WO2002091458A1 - Procede relatif a l'elaboration de mandrins electrostatiques et procede relatif a l'elaboration d'elements chauffants en ceramique - Google Patents

Procede relatif a l'elaboration de mandrins electrostatiques et procede relatif a l'elaboration d'elements chauffants en ceramique Download PDF

Info

Publication number
WO2002091458A1
WO2002091458A1 PCT/JP2001/003679 JP0103679W WO02091458A1 WO 2002091458 A1 WO2002091458 A1 WO 2002091458A1 JP 0103679 W JP0103679 W JP 0103679W WO 02091458 A1 WO02091458 A1 WO 02091458A1
Authority
WO
WIPO (PCT)
Prior art keywords
green sheet
ceramic
electrostatic chuck
electrostatic
heating element
Prior art date
Application number
PCT/JP2001/003679
Other languages
English (en)
French (fr)
Inventor
Yasuji Hiramatsu
Yasutaka Ito
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000071797A priority Critical patent/JP2001267405A/ja
Priority claimed from JP2000071797A external-priority patent/JP2001267405A/ja
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to US10/416,497 priority patent/US20040074586A1/en
Priority to EP01926007A priority patent/EP1383168A1/en
Priority to PCT/JP2001/003679 priority patent/WO2002091458A1/ja
Publication of WO2002091458A1 publication Critical patent/WO2002091458A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • H01C17/283Precursor compositions therefor, e.g. pastes, inks, glass frits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/23Chucks or sockets with magnetic or electrostatic means

