WO2002092969A1 - Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure - Google Patents

Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure Download PDF

Info

Publication number
WO2002092969A1
WO2002092969A1 PCT/FR2002/001593 FR0201593W WO02092969A1 WO 2002092969 A1 WO2002092969 A1 WO 2002092969A1 FR 0201593 W FR0201593 W FR 0201593W WO 02092969 A1 WO02092969 A1 WO 02092969A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjacent
angles
rotor
disturbance
sources
Prior art date
Application number
PCT/FR2002/001593
Other languages
English (en)
Inventor
Marc Berthillier
Yvon Cloarec
Eric Seinturier
Original Assignee
Snecma Moteurs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8863166&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002092969(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Snecma Moteurs filed Critical Snecma Moteurs
Priority to DE60213227T priority Critical patent/DE60213227T3/de
Priority to CA002446590A priority patent/CA2446590C/fr
Priority to JP2002590217A priority patent/JP4195304B2/ja
Priority to EP02738237A priority patent/EP1386058B2/fr
Priority to US10/477,234 priority patent/US7029227B2/en
Priority to UA20031110068A priority patent/UA79743C2/uk
Publication of WO2002092969A1 publication Critical patent/WO2002092969A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/20Suppression of vibrations of rotating systems by favourable grouping or relative arrangements of the moving members of the system or systems

