WO2002087141A1 - Procede et appareil de synchronisation de trames - Google Patents

Procede et appareil de synchronisation de trames Download PDF

Info

Publication number
WO2002087141A1
WO2002087141A1 PCT/JP2002/003648 JP0203648W WO02087141A1 WO 2002087141 A1 WO2002087141 A1 WO 2002087141A1 JP 0203648 W JP0203648 W JP 0203648W WO 02087141 A1 WO02087141 A1 WO 02087141A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
time
correlation
correlation value
synchronization
Prior art date
Application number
PCT/JP2002/003648
Other languages
English (en)
French (fr)
Inventor
Minori Morita
Sadaki Futagi
Mitsuru Uesugi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001117304A external-priority patent/JP3497484B2/ja
Priority claimed from JP2001127484A external-priority patent/JP3532531B2/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP02718552A priority Critical patent/EP1292063A4/en
Publication of WO2002087141A1 publication Critical patent/WO2002087141A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7085Synchronisation aspects using a code tracking loop, e.g. a delay-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/042Detectors therefor, e.g. correlators, state machines

Definitions

  • the present invention relates to a frame synchronization device and a frame synchronization method for performing synchronization acquisition and synchronization tracking using a correlation method.
  • the transmitting device In mobile communication, one or both of the transmitting device and the receiving device often move, so the transmitting device receives the transmitting signal from the time when the transmitting signal is transmitted by the transmitting device. Time (ie, propagation delay time) is always changing. Therefore, it is necessary for the receiving device to detect the transmission timing at the transmitting device using the received signal and synchronize based on the detected transmission timing. Specifically, the receiving-side device needs to capture the reception timing (that is, acquire synchronization) and correct the reception timing (that is, follow synchronization) based on the transmission timing detected using the received signal. There is.
  • FIG. 1 is a flowchart showing a conventional synchronization method.
  • FIG. 2 is a schematic diagram showing a state of a cross-correlation value in a conventional synchronization method.
  • a cross-correlation value is calculated using the received signal of the transmission signal transmitted by the transmitting device and the unique word signal.
  • the transmitting device transmits a transmission signal including the unique code signal.
  • the cross-correlation value as shown in Fig. 2 is calculated.
  • the maximum value F 1 in the calculated cross-correlation value is stored.
  • the maximum value F1 is multiplied by the coefficient TH, A threshold value F 0 is calculated.
  • the position of the cross-correlation value exceeding the threshold value F0 is detected by comparing the cross-correlation value at each sample point (i) with the threshold value F0.
  • point a is first detected as the position of the cross-correlation value exceeding the threshold value.
  • the position of the point a is stored as the position i, and the cross-correlation value A at the position i is stored.
  • a cross-correlation value B at a position one sample behind position i, that is, at position (i + 1) is obtained.
  • a comparison is made between the stored cross-correlation value A and the cross-correlation value: B. If the cross-correlation value B at the position (i + 1) is larger than the cross-correlation value A, in ST20, the position i is updated to the position (i + 1), and the cross-correlation at the updated position i is updated. Correlation value A is updated to cross-correlation value B.
  • the ST 21 detects the position of the first peak in the cross-correlation value, Position i is the synchronization point (synchronization time) in the next frame.
  • Position i is the synchronization point (synchronization time) in the next frame.
  • the position P 2 is detected as the first peak position in the cross-correlation value. The reception timing is corrected so that this position P 2 becomes a synchronization point in the next frame.
  • the receiving device performs synchronization acquisition and synchronization tracking on the transmission signal transmitted by the transmitting device.
  • the synchronization point (synchronization time) is detected using the result of comparison between the calculated cross-correlation value and the threshold value. Therefore, the synchronization point is accurately detected depending on the line quality. There is a problem that is difficult to do.
  • the level of the preceding wave (raw wave) of the transmission signal transmitted by the transmission side device in the reception side device is compared with the level of the delayed wave of this transmission signal. May fall sharply.
  • the level of the cross-correlation value 21 corresponding to the preceding wave corresponds to the cross-correlation value 22 corresponding to the first delay wave to the third delay wave. You It may drop sharply more than the level of the cross-correlation value 24. In this case, the cross-correlation value at point a 1 corresponding to the exact synchronization position is below the threshold.
  • the level of the preceding wave of the transmitted signal transmitted by the transmitting apparatus at the receiving apparatus drops not only sharply compared to the level of the delayed wave of the transmitted signal, but also The preceding wave and the delayed wave may be received closely in time.
  • the level of the cross-correlation value 31 corresponding to the preceding wave corresponds to the cross-correlation value 32 corresponding to the first delayed wave to the fourth delayed wave.
  • the cross-correlation value 3 1 corresponding to the preceding wave and the cross-correlation value 3 2 corresponding to the first delayed wave may be closer in time, as well as dropping more rapidly than the cross-correlation value 3 5 .
  • the cross-correlation value at the point b1 that exceeds the threshold is stored, and the cross-correlation value and the b2 point one sample behind the point b1 are stored. Is compared with the cross-correlation value at b. Only when the cross-correlation value at b 2 is small, point b 1 is detected as the synchronization time. However, in FIG. 4, the cross-correlation value at point b 1 corresponding to the accurate synchronization time is smaller than the cross-correlation value at point b 2. As a result, when the above-described conventional synchronization method is used, not the b1 point but the b3 point is erroneously detected as the synchronization time.
  • the cross-correlation value calculated by the receiving device may shift at the position where the cross-correlation value corresponding to the preceding wave appears. is there.
  • a specific example will be described with reference to FIG.
  • the cross-correlation value corresponding to the preceding wave is assumed to be the maximum at point c1, for example (that is, if the reception timing is modified so that point c1 becomes the synchronization point, the leading wave It is assumed that it can be received reliably).
  • the cross-correlation value corresponding to the preceding wave may not be the maximum at the cl point but may be the maximum at the c2 point behind the c1 point.
  • FIG. 6 is a block diagram showing a configuration of a conventional frame synchronization device.
  • the baseband signal obtained by frequency-converting the signal received from the antenna by the frequency conversion circuit 1 is digitized by the A / D converter 3, and this digital signal is converted into n-stage digital signals.
  • this correlation output is output to the integrator 9 and integrated for each phase of each correlation output.
  • the phase of the maximum integrated value is determined to be the initial synchronization time, and this determination signal is output.
  • the correlation output between the received signal and the known code is integrated, and an initial synchronization time is detected from the integrated value.
  • a large storage capacity such as RAM is required, and there is a problem that the size of the hardware becomes large.
  • the window setting is not appropriate, more specifically, if the initial synchronization time is not included in the window setting range, for example, interference with the level of the desired signal may occur. If the window is set at the position of the interference wave when the wave level is high, there is a problem that the initial synchronization time is erroneously detected. Disclosure of the invention
  • An object of the present invention is to provide a frame synchronization apparatus and a frame synchronization method capable of accurately performing synchronization acquisition and synchronization tracking and reducing the scale of hardware.
  • the purpose of this is to calculate a square error between the ideal correlation value shifted on the time axis by a predetermined shift time and the correlation value multiplied by a predetermined magnification, and to calculate the square error when the calculated square error is the minimum. This is achieved by detecting the shift time corresponding to the ideal correlation value of the above as the synchronization time.
  • Figure 1 is a flow chart showing the conventional synchronization method
  • Figure 2 is a schematic diagram showing the state of the cross-correlation value in the conventional synchronization method.
  • Figure 3 is a schematic diagram showing the first problem in the conventional synchronization method.
  • Figure 4 is a schematic diagram showing the situation of the second problem in the conventional synchronization method.
  • Fig. 5 is a schematic diagram showing the third problem in the conventional synchronization method.
  • FIG. 6 is a block diagram showing the configuration of a conventional frame synchronizer
  • Fig. 5 is a block diagram showing the configuration of the frame synchronization apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram conceptually showing a state of frame synchronization performed by the frame synchronization device according to the first embodiment of the present invention.
  • FIG. 9 is a flowchart showing an operation of frame synchronization performed by the frame synchronization device according to the first embodiment of the present invention.
  • Fig. 1 OA is a schematic diagram showing a state in which the synchronization time detected by the setting of the threshold value is shifted;
  • FIG. 10B is a schematic diagram showing a state in which a deviation occurs in a synchronization time detected by a method of setting a threshold value
  • FIG. 11 is a schematic diagram showing a state of a correlation value for each branch obtained by the frame synchronization apparatus according to the second embodiment of the present invention
  • FIG. 12 is a block diagram showing the configuration of the frame synchronization apparatus according to the second embodiment of the present invention.