Definitions

  • the present invention relates to a method for manufacturing an electrostatic chuck and a method for manufacturing a ceramic heater.
  • the present invention relates to a method for manufacturing an electrostatic chuck and a method for manufacturing a ceramic heater, which are mainly used in the semiconductor industry, and more particularly to a method for manufacturing an electrostatic chuck having no variation in chucking force, and no variation in heat generation.
  • the present invention relates to a method for manufacturing a ceramic heater. Background art
  • Semiconductors are extremely important products required in various industries.Semiconductor chips are manufactured by, for example, slicing a silicon single crystal to a predetermined thickness to produce a silicon wafer, and then adding a plurality of silicon wafers to the silicon wafer. It is manufactured by forming integrated circuits and the like.
  • a silicon wafer placed on an electrostatic chuck is subjected to various processes such as etching and CVD to form a conductive circuit, an element, and the like.
  • etching and CVD a conductive circuit, an element, and the like.
  • corrosive gases are used as deposition gas, etching gas, etc., so it is necessary to protect the electrostatic electrode layer from corrosion by these gases and to induce adsorption force. Therefore, the electrostatic electrode layer is usually covered with a ceramic dielectric film or the like.
  • nitride ceramics have been used as the ceramic dielectric film.
  • Japanese Patent Application Laid-Open No. Hei 5-81840 discloses an electrostatic chuck using a nitride such as aluminum nitride. I have.
  • Japanese Patent Application Laid-Open No. 9-46868 discloses a carbon-containing aluminum nitride having an A1-ON structure.
  • Such a ceramic electrostatic chuck is known as a green sheet as described in Japanese Patent Application Laid-Open Nos. 622-26438 and 60-2613777. To It is manufactured by a so-called green sheet method in which ceramics are manufactured by stacking and manufacturing a laminated body and then firing. Summary of the Invention
  • An object of the present invention is to reduce the variation in the chucking force of an electrostatic chuck or a ceramic heater (hot plate) manufactured by the green sheet method and to reduce the temperature difference between the heated surfaces.
  • the present inventors have analyzed the reason why the above-mentioned problem occurs for the above purpose, and surprisingly, there is a problem in the surface roughness of a green sheet used for producing a molded body.
  • the inventors have found that by setting R max to 200 ⁇ or less, there is no variation in the chuck force of the manufactured electrostatic chuck depending on the location, and the present invention has been completed.
  • the manufacturing method of the electrostatic chuck of the present invention includes the steps of: printing a conductor paste for an electrode on a green sheet having a surface roughness of Rm aX of 200 ⁇ m or less; After the green sheets are laminated to form a laminate, the laminate is sintered.
  • the electrostatic chuck manufactured in the present invention is preferably a disk-shaped one having a diameter exceeding 15 Omm.
  • the method for manufacturing a ceramic heater of the present invention includes the steps of: printing a conductor paste for a resistance heating element on a green sheet having a surface roughness of Rm a X of 200 // m or less; After sintering green sheets to make a laminate, It is characterized by making it.
  • the ceramic heater manufactured in the present invention has a disk shape having a diameter exceeding 150 mm.
  • FIGS. 1A to 1D are cross-sectional views schematically showing a part of a manufacturing process in a method for manufacturing an electrostatic chuck according to the present invention.
  • FIG. 2 is a cross-sectional view schematically showing one example of the electrostatic chuck manufactured by the manufacturing method of the present invention.
  • FIG. 3 is a sectional view taken along line AA of the electrostatic chuck shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line BB of the electrostatic chuck shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing one example of the electrostatic chuck manufactured by the manufacturing method of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing one example of the electrostatic chuck manufactured by the manufacturing method of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing one example of the electrostatic chuck manufactured by the manufacturing method of the present invention.
  • FIG. 8 is a horizontal sectional view schematically showing the shape of the electrostatic electrode constituting the electrostatic chuck manufactured by the manufacturing method of the present invention.
  • FIG. 9 is a horizontal sectional view schematically showing the shape of an electrostatic electrode constituting an electrostatic chuck manufactured by the manufacturing method of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing a state where the electrostatic chuck manufactured by the manufacturing method of the present invention is fitted into a support container.
  • FIG. 11 is a partially enlarged cross-sectional view schematically showing a part of the ceramic heater manufactured by the manufacturing method of the present invention.
  • FIG. 12 is a cross-sectional view schematically showing a conductive paste layer formed on a green sheet manufactured in a conventional method for manufacturing an electrostatic chuck. Explanation of reference numerals
  • a conductor paste for an electrode is printed on a green sheet having a surface roughness of Rmax of 200 ⁇ or less, and then another green paste is applied to the green sheet. After sintering the sheets, a laminate is produced and then sintered.
  • a green sheet 91 having large irregularities such that the surface roughness exceeds 200 m at Rmax as shown in FIG. 12 is used.
  • a conductive paste layer 92 was formed on the sheet 91.
  • the formed conductive paste layer 92 has a different thickness depending on the location, and as a result, the thickness of the electrostatic electrode of the manufactured electrostatic chuck is also uneven. There was a variation in power due to location.
  • the resistance heating element for the heater also had uneven thickness, and the heat generation varied depending on the location, resulting in a temperature difference on the heating surface.
  • the present invention pays attention to the roughness of the green sheet surface and uses a relatively flat green sheet with a surface roughness of 200 m or less at Rmax,
  • the thickness of the conductive paste layer formed thereon is also uniform, with no variation in thickness depending on the location. Accordingly, the thickness of the electrostatic electrode of the manufactured electrostatic chuck does not vary, and an electrostatic chuck having a uniform chucker over the entire electrostatic electrode can be manufactured.
  • the thickness variation of the resistance heating element can be reduced, and the resistance value can be kept constant. As a result, the temperature difference over the entire heated surface can be reduced.
  • the variation due to the location of the chuck force of the electrostatic chuck can be determined by measuring the surface temperature of the adsorbed semiconductor wafer with a thermoviewer. This is because if the semiconductor wafer is strongly attracted to the attracting surface of the electrostatic chuck, the temperature of that portion increases, and the temperature distribution of the semiconductor wafer reflects the variation in the chucking force.
  • the surface roughness R max of the green sheet is determined by setting the particle diameter of the raw ceramic powder within a certain range, setting the viscosity at the time of preparing a component for the green sheet within a predetermined range, or It can be controlled by selecting drying conditions. These conditions will be described in detail in the following embodiments of the invention.
  • the manufacturing method of the ceramic heater of this study is to print a conductor sheet for a resistance heating element on a green sheet having a surface roughness of Rmax of 200 ⁇ or less, and then apply another sheet to the green sheet. It is characterized in that green sheets are laminated to form a laminate, and then sintered.
  • the resistance heating element manufactured by the above-described method for manufacturing a ceramic heater also has a uniform thickness without a variation in thickness depending on the place, and generates heat uniformly. Therefore, the temperature of the surface (heating surface) of the ceramic heater for heating the object to be heated such as a semiconductor wafer becomes uniform, and the object to be heated can be uniformly heated.
  • the roughness R max of the surface of the green sheet is the same as that used in the above-described method of manufacturing the electrostatic chuck, the force for setting the particle diameter of the raw material ceramic powder to a certain range, and when preparing the raw material for the green sheet.
  • the viscosity can be controlled by setting the viscosity in a predetermined range or by selecting drying conditions.
  • Variations in the amount of heat generated depending on the location of the resistance heating element can also be determined by measuring the surface temperature of the semiconductor wafer placed on the heating surface with a thermopure. Wear. This is because the variation of the heating value of the resistance heating element depending on the location is also reflected in the temperature distribution on the heating surface.
  • the resistance heating element may be provided in the ceramic substrate, and the temperature distribution of the semiconductor wafer may be observed.
  • any of the manufacturing methods of the electrostatic chuck and the ceramic heater according to the present invention after a green sheet is produced, a conductor paste is printed on the green sheet, and then formed in this manner.
  • a green sheet having a conductive paste layer is laminated with another green sheet to form a laminate, and then sintered, except that the shape of the conductive paste formed on the green sheet is different. Therefore, in the following, the method of manufacturing the electrostatic chuck will be mainly described, and the method of manufacturing the ceramic heater will be described in a supplementary manner.
  • the method for manufacturing an electrostatic chuck according to the present invention includes the steps of: printing a conductor paste for an electrode on a green sheet having a surface roughness of Rmax of 200 m or less; and then applying another green sheet to the green sheet. Are laminated to form a laminate, and then sintered.
  • FIGS. 1A to 1D are cross-sectional views schematically showing one example of the method for manufacturing an electrostatic chuck according to the present invention.
  • a ceramic raw material powder such as a nitride ceramic or a carbide ceramic is mixed with a binder and a solvent to obtain a green sheet having a surface roughness R max of 200 ⁇ or less.
  • the reason for setting the surface roughness of the green sheet to 200 ⁇ or less at R max is that if the roughness exceeds 200 ⁇ m / im at R max, the surface of the green sheet is too rough, Irregularities are formed on the paste in contact with the green sheet, and the thickness of the conductive paste varies from place to place.As a result, the thickness of the electrostatic electrode layer of the manufactured electrostatic chuck also varies from place to place, and the chucking force varies. Because. Needless to say, the surface roughness Rm aX of the dull sheet does not exceed the thickness of the green sheet.In consideration of the strength of the green sheet, the surface roughness Rmax is the thickness of the green sheet. None exceed 2/3. Specifically, green sheet surface roughness R max is preferably 0.1 ⁇ m or more and less than 50 ⁇ .
  • the ceramic material constituting the electrostatic chuck to be manufactured is not particularly limited, and examples thereof include a nitride ceramic, a carbide ceramic, and an oxide ceramic.
  • nitride ceramic examples include metal nitride ceramics such as aluminum nitride, silicon nitride, and boron nitride.
  • carbide ceramic examples include metal carbide ceramics, for example, silicon carbide, zirconium carbide, tantalum carbide, tungsten carbide, and the like.
  • oxide ceramic examples include metal oxide ceramics such as anoremina, zirconia, cordierite, mullite, and beryla.
  • These ceramics may be used alone or in combination of two or more. Of these ceramics, nitride ceramics and oxide ceramics are preferred.
  • Aluminum nitride is the most preferable among the nitride ceramics. This is because the thermal conductivity of the manufactured ceramic substrate is the highest at 18 O W / m ⁇ K.
  • the ceramic raw material powder may be, for example, an aluminum nitride powder having an oxide layer formed on the surface by firing in an oxidizing atmosphere.
  • a sintering aid or a catalyst may be added to yttria, alumina, zeolite compound and the like.
  • the average particle size of the raw material powder is preferably from 0.1 to 5 / xm. Since several or one green sheet 50 ′ laminated on the green sheet on which the electrostatic electrode layer printed body 51 is formed is a layer to be the ceramic dielectric film 4, if necessary, a ceramic substrate may be used. Alternatively, the composition may be different.
  • a ceramic substrate is first manufactured, a conductive paste layer to be an electrostatic electrode layer is formed thereon, and a green sheet to be a ceramic dielectric film is further formed thereon. After lamination, baking may be performed.
  • the binder at least one selected from an acrylic binder, ethyl cellulose, sorbitol with butyl ester, and polybutyl alcohol is desirable.
  • the solvent is preferably at least one selected from ⁇ -terbineol and glycol.
  • the paste obtained by mixing these is formed into a sheet using a forming method such as a doctor blade method, and a green sheet 50 is produced.
  • the viscosity of the green sheet before drying is preferably 1 ⁇ 10 4 to 4 ⁇ 10 4 CP (10 to 40 Pa ⁇ s).
  • the viscosity of the green sheet is less than 1 X 10 4 (10 Pa-s), the flowability is too large and it is difficult to maintain the shape of the green sheet, while the viscosity of the green sheet is 4 X 10 4 If it exceeds cP (40 Pa ⁇ s), it is difficult to flatten the surface of the Darline sheet using a blade or the like, and the surface roughness may exceed 200 // in in Rmax.
  • the surface roughness can be adjusted to 200 / m or less in Rmax.
  • Japanese Patent Application Laid-Open No. 1-221961 describes a method of manufacturing an electrostatic chuck by a green sheet method, but does not describe what kind of viscosity the green sheet is dried. Such patents do not prevent the patentability of the present invention.
  • through holes can be provided in the green sheet 50 as necessary, in a through hole for inserting a support pin of a silicon wafer, a concave portion for embedding a thermocouple, a portion for forming a through hole, and the like.
  • the through hole can be formed by punching You.
  • These through holes and recesses may be provided after forming the green sheet laminate, or may be formed using a drill or the like after forming the sintered body.
  • the thickness of the green sheet 50 is preferably about 0.1 to 5 mm.
  • a conductive paste is filled into the through holes of the green sheet 50 to obtain through-hole printed bodies 53, 54. Then, the conductors serving as the electrostatic electrode layer and the resistance heating element are formed on the green sheet 50. Print the paste.
  • Printing is performed so as to obtain a desired aspect ratio in consideration of the shrinkage ratio of the green sheet 50, thereby obtaining the electrostatic electrode layer printed body 51 and the resistance heating element layer printed body 52. You.
  • the printed body is formed by printing a conductive paste containing conductive ceramic, metal particles, and the like.
  • Examples of the shape of the electrostatic electrode layer include the shapes shown in FIGS. 3, 8, and 9. The resistance heating element will be described later.
  • carbides of tungsten or molybdenum are most suitable. This is because they are not easily oxidized and the thermal conductivity is not easily reduced.
  • metal particles for example, tungsten, molybdenum, platinum, and etchant can be used.
  • the average particle diameter of the conductive ceramic particles and the metal particles is preferably 0.1 to 5 / m. This is because it is difficult to print the conductive paste when these particles are too large or too small.
  • a paste 85 to 97 parts by weight of metal particles or conductive ceramic particles, at least one binder 1.5 to 10 selected from acrylic, ethinole cellulose, butylcelloso / rev and polybutyl alcohol are used.
  • the viscosity of the conductive paste to be prepared 5 X 1 0 4 ⁇ 5 0 X 1 0 4 c P (5 0 ⁇ 5 0 0 P a ⁇ s) is preferred.
  • a green sheet 50 having prints 51, 52, 53, 54 and a green sheet 50 'having no print are laminated.
  • Laminating the green sheet 50 'without a printed body on the lower surface on the side where the resistance heating element is formed prevents the end face of the through hole from being exposed and prevents oxidation during firing of the formation of the resistance heating element. To do that. If the baking for forming the resistance heating element is performed with the end face of the through hole exposed, it is necessary to sputter the metal to prevent oxidation of nickel or the like. Also, it may be covered with gold brazing made of Au-Ni alloy.
  • the laminate is heated and pressurized to form a laminate of the Darine sheet.
  • the heating temperature of the laminate is preferably 50 to 300 ° C.
  • the pressure is preferably 20 to 200 kg / cm 2 .
  • the green sheet and the conductive paste are sintered.
  • the temperature during firing is
  • the temperature is preferably 100-200 ° C.
  • the pressure of the kneading pressure during firing is preferably 100-200 kgZcm 2 .
  • These heating and pressurizing are performed in an inert gas atmosphere.
  • the inert gas argon, nitrogen, or the like can be used.
  • through holes 16 and 17, chuck positive electrode electrostatic layer 2, chuck negative electrode electrostatic layer 3, resistance heating element 5 and the like are formed.
  • an annealing treatment may be performed at 1400 to 2000 ° C. Thereby, impurities such as oxygen contained in the crystal particles are discharged out of the crystal, and the thermal conductivity is improved.
  • At least a part of the inner walls of the blind holes 35 and 36 is conductive, and the conductive inner wall is connected to the chuck positive electrostatic layer 2, the chuck negative electrostatic layer 3, the resistance heating element 5, and the like. Is desirable.
  • external terminals 6 and 18 are provided in blind holes 35 and 36 via a brazing filler metal. Furthermore, a bottomed hole can be provided as necessary, and a thermocouple can be embedded in the hole.
  • alloys such as silver-lead, lead-tin, and bismuth soot can be used. Note that the thickness of the solder layer is preferably 0.1 to 50 ⁇ . This is because the range is sufficient to secure the connection by soldering.
  • an electrostatic chuck having a configuration as shown in FIGS. 2 and 3 can be manufactured. Since the thickness of the electrostatic electrode layer of the obtained electrostatic chuck does not vary, the electrostatic chuck has a uniform chucking force over the entire electrostatic electrode.
  • FIG. 2 is a longitudinal sectional view schematically showing an embodiment of the electrostatic chuck manufactured by the above method
  • FIG. 3 is a sectional view taken along the line ⁇ ⁇ ⁇ ⁇ - ⁇ ⁇ ⁇ in the electrostatic chuck shown in FIG.
  • FIG. 4 is a cross-sectional view taken along line BB of the electrostatic chuck shown in FIG.
  • an electrostatic electrode layer composed of a chuck positive electrostatic layer 2 and a chuck negative electrostatic layer 3 is embedded inside a disc-shaped ceramic substrate 1, A thin ceramic layer 4 (hereinafter referred to as a ceramic dielectric film) is formed on the electrode layer.
  • a silicon wafer 9 is mounted on the electrostatic chuck 101 and is grounded.
  • the chuck positive electrode electrostatic layer 2 includes a semi-circular portion 2a and a comb tooth portion 2b
  • the chuck negative electrode electrostatic layer 3 also includes a semi-circular portion 3a and a comb tooth.
  • the chuck positive electrode electrostatic layer 2 and the chuck negative electrode electrostatic layer 3 are disposed to face each other so as to intersect the comb teeth portions 2b and 3b.
  • the conductive layer 2 and the chuck negative electrostatic layer 3, is a + side and one side of each DC power source connected, the DC voltage V 2 is adapted to be applied.
  • a resistance heating element 5 having a concentric circular shape in plan view as shown in FIG. 4 is provided in order to control the temperature of the silicon wafer 9, and at both ends of the resistance heating element 5.
  • the external terminal 6 is connected and fixed so that a voltage is applied.
  • the ceramic substrate 1 has a bottomed hole 11 for inserting a temperature measuring element and support pins for supporting the silicon wafer 9 up and down. (Not shown) are formed.
  • the resistance heating element 5 is formed on the bottom of the ceramic substrate 1. Is also good.
  • the electrostatic chuck 101 When the electrostatic chuck 101 functions, a DC voltage V 2 is applied to the chuck positive electrode electrostatic layer 2 and the chuck negative electrode electrostatic layer 3. As a result, the silicon wafer 9 is adsorbed and fixed to these electrodes via the ceramic dielectric film 4 by the electrostatic action of the chuck positive electrode electrostatic layer 2 and the chuck negative electrode electrostatic layer 3. . After fixing the silicon wafer 9 on the electrostatic chuck 101 in this manner, the silicon wafer 9 can be subjected to various processes such as CVD.
  • the ceramic substrate refers to a portion other than the ceramic dielectric film in this electrostatic chuck.
  • the electrostatic chuck is used at 150 ° C. or higher, most preferably at 200 ° C. or higher.
  • the ceramic substrate desirably has a maximum pore diameter of 50 or less, and a porosity of 5% or less.
  • the ceramic substrate has no pores or, if pores are present, the maximum pore diameter is desirably 50 m or less.
  • the withstand voltage at high temperatures is particularly high; conversely, if some pores are present, the fracture toughness value is higher. Or either the design for this is the vary required characteristics.
  • the pore diameter of the maximum pore is 50 m or less because if the pore diameter exceeds 50 ⁇ , the withstand voltage characteristics at high temperatures, especially at 200 ° C or more, are ensured. Is difficult.
  • the pore diameter of the largest pore is desirably 10 ⁇ m or less. This is because the amount of warpage at 200 ° C. or more is small.
  • the porosity and the maximum pore diameter can be adjusted by the pressurization time, pressure, temperature, and additives such as SiC and BN during sintering. As mentioned above, 3 1 ⁇ ⁇ 8] ⁇ Prevents sintering To harm, pores can be introduced.
  • the largest pore diameter of the largest pore When measuring the pore diameter of the largest pore, prepare five samples, polished the surface, and photograph the surface with an electron microscope at a magnification of 2000 to 500 times. Then, the largest pore diameter is selected in the photographed photograph, and the average of 50 shots is defined as the largest pore diameter.
  • the porosity is measured by the Archimedes method. Pulverize the sintered body, put the pulverized material in an organic solvent or mercury, measure the volume, find the true specific gravity from the weight and volume of the pulverized material, and calculate the porosity from the true specific gravity and apparent specific gravity You do it.
  • the diameter of the ceramic substrate desirably exceeds 15 Omm, and more desirably 200 mm or more. In particular, it is desirable that it be 12 inches (300 mm) or more.
  • the variation in chucking force causes the temperature variation of the heated semiconductor wafer to increase.
  • the heat capacity of the ceramic substrate increases, and the temperature of the heated surface becomes uneven.
  • the substrate has a diameter of about 15 O mm, the surface temperature becomes uniform because the semiconductor wafer is small even if the chucking force varies somewhat.
  • the resistance value of the resistance heating element varies to some extent, the heat capacity of the ceramic substrate is small, so that the temperature easily rises and the temperature tends to be relatively uniform.
  • a ceramic substrate having a diameter of 300 mm is disclosed, but the electrodes are not printed on a green sheet.
  • the existence of such references does not preclude the patentability of the present invention.
  • the thickness of the ceramic substrate is desirably 5 Omm or less, particularly desirably 25 mm or less.
  • the thickness of the ceramic substrate is more than 25 mm, the heat capacity of the ceramic substrate may be too large.
  • the temperature control means is provided for heating and cooling, the temperature following ability will be reduced due to the large heat capacity. This is because there is a case where it is lowered.
  • the thickness of the ceramic substrate is more than 1.5 mm and optimally 5 mm or less. If the thickness of the ceramic substrate is less than 1.5 mm, the diameter should exceed 15 O mm Large ceramic substrates have a large amount of warpage and are not practical. It is preferable that the ceramic substrate contains oxygen of 0.05 to 10% by weight. By biasing oxygen toward the grain boundaries, the rupture toughness value can be improved.
  • the oxygen content is less than 0.05% by weight, sintering does not proceed and the porosity increases, and the thermal conductivity decreases. Conversely, if the oxygen content exceeds 10% by weight, This is because, because the amount of oxygen is too large, the thermal conductivity decreases and the temperature rise / fall characteristics deteriorate.
  • the raw material powder is fired in an oxidizing atmosphere, or the raw material powder is mixed with a metal oxide and fired.
  • the metal oxide for example, Ittorya (Upsilon 2 ⁇ 3), alumina (Alpha 0 3), rubidium oxide (R b 2 ⁇ ), lithium oxide (L i 2 ⁇ ), carbonate Karushiu arm (C a C Os ) And the like.
  • the content of these metal oxides is preferably from 0.1 to 20% by weight.
  • the ceramic substrate contains 5 to 500 ppm of carbon.
  • the ceramic substrate By containing carbon, the ceramic substrate can be blackened, and radiant heat can be sufficiently used when used as a heater.
  • the carbon may be amorphous or crystalline. When amorphous carbon is used, a decrease in volume resistivity at high temperatures can be prevented, and when a crystalline material is used, a decrease in thermal conductivity at high temperatures can be prevented. Because. Therefore, depending on the application, both crystalline carbon and amorphous carbon may be used in combination. Further, the content of carbon is more preferably from 50 to 2000 ppm.
  • the carbon When carbon is contained in the ceramic substrate, it is desirable that the carbon be contained so that the lightness is N6 or less at a value based on the provisions of JISZ8721. This is because a material having such a lightness is excellent in radiant heat and concealing property.
  • N is the ideal black lightness
  • 0 is the ideal white lightness. Then, between these black lightness and white lightness, each color was harmed by 10 minutes so that the perception of the brightness of the color became the same rate, and it was indicated by the symbols NO to N10. Things.