Definitions

  • the present invention relates, in general, to the reduction of vibrations in a structure comprising a rotor and stationary sources of disturbance.
  • reduction of vibrations means a reduction in the amplitude of the vibrations.
  • the rotor and the stationary sources of disturbance of the structure are placed in a fluid flow.
  • the sources of stationary disturbance are, for example, blades of a stator.
  • the above structure is a turbomachine. Fixed sources of disturbance generate pressure variations in the fluid flow which can propagate throughout the structure, downstream as well as upstream, and cause the rotor to vibrate. I
  • FIG. 1 shows a conventional structure, designated by the reference 1, comprising a rotor 2 and a stator 3 subjected to a flow of fluid 4.
  • the rotor 2 and the stator 3 respectively comprise vanes 20 and 30 arranged radially in a uniform manner, that is, the angle between two given vanes is constant.
  • the vanes 20 and 30 serve, in a well known manner, to modify the pressure of the fluid, to either compress it or relax it.
  • the rotor 2, turning as indicated by arrow 21, sees the respective wakes of the blades 30 of the stator 3 in the fluid flow 4 as rotating disturbances.
  • the rotor 2 undergoes an excitation having a fundamental frequency NV, a first harmonic frequency 2NV, a second 3NV harmonic frequency, and so on.
  • FIG. 2 shows the spectrum of the excitation coming from the stator 3 as received by the rotor 2.
  • This spectrum comprises three lines 5, corresponding respectively to the fundamental frequency and to the two first harmonic frequencies.
  • the part of the excitation corresponding to the harmonics higher than the frequency 3NV is neglected.
  • the response of the rotor 2 to this excitation is a function of the natural frequencies of the rotor, which depend on the geometry, the material and the speed of rotation of the rotor. If, at a given speed of rotation, the natural frequencies of the rotor do not coincide with any of the lines 5 illustrated in FIG. 2, the rotor, when operating at this speed, is little disturbed by the wake of the blades 30 in the flow 4. If, on the contrary, at this same speed, one of the natural frequencies of the ro; tor 2 coincides with one or the other of the lines 5, the rotor 2 undergoes a resonance which makes it vibrate. However, the vibrations of the rotor 2 must be avoided as much as possible because they can cause damage which can lead to rupture in vibration fatigue thereof.
  • FIG. 3 shows a Campbell diagram representing, by lines Di, the relationship between the natural frequencies of the rotor, designated by fi, and the speed of rotation V of the rotor, and, by lines Dl ', D2' and D3 ' , the relationship between the excitation frequencies, NV, 2NV and 3NV and said rotational speed V of the rotor.
  • Di the relationship between the natural frequencies of the rotor
  • V the speed of rotation V of the rotor
  • Dl ', D2' and D3 ' the relationship between the excitation frequencies, NV, 2NV and 3NV and said rotational speed V of the rotor.
  • the range of rotational speeds of the rotor 2 is a range ⁇ V2 in which one or more coincidence points exist between the natural frequencies fi of the rotor and the excitation frequencies NV, 2NV and 3NV (these coincidence correspond to points of intersection PI, of which only one is shown in FIG. 3, between the lines Di and the lines Dl ', D2' and D3 '), a resonance effect occurs in the rotor 2 at each of these points coincidence. ;
  • an alternative solution consists in damping the vibrations of the rotor either by friction or shearing, or by aeroelastic damping.
  • damping by friction or shear is quite complicated to achieve, in particular when the rotor is in one piece.
  • aeroelastic damping it requires the use of an asymmetrical rotor, for example of the type described in document EP-A-0921 274.
  • the rotational resistance of such asymmetric rotors is difficult to ensure.
  • the present invention aims to provide a method of reducing vibrations in a structure comprising a rotor and stationary sources of disturbance, which facilitates the design and manufacture of said structure. !
  • a method of reducing vibrations is provided in a structure comprising at least one rotor and at least one stator, the rotor and the stator being intended to be subjected to a flow of fluid, the structure comprising a set of sources. of disruption!
  • a non-uniform angular distribution of the fixed sources of disturbance is chosen so as to reduce the amplitude of an excitation seen by the rotor and corresponding to said disturbances for at least one frequency of the excitation substantially coinciding with a natural frequency of the rotor at a rotation speed V thereof, with respect to a uniform predetermined angular distribution of the fixed sources of disturbance, and in that the method further comprises a step consisting in checking, over a whole range of rotation speeds at which the rotor is capable of turning, including the speed of rotation V,; that the maximum amplitude of a response of the rotor to excitation in the case where the fixed sources of disturbance are distributed according to the chosen angular distribution is less than that in the case where the fixed sources of disturbance are distributed according to the angular distribution predetermined, said rotor response to excitation in the case where the fixed sources of disturbance are distributed according to the angular distribution
  • the reduction of the vibrations of the rotor is obtained not by modifying the structure or the geometry of the rotor, as in the prior art, but by modifying the angular distribution of the sources of fixed disturbances, so as to modify in Consequently, the frequency spectrum of the excitation, as seen by the rotor, generated by the fixed sources of disturbance.
  • the design and manufacture of the structure are therefore facilitated, in the sense that the difficulties associated with the rotation of an asymmetrical rotor are avoided .;
  • the set of sources of disturbance is static and can be easily made asymmetrical without causing any particular design or manufacturing problems. !
  • the fact of using a non-uniform angular distribution of the fixed sources of disturbance has the effect of enriching the frequency spectrum of the excitation seen by the rotor of additional lines, compared to the conventional configuration, as illustrated in the figure. 1, where the sources of disturbance are regularly distributed.
  • the disturbance energy produced by the set of disturbance sources according to the invention is the same as that which would be produced by these same disturbance sources if they were distributed regularly.
  • the intensity of the lines corresponding to the frequencies NV, 2NV, 3NV, etc., and in particular of the annoying line coinciding with the aforementioned natural frequency of the rotor, is therefore reduced, which weakens the vibrations of the rotor.
  • the fixed sources of disturbance are identical (except for manufacturing tolerances); and at least one natural frequency of the rotor, at the speed of rotation V, is substantially equal to NV or a multiple of NV, where N is the number of sources of stationary disturbances in said set.
  • identical is meant that the fixed sources of disturbance produce the same disturbance in the flow of fluid.
  • the first signal comprises identical bumps spaced regularly, each bump being representative of a disturbance created by a source of fixed disturbance, the spacing between two consecutive given bumps being representative of the angle defined by two consecutive sources of disturbance in the case where the sources of disturbance are distributed according to the uniform angular distribution, and the modification step consists in adapting the spacings between the bumps at the angles of the angular distribution chosen.
  • the set of fixed disturbance sources can be located upstream or downstream of the rotor in the fluid flow, but is preferably located upstream because it is in this situation that the disturbances generated by the set sources of disturbance propagate best and are most likely to affect the rotor.
  • the fixed sources of disturbance have substantially the same radial position relative to a point corresponding, in the fluid flow, to a center of rotation of the rotor.
  • the sources of fixed disturbance are stator vanes. !
  • the fixed sources of disturbance are of one of the following types: combustion chamber injectors, cooling air intake elements, relief valves, cooling air reintroduction elements, sensors and probes .
  • the aforementioned structure may consist of a turbo machine.
  • the present invention also relates to a method for designing a structure comprising at least one rotor and at least one stator, the rotor and the stator being intended to be subjected to a flow of fluid, the structure comprising a set of fixed sources of disturbance likely to cause disturbances in the flow of fluid causing the rotor to vibrate, characterized in that it comprises steps consisting in: determining an overall architecture for the structure, and applying the vibration reduction method defined above to said structure.
  • the present invention also relates to a method for designing and manufacturing a structure comprising at least one rotor and at least one stator, the rotor and the stator being intended to be subjected to a flow of fluid, the structure comprising a set of sources.
  • fixed disturbances likely to cause disturbances in the fluid flow causing the rotor to vibrate, characterized in that it comprises steps consisting in: determining an overall architecture for the structure, applying the vibration reduction process defined above above to said structure, and fabricating said structure.
  • the present invention therefore also aims to provide! a structure comprising a rotor and a set of identical fixed disturbance sources, which makes it possible to reduce the intensity of the possible effects of rotor resonance, in particular to prevent such effects from reaching the intensity values that are known with conventional structures, without affecting the aerodynamic efficiency of the structure too much.
  • a structure comprising at least one rotor, at least one stator and a set of a number N of stationary disturbance sources, the rotor and the set of stationary disturbance sources being intended to be passed through substantially.
  • the set of sources of disturbance perpendicularly to a flow of fluid, in which the set of sources of disturbance is liable to cause disturbances which are then received by the rotor, the set of sources of disturbance forming, in a plane I substantially perpendicular to the flow of fluid, a set of N adjacent angles whose sum is equal to 360 °, each angle being defined by two consecutive half-straight lines originating from the same point corresponding, in the flow of fluid, to a center of rotation of the rotor, and passing respectively through the geometric centers of two sources of disturbance, characterized in that the set of adjacent angles comprises at least one group of adjacent angles ts called increased, greater than 360 ° / N, and at least one group of adjacent angles called minor, less than 360 ° / N.
  • upper angle and lower angle; relate, according to the invention, to an angle value which is greater, respectively less, than a given value, once the manufacturing tolerances are taken into account. In other words, two angles will be considered equal if they have the same value, except for manufacturing tolerances. In general, manufacturing tolerances! are less than 0.05 °.
  • the sources of disturbance are arranged in a non-uniform manner, so that the frequency spectrum of the excitation seen by the rotor comprises, as explained previously in relation to the method according to invention, additional lines compared to the conventional configuration, as illustrated in FIG. 1, where the sources of disturbance are regularly distributed. More particularly, the part of the excitation corresponding to each increased angle has a fundamental frequency lower than the frequency NV (that is to say the fundamental frequency in the case classical), while the part of the excitation corresponding to each minor angle has a fundamental frequency greater than the frequency NV.
  • the disturbance energy produced by the set of disturbance sources according to the invention being the same as that which would be produced by these same disturbance sources if they were distributed regularly, the intensity of the lines corresponding to the frequencies
  • the intensity of the maximum line of the excitation spectrum is reduced, so that the risk of the leytor resonating very strongly is reduced.
  • the effect of reducing the intensities of the annoying lines of the excitation spectrum corresponding to the frequencies NV, 2NV, 3NV, etc. is reinforced by the fact that, in the set of adjacent angles, increased (respectively reduced) angles are grouped together. Indeed, when the rotor turns by an angle corresponding to a group of increased (or reduced) angles, the excitation which it receives includes not only the frequency corresponding to each increased (or reduced) angle, but also frequencies multiples of this frequency.
  • the set of adjacent angles comprises at least one so-called nominal angle, equal to 360 ° / N.
  • the presence of one or more nominal angles makes it possible, by avoiding a sudden angular variation between the increased angles and the reduced angles, to reduce the loss of aerodynamic efficiency due to the fact that the angular distribution of the sources of disturbance is not uniform. . ;
  • the set of adjacent angles comprises a single group of adjacent increased angles and a single group of adjacent reduced angles. More particularly, the set of adjacent angles can be constituted by: a single group of adjacent increased angles, a first nominal angle or a first group of nominal adjacent angles, adjacent to the group of adjacent increased angles, a single group of adjacent minor angles, which is adjacent to said first nominal angle or to said first group of nominal adjacent angles, and a second nominal angle or a second group of nominal adjacent angles, adjacent to the group of adjacent minor angles.
  • the set of adjacent angles is constituted by a single group of increased adjacent angles and a single group of adjacent reduced angles, and therefore does not have a nominal angle.
  • the grouping of the raised / lowered angles into a single group makes it possible to increase the intensity of the additional lines of the excitation spectrum seen by the rotor, and thus further decrease the intensity of the lines corresponding to the frequencies NV, 2NV, 3NV, etc.
  • This preferred embodiment is therefore particularly advantageous when the natural frequency of the rotor coincides with one of the aforementioned frequencies NV, 2NV, 3NV, etc. since it significantly reduces the intensity of the annoying line while only slightly affecting the aerodynamic efficiency of the structure (a satisfactory effect is obtained even if the increased / decreased angles are little different from 360 ° / N) . ;
  • the set of adjacent angles comprises several groups of adjacent increased angles and several groups of adjacent reduced angles, interposed between the groups of adjacent increased angles.
  • the set of adjacent angles may further comprise several nominal angles or several groups of nominal adjacent angles, each nominal angle or group of adjacent nominal angles being adjacent both to a group of adjacent adjacent angles and to a group adjacent minor angles.
  • the set of adjacent angles can be constituted by several groups of adjacent adjacent angles and several groups of adjacent adjacent angles, each group of adjacent adjacent angles being adjacent to two groups of adjacent adjacent angles.
  • the set of adjacent angles therefore does not have a nominal angle.
  • all the angles increased by the set of adjacent angles. are increased by the same predetermined value and all the reduced angles of the set of adjacent angles are reduced by said predetermined value.
  • at least two increased angles and / or at least two reduced angles of the set of adjacent angles are different from each other.
  • the set of adjacent angles can comprise as many increased angles as there are reduced angles.
  • each increased angle and each decreased angle of the set of adjacent angles differs by 360 ° / N by at most 10%, and preferably by at least plus 5%.
  • FIG. 3 already discussed, shows a Campbell diagram corresponding to the part of the turbomachine illustrated in Figure 1;
  • - Figure 4 is a flow diagram of a method of designing and manufacturing a turbomachine according to the present invention
  • FIG. 5 shows schematically in perspective part of a turbomachine, comprising several stator-rotor stages
  • FIG. 6 shows schematically in front view a stator of the turbomachine part illustrated in Figure 5;
  • FIG. 7 shows a corresponding Campbell diagram a stator-rotor stage of the turbomachine part illustrated in FIG. 5;
  • FIG. 8 to 14 show different examples of angular distribution, in accordance with the present invention, sources of disturbance present in the part of the turbomachine illustrated in Figure 5;
  • - Figure 15 shows the frequency spectrum of an excitation seen by a rotor of the turbomachine part illustrated in Figure 5, in the case of the angular distribution shown in Figure 10;
  • FIG. 16 is a flowchart of a verification method according to the present invention
  • - Figure 17 shows a time signal used in the method of Figure 16;
  • FIG. 19 shows a set of fixed disturbance sources according to a variant of the present invention.
