出部位付近に液滴や液膜が付着している場合でも、 これらの 影響を無視して、 液面レベルの変動に伴う光量の変化を測定し、 確実に 液面レベル検出を行うことが可能となる。
また、 特に、 図 1 4に示すように、 複数のガラス光ファイバ 5 1の受 光部を光透過部材 4 1の内壁に沿って、 略水平面上に配列することによ つて、 略水平面となっている液面のレベルを高い精度で検出し、 液滴や 液膜による誤作動を防ぐことが可能となる。 なお、 図 1 4では、 複数の ガラス光ファイバ 5 1の受光部が、 光透過部材 4 1の内壁に沿って配列 される配列パターンが図示されているが、 本発明の受光部の配列パ夕一 ンは、 上記の配列パターンに限定されるものではない。 例えば、 液面レ ベル検出装置 1 0の形状に合わせて、 複数の受光部の配列パターンを決 定することが可能であり、 例えば、 後述 (図 1 5 ) のように、 液体に浸 潰せずに外部から液面レベル検出を行うことが可能な液面レベル検出装 置 1 0では、 加圧タンク 9 1の形状に合わせた配列パターンとなるよう にすることが好ましい。
以下に、 上記の本発明の液面レベル検出装置の応用例を説明する。 図 1 1は、 本発明の液面レベル検出装置の使用状態の第 1の例を示す模式 図である。 なお、 液面レベル検出装置 1 0には、 その動作制御や測定結 果の処理などを行うコントローラ 9 0が接続されており、 加圧タンク 9 1内の液体 1 7に本発明の装置が挿入されている状態が図示されている 。 下部に液面レベル検出部位を有する柱状部の長さを自由に設定するこ とによって、 状況に応じて使用しやすい液面レベル検出装置 1 0を作成 することが可能である。 例えば、 薬用のガロン瓶、 加圧タンク、 ペール 缶などでは柱状部を最長 3 3 O mm程度、 ドラム缶などでは柱状部を 8 0 0 mm程度にすることが好ましい。
また、 図 1 2は、 本発明の液面レベル検出装置において、 異なる高さ に液面レベル検出部位を設けた例を示す模式図である。 図 1 2 (A)、 図 1 2 ( B ) に示すように、 異なる長さを有する柱状部を複数本設け、 異 なる高さで液面レベル検出を行えるようにすることも可能である。 なお 、 図 1 2 ( A) に示す液面レベル検出装置 1 0では異なる 2点での液面 レベル検出が可能であり、 図 1 2 ( B ) に示す液面レベル検出装置 1 0 では異なる 4点での液面レベル検出が可能である。 また、 このように複 数の柱状部を設けた場合には、 小型タンクなどでの使用が困難になるの で、 図 1 2 ( C ) に示すように、 1本の柱状部に異なる高さを有する液 面レベル検出部位を設け、 複数箇所による液面レベル検出装置 1 0を小 型化することも可能である。