  • the actual measurement of the lightness is performed by comparing with the color chart corresponding to NO to N10. In this case, the first decimal place is 0 or 5.
  • the material of the ceramic dielectric film constituting the electrostatic chuck is not particularly limited, and includes a nitride ceramic, a carbide ceramic, an oxide ceramic, and the like. Of these, a nitride ceramic is preferable.
  • nitride ceramic examples include those similar to the above-mentioned ceramic substrate, and it is preferable that the nitride ceramic contains oxygen.
  • nitride ceramic For example, in order to make the above-mentioned nitride ceramic contain oxygen, a raw material powder of the nitride ceramic is fired in an oxidizing atmosphere, or a metal oxide is mixed into the raw material powder and fired.
  • metal oxide examples include alumina (Al 2 O 3) and silicon oxide (Si 2 O 3).
  • the addition amount of these metal oxides is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the nitride ceramic.
  • the thickness of the ceramic dielectric film By setting the thickness of the ceramic dielectric film to 50 to 500 Aim, a sufficient withstand voltage can be secured without reducing the chucking force.
  • the thickness of the ceramic dielectric film is less than 50 tm, a sufficient withstand voltage cannot be obtained because the film thickness is too small, and the ceramic dielectric film is insulated when the silicon wafer is placed and adsorbed. On the other hand, if the thickness of the ceramic dielectric film exceeds 5 OOOm, the distance between the silicon wafer and the electrostatic electrode will be long, and the ability to adsorb the silicon wafer will be reduced.
  • the thickness of the ceramic dielectric film is preferably from 100 to 150 ⁇ m.
  • the ceramic dielectric film 4 is made of a nitride ceramic containing oxygen, has a porosity of 5% or less, and a maximum pore diameter of 50 / im or less. Is desirable. Further, it is desirable that the pores in the ceramic dielectric film 4 be composed of pores independent of each other. In the ceramic dielectric film 4 having such a configuration, a gas or the like that lowers the withstand voltage permeates the ceramic dielectric film and corrodes the electrostatic electrodes, or the withstand voltage of the ceramic dielectric film decreases even at a high temperature. There is no.
  • the porosity exceeds 5%, the number of pores increases, and the pore diameter becomes too large. As a result, the pores can easily communicate with each other. With a ceramic dielectric film having such a structure, the withstand voltage decreases.
  • the porosity is preferably from 0.01 to 3%, and the maximum pore size is preferably from 0.1 to 10 ⁇ m.
  • the ceramic dielectric film contains 50 to 500 ppm of carbon. This is because the electrode pattern provided in the electrostatic chuck can be concealed and high radiation heat can be obtained. Also, the lower the volume resistivity, the higher the adsorption capacity of the silicon wafer at low temperatures.
  • FIG. 8 and 9 are horizontal cross-sectional views schematically showing electrostatic electrodes of another electrostatic chuck.
  • a semicircular chuck is provided inside the ceramic substrate 1.
  • a positive electrode electrostatic layer 22 and a chuck negative electrode electrostatic layer 23 are formed.
  • a chuck positive electrode electrostatic layer 3 2 a formed by dividing a circle into four inside a ceramic substrate 1.
  • 32b and the chuck negative electrode electrostatic layers 33a, 33b are formed.
  • the two positive electrode electrostatic layers 22a and 22b and the two chuck negative electrode electrostatic layers 33a and 33b are formed so as to cross each other.
  • the number of divisions is not particularly limited, and may be five or more, and the shape is not limited to a sector.
  • the electrostatic chuck according to the present invention for example, as shown in FIG. 2, a chuck positive electrode electrostatic layer 2 and a chuck negative electrode electrostatic layer 3 are provided between a ceramic substrate 1 and a ceramic dielectric film 4, A resistance heating element 5 is provided inside the ceramic substrate 1. As shown in FIG. 5, a chuck positive electrostatic layer 2 and a chuck negative electrostatic layer 3 are provided between a ceramic substrate 1 and a ceramic dielectric film 4.
  • An electrostatic chuck 201 having a configuration in which a resistance heating element 25 is provided on the bottom surface of the ceramic positive electrode electrostatic layer 2 between the ceramic substrate 1 and the ceramic dielectric film 4 as shown in FIG.
  • a chuck negative electrode electrostatic layer 3 is provided, and an electrostatic chuck 301 having a structure in which a metal wire 7 serving as a resistance heating element is embedded inside a ceramic substrate 1, as shown in FIG.
  • a chuck positive electrode layer 2 and a chuck negative electrode layer 3 are provided between the ceramic dielectric film 4 and a Peltier element 8 composed of a thermoelement 81 and a ceramic plate 82 on the bottom surface of the ceramic substrate 1. And the like, and the like.
  • the Peltier element 8 is formed by connecting p-type and n-type thermoelectric elements 81 in series and joining them to a ceramic plate 82 or the like.
  • Peltier element examples include silicon-germanium-based, bismuth-antimony-based, and lead-tellurium-based materials.
  • the chuck positive electrostatic layer 2 and the chuck negative electrostatic layer 3 are provided between the ceramic substrate 1 and the ceramic dielectric film 4, and the ceramic Since the resistance heating element 5 and the metal wire 7 are formed inside the substrate 1, connection portions (through holes) 16 and 17 for connecting these and the external terminals are required.
  • the through holes 16 and 17 are formed by filling a refractory metal such as tungsten paste or molybdenum paste or a conductive ceramic such as tungsten carbide or molybdenum carbide.
  • connection portions (through holes) 16 and 17 is preferably 0.1 to L mm. This is because cracks and distortion can be prevented while preventing disconnection.
  • connection is made with solder or brazing material.
  • Silver brazing, palladium brazing, aluminum brazing or gold brazing are used as brazing materials.
  • Au—Ni alloy is desirable for gold brazing. This is because Au—Ni alloy has excellent adhesion to tungsten.
  • the ratio of Au / Ni is desirably [81.5 to 82.5 (weight 0 /.)] / [18.5 to 17.5 (% by weight)].
  • the thickness of the Au—Ni layer is preferably 0.1 to 50 ⁇ . This is because the range is sufficient to secure the connection. Further, 1 0 6 -1 0 5 but when used at high temperatures of P a 500 ⁇ 1 000 ° C in a high vacuum of Au- a Cu alloy deteriorates, it is advantageous hardly deteriorated Do you Yo this is Au_N i Alloy . Further, the amount of the impurity element in the Au—Ni alloy is desirably less than 1 part by weight when the total amount is 100 parts by weight.
  • thermocouple can be embedded in the bottomed hole of the ceramic substrate as needed. This is because the temperature of the resistance heating element can be measured with a thermocouple, and the temperature can be controlled by changing the voltage and current based on the data.
  • the size of the joining part of the metal wires of the thermocouple is preferably equal to or larger than the wire diameter of each metal wire and 0.5 mm or less.
  • thermocouple examples include K-type, R-type, B-type, S-type, E-type, J-type, and T-type thermocouples, as described in JIS-C-1602 (1980).
  • the electrostatic chuck 101 (see FIGS. 2 and 3) is taken as an example.
  • a ceramic having an electrostatic electrode layer is used.
  • a conductor paste is printed and fired on the bottom surface of the ceramic substrate to form the resistance heating element 25, and thereafter, the metal coating layer 25a may be formed by electroless plating or the like.
  • the electrostatic chuck 301 instead of forming a conductor paste layer that becomes a resistance heating element, a metal wire is placed on a green sheet. Almost the case In the same manner, an electrostatic chuck may be manufactured.
  • the electrostatic chuck 401 when manufacturing the electrostatic chuck 401 (see FIG. 7), after manufacturing a ceramic substrate having an electrostatic electrode layer, a Peltier element is bonded to this ceramic substrate via a sprayed metal layer. Good.
  • FIG. 10 is a cross-sectional view schematically showing a supporting container 41 for fitting the electrostatic chuck of the present invention having the above configuration.
  • An electrostatic chuck 101 is fitted into the support container 41 via a heat insulating material 45.
  • the support container 11 has a refrigerant outlet 42 formed therein.
  • the refrigerant is blown from the refrigerant inlet 44, passes through the refrigerant outlet 42, and exits from the suction outlet 43 to the outside.
  • the electrostatic chuck 101 can be cooled by the action of the refrigerant.
  • the method of manufacturing a ceramic heater according to the present invention includes the steps of: printing a conductor paste for a resistance heating element on a green sheet having a surface roughness of R max of 200 / xm or less; and then forming another green sheet on the green sheet. Are laminated to form a laminate, and then sintered.
  • a ceramic heater having a resistance heating element inside is manufactured in substantially the same manner as the above-described method for manufacturing an electrostatic chuck, except that a conductor paste for the resistance heating element is printed on the surface of the green sheet. Therefore, only the method of forming the resistance heating element will be described here.
  • the heat body is preferably made of a metal such as a noble metal (gold, silver, platinum, palladium), tungsten, molybdenum, nickel, or a conductive ceramic such as a carbide of tungsten or molybdenum. This is because the resistance value can be increased, the thickness itself can be increased for the purpose of preventing disconnection, etc., and it is hard to be oxidized and the thermal conductivity is not easily lowered. These may be used alone or in combination of two or more.
  • the resistance heating element needs to make the temperature of the entire ceramic substrate uniform, a concentric pattern or a concentric pattern as shown in Fig. 4 and a bent line A combination with a shape pattern is preferable. It is also desirable to set the width and thickness of the conductor paste so that the thickness of the resistance heating element in the obtained ceramic heater is 1 to 50 ⁇ and the width is 5 to 2 O mm. .
  • the resistance value can be changed by changing the thickness and width of the resistance heating element, but the above range is the most practical.
  • the resistance value of the resistance heating element becomes thinner and becomes larger as it becomes thinner.
  • the distance between the heating surface and the resistance heating element becomes short, and the uniformity of the surface temperature is reduced. Therefore, it is necessary to increase the width of the resistance heating element itself.
  • the resistance heating element is provided inside the ceramic substrate, there is no need to consider adhesion to the ceramic substrate.
  • the resistance heating element may have a cross section of any of a square, an ellipse, a spindle, and a spheroid, but is desirably flat. This is because the flattened surface is easier to radiate heat toward the heated surface, so that the amount of heat transmitted to the heated surface can be increased and the temperature distribution on the heated surface is difficult to achieve.
  • the resistance heating element may have a spiral shape.
  • Desirable to form in the area of up to 0% is because the temperature distribution on the heating surface can be eliminated and the semiconductor wafer can be heated uniformly.
  • a resistance heating element is formed inside a ceramic substrate.
  • the resistance heating element may be formed on the bottom surface of the ceramic substrate. Therefore, here, the case where the resistance heating element is formed on the bottom surface of the ceramic substrate will also be described.
  • the resistance heating element is formed by baking the ceramic substrate, forming the above-mentioned conductor paste layer on the surface of the ceramic substrate, and firing. Form.
  • the conductive paste used when forming the conductive paste on the bottom surface of the fired ceramic substrate or when forming the conductive paste layer on the surface of the durable sheet is not particularly limited. Those containing conductive ceramic particles and also containing a resin, a solvent, a thickener and the like are preferable. Examples of the material of the metal particles and the conductive ceramic particles include those described above.
  • the metal particles or conductive ceramic particles preferably have a particle size of 0.1 to 100 ⁇ m. If it is too small, less than 0.1 ⁇ , it is liable to be oxidized, while if it exceeds 100 m, sintering becomes difficult and the resistance value becomes large.
  • the shape of the metal particles may be spherical or scaly. When these metal particles are used, they may be a mixture of the sphere and the flakes. When the above metal particles are flakes or a mixture of spheres and flakes, the metal oxide between the metal particles is retained and chewy, ensuring the adhesion between the resistance heating element and the ceramic substrate This is advantageous because the resistance value can be increased.
  • the resin used for the conductor paste include an acrylic resin, an epoxy resin, and a phenol resin.
  • the solvent include isopropyl alcohol and the like.
  • the thickener include cellulose and the like.
  • a metal oxide is added to the conductor paste in addition to the metal particles, and the metal particles and the metal oxide are sintered. It is preferable to have it. Thus, by sintering the metal oxide together with the metal particles, the ceramic substrate and the metal particles can be more closely adhered.
  • metal oxide examples include, for example, lead oxide, zinc oxide, silica, boron oxide (B 2 O 3 ), alumina, and yttria titania. Both are preferred.
  • the amount of the metal oxide added to the metal particles is preferably from 0.1% by weight to less than 10% by weight. Further, the area resistivity when a resistance heating element is formed using the conductor paste having such a configuration is preferably 1 to 45 ⁇ / port.
  • the sheet resistivity exceeds 45 ⁇ / port, the amount of heat generated will be too large for the applied voltage, and the ceramic substrate for a semiconductor device provided with a resistive heating element on the surface will control the amount of heat generated. Because it is difficult. If the addition amount of the metal oxide is 10% by weight or more, the sheet resistivity exceeds 5 ⁇ / port, and the calorific value becomes too large to make temperature control difficult, resulting in a uniform temperature distribution. Is reduced.
  • a metal coating layer is preferably formed on the surface of the resistance heating element. This is to prevent the resistance value from changing due to oxidation of the internal metal sintered body.
  • the thickness of the metal coating layer to be formed is preferably 0.1 to 10 ⁇ m.
  • the metal used for forming the metal coating layer is not particularly limited as long as it is a non-oxidizing metal, and specific examples thereof include gold, silver, palladium, platinum, and nickel. These may be used alone or in combination of two or more. Of these, nickel is preferred.
  • the resistance heating element constituting the ceramic heater manufactured by the above method has, for example, a concentric shape like the resistance heating element formed on the electrostatic chuck of FIG.
  • FIG. 11 is a partially enlarged sectional view showing a part of the ceramic heater.
  • the ceramic substrate 61 is formed in a disk shape. Inside the ceramic substrate 61, a resistance heating element 62 is formed in a concentric pattern, and these resistance heating elements 62 are Double concentric circles close to each other are connected as a set of circuits so as to form a single line, and external terminals 63 serving as input / output terminals are connected to both ends of the circuit via through holes 69. Have been.
  • a through hole 65 is provided in the ceramic substrate 61, a support pin 66 is passed through the through hole 65, and the silicon wafer 9 is held.
  • the silicon wafer 9 is received from the transfer machine, the silicon wafer 9 is placed on the heating surface 61 a of the ceramic substrate 61, and the silicon wafer 9 is heated. Can be supported and heated with a certain distance from the heating surface 61a.
  • a bottomed hole 64 for inserting a temperature measuring element such as a thermocouple is provided in the bottom surface 61 a of the ceramic substrate 61. Then, when the resistance heating element 62 is energized, the ceramic substrate 61 is heated, so that an object to be heated such as a silicon wafer can be heated.
  • a resistance heating element having a uniform thickness is formed without a variation in a heat generation amount depending on a location, and therefore, an object to be heated such as a semiconductor wafer is uniformly heated. can do.
  • a support container into which the ceramic substrate is fitted may be provided with a blowing port for a refrigerant such as air as a cooling means.
  • a refrigerant such as air as a cooling means.
  • the resistance heating element is provided inside the ceramic substrate, a plurality of layers may be provided. In this case, it is desirable that the pattern of each layer is formed so as to complement each other, and that the pattern is formed in any layer from the viewpoint of the heating surface. For example, the structures are staggered with respect to each other.
  • a chuck top conductor layer is provided on the surface, a guard electrode and a ground electrode are formed inside, and a wafer prober may be used. It may be formed to form an electrostatic chuck.
  • the ceramic heater may be heated by directly placing the semiconductor wafer thereon, or may be heated by being spaced apart by about 50-2000 ⁇ .
  • Aluminum nitride powder (manufactured by Tokuyama Corporation, average particle diameter 0.6 ⁇ ) 1000 parts by weight, yttria (average particle diameter: 0.4 / zm) 40 parts by weight, ataryl binder 115 parts by weight, dispersion 5 parts by weight of the agent and 530 parts by weight of alcohol consisting of 1-butanol and ethanol were mixed with a paste having a viscosity of 20,000 cP, and molded by the doctor blade method under the conditions shown in Table 1. It was dried to obtain a green sheet having a thickness of 0.47 mm. The roughness of this green sheet surface is as shown in Table 1. Note that the drying conditions shown in Table 1 indicate that after drying under the upper conditions, drying was performed again under the second conditions.
  • a conductive paste ⁇ was prepared by mixing 100 parts by weight of tungsten particles having an average particle diameter of 3 ⁇ m, 1.9 parts by weight of an ataryl resin binder, 3.7 parts by weight of an ⁇ -terbineol solvent, and 0.2 parts by weight of a dispersant. .
  • This conductive paste was printed on a green sheet by screen printing to form a conductive paste layer for a resistance heating element.
  • the printing pattern was a concentric pattern with a width of 10 mm and a thickness of 12 ⁇ .
  • other green sheets A conductive paste layer composed of an electrostatic electrode pattern having the shape shown in FIG. 3 was formed. The thickness of the conductor paste layer was 10 im.
  • conductive paste B was filled into through holes for through holes for connecting external terminals.
  • thermocouple is formed on the surface by plasting with SiC or the like. (Diameter: 1.2 mm, depth: 2. Omm).
  • blind holes 35, 36 (FIG. 1 (c)
  • a gold solder made of Ni—Au is used for the blind holes 35, 36.
  • connection reliability can be ensured.
  • thermocouples for temperature control were embedded in the bottomed holes, and the manufacture of an electrostatic chuck having a resistance heating element was completed.
  • Examples 2 and 3 and Comparative Example 1 Production of electrostatic chuck (see Fig. 1) An electrostatic chuck was manufactured in the same manner as in Example 1, except that the drying conditions and the surface roughness were as shown in Table 1.
  • a silicon wafer is divided into 12 parts, placed on an electrostatic chuck, heated up to 400 ° C and applied with lkV, and the chucking force of each section is measured by a load cell (Shimadzu Autograph AG). The difference between the maximum and the minimum was determined using S-50).
  • the surface roughness Rmax was measured using a surface profiler (P-11 from KLA Tencor), measuring length: 500 ⁇ m, scanning speed: 50 mZ seconds, load: 3 mg, S The measurement was performed under the conditions of am 1 ig Rate 100 Hz Haviness Fi Iter: 80 ⁇ m.
  • the aluminum nitride powder (Tokuyama Corp., average particle size: 1. 1 / zm) 100 parts by weight, oxide Ittoriumu (Y 2 0 3: yttria, average particle size: 0. 4 ⁇ m) 4 by weight unit, Atalyl binder 11.5 parts by weight, 0.5 parts by weight of dispersant and 53 parts by weight of alcohol consisting of 1-butanol and ethanol were mixed to give a paste having a viscosity of 20,000 cP (20 Pas).
  • the green sheet 50 having a thickness of 0.47 mm was formed by using the above method and forming it by a doctor blade method. The conditions for drying the surface of the green sheet are as shown in Table 2.
  • tungsten particles having an average particle size of 3 / zm 100 parts by weight of tungsten particles having an average particle size of 3 / zm, 1.9 parts by weight of an acryl-based binder, 3.7 parts by weight of ⁇ -terbineone solvent, and 0.2 parts by weight of dispersing agent ⁇ was prepared.
  • the conductive paste was printed on the green sheet by screen printing to form a conductive first layer for the resistance heating element 62.
  • the printing pattern was a concentric pattern, the width of the conductive paste layer was 1 Omm, and its thickness was 12; im.
  • the plate is drilled to form a blind hole.
  • the Ni—Au alloy Au: 81.5 wt. %, Ni: 18.4% by weight, impurities: 0.1% by weight
  • the external terminals 63 are brazed by heating and reflow at 970 ° C. Connected with the department.
  • thermocouples for temperature control were embedded in the bottomed holes, filled with a polyimide resin, and cured at 190 ° C for 2 hours to produce a ceramic heater.
  • a ceramic heater was manufactured in the same manner as in Example 4, except that the surface roughness of the green sheet was 210 zm in Rmax and the drying conditions were as shown in Table 2.
  • the ceramic heaters according to Examples 4 to 6 and Comparative Example 2 manufactured as described above were energized, and the temperature of each portion of the heating surface was maintained at 400 ° C while the temperature of the heating surface of the ceramic substrate was maintained at 400 ° C.
  • the measurement was performed using I D6201 2-0012) manufactured by Nippon Datum, and the temperature difference between the minimum temperature and the maximum temperature was determined. The results are shown in Table 2 below.
  • Example 4 150 ° C, 15 minutes 50 4
  • Example 6 100 ° C, 20 minutes 10 4
  • Comparative Example 2 150 ° C, 15 minutes 210 15 As a result, as shown in Table 2 above, in the ceramic heaters according to Examples 4 to 6, the temperature difference was 4 to 5 ° C, In the ceramic heater according to Comparative Example 2, the temperature difference was as large as 15 ° C. Test example 1
  • An electrostatic chuck was manufactured in the same manner as in Comparative Example 1, except that the diameter of the ceramic substrate constituting the electrostatic chuck was 15 Omm.
  • the temperature of the electrostatic chuck was raised to 400 ° C, a voltage of 1 kV was applied, and then the temperature difference between the highest and lowest silicon wafer surfaces was measured. As a result, the temperature difference is 9
  • a ceramic heater was manufactured in the same manner as in Comparative Example 2, except that the diameter of the ceramic substrate constituting the ceramic heater was 15 Omm.
  • Example 7 Manufacturing of electrostatic chuck (see Fig. 1)
  • Alumina 93 parts by weight, SiO 2 : 5 parts by weight, CaO: 0.5 parts by weight, M g O: 0.5 part by weight, TiO 0.5 part by weight, acrylic binder 11.5 parts by weight, dispersant 5 parts by weight, and a mixture of 53 parts by weight of alcohol composed of 1-butanol and ethanol 53 parts by weight
  • a 40,000 cP (40 Pas) paste and forming it by a doctor-blade method to form a sheet, dried at 60 ° C for 20 minutes and at 100 ° C for 20 minutes.
  • the green sheet which needs to be processed or processed, is supported on a semiconductor wafer with a diameter of 1.8 mm, 3.0 mm, and 5.0 mm by punching.
  • a part to be a through hole for inserting a pin and a part to be a through hole for connection to an external terminal are provided.
  • This conductive paste was printed on a green sheet by screen printing to form a conductive paste layer for a resistance heating element.
  • the printing pattern was a concentric pattern.
  • a hyperbolic pattern for an electrostatic electrode was printed on another green sheet.
  • the obtained laminate is degreased in air at 600 ° C for 5 hours, and hot-pressed at 1 600 ° C and a pressure of 150 kg / cm 2 for 3 hours to obtain a laminate having a thickness of 3 mm.
  • An alumina plate having a diameter of 210 mm was obtained.
  • This substrate had a resistive heating element with a thickness of 6 / im and a width of 10 mm formed inside.
  • thermocouple is formed on the surface by plasting with SiC or the like. (diameter : 1.2 mm depth: 2. Omm).
  • the portion where the through hole is formed is cut out to form a blind hole, and a gold brazing made of Ni-Au is used in the blind hole, and heated and reflowed at 700 ° C to make a Kovar product. External terminals were connected.
  • connection reliability can be ensured.
  • thermocouples for temperature control were embedded in the bottomed holes, and the production of a hot plate having electrostatic electrodes was completed.
  • the green sheet was dried in the same manner as in Example 7 except that the green sheet was dried at 100 ° C for 15 minutes and at 150 ° C for 15 minutes to obtain a green sheet having a thickness of 0.47 mm and a surface roughness Rmax of 210 m. Thus, a hot plate having an electrostatic electrode was manufactured.
  • Example 7 For the hot plates according to Example 7 and Comparative Example 3, the difference in chucking force was measured in the same manner as in Examples 1 to 3. In Example 7, the difference in chucking force was 20 g / cm 2 , 150 The temperature difference on the silicon wafer surface when the temperature was raised to ° C was 6 ° C, and in Comparative Example 3, the difference in chucking force was 40 g / cm 2 , when the temperature was raised to 150 ° C. The temperature difference on the silicon wafer surface was 20 ° C.
  • Alumina has low thermal conductivity, but its operating temperature is as low as 150 ° C, so the temperature difference itself does not differ significantly from aluminum nitride.
  • the present invention has a remarkable effect when an electrostatic chuck or a ceramic heater in which the diameter of the ceramic substrate exceeds 15 Omm is manufactured.
  • the surface roughness of the green sheet is set to 200 m or less in Rmax, so that the chucking force of the manufactured electrostatic chuck is limited. As a result, the semiconductor wafer can be uniformly sucked. Further, in the method for manufacturing a ceramic heater according to the present invention, since the surface roughness of the green sheet is set to be less than 200 / im in R max, there is no variation in the calorific value of the resistance heating element depending on the location. The semiconductor wafer can be heated uniformly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