  • Step E1 a global architecture of the turbomachine is determined in a well known manner, by simulation, from initial specifications defining, among other things, the desired power and energy consumption.
  • Step E1 more particularly consists in determining the number of stator-rotor stages, the number of blades per stage and the profile of the blades making it possible to obtain an aerodynamic performance meeting the initial specifications.
  • a structure of the type shown in FIG. 5 is obtained in the form of digital data, comprising a number J of stator-rotor stages 10 ⁇ to 10j.
  • Each stage 10j where j is an integer between 1 and J, comprises a stator 100 j , in the form of a fixed paddle wheel, and a rotor lOl j , of the movable paddle wheel type.
  • the blades of each stator 100j are designated in Figure 5 by the reference numeral 102 j and the vanes of each rotor lOlj 103J by the marker.
  • the different stator-rotor stages are arranged to, in operation, be traversed by a flow of fluid 11 while being perpendicular thereto.
  • the stator 100j located upstream of the associated rotor lOlj generates pressure disturbances in the flow 11 which is then received by the lOlj rotor.
  • the response of the rotor to these disturbances depends on the excitation frequencies seen by the rotor and the natural frequencies of the latter.
  • the stator vanes 102j of a given stage constitute a set of a number N of fixed and identical sources of disturbance (the number N can vary from one stage to another).
  • each stator (and rotor) has been represented with a number of blades equal to 16. In practice, the number N is generally between 16 and 200.
  • the N fixed sources of disturbance 102j define, in a plane PLj perpendicular to the direction of the fluid flow 11, a set of N adjacent distribution angles cti to ⁇ N, the sum of which is equal to 360 °.
  • Each angle ai, where; i is an integer between 1 and N, is defined by half-lines Ai, Ai + i, originating from the same point Oj located substantially opposite a point of rotation Oj 'of the associated rotor lOlj , and passing respectively through the geometric centers (not shown) of two consecutive blades 102j.
  • the half-lines Ai to AN are central axes of the blades 102j.
  • step E2 steps E2 to E7 are implemented for each stator-rotor stage 10j.
  • step E2 the natural frequencies of the rotor, designated by fi, are calculated and then plotted on a Campbell diagram in the form of lines Di representing the relationship between these natural frequencies and the speed of rotation V of the rotor, expressed in Hz (cf. figure 7).
  • lines Dl 'to DP' are also drawn, where P is a predetermined integer, passing through the origin of the diagram and having respective slopes N, 2N, 3N, ..., PN.
  • the lines Dl 'to DP' represent the relationship between the excitation frequencies seen by the rotor lOlj when the blades 102j of the stator 100j are regularly distributed (i.e. when the angles ai to CCN are equal), as illustrated in Figure 6.
  • the natural frequencies of the rotor one can limit oneself only to the natural frequencies capable of entering into coincidence with at least one of the excitation frequencies N, 2N, 3N, ..., PN in a range of rotational speeds at which the rotor is intended to rotate.
  • the natural frequencies fi, h and f 3 and three corresponding lines Dl, D2 and D3 have been represented in FIG. 7.
  • Steps E1 and E2 are, in themselves, well known to those skilled in the art and therefore do not need to be described in more detail.
  • step E3 we identify, in the Campbell diagram, the possible coincidences between the natural frequencies of the rotor and the excitation frequencies, in the range of rotational speeds at which the rotor is intended to rotate.
  • step E5 a non-uniform angular distribution is chosen for the fixed sources of disturbance, in step E5, in order to modify the spectrum of the excitation seen by the rotor and avoid that the disturbances generated by the stator come too strongly to excite the rotor.
  • a coincidence exists between the natural frequency h of the rotor and the excitation frequency NV at a speed V0 in the range ⁇ V2. This coincidence is materialized by the point of intersection PI between the lines Dl and Dl '. ! Examples of types of distribution which can be chosen for the implementation of step E5 are set out below.
  • the set of adjacent angles consists of: i
  • Figure 8 illustrates an example of this type of distribution.
  • the set of adjacent angles consists of:
  • c is a real number such that 0 ⁇ c ⁇ 360 ° / N.
  • Figure 9 shows an example of this type of distribution, comprising a group of two nominal adjacent angles.
  • the set of adjacent angles consists of:
  • Figure 10 shows an example of this type of distribution, comprising two separate nominal angles, each inserted between the groups of adjacent angles increased and decreased. ;
  • Figure 11 shows another example of this type of distribution, comprising a nominal angle interspersed between the groups of adjacent plus and minus angles, and a group of adjacent nominal angles, opposite the nominal angle, and also interposed between the groups of adjacent angles increased and decreased.
  • the set of adjacent angles consists of:
  • each angle increased being equal to (360 ° / N) + c, and:
  • the set of adjacent angles consists of:
  • each angle increased being equal to (360 ° / N) + c,;
  • Figure 14 shows an example of this type of distribution.
  • the set of adjacent angles consists of:
  • each angle increased being equal to (360 ° / N) + c,! - several groups, interspersed between the groups of adjacent increased angles, of adjacent reduced angles, each reduced angle being equal to (360 ° / N) -c, j
  • each nominal angle or each group of nominal adjacent angles being adjacent both to one of said groups of adjacent adjacent angles and to one of said groups of angles adjacent minus
  • c is a real number such as 0 ⁇ c ⁇ 360 ° / N.
  • FIG. 14 is also an example of this type of distribution.
  • Other types of distribution :
  • each of the six types of distribution described above the increased (respectively reduced) angles are all equal to each other, and the total number of increased angles is necessarily equal to that of the reduced angles.
  • the number N of sources of disturbance in the first and fourth types of distribution is necessarily even.
  • each of the six types of distribution above can be modified so that the value c is no longer constant, but can on the contrary differ from one angle to another.
  • the number of increased angles may be different from the number of reduced angles. ;
  • those comprising one or more nominal angles are preferred.
  • the increased angles differ by 360 ° / N by at most 10% or even at most 5%, that is to say that is, the value c is less than or equal to 36 / N or even less than or equal to 18 / N.
  • the types of distribution described above all have in common, on the one hand, to be non-regular, and, on the other hand, to include at least two increased angles adjacent to each other and at least two minor angles adjacent to each other. !
  • the frequency spectrum of the excitation, as seen by the rotor, produced by these same sources of disturbance, but distributed in a non-uniform manner has additional lines. Indeed, each increased angle makes participate, in the frequency spectrum of the excitation, frequency lines:! (360 ° / ((360 ° / N) + c)) V, 2x (360 ° / ((360 ° / N) + c)) V, 3x (360 ° / ((360 ° / N) + c) ) V, etc.,
  • This enrichment in additional lines is accompanied by a weakening of the intensity of the lines corresponding to the excitation frequencies NV to PNV, and therefore, in particular, in the example of FIG. 7, of the annoying line corresponding to the frequency NV, coincident with the natural frequency fl at point PI (when the speed of rotation V is equal to V0).
  • the intensity of the resonance due to the annoying frequency NVO is thus reduced.
  • the rotor 2 will therefore vibrate less than in the conventional case when, in operation, it will rotate at speed V0.
  • FIG. 15 shows, by way of illustration, the spectrum of the excitation seen by the rotor, in the case of the distribution example shown in FIG. 10.
  • the intensity of the lines is normalized by relation to the intensity of the frequency line NV in the spectrum of FIG. 2, corresponding to the conventional case.
  • the maximum intensity of value 1 therefore corresponds to the intensity of the frequency line NV in the case where the N sources of disturbance are distributed regularly. Note in Figure 15 that:; - the intensities of the lines of the excitation spectrum are all much less than 1, and therefore less than the intensity of the frequency line NV in the conventional case, and
  • the intensities of the frequency line NV (respectively 2NV, 3NV) and of the frequency lines close to NV (respectively 2NV, 3NV) are all much lower than the intensity of the frequency line NV (respectively 2NV, 3NV) in the conventional case. ;
  • step E6 of the method according to the invention it is therefore intended to verify that the distribution chosen in the previous step E5 results in bie ⁇ . a reduction in rotor vibrations. !
  • Step E6 is implemented according to a method which is illustrated in detail in FIG. 16.
  • This method generally consists in calculating, firstly, the frequency spectra of the excitation seen by the rotor in the conventional case a uniform angular distribution of the sources of disturbance (FIG. 2) and in the case of the non-uniform angular distribution chosen in step E5 (FIG. 15), then compare the amplitudes of resonance obtained in the two cases.
  • step E60 the frequency spectrum of the excitation seen by the rotor is determined when the angular distribution of the sources of disturbance is uniform, by an aerodynamic calculation of known type (step E60) followed by a transformation.
  • a temporal or angular signal ST is chosen representative of the evolution over time of the excitation seen by the rotor or, which amounts to the same thing, of the evolution of the excitation seen by the rotor in depending on the angle of rotation of the rotor.
  • the signal ST comprises identical bumps 12, for example in the form of Gaussians, and is periodic.
  • the period T of this signal in the case of a time signal, is equal to ⁇ / (360 ° xV), where ⁇ is the angle, constant, defined by two sources of disturbance (in this case two vanes of stator) consecutive.
  • Each bump 12 represents the disturbance induced by a source of disturbance. ;
  • a Fourier transformation is applied to the signal ST. ;
  • step E64 the Fourier transform obtained in step E63 is compared to that obtained in step E61. If the two Fourier transforms are identical, a step E65 is implemented.
  • time signal ST is modified (step E62), by playing on the form
  • step E65 the time signal ST is modified into a signal
  • the spacing between two consecutive bumps is adapted to the new angular, non-uniform distribution of the sources of disturbance.
  • this spacing is no longer constant as in the case of FIG. 17, but varies as a function of the angles of the distribution of the sources of disturbance.
  • time intervals T1, T2 and T3 satisfy the following relationships:
  • T3 ⁇ maj / (360 ° xV), where ⁇ min, ⁇ nom and ⁇ maj denote respectively a reduced angle, a nominal angle and a raised angle.
  • the steps E60 to E66 according to the invention therefore make it possible to obtain the spectrum of the excitation seen by the rotor in the case of a non-uniform angular distribution of the sources of disturbance by dispensing with very long and complex calculations which would be necessary if this spectrum was determined directly by aerodynamic calculations.
  • a next step E67 lines are drawn in the Campbell diagram (two of which, designated by the marks D1 "and D2", are shown in dotted lines in FIG. 7) representing the relationship between the new frequencies appearing in the spectrum frequency of the excitation, that is to say the frequencies other than the frequencies NV, 2NV, 3NV, etc., and the speed of rotation of the rotor. Then, the possible coincidences between these new frequencies and the natural frequencies of the rotor are identified in the range ⁇ V2 of rotational speeds at which the rotor is intended to rotate.
  • FIG. 7 are shown, by way of illustration, points PI and P2 of intersection between the lines D1 and D1 "and between the lines D2 and D2", respectively.
  • the rotor undergoes resonance. If the rotational speeds VI and V2 are close to each other, the resonance effects at points PI and P2 may partially accumulate.
  • a step E68 it is determined at a step E68, for each rotation speed in the range ⁇ V2, if one or more coincidence points exist, and if this is the case, the amplitude of the overall resonance of the rotor is calculated, at this speed of rotation, by a known technique of modal superposition. More precisely, the range ⁇ V2 is broken down into narrow speed steps ⁇ V2, the width of each step depending on the damping of the rotor (ie approximately 0.5% of the speed V). An overall resonance amplitude of the rotor is calculated by modal superposition for each of the steps ⁇ V2, then compared to the amplitude of resonance in the conventional case when the rotor turns at speed V0 (step E69).
  • step E5 If, for each step ⁇ V2, the overall resonance amplitude of the rotor is less than the maximum resonance amplitude in the conventional case, the non-uniform angular distribution chosen in step E5 is validated, and the measurements are then repeated steps E2 to E6 for the next stator-rotor stage (see steps E7 and E8 in Figure 4).
  • step E5 If, exceptionally, one of the overall resonance amplitudes equals or exceeds the maximum resonance amplitude in the conventional case, we return to step E5 to choose another non-uniform angular distribution, and we repeat the step E6 verification (without implementing, of course, steps E60 and E61).
  • step E8 the turbomachine as designed above, being in the form of digital simulation data, is manufactured (step E9).
  • the sources of disturbance consist of stator vanes. It has however been observed by the present inventors that the principle of the invention can be applied to other types of sources of disturbance found in a turbomachine, such as combustion chamber injectors, air sampling elements cooling, relief valves, cooling air reintroduction elements, sensors or probes, placed upstream of one or more rotors of the turbomachine.
  • FIG. 19 schematically illustrates a set of N sources of disturbance 14 of one of the aforementioned types (in the example of FIG. 19, the number N of sources of disturbance is equal to 10), forming part of a stator.
  • the sources of disturbance 14 are identical to the manufacturing tolerances, and are distributed at angles adjacent ai to ON, the sum of which is equal to 360 °, each defined by half -right Ai, Ai + i, originating from the same point O corresponding substantially, in the fluid flow 11, to the center (s) of rotation of the rotor (s) located downstream , and passing respectively through the geometric centers Ci, G + i of two sources of consecutive disturbance.
  • the sources of disturbance 14 generally have the same radial position, that is to say that they are located at the same distance from point O.
  • the set of sources of disturbance 14 is arranged substantially perpendicular to the flow of fluid. , and induces, in the fluid flow, disturbances which can be received by the downstream rotor (s).
  • the method according to the invention is implemented substantially in the same way as when the sources of disturbance are constituted by stator vanes, More specifically, for each rotor affected by the disturbances generated by the disturbance sources 14, steps E2 to E7 identical to those shown in FIG. 4 are implemented.
  • steps E2 to E7 identical to those shown in FIG. 4 are implemented.
  • the present invention has been described in the context of a turbomachine comprising several rotors, it will be clear to a person skilled in the art that the principle of the invention can be applied to any structure comprising at least one rotor and at least one set of stationary sources of disturbance liable to disturb the rotor (s).
  • this assembly is generally the fixed paddle wheel located just upstream of the rotor. If there is no fixed paddle wheel upstream of the rotor and close enough to it to disturb it, it should be determined whether there are sources of disturbance such as combustion chamber injectors, sampling elements air; cooling, relief valves, cooling air reintroduction elements, sensors or probes, upstream of the rotor. If this is the case, the most troublesome sources of disturbance will generally be those which are closest to the rotor, upstream of the latter.
  • the most troublesome sources of disturbance are most often located upstream of the rotor, there are situations where the rotor is disturbed mainly by sources of disturbance placed downstream (in particular when no set of sources of disturbance is present upstream of the rotor).
  • the present invention is therefore not limited to a particular relative position of the set of sources of disturbance relative to the rotor.
  • a principle of the method according to the invention consists in choosing an angular distribution of the sources of fixed disturbance of so as to reduce the amplitude of the excitation seen by the rotor for at least one frequency of the excitation substantially coinciding with a natural frequency of the rotor at a speed of rotation V of the latter, relative to an angular distribution initially considered.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Vibration Prevention Devices (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Braking Arrangements (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