また、 図 1 5は、 本発明の液面レベル検出装置の使用状態の第 2の例 を示す模式図である。 図 1 1に示す使用例では、 本発明の液面検出レべ ル検出装置 1 0の液面レベル検出部位を液体 1 7内に直接挿入して、 液 面 1 8の検出を行うようにしているが、 図 1 5に示す使用例では、 一般 的に液面レベルの目視などに利用されている加圧タンク 9 1のレベルゲ —ジ管 9 3に液面レベル検出部位を設置して、 液面 1 8の検出を行うよ うにしている。 これにより、 液面レベル検出部位を液体 1 7内に浸漬さ せることが困難な場合や、 液体 1 7が危険な物質 (例えば、 反応性が高 い物質、 高温又は低温の物質) である場合、 液体 1 7に直接浸漬するこ となく、 液面レベルを検出することが可能である。 なお、 レベルゲージ 管 9 3が存在しない容器 (加圧タンク) 9 1内に収容された液体の液面 レベルを検出する場合には、 直接、 容器 9 1に液面レベル検出部位を設 置することも可能である。
また、 液体を収容する容器 9 1の外壁に液面レベル検出部位を固定す るための固定手段 (ベルト) 9 2を設けることが好ましい。 例えば、 図 1 5に示すようにベルト 9 2を用いて、 容器の外周にベルト 9 2を巻き つけることによって、 液面レベル検出部位を容器 9 1の所定の位置に固 定することが可能となる。 また、 固定手段 9 2として、 粘着性を有する 接着面を設け、 この接着面によって、 容器 9 1に液体レベル検出部位を 貼り付けるようにすることも可能である。
また、 図 1 5に示すように、 直接、 シリコンゴム 5 6を容器 9 1の外 壁に当てることも可能である。 これにより、 間隙などからの光の漏れが なくなること(光学的密着性)、 シリコンゴム 5 6の粘着性によってずれ なくなり、 かつ、 ベルト 9 2を使わずに容器 9 1の外壁に貼り付けられ るようになること、 シリコンゴム 5 6と容器 9 1との外壁に液体が侵入 することを防ぎ、 誤作動を防止することなどの利点が生まれる。 また、 同質のシリコンゴム硬化液を用いて、 液面レベル検出部位と容器 9 1と を接着することも可能である。
また、 液面レベル検出の対象となる液体や動作環境が高温の場合もあ り、 特に、 液体が油などの場合、 約 2 0 0で近くの液体の液面レベルを 検出する必要がある場合も生じる。 しかしながら、 例えば、 発光手段 1 2、 2 2、 3 2、 4 2に半導体の L E D光源を用いた場合、 約 8 0 °Cを 超えると L E D光源が破損してしまい、 検出動作が不可能となってしま う。 このような高温時における動作を考慮して、 発光手段 2 2に小型精 密ランプ (タングステンランプ) を用い、 また、 受光手段 1 3、 2 3、 3 3にガラス光ファイバを用いることによって、 約 3 0 O tの高温時で も良好に動作し、 高温時の液面レベル検出動作が保証される。 産業上の利用可能性
以上、 説明したように、 本発明によれば、 発光手段からの光が受光手 段に直接照射しないよう遮光手段を設けて、 光散乱手段で散乱された散 乱光の一部を光放射手段の液面レベル検出部位で散乱手段又は光透過手 段の外部に放射される一方、 放射されず反射して戻ってきた散乱光を受 光手段で受け、 その受光量の変化を検出するので、 検出対象を選ばずに 様々な検出対象及び使用環境において使用可能であり、 液面レベル検出 部位に効率良く光を照射し、 受光手段の受光量の変動を感度高く検出可 能であり、 耐久性に優れ、 製造も容易であり、 現実的に利用可能な液面 レベル検出装置を実現することが可能となる。