  • FIG. 13 is a block diagram showing the configuration of the frame synchronization apparatus according to the third embodiment of the present invention.
  • FIG. 14A is a schematic diagram illustrating a state (first example) of frame synchronization performed by the frame synchronization apparatus according to the fourth embodiment of the present invention.
  • FIG. 14B is a schematic diagram showing a state (first example) of frame synchronization by the frame synchronization apparatus according to the fourth embodiment of the present invention.
  • FIG. 15A is a schematic diagram showing a state (second example) of frame synchronization performed by the frame synchronization apparatus according to the fourth embodiment of the present invention.
  • FIG. 15B is a schematic diagram showing a state (second example) of frame synchronization performed by the frame synchronization apparatus according to the fourth embodiment of the present invention.
  • FIG. 15C is a schematic diagram illustrating a state (second example) of frame synchronization performed by the frame synchronization apparatus according to the fourth embodiment of the present invention.
  • FIG. 16 is a block diagram showing a configuration of a frame synchronization apparatus according to a fourth embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration of the frame synchronization apparatus according to the fifth embodiment of the present invention.
  • FIG. 18 is a block diagram showing the configuration of the frame synchronization apparatus according to the sixth embodiment of the present invention.
  • FIG. 19 is a block diagram showing a configuration of the frame synchronization apparatus according to the third embodiment of the present invention.
  • FIG. 20 is a block diagram showing a configuration of the frame synchronization apparatus according to the fourth embodiment of the present invention.
  • FIG. 21 is a block diagram illustrating a configuration of a frame synchronization device according to the fifth embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a configuration of the frame synchronization device according to the first embodiment of the present invention.
  • the correlation value is input to the averaging unit 101.
  • the correlation value is calculated using a reception signal of the transmission signal transmitted by the transmission side device and a known signal (known synchronization code) inserted into the reception signal by the transmission side device.
  • the averaging unit 101 performs a moving average on the calculated correlation value.
  • the moving average is used to absorb a sudden change in the level of the correlation value due to fusing.
  • the moving average is calculated, for example, by adding the value obtained by multiplying the correlation value at each time of the calculated correlation value by the forgetting factor; I, and the value obtained by multiplying the average value up to the previous time by (l- ⁇ ). , It is feasible. If the forgetting factor is set large, the moving averaged correlation value can be made to correspond to the long-term variation. Conversely, if the forgetting factor ⁇ is set small, the moving averaged correlation value can be set to the short interval. It can respond to fluctuations.
  • the magnification multiplying unit 102 multiplies the moving averaged correlation value by a predetermined magnification. The correlation value multiplied by the predetermined magnification is output to the square error detection unit 105.
  • the ideal correlation value generation unit 103 calculates a correlation value using a known signal for a received signal in a line state free of level fluctuations, noise and delay waves due to fusing fluctuations, and calculates the calculated correlation value as an ideal correlation value.
  • the value is output to the time movement section 104.
  • the time moving section 104 moves the ideal correlation value on the time axis, and outputs the ideal correlation value moved on the time axis to the square error detecting section 105.
  • the square error detection unit 105 includes the correlation value from the magnification multiplication unit 102 and the time shift unit 1 The square error between the ideal correlation value from 04 and an ideal correlation value is detected. The detected square error is output to the minimum error detector 106.
  • the minimum error detection unit 106 detects the minimum value of the square errors detected by the square error detection unit 105, that is, the minimum square error.
  • the movement time detection unit 107 detects the synchronization time using the least square error detected by the minimum error detection unit 106.
  • FIG. 8 is a schematic diagram conceptually showing a state of frame synchronization performed by the frame synchronization device according to the first embodiment of the present invention.
  • an ideal correlation value 201 is calculated using a known signal for a received signal in a line state free of level fluctuation, noise and delay waves due to fading fluctuation.
  • a correlation value is calculated using a reception signal of the transmission signal transmitted by the transmission side device and a known signal identical to a known signal included in the reception signal.
  • a moving average is performed on the calculated correlation values.
  • a correlation value 203 with a moving average is obtained.
  • the position corresponding to the preceding wave in the correlation value 203 is detected according to the following procedure, and the synchronization time is set. Is detected. That is, first, the range of the rising portion in the ideal correlation value 201 is set. Specifically, the ideal correlation value 2 0 1 has a value of approximately zero from the portion 2 0 1 1 1 to the portion 2 1 1 2 where the ideal correlation value 2 1 has the maximum value, and the ideal portion 2 0 1-2 It is set as the rising part of the correlation value 201.
  • the time corresponding to the portion 210-1 in the ideal correlation value 201 is t1
  • the time corresponding to the portion 210-1-2 in the ideal correlation value 201 is t2. That is, the temporal range corresponding to the rising portion of the ideal correlation value 201 is from t1 to t2.
  • a correlation value obtained by performing a moving average with the ideal correlation value 201 in the temporal range corresponding to the rising portion of the ideal correlation value 201 (hereinafter, simply referred to as “correlation value”) 2
  • the square error between 0 and 3 is calculated. Concrete Is calculated as the squared error between the correlation value from time t1 to time t2 at ideal correlation value 201 and the correlation value from time t1 to time t2 at correlation value 203. You. If the calculated square error is smaller than the preset minimum value, the calculated square error is set as a new minimum value. At this time, the time at which the ideal correlation value 201 is shifted on the time axis at the present time (shift time) is set as the current synchronization time. The shift of the ideal correlation value 201 on the time axis will be described later.
  • the correlation value 203 is multiplied by a scaling factor (here, scaling factor N).
  • a scaling factor here, scaling factor N
  • a square error between the ideal correlation value 201 and the correlation value 204 is calculated for a temporal range corresponding to a rising portion of the ideal correlation value 201.
  • the calculated squared error is set as a new minimum value.
  • the time at which the ideal correlation value 201 is shifted on the time axis at the current time (shift time) is set as the synchronization time at the current time.
  • the magnification by which the correlation value 203 is multiplied is increased, and the correlation value 203 is multiplied by this magnification (here, the magnification N 2).
  • the correlation value 203 (multiple of the ideal correlation value 201 and the magnification N2) over the temporal range corresponding to the rising portion of the ideal correlation value 201 (shown in FIG. ⁇ ) is calculated as the square error.
  • the same operation as in the second step is performed.
  • the magnification multiplied by the correlation value 203 is sequentially increased until the maximum magnification M is reached, and the same operation as described above is performed.
  • the ideal correlation value 201 is shifted rightward in the figure by a minute time T1 (ie, an interval corresponding to the minute time T1) on the time axis.
  • T1 ie, an interval corresponding to the minute time T1
  • T1 the time at which the ideal correlation value 201 is shifted
  • T1 the time at which the ideal correlation value 201 is shifted
  • the operations in the first to third steps described above are similarly performed.
  • the ideal correlation value 201 is set on the time axis until the shift time reaches T. The above is sequentially shifted to the right in the figure by the above minute time (that is, the shifting time increases as T1X2, T1X3, etc.), and the operations in the above-described first to third steps are performed. Is done similarly.
  • FIG. 8 shows an ideal correlation value 202 as an example of the ideal correlation value shifted on the time axis.
  • the portion from the portion where the magnitude of the ideal correlation value 202 becomes substantially zero to the portion where the size of the ideal correlation value becomes the maximum is the ideal correlation value 2. It is set as the rising part at 02.
  • the time corresponding to the portion 202-2 in the ideal correlation value 202 is t3
  • the time corresponding to the portion 2022-2 in the ideal correlation value 202 is t4.
  • the time range corresponding to the rising portion of the ideal correlation value 202 is from t3 to t4.
  • the ideal correlation value may be multiplied and shifted to calculate the square error.
  • the correlation value from time t3 to time t4 at the ideal correlation value 202 and the time t3 from time t3 at the correlation value 203 to time t The square error between the correlation value up to 4 is calculated. As described above, when the calculated square error is smaller than the set minimum value, the calculated square error is set as a new minimum value. In this setting, the time at which the ideal correlation value 202 is shifted on the time axis at the current time (shift time) is set as the current synchronization time.
  • the correlation value 203 is multiplied by a scaling factor (here, scaling factor N). As a result, a correlation value 204 is obtained.
  • a square error between the ideal correlation value 202 and the correlation value 204 is calculated in a temporal range corresponding to a rising portion of the ideal correlation value 202. Thereafter, if the calculated squared error is smaller than the set minimum value, the calculated squared error is set as a new minimum value.
  • the time at which the ideal correlation value 201 is shifted on the time axis at the current time is set as the current synchronization time.