明細書
静電チャックの製造方法およびセラミックヒータの製造方法 技術分野
本発明は、 主に半導体産業において使用される静電チャックの製造方法および セラミックヒータの製造方法に関し、 特には、 チャック力にバラツキのない静電 チャックの製造方法、 および、 発熱量にバラツキのないセラミックヒータの製造 方法に関する。 背景技術
半導体は種々の産業において必要とされる極めて重要な製品であり、 半導体チ ップは、 例えば、 シリコン単結晶を所定の厚さにスライスしてシリコンウェハを 作製した後、 このシリコンウェハに複数の集積回路等を形成することにより製造 される。
この半導体チップの製造工程においては、 静電チャック上に載置したシリコン ウェハに、 エッチング、 C V D等の種々の処理を施して、 導体回路や素子等を形 成する。 その際に、 デポジション用ガス、 エッチング用ガス等として腐食性のガ スを使用するため、 これらのガスによる腐食から静電電極層を保護する必要があ り、 また、 吸着力を誘起する必要があるため、 静電電極層は、 通常、 セラミック 誘電体膜等により被覆されている。
このセラミック誘電体膜として、 従来から窒化物セラミックが使用されており、 例えば、 特開平 5— 8 1 4 0号公報には、 窒化アルミニウム等の窒化物を使用し た静電チャックが開示されている。 また、 特開平 9— 4 8 6 6 8号公報には、 A 1—O—N構造を持つカーボン含有窒化アルミニウムが開示されている。
また、 このような静電チヤックの製法は、 特公平 6— 9 7 6 7 7号公報などに 開示されている。
このようなセラミック製の静電チャックは、 特開昭 6 2 - 2 6 4 6 3 8号公報、 特開昭 6 0 - 2 6 1 3 7 7号公報などに記載されているようにグリーンシートを 積層して積層体を作製した後、 焼成することによりセラミックを製造する、 所謂 グリーンシート法により製造されている。 発明の要約
ところが、 これらのセラミックを使用した静電チャックは、 チャック力にバラ ツキがあるという問題があった。
さらに、 上記グリーンシート法で製造されたセラミックヒータでも、 加熱面に 温度のパラツキがみられた。
本発明の目的は、 グリーンシート法で製造された静電チャックやセラミックヒ ータ (ホットプレート) のチヨック力のパラツキや加熱面の温度差を低減するこ とにある。
本発明者らは、 上記目的の下、 上記した問題が発生する理由について解析を行 つたところ、 意外にも、 成形体を作製する際に用いるグリーンシートの面粗度に 問題があり、 これを R m a Xで 2 0 0 μ πι以下に設定することにより、 製造され る静電チャックのチャック力に場所によるバラツキがなくなることを見出し、 本 発明を完成させたものである。
また、 このようなグリーンシートをセラミックヒータ用のグリ—ンシ一トとし て用いると、 セラミックヒータにおいても、 抵抗発熱体の発熱量に場所によるバ ラツキがなくなることを見出し、 本発明を完成させた。
すなわち、 本発明の静電チャックの製造方法は、 表面の粗度が Rm a Xで 2 0 0 μ m以下のグリ一ンシートに電極用の導体ペーストを印刷し、 次いで、 上記グ リーンシートに他のグリーンシートを積層して積層体を作製した後、 焼結させる ことを特徴とする。
本発明において製造する静電チャックは、 直径が 1 5 O mmを超える円板状の ものであることが望ましい。
また、 本発明のセラミックヒータの製造方法は、 表面の粗度が Rm a Xで 2 0 0 // m以下のグリーンシートに抵抗発熱体用の導体ペーストを印刷し、 次いで、 上記グリーンシートに他のグリーンシートを積層して積層体を作製した後、 焼結 させることを特徴とする。
本発明において製造するセラミックヒータは、 直径が 1 5 0 mmを超える円板 状のものであることが望ましい。 図面の簡単な説明
図 1は、 (a ) 〜 (d ) は、 本発明の静電チャックの製造方法における製造ェ 程の一部を模式的に示す断面図である。
図 2は、 本発明の製造方法により製造された静電チャックの一例を模式的に示 す断面図である。
図 3は、 図 2に示した静電チャックの A— A線断面図である。
図 4は、 図 2に示した静電チヤックの B— B線断面図である。
図 5は、 本発明の製造方法により製造される静電チャックの一例を模式的に示 す断面図である。
図 6は、 本発明の製造方法により製造される静電チヤックの一例を模式的に示 す断面図である。
図 7は、 本発明の製造方法により製造される静電チヤックの一例を模式的に示 す断面図である。
図 8は、 本発明の製造方法により製造される静電チヤックを構成する静電電極 の形状を模式的に示した水平断面図である。
図 9は、 本発明の製造方法により製造される静電チャックを構成する静電電極 の形状を模式的に示した水平断面図である。
図 1 0は、 本発明の製造方法により製造される静電チャックを支持容器に嵌め 込んだ状態を模式的に示した断面図である。
図 1 1は、 本発明の製造方法により製造されるセラミックヒータの一部を模式 的に示した部分拡大断面図である。
図 1 2は、 従来の静電チャックの製造方法において、 作製したグリーンシート 上に形成した導体ペースト層を模式的に示す断面図である。 符号の説明
Is 61 セラミック基板
2、 2 2、 3 2 a、 3 2 b チャック正極静電層
3、 2 3、 3 3 a、 3 3 b チャック負極静電層
2 a、 3 a 半円弧状部
2 b、 3 b 櫛歯部
4 セラミック誘電体膜
5、 1 2、 25、 62 抵抗発熱体
6、 1 8、 6 3 外部端子
7 金属線
8 ぺノレチェ素子
9 シリコンウエノヽ
20、 3 0、 1 0 1、 20 1、 30 1、 4 0 1 静電チャック 1 6、 1 7、 6 9 スノレーホ一ノレ
2 5 a 金属被覆層
3 5, 3 6 袋孔
4 1 支持容器
4 2 冷媒吹き出し口
4 3 吸入口
44 冷媒注入口
45 断熱材
50、 50' グリーンシート
51 静電電極層印刷体
5 2 抵抗発熱体層印刷体
5 3、 54 スルーホール印刷体
6 0 セラミックヒータ
6 1 a 加熱面 発明の詳細な開示
本発明の静電チャックの製造方法は、 表面の粗度が R m a Xで 2 0 0 μ πα以下 のグリーンシートに電極用の導体ペーストを印刷し、 次いで、 上記グリーンシー トに他のグリ一ンシートを積層して積層体を作製した後、 焼結させることを特徴 とする。
従来の静電チャックの製造方法においては、 図 1 2に示したような、 表面の粗 度が R m a xで 2 0 0 mを超えるような凹凸の大きいグリーンシート 9 1を使 用し、 このグリーンシート 9 1上に導体ペースト層 9 2を形成する場合があった。 この場合、 形成された導体ペースト層 9 2は、 場所により、 その厚さが異なり、 これに起因して製造された静電チャックの静電電極も、 厚さにムラが生じ、 その 結果、 チャック力に場所によるバラツキが生じていた。
また、 ヒータ用の抵抗発熱体も厚さにムラを生じ、 場所により発熱が異なり、 加熱面に温度差が生じていた。
このような傾向は、 直径が 1 5 O mmを超える円板状体のものとなると特に顕 著になる。 特開昭 6 2 - 2 6 4 6 3 8号公報、 特開昭 6 0 - 2 6 1 3 7 7号公報 の出願当時は、 直径 1 5 O mm程度の直径の小さいものしか市場要求がなかった ため、 チャック力のバラツキや加熱面の温度差などは殆ど問題とならなかったと 考えられる。
し力 し、 本発明では、 グリーンシート表面の粗度に注意を払い、 表面の粗度が R m a Xで 2 0 0 m以下と表面が比較的平坦なグリーンシートを用いているた め、 その上に形成される導体ペースト層も、 その厚さに場所によるバラツキがな く、 均一な厚さになる。 従って、 製造された静電チャックの静電電極も、 厚さに ムラが生じることはなく、 静電電極全体に均一なチヤックカを有する静電チヤッ クを製造することができる。
また、 抵抗発熱体の厚さのパラツキも小さくすることができ、 抵抗値が一定と なって、 加熱面全体の温度差を小さくすることができる。
上記静電チャックのチヤシク力の場所によるバラツキは、 吸着された半導体ゥ ェハの表面温度をサーモビユアで測定することにより、 判断することができる。 静電チャックの吸着面に半導体ウェハが強く吸着していれば、 その部分の温度が 高くなるため、 半導体ウェハの温度分布がチャック力のバラツキを反映するから である。
また、 複数に分割した半導体ウェハを载置し、 各区画の半導体ウェハの吸着力 をロードセルにより測定し、 バラツキを測定することも可能である。 下記の実施 例では、 上記した両方の方法を採用した。
グリーンシート表面の粗度 R m a Xは、 原料セラミック粉末の粒子径を一定範 囲に設定するか、 グリーンシート用の a成物を調製する際の粘度を所定の範囲に 設定するか、 または、 乾燥条件を選択することにより制御することができる。 こ れらの条件については、 以下の発明の実施の形態において、 詳細に説明する。 本究明のセラミックヒータの製造方法は、 表面の粗度が R m a Xで 2 0 0 μ πι 以下のグリーンシートに抵抗発熱体用の導体べ ストを印刷し、 次いで、 上記グ リーンシートに他のグリ ^"ンシートを積層して積層体を作製した後、 焼結させる ことを特徴とする。
従って、 上記セラミックヒータの製造方法により製造された抵抗発熱体も、 場 所による厚さのバラツキがなく、 均一な厚さを有し、 均一に発熱する。 従って、 セラミックヒータの半導体ウェハ等の被加熱物を加熱する面 (加熱面) の温度が 均一になり、 被加熱物を均一に加熱することができる。
グリ一ンシート表面の粗度 R m a xは、 上記静電チヤックの製造方法の場合と 同様に、 原料セラミック粉末の粒子径を一定範囲に設定する力、 グリーンシート 用の,祖成物を調製する際の粘度を所定の範囲に設定するか、 または、 乾燥条件を 選択することにより制御することができる。
上記抵抗発熱体の場所による発熱量のバラツキも、 同様に加熱面に載置した半 導体ウェハの表面温度をサーモピュアで測定することにより、 判断することがで きる。 抵抗発熱体の発熱量の場所によるバラツキも、 加熱面の温度分布に反映さ れるからである。
この場合には、 セラミック基板内に抵抗発熱体のみを設けておき、 半導体ゥェ ハの温度分布を観測すればよい。
本 明の静電チャックの製造方法おょぴセラミックヒータの製造方法は、 いず れも、 グリ一ンシートを作製した後、 このグリ一ンシートに導体ペーストを印刷 し、 次いで、 このようにして形成された導体ペースト層を有するグリーンシート に、 他のグリーンシートを積層して積層体を作製した後、 焼結させる点で同様で あり、 グリーンシート上に形成する導体ペーストの形状等が異なるのみであるの で、 以下においては、 静電チャックの製造方法について主に説明し、 セラミック ヒータの製造方法については、 捕足的に説明することにする。
本発明の静電チャックの製造方法は、 表面の粗度が Rm a xで 2 0 0 m以下 のグリ一ンシートに電極用の導体ペーストを印刷し、 次いで、 上記グリーンシー トに他のグリ一ンシートを積層して積層体を作製した後、 焼結させることを特徴 とする。
図 1 ( a;) 〜 (d ) は、 本発明の静電チャックの製造方法の一例を模式的に示 した断面図である。
( 1 ) 本発明では、 まず、 窒化物セラミック、 炭化物セラミックなどのセラミツ クの原料粉末をバインダぉよぴ溶剤と混合して、 表面の粗度が R m a xで 2 0 0 πι以下のグリーンシート 5 0を作製する。
グリーンシート表面の粗度を、 R m a Xで 2 0 0 μ πι以下に設定するのは、 粗 度が R m a Xで 2 0 0 /i mを超えると、 グリーンシートの表面が粗すぎるため、 導体ペース トのグリーンシートと接する部分に凹凸が形成され、 導体ペーストの 厚さが場所によりばらつく結果、 製造される静電チヤックの静電電極層の厚さも、 場所によりばらつき、 チャック力にバラツキが生じるからである。 なお、 ダリー ンシートの面粗度 Rm a Xは、 グリーンシートの厚さを超えないことは言うまで もなく、 グリーンシートの強度を考慮すると、 面粗度 Rm a Xは、 グリーンシー トの厚さの 2 / 3を超えることはない。 具体的には、 グリーンシートの面粗度 R m a xは、 0 . 1 μ m以上 5 0 μ πι未満が望ましい。
製造の対象となる静電チャックを構成するセラミック材料は特に限定されず、 例えば、 窒化物セラミック、 炭化物セラミック、 酸化物セラミック等が挙げられ る。
上記窒化物セラミックとしては、 金属窒化物セラミック、 例えば、 窒化アルミ 二ゥム、 窒化ケィ素、 窒化ホウ素等が挙げられる。
また、 上記炭化物セラミックとしては、 金属炭化物セラミック、 例えば、 炭化 ケィ素、 炭化ジルコニウム、 炭化タンタル、 炭化タングステン等が挙げられる。 上記酸化物セラミックとしては、 金属酸化物セラミック、 例えば、 ァノレミナ、 ジルコニァ、 コージ ライ ト、 ムライ ト、 ベリ リァ等が挙げられる。
これらのセラミックは単独で用いてもよく、 2種以上を併用してもよい。 これらのセラミックの中では、 窒化物セラミック、 酸化物セラミックが好まし い。
また、 窒化物セラミックの中では窒化アルミニウムが最も好適である。 製造し たセラミック基板の熱伝導率が 1 8 O W/m · Kと最も高いからである。
セラミック原料粉末は、 例えば、 酸化性雰囲気で焼成することにより、 表面に 酸化物の層が形成された窒化アルミニウム粉末などであってもよい。
また、 必要に応じて、 イットリア、 アルミナ、 ィォゥ化合物などを焼結助剤や 触媒を加えてもよい。 原料粉末の平均粒径は、 0 . l ~ 5 /x mが好ましい。 静電電極層印刷体 5 1が形成されたグリーンシートの上に積層する数枚または 1枚のグリーンシート 5 0 ' は、 セラミック誘電体膜 4となる層であるので、 必 要により、 セラミック基板とは別の組成としてもよい。
ただし、 通常、 セラミック誘電体膜 4の原料とセラミック基板 1の原料とは、 同じものを使用することが望ましい。 これらは、 一体として焼結することが多い ため、 焼成条件が同じになるからである。 ただし、 材料が異なる場合には、 まず 先にセラミック基板を製造しておき、 その上に静電電極層となる導体ペースト層 を形成し、 さらにその上にセラミック誘電体膜となるグリーンシ トを積層した 後、 焼成してもよい。 また、 バインダとしては、 アクリル系バインダ、 ェチルセルロース、 プチルセ 口ソルプ、 ポリビュルアルコールから選ばれる少なくとも 1種が望ましい。 さらに、 溶媒としては、 α—テルビネオール、 グリコールから選ばれる少なく とも 1種が望ましい。
これらを混合して得られるペース トを、 ドクターブレード法等の成形方法を用 いてシート状に成形し、 グリーンシート 50を作製する。 このときの乾燥前のグ リ一ンシートの粘度は、 1 X 104〜4 X 104 C P (10〜40 P a · s ) 好ましい。 グリーンシートをこのような粘度範囲に設定することにより、 ダリー ンシートの凹凸を少なくし、 表面の粗度を Rm a xで 200 /xm以下にすること ができるからである。
グリーンシートの粘度が 1 X 104 (10 P a - s) 未満であると、 流動性が 大きすぎ、 グリーンシートの形状を保つのが難しくなり、 —方、 グリーンシート の粘度が 4 X 104 c P (40 P a · s ) を超えると、 ブレード等を用いてダリ ーンシートの表面を平坦することが困難となり、 表面の粗度が Rm a xで 200 //inを超えてしまう場合がある。
最も簡単にグリーンシート表面の粗度を調整する方法は、 乾燥条件の選択であ る。 グリーンシートの粘度が 1 X 104〜4X 1 04 C P (1 0~40 P a - s ) である場合、 50〜200°Cで 10~60分乾燥するが、 最初の乾燥温度を 1 50 °C未満で行うことにより表面の粗度を Rm a Xで 200 / m以下に調整する ことができる。 特に、 高温で乾燥させると、 内部の溶剤等が急速に揮発するため に表面が粗くなり、 低温で乾燥させると、 表面が滑らかになる。 なお、 特開平 1 2-21961号公報には、 グリーンシート法による静電チャックの製造方法が 記載されているが、 どのような粘度を持ったグリーンシートを乾燥させるかが記 载されておらず、 このような公報をもって本発明の特許性が阻却されることはな レ、。