Claims

請 求 の 範 囲
1 . 外部に存在する液体の液面レベルを検出する液面レベル検出装 置であって、
光を発する発光手段と、
前記発光手段により発せられた光を散乱させる光散乱手段と、 前記光散乱手段によって散乱された散乱光の一部を前記光散乱手段の 外部に放射する液面レベル検出部位を有する光放射手段と、
前記光放射手段によって放射せず、 前記光散乱手段又は前記光放射手 段の外部との境界面で反射して戻ってきた前記散乱光を受ける受光手段 と、
前記発光手段からの光が前記受光手段に直接照射しないよう遮光する 遮光手段とを有し、
前記外部に前記液体が存在する場合、 前記光放射手段の外部への放射 光量が変化し、 その変化を前記受光手段の受光量により検出することに より、 前記液体の前記液面レベルを検出する液面レベル検出装置。
2 . 所定の角度を設けて、前記発光手段又は受光手段を配置すること を特徴とする請求項 1に記載の液面レベル検出装置。
3 . 前記受光手段を複数配置することを特徴とする請求項 1又は 2 に記載の液面レベル検出装置。
4 . 前記複数の受光手段を略水平面上に配列することを特徴とする 請求項 3に記載の液面レベル検出装置。
5 . 前記遮光手段による光の吸収を防ぐため、前記遮光手段を光反射 用フィルムで覆うことを特徴とする請求項 1又は 4に記載の液面レベル 検出装置。
6 . 前記液体の種類に応じた前記受光手段における基準の受光量の 設定を可能とし、 前記受光手段の受光量と前記基準の受光量との比較に よって、 前記液体の前記液面レベルの検出を行うことを特徴とする請求 項 1から 5のいずれか 1つに記載の液面レベル検出装置。
7 . 前記発光手段の発光部位周辺に、前記光散乱手段を配置すること を特徴とする請求項 1から 6のいずれか 1つに記載の液面レベル検出装
8 . 前記発光手段からの前記光が照射される前記液面レベル検出部 位周辺に、 前記光散乱手段を配置することを特徴とする請求項 1から 6 のいずれか 1つに記載の液面レベル検出装置。
9 . 前記光散乱手段が、 シリコンゴムであることを特徴とする請求項 1から 7のいずれか 1つに記載の液面レベル検出装置。
1 0 . 前記光放射手段が、パーフロロアルコキシであることを特徴とす る請求項 1から 9のいずれか 1つに記載の液面レベル検出装置。
1 1 . 前記発光手段にタングステンランプを用い、前記受光手段にガラ ス光ファイバを用いることを特徴とする請求項 1から 1 0のいずれか 1 つに記載の液面レベル検出装置。
1 2 . 前記液体内に前記光放射手段を浸潰させることによって、前記液 体の前記液面レベルを検出することを特徴とする請求項 1から 1 1のい ずれか 1つに記載の液面レベル検出装置。
1 3 . 光透過性を有する容器の外壁に前記光放射手段を設置し、前記容 器内に収容されている前記液体の前記液面レベルを検出することを特徴 とする請求項 1から 1 1のいずれか 1つに記載の液面レベル検出装置。
1 4 . 前記容器の外壁に前記光放射手段を固定可能とする固定手段を 有することを特徴とする請求項 1 3に記載の液面レベル検出装置。
PCT/JP2002/005842 2001-06-12 2002-06-12 Dispositif de detection de niveau de liquide WO2002101337A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003504052A JP3607698B2 (ja) 2001-06-12 2002-06-12 液面レベル検出装置
US10/480,443 US7199388B2 (en) 2001-06-12 2002-06-12 Liquid level detecting device
EP02738663A EP1445589A4 (en) 2001-06-12 2002-06-12 DEVICE FOR DETECTING LIQUID LEVELS
HK04109769A HK1066855A1 (en) 2001-06-12 2004-12-09 Liquid level detecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001177092 2001-06-12
JP2001-177092 2001-06-12

Publications (1)

Publication Number Publication Date
WO2002101337A1 true WO2002101337A1 (fr) 2002-12-19

Family

ID=19017989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005842 WO2002101337A1 (fr) 2001-06-12 2002-06-12 Dispositif de detection de niveau de liquide

Country Status (6)

Country Link
US (1) US7199388B2 (ja)
EP (1) EP1445589A4 (ja)
JP (1) JP3607698B2 (ja)
CN (1) CN1236290C (ja)
HK (1) HK1066855A1 (ja)
WO (1) WO2002101337A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008381A (ja) * 2008-06-30 2010-01-14 T & T:Kk 液検知用光センサ、およびそれによる液面センサと漏液センサ
CN106989796A (zh) * 2017-04-20 2017-07-28 常熟理工学院 液面检测装置
KR20220049918A (ko) * 2020-10-15 2022-04-22 주식회사 비앤티 액체 레벨 감지 센서 및 그 조립 방법