  • the multiplier by which the correlation value 203 is multiplied is increased, and The function value 203 is multiplied by this scaling factor (here, scaling factor N 2).
  • the correlation value 202 multiplied by the ideal correlation value 202 and the magnification N 2 (Not shown) is calculated. Thereafter, the same operation as in the second step is performed. After the operation similar to the second step is performed, the magnification multiplied by the correlation value 203 is sequentially increased until the maximum magnification M is reached, and the same operation as described above is performed.
  • the synchronization time set when the above operations in the first to fifth steps are completed is detected as the final synchronization time.
  • the square between the ideal correlation value 202 and the correlation value 203 multiplied by the magnification X (N ⁇ X ⁇ M) is assumed. If the error has been set to a minimum value, t4 is detected as the synchronization time. In this case, since the portion corresponding to the time t3 to the time t4 in the correlation value 203 multiplied by the magnification X best matches the rising portion of the ideal correlation value 202, the correlation value 2 At 03, it is clear that the preceding wave is located at the portion corresponding to time t4.
  • the outline of the operation performed by the frame synchronization device according to the present embodiment has been described above.
  • FIG. 9 is a flowchart showing an operation of frame synchronization performed by the frame synchronization device according to the first embodiment of the present invention.
  • a correlation value is calculated using a known signal with respect to a reception signal of a transmission signal transmitted by a transmission side device.
  • a moving average is performed on the correlation value calculated in ST301.
  • an initial value of MIN for example, 1.0 e + 20 is set in order to detect the least square error.
  • the ideal correlation value is shifted by a predetermined time on the time axis. This predetermined time is, for example, 0 in the first loop, and the second and subsequent loops. In this case, the minute time T1 may be used.
  • the initial value of the magnification ⁇ by which the correlation value is multiplied is set.
  • the correlation value is multiplied by a magnification ⁇ .
  • a square error between the ideal correlation value and the correlation value multiplied by the magnification ⁇ is calculated.
  • the square error calculated in ST307 is compared with MIN. If the magnitude of the square error is smaller than MIN, the value of MIN is updated to this square error (ST309), and the time when the ideal correlation value is shifted on the time axis (ie, the shift time) ) Is stored as the current synchronization time (ST310), and the subsequent processing shifts to ST311. On the other hand, if the magnitude of the square error is equal to or more than MIN in ST308, the subsequent processing shifts to ST311.
  • magnification N a comparison is made between the magnification N and the maximum magnification M.
  • the magnification N is recognized as being within the range of the magnification that satisfies the dip level of the preceding wave in the correlation value. It is added (ST312), and the subsequent processing shifts to ST306 described above.
  • the magnitude of the magnification N is greater than the maximum magnification M, the subsequent magnitude N is recognized as being outside the range of the magnification that satisfies the dip level of the preceding wave in the correlation value.
  • the processing shifts to ST313.
  • the square error between the ideal correlation value shifted on the time axis by the predetermined time and the correlation value multiplied by the predetermined magnification is equal to the ideal correlation value. It is calculated for a temporal range corresponding to the rising portion of the function. Further, a shift time corresponding to an ideal correlation value in which a square error between the correlation value multiplied by a predetermined magnification is minimum is detected as a final synchronization time.
  • the level of the preceding wave (main wave) of the transmitted signal transmitted by the transmitting device may drop sharply compared to the level of the delayed wave of the transmitted signal. Even if this is the case, the accurate position of the preceding wave in the correlation value can be detected.
  • the level of the leading wave of the transmitted signal transmitted by the transmitting device drop sharply than the level of the delayed wave of this transmitting signal, Even if the signals are received closely in time, the accurate position of the preceding wave in the correlation value can be detected.
  • the accurate The position can be detected.
  • the present inventors have invented another method for solving the above-mentioned problem, in addition to the above-described frame synchronization method. That is, in another method, first, similarly to the above-described synchronization method, the square error between an ideal correlation value shifted on the time axis by a predetermined time and a correlation value multiplied by a predetermined magnification is equal to the ideal error. It is calculated for the time range corresponding to the rising part of the correlation value. Further, the magnification by which the correlation value minimizing the square error between the ideal correlation value and the ideal correlation value is detected is detected. Thereafter, in the correlation value multiplied by the detected magnification, the first time exceeding a predetermined threshold is detected as the final synchronization time.
  • FIG. 4 is a schematic diagram showing a state in which a deviation occurs in a synchronization time detected by a method of setting a threshold. As shown in FIGS. 10 (A) and 10 (B), the correlation value is formed by collecting points represented by 1 Z X MHz. Therefore, depending on how the threshold value is provided, a deviation occurs in the detected synchronization time.
  • Fig. 10 (A) when threshold A is used, the time corresponding to the seventh point that first exceeds threshold A is set as the final synchronization time. Is detected.
  • Fig. 10 (B) when the threshold value; B is used, the time corresponding to the eighth point that first exceeds the threshold value is used as the final synchronization time. Is detected.
  • the synchronization time is detected without using the threshold value as described above. That is, the synchronization time can be accurately detected without depending on the threshold value.
  • the present embodiment since it is not necessary to perform a process of multiplying the detected magnification again by the correlation value, it is also possible to reduce the required operation amount.
  • FIG. 11 is a schematic diagram illustrating a state of a correlation value for each branch obtained by the frame synchronization apparatus according to the second embodiment of the present invention.
  • FIG. 11 shows a case where three branches are used as a plurality of branches.
  • the correlation value 501 is a correlation value calculated using the received signal for the branch 1 and the known signal inserted into the received signal.
  • the correlation value 502 is a correlation value calculated using the received signal for the branch 2 (branch 3) and the known signal inserted into the received signal. .
  • the correlation value (maximum correlation value) having the largest magnitude in each of the correlation value 501 for branch 1 to the correlation value 503 for branch 3 is detected.
  • the time corresponding to the maximum correlation value is detected.
  • the maximum correlation value 501-1-1 is detected, and the time A corresponding to the maximum correlation value 501--1 is detected.
  • a correlation value of 50 2 (branch 3 0 3) for branch 2 (branch 3) finds a maximum correlation value of 5 0 2-1 (maximum correlation value of 5 0 3-1), Time B (time C) corresponding to this maximum correlation value 5 02 — 1 (maximum correlation value 5 0 3 — 1) is detected.
  • FIG. 12 is a block diagram illustrating a configuration of the frame synchronization device according to the second embodiment of the present invention. Note that the same components as those in the first embodiment (FIG. 7) in FIG. 12 are denoted by the same reference numerals as those in FIG. 7, and detailed description thereof will be omitted.
  • the correlation value calculator 62-1 calculates a correlation value for branch 1 using a known signal for a signal received by antenna 61-1—1 (a received signal for plan 1). .
  • the correlation value calculator 62-2-2 calculates a correlation value for branch 2 using a known signal for a signal received by the antenna 61-2 (a received signal for branch 2). .
  • the correlation value calculating section 62-3 uses the known signal for the signal received by the antenna 61-3 (the received signal for the branch 3) to calculate the correlation value for the branch 3 I do.
  • the maximum value detector 6 03-1 detects the maximum correlation value in the correlation value of the branch 1 and detects a time corresponding to the detected maximum correlation value.
  • the maximum value detector 6 0 3—1 calculates the correlation value for branch 1 and the detection time.
  • the maximum value detection section 603-2 (603-3) detects the maximum correlation value in the correlation value of the branch 2 (branch 3), and detects the time corresponding to the detected maximum correlation value. Is detected.
  • the maximum value detection section 603-2 (603-3) outputs the correlation value of the branch 2 (branch 3) and the detected time to the selection section 604.
  • the selecting section 604 first detects the time having the smallest size among the times from the maximum value detecting sections 603_1 to 603_3. Further, the selecting section 604 outputs, to the averaging section 101, the correlation value corresponding to the detected time from among the correlation values from the maximum value detecting sections 603-1 to 603-3. Output.
  • the selection unit 604 detects the maximum correlation value that is positioned at the top in time among the maximum correlation values for each branch, and determines the branch corresponding to the detected maximum correlation value. Are output to the averaging unit 101.
  • the configurations of the averaging unit 101 to the moving time detection unit 107 are the same as those described in the first embodiment, and thus detailed description is omitted.
  • the correlation value whose maximum correlation value is temporally located first is detected, and the synchronization time is detected using only the detected correlation value. Has been detected.
  • the synchronization time can be detected without using the correlation value of the branch in which the preceding wave has dropped due to the influence of fading or the like.
  • the accuracy of synchronization acquisition and synchronization tracking can be improved compared to the first embodiment.