Procédé de réduction de vibrations dans une structure comprenant au moins un rotor (101j) et un ensemble de sources de perturbation fixes (102j) susceptibles d'entraîner des perturbations dans l'écoulement de fluide (11) faisant vibrer le rotor, procédé comprenant une étape de répartition angulaire non uniforme des sources de perturbation fixes de telle façon à réduire l'amplitude d'une excitation vue par le rotor et une étape consistant à vérifier que l'amplitude maximale d'une réponse du rotor à l'excitation est obtenue en: déterminant un premier signal dont la transformée de Fourier correspond au spectre fréquentiel de l'excitation dans le cas où les sources de perturbation fixes sont réparties selon une répartition angulaire prédéterminée, en modifiant le premier signal en un second signal, adapté à ladite répartition angulaire choisie des sources de perturbation fixes, en déterminant le spectre fréquentiel de l'excitation en calculant la transformée de Fourier du second signal, et en calculant la réponse du rotor à l'excitation sur la base du spectre fréquentiel de l'excitation.

Description

STRUCTURE COMPRENANT UN ROTOR ET DES SOURCES DE PERTUBATIONS FIXES ET PROCEDE DE REDUCTION DE VIBRATIONS DANS CETTE STRUCTURE
DOMAINE DE L'INVENTION
La présente invention concerne, de manière générale, la réduction de vibrations dans une structure comprenant un rotor et des sources de perturbation fixes. Par l'expression « réduction de vibrations » on entend une réduction de l'amplitude des vibrations.
Le rotor et les sources de perturbation fixes de la structure sont placés dans un écoulement de fluide. Les sources de perturbation fixes sont, par exemple, des aubes d'un stator. Selon une application particulière de l'invention, la structure précitée est une turbomachine. Les sources de perturbation fixes génèrent dans l'écoulement de fluide des variations de pression qui peuvent se propager dans l'ensemble de la structure, en aval comme en amont, et faire vibrer le rotor. I
DESCRIPTION DE LA TECHNIQUE ANTERIEURE ! La figure 1 montre une structure conventionnelle, désignée par le repère 1, comprenant un rotor 2 et un stator 3 soumis à un écoulement de fluide 4. Le rotor 2 et le stator 3 comprennent respectivement des aubes 20 et 30 disposées radialement de manière uniforme, c'est-à-dire que l'angle entre deux aubes données est constant. Les aubes 20 et 30 servent, de façon bien connue, à modifier la pression du fluide, pour soit le compresser soit le détendre. Le rotor 2, en tournant comme indiqué par la flèche 21, voit les sillages respectifs des aubes 30 du stator 3 dans l'écoulement de fluide 4 comme des perturbations tournantes.
Plus particulièrement, en désignant le nombre d'aubes de stator 30 par N et la vitesse de rotation du rotor 2, exprimée en Hz, par V, le rotor 2 subit une excitation présentant une fréquence fondamentale NV, une première fréquence harmonique 2NV, une seconde fréquence harmonique 3NV, et ainsi de suite.
La figure 2 montre le spectre de l'excitation issue du stator 3 telle que reçue par le rotor 2. Ce spectre comporte trois raies 5, correspondant respectivement à la fréquence fondamentale et aux deux premières fréquences harmoniques. Dans l'exemple illustré à la figure 2, la partie de l'excitation correspondant aux harmoniques supérieures à la fréquence 3NV est négligée.
La réponse du rotor 2 à cette excitation est fonction des fréquences propres du rotor, lesquelles dépendent de la géométrie, du matériau et de la vitesse de rotation du rotor. Si, à une vitesse de rotation donnée, les fréquences propres du rotor ne coïncident avec aucune des raies 5 illustrées à la figure 2, le rotor, lorsqu'il fonctionne à cette vitesse, est peu perturbé par les sillages des aubes 30 dans l'écoulement 4. Si, au contraire, à cette même vitesse, l'une des fréquences propres du ro;tor 2 coïncide avec l'une ou l'autre des raies 5, le rotor 2 subit une résonance qui le fait vibrer. Or les vibrations du rotor 2 doivent être évitées autant que possible car elles peuvent entraîner des dommages pouvant conduire à la rupture en fatigue vibratoire de celui-ci. En règle générale, notamment dans le cas des turbomachines, le rotor 2 doit pouvoir être utilisé dans toute une plage de vitesses de rotation, afin de permettre l'existence de plusieurs régimes de fonctionnement. La figure 3 montre un diagramme de Campbell représentant, par des droites Di, la relation entre les fréquences propres du rotor, désignées par fi, et la vitesse de rotation V du rotor, et, par des droites Dl', D2' et D3', la relation entre les fréquences d'excitation, NV, 2NV et 3NV et ladite vitesse de rotation V du rotor. Pour la clarté du dessin, seulement trois fréquences propres fi, et f3 et trois droites correspondantes Dl, D2 et D3 ont été représentées à la figure 3. !
Deux situations peuvent se présenter selon la plage de vitesses de rotation du rotor : ;
- si le rotor tourne dans une plage de vitesses ΔV1 dans laquelle aucune coïncidence ne se produit entre les fréquences propres fi du rotor 2 et les fréquences d'excitation NV, 2NV et 3NV, le rotor 2, en fonctionnement, est peu affecté par les perturbations engendrées dans l'écoulement de fluide par le stator 3 ;
- si, en revanche, la plage de vitesses de rotation du rotor 2 est une plage ΔV2 dans laquelle un ou plusieurs points de coïncidence existent entre les fréquences propres fi du rotor et les fréquences d'excitation NV, 2NV et 3NV (ces points de coïncidence correspondent à des points d'intersection PI, dont un seul est représenté à la figure 3, entre les droites Di et les droites Dl', D2' et D3'), un effet de résonance se produit dans le rotor 2 en chacun de ces points de coïncidence. ;
Pour résoudre le problème des vibrations du rotor 2 dues aux aubes 30 du stator 3 lorsque, à une vitesse de rotation V donnée, une fréquence propre du rotor 2 coïncide avec une fréquence d'excitation NV,
2NV ou 3NV, il est connu de modifier la géométrie du rotor 2, en jouant sur sa masse et sa raideur, afin de changer ses fréquences propres.
Par cette méthode, on parvient effectivement à supprimer la ou les coïncidences gênantes. Cependant, il arrive fréquemment qu'en décalant ainsi les fréquences propres du rotor, d'autres coïncidences apparaissent dans la plage de vitesses de rotation. Il est même parfois quasiment impossible d'empêcher toute coïncidence entre les fréquences propres du rotor et les fréquences excitatrices à l'intérieur de cette plage de vitesses. D'autre part, les modifications géométriques du rotor entraînent souvent une dégradation de sa performance aérodynamique.
Dans les cas où la méthode ci-dessus est inappropriée,! une solution alternative consiste à amortir les vibrations du rotor soit par friction ou cisaillement, soit par amortissement aéroélastique. Toutefois, l'amortissement par friction ou cisaillement est assez compliqué à réaliser, en particulier lorsque le rotor est monobloc. Quant à l'amortissement aéroélastique, il nécessite d'utiliser un rotor dissymétrique, par exemple du type décrit dans le document EP- A-0921 274. Or, la tenue en rotation de tels rotors dissymétriques est difficile à assurer.
OBTECTIFS ET RESUME DE LA PRESENTE INVENTION
La présente invention vise à fournir un procédé de réduction de vibrations dans une structure comprenant un rotor et des sources de perturbation fixes, qui facilite la conception et la fabrication de ladite structure. !
A cette fin, il est prévu un procédé de réduction de vibrations dans une structure comprenant au moins un rotor et au moins un stator, le rotor et le stator étant destinés à être soumis à un écoulement de fluide, la structure comprenant un ensemble de sources de perturbation ! fixes susceptibles d'entraîner des perturbations dans l'écoulement de fluide faisant vibrer le rotor, caractérisé en ce que, lors de la conception de la structure, on choisit une répartition angulaire non uniforme des sources de perturbation fixes de telle façon à réduire l'amplitude d'une excitation vue par le rotor et correspondant auxdites perturbations pour au moins une fréquence de l'excitation coïncidant sensiblement avec une fréquence propre du rotor à une vitesse de rotation V de celui-ci, par rapport a une répartition angulaire prédéterminée uniforme des sources de perturbation fixes, et en ce que le procédé comprend en outre une étape consistant à vérifier, dans toute une plage de vitesses de rotation auxquelles le rotor est susceptible de tourner, incluant la vitesse de rotation V, ; que l'amplitude maximale d'une réponse du rotor à l'excitation dans le cas où les sources de perturbation fixes sont réparties selon la répartition angulaire choisie est inférieure à celle dans le cas où les sources de perturbation fixes sont réparties selon la répartition angulaire prédéterminée, ladite réponse du rotor à l'excitation dans le cas où les sources de perturbation fixes sont réparties selon la répartition angulaire choisie étant obtenue en mettant en oeuvre les étapes suivantes : déterminer un premier signal dont la transformée de Fourier correspond au spectre fréquentiel de l'excitation dans le cas où les sources de perturbation fixes sont réparties selon la répartition angulaire prédéterminée, \ modifier le premier signal en un second signal, adapté ; à la répartition angulaire choisie des sources de perturbation fixes, ; déterminer le spectre fréquentiel de l'excitation en calculant la transformée de Fourier du second signal, et ; calculer la réponse du rotor à l'excitation sur la base du spectre fréquentiel de l'excitation.
Ainsi, selon l'invention, la réduction des vibrations du rotor est obtenue non pas en modifiant la structure ou la géométrie du rotor, comme dans la technique antérieure, mais en modifiant la répartition angulaire des sources de perturbation fixes, de manière à modifier en conséquence le spectre fréquentiel de l'excitation, telle que vue par le rotor, engendrée par les sources de perturbation fixes. Il n'est nullement besoin, selon l'invention, de rendre le rotor dissymétrique. La conception et la fabrication de la structure s'en trouvent donc facilitées, en ce sens que l'on évite les difficultés liées à la rotation d'un rotor dissymétrique.; A la différence du rotor, l'ensemble de sources de perturbation est statique et peut être facilement rendu dissymétrique sans entraîner de problèmes de conception ou de fabrication particuliers. !
Le fait d'utiliser une répartition angulaire non uniforme des sources de perturbation fixes a pour effet d'enrichir le spectre fréquentiel de l'excitation vue par le rotor de raies supplémentaires, par rapport à la configuration conventionnelle, telle qu'illustrée à la figure 1, où les sources de perturbation sont régulièrement réparties. Or, l'énergie de perturbation produite par l'ensemble de sources de perturbation selon l'invention est la même que celle qui serait produite par ces mêmes sources de perturbation si elles étaient réparties régulièrement. L'intensité des raies correspondant aux fréquences NV, 2NV, 3NV, etc., et en particulier de la raie gênante coïncidant avec la fréquence propre précitée du rotor, est donc réduite, ce qui affaiblit les vibrations du rotor. ; l Selon un mode de réalisation de l'invention, les sources de perturbation fixes sont identiques (aux tolérances de fabrication près) ; et au moins une fréquence propre du rotor, à la vitesse de rotation V, est sensiblement égale à NV ou à un multiple de NV, où N est le nombre de sources de perturbation fixes dans ledit ensemble. Par le terme « identiques », on entend que les sources de perturbation fixes produisent la même perturbation dans l'écoulement de fluide.
Typiquement, le premier signal comprend des bosses identiques espacées régulièrement, chaque bosse étant représentative d'une perturbation créée par une source de perturbation fixe, l'espacement entre deux bosses données consécutives étant représentatif de l'angle défini par deux sources de perturbation consécutives dans le cas ou les sources de perturbation sont réparties selon la répartition angulaire uniforme, et l'étape de modification consiste à adapter les espacements entre les bosses aux angles de la répartition angulaire choisie. j
En pratique, l'ensemble de sources de perturbation fixes peut être situé en amont ou en aval du rotor dans l'écoulement de fluide, mais est de préférence situé en amont car c'est dans cette situation que les perturbations engendrées par l'ensemble de sources de perturbation se propagent le mieux et sont le plus susceptibles d'affecter le rotor.
De préférence, les sources de perturbation fixes ont sensiblement une même position radiale par rapport à un point correspondant, dans l'écoulement de fluide, à un centre de rotation du rotor.
Selon une application particulière de l'invention, les sources de perturbation fixes sont des aubes de stator. !
Selon une autre application, les sources de perturbation fixes sont de l'un des types suivants : injecteurs de chambre de combustion, éléments de prélèvement d'air de refroidissement, vannes de décharge, éléments de réintroduction d'air de refroidissement, capteurs et sondés.
Typiquement, la structure susmentionnée peut consister en une turbo achine. La présente invention concerne également un procédé de conception d'une structure comprenant au moins un rotor et au moins un stator, le rotor et le stator étant destinés à être soumis à un écoulement de fluide, la structure comprenant un ensemble de sources de perturbation fixes susceptibles d'entraîner des perturbations dans l'écoulement de fluide faisant vibrer le rotor, caractérisé en ce qu'il comprend des étapes consistant à : déterminer une architecture globale pour la structure, et appliquer le procédé de réduction de vibrations défini ci-dessus à ladite structure. [
La présente invention concerne également un procédé de conception et de fabrication d'une structure comprenant au moins un rotor et au moins un stator, le rotor et le stator étant destinés à être soumis à un écoulement de fluide, la structure comprenant un ensemble de sources de perturbation fixes susceptibles d'entraîner des perturbations dans l'écoulement de fluide faisant vibrer le rotor, caractérisé en ce qu'il comprend des étapes consistant à : déterminer une architecture globale pour la structure, appliquer le procédé de réduction de vibrations défini ci-dessus à ladite structure, et fabriquer ladite structure.
Dans le cas conventionnel d'aubes de stator identiques réparties régulièrement, les intensités des raies du spectre fréquentiel de l'excitation vue par le rotor lorsqu'il tourne à une vitesse de rotation donnée peuvent être importantes. Par conséquent, lorsqu'une fréquence propre du rotor, à cette même vitesse, coïncide avec l'une de ces raies, le rotor subit une résonance importante qui peut être très dommageable. ;
La présente invention vise donc également à fournir ! une structure comprenant un rotor et un ensemble de sources de perturbations fixes identiques, qui permette de réduire l'intensité des éventuels effets de résonance du rotor, en particulier d'empêcher que de tels effets puissent atteindre les valeurs d'intensité que l'on connaît avec les structures conventionnelles, et ce sans trop affecter l'efficacité aérodynamique de la structure. A cette fin, il est prévu une structure comprenant au moins un rotor, au moins un stator et un ensemble d'un nombre N de sources de perturbation fixes, le rotor et l'ensemble de sources de perturbation fixes étant destinés à être traversés sensiblement perpendiculairement p r un écoulement de fluide, dans lequel l'ensemble de sources de perturbation est susceptible d'entraîner des perturbations qui sont ensuite reçues par le rotor, l'ensemble de sources de perturbation formant, dans un I plan sensiblement perpendiculaire à l'écoulement de fluide, un ensemble 'de N angles adjacents dont la somme est égale à 360°, chaque angle étant défini par deux demi-droites consécutives ayant pour origine un même point correspondant, dans l'écoulement de fluide, à un centre de rotation du rotor, et passant respectivement par les centres géométriques de deux sources de perturbation, caractérisée en ce que l'ensemble d'angles adjacents comprend au moins un groupe d'angles adjacents dits majorés, supérieurs à 360° /N, et au moins un groupe d'angles adjacents dits minorés, inférieurs à 360° /N.
Les expressions «angle supérieur» et «angle inférieur;» se rapportent, selon l'invention, à une valeur d'angle qui est supérieure, respectivement inférieure, à une valeur donnée, une fois prises en compte les tolérances de fabrication. En d'autres termes, deux angles seront considérés comme égaux s'ils ont la même valeur, aux tolérances de fabrication près. De manière générale, les tolérances de fabrication! sont inférieures à 0,05°. j