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576871B2 (ja) * 2004-04-21 2010-11-10 セイコーエプソン株式会社 収容物検出装置、容器、及びインクジェットプリンタ
US7492272B1 (en) 2005-01-27 2009-02-17 Seewater, Inc. High liquid alarm system
WO2007088673A1 (ja) * 2006-01-31 2007-08-09 Olympus Corporation 位置検出装置、位置検出方法及び分析装置
US7644889B2 (en) * 2006-07-18 2010-01-12 Insitu, Inc. Fluid sensing system and methods, including vehicle fuel sensors
US9000905B2 (en) 2006-08-21 2015-04-07 Nmhg Oregon, Llc Auxiliary fuel tank
US7940165B1 (en) * 2006-08-21 2011-05-10 Nmhg Oregon, Llc Low fuel warning systems for a motorized vehicle
EP1927826A1 (en) * 2006-11-30 2008-06-04 Koninklijke Philips Electronics N.V. Assembly comprising a portable device having fluid-fillable container and a holder
US7635854B1 (en) * 2008-07-09 2009-12-22 Institut National D'optique Method and apparatus for optical level sensing of agitated fluid surfaces
US8109126B1 (en) 2008-10-06 2012-02-07 Seewater, Inc. Method and apparatus for sensor calibration in a dewatering system
US8330603B1 (en) 2008-10-06 2012-12-11 Seewater, Inc. Method and apparatus for sensor calibration and adjustable pump time in a dewatering system
US8760302B1 (en) 2008-10-06 2014-06-24 Seewater, Inc. Submersible water pump having self-contained control circuit
CA2739362A1 (en) * 2011-05-06 2012-11-06 Gotohti.Com Inc. Fluid level gauge
CH701669A1 (de) * 2009-08-18 2011-02-28 Tecpharma Licensing Ag Druckerfassung in einem medizinischen Verabreichungsgerät.
US9018608B1 (en) * 2009-12-20 2015-04-28 A+ Manufacturing, Llc Optical sensor for detecting liquid
US9316522B2 (en) * 2012-08-08 2016-04-19 Eaton Corporation Visual indicator with sensor
US9316524B2 (en) 2012-08-08 2016-04-19 Eaton Corporation Visual indicator with sensor
CN103278252B (zh) * 2013-05-28 2014-10-15 河南师范大学 一种高压电气设备无源区间式温度监测装置
CN104631578B (zh) * 2014-12-25 2016-08-24 美的集团股份有限公司 家用洗涤水槽和智能厨房
CN105987742A (zh) * 2015-02-27 2016-10-05 上海通用汽车有限公司 液位检测装置和方法
DE202015101489U1 (de) * 2015-03-24 2016-06-28 Crane Payment Innovations Gmbh Vorrichtung zur Bestimmung des Füllstands von Münztuben
US10072962B2 (en) 2016-07-05 2018-09-11 Ecolab Usa Inc. Liquid out-of-product alarm system and method
JP6745183B2 (ja) * 2016-09-30 2020-08-26 Juki株式会社 ミシンの油量検出装置
CN106706088B (zh) * 2016-12-15 2022-08-09 宁夏农垦贺兰山奶业有限公司 奶牛产奶量计量装置
US10175167B2 (en) * 2017-03-28 2019-01-08 Te Connectivity Corporation Optical sensor for detecting accumulation of a material
CN107091669B (zh) * 2017-06-09 2023-07-04 泉州市全通光电科技有限公司 跟踪定位量筒液位精密变化的检测装置及其检测方法
JP6996375B2 (ja) 2018-03-19 2022-01-17 トヨタ自動車株式会社 液体検出センサー
US11117793B1 (en) * 2020-07-16 2021-09-14 Pepsico, Inc. Contactless autofill dispensing
CN112082624A (zh) * 2020-09-08 2020-12-15 南方科技大学 一种液位检测装置及其检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221895A (ja) * 1992-12-19 1994-08-12 Boehringer Mannheim Gmbh 透明な測定管における流体相境界の検知装置および液量の正確な自動計量装置
JPH0662327U (ja) * 1993-02-03 1994-09-02 シーケーディ株式会社 液面センサ
JPH10300557A (ja) * 1997-04-25 1998-11-13 Nissei Denki Kk 液面センサ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440022A (en) * 1981-10-14 1984-04-03 Smiths Industries Public Limited Company Liquid-level detection
US4554837A (en) * 1984-05-04 1985-11-26 Anatros Corporation Reflective optical fluid pressure sensor
DE3539308A1 (de) * 1984-05-09 1987-05-07 Wolfgang Dr Ruhrmann Sensor zum messen des fuellstandes einer fluessigkeit
IT1219123B (it) * 1988-03-18 1990-05-03 Veglia Borletti Srl Metodo per il rilevamento del livello di un liquido in un serbatoio e sensore realizzante tale metodo
US6333512B1 (en) * 1998-07-15 2001-12-25 Alvin R. Wirthlin Optical gauge for determining the level of a medium in a container
JP2000321116A (ja) 1999-05-12 2000-11-24 Yazaki Corp 液面レベルセンサ
JP2000329607A (ja) 1999-05-19 2000-11-30 Yazaki Corp 液面レベルセンサ
US6664558B1 (en) * 2001-11-07 2003-12-16 Concept Technology Inc. Non-prismatic optical liquid level sensing assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221895A (ja) * 1992-12-19 1994-08-12 Boehringer Mannheim Gmbh 透明な測定管における流体相境界の検知装置および液量の正確な自動計量装置
JPH0662327U (ja) * 1993-02-03 1994-09-02 シーケーディ株式会社 液面センサ
JPH10300557A (ja) * 1997-04-25 1998-11-13 Nissei Denki Kk 液面センサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008381A (ja) * 2008-06-30 2010-01-14 T & T:Kk 液検知用光センサ、およびそれによる液面センサと漏液センサ
CN106989796A (zh) * 2017-04-20 2017-07-28 常熟理工学院 液面检测装置
KR20220049918A (ko) * 2020-10-15 2022-04-22 주식회사 비앤티 액체 레벨 감지 센서 및 그 조립 방법
KR102409282B1 (ko) * 2020-10-15 2022-06-15 주식회사 비앤티 액체 레벨 감지 센서 및 그 조립 방법