  • the frame described in Embodiment 1 is used by using the result obtained by adding the correlation value 501 for branch 1 to the correlation value 503 for branch 3. Synchronization occurs. As a result, the time required for averaging the correlation values can be reduced, so that higher-speed synchronization acquisition and synchronous tracking can be performed as compared with the first and second embodiments.
  • FIG. 13 is a block diagram showing a configuration of the frame synchronization apparatus according to the third embodiment of the present invention. Note that the same configurations as those in Embodiment 1 (FIG. 7) and Embodiment 2 (FIG. 12) in FIG. 13 are denoted by the same reference numerals as those in FIG. 7 and FIG. Description is omitted.
  • the adding unit 701 outputs the result of adding the correlation values for the branch 1 to the correlation value for the branch 3 to the averaging unit 101 as a new correlation value.
  • the synchronization time is detected using the result of adding the correlation values for a plurality of branches.
  • the time required for averaging the correlation values can be reduced, so that faster synchronization acquisition and synchronization tracking can be performed as compared with the first and second embodiments.
  • the estimated synchronization time is shifted using the position of the preceding wave detected in the first to third embodiments.
  • the estimated synchronization time is a synchronization time estimated in advance by initial synchronization using a conventional method. A specific example will be described with reference to FIGS. 14 and 15.
  • FIG. 14 is a schematic diagram illustrating a state (first example) of frame synchronization performed by the frame synchronization apparatus according to the fourth embodiment of the present invention.
  • FIG. 15 is a schematic diagram illustrating a state (second example) of frame synchronization performed by the frame synchronization apparatus according to the fourth embodiment of the present invention.
  • the position of the detected preceding wave is If the estimated synchronization time is shifted significantly (for example, the time corresponding to one symbol or more), the estimated synchronization time is shifted in the shifted direction (X direction in the figure).
  • the position of the detected preceding wave is slightly shifted (for example, within the time corresponding to one symbol) from the estimated synchronization time (Fig. 15 (B)). If so, the direction in which the estimated synchronization time is shifted is detected. Specifically, in the case shown in Fig. 15 (A), it is detected that the estimated synchronization time is shifted in the Y2 direction with respect to the position of the preceding wave, and as shown in Fig. 15 (C). In such a case, it is detected that the estimated synchronization time is shifted in the Y1 direction with respect to the position of the preceding wave.
  • the count corresponding to the direction in which the estimated synchronization time is shifted is increased. That is, in the case of FIG. 15 (A), the count corresponding to the Y2 direction is increased, and in the case of FIG. 15 (C), the count corresponding to the Y1 direction is increased.
  • the estimated synchronization time is shifted by a small time (for example, a time corresponding to one sample) in a direction opposite to the direction corresponding to the counter.
  • a small time for example, a time corresponding to one sample
  • the estimated synchronization time is shifted by a short time in the Y l (Y 2) direction.
  • FIG. 16 is a block diagram illustrating a configuration of the frame synchronization device according to the fourth embodiment of the present invention.
  • FIG. 16 shows an example in which the position of the preceding wave is detected using the first embodiment, but in practice, the position of the preceding wave is detected using the second or third embodiment. detection It is also possible. Note that the same components as those in the first embodiment (FIG. 7) in FIG. 16 are denoted by the same reference numerals as those in FIG. 7, and detailed description is omitted.
  • the estimated synchronization time detection unit 1001 detects the synchronization time by the initial synchronization, and outputs the synchronization time to the comparison unit 1002 and the shifting unit 1005 as the estimated synchronization time.
  • the comparison unit 1002 compares the synchronization time detected by the moving time detection unit 107 (ie, the position of the preceding wave) with the estimated synchronization time from the estimated synchronization time detection unit 1001. .
  • the comparing section 1002 outputs shift information indicating that a shift has occurred, to the shift direction detecting section 1003. Output to If there is no deviation between the position of the preceding wave and the estimated synchronization time, the estimated synchronization time is detected as the final synchronization time.
  • the shift direction detecting section 1003 detects in which direction the estimated synchronization time is shifted with respect to the position of the preceding wave, and detects the result. Is output to the counting section 1004.
  • the counting unit 1004 increases the count corresponding to the direction in which the estimated synchronization time is shifted (for example, the count corresponding to the Y1 direction and the count corresponding to the Y2 direction in FIG. 15). Then, the value of this count is output to the shifting unit 1005.
  • the shift unit 1005 shifts the estimated synchronization time by a short time in a direction opposite to the direction corresponding to the count.
  • the estimated synchronization time shifted by such a short time is detected as the final synchronization time.
  • FIG. 17 is a block diagram showing a configuration of the frame synchronization apparatus according to the fifth embodiment of the present invention.
  • the frame synchronizer includes a correlation output detection unit 111, a threshold value judgment unit 112, a time data accumulation unit 113, a frequency distribution creation unit 114 , A maximum frequency detection unit 1150 and an initial synchronization time detection unit 1160.
  • the correlation output detection section 111 detects a correlation output between the received signal for a predetermined time and the synchronization word.
  • the threshold value judgment unit 1120 compares the correlation output detected by the correlation output detection unit 1110 with a fixed threshold value set in advance, and detects the detected correlation output. It is determined whether the value is exceeded.
  • the time data accumulating section 1130 stores the time data corresponding to the correlation output determined as exceeding the threshold value as the determination result of the threshold value determining section 1120, for example, R Accumulate in AM.
  • the frequency distribution creating unit 1140 creates a frequency distribution using the time data accumulated by the time data accumulating unit 1130.
  • the maximum frequency detecting unit 1150 detects the maximum frequency in the frequency distribution created by the frequency distribution creating unit 1140.
  • the initial synchronization time detection unit 1160 sets a time corresponding to the maximum frequency detected by the maximum frequency detection unit 1150 as an initial synchronization time.
  • a correlation output detection section 1110 inputs a reception signal for a predetermined time from an antenna (not shown), and detects a correlation output between the input reception signal for a predetermined time and a synchronization word. Then, the threshold value determining unit 1120 compares the detected correlation output with the threshold value to determine whether or not the detected correlation output exceeds the threshold value. Then, the time data corresponding to the correlation output determined to exceed the threshold value as a result of the determination is accumulated in the RAM by the time data accumulation unit 113.
  • a frequency distribution creating unit 1140 creates a frequency distribution using the accumulated time data. Then, the maximum frequency detection section 1150 detects the maximum frequency in the generated frequency distribution, and the initial synchronization time detection section 1160 sets the time corresponding to the detected maximum frequency as the initial synchronization time.
  • the frame synchronization apparatus of the present embodiment it is determined whether the detected correlation output exceeds the threshold, and it is determined that the correlation output exceeds the threshold. Since only the time data corresponding to the correlated output is accumulated, it is sufficient if there is enough storage capacity to accumulate the time data corresponding to the correlated output determined to exceed the threshold value.
  • the scale can be reduced.
  • the frequency distribution is created using the accumulated time data, and the time of the maximum frequency in the frequency distribution is used as the initial synchronization time, there is no need to set the window itself in the first place. Even if the level of the interference wave is high, erroneous detection of the initial synchronization time at the position of the interference wave can be prevented, and the initial synchronization time can be accurately detected.
  • threshold value determining section 1120 whether or not the threshold value is exceeded is used as a criterion for comparison in threshold value determining section 1120, but the present invention is not limited to this. Whether or not the value is equal to or greater than the value may be used as a criterion for comparison.
  • FIG. 18 is a block diagram illustrating a configuration of the frame synchronization device according to the sixth embodiment of the present invention. Note that this frame synchronization device has the same basic configuration as the frame synchronization device shown in FIG. 17, and the same components are denoted by the same reference numerals and description thereof will be omitted.
  • a reference value determination unit 1 determines whether or not the detected maximum frequency is equal to or less than a reference value (an ideal value, for example, the number of frames in a predetermined time). Is to have 15 2. At this time, if it is determined that the detected maximum frequency is equal to or less than the reference value, control is performed so that the initial synchronization processing is executed again from the beginning.
  • a reference value an ideal value, for example, the number of frames in a predetermined time.
  • a correlation output detection unit 1110 inputs a reception signal from the antenna for a predetermined time, and detects a correlation output between the input reception signal for a predetermined time and a synchronization word. Then, the threshold value determining unit 11220 compares the detected correlation output with the threshold value, and determines whether the detected correlation output exceeds the threshold value. Then, as a result of the determination, the time corresponding to the correlation output determined to exceed the threshold is determined. The data is stored in RAM by the time data storage section 1130.
  • a frequency distribution creating unit 1140 creates a frequency distribution using the accumulated time data. Then, the maximum frequency detection unit 1150 detects the maximum frequency in the generated frequency distribution, and the reference value determination unit 1152 determines whether the detected maximum frequency is equal to or less than the reference value.