Dans la structure selon l'invention définie ci-dessus, les sources de perturbation sont agencées de façon non uniforme, de sorte que le spectre fréquentiel de l'excitation vue par le rotor comporte, comme expliqué précédemment en relation avec le procédé selon l'invention, des raies supplémentaires par rapport à la configuration conventionnelle, telle qu'illustrée à la figure 1, où les sources de perturbation sont régulièrement réparties. Plus particulièrement, la partie de l'excitation correspondant à chaque angle majoré présente une fréquence fondamentale inférieure à la fréquence NV (c'est-à-dire la fréquence fondamentale dans le cas classique), tandis que la partie de l'excitation correspondant à chaque angle minoré présente une fréquence fondamentale supérieure à la fréquence NV.
L'énergie de perturbation produite par l'ensemble de sources de perturbation selon l'invention étant la même que celle qui serait produite par ces mêmes sources de perturbation si elles étaient réparties régulièrement, l'intensité des raies correspondant aux fréquences
• d'excitation NV, 2NV, 3NV, etc. est donc réduite, si bien que l'on diminue
• l'amplitude de la résonance du rotor lorsqu'une ou plusieurs fréquences propres de ce dernier coïncident avec une ou plusieurs fréquences d'excitation.
En outre, l'intensité de la raie maximale du spectre de l'excitation est réduite, si bien que l'on diminue le risque de voir le çotor résonner très fortement. L'effet de réduction des intensités des raies gênantes du spectre de l'excitation correspondant aux fréquences NV, 2NV, 3NV, etc. est renforcé par le fait que, dans l'ensemble d'angles adjacents, des angles majorés (respectivement minorés) sont regroupés entre eux. En effet, lorsque le rotor tourne d'un angle correspondant à un groupe d'angles majorés (ou minorés), l'excitation qu'il reçoit comprend non seulement la fréquence correspondant à chaque angle majoré (ou minoré), mais également des fréquences multiples de cette fréquence.
De ce fait, il est possible de réduire l'intensité des raies gênantes du spectre sans qu'il soit nécessaire de trop modifier la géométrie de l'ensemble de sources de perturbation. Conserver une géométrie de l'ensemble de sources de perturbation la plus proche possible de la géométrie uniforme, dans laquelle la répartition angulaire des sources de perturbation est uniforme, évite que l'efficacité aérodynamique de la structure ne soit affectée dans une trop grande mesure. De préférence, l'ensemble d'angles adjacents comprend au moins un angle dit nominal, égal à 360° /N. La présence d'un ou plusieurs angles nominaux permet, en évitant une variation angulaire brutale entre les angles majorés et les angles minorés, de réduire la perte d'efficacité aérodynamique due au fait que la répartition angulaire des sources de perturbation n'est pas uniforme. ;
Selon un mode de réalisation préféré de la structure selon l'invention, l'ensemble d'angles adjacents comprend un unique groupe d'angles adjacents majorés et un unique groupe d'angles adjacents minorés. Plus particulièrement, l'ensemble d'angles adjacents peut être constitué par : un unique groupe d'angles adjacents majorés, un premier angle nominal ou un premier groupe d'angles adjacents nominaux, adjacent au groupe d'angles adjacents majorés, un unique groupe d'angles adjacents minorés, qui est adjacent audit premier angle nominal ou audit premier groupe d'angles adjacents nominaux, et un second angle nominal ou un second groupe d'angles adjacents nominaux, adjacent au groupe d'angles adjacents minorés.
Selon une variante du mode de réalisation préféré, l'ensemble d'angles adjacents est constitué par un unique groupe d'angles adjacents majorés et un unique groupe d'angles adjacents minorés, et ne comporte donc pas d'angle nominal.
Le regroupement des angles majorés/minorés en un unique groupe, tel qu'il est mis en œuvre dans le mode de réalisation préféré de l'invention, permet d'augmenter l'intensité des raies supplémentaires du spectre de l'excitation vue par le rotor, et de diminuer ainsi encore davantage l'intensité des raies correspondant aux fréquences NV, 2NV, 3NV, etc. Ce mode de réalisation préféré est donc particulièrement avantageux lorsque la fréquence propre du rotor coïncide avec l'une des fréquences précitées NV, 2NV, 3NV, etc. puisqu'il réduit de façon importante l'intensité de la raie gênante tout en n'affectant que peu l'efficacité aérodynamique de la structure (un effet satisfaisant est obtenu même si les angles majorés/minorés sont peu différents de 360°/N). ;
Selon d'autres modes de réalisation de l'invention, l'ensemble d'angles adjacents comprend plusieurs groupes d'angles adjacents majorés et plusieurs groupes d'angles adjacents minorés, intercalés entre les groupes d'angles adjacents majorés. L'ensemble d'angles adjacents peut comprendre en outre plusieurs angles nominaux ou plusieurs groupes d'angles adjacents nominaux, chaque angle nominal ou groupe d'angles adjacents nominaux étant adjacent à la fois à un groupe d'angles adjacents majorés et à un groupe d'angles adjacents minorés.
En variante, l'ensemble d'angles adjacents peut être constitué par plusieurs groupes d'angles adjacents majorés et plusieurs groupes d'angles adjacents minorés, chaque groupe d'angles adjacents minorés étant adjacent à deux groupes d'angles adjacents majorés. Dans ce cas, l'ensemble d'angles adjacents ne comporte donc pas d'angle nominal. De préférence, dans les différents modes de réalisation définis ci-dessus, tous les angles majorés de l'ensemble d'angles adjacents . sont majorés d'une même valeur prédéterminée et tous les angles minorés de l'ensemble d'angles adjacents sont minorés de ladite valeur prédéterminée. Toutefois, il peut être envisagé qu'au moins deux angles majorés et/ou au moins deux angles minorés de l'ensemble d'angles adjacents soient différents entre eux.
Typiquement, l'ensemble d'angles adjacents peut comprendre autant d'angles majorés que d'angles minorés. Avantageusement, afin de ne pas entraîner de perte d'efficacité aérodynamique trop importante, chaque angle majoré et chaque angle minoré de l'ensemble d'angles adjacents diffère de 360°/N d'au plus 10%, et de préférence d'au plus 5%.
BREVE DESCRIPTION DES DESSINS '
Dans les dessins annexés :
- la figure 1, déjà commentée, montre schématiquement en perspective une partie d'une turbomachine, comprenant un rotor et un stator ; - la figure 2, déjà commentée, montre le spectre fréquentiel d'une excitation vue par le rotor de la figure 1 ;
- la figure 3, déjà commentée, montre un diagramme de Campbell correspondant à la partie de turbomachine illustrée à la figure 1 ; - la figure 4 est un organigramme d'un procédé de conception et de fabrication d'une turbomachine selon la présente invention ;
- la figure 5 montre schématiquement en perspective une partie d'une turbomachine, comprenant plusieurs étages stator-rotor ;
- la figure 6 montre schématiquement en vue de face un stator de la partie de turbomachine illustrée à la figure 5 ;
- la figure 7 montre un diagramme de Campbell correspondant à un étage stator-rotor de la partie de turbomachine illustrée à la figure 5 ;
- les figures 8 à 14 montrent différents exemples de répartition angulaire, conformes à la présente invention, de sources de perturbation présentes dans la partie de turbomachine illustrée à la figure 5 ; - la figure 15 montre le spectre fréquentiel d'une excitation vue par un rotor de la partie de turbomachine illustrée à la figure 5, dans le cas de la répartition angulaire représentée à la figure 10 ;
- la figure 16 est un organigramme d'une méthode de vérification conforme à la présente invention ; - la figure 17 montre un signal temporel utilisé dans la méthode de la figure 16 ;
- la figure 18 montre un signal temporel modifié obtenu à partir du signal temporel de la figure 17 ; et
- la figure 19 montre un ensemble de sources de perturbation fixes selon une variante de la présente invention.
DESCRIPTION DE PLUSIEURS MODES DE REALISATION DE L'INVENTION
Un procédé de conception et fabrication d'une turbomachine selon la présente invention est maintenant décrit en détail en référence à la figure 4.
A une première étape El, une architecture globale de la turbomachine est déterminée de manière bien connue, par simulation, à partir de spécifications initiales définissant, entre autres, la puissance et la consommation en énergie souhaitées. L'étape El consiste plus particulièrement à déterminer le nombre d'étages stator-rotor, le nombre d'aubes par étage et le profil des aubes permettant d'obtenir une performance aérodynamique répondant aux spécifications initiales.
A l'issue de cette première étape, on obtient, sous forme de données numériques, une structure du type de celle illustrée à la figure 5, comprenant un nombre J d'étages stator-rotor 10ι à lOj. Chaque étage 10j, où j est un nombre entier compris entre 1 et J, comprend un stator 100j, se présentant sous la forme d'une roue aubagée fixe, et un rotor lOlj, du type roue aubagée mobile. Les aubes de chaque stator 100j sont désignées à la figure 5 par le repère 102j et les aubes de chaque rotor lOlj par le repère 103j. Les différents étages stator-rotor sont agencés pour, en fonctionnement, être traversés par un écoulement de fluide 11 en étant perpendiculaires à celui-ci. Dans chaque étage 10j, le stator 100j, situé en amont du rotor associé lOlj, génère des perturbations de pression dans l'écoulement 11 qui sont ensuite reçues par le rotor lOlj. La réponse du rotor à ces perturbations dépend des fréquences d'excitation vues par le rotor et des fréquences propres de celui-ci.
Les aubes de stator 102j d'un étage donné constituent un ensemble d'un nombre N de sources de perturbation fixes et identiques (le nombre N pouvant varier d'un étage à l'autre). Aux figures 5 et 6, chaque stator (et rotor) a été représenté avec un nombre d'aubes égal à 16. En pratique, le nombre N est généralement compris entre 16 et 200.
Comme montré à la figure 5, les N sources de perturbation fixes 102j définissent, dans un plan PLj perpendiculaire à la direction de l'écoulement de fluide 11, un ensemble de N angles de répartition adjacents cti à ŒN, dont la somme est égale à 360°. Chaque angle ai, où; i est un entier compris entre 1 et N, est défini par des demi-droites Ai, Ai+i, ayant pour origine un même point Oj situé sensiblement en vis-à-vis d'un point de rotation Oj' du rotor associé lOlj, et passant respectivement par les centres géométriques (non représentés) de deux aubes 102j consécutives. Dans l'exemple de la figure 6, les demi-droites Ai à AN sont des axes centraux des aubes 102j.
En référence de nouveau à la figure 4, après l'étape El, sont mises en œuvre, pour chaque étage stator-rotor 10j, des étapes E2 à E7. A l'étape E2, les fréquences propres du rotor, désignées par fi, sont calculées puis portées sur un diagramme de Campbell sous la forme de droites Di représentant la relation entre ces fréquences propres et la vitesse de rotation V du rotor, exprimée en Hz (cf. figure 7). Sur ce même diagramme de Campbell, sont tracées également des droites Dl' à DP', où P est un nombre entier prédéterminé, passant par l'origine du diagramme et ayant pour pentes respectives N, 2N, 3N, ..., PN. Les droites Dl' à DP' représentent la relation entre les fréquences d'excitation vues par le rotor lOlj lorsque les aubes 102j du stator 100j sont régulièrement réparties (c'est-à-dire lorsque les angles ai à CCN sont égaux), comme illustré à la figure 6. Le choix du nombre prédéterminé P dépend de la mesure dans laquelle on souhaite réduire les vibrations du rotor. En pratique, en particulier dans le cas des turbomachines, il a été observé que les résonances impliquant les fréquences d'excitation d'ordre supérieur à 3 ont une intensité suffisamment faible pour pouvoir être négligées. Onpeut donc le plus souvent se contenter des trois premières fréquences d'excitation (P=3). En ce qui concerne les fréquences propres du rotor, on peut se limiter aux seules fréquences propres susceptibles d'entrer en coïncidence avec au moins l'une des fréquences d'excitation N, 2N, 3N, ..., PN dans une plage de vitesses de rotation auxquelles le rotor est destiné à tourner. Pour la clarté du dessin, seulement trois fréquences propres, fi, h et f3 et trois droites correspondantes Dl, D2 et D3 ont été représentées à la figure 7.
Les étapes El et E2 sont, en soi, bien connues de l'homme du métier et n'ont donc pas besoin d'être décrites plus en détail.
A l'étape suivante E3, on identifie, dans le diagramme de Campbell, les éventuelles coïncidences entre les fréquences propres du rotor et les fréquences d'excitation, dans la plage de vitesses de rotation auxquelles le rotor est destiné à tourner.
Si la plage de vitesses de rotation du rotor est du type de la plage ΔV1 illustrée à la figure 7, dans laquelle aucune coïncidence n'est identifiée (ce qui signifie que, si des coïncidences impliquant, des fréquences d'excitation d'ordre supérieur à P=3 peuvent exister en théorie, elles ne donnent pas lieu à des effets de résonance importants),; une répartition angulaire uniforme est choisie pour les sources de perturbation fixes, à l'étape E4. Selon cette répartition uniforme, les angles ai à ON; sont tous égaux entre eux, et le stator est du type de celui montré à la figure 6.
Si une ou plusieurs coïncidences existent, comme dans le cas de la plage de vitesses de rotation ΔV2 montrée à la figure 7, une répartition angulaire non uniforme est choisie pour les sources de perturbation fixes, à l'étape E5, afin de modifier le spectre de l'excitation vue par le rotor et éviter que les perturbations engendrées par le stator ne viennent trop fortement exciter le rotor. Dans l'exemple de la figure 7, une coïncidence existe entre la fréquence propre h du rotor et la fréquence d'excitation NV à une vitesse V0 dans la plage ΔV2. Cette coïncidence est matérialisée par le point d'intersection PI entre les droites Dl et Dl'. ! Des exemples de types de répartition pouvant être choisis pour la mise en œuvre de l'étape E5 sont exposés ci-dessous. Dans tout ce qui suit, on entendra par « angle nominal!» un angle égal à 360° /N, par « angle majoré », un angle supérieur à 360° /N et par « angle minoré » un angle inférieur à 360° /N. Dans les figurés, le symbole « = » représentera un angle nominal, le symbole « + » un angle majoré et le symbole « - » un angle minoré.
Premier type de répartition :
Selon un premier type de répartition, l'ensemble d'angles adjacents est constitué de : i
- un unique groupe d'angles adjacents majorés, égaux à (360°/N)+c, et !
- un unique groupe d'angles adjacents minorés, égaux à (360°/N)-c, ! où c est un nombre réel tel que 0 < c < 360°/N. ;
La figure 8 illustre un exemple de ce type de répartition.
Second type de répartition :
Selon un second type de répartition, l'ensemble d'angles adjacents est constitué de : ;
- un unique groupe d'angles adjacents majorés, égaμx à (360°/N)+c, !
- un unique groupe d'angles adjacents minorés, égaux à (360°/N)-c, ce groupe étant adjacent au groupe d'angles majorés, et
- un angle nominal ou un groupe d'angles adjacents nominaux, intercalé entre le groupe d'angles adjacents majorés et le groupe d'angles adjacents minorés, où c est un nombre réel tel que 0 < c < 360°/N.
La figure 9 montre un exemple de ce type de répartition, comportant un groupe de deux angles adjacents nominaux. Troisième type de répartition :
Selon un troisième type de répartition, l'ensemble d'angles adjacents est constitué de : ;
- un unique groupe d'angles adjacents majorés, égaux à
(360°/N)+c, !
- un premier angle nominal ou un premier groupe d'angles adjacents nominaux, adjacent au groupe précité d'angles adjacents majorés, - un unique groupe d'angles adjacents minorés, égaux à
(360°/N)-c, ce groupe étant adjacent audit premier angle nominal ou premier groupe d'angles adjacents nominaux, et
- un second angle nominal ou un second groupe d'angles adjacents nominaux, adjacent aux groupes précités d'angles adjacents minorés et d'angles adjacents majorés, où c est un nombre réel tel que 0 < c < 360°/N. ;
La figure 10 montre un exemple de ce type de répartition, comportant deux angles nominaux séparés, intercalés chacun entre les groupes d'angles adjacents majorés et minorés. ;
La figure 11 montre un autre exemple de ce type de répartition, comportant un angle nominal intercalé entre les groupes d'angles adjacents majorés et minorés, et un groupe d'angles adjacents nominaux, opposé à l'angle nominal, et également intercalé entre les groupes d'angles adjacents majorés et minorés.
Quatrième type de répartition :
Selon un quatrième type de répartition, l'ensemble d'angles adjacents est constitué de :
- plusieurs groupes d'angles adjacents majorés, chaque angle majoré étant égal à (360° /N)+c, et :
- plusieurs groupes, intercalés entre les groupes d'angles adjacents majorés, d'angles adjacents minorés, chaque angle minoré étant égal à (360°/N)-c, ! où c est un nombre réel tel que 0 < c < 360° /N. ; Les figures 12 et 13 montrent des exemples de ce type de répartition.
Cinquième type de répartition : ;
Selon un cinquième type de répartition, l'ensemble d'angles adjacents est constitué de : ;
- plusieurs groupes d'angles adjacents majorés, chaque angle majoré étant égal à (360°/N)+c, ;
- plusieurs groupes, intercalés entre les groupes d'angles adjacents majorés, d'angles adjacents minorés, chaque angle minoré étant égal à (360°/N)-c, et !
- au moins un angle nominal, où c est un nombre réel tel que 0 < c < 360° /N.