次に、 グリーンシート 50に、 必要に応じ、 シリコンウェハの支持ピンを挿入 する貫通孔、 熱電対を埋め込む凹部、 スルーホールを形成する部分等に貫通孔を 設けておくことができる。 貫通孔は、 パンチングなどにより形成することができ る。
これらの貫通孔ゃ凹部等は、 グリーンシート積層体を形成した後に設けてもよ く、 焼結体を形成した後、 ドリル等を用いて形成してもよい。
グリーンシート 5 0の厚さは、 0 . 1〜5 mm程度が好ましい。
次に、 グリーンシート 5 0の貫通孔に導体ペーストを充填し、 スルーホール印 刷体 5 3、 5 4を得、 次に、 グリーンシート 5 0上に静電電極層や抵抗発熱体と なる導体ペーストを印刷する。
印刷は、 グリーンシート 5 0の収縮率を考慮して所望のァスぺクト比が得られ るように行い、 これにより静電電極層印刷体 5 1、 抵抗発熱体層印刷体 5 2を得 る。
印刷体は、 導電性セラミック、 金属粒子などを含む導電性ペーストを印刷する ことにより形成する。 静電電極層の形状としては、 例えば、 図 3、 図 8および図 9に示した形状等が挙げられる。 抵抗発熱体については、 後述する。
これらの導霉性ペースト中に含まれる導電性セラミック粒子としては、 タンダ ステンまたはモリブデンの炭化物が最適である。 酸化しにくく、 熱伝導率が低下 しにくいからである。
また、 金属粒子としては、 例えば、 タングステン、 モリブデン、 白金、 エッケ ルなどを使用することができる。
導電性セラミック粒子、 金属粒子の平均粒子径は、 0 . 1〜 5 / mが好ましい。 これらの粒子は、 大きすぎても小さすぎても導体用ペーストを印刷しにくいから である。
このようなペーストとしては、 金属粒子または導電性セラミック粒子 8 5 ~ 9 7重量部、 アクリル系、 ェチノレセルロース、 プチルセロソ /レブおよびポリビュル アルコールから選ばれる少なくとも 1種のバインダ 1 . 5〜1 0重量部、 α—テ ノレピネオール、 グリコール、 エチルアルコールおよびブタノールから選ばれる少 なくとも 1種の溶媒 1 . 5〜1 0重量部等を混合して調製した導体ペーストが最 適である。 この場合、 調製する導体ペーストの粘度は、 5 X 1 04〜 5 0 X 1 04 c P ( 5 0〜5 0 0 P a ■ s ) が好ましい。 次に、 図 1 (a) に示すように、 印刷体 51、 52、 53、 54を有するグリ ーンシート 50と、 印刷体を有さないグリーンシート 50' とを積層する。 抵抗 発熱体形成側の下面に印刷体を有さないグリーンシート 50' を積層するのは、 スルーホールの端面が露出して、 抵抗発熱体形成の焼成の際に酸化してしまうこ とを防止するためである。 もしスルーホールの端面が露出したまま、 抵抗発熱体 を形成するための焼成を行うのであれば、 ニッケルなどの酸化しにく 、金属をス パッタリングしておく必要がある。 また、 Au-N iの合金からなる金ろうで被 覆しておいてもよい。
(2) 次に、 図 1 (b) に示すように、 積層体の加熱および加圧を行い、 ダリー ンシートの積層体を形成する。 積層体の加熱温度は、 50〜 300 °Cが好ましく、 加圧の圧力は、 20〜 200 k g/ c m2が好ましい。
この後、 グリーンシートおよび導電ペーストを焼結させる。 焼成の際の温度は、
1 0 0 0〜 2000 °C、 焼成の際のカ卩圧の圧力は 1 00〜200 k gZcm2カ 好ましい。 これらの加熱および加圧は、 不活性ガス雰囲気下で行う。 不活性ガス としては、 アルゴン、 窒素などを使用することができる。 この焼成工程で、 スル 一ホール 16、 17、 チャック正極静電層 2、 チャック負極静電層 3、 抵抗発熱 体 5等が形成される。
上記方法により、 セラミック基板を製造した後、 1400〜 2000 °Cでァニ ール処理を施してもよい。 これにより、 結晶粒子に含有されていた酸素等の不純 物が結晶外に排出され、 熱伝導率が改善される。
(3) 次に、 図 1 (c) に示すように、 外部端子接続のための袋孔 35、 36を 設ける。
袋孔 35、 36の内壁は、 その少なくともその一部が導電化され、 導電化され た内壁は、 チャック正極静電層 2、 チャック負極静電層 3、 抵抗発熱体 5等と接 続されていることが望ましい。
(4) 最後に、 図 1 (d) に示すように、 袋孔 35、 36に金ろうを介して外部 端子 6、 18を設ける。 さらに、 必要に応じて、 有底孔を設け、 その内部に熱電 対を埋め込むことができる。 半田は銀一鉛、 鉛一スズ、 ビスマスースズなどの合金を使用することができる。 なお、 半田層の厚さは、 0 . 1〜5 0 μ πιが望ましい。 半田による接続を確保す るに充分な範囲だからである。
このような製造工程を経ることにより、 例えば、 図 2、 3に示したような構成 からなる静電チャックを製造することができる。 得られる静電チャックの静電電 極層は、 その厚さにバラツキがないため、 静電電極全体に均一なチャック力を有 する静電チヤックとなる。
図 2は、 上記方法により製造した静電チヤックの一実施形態を模式的に示した 縦断面図であり、 図 3は、 図 2に示した静電チャックにおける Α— Α線断面図で あり、 図 4は、 図 2に示した静電チャックにおける B— B線断面図である。
この静電チャック 1 0 1では、 円板形状のセラミック基板 1の内部に、 チヤッ ク正極静電層 2とチャック負極静電層 3とからなる静電電極層が埋設されており、 この静電電極層の上に薄いセラミック層 4 (以下、 セラミック誘電体膜という) が形成されている。 また、 静電チャック 1 0 1上には、 シリコンウェハ 9が載置 され、 接地されている。
図 3に示したように、 チヤック正極静電層 2は、 半円弧状部 2 aと櫛歯部 2 b とからなり、 チャック負極静電層 3も、 同じく半円弧状部 3 aと櫛歯部 3 bとか らなり、 これらのチャック正極静電層 2とチャック負極静電層 3とは、 櫛歯部 2 b、 3 bを交差するように対向して配置されており、 このチャック正極静電層 2 およびチャック負極静電層 3には、 それぞれ直流電源の +側と一側とが接続され、 直流電圧 V2が印加されるようになっている。
また、 セラミック基板 1の内部には、 シリコンウェハ 9の温度をコントロール するために、 図 4に示したような平面視同心円形状の抵抗発熱体 5が設けられて おり、 抵抗発熱体 5の両端には、 外部端子 6が接続、 固定され、 電圧 が印加 されるようになつている。 図 2には示していないが、 このセラミック基板 1には、 図 4に示したように、 測温素子を揷入するための有底孔 1 1とシリコンウェハ 9 を支持して上下させる支持ピン (図示せず) を挿通するための貫通孔 1 2が形成 されている。 なお、 抵抗発熱体 5は、 セラミック基板 1の底面に形成されていて もよい。
この静電チャック 1 0 1を機能させる際には、 チャック正極静電層 2とチヤッ ク負極静電層 3とに直流電圧 V2を印加する。 これにより、 シリコンウェハ 9は、 チャック正極静電層 2とチャック負極静電層 3との静電的な作用によりこれらの 電極にセラミック誘電体膜 4を介して吸着され、 固定されることとなる。 このよ うにしてシリコンウェハ 9を静電チャック 1 0 1上に固定させた後、 このシリコ ンウェハ 9に、 C V D等の種々の処理を施すことができる。
次に、 上記方法により製造された静電チヤックを構成するセラミック基板につ いて、 説明する。 なおセラミック基板とは、 この静電チャックにおいては、 セラ ミック誘電体膜以外の部分をいうものとする。
上記静電チヤックは、 1 5 0 °C以上で使用されることが好ましく、 2 0 0で以 上で使用されるのが最も好ましい。
上記セラミック基板は、 最大気孔の気孔径が 5 0 以下であることが望まし く、 気孔率は 5 %以下が望ましい。 また、 上記セラミック基板には、 気孔が全く 存在しないか、 気孔が存在する場合は、 その最大気孔の気孔径は、 5 0 m以下 であることが望ましい。
気孔が存在しない場合は、 高温での耐電圧が特に高くなり、 逆にある程度の気 孔が存在する場合は、 破壌靱性値がより高くなる。 このためどちらの設計にする かは、 要求特性によって変わるのである。
気孔の存在によって破壊靱性値がより高くなる理由が明確ではないが、 クラッ クの進展が気孔によって止められるからであると推定している。
本発明で、 最大気孔の気孔径が 5 0 m以下であることが望ましいのは、 気孔 径が 5 0 μ πιを超えると高温、 特に 2 0 0 °C以上での耐電圧特性を確保するのが 難しくなるからである。
最大気孔の気孔径は、 1 0 μ m以下が望ましい。 2 0 0 °C以上での反り量が小 さくなるからである。
気孔率や最大気孔の気孔径は、 焼結時の加圧時間、 圧力、 温度、 S i Cや B N などの添加物で調整することができる„ 上述のように、 3 1〇ゃ8 ]^は焼結を阻 害するため、 気孔を導入させることができる。
最大気孔の気孔径を測定する際には、 試料を 5個用意し、 その表面を鏡面研磨 し、 2 0 0 0〜 5 0 0 0倍の倍率で表面を電子顕微鏡で 1 0箇所撮影する。 そし て、 撮影された写真で最大の気孔径を選び、 5 0ショットの平均を最大気孔の気 孔径とする。
気孔率は、 アルキメデス法により測定する。 焼結体を粉碎して有機溶媒中ある いは水銀中に粉碎物を入れて体積を測定し、 粉砕物の重量と体積から真比重を求 め、 真比重と見かけの比重から気孔率を計算するのである。
上記セラミック基板の直径は、 1 5 O mmを超えることが望ましく、 2 0 0 m m以上がより望ましい。 特に 1 2インチ (3 0 0 mm) 以上であることが望まし い。
直径が 1 5 O mmを超えるような大きな基板では、 チャック力のバラツキによ つて、 加熱した半導体ウェハの温度のバラツキが大きくなつてしまう。 また、 セ ラミック基板の熱容量が大きくなり、 加熱面の温度が不均一になる。 逆に言えば、 直径 1 5 O mm程度の基板であれば、 チャック力が多少ばらついても半導体ゥェ ハも小さいため、 表面温度は均一になる。 また、 抵抗発熱体の抵抗値が多少ばら ついても、 セラミック基板の熱容量は小さいため、 昇温しやすく、 温度が比較的 均一になりやすい。
なお、 特開平 1 1— 7 4 0 6 4号公報の実施例では、 直径 3 0 0 mmのセラミ ック基板が開示されているが、 電極は、 グリーンシートに印刷を施したものでは なく、 このような引例の存在により、 本発明の特許性が阻却されることはない。 上記セラミック基板の厚さは、 5 O mm以下が望ましく、 特に 2 5 mm以下が 望ましい。
セラミック基板の厚さが 2 5 mmを超えると、 セラミック基板の熱容量が大き すぎる場合があり、 特に、 温度制御手段を設けて加熱、 冷却すると、 熱容量の大 きさに起因して温度追従性が低下してしまう場合があるからである。
セラミック基板の厚さは、 1 . 5 mmを超え、 5 mm以下が最適である。 セラミック基板の厚さが 1 . 5 mm以下の場合には、 直径が 1 5 O mmを超え るような大きなセラミック基板では、 反り量が大きくなり、 実用性に乏しい。 上記セラミック基板は、 0 . 0 5〜1 0重量%の酸素を含有していることが望 ましい。 酸素を粒界に偏祈させることにより、 破壌靱性値を改善することができ るからである。
酸素含有量が 0 . 0' 5重量%未満では、 焼結が進まず気孔率が高くなり、 また 熱伝導率が低下し、 逆に、 酸素量が 1 0重量%を超えると、 粒界の酸素の量が多 すぎるため、 熱伝導率が低下して昇温降温特性が低下するからである。
上記セラミック基板に酸素を含有させるためには、 上記したように、 原料粉末 を酸化性雰囲気で焼成するか、 または、 原料粉末中に金属酸化物を混合して焼成 を行う。
上記金属酸化物としては、 例えば、 イットリャ (Υ23 ) 、 アルミナ (Α 03 ) 、 酸化ルビジウム (R b 2〇) 、 酸化リチウム (L i 2〇) 、 炭酸カルシゥ ム (C a C Os ) 等が挙げられる。
これらの金属酸化物の含有量は、 0 . 1〜2 0重量%が好ましい。
本発明では、 セラミック基板中に 5〜5 0 0 0 p p mのカーボンを含有してい ることが望ましい。
カーボンを含有させることにより、 セラミック基板を黒色化することができ、 ヒータとして使用する際に輻射熱を充分に利用することができるからである。 カーボンは、 非晶質のものであっても、 結晶質のものであってもよい。 非晶質 のカーボンを使用した場合には、 高温における体積抵抗率の低下を防止すること ができ、 結晶質のものを使用した場合には、 高温における熱伝導率の低下を防止 することができるからである。 従って、 用途によっては、 結晶質のカーボンと非 晶質のカーボンの両方を併用してもよい。 また、 カーボンの含有量は、 5 0〜2 0 0 0 p p mがより好ましい。
セラミック基板にカーボンを含有させる場合には、 その明度が J I S Z 8 7 2 1の規定に基づく値で N 6以下となるようにカーボンを含有させることが望 ましい。 この程度の明度を有するものが輻射熱量、 隠蔽性に優れるからである。 ここで、 明度の Nは、 理想的な黒の明度を 0とし、 理想的な白の明度を 1 0と し、 これらの黒の明度と白の明度との間で、 その色の明るさの知覚が等歩度とな るように各色を 1 0分害 ijし、 N O〜N 1 0の記号で表示したものである。
実際の明度の測定は、 N O〜N 1 0に対応する色票と比較して行う。 この場合 の小数点 1位は 0または 5とする。
上記静電チャックを構成するセラミック誘電体膜の材料は、 特に限定されず、 窒化物セラミック、 炭化物セラミック、 酸化物セラミック等が挙げられるが、 こ れらのなかでは窒化物セラミックが好ましい。
上記窒化物セラミックとしては、 上記セラミック基板と同様のものが挙げられ るが、 窒化物セラミックは酸素を含有していることが望ましい。
例えば、 上記窒化物セラミックに酸素を含有させるため、 窒化物セラミックの 原料粉末を酸化性雰囲気で焼成するた、 または、 原料粉末中に金属酸化物を混合 して焼成を行う。
上記金属酸化物としては、 アルミナ (A l 2〇 、 酸化珪素 (S i Ο, ) 等が 挙げられる。 ·
これらの金属酸化物の添加量は、 窒化物セラミック 1 0 0重量部に対して、 0 . 1〜 1 0重量部が好ましい。
セラミック誘電体膜の厚さを、 5 0〜5 0 0 0 Ai mとすることで、 チャック力 を低下させずに充分な耐電圧を確保することができる。
上記セラミック誘電体膜の厚さが 5 0 t m未満であると、 膜厚が薄すぎるため に充分な耐電圧が得られず、 シリコンウェハを载置し、 吸着した際にセラミック 誘電体膜が絶縁破壊する場合があり、 一方、 上記セラミック誘電体膜の厚さが 5 O O O mを超えると、 シリコンウェハと静電電極との距離が遠くなるため、 シ リコンウェハを吸着する能力が低くなつてしまう。 セラミック誘電体膜の厚さは、 1 0 0〜1 5 0 0 μ mが好ましい。
この静電チャック 1 0 1では、 セラミック誘電体膜 4は、 酸素を含有する窒化 物セラミックからなり、 また、 気孔率が 5 %以下であり、 最大の気孔径が 5 0 /i m以下であることが望ましい。 また、 このセラミック誘電体膜 4中の気孔は、 お 互いに独立した気孔により構成されていることが望ましい。 このような構成のセラミック誘電体膜 4では、 耐電圧を低下させるガス等がセ ラミック誘電体膜を透過して静電電極を腐食させたり、 高温でもセラミック誘電 体膜の耐電圧が低下することがない。
上記気孔率が 5 %を超えると、 気孔数が増え、 また、 気孔径が大きくなりすぎ、 その結果、 気孔同士が連通しやすくなる。 このような構造のセラミック誘電体膜 では、 耐電圧が低下してしまう。
さらに、 最大気孔の気孔径が 5 0 mを超えると、 酸化物が粒子境界に存在し ていても、 高温での耐電圧を確保することが難しくなる。 気孔率は、 0 . 0 1〜 3 %が好ましく、 最大気孔の気孔径は、 0 . 1〜 1 0 μ mが好ましい。
上記セラミック誘電体膜中には、 カーボンが 5 0〜5 0 0 0 p p m含有されて いることが望ましい。 静電チャック中に設けられた電極パターンを隠蔽すること ができ、 かつ、 高輻射熱が得られるからである。 また、 体積抵抗率が低い方が、 低温域においては、 シリコンウェハの吸着能力が高くなる。
なお、 本発明で、 セラミック誘電体膜中にある程度の気孔が存在してもよいと しているのは、 破壌靱'! "生値をより高くすることができるからであり、 これにより 熱衝撃性をさらに改善することができる。