  • the detected maximum frequency is equal to or less than the reference value as a result of this determination, it is determined that the detected initial synchronization time is incorrect, and the initial synchronization processing is performed again from the beginning.
  • the initial synchronization time detector 1160 sets the time corresponding to the detected maximum frequency as the initial synchronization time.
  • the maximum frequency is compared with the reference value to determine whether or not the detected initial synchronization time is incorrect.
  • the initial synchronization processing is performed again from the beginning, so that a more accurate initial synchronization time can be obtained, and the processing time during tracking can be reduced.
  • the reference value determination unit 1 152 sets the comparison criterion as to whether the value is equal to or less than the reference value, the present invention is not limited to this. May be used as a comparison criterion.
  • FIG. 19 is a block diagram showing a configuration of the frame synchronization apparatus according to the seventh embodiment of the present invention. Note that this frame synchronization device has the same basic configuration as the frame synchronization device shown in FIG. 18, and the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the threshold value used for comparison with the correlation output is not fixed but variable (hereinafter, the threshold determination unit using a variable threshold is set to “1 120 a”. It has a threshold correction unit 1154 that corrects the threshold when it is determined that the detected maximum frequency is equal to or less than the reference value. At this time, When it is determined that the detected maximum frequency is equal to or less than the reference value, control is performed such that the initial synchronization position is executed from the beginning using the corrected threshold value.
  • the initial value of the threshold value is set to a low value, a scaling factor according to the maximum frequency is set in advance, and the maximum frequency is set each time the threshold value is corrected. Is detected and the threshold is modified, the threshold is multiplied by a magnification corresponding to the detected maximum frequency, and the threshold is raised by several dB, for example.
  • a correlation output detection unit 1110 inputs a reception signal from the antenna for a predetermined time, and detects a correlation output between the input reception signal for a predetermined time and a synchronization word.
  • the detected correlation output is compared with the threshold value (if corrected, the threshold value) by the threshold value determination unit 11220a, and the detected correlation output is determined by the threshold value. It is determined whether or not it exceeds. Then, the time data corresponding to the correlation output determined to exceed the threshold value as a result of this determination is stored in RAM by the time data storage unit 110.
  • the frequency distribution creating unit 1140 creates a frequency distribution using the accumulated time data. Then, the maximum frequency detection unit 1150 detects the maximum frequency in the generated frequency distribution, and the reference value determination unit 1152 determines whether the detected maximum frequency is equal to or less than the reference value.
  • the threshold correction unit 1 After multiplying the threshold by a factor corresponding to the frequency and raising the threshold by several dB, the initial synchronization process is performed again from the beginning using the corrected threshold.
  • the initial synchronization time detector 1160 sets the time corresponding to the detected maximum frequency as the initial synchronization time.
  • the threshold value is corrected, and if it is determined to be wrong, the threshold value is corrected and the initial synchronization process is performed again from the beginning.
  • the accuracy of the determination process using the threshold can be improved.
  • the optimal threshold value is set, so that the initial synchronization time can be detected more accurately.
  • FIG. 20 is a block diagram showing a configuration of the frame synchronization apparatus according to the eighth embodiment of the present invention. Note that this frame synchronization device has the same basic configuration as the frame synchronization device shown in FIG. 18, and the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the threshold value used for comparison with the correlation output is not fixed but variable (threshold value judging unit 112a), and the time data stored within a predetermined time is Setting value determination unit 1 1 3 2 for determining whether or not the number of time data is equal to or less than a set value, and setting a threshold value when the number of time data stored within a predetermined time is equal to or less than the set value. And a threshold value correction unit 1 1 3 4 for correction. At this time, if it is determined that the number of accumulated time data is equal to or less than the set value, control is performed so that the initial synchronization position is executed from the beginning using the corrected threshold value.
  • the initial value of the threshold value is set to a high value, and each time the threshold value is corrected, the number of time data accumulated within a predetermined time is set to the set value. It is determined whether the value is equal to or less than a predetermined value. If the value is equal to or less than the set value, the threshold is multiplied by a predetermined magnification to lower the threshold by, for example, several dB.
  • a correlation output detection unit 1110 inputs a reception signal from the antenna for a predetermined time, and detects a correlation output between the input reception signal for a predetermined time and a synchronization word.
  • the detected correlation output is compared with the threshold value (if corrected, the threshold value) by the threshold value determination unit 11220a, and the detected correlation output is determined by the threshold value. Beyond Is determined. Then, as a result of the determination, the time data corresponding to the correlation output determined to exceed the threshold value is stored in the RAM by the time data storage unit 113.
  • the set value determination unit 1 132 determines whether or not the number of times accumulated during a predetermined time is equal to or less than the set value.
  • the threshold value correction unit 1 when the number of time data accumulated within a predetermined time is equal to or less than a set value, it is determined that the number of accumulated time data is small, and the threshold value correction unit 1 At 1 3 4, the threshold is multiplied by a predetermined magnification, the threshold is lowered by a few dB, for example, and the initial synchronization process is performed again from the beginning using the corrected threshold. .
  • the frequency distribution creation unit 1 1 4 At 0, a frequency distribution is created using the accumulated time data. Then, the maximum frequency detection unit 1150 detects the maximum frequency in the created frequency distribution, and the reference value determination unit 1152 determines whether the detected maximum frequency is equal to or less than the reference value. .
  • the detected maximum frequency is equal to or less than the reference value as a result of this determination, it is determined that the detected initial synchronization time is incorrect, and the initial synchronization processing is performed again from the beginning.
  • the initial synchronization time detector 1160 sets the time corresponding to the detected maximum frequency as the initial synchronization time.
  • the set value determination unit 1 132 sets the comparison criterion based on whether the value is equal to or less than the set value.
  • the present invention is not limited to this. May be used as a comparison criterion.
  • FIG. 21 is a block diagram showing a configuration of the frame synchronization apparatus according to the ninth embodiment of the present invention. Note that this frame synchronization device has the same basic configuration as the frame synchronization device shown in FIG. 18, and the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the feature of this embodiment is that the threshold used for comparison with the correlation output is not set in advance or corrected each time, but the level of the correlation output is measured using the RSSI signal. Estimate and set the optimal threshold. More specifically, an RSSI signal measuring section 1 1 1 2 that measures the RSSI signal, a correlation output estimating section 1 1 1 4 that estimates the level of the correlation output from the measured RSSI signal, and an estimated correlation output level And a threshold setting unit 111 for setting an optimum threshold from the threshold value.
  • a correlation output detection unit 1110 inputs a reception signal from the antenna for a predetermined time, and detects a correlation output between the input reception signal for a predetermined time and a synchronization word. Then, the R SSI signal measuring unit 1 1 1 2 measures the: R SSI signal, and the correlation output estimating unit 1 1 1 4 estimates the level of the correlation output from the measured R SSI signal. Then, the threshold setting unit 111 sets an optimum threshold value from the estimated correlation output level.
  • the threshold value determination unit 112 compares the detected correlation output with the set threshold value to determine whether the detected correlation output exceeds the threshold value. Then, the time data corresponding to the correlation output determined to exceed the threshold value as a result of the determination is stored in the RAM by the time data storage unit 110. Then, the frequency distribution creating unit 1140 uses the accumulated time data to generate a frequency distribution. Create Then, the maximum frequency detection unit 1150 detects the maximum frequency in the generated frequency distribution, and the reference value determination unit 1152 determines whether the detected maximum frequency is equal to or less than the reference value.
  • the detected maximum frequency is equal to or less than the reference value as a result of this determination, it is determined that the detected initial synchronization time is incorrect, and the initial synchronization processing is performed again from the beginning.
  • the initial synchronization time detector 1160 sets the time corresponding to the detected maximum frequency as the initial synchronization time.
  • the level of the correlation output is estimated using the measured RSSI signal, and the optimal threshold is set. Threshold can be set, and the accuracy of the determination process using the threshold can be improved.
  • the processing time for determining the threshold value can be reduced.
  • a frame synchronization device can be mounted on a communication terminal device (mobile station device) or a base station device in a digital mobile communication system. As a result, it is possible to accurately perform synchronization acquisition and synchronization tracking, so that it is possible to provide a communication terminal device and a base station device that perform favorable communication.
  • the present invention is not limited to the above-described embodiment, and can be implemented with various modifications.
  • the frame synchronization apparatus of the present invention can accurately perform synchronization acquisition and synchronization tracking. Further, the frame synchronization device of the present invention can reduce the size of the hardware.