La figure 14 montre un exemple de ce type de répartition. ,
Sixième type de répartition : ; Selon un sixième type de répartition, l'ensemble d'angles adjacents est constitué de : ;
- plusieurs groupes d'angles adjacents majorés, chaque angle majoré étant égal à (360°/N)+c, ! - plusieurs groupes, intercalés entre les groupes d'angles adjacents majorés, d'angles adjacents minorés, chaque angle minoré étant égal à (360°/N)-c, j
- plusieurs angles nominaux ou plusieurs groupes d'angles adjacents nominaux, chaque angle nominal ou chaque groupe d'angles adjacents nominaux étant adjacent à la fois à l'un desdits groupes d'angles adjacents majorés et à l'un desdits groupes d'angles adjacents minorés, où c est un nombre réel tel que 0 < c < 360° /N.
Le schéma de la figure 14 est également un exemple de ce type de répartition. Autres types de répartition : :
Dans chacun des six types de répartition exposés ci-dessus, les angles majorés (respectivement minorés) sont tous égaux entre eux, et le nombre total d'angles majorés est nécessairement égal à celui des angles minorés. Ainsi, en particulier, le nombre N de sources de perturbation dans les premier et quatrième types de répartition est nécessairement pair. Toutefois, il est possible de modifier ces six types de répartition de sorte que les angles majorés (respectivement minorés) ne soient pas tous égaux entre eux. En d'autres termes, chacun des six types de répartition ci-dessus peut être modifié de telle sorte que la valeur c ne soit plus constante, mais puisse au contraire différer d'un angle à l'autre. Dans ce cas, le nombre d'angles majorés peut être différent du nombre d'angles minorés. ; Dans les types de répartition selon l'invention, ceux comportant un ou plusieurs angles nominaux sont préférés. La présence d'angles nominaux évite en effet les variations angulaires brutales entre angles majorés et angles minorés qui peuvent être néfastes pour la performance aérodynamique du stator. En outre, pour les mêmes raisons d'efficacité aérodynamiqμe, il est préférable que les angles majorés (respectivement les angles minorés) diffèrent de 360° /N d'au plus 10% voire même d'au plus 5%, c'est-à-dire que la valeur c soit inférieure ou égale à 36 /N voire inférieure ou égale à 18/N. Les types de répartition décrits ci-dessus ont tous en commun, d'une part, d'être non réguliers, et, d'autre part, de comporter au moins deux angles majorés adjacents l'un à l'autre et au moins deux angles minorés adjacents l'un à l'autre. !
Par rapport à la configuration conventionnelle où les sources de perturbation sont régulièrement réparties (cf. figure 1), le spectre fréquentiel de l'excitation, telle que vue par le rotor, produite par ces mêmes sources de perturbation, mais réparties de façon non uniforme, comporte des raies supplémentaires. En effet, chaque angle majoré fait participer, dans le spectre fréquentiel de l'excitation, des raies de fréquences : ! (360°/((360°/N)+c))V, 2x(360°/((360°/N)+c))V, 3x(360°/((360°/N)+c))V, etc.,
et chaque angle minoré fait participer des raies de fréquences
(360°/((360°/N)-c))V, 2x(360°/((360°/N)-c))V, 3x(360°/((360°/N)-c))V, etc..
Cet enrichissement en raies supplémentaires s'accompagne d'un affaiblissement de l'intensité des raies correspondant aux fréquences d'excitation NV à PNV, et donc, en particulier, dans l'exemple de la figure 7, de la raie gênante correspondant à la fréquence NV, en coïncidence avec la fréquence propre fl au point PI (lorsque la vitesse de rotation V est égale à V0). L'intensité de la résonance due à la fréquence gênante NVO est ainsi réduite. Le rotor 2 vibrera donc moins que dans le cas conventionnel lorsque, en fonctionnement, il tournera à la vitesse V0. <
Cet effet est renforcé par le fait qu'au moins deux ahgles majorés sont adjacents l'un à l'autre et au moins deux angles minorés! sont adjacents l'un à l'autre. Un tel regroupement des angles majorés (respectivement minorés) entre eux, contribue à augmenter l'intensité des raies de fréquences multiples de la fréquence (360°/((360°/N)+c))V (respectivement (360°/((360°/N)-c))V)). !
La figure 15 montre, à titre d'illustration, le spectre de l'excitation vue par le rotor, dans le cas de l'exemple de répartition montré à la figure 10. A la figure 15, l'intensité des raies est normée par rapport à l'intensité de la raie de fréquence NV dans le spectre de la figure 2, correspondant au cas conventionnel. L'intensité maximale de valeur 1 correspond donc à l'intensité de la raie de fréquence NV dans le cas cjù les N sources de perturbation sont réparties régulièrement. On notera, dans la figure 15, que : ; - les intensités des raies du spectre de l'excitation sont toutes bien inférieures à 1, et donc inférieures à l'intensité de la raie de fréquence NV dans le cas conventionnel, et
- les intensités de la raie de fréquence NV (respectivement 2NV, 3NV) et des raies de fréquences voisines de NV (respectivement 2NV, 3NV) sont toutes bien inférieures à l'intensité de la raie de fréquence NV (respectivement 2NV, 3NV) dans le cas conventionnel. ;
Il en découle que les amplitudes des résonances susceptibles de se produire lorsque la turbomachine sera en fonctionnement sont réduites par rapport au cas conventionnel. ;
Dans certains cas assez rares, il peut toutefois arriver qu'en modifiant la répartition angulaire des sources de perturbation à l'étape E5 du procédé selon l'invention pour écarter une coïncidence gênante entre une fréquence propre du rotor et une fréquence d'excitation, les vibrations du rotor ne diminuent pas. De telles situations peuvent se produire uniquement dans des conditions très spécifiques, à savoir lorsque, à une vitesse de rotation donnée du rotor, des effets de résonance dus à de nouvelles raies se cumulent d'une manière telle qu'ils égalent ou dépassent l'effet de résonance initial.
A l'étape E6 du procédé selon l'invention, il est donc prévu de vérifier que la répartition choisie à l'étape précédente E5 entraîne bieή. une diminution des vibrations du rotor. !
L'étape E6 est mise en œuvre selon une méthode qui est illustrée en détail à la figure 16. Cette méthode consiste de manière générale à calculer, dans un premier temps, les spectres fréquentiels de l'excitation vue par le rotor dans le cas conventionnel d'une répartition angulaire uniforme des sources de perturbation (figure 2) et dans le cas de la répartition angulaire non uniforme choisie à l'étape E5 (figure 15), puis à comparer les amplitudes de résonance obtenues dans les deux cas.
Plus précisément, à des étapes E60 et E61, on détermine le spectre fréquentiel de l'excitation vue par le rotor lorsque la répartition angulaire des sources de perturbation est uniforme, par un calcul aérodynamique de type connu (étape E60) suivi d'une transformation de
Fourier (étape E61).
A une étape E62, on choisit un signal temporel ou angulaire ST représentatif de l'évolution dans le temps de l'excitation vue par le rotor ou, ce qui revient au même, de l'évolution de l'excitation vue par le rotor en fonction de l'angle de rotation du rotor. Comme montré à la figure 17, le signal ST comprend des bosses identiques 12, par exemple en forme de gaussiennes, et est périodique. La période T de ce signal, dans le cas d'un signal temporel, est égale à α/(360°xV), où α est l'angle, constant, défini par deux sources de perturbation (en l'occurrence deux aubes de stator) consécutives. Chaque bosse 12 représente la perturbation induite par une source de perturbation. ;
A une étape E63, une transformation de Fourier est appliquée au signal ST. ;
A une étape suivante E64, la transformée de Fourier obtenue à l'étape E63 est comparée à celle obtenue à l'étape E61. Si les deux transformées de Fourier sont identiques, une étape E65 est mise en oeuvre.
Sinon, on modifie le signal temporel ST (étape E62), en jouant sur la forme
(commune) des bosses 12 jusqu'à obtenir un signal ST dont la transformée de Fourier corresponde à celle obtenue à l'étape E61. A l'étape E65, le signal temporel ST est modifié en un signal
SM, montré à la figure 18, en fonction de la modification apportée* à la répartition angulaire des sources de perturbation à l'étape E5 du procédé selon l'invention. Plus particulièrement, comme montré à la figure 18, l'espacement entre deux bosses consécutives est adapté à la nouvelle répartition angulaire, non uniforme, des sources de perturbation. Ainsi, cet espacement n'est plus constant comme dans le cas de la figure 17, mais varie en fonction des angles de la répartition des sources de perturbation.
Dans l'exemple de la figure 18, les intervalles de temps Tl, T2 et T3 satisfont aux relations suivantes :
Tl = αmin / (360°xV),
T2 = αnom / (360°xV),
T3 = αmaj / (360°xV), où αmin, αnom et αmaj désignent respectivement un angle minoré, un angle nominal et un angle majoré.
A une étape suivante E66 de la méthode illustrée à la figure 16, une transformation de Fourier est appliquée au signal temporel modifié
SM. On obtient ainsi un spectre du type de celui illustré à la figure 15. Sur la figure 15, comme expliqué précédemment, l'échelle des intensités sur l'axe des ordonnées est la même que celle de la figure 2. L'intensité maximale, normée à la valeur 1, correspond dans les deux figures à l'intensité de la raie de fréquence NV dans le cas conventionnel. L'énergie globale de l'excitation engendrée par les sources de perturbation étant constante quelle que soit la répartition angulaire desdites sources de perturbation, on connaît donc avec précision l'intensité relative de chaque raie de la figure 15 par rapport aux intensités des raies selon le cas conventionnel (figure 2).
Les étapes E60 à E66 selon l'invention permettent donc d'obtenir le spectre de l'excitation vue par le rotor dans le cas d'une répartition angulaire non uniforme des sources de perturbation en s' affranchissant des calculs très longs et complexes qui seraient nécessaires si ce spectre était déterminé directement par des calculs aérodynamiques.
A une étape suivante E67, on trace dans le diagramme de Campbell des droites (dont deux, désignées par les repères Dl"et D2", sont montrées en traits pointillés à la figure 7) représentant la relation entre les nouvelles fréquences apparues dans le spectre fréquentiel de l'excitation, c'est-à-dire les fréquences autres que les fréquences NV, 2NV, 3NV, etc., et la vitesse de rotation du rotor. Ensuite, les éventuelles coïncidences entre ces nouvelles fréquences et les fréquences propres du rotor sont identifiées dans la plage ΔV2 de vitesses de rotation auxquelles le rotor est destiné à tourner.
A la figure 7 sont représentés, à titre d'illustration, des points PI et P2 d'intersection entre les droites Dl et Dl" et entre les droites D2 et D2", respectivement. En chacun des points de coïncidence PI et P2, qui correspondent à des vitesses de rotation respectives VI et V2, le rotor subit une résonance. Si les vitesses de rotation VI et V2 sont proches l'une de l'autre, les effets de résonance aux points PI et P2 peuvent se cumuler partiellement.
Selon l'invention, on détermine à une étape E68, pour chaque vitesse de rotation dans la plage ΔV2, si un ou plusieurs points de coïncidence existent, et si tel est le cas, on calcule l'amplitude de la résonance globale du rotor, à cette vitesse de rotation, par une technique connue de superposition modale. Plus précisément, la plage ΔV2 est décomposée en pas de vitesse étroits δV2, la largeur de chaque pas dépendant de l'amortissement du rotor (soit environ 0,5% de la vitesse V). Une amplitude de résonance globale du rotor est calculée par superposition modale pour chacun des pas δV2, puis comparée à l'amplitude de résonance dans le cas conventionnel lorsque le rotor tourne à la vitesse V0 (étape E69).
Si, pour chaque pas δV2, l'amplitude de résonance globale du rotor est inférieure à l'amplitude de résonance maximale dans le cas conventionnel, la répartition angulaire non uniforme choisie à l'étape E5 est validée, et l'on recommence ensuite les étapes E2 à E6 pour l'étage stator-rotor suivant (cf. les étapes E7 et E8 à la figure 4).
Si, exceptionnellement, l'une des amplitudes de résonance globale égale ou dépasse l'amplitude de résonance maximale dans le cas conventionnel, on revient à l'étape E5 pour choisir une autre répartition angulaire non uniforme, et l'on recommence l'étape de vérification E6 (sans remettre en œuvre, bien-sûr, les étapes E60 et E61).
Lorsque les étapes E2 à E7 illustrées à la figure 4 ont été mises en œuvre pour tous les étages stator-rotor (étape E8), la turbomachine telle que conçue ci-dessus, se présentant sous la forme de données numériques de simulation, est fabriquée (étape E9).
Dans les différents modes de réalisation de l'invention décrits ci-dessus, les sources de perturbation sont constituées par des aubes de stator. Il a cependant été observé par les présents inventeurs que le principe de l'invention peut être appliqué à d'autres types de sources de perturbation se trouvant dans une turbomachine, tels que des injecteùrs de chambre de combustion, des éléments de prélèvement d'air de refroidissement, des vannes de décharge, des éléments de réintroduction d'air de refroidissement, des capteurs ou des sondes, placés en amont d'un ou plusieurs rotors de la turbomachine.
La figure 19 illustre schématiquement un ensemble de N sources de perturbation 14 de l'un des types précités (dans l'exemple de la figure 19, le nombre N de sources de perturbation est égal à 10), faisant partie d'un stator. Comme dans le cas des aubes de stator (figure 6), les sources de perturbation 14 sont identiques aux tolérances de fabrication près et sont réparties selon des angles adjacents ai à ON, dont la somme est égale à 360°, définis chacun par des demi-droites Ai, Ai+i, ayant pour origine un même point O correspondant sensiblement, dans l'écoulement de fluide 11, au(x) centre(s) de rotation du (des) rotor(s) situé(s) en aval, et passant respectivement par les centres géométriques Ci, G+i de deux sources de perturbation consécutives.
Les sources de perturbation 14 ont généralement une même position radiale, c'est-à-dire qu'elles sont situées à une même distance du point O. L'ensemble de sources de perturbation 14 est disposé sensiblement perpendiculairement à l'écoulement de fluide, et induit, dans l'écoulement de fluide, des perturbations qui peuvent être reçues par le ou les rotors en aval.
Dans le cas de sources de perturbation du type de celles illustrées à la figure 19, le procédé selon l'invention, tel qu'illustré à la figure 4, est mis en œuvre sensiblement de la même façon que lorsque les sources de perturbation sont constituées par des aubes de stator, j Plus spécifiquement, pour chaque rotor affecté par les perturbations générées par les sources de perturbation 14, des étapes E2 à E7 identiques à celles montrées à la figure 4 sont mises en œuvre. Bien que la présente invention ait été décrite dans le cadre d'une turbomachine comportant plusieurs rotors, il apparaîtra clairement à l'homme du métier que le principe de l'invention peut être appliqué à n'importe quelle structure comprenant au moins un rotor et au moins un ensemble de sources de perturbation fixes susceptibles de perturber le ou les rotors. Lorsque la structure comporte plusieurs ensembles de sources de perturbation, il convient préalablement d'identifier, pour le ou chaque rotor, quel ensemble de sources de perturbation génère, vu du rotor, les plus fortes perturbations. Dans la configuration illustrée à la figure 5, cet ensemble est généralement la roue aubagée fixe située juste en amont du rotor. S'il ne se trouve aucune roue aubagée fixe en amont du rotor et suffisamment proche de celui-ci pour le perturber, il convient de déterminer s'il existe des sources de perturbation du type injecteùrs de chambre de combustion, éléments de prélèvement d'air; de refroidissement, vannes de décharge, éléments de réintroduction d'air de refroidissement, capteurs ou sondes, en amont du rotor. Si tel est le cas, les sources de perturbation les plus gênantes seront généralement celles qui sont les plus proches du rotor, en amont de celui-ci.
Bien que, pour un rotor donné, les sources de perturbation les plus gênantes soient le plus souvent situées en amont du rotor, il est des situations où le rotor est perturbé principalement par des sources de perturbation placées en aval (en particulier lorsqu'aucun ensemble de sources de perturbation n'est présent en amont du rotor). La présente invention n'est donc pas limitée à une position relative particulière de l'ensemble de sources de perturbation par rapport au rotor.
De manière générale, l'homme du métier comprendra que l'invention n'est pas limitée aux seuls exemples décrits, et qu'en particulier, un principe du procédé selon l'invention consiste à choisir une répartition angulaire des sources de perturbation fixes de telle façon à réduire l'amplitude de l'excitation vue par le rotor pour au moins une fréquence de l'excitation coïncidant sensiblement avec une fréquence propre du rotor à une vitesse de rotation V de celui-ci, par rapport à une répartition angulaire initialement envisagée.