図 8および図 9は、 他の静電チャックにおける静電電極を模式的に示した水平 断面図であり、 図 8に示す静電チャック 2 0では、 セラミック基板 1の内部に半 円形状のチャック正極静電層 2 2とチャック負極静電層 2 3が形成されており、 図 9に示す静電チャックでは、 セラミック基板 1の内部に円を 4分割した形状の チャック正極静電層 3 2 a、 3 2 bとチャック負極静電層 3 3 a、 3 3 bが形成 されている。 また、 2枚の正極静電層 2 2 a、 2 2 bおよび 2枚のチャック負極 静電層 3 3 a、 3 3 bは、 それぞれ交差するように形成されている。
なお、 円形等の電極が分割された形態の電極を形成する場合、 その分割数は特 に限定されず、 5分割以上であってもよく、 その形状も扇形に限定されない。 本発明における静電チャックとしては、 例えば、 図 2に示すように、 セラミツ ク基板 1とセラミック誘電体膜 4との間にチャック正極静電層 2とチャック負極 静電層 3とが設けられ、 セラミック基板 1の内部には抵抗発熱体 5が設けられた 構成の静電チャック 1 0 1、 図 5に示すように、 セラミック基板 1とセラミック 誘電体膜 4との間にチャック正極静電層 2とチャック負極静電層 3とが設けられ、 セラミック基板 1の底面に抵抗発熱体 2 5が設けられた構成の静電チャック 2 0 1、 図 6に示すように、 セラミック基板 1とセラミック誘電体膜 4との間にチヤ ック正極静電層 2とチャック負極静電層 3とが設けられ、 セラミック基板 1の内 部に抵抗発熱体である金属線 7が埋設された構成の静電チャック 3 0 1、 図 7に 示すように、 セラミック基板 1とセラミック誘電体膜 4との間にチャック正極静 電層 2とチャック負極静電層 3とが設けられ、 セラミック基板 1の底面に熱電素 子 8 1とセラミック板 8 2からなるペルチェ素子 8が形成された構成の静電チヤ ック 4 0 1等が挙げられる。
図 7に示した静電チヤックのように、 温度制御手段としてペルチェ素子を使用 した場合には、 電流の流れる方向を変えることにより発熱、 冷却両方行うことが できるため有利である。
ペルチェ素子 8は、 p型、 n型の熱電素子 8 1を直列に接続し、 これをセラミ ック板 8 2などに接合させることにより形成される。
ペルチェ素子としては、 例えば、 シリコン■ゲルマニウム系、 ビスマス ·アン チモン系、 鉛 ·テルル系材料等が挙げられる。
図 2〜 7に示したように、 上記静電チャックでは、 セラミック基板 1とセラミ ック誘電体膜 4との間にチャック正極静電層 2とチャック負極静電層 3とが設け られ、 セラミック基板 1の内部に抵抗発熱体 5や金属線 7が形成されているため、 これらと外部端子とを接続するための接続部 (スルーホール) 1 6、 1 7が必要 となる。
スルーホール 1 6、 1 7は、 タングステンペースト、 モリブデンペース トなど の高融点金属、 タングステンカーバイド、 モリブデンカーバイドなどの導電性セ ラミックを充填することにより形成される。
また、 接続部 (スルーホール) 1 6、 1 7の直径は、 0 . 1〜; L O mmが望ま しい。 断線を防止しつつ、 クラックや歪みを防止できるからである。
このスルーホールを接続パッドとして外部端子 6、 1 8を接続する (図 1 ( d ) 参照) 。
接続は、 半田、 ろう材により行う。 ろう材としては銀ろう、 パラジウムろう、 アルミニウムろう、 金ろうを使用する。 金ろうとしては、 Au— N i合金が望ま しい。 Au— N i合金は、 タングステンとの密着性に優れるからである。
Au/N iの比率は、 〔81. 5〜82. 5 (重量0 /。) 〕 / 〔18. 5-17. 5 (重量%) 〕 が望ましい。
Au— N i層の厚さは、 0. 1〜50 μπιが望ましい。 接続を確保するに充分 な範囲だからである。 また、 1 0-6〜 1 0-5P aの高真空で 500〜 1 000°C の高温で使用すると Au— Cu合金では劣化するが、 Au_N i合金ではこのよ うな劣化がなく有利である。 また、 A u— N i合金中の不純物元素量は全量を 1 00重量部とした場合に 1重量部未満であることが望ましい。
本発明では、 必要に応じて、 セラミック基板の有底孔に熱電対を埋め込んでお くことができる。 熱電対により抵抗発熱体の温度を測定し、 そのデータをもとに 電圧、 電流量を変えて、 温度を制御することができるからである。
熱電対の金属線の接合部位の大きさは、 各金属線の素線径と同一か、 もしくは、 それよりも大きく、 かつ、 0. 5mm以下がよい。 このような構成によって、 接 合部分の熱容量が小さくなり、 温度が正確に、 また、 迅速に電流値に変換される のである。 このため、 温度制御性が向上してウェハの加熱面の温度分布が小さく なるのである。
上記熱電対としては、 例えば、 J I S— C一 1602 (1 980) に挙げられ るように、 K型、 R型、 B型、 S型、 E型、 J型、 T型熱電対が挙げられる。 上述した静電チャックの製造方法では、 静電チャック 101 (図 2、 3参照) を例にとったが、 静電チャック 201 (図 5参照) を製造する場合は、 静電電極 層を有するセラミック基板を製造した後、 このセラミック基板の底面に導体ぺー ストを印刷、 焼成して抵抗発熱体 25を形成し、 この後、 無電解めつき等により 金属被覆層 25 aを形成すればよい。 また、 静電チヤック 301 (図 6参照) を 製造する場合には、 抵抗発熱体となる導体ペースト層を形成する代わりに、 金属 線をグリーンシート上に載置し、 そのほかは、 静電チャック 101の場合とほぼ 同様にして静電チヤックを製造すればよい。
さらに、 静電チャック 4 0 1 (図 7参照) を製造する場合は、 静電電極層を有 するセラミック基板を製造した後、 このセラミック基板に溶射金属層を介してぺ ルチェ素子を接合すればよい。
図 1 0は、 以上のような構成の本発明の静電チャックを嵌め込むための支持容 器 4 1を模式的に示した断面図である。
支持容器 4 1には、 静電チャック 1 0 1が断熱材 4 5を介して嵌め込まれるよ うになつている。 また、 この支持容器 1 1には、 冷媒吹き出し口 4 2が形成され ており、 冷媒注入口 4 4から冷媒が吹き込まれ、 冷媒吹き出し口 4 2を通って吸 引口 4 3から外部に出ていくようになっており、 この冷媒の作用により、 静電チ ャック 1 0 1を冷却することができるようになっている。
次に、 本発明のセラミックヒータの製造方法について説明する。
本発明のセラミックヒータの製造方法は、 表面の粗度が R m a xで 2 0 0 /x m 以下のグリーンシートに抵抗発熱体用の導体ペーストを印刷し、 次いで、 上記グ リーンシートに他のグリーンシートを積層して積層体を作製した後、 焼結させる ことを特徴とする。
本発明では、 グリーンシートの表面に抵抗発熱体用の導体ペーストを印刷する ほかは、 上記静電チヤックの製造方法とほぼ同様にして、 抵抗発熱体を内部に有 するセラミックヒータを製造する。 従って、 ここでは、 抵抗発熱体の形成方法に ついてのみ説明を行うことにする。
抵抗! §熱体は、 貴金属 (金、 銀、 白金、 パラジウム) 、 タングステン、 モリブ デン、 ニッケル等の金属、 または、 タングステン、 モリブデンの炭化物等の導電 性セラミックからなるものであることが望ましい。 抵抗値を高くすることが可能 となり、 断線等を防止する目的で厚み自体を厚くすることができるとともに、 酸 化しにくく、 熱伝導率が低下しにくいからである。 これらは、 単独で用いてもよ く、 2種以上を併用してもよい。
また、 抵抗発熱体は、 セラミック基板全体の温度を均一にする必要があること から、 図 4に示すような同心円形状のパターンや同心円形状のパターンと屈曲線 形状のパターンとを組み合わせたものが好ましい。 また、 得られたセラミックヒ ータ中の抵抗発熱体の厚さが 1〜5 0 μ πι、 その幅が 5〜2 O mmになるように、 導体ペーストの幅や厚さを設定することが望ましい。
抵抗発熱体の厚さや幅を変化させることにより、 その抵抗値を変化させること ができるが、 上記範囲が最も実用的だからである。 抵抗発熱体の抵抗値は、 薄く、 また、 細くなるほど大きくなる。
なお、 抵抗発熱体を内部に設けると、 加熱面と抵抗発熱体との距離が近くなり、 表面の温度の均一性が低下するため、 抵抗発熱体自体の幅を広げる必要がある。 また、 セラミック基板の内部に抵抗発熱体を設けるため、 セラミック基板との密 着性を考盧する必要性がなくなる。
抵抗発熱体は、 断面が方形、 楕円形、 紡錘形、 蒲鋅形状のいずれでもよいが、 偏平なものであることが望ましい。 偏平の方が加熱面に向かって放熱しやすいた め、 加熱面への熱伝搬量を多くすることができ、 加熱面の温度分布ができにくい からである。 抵抗発熱体は螺旋形状でもよい。
抵抗発熱体をセラミック基板の内部に形成する際には、 底面から厚さ方向に 6
0 %までの領域に形成することが望ましレ、。 加熱面の温度分布をなくし、 半導体 ウェハを均一に加熱することができるからである。
本発明のセラミックヒータの製造方法においては、 セラミック基板の内部に抵 抗発熱体を形成するが、 上記静電チャックの製造方法においては、 抵抗発熱体を セラミック基板の底面に形成してもよい。 従って、 ここでは、 抵抗発熱体をセラ ミック基板の底面に形成する場合についても、 合わせて説明することにする。 セラミック基板の底面に抵抗発熱体を形成する場合には、 通常、 焼成を行って、 セラミック基板を製造した後、 その表面に上記導体ペースト層を形成し、 焼成す ることより、 抵抗発熱体を形成する。
焼成後のセラミック基板の底面に導体ペーストを形成する際、 または、 ダリー ンシートの表面に導体ペースト層を形成する際に用いる導体ペーストとしては特 に限定されないが、 導電性を確保するため金属粒子または導電性セラミック粒子 が含有されているほか、 樹脂、 溶剤、 増粘剤などを含むものが好ましい。 上記金属粒子や導電性セラミック粒子の材料としては、 上述したものが挙げら れる。 これら金属粒子または導電性セラミック粒子の粒径は、 0 · 1〜 100 μ mが好ましい。 0. 1 μπι未満と微細すぎると、 酸化されやすく、 一方、 100 mを超えると、 焼結しにくくなり、 抵抗値が大きくなるからである。
上記金属粒子の形状は、 球状であっても、 リン片状であってもよい。 これらの 金属粒子を用いる場合、 上記球状物と上記リン片状物との混合物であってよい。 上記金属粒子がリン片状物、 または、 球状物とリン片状物との混合物の場合は、 金属粒子間の金属酸化物を保持しゃすくなり、 抵抗発熱体とセラミック基板との 密着性を確実にし、 かつ、 抵抗値を大きくすることができるため有利である。 上記導体ペーストに使用される樹脂としては、 例えば、 アクリル樹脂、 ェポキ シ樹脂、 フエノール樹脂等が挙げられる。 また、 溶剤としては、 例えば、 イソプ 口ピルアルコール等が挙げられる。 増粘剤としては、 セルロース等が挙げられる。 抵抗発熱体をセラミック基板の内部に設ける場合には、 導体ペーストの粘度は、
5 X 104〜50 X 1 04 c P (50〜500 P a ' s) が好ましい。
抵抗発熱体用の導体ペーストをセラミック基板の表面に形成する際には、 上記 導体ペースト中に上記金属粒子のほかに金属酸化物を添加し、 上記金属粒子およ ぴ上記金属酸化物を焼結させたものとすることが好ましい。 このように、 金属酸 化物を金属粒子とともに焼結させることにより、 セラミック基板と金属粒子とを より密着させることができる。
上記金属酸化物を混合することにより、 セラミック基板との密着性が改善され る理由は明確ではないが、 金属粒子表面や非酸化物からなるセラミック基板の表 面は、 その表面がわずかに酸化されて酸化膜が形成されており、 この酸化膜同士 が金属酸化物を介して焼結して一体化し、 金属粒子とセラミックとが密着するの ではないかと考えられる。 また、 セラミック基板を構成するセラミックが酸化物 の場合は、 当然に表面が酸ィヒ物からなるので、 密着性に優れた導体層が形成され る。
上記金属酸化物としては、 例えば、 酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 ( B2O3) 、 アルミナ、 イットリアおょぴチタニアからなる群から選ばれる少なく とも 1種が好ましい。
これらの酸化物は、 抵抗発熱体の抵抗値を大きくすることなく、 金属粒子とセ ラミック基板との密着性を改善することができるからである。
上記酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 (B2 03 ) 、 アルミナ、 イツトリ ァ、 チタエアの割合は、 金属酸化物の全量を 1 0 0重量部とした場合、 重量比で、 酸化鉛が 1〜1 0、 シリカが 1〜 3 0、 酸化ホウ素が 5 ~ 5 0、 酸化亜鈴が 2 0 〜7 0、 アルミナが 1〜 1 0、 イツトリアが 1〜5 0、 チタニアが 1〜5 0であ つて、 その合計が 1 0 0重量部を超えない範囲で調整されていることが好ましい。 これらの範囲で、 これらの酸化物の量を調整することにより、 特にセラミック 基板との密着性を改善することができる。
上記金属酸化物の金属粒子に対する添加量は、 0 . 1重量%以上 1 0重量%未 満が好ましい。 また、 このような構成の導体ペーストを使用して抵抗発熱体を形 成した際の面積抵抗率は、 1〜4 5 πι Ω /口が好ましい。
面積抵抗率が 4 5 πι Ω /口を超えると、 印加電圧量に対して発熱量は大きくな りすぎて、 表面に抵抗発熱体を設けた半導体装置用セラミック基板では、 その発 熱量を制御しにくいからである。 なお、 金属酸化物の添加量が 1 0重量%以上で あると、 面積抵抗率が 5 Ο πι Ω /口を超えてしまい、 発熱量が大きくなりすぎて 温度制御が難しくなり、 温度分布の均一性が低下する。
抵抗発熱体がセラミック基板の表面に形成される場合には、 抵抗発熱体の表面 部分に、 金属被覆層が形成されていることが好ましい。 内部の金属焼結体が酸化 されて抵抗値が変化するのを防止するためである。 形成する金属被覆層の厚さは、 0 . 1 ~ 1 0 μ mが好ましい。
上記金属被覆層を形成する際に使用される金属は、 非酸化性の金属であれば特 に限定されないが、 具体的には、 例えば、 金、 銀、 パラジウム、 白金、 ニッケル 等が挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 これらのなかでは、 ニッケルが好ましい。
なお、 抵抗努熱体をセラミック基板の内部に形成する場合には、 抵抗発熱体表 面が酸化されることがないため、 被覆は不要である。 上記方法により製造されるセラミックヒータを構成する抵抗発熱体は、 例えば、 図 4の静電チヤックに形成された抵抗発熱体のように同心円形状を有するもので ある。 図 1 1は、 このセラミックヒータの一部を示す部分拡大断面図である。 セラミック基板 6 1は、 円板形状に形成されており、 セラミック基板 6 1の内 部には、 抵抗発熱体 6 2が同心円状のパターンに形成されており、 これら抵抗発 熱体 6 2は、 互いに近い二重の同心円同士が 1組の回路として、 1本の線になる ように接続され、 その回路の両端部に入出力の端子となる外部端子 6 3がスルー ホール 6 9を介して接続されている。
また、 図 1 1に示すように、 セラミック基板 6 1には貫通孔 6 5が設けられ、 この貫通孔 6 5に支持ピン 6 6が揷通され、 シリコンウェハ 9が保持されている。 そして、 この支持ピン 6 6を上下することにより、 搬送機からシリコンウェハ 9 を受け取ったり、 シリコンウェハ 9をセラミック基板 6 1の加熱面 6 1 a上に载 置して加熱したり、 シリコンウェハ 9を加熱面 6 1 aから一定の間隔で離間させ た状態で支持し、 加熱したりすることができる。
また、 セラミック基板 6 1の底面 6 1 aには、 熱電対等の測温素子を揷入する ための有底孔 6 4が設けられている。 そして、 抵抗発熱体 6 2に通電すると、 セ ラミック基板 6 1は加熱され、 これによりシリコンウェハ等の被加熱物の加熱を 行うことができる。 本発明の製造方法により得られるセラミックヒータは、 発熱 量に場所によるバラツキがない、 均一な厚さの抵抗発熱体が形成されており、 そ のため、 半導体ウェハ等の被加熱物を均一に加熱することができる。