  • the present invention is applicable when performing synchronization acquisition and synchronization tracking using a correlation method

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

明 細 書 フレーム同期装置およびフレーム同期方法 技術分野
本発明は、 相関法を用いて同期捕捉および同期追跡を行うフレーム同期装置 およびフレーム同期方法に関する。 背景技術
移動体通信では、 送信側装置および受信側装置のいずれか一方または両者が 移動することが多いため、 送信側装置により送信信号が送信された時点からこ の送信信号が受信側装置に受信されるまでの時間(すなわち伝播遅延時間)は、 常に変化する。 そこで、 受信側装置は、 受信信号を用いて送信側装置における 送信タイミングを検出し、 検出した送信タイミングに基づいて、 同期をとる必 要がある。 具体的には、 受信側装置は、 受信信号を用いて検出した送信夕イミ ングに基づいて、受信タイミングの捕捉(すなわち同期捕捉)を行うとともに、 受信タイミングの修正 (すなわち同期追跡) を行う必要がある。
従来の移動体通信における同期方法として、 特開平 1 1— 8 8 4 5 5号公報 に開示されている方法がある。 この従来の同期方法について、 図 1および図 2 を参照して説明する。図 1ほ、従来の同期方法を示すフロー図である。図 2は、 ' 従来の同期方法における相互相関値の様子を示す模式図である。
受信側装置において、 まず工程 (以下「S T」 という。 ) 1 1では、 送信側 装置により送信された送信信号についての受信信号と、 ユニークワード信号と を用いて、 相互相関値が算出される。 なお、 送信側装置は、 このユニークヮー ド信号を含む送信信号を送信している。 ここでは図 2に示すような相互相関値 が算出される。 S T 1 2では、 算出された相互相関値における最大値 F 1が記 憶される。 S T 1 3では、 最大値 F 1に係数 T Hが乗算されることにより、 し きい値 F 0が算出される。
S T 1 4〜S T 1 7では、 各サンプル点 (i ) における相互相関値としきい 値 F 0とが比較されることにより、 しきい値 F 0を越える相互相関値の位置が 検出される。 図 2に示す相互相関値においては、 最初にしきい値を越える相互 相関値の位置として a点が検出される。 最終的に、 位置 iとして a点の位置が 記憶されるとともに、 位置 iにおける相互相関値 Aが記憶される。
S T 1 8では、位置 iから 1サンプル後方の位置、 すなわち、位置( i + 1 ) における相互相関値 Bが求められる。 S T 1 9では、 記憶された相互相関値 A と相互相関値: Bとの比較がなされる。位置 (i + 1 ) における相互相関値 Bが 相互相関値 Aよりも大きい場合には、 S T 2 0において、 位置 iが位置 (i + 1 ) に更新されるとともに、 更新された位置 iにおける相互相関値 Aが、 相互 相関値 Bに更新される。 逆に、 位置 (i + 1 ) における相互相関値 Bが相互相 関値 A以下である場合には、 S T 2 1において、 相互相関値における最初のピ —クの位置を検出したとして、 現時点における位置 iが次フレームにおける同 期点 (同期時刻) とされる。 図 2に示す相互相関値においては、 位置 P 2が相 互相関値における最初のピーク位置として検出される。 この位置 P 2が次フレ —ムにおける同期点となるように、 受信タイミングが修正される。
このような同期方法により、 受信側装置は、 送信側装置により送信された送 信信号に対して、 同期捕捉および同期追跡を行っている。
しかしながら、 上記従来の同期方法においては、 算出された相互相関値とし きい値との比較結果を用いて同期点 (同期時刻) を検出しているので、 回線品 質によっては同期点を正確に検出することが困難となる問題がある。
すなわち、 まず第 1に、 回線品質によっては、 受信側装置において、 送信側 装置により送信された送信信号についての先行波 (生波) のレベルが、 この送 信信号についての遅延波のレベルに比べて急激に落ち込むことがある。具体的 には、 図 3に示すように、 回線品質によっては、 先行波に対応する相互相関値 2 1のレベルが、 第 1遅延波に対応する相互相関値 2 2〜第 3遅延波に対応す る相互相関値 2 4のレベルよりも、急激に落ち込むことがある。この場合には、 正確な同期位置に対応する a 1点における相互相関値は、 しきい値を下回るこ とになる。 この結果、 上述した従来の同期方法を用いると、 同期時刻として a 1点ではなく a 2点が誤って検出される。
第 2に、 回線品質によっては、 受信側装置において、 送信側装置により送信 された送信信号についての先行波のレペルが、 この送信信号についての遅延波 のレベルに比べて急激に落ち込むだけでなく、 この先行波と遅延波とが時間的 に密接して受信されることがある。 具体的には、 図 4に示すように、 回線品質 によっては、 先行波に対応する相互相関値 3 1のレベルが、 第 1遅延波に対応 する相互相関値 3 2〜第 4遅延波に対応する相互相関値 3 5のレペルよりも、 急激に落ち込むとともに、 先行波に対応する相互相関値 3 1と第 1遅延波に対 応する相互相関値 3 2とが時間的に密接することがある。
上述したように、 従来の同期方法によれば、 しきい値を越えた b 1点におけ る相互相関値を記憶しておき、 この相互相関値と b 1点から 1サンプル後方の b 2点における相互相関値とを比較し、 b 2点における相互相関値が小さいと きにのみ、 b 1点が同期時刻として検出される。 ところが、 図 4においては、 正確な同期時刻に対応する b 1点における相互相関値は、 b 2点における相互 相関値よりも小さくなつている。 この結果、 上述した従来の同期方法を用いる と、 同期時刻として b 1点ではなく b 3点が誤って検出される。
第 3に、回線品質によっては、より詳細にはマルチパス等の影響によっては、 受信側装置により算出された相互相関値において、 先行波に対応する相互相関 値が現れる位置にずれが生ずることがある。具体例について図 5を参照して説 明する。 マルチパスが存在しない場合に、 先行波に対応する相互相関値は例え ば c 1点において最大となるとする (すなわち、 c 1点が同期点となるように 受信タイミングを修正すれば、 先行波を確実に受信できるとする) 。 マルチパ スが存在する場合には、 先行波に対応する相互相関値は、 c l点において最大 とならずに、 c 1点よりも後方の c 2点において最大となることがある。 この ように先行波に対応する相互相関値が最大となる位置がずれることは、 遅延波 の影響に起因する。 図 5に示す場合には、 従来の同期方法によれば、 同期時刻 として c 1点ではなく c 2点が検出される。
以上のように、 上記従来の同期方法においては、 回線品質の影響により同期 点を正確に検出することができないこと、 すなわち、 同期ずれが生ずることが ある。 この結果、 正確に同期捕捉および同期追跡を行うことが困難となる。 また従来、 フレーム同期装置および方法としては、 特開平 1 0— 7 0 4 8 9 号公報に記載されているものがある。
図 6は、 従来のフレーム同期装置の構成を示すブロック図である。 同装置で は、 アンテナからの受信信号を周波数変換回路 1で周波数変換したベースバン ド信号を A/D変換器 3でデジ夕ル化した後、 このデジ夕ルデ一夕を n段のデ ジ夕ルマッチドフィル夕 5に入力して P Nコ一ド発生器 7からの P Nコード との相関出力を求める。 そして、 この相関出力を積算器 9に出力し、 それぞれ の相関出力の位相ごとに積算する。 そして、 最大の積算値の位相を初期同期時 刻と判定し、 この判定信号を出力する。
しかしながら、 従来の装置においては、 受信信号と既知コードとの相関出力 を積算し、 この積算値から初期同期時刻を検出するため、 積算を行うために前 チャネルまでの積算デ一夕を蓄積しておく必要があり、 前チャネルまでの積算 データを蓄積するために R A Mなどの記憶容量が多く必要となり、 ハードゥエ ァの規模が大きくなるという問題がある。