Claims

REVENDICATIONS
1. Procédé de réduction de vibrations dans une structure comprenant au moins un rotor (lOlj) et au moins un stator (100j), le rotor et le stator étant destinés à être soumis à un écoulement de fluide (11), la structure comprenant un ensemble de sources de perturbation fixes (102j ; 14) susceptibles d'entraîner des perturbations dans l'écoulement de fluide faisant vibrer le rotor, caractérisé en ce que : ; lors de la conception de la structure, on choisit (E5)j une répartition angulaire non uniforme des sources de perturbation fixés de telle façon à réduire l'amplitude d'une excitation vue par le rotor et correspondant auxdites perturbations pour au moins une fréquence de l'excitation coïncidant sensiblement avec une fréquence propre du rcjtor à une vitesse de rotation V de celui-ci, par rapport à une répartition angulaire prédéterminée uniforme des sources de perturbation fixes, ; et en ce que ledit procédé comprend en outre une étape (E6) consistant à vérifier, dans toute une plage (ΔV2) de vitesses de rotation auxquelles le rotor (lOlj) est susceptible de tourner, incluant la vitesse de rotation V, que l'amplitude maximale d'une réponse du rotor à l'excitation dans le cas où les sources de perturbation fixes sont réparties selon ladite répartition angulaire choisie est inférieure à celle dans le cas où les sources de perturbation fixes sont réparties selon ladite répartition ang laire prédéterminée, ladite réponse du rotor à l'excitation dans le cas où les sources de perturbation fixes sont réparties selon ladite répartition angulaire choisie étant obtenue en mettant en œuvre les étapes suivantes : déterminer (E60-E64) un premier signal (ST) dont la transformée de Fourier correspond au spectre fréquentiel de l'excitation dans le cas où les sources de perturbation fixes sont réparties selon ladite répartition angulaire prédéterminée, ! modifier (E65) le premier signal (ST) en un second signal
(SM), adapté à ladite répartition angulaire choisie des sources de perturbation fixes, déterminer le spectre fréquentiel de l'excitation en calculant (E66) la transformée de Fourier du second signal (SM), et calculer (E67-E68) la réponse du rotor à l'excitation sur la base du spectre fréquentiel de l'excitation.
2. Procédé selon la revendication 1, caractérisé en ce que les sources de perturbation fixes (102j ; 14) sont identiques ; et au moins une fréquence propre du rotor (lOlj), à la vitesse de rotation V, est sensiblement égale à NV ou à un multiple de NV, où N est le nombre de sources de perturbation fixes dans ledit ensemble.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le premier signal (ST) comprend des bosses identiques (12) espacées régulièrement, chaque bosse (12) étant représentative d'une perturbation créée par une source de perturbation fixe dans l'écoulement de fluide (11), l'espacement entre deux bosses données consécutives (12) étant représentatif de l'angle défini par deux sources de perturbation consécutives dans le cas où les sources de perturbation sont réparties selon ladite répartition angulaire uniforme, et l'étape de modification (E65) consiste à adapter les espacements entre les bosses (12) aux angles de ladite répartition angulaire choisie. \
4. Procédé selon l'une quelconque des revendications l! à 3, caractérisé en ce que l'ensemble de sources de perturbation fixes (102j ; 14) est en amont du rotor (lOlj) dans l'écoulement de fluide (11).
5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'ensemble de sources de perturbation fixes est en aval du rotor dans l'écoulement de fluide.
6. Procédé selon l'une quelconque des revendications 1, à 5, caractérisé en ce que les sources de perturbation fixes (102j ; 14) ont sensiblement une même position radiale par rapport à un point; (Oj) correspondant, dans l'écoulement de fluide (11), à un centre de rotation (O'j) du rotor. j
7. Procédé selon l'une quelconque des revendications 1; à 6, caractérisé en ce que les sources de perturbation fixes (102j) sont des aubes de stator.
8. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les sources de perturbation fixes (14) sont de l'un des types suivants : injecteùrs de chambre de combustion, éléments de prélèvement d'air de refroidissement, vannes de décharge, éléments de réintroduction d'air de refroidissement, capteurs et sondes. ;
9. Procédé de conception d'une structure comprenant au moins un rotor (lOlj ) et au moins un stator, le rotor et le stator étant destinés à être soumis à un écoulement de fluide (11), la structure comprenant un ensemble de sources de perturbation fixes (102j ; 14) susceptibles d'entraîner des perturbations dans l'écoulement de fluide faisant vibrer le rotor, caractérisé en ce qu'il comprend des étapes consistant à : ; déterminer (El) une architecture globale pour la structure, et appliquer (E2-E8) le procédé de réduction de vibrations selon l'une quelconque des revendications 1 à 8, à ladite structure.
10. Procédé de conception et de fabrication d'une structure comprenant au moins un rotor (lOlj) et au moins un stator, le rotor et le stator étant destinés à être soumis à un écoulement de fluide (11), la structure comprenant un ensemble de sources de perturbation fixes (102j ; 14) susceptibles d'entraîner des perturbations dans l'écoulement de fluide faisant vibrer le rotor, caractérisé en ce qu'il comprend des étapes consistant à : déterminer (El) une architecture globale pour la structure, ! appliquer (E2-E8) le procédé de réduction de vibrations selon l'une quelconque des revendications 1 à 8, à ladite structure, et ! fabriquer (E9) ladite structure. ;
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la structure consiste en une turbomachine.
12. Structure comprenant : au moins un rotor (lOlj), au moins un stator, et ; au moins un ensemble d'un nombre N de sources de perturbation fixes (102j ; 14), le rotor et l'ensemble de sources de perturbation fixes étant destinés à être traversés sensiblement perpendiculairement par' un écoulement de fluide (11), dans lequel l'ensemble de sources de perturbation est susceptible d'entraîner des perturbations qui sont ensuite reçues par le rotor, l'ensemble de sources de perturbation formant, dans un plan (PLj) sensiblement perpendiculaire à l'écoulement de fluide (11), un ensemble de N angles adjacents (ai à ON) dont la somme est égale à 360°, chaque angle étant défini par deux demi-droites consécutives (Ai, A.+ι) ayant pour origine un même point (Oj ; O) correspondant, dans l'écoulement de fluide (11), à un centre de rotation (Oj') du rotor, et passant respectivement par les centres géométriques (Ci, G+i) de deux sources de perturbation, caractérisée en ce que l'ensemble d'angles adjacents comprend au moins un groupe d'angles adjacents dits majorés, supérieurs à 360° /N, et au moins un groupe d'angles adjacents dits minorés, inférieurs à 360° /N. ; i
13. Structure selon la revendication 12, caractérisée en ce; que l'ensemble d'angles adjacents comprend au moins un angle dit nominal, égal à 3607N.
14. Structure selon la revendication 13, caractérisée en ce que l'ensemble d'angles adjacents comprend un unique groupe d'angles adjacents majorés et un unique groupe d'angles adjacents minorés.
15. Structure selon la revendication 12, caractérisée en ce; que l'ensemble d'angles adjacents est constitué par : ; un unique groupe d'angles adjacents majorés, ! un premier angle nominal ou un premier groupe d'angles adjacents nominaux, adjacent audit unique groupe d'angles adjacents majorés, ' un unique groupe d'angles adjacents minorés, qui est adjacent audit premier angle nominal ou audit premier groupe d'angles adjacents nominaux, et un second angle nominal ou un second groupe d'angles adjacents nominaux, adjacent audit unique groupe d'angles adjacents minorés.
16. Structure selon la revendication 12, caractérisée en ce que l'ensemble d'angles adjacents est constitué par un unique groupe d'angles adjacents majorés et un unique groupe d'angles adjacents minorés. !
17. Structure selon la revendication 13, caractérisée en ce que l'ensemble d'angles adjacents comprend plusieurs groupes d'angles adjacents majorés et plusieurs groupes d'angles adjacents minorés. !
18. Structure selon la revendication 17, caractérisée en ce que l'ensemble d'angles adjacents comprend plusieurs angles nominaux ou plusieurs groupes d'angles adjacents nominaux, chaque angle nominal ou groupe d'angles nominaux adjacents étant adjacent à la fois à un groupe d'angles adjacents majorés et à un groupe d'angles adjacents minorés.;
19. Structure selon la revendication 12, caractérisée en ce; que l'ensemble d'angles adjacents est constitué par plusieurs groupes d'angles adjacents majorés et plusieurs groupes d'angles adjacents minorés, chaque groupe d'angles adjacents minorés étant adjacent à deux groupes d'angles adjacents majorés. j
!
20. Structure selon l'une quelconque des revendications 12 a 19, caractérisée en ce que tous les angles majorés de l'ensemble d'angles adjacents sont majorés d'une même valeur prédéterminée et tous les angles minorés de l'ensemble d'angles adjacents sont minorés de ladite valeur prédéterminée.
21. Structure selon l'une quelconque des revendications 12 à 19, caractérisée en ce qu'au moins deux angles majorés et/ou au moins deux angles minorés de l'ensemble d'angles adjacents sont différents entre eux.
22. Structure selon l'une quelconque des revendications 12 a 21, caractérisée en ce que l'ensemble d'angles adjacents comprend autant d'angles majorés que d'angles minorés. j
23. Structure selon l'une quelconque des revendications 12 à 22, caractérisée en ce que chaque angle majoré et chaque angle minoré de l'ensemble d'angles adjacents diffère de 360° /N d'au plus 10%.
' 5 ;
24. Structure selon l'une quelconque des revendications 12 à 22, caractérisée en ce que chaque angle majoré et chaque angle minoré de l'ensemble d'angles adjacents diffère de 360° /N d'au plus 5%.
10 25. Structure selon l'une quelconque des revendications 12 à 24, caractérisée en ce que les sources de perturbation fixes (102j ; 14) ont sensiblement une même position radiale par rapport au point d'origine
(Q ; θ).
15 26. Structure selon l'une quelconque des revendications 12 à 25, caractérisée en ce que l'ensemble de sources de perturbation fixes (102j ; 14) est en amont du rotor (lOlj) dans l'écoulement de fluide (11). j
27. Structure selon l'une quelconque des revendications 12 a 26, 20 caractérisé en ce que l'ensemble de sources de perturbation fixes est en aval du rotor dans l'écoulement de fluide.
28. Structure selon l'une quelconque des revendications 12 à 27, caractérisée en ce qu'elle consiste en une turbomachine.
25
29. Structure selon l'une quelconque des revendications 12 à 28, caractérisée en ce que les sources de perturbation fixes (102j) sont des
. aubes de stator.
30 30. Structure selon l'une quelconque des revendications 12 à 28, caractérisée en ce que les sources de perturbation fixes (14) sont de l'un des types suivants : injecteùrs de chambre de combustion, éléments de prélèvement d'air de refroidissement, vannes de décharge, éléments de réintroduction d'air de refroidissement, capteurs et sondes.
35
31. Procédé selon la revendication 10, caractérisé en ce que l'on choisit la répartition angulaire des sources de perturbation fixes de façon à obtenir une structure telle que définie dans l'une quelconque* des revendications 12 à 24.
PCT/FR2002/001593 2001-05-11 2002-05-10 Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure WO2002092969A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60213227T DE60213227T3 (de) 2001-05-11 2002-05-10 Struktur mit einem Rotor und feststehenden Störungsquellen und Verfahren zur Reduktion von Vibrationen in einer solchen Struktur
CA002446590A CA2446590C (fr) 2001-05-11 2002-05-10 Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure
JP2002590217A JP4195304B2 (ja) 2001-05-11 2002-05-10 ロータと固定擾乱源とを備えた構造物、および該構造物の振動を低減する方法
EP02738237A EP1386058B2 (fr) 2001-05-11 2002-05-10 Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure
US10/477,234 US7029227B2 (en) 2001-05-11 2002-05-10 Structure comprising a rotor and fixed perturbation sources and method for reducing vibrations in said structure
UA20031110068A UA79743C2 (uk) 2001-05-11 2002-10-05 Пристрій та спосіб зниження вібрації в ньому

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0106237A FR2824597B1 (fr) 2001-05-11 2001-05-11 Reduction de vibrations dans une structure comprenant un rotor et des sources de perturbation fixes
FR01/06237 2001-05-11

Publications (1)

Publication Number Publication Date
WO2002092969A1 true WO2002092969A1 (fr) 2002-11-21

Family

ID=8863166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/001593 WO2002092969A1 (fr) 2001-05-11 2002-05-10 Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure

Country Status (11)