セラミック基板の内部に抵抗発熱体を設ける場合は、 図 1 0に示すように、 セ ラミック基板を嵌め込む支持容器に、 冷却手段としてエアー等の冷媒の吹きつけ 口などを設けてもよい。 抵抗発熱体をセラミック基板の内部に設ける場合には、 複数層設けてもよい。 この場合は、 各層のパターンは相互に補完するように形成 されて、 加熱面からみるとどこかの層にパターンが形成された状態が望ましい。 例えば、 互いに千鳥の配置になっている構造である。
本発明のセラミックヒータでは、 表面にチャックトップ導体層を設け、 内部に ガード電極、 グランド電極を形成し、 ウェハプローバとしてもよく、 静電電極を 形成して静電チャックとしてもよい。
また、 セラミックヒータは、 半導体ウェハを直接載置して加熱してもよく、 5 0-2000 μπι程度離間させて加熱してもよい。 発明を実施するための最良の形態
以下、 実施例により本発明をさらに詳細に説明する。
(実施例 1) 静電チャック (図 1参照) の製造
(1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 0. 6 μπι) 1000重 量部、 イットリア (平均粒径: 0. 4 /zm) 40重量部、 アタリルバインダ 1 1 5重量部、 分散剤 5重量部および 1ーブタノールとエタノールとからなるアルコ ール 530重量部を混合した粘度が 2万 c Pのペーストを用い、 ドクターブレー ド法による成形を行った後、 表 1に示した条件で乾燥させ、 厚さ 0. 47mmの グリーンシートを得た。 このグリーンシート表面の粗度は、 表 1に示した通りで ある。 なお、 表 1に示した乾燥条件については、 上段の条件で乾燥させた後、 2 段目の条件で再び乾燥させたことを示す。
(2) 次に、 このグリーンシートを 80°Cで 5時間乾燥させた後、 パンチングに より直径 1. 8 mm, 3. 0 mm、 5. 0 mmの半導体ウェハ支持ピンを揷入す る貫通孔となる部分、 外部端子と接続するためのスルーホールとなる部分を設け た。
(3) 平均粒子径 1 / mのタングステンカーバイト粒子 100重量部、 アクリル 系樹脂バインダ 3. 0重量部、 α—テルビネオール溶媒 3. 5重量部および分散 剤 0. 3重量部を混合して導体ペースト Αを調製した。
平均粒子径 3 μ mのタングステン粒子 100重量部、 アタリル系樹脂バインダ 1. 9重量部、 α—テルビネオール溶媒 3. 7重量部および分散剤 0. 2重量部 を混合して導体ペースト Βを調製した。
この導電性ペースト Αをグリーンシートにスクリーン印刷で印刷し、 抵抗発熱 体用の導体ペースト層を形成した。 印刷パターンは、 同心円形状のパターンとし、 その幅を 10mm、 その厚さを 12 μπιとした。 また、 他のグリーンシートに図 3に示した形状の静電電極パターンからなる導体ペースト層を形成した。 この導 体ペース ト層の厚さは、 10 imであった。
さらに、 外部端子を接続するためのスルーホール用の貫通孔に導体ペースト B を充填した。
上記処理の終わったグリーンシート 50に、 さらに、 タングステンペーストを 印刷しないグリーンシート 50' を上側 (加熱面) に 34枚、 下側に 1 3枚積層 し、 その上に静電電極パターンからなる導体ペースト層を印刷したグリーンシー ト 50を積層し、 さらにその上にタングステンペーストを印刷していないグリー ンシート 50' を 2枚積層し、 これらを 1 30°C、 80 k g/cm2の圧力で圧 着して積層体を形成した (図 1 (a) ) 。
(4) 次に、 得られた積層体を窒素ガス中、 600°Cで 5時間脱脂し、 1890 °C、 圧力 150 k gZcm2で 3時間ホットプレスし、 厚さ 3 mmの窒化アルミ ユウム板状体を得た。 これを 23 Ommの円板状に切り出し、 内部に厚さ 6 μπι、 幅 1 Ommの抵抗発熱体 5および厚さ 10 μ mのチャック正極静電層 2、 チヤッ ク負極静電層 3を有する窒化アルミニウム製の板状体とした (図 1 (b) ) 。
(5) 次に、 (4) で得られた板状体を、 ダイャモンド砥石で研磨した後、 マス クを載置し、 S i C等によるプラスト処理で表面に熱電対のための有底孔 (直径 : 1. 2mm, 深さ : 2. Omm) を設けた。
(6) さらに、 スルーホールが形成されている部分をえぐり取って袋孔 35、 3 6とし (図 1 (c) ) 、 この袋孔 35、 36に N i— Auからなる金ろうを用い、
700°Cで加熱リフローしてコバール製の外部端子 6、 18を接続させた (図 1 (d) ) 。
なお、 外部端子の接続は、 タングステンの支持体が 3点で支持する構造が望ま しい。 接続信頼性を確保することができるからである。
(7) 次に、 温度制御のための複数の熱電対を有底孔に埋め込み、 抵抗発熱体を 有する静電チヤックの製造を完了した。
(実施例 2〜3および比較例 1) 静電チャック (図 1参照) の製造 乾燥条件およぴ面粗度を表 1に示した通りとしたほかは、 実施例 1と同様にし て静電チャックを製造した。
このようにして製造した実施例 1〜 3およぴ比較例 1に係る静電チャックにシ リコンウェハ 9を載置して吸着させた後、 通電を行ってセラミック基板の温度を 上昇させ、 セラミック基板の温度を 40 0°Cにした後、 シリコンウェハ表面の各 部分の温度を、 サーモビユア (日本データム社製 I R 6 2 0 1 2— 0 0 1 2) を用いて測定し、 最低温度と最高温度との温度差を求めた。 その結果を下記の表 1に示した。
また、 シリコンウェハを 1 2分割して、 静電チャック上に載置し、 4 0 0°Cま で昇温して l kV印加し、 各区画のチャック力をロードセル (島津製作所製 ォ ートグラフ AG S— 5 0) で測定し、 最大と最小との差を求めた。
面粗度 Rm a xは、 表面形状測定器 (KLA ' T e n c o r社製 P— 1 1 ) を用い、 測定長: 5 0 0 0 μ m、 走査速度: 5 0 mZ秒、 荷重: 3 m g、 S a m 1 i g R a t e 1 0 0 H z Wa v i n e s s F i I t e r : 8 0 μ mの条件で測定した。
Figure imgf000029_0001
上記表 1に示した結果より明らかなように、 表面の粗度が Rm a xで 2 0 0 μ m以下のグリーンシートを用いた実施例 1〜3に係る静電チャックでは、 シリコ ンウェハ表面温度のバラツキ (最低温度と最高温度との差) が 7°C以下と小さい のに対し、 表面の粗度が Rm a xで 210 mのグリーンシートを用いた比較例 1に係る静電チャックでは、 シリコンウェハ表面温度のパラツキが 18°Cと大き くなつており、 静電電極のチャック力については、 場所によるバラツキが存在し ていた。
(実施例 4〜6) セラミックヒータの製造 (図 1 1参照)
(1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径: 1. 1 /zm) 100 重量部、 酸化ィットリウム (Y203 :イットリア、 平均粒径: 0. 4 μ m) 4重 量部、 アタリルバインダ 1 1. 5重量部、 分散剤 0. 5重量部および 1ーブタノ ールとエタノールとからなるアルコール 53重量部を混合した粘度が 2万 c P ( 20 P a · s) のペーストを用い、 ドクターブレード法により成形を行って、 厚 さ 0. 47 mmのグリーンシート 50を作製した。 このグリーンシート表面の粗 度おょぴ乾燥条件は、 表 2に示した通りである。
(2) 次に、 このグリーンシート 50を 80°Cで 5時間乾燥させた後、 シリコン ウェハを支持する支持ピンを挿入するための貫通孔となる部分およびスルーホー ルとなる部分等をパンチングにより形成した。
(3) 平均粒子径 1 imのタングステンカーバイト粒子 100重量部、 アタリノレ 系バインダ 3. 0重量部、 α—テルビネオール溶媒 3. 5重量部および分散剤 0. 3重量部を混合して導体ペースト Αを調製した。
平均粒子径 3 /zmのタングステン粒子 100重量部、 ァクリル系バインダ 1 · 9重量部、 α—テルビネオ一ノレ溶媒 3. 7重量部おょぴ分散剤 0. 2重量部を混 合して導体ペースト Βを調製した。
そして、 スルーホール用の貫通孔に導体ペースト Βを充填した後、 導体ペース ト Αをグリーンシート上にスクリーン印刷で印刷し、 抵抗発熱体 62用の導体ぺ 一スト層を形成した。 印刷パターンは、 同心円形状パターンとし、 導体ペースト 層の幅を 1 Omm、 その厚さを 1 2; i mとした。
上記処理の終わったグリーンシートに、 タングステンペーストを印刷しないグ リーンシートを上側 (加熱面) に 37枚、 下側に 1 3枚、 1 30。C、 80 k g/ cm2の圧力で積層した。
(4) 次に、 得られた積層体を窒素ガス中、 600°Cで 5時間脱脂し、 1 890 °C、 圧力 1 50 k g/cm2で 1 0時間ホットプレスし、 厚さ 3 mmの窒化アル ミユウム焼結体を得た。 これを 230mmの円板状に切り出し、 内部に厚さ 6 m、 幅 1 Omm (ァスぺクト比: 1666) の抵抗宪熱体 62を有するセラミッ ク基板とした。
(5) 次に、 (4) で得られた扳状体を、 ダイヤモンド砥石で研磨した後、 マス クを載置し、 S i C等によるプラスト処理で表面に熱電対のための有底孔を設け た。
(6) さらに、 板状体にドリル加工を施して袋孔とし、 この袋孔に断面が丁字形 状の外部端子 63を揷入した後、 N i— Au合金 (Au : 8 1. 5重量%、 N i : 18. 4重量%、 不純物: 0. 1重量%) からなる金ろうを用い、 970°Cで 加熱リフローすることにより、 外部端子 63をろう付けし、 抵抗発熱体 62の端 部と接続した。
(7) 温度制御のための複数の熱電対を有底孔に埋め込み、 ポリイミド樹脂を充 填し、 1 90 °Cで 2時間硬化させ、 セラミックヒータを製造した。
(比較例 2) セラミックヒータの製造 (図 1 1参照)
作製したグリーンシート表面の粗度を Rm a Xで 210 zm、 乾燥条件を表 2 に示したとおりとしたほかは、 実施例 4と同様にしてセラミックヒータを製造し た。
このようにして製造した実施例 4〜 6およぴ比較例 2に係るセラミックヒータ に通電し、 セラミック基板の加熱面を 400°Cに保持しながら、 加熱面の各部分 の温度を、 サーモビユア (日本データム社製 I R6201 2-0012) を用 いて測定し、 最低温度と最高温度との温度差を求めた。 その結果を下記の表 2に 示す。
表 2 グリーンシート 面祖度 加熱面の
の乾燥条件 Rmax /皿 B ^1
( m) (°c)
80°C, 15分
実施例 4 150°C, 15分 50 4
120°C, 20分
実施例 5 150°C, 20分 180 5
60°C, 20分
実施例 6 100°C, 20分 10 4
150°C, 15分
比較例 2 150°C, 15分 210 15 その結果、 上記表 2に示したように、 実施例 4〜6に係るセラミックヒータで は、 温度差が 4〜5°Cであったのに対し、 比較例 2に係るセラミックヒータでは、 温度差が 15 °Cと大きかった。 試験例 1
静電チャックを構成するセラミック基板の直径を 15 Ommとしたほかは、 比 較例 1と同様にして、 静電チャックを製造した。
その後、 静電チャックを 400°Cまで昇温し、 1 kVの電圧を印加した後、 シ リコンウェハ表面の最高と最低との温度差を測定した。 その結果、 温度差は、 9
°Cであった。 試験例 2
セラミックヒータを構成するセラミック基板の直径を 15 Ommとしたほかは、 比較例 2と同様にして、 セラミックヒータを製造した。
400°Cまで昇温し、 シリコンウェハ表面の最高と最低との温度差を測定した。 その結果、 温度差は、 7°Cであった。 (実施例 7) 静電チャック (図 1参照) の製造
(1) アルミナ: 93重量部、 S i O2 : 5重量部、 C a O: 0. 5重量部、 M g O : 0. 5重量部、 T i O 0. 5重量部、 アクリルバインダ 1 1. 5重量 部、 分散剤 5重量部および 1—プタノールとエタノールとからなるアルコール 5 3重量部を混合した粘度が 4万 c P (40 P a · s) のペーストを用い、 ドクタ 一ブレード法による成形を行ってシート状物を作製した後、 60°Cで 20分、 1 00°Cで 20分乾燥させ、 厚さ 0. 4 711 111、 面粗度1 111 & = 1 0 111のグリ 一ンシートを得た。
(2) 次に、 このグリーンシートを 80°Cで 5時間乾燥させた後、 加工か必要な グリーンシートに対し、 パンチングにより直径 1. 8mm、 3. 0 mm, 5. 0 mmの半導体ゥェハ支持ピンを揷入する貫通孔となる部分、 外部端子と接続する ためのスルーホールとなる部分を設けた。
(3) 平均粒子径 3 mのタングステン粒子 1 00重量部、 アクリル系樹脂バイ ンダ 1. 9重量部、 α—テルビネオール溶媒 3. 7重量部および分散剤 0. 2重 量部を混合して導体ペースト Βを調製した。
この導電性ペースト Βをグリーンシートにスクリーン印刷で印刷し、 抵抗発熱 体用の導体ペースト層を形成した。 印刷パターンは、 同心円形状のパターンとし た。 また、 別のグリーンシートに双曲の静電電極用のパターンを印刷した。
(4) さらに、 外部端子を接続するためのスルーホーノレ用の貫通孔に導体ペース ト Βを充填した。
抵抗発熱体のパターン、 静電電極のパターンが印刷されたグリーンシートに、 さらに、 タングステンペーストを印刷しないグリーンシートを上側 (加熱面) に 34〜 60枚、 下側に 1 3〜 30枚積層し、 これらを 1 30°C、 8 0 k g/cm 2の圧力で圧着して積層体を形成した。
(5) 次に、 得られた積層体を空気中、 600°Cで 5時間脱脂し、 1 600°C、 圧力 1 5 0 k g/cm2で 3時間ホットプレスし、 厚さが 3 mmで直径が 2 1 0 mmのアルミナ板状体を得た。 この基板には、 内部に厚さが 6 /im、 幅が 1 0m mの抵抗発熱体が形成されていた。
(6) 次に、 (5) で得られた板状体を、 ダイヤモンド砥石で研磨した後、 マス クを載置し、 S i C等によるプラスト処理で表面に熱電対のための有底孔 (直径 : 1. 2mm 深さ : 2. Omm) を設けた。
(7) さらに、 スルーホールが形成されている部分をえぐり取って袋孔とし、 こ の袋孔に N i一 A uからなる金ろうを用い、 700°Cで加熱リフローしてコバー ル製の外部端子を接続させた。
なお、 外部端子の接続は、 タングステンの支持体が 3点で支持する構造が望ま しい。 接続信頼性を確保することができるからである。
(8) 次に、 温度制御のための複数の熱電対を有底孔に埋め込み、 静電電極を有 するホットプレートの製造を完了した。 (比較例 3 )
グリーンシートを 100°Cで 1 5分、 1 50°Cで 15分乾燥させて、 厚さ 0. 47mm、 面粗度 Rma x : 210 mのグリーンシートとしたほかは、 実施例 7と同様にして静電電極を有するホットプレートを製造した。
実施例 7および比較例 3に係るホットプレートについて、 実施例 1〜3と同様 にチャック力の差を測定したところ、 実施例 7の場合、 チャック力の差は、 20 g/cm2 , 1 50°Cに昇温した場合のシリコンウェハ表面の温度差は 6 °Cであ り、 比較例 3の場合、 チャック力の差は、 40 g/cm2、 1 50°Cに昇温した 場合のシリコンウェハ表面の温度差は 20°Cであった。
アルミナは熱伝導率は低いが、 使用温度も 150°Cと低温であるため、 温度差 自体は、 窒化アルミニウムと大きく異なることはない。
このように、 本発明では、 セラミック基板の直径が 15 Ommを超える静電チ ャックやセラミックヒータを製造した際に顕著な効果を奏する。 産業上の利用可能性
以上、 説明したように、 本発明の静電チャックの製造方法では、 グリーンシー トの表面粗度を Rm a xで 200 m以下に設定しているので、 製造される静電 チャックのチャック力に場所によるバラツキがなくなり、 半導体ウェハを均一に 吸着することができる。 また、 本発明のセラミックヒータの製造方法では、 グリーンシートの表面粗度 を R m a Xで 2 0 0 /i m以下に設定しているので、 抵抗発熱体の発熱量に場所に よるバラツキがなくなり、 半導体ウェハを均一に加熱することができる。