また、 ハードウェアの規模を削減するために、 積算を行う相関出力に適当な ウィンドウ (たとえば、 相関ピーク値の前後、 数シンボルなど) を設け、 積算 を行う相関出力の範囲をウィンドウ内に限定することも考えられるが、 この方 法では、 ウィンドウの設定が適切でない場合、 より具体的には、 ウィンドウの 設定範囲内に初期同期時刻が含まれていない場合、 たとえば、 所望波のレベル に対して干渉波のレベルが高いときに干渉波位置でウインドウを設定すると、 初期同期時刻を誤って検出してしまうという問題がある。 発明の開示
本発明の目的は、 正確に同期捕捉および同期追跡を行うことができ、 かつ、 ハ一ドウエアの規模を小さくすることができるフレーム同期装置およびフレ —ム同期方法を提供することである。
この目的は、 所定のずらし時間だけ時間軸上でずらされた理想相関値と所定 の倍率が乗算された前記相関値との間における二乗誤差を算出し、 算出された 二乗誤差が最小である際の理想相関値に対応するずらし時間を同期時刻とし て検出することにより達成される。 図面の簡単な説明
図 1は、 従来の同期方法を示すフロー図;
図 2は、 従来の同期方法における相互相関値の様子を示す模式図
図 3は、 従来の同期方法における第 1の問題の様子を示す模式図
図 4は、 従来の同期方法における第 2の問題の様子を示す模式図
図 5は、 従来の同期方法における第 3の問題の様子を示す模式図
図 6は、 従来のフレーム同期装置の構成を示すブロック図;
図 Ίは、 本発明の実施の形態 1にかかるフレーム同期装置の構成を示すプロ ック図;
図 8は、 本発明の実施の形態 1にかかるフレーム同期装置によりなされるフ レーム同期の様子を概念的に示す模式図;
図 9は、 本発明の実施の形態 1にかかるフレーム同期装置によりなされるフ レーム同期の動作を示すフロー図;
図 1 O Aは、 しきい値の設け方により検出される同期時刻にずれが生ずる様 子を示す模式図;
図 1 0 Bは、 しきい値の設け方により検出される同期時刻にずれが生ずる様 子を示す模式図; 図 1 1は、 本発明の実施の形態 2にかかるフレーム同期装置により得られる 各ブランチについての相関値の様子を示す模式図;
図 1 2は、 本発明の実施の形態 2にかかるフレーム同期装置の構成を示すブ ロック図;
図 1 3は、 本発明の実施の形態 3にかかるフレーム同期装置の構成を示すブ ロック図;
図 1 4 Aは、 本発明の実施の形態 4にかかるフレーム同期装置によりフレー ム同期の様子 (第 1例) を示す模式図;
図 1 4 Bは、 本発明の実施の形態 4にかかるフレーム同期装置によりフレー ム同期の様子 (第 1例) を示す模式図;
図 1 5 Aは、 本発明の実施の形態 4にかかるフレーム同期装置によりフレー ム同期の様子 (第 2例) を示す模式図;
図 1 5 Bは、 本発明の実施の形態 4にかかるフレーム同期装置によりフレー ム同期の様子 (第 2例) を示す模式図;
図 1 5 Cは、 本発明の実施の形態 4にかかるフレーム同期装置によりフレー ム同期の様子 (第 2例) を示す模式図;
図 1 6は、 本発明の実施の形態 4にかかるフレーム同期装置の構成を示すブ ロック図;
図 ^ 7は、 本発明の実施の形態 5にかかるフレーム同期装置の構成を示すプ ロック図;
図 1 8は、 本発明の実施の形態 6にかかるフレーム同期装置の構成を示すブ ロック図;
図 1 9は、 本発明の実施の形態 3にかかるフレーム同期装置の構成を示すブ ロック図;
図 2 0は、 本発明の実施の形態 4にかかるフレーム同期装置の構成を示すプ ロック図;
及び 図 2 1は、 本発明の実施の形態 5にかかるフレーム同期装置の構成を示すブ 口ック図である。 発明を実施するための最良の形態
以下、 本発明の実施形態について、 添付図面を参照して詳細に説明する。 (実施の形態 1 )
図 7は、 本発明の実施の形態 1にかかるフレーム同期装置の構成を示すプロ ック図である。 図 7において、 平均化部 1 0 1には相関値が入力されている。 この相関値は、 送信側装置により送信された送信信号についての受信信号と、 この受信信号に送信側装置により挿入された既知信号(既知の同期ヮード)と、 を用いて算出される。
この平均化部 1 0 1は、 算出された相関値に対して移動平均を行う。 この移 動平均は、 相関値のレベルがフエ一ジングにより急激に変動することを吸収す る目的で行われる。 移動平均は、 例えば、 算出された相関値の各時間における 相関値に忘却係数; Iを乗算した値と、 前回までの平均値に (l—λ) を乗算し た値とを加算することにより、 実現可能である。 なお、 忘却係数えを大きくと れば、移動平均がなされた相関値を長区間変動に対応させることができ、逆に、 忘却係数 λを小さくとれば、 移動平均がなされた相関値を短区間変動に対応さ せることができる。倍率乗算部 1 0 2は、移動平均がなされた相関値に対して、 所定の倍率を乗算する。所定の倍率が乗算された相関値は、 二乗誤差検出部 1 0 5に出力される。
理想相関値生成部 1 0 3は、 フエ一ジング変動によるレベル変動、 雑音や遅 延波がない回線状態における受信信号に対して既知信号を用いて相関値を算 出し、 算出した相関値を理想相関値として時間移動部 1 0 4に出力する。 時間 移動部 1 0 4は、 理想相関値を時間軸上において移動させ、 時間軸上において 移動させた理想相関値を二乗誤差検出部 1 0 5に出力する。
二乗誤差検出部 1 0 5は、 倍率乗算部 1 0 2からの相関値と、 時間移動部 1 0 4からの理想相関値との間における二乗誤差を検出する。検出された二乗誤 差は最小誤差検出部 1 0 6に出力される。 最小誤差検出部 1 0 6は、 二乗誤差 検出部 1 0 5に検出された二乗誤差における最小値すなわち最小二乗誤差を 検出する。移動時間検出部 1 0 7は、 最小誤差検出部 1 0 6により検出された 最小二乗誤差を用いて同期時刻を検出する。
次に、 上記構成を有するフレーム同期装置によりなされる動作の概要につい て、 図 8を参照して説明する。 図 8は、 本発明の実施の形態 1にかかるフレー ム同期装置によりなされるフレーム同期の様子を概念的に示す模式図である。 まず、 フェージング変動によるレベル変動、 雑音や遅延波がない回線状態に おける受信信号に対して、 既知信号を用いて理想相関値 2 0 1が算出される。 次に、 送信側装置により送信された送信信号についての受信信号と、 この受信 信号に含まれた既知信号と同一の既知信号とを用いて、 相関値が算出される。 この後、 算出された相関値に対して移動平均がなされる。 これにより、 移動平 均がなされた相関値 2 0 3が得られる。
算出された理想相関値 2 0 1および移動平均がなされた相関値 2 0 3を用 い、 次に示す手順に従って、 相関値 2 0 3における先行波に対応する位置が検 出され、 同期時刻が検出される。 すなわち、 まず、 理想相関値 2 0 1における 立ち上がり部分の範囲が設定される。 具体的には、 理想相関値 2 0 1の大きさ が略零となる部分 2 0 1一 1から理想相関値 2 0 1の大きさが最大となる部 分 2 0 1— 2までが、 理想相関値 2 0 1における立ち上がり部分として設定さ れる。 この時点では、 理想相関値 2 0 1における部分 2 0 1 - 1に対応する時 間は t 1であり、 理想相関値 2 0 1における部分 2 0 1—2に対応する時間は t 2である。 すなわち、 理想相関値 2 0 1の立ち上がり部分に対応する時間的 な範囲は t 1から t 2となる。
第 1ステップでは、 理想相関値 2 0 1における立ち上がり部分に対応する時 間的な範囲について、 理想相関値 2 0 1と移動平均がなされた相関値(以下単 に 「相関値」 という。 ) 2 0 3との間における二乗誤差が算出される。 具体的 には、 理想相関値 2 0 1における時間 t 1から時間 t 2までの相関値と、 相関 値 2 0 3における時間 t 1から時間 t 2までの相関値との間における二乗誤 差が算出される。算出された二乗誤差が予め設定された最小値よりも小さい場 合には、 算出された二乗誤差が新たな最小値として設定される。 この設定時に は、 現時点において時間軸上で理想相関値 2 0 1がずらされている時間 (ずら し時間) が、 現時点における同期時刻として設定される。 なお、 理想相関値 2 0 1を時間軸上でずらすことについては後述する。
第 2ステヅプでは、 相関値 2 0 3に倍率 (ここでは倍率 N) が乗算される。 これにより、 相関値 2 0 4が得られる。 さらに、 理想相関値 2 0 1の立ち上が り部分に対応する時間的な範囲について、 理想相関値 2 0 1と相関値 2 0 4と の間における二乗誤差が算出される。 この後、 算出された二乗誤差が設定され ている最小値よりも小さい場合には、 算出された二乗誤差が新たな最小値とし て設定される。 この設定時には、 第 1ステップと同様に、 現時点において時間 軸上で理想相関値 2 0 1がずらされている時間 (ずらし時間) が、 現時点にお ける同期時刻として設定される。