Country Link
US (1) US7029227B2 (fr)
EP (1) EP1386058B2 (fr)
JP (3) JP4195304B2 (fr)
AT (1) ATE333569T1 (fr)
CA (1) CA2446590C (fr)
DE (1) DE60213227T3 (fr)
ES (1) ES2266509T5 (fr)
FR (1) FR2824597B1 (fr)
RU (1) RU2304220C2 (fr)
UA (1) UA79743C2 (fr)
WO (1) WO2002092969A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299668A (ja) * 2004-04-14 2005-10-27 General Electric Co <Ge> ガスタービンエンジンを組立てるための方法及び装置
US7651316B2 (en) * 2004-01-13 2010-01-26 J. Eberspächer GmbH & Co. KG Conveying member, especially rotor or stator, for conveying a flowable, preferably gaseous medium
RU2579300C1 (ru) * 2014-12-09 2016-04-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Способ доводки колес турбомашин
EP2096321B1 (fr) 2006-12-21 2017-03-22 Mitsubishi Hitachi Power Systems, Ltd. Compresseur

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678406B2 (ja) * 2005-11-29 2011-04-27 株式会社Ihi ターボ形流体機械の静翼列
GB0601837D0 (en) * 2006-01-31 2006-03-08 Rolls Royce Plc An aerofoil assembly and a method of manufacturing an aerofoil assembly
US8602156B2 (en) * 2006-05-19 2013-12-10 United Technologies Corporation Multi-splice acoustic liner
FR2913074B1 (fr) * 2007-02-27 2009-05-22 Snecma Sa Methode de reduction des niveaux vibratoires d'une roue aubagee de turbomachine.
US20090317237A1 (en) * 2008-06-20 2009-12-24 General Electric Company System and method for reduction of unsteady pressures in turbomachinery
FR2935350B1 (fr) 2008-08-27 2011-05-20 Snecma Methode de reduction des niveaux vibratoires d'une helice de turbomoteur.
FR2935427B1 (fr) * 2008-08-27 2010-09-24 Snecma Methode de reduction des niveaux vibratoires d'un doublet et roues aubagees contrarotatives de turbomachine.
TW201122238A (en) * 2009-12-18 2011-07-01 Yen Sun Technology Corp Low-noise boost fan.
TWI398579B (zh) * 2009-12-18 2013-06-11 Yen Sun Technology Corp A cooling fan with reduced noise
EP2550732A2 (fr) * 2010-03-22 2013-01-30 Siemens Aktiengesellschaft Évitement de la production de torsion dans des trains de compresseurs commandés par convertisseurs
IT1399118B1 (it) * 2010-04-01 2013-04-05 Nuovo Pignone Spa Sistema e metodo di smorzamento del modo torsionale senza sensori
US20110274537A1 (en) * 2010-05-09 2011-11-10 Loc Quang Duong Blade excitation reduction method and arrangement
US8678752B2 (en) 2010-10-20 2014-03-25 General Electric Company Rotary machine having non-uniform blade and vane spacing
US8684685B2 (en) * 2010-10-20 2014-04-01 General Electric Company Rotary machine having grooves for control of fluid dynamics
US20120288373A1 (en) * 2011-05-13 2012-11-15 Hamilton Sundstrand Corporation Rotor with asymmetric blade spacing
US20130094942A1 (en) * 2011-10-12 2013-04-18 Raymond Angus MacKay Non-uniform variable vanes
GB201120979D0 (en) * 2011-12-07 2012-01-18 Rolls Royce Plc Stator vane array
RU2499889C1 (ru) * 2012-03-13 2013-11-27 Открытое акционерное общество Конструкторско-производственное предприятие "Авиамотор" Способ снижения динамических напряжений в рабочих лопатках последней ступени турбины
EP2696078B1 (fr) * 2012-08-09 2019-10-02 MTU Aero Engines AG Rotor à aubage pour une turbomachine et procédé d'assemblage associé
US9599126B1 (en) * 2012-09-26 2017-03-21 Airtech Vacuum Inc. Noise abating impeller
US10156146B2 (en) 2016-04-25 2018-12-18 General Electric Company Airfoil with variable slot decoupling
RU2634655C1 (ru) * 2016-11-21 2017-11-02 Общество с ограниченной ответственностью "Инжиниринговый центр "Газотурбинные технологии" Способ доводки соплового аппарата турбины газотурбинного двигателя
RU174950U1 (ru) * 2016-11-21 2017-11-13 Общество с ограниченной ответственностью "Инжиниринговый центр "Газотурбинные технологии" Сопловой аппарат турбины
CN206322105U (zh) * 2016-12-30 2017-07-11 华硕电脑股份有限公司 离心式风扇
WO2018127970A1 (fr) * 2017-01-06 2018-07-12 三菱電機株式会社 Ventilateur, soufflante et moteur électrique
US20190063464A1 (en) * 2017-08-31 2019-02-28 Ford Global Technologies, Llc Engine cooling fans with uneven blade spacing
GB201808651D0 (en) * 2018-05-25 2018-07-11 Rolls Royce Plc Rotor blade arrangement
GB201808646D0 (en) * 2018-05-25 2018-07-11 Rolls Royce Plc Rotor Blade Arrangement
GB201808650D0 (en) * 2018-05-25 2018-07-11 Rolls Royce Plc Rotor Blade Arrangement
DE102018119704A1 (de) 2018-08-14 2020-02-20 Rolls-Royce Deutschland Ltd & Co Kg Schaufelrad einer Strömungsmaschine
EP4100322A4 (fr) * 2020-02-03 2024-01-03 Kymatics Llc Commande de stabilité active de rotor
CN113404711B (zh) * 2021-08-03 2023-04-07 广东泛仕达农牧风机有限公司 一种桶型轴流风机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883264A (en) * 1971-04-08 1975-05-13 Gadicherla V R Rao Quiet fan with non-radial elements
US4253800A (en) * 1978-08-12 1981-03-03 Hitachi, Ltd. Wheel or rotor with a plurality of blades
FR2617914A1 (fr) * 1987-07-06 1989-01-13 Mizrahi Alexandre Procede de reduction des vibrations et du bruit d'un ensemble tournant et ensemble tournant mettant en oeuvre le procede
US5470200A (en) * 1991-07-09 1995-11-28 Abb Flakt Aktiebolag Guide vanes for axial fans
US5993161A (en) * 1997-02-21 1999-11-30 California Institute Of Technology Rotors with mistuned blades

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1534721A (en) * 1924-04-28 1925-04-21 Aeg Construction of elastic-fluid turbines to prevent breakage of blades due to vibrations
GB777955A (en) 1954-07-06 1957-07-03 Ruston & Hornsby Ltd Improvements in or relating to fluid flow machines such as hydraulic, steam or gas turbines or axial-flow compressors
US3006603A (en) 1954-08-25 1961-10-31 Gen Electric Turbo-machine blade spacing with modulated pitch
US3169747A (en) * 1961-01-06 1965-02-16 Bristol Siddeley Engines Ltd Rotary bladed power conversion machines
FR2652858B1 (fr) * 1989-10-11 1993-05-07 Snecma Stator de turbomachine associe a des moyens de deformation.
US5342167A (en) 1992-10-09 1994-08-30 Airflow Research And Manufacturing Corporation Low noise fan
JPH0861002A (ja) * 1994-08-24 1996-03-05 Mitsubishi Heavy Ind Ltd 蒸気タービンのダイヤフラム
JPH08200283A (ja) * 1995-01-30 1996-08-06 Hitachi Ltd 貫流ファンおよびこれを備えた空気調和機
JPH09256802A (ja) * 1996-03-21 1997-09-30 Mitsubishi Heavy Ind Ltd ラジアル型ガスタービンのノズル環
JPH11200808A (ja) * 1998-01-07 1999-07-27 Mitsubishi Heavy Ind Ltd 圧縮機静翼
US6553753B1 (en) 1998-07-24 2003-04-29 General Electric Company Control systems and methods for water injection in a turbine engine
JP3567086B2 (ja) * 1998-07-28 2004-09-15 株式会社東芝 送風羽根及び回転電機
US6439838B1 (en) 1999-12-18 2002-08-27 General Electric Company Periodic stator airfoils

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883264A (en) * 1971-04-08 1975-05-13 Gadicherla V R Rao Quiet fan with non-radial elements
US4253800A (en) * 1978-08-12 1981-03-03 Hitachi, Ltd. Wheel or rotor with a plurality of blades
FR2617914A1 (fr) * 1987-07-06 1989-01-13 Mizrahi Alexandre Procede de reduction des vibrations et du bruit d'un ensemble tournant et ensemble tournant mettant en oeuvre le procede
US5470200A (en) * 1991-07-09 1995-11-28 Abb Flakt Aktiebolag Guide vanes for axial fans
US5993161A (en) * 1997-02-21 1999-11-30 California Institute Of Technology Rotors with mistuned blades

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651316B2 (en) * 2004-01-13 2010-01-26 J. Eberspächer GmbH & Co. KG Conveying member, especially rotor or stator, for conveying a flowable, preferably gaseous medium
JP2005299668A (ja) * 2004-04-14 2005-10-27 General Electric Co <Ge> ガスタービンエンジンを組立てるための方法及び装置
EP2096321B1 (fr) 2006-12-21 2017-03-22 Mitsubishi Hitachi Power Systems, Ltd. Compresseur
RU2579300C1 (ru) * 2014-12-09 2016-04-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Способ доводки колес турбомашин

Also Published As

Publication number Publication date
FR2824597B1 (fr) 2004-04-02
CA2446590C (fr) 2009-09-29
CA2446590A1 (fr) 2002-11-21
ES2266509T3 (es) 2007-03-01
DE60213227D1 (de) 2006-08-31
JP4195304B2 (ja) 2008-12-10
DE60213227T3 (de) 2013-06-06
ES2266509T5 (es) 2010-05-28
JP2004525303A (ja) 2004-08-19
EP1386058A1 (fr) 2004-02-04
JP2011231775A (ja) 2011-11-17
US7029227B2 (en) 2006-04-18
JP2008274961A (ja) 2008-11-13
ATE333569T1 (de) 2006-08-15
EP1386058B1 (fr) 2006-07-19
FR2824597A1 (fr) 2002-11-15
UA79743C2 (uk) 2007-07-25
RU2003132703A (ru) 2005-05-20
DE60213227T2 (de) 2007-07-05
EP1386058B2 (fr) 2010-01-20
US20040175260A1 (en) 2004-09-09
RU2304220C2 (ru) 2007-08-10
JP4857311B2 (ja) 2012-01-18

Similar Documents

Publication Publication Date Title
EP1386058B1 (fr) Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure
EP1589191B1 (fr) Procédé pour introduire un désaccordage volontaire sur une roue aubagée de turbomachine. Roue aubagée présentant un désaccordage volontaire
EP3595133B1 (fr) Moteur électrique optimisé à dents étroites
EP2896114B1 (fr) Rotor de machine électrique tournante, comportant une masse rotorique dans laquelle sont ménagés des logements
CA2724073C (fr) Pale de rouet de compresseur a raccordement elliptique evolutif
FR2544381A1 (fr) Composant tournant comprenant des aubes a queue d&#39;aronde modifiee
EP3455927B1 (fr) Machine electrique avec un rotor comprenant une cavite pour l&#39;equilibrage dynamique de ce rotor
EP3055506B1 (fr) Pièce de turbomachine à surface non-axisymétrique
EP2414638A1 (fr) Roue de turbine a pales désaccordées comportant un dispositif d&#39;amortissement.
CA2919155A1 (fr) Procede de modelisation d&#39;une pale d&#39;une helice non-carenee
EP1964239A1 (fr) Rotor de machine electrique tournante comportant un element magnetique entre deux dents adjacentes
FR2508542A1 (fr) Aube perfectionnee de turbomachine et ensemble de rotor comportant de telles aubes
FR3030446A1 (fr) Turbomachine a helice multi-diametres
FR3107919A1 (fr) Aube creuse de turbomachine et plateforme inter-aubes équipées de saillies perturbatrices de flux de refroidissement
FR3062432A1 (fr) Profil ameliore de bord d&#39;attaque d&#39;aubes
EP3607211B1 (fr) Diffuseur axial renforcé
EP3123001B1 (fr) Pièce de révolution pour un rotor de turbomachine, rotor de turbomachine, module de turbomachine et turbomachine associés
WO2016169808A1 (fr) Machine électrique et procédé pour l&#39;équilibrage dynamique du rotor de cette machine électrique
FR3084534A1 (fr) Rotor de machine electrique avec ponts magnetiques asymetriques
EP3084133B1 (fr) Pièce de turbomachine à surface non-axisymétrique
CA2878827C (fr) Aube de turbomachine ayant un profil configure de maniere a obtenir des proprietes aerodynamiques et mecaniques ameliorees.
EP3685492A1 (fr) Isthmes de ponts magnetiques d&#39;un rotor de machine electrique
EP3368748A1 (fr) Procede pour introduire un desaccordage volontaire dans une roue aubagee de turbomachine
FR3050227A1 (fr) Aube fixe, notamment d&#39;un redresseur d&#39;ecoulement
WO2022171946A1 (fr) Rotor de turbomachine presentant un comportement vibratoire ameliore

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002738237

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2446590

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10477234

Country of ref document: US

Ref document number: 2002590217

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002738237

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002738237

Country of ref document: EP