Claims

請求の範囲
1. 表面の粗度が R ma xで 200 μ m以下のグリーンシートに電極用の導体 ペーストを印刷し、 次いで、 前記グリ一ンシートに他のグリ一ンシートを積層し て積層体を作製した後、 焼結させることを特徴とする静電チャックの製造方法。
2. 製造する静電チャックは、 直径 1 5 Ommを超える円板状のものである請 求の範囲第 1項に記載の静電チヤックの製造方法。
3. 表面の粗度が Rma Xで 200 Aim以下のグリーンシートに抵抗発熱体用 の導体ペーストを印刷し、 次いで、 前記グリーンシートに他のグリーンシートを 積層して積層体を作製した後、 焼結させることを特徴とするセラミックヒータの 製造方法。
4. 製造するセラミックヒータは、 直径 15 Ommを超える円板状のものであ る請求の範囲第 3項に記載の静電チヤックの製造方法。
PCT/JP2001/003679 2000-03-15 2001-04-27 Procede relatif a l'elaboration de mandrins electrostatiques et procede relatif a l'elaboration d'elements chauffants en ceramique WO2002091458A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000071797A JP2001267405A (ja) 2000-03-15 2000-03-15 静電チャックの製造方法およびセラミックヒータの製造方法
US10/416,497 US20040074586A1 (en) 2000-03-15 2001-04-27 Method of producing electrostatic chucks and method of producing ceramic heaters
EP01926007A EP1383168A1 (en) 2000-03-15 2001-04-27 Method of producing electrostatic chucks and method of producing ceramic heaters
PCT/JP2001/003679 WO2002091458A1 (fr) 2000-03-15 2001-04-27 Procede relatif a l'elaboration de mandrins electrostatiques et procede relatif a l'elaboration d'elements chauffants en ceramique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000071797A JP2001267405A (ja) 2000-03-15 2000-03-15 静電チャックの製造方法およびセラミックヒータの製造方法
PCT/JP2001/003679 WO2002091458A1 (fr) 2000-03-15 2001-04-27 Procede relatif a l'elaboration de mandrins electrostatiques et procede relatif a l'elaboration d'elements chauffants en ceramique

Publications (1)

Publication Number Publication Date
WO2002091458A1 true WO2002091458A1 (fr) 2002-11-14

Family

ID=26345071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003679 WO2002091458A1 (fr) 2000-03-15 2001-04-27 Procede relatif a l'elaboration de mandrins electrostatiques et procede relatif a l'elaboration d'elements chauffants en ceramique

Country Status (3)

Country Link
US (1) US20040074586A1 (ja)
EP (1) EP1383168A1 (ja)
WO (1) WO2002091458A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013423A1 (fr) * 1999-08-10 2001-02-22 Ibiden Co., Ltd. Plaque ceramique pour dispositif de production de semi-conducteurs
US6900149B1 (en) * 1999-09-06 2005-05-31 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
WO2001062686A1 (fr) * 2000-02-24 2001-08-30 Ibiden Co., Ltd. Piece frittee en nitrure d'aluminium, substrat en ceramique, corps chauffant en ceramique et mandrin electrostatique
JP2001247382A (ja) * 2000-03-06 2001-09-11 Ibiden Co Ltd セラミック基板
US6888106B2 (en) * 2000-04-07 2005-05-03 Ibiden Co., Ltd. Ceramic heater
JP3565496B2 (ja) * 2000-04-13 2004-09-15 イビデン株式会社 セラミックヒータ、静電チャックおよびウエハプローバ
JP3516392B2 (ja) * 2000-06-16 2004-04-05 イビデン株式会社 半導体製造・検査装置用ホットプレート
EP1229572A1 (en) * 2000-07-04 2002-08-07 Ibiden Co., Ltd. Hot plate for semiconductor manufacture and testing
TW512645B (en) * 2000-07-25 2002-12-01 Ibiden Co Ltd Ceramic substrate for semiconductor manufacture/inspection apparatus, ceramic heater, electrostatic clamp holder, and substrate for wafer prober
CN100381401C (zh) * 2003-06-13 2008-04-16 株式会社德山 氮化铝接合体及其制造方法
US20060088692A1 (en) * 2004-10-22 2006-04-27 Ibiden Co., Ltd. Ceramic plate for a semiconductor producing/examining device
EP1934995B1 (en) 2005-07-15 2014-04-02 Impact Coatings AB (Publ.) A contact element and a contact arrangement
US8226769B2 (en) * 2006-04-27 2012-07-24 Applied Materials, Inc. Substrate support with electrostatic chuck having dual temperature zones
JP6219229B2 (ja) * 2014-05-19 2017-10-25 東京エレクトロン株式会社 ヒータ給電機構
KR20220027272A (ko) * 2016-04-07 2022-03-07 마테리온 코포레이션 산화 베릴륨 일체형 저항 히터
US11282729B2 (en) * 2018-12-27 2022-03-22 Areesys Technologies, Inc. Method and apparatus for poling polymer thin films

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273837A (ja) * 1998-03-23 1999-10-08 Ngk Spark Plug Co Ltd セラミックヒータの製造方法
JP2000252353A (ja) * 1999-02-26 2000-09-14 Toshiba Ceramics Co Ltd 静電チャックとその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665242B2 (ja) * 1988-09-19 1997-10-22 東陶機器株式会社 静電チャック
JPH11168134A (ja) * 1997-12-03 1999-06-22 Shin Etsu Chem Co Ltd 静電吸着装置およびその製造方法
JP4013386B2 (ja) * 1998-03-02 2007-11-28 住友電気工業株式会社 半導体製造用保持体およびその製造方法
WO2001013423A1 (fr) * 1999-08-10 2001-02-22 Ibiden Co., Ltd. Plaque ceramique pour dispositif de production de semi-conducteurs
JP2001302330A (ja) * 2000-04-24 2001-10-31 Ibiden Co Ltd セラミック基板
WO2001086717A1 (fr) * 2000-05-10 2001-11-15 Ibiden Co., Ltd. Mandrin electrostatique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273837A (ja) * 1998-03-23 1999-10-08 Ngk Spark Plug Co Ltd セラミックヒータの製造方法
JP2000252353A (ja) * 1999-02-26 2000-09-14 Toshiba Ceramics Co Ltd 静電チャックとその製造方法

Also Published As

Publication number Publication date
US20040074586A1 (en) 2004-04-22
EP1383168A1 (en) 2004-01-21

Similar Documents

Publication Publication Date Title
WO2001063972A1 (fr) Substrat en ceramique et son procede de production
WO2001066488A1 (fr) Substrat ceramique pour fabrication/inspection de semi-conducteur
JP3381909B2 (ja) 半導体製造・検査装置用セラミックヒータ
EP1286390A1 (en) Ceramic substrate for semiconductor fabricating device
WO2001086717A1 (fr) Mandrin electrostatique
WO2002091458A1 (fr) Procede relatif a l'elaboration de mandrins electrostatiques et procede relatif a l'elaboration d'elements chauffants en ceramique
WO2001097264A1 (fr) Plaque chauffante
JP2002160974A (ja) 窒化アルミニウム焼結体、窒化アルミニウム焼結体の製造方法、セラミック基板およびセラミック基板の製造方法
JP3565496B2 (ja) セラミックヒータ、静電チャックおよびウエハプローバ
JP3729785B2 (ja) セラミックヒータ
WO2002045138A1 (fr) Dispositif ceramique chauffant permettant la production de semi-conducteurs et dispositifs d'inspection
WO2001067817A1 (fr) Substrat ceramique
JP2001319967A (ja) セラミック基板の製造方法
JP3813421B2 (ja) ウエハプローバ装置
JP2001274229A (ja) 静電チャックの製造方法およびセラミックヒータの製造方法
JP2002249377A (ja) 半導体製造・検査装置用セラミック基板
JP2005026585A (ja) セラミック接合体
JP2002170870A (ja) 半導体製造・検査装置用セラミック基板および静電チャック
JP2002334820A (ja) 半導体ウエハまたは液晶基板加熱用セラミックヒータ
JP2004253799A (ja) 半導体製造・検査装置
JP2001308163A (ja) 半導体製造・検査装置用セラミック基板
JP2001319758A (ja) ホットプレートユニット
JP2001319966A (ja) 静電チャック
JP2001267405A (ja) 静電チャックの製造方法およびセラミックヒータの製造方法
JP2001332560A (ja) 半導体製造・検査装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001926007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10416497

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001926007

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001926007

Country of ref document: EP