Also Published As

Publication number Publication date
US7199388B2 (en) 2007-04-03
JPWO2002101337A1 (ja) 2004-09-30
CN1514929A (zh) 2004-07-21
US20040232364A1 (en) 2004-11-25
EP1445589A1 (en) 2004-08-11
HK1066855A1 (en) 2005-04-01
EP1445589A4 (en) 2005-10-05
CN1236290C (zh) 2006-01-11
JP3607698B2 (ja) 2005-01-05

Similar Documents

Publication Publication Date Title
JP3607698B2 (ja) 液面レベル検出装置
US9625372B2 (en) Ultraviolet-based ozone sensor
US7161165B2 (en) Optical transducer for continuously determining liquid level
EP3023755B1 (en) Optical impedance modulation for fuel quantity measurement
US5422495A (en) Optical sensor having a floatation means for detecting fluids through refractive index measurement
US7259383B2 (en) Optical transducer for detecting liquid level
US5330073A (en) Gasoline dispenser leak detectors and automatic shut-off systems
JP5786191B2 (ja) 温度感応体、光学式温度センサ、温度計測装置及び熱流束計測装置
US6693285B1 (en) Fluorescent fluid interface position sensor
JP2006300793A (ja) 光式液面センサ
JP2013152103A (ja) 光学式液漏れ検知装置および方法
US10914675B2 (en) Sensor device for measuring a fluid concentration, and use of the sensor device
JP7254422B2 (ja) 表面形状測定システムおよび表面形状測定器を用いた表面形状測定方法
KR20090013434A (ko) 가스 측정 장치
JP2004198376A (ja) 液面検知装置
US20070163671A1 (en) Method and device for non-contacting monitoring of a filling state
JP7462859B1 (ja) オゾン濃度測定装置、オゾン濃度測定方法、および、オゾン発生システム
KR102233557B1 (ko) 굴절률을 통해 수분량을 측정하는 토양 수분 센서
JP6064161B2 (ja) 非接触液体検知構成
CN111435111B (zh) 具有最佳参考路径长度的光声气体传感器
KR20240072224A (ko) 다파장 오존 농도 센서 및 사용 방법
JP6307427B2 (ja) 乾き度測定装置及び乾き度測定方法
CN113514111A (zh) 流量测量装置
CS246549B1 (cs) Optoelektronické čidlo pro kontrolu přítomnosti a výšky hladiny kapalin
JP2003232694A (ja) 液体検知方法、液体検知用光学ユニットおよび液体検知装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003504052

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 028117190

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002738663

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10480443

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002738663

Country of ref document: EP