第 3ステップでは、 相関値 2 0 3に乗算される倍率が増加され、 相関値 2 0 3にこの倍率 (ここでは倍率 N 2 ) が乗算される。 さらに、 第 2ステップと同 様に、 理想相関値 2 0 1の立ち上がり部分に対応する時間的な範囲について、 理想相関値 2 0 1と倍率 N 2が乗算された相関値 2 0 3 (図示せず) との間に おける二乗誤差が算出される。この後、第 2ステップと同様の動作がなされる。 第 2ステップと同様の動作がなされた後、 相関値 2 0 3に乗算される倍率が最 大倍率 Mとなるまで順次増加されて、 上述したものと同様の動作がなされる。 第 4ステップでは、 理想相関値 2 0 1が時間軸上において微小時間 T 1 (す なわち微小時間 T 1に対応する間隔) だけ図中右方向にずらされる。 この時点 では、理想相関値 2 0 1をずらした時間(すなわちずらし時間)は T 1となる。 この後、 上述した第 1ステップ〜第 3ステップにおける動作が同様になされる。 第 5ステップでは、 ずらし時間が Tとなるまで、 理想相関値 2 0 1が時間軸 上において上記微小時間だけ順次図中右方向にずらされ(すなわち、 ずらし時 間は T 1 X 2、 T 1 X 3というように増加していく)、 上述した第 1ステップ 〜第 3ステップにおける動作が同様になされる。
なお、 図 8には、 時間軸上においてずらされた理想相関値の一例として、 理 想相関値 2 0 2が示されている。 ここで、 理想相関値 2 0 2の大きさが略零と なる部分 2 0 2— 1から理想相関値 2 0 2の大きさが最大となる部分 2 0 2 —2までが、 理想相関値 2 0 2における立ち上がり部分として設定される。 こ の時点では、 理想相関値 2 0 2における部分 2 0 2 - 1に対応する時間は t 3 であり、 理想相関値 2 0 2における部分 2 0 2— 2に対応する時間は t 4であ る。 すなわち、 理想相関値 2 0 2の立ち上がり部分に対応する時間的な範囲は t 3から t 4となる。 なおここで相関値に倍率を乗算するのではなく、 理想相 関値に乗算して、 ずらし、 二乗誤差を算出してもよい。
この理想相関値 2 0 2を例にとれば、 第 1ステップでは、 理想相関値 2 0 2 における時間 t 3から時間 t 4までの相関値と、 相関値 2 0 3における時間 t 3から時間 t 4までの相関値との間における二乗誤差が算出される。上述した ように、 算出された二乗誤差が設定されている最小値よりも小さい場合には、 算出された二乗誤差が新たな最小値として設定される。 この設定時には、 現時 点において時間軸上で理想相関値 2 0 2がずらされている時間 (ずらし時間) が、 現時点における同期時刻として設定される。 同様に、 第 2ステップでは、 相関値 2 0 3に倍率 (ここでは倍率 N) が乗算される。 これにより、 相関値 2 0 4が得られる。 さらに、 理想相関値 2 0 2の立ち上がり部分に対応する時間 的な範囲について、 理想相関値 2 0 2と相関値 2 0 4との間における二乗誤差 が算出される。 この後、 算出された二乗誤差が設定されている最小値よりも小 さい場合には、 算出された二乗誤差が新たな最小値として設定される。 この設 定時には、 第 1ステップと同様に、 現時点において時間軸上で理想相関値 2 0 1がずらされている時間が、 現時点における同期時刻として設定される。
同様に、 第 3ステップでは、 相関値 2 0 3に乗算される倍率が増加され、 相 関値 2 0 3にこの倍率 (ここでは倍率 N 2 ) が乗算される。 さらに、 第 2ステ ップと同様に、 理想相関値 2 0 2の立ち上がり部分に対応する時間的な範囲に ついて、 理想相関値 2 0 2と倍率 N 2が乗算された相関値 2 0 3 (図示せず) との間における二乗誤差が算出される。 この後、 第 2ステップと同様の動作が なされる。第 2ステップと同様の動作がなされた後、 相関値 2 0 3に乗算され る倍率が最大倍率 Mとなるまで順次増加されて、 上述したものと同様の動作が なされる。
以上のような第 1ステツプ〜第 5ステップにおける動作が完了した際に設 定されている同期時刻が、 最終的な同期時刻として検出される。 具体的には、 例えば、 第 5ステップにおける動作が完了した際に、 仮に、 理想相関値 2 0 2 と倍率 X ( N≤X≤M) が乗算された相関値 2 0 3との間における二乗誤差が 最小値として設定されていた場合には、 t 4が同期時刻として検出される。 こ の場合、 倍率 Xが乗算された相関値 2 0 3における時間 t 3〜時間 t 4対応す る部分が、 理想相関値 2 0 2の立ち上がり部分に最も合致していることから、 相関値 2 0 3において、 時間 t 4に対応する部分に先行波が位置していること が明らかとなる。 以上、 本実施の形態にかかるフレーム同期装置によりなされ る動作の概要について説明した。
次に、 上記構成を有するフレーム同期装置によりなされる動作について、 図 9を参照して説明する。 図 9は、 本発明の実施の形態 1にかかるフレーム同期 装置によりなされるフレーム同期の動作を示すフロー図である。
まず、 S T 3 0 1では、 送信側装置により送信された送信信号についての受 信信号に対して既知信号を用いて相関値が算出される。 S T 3 0 2では、 S T 3 0 1で算出された相関値に対して移動平均が行われる。 S T 3 0 3では、 最 小二乗誤差を検出するために、 M I Nの初期値(例えば、 1 .0 e + 2 0等)が 設定される。
S T 3 0 4では、 理想相関値が時間軸上において所定時間だけずらされる。 この所定時間を、 例えば、 第 1回目のループでは 0とし、 第 2回目以降のルー プでは微小時間 T 1としてもよい。 S T 3 0 5では、 相関値に乗算される倍率 Νの初期値が設定される。 S T 3 0 6では、 相関値に倍率 Νが乗算される。 S Τ 3 0 7では、 理想相関値と倍率 Νが乗算された相関値との間における二乗誤 差が算出される。
S T 3 0 8では、 S T 3 0 7で算出された二乗誤差と M I Nとの比較がなさ れる。二乗誤差の大きさが M I Nよりも小さい場合には、 M I Nの値がこの二 乗誤差に更新され (S T 3 0 9 )、 理想相関値が時間軸上でずらされている時 間(すなわちずらし時間)が現時点での同期時刻として格納され(S T 3 1 0 )、 以後の処理は S T 3 1 1に移行する。 逆に、 S T 3 0 8で二乗誤差の大きさが M I N以上である場合には、 以後の処理は S T 3 1 1に移行する。
S T 3 1 1では、 倍率 Nと最大倍率 Mとの比較がなされる。倍率 Nの大きさ が最大倍率 M以下である場合には、 現時点の倍率 Nの大きさが相関値における 先行波の落ち込みレベルを満たす倍率の範囲内にあるとの認識のもと、 倍率 N が增加され ( S T 3 1 2 )、 以後の処理は上述した S T 3 0 6に移行する。 逆 に倍率 Nの大きさが最大倍率 Mより大きい場合には、 現時点の倍率 Nの大きさ が相関値における先行波の落ち込みレベルを満たす倍率の範囲外にあるとの 認識のもと、 以後の処理は S T 3 1 3に移行する。
S T 3 1 3では、 現時点におけるずらし時間と Tとの比較がなされる。現時 点でのずらし時間の大きさが T以下である場合には、現時点でのずらし時間が 検出ウィンドウの範囲内にあるとの認識のもと、 以後の処理は上述した S T 3 0 4に移行する。逆に、 現時点でのずらし時間の大きさが Tより大きい場合に は、 現時点でのずらし時間が検出ウィンドウの範囲外にあるとの認識のもと、 以後の処理は S T 3 1 4に移行する。 S T 3 1 4では、 現時点で格納されてい るずらし時間が最終的な同期時刻として検出される。 以上、 本実施の形態にか かるフレーム同期装置によりなされる動作について説明した。
以上のように、 本実施の形態では、 所定時間だけ時間軸上でずらした理想相 関値と、 所定の倍率を乗算した相関値との間における二乗誤差が、 上記理想相 関値の立ち上がり部分に対応する時間的な範囲について算出される。 さらに、 所定の倍率を乗算した相関値との間の二乗誤差が最小である理想相関値に対 応するずらし時間が、 最終的な同期時刻として検出される。
したがって、 まず第 1に、 回線品質によって、 送信側装置により送信された 送信信号についての先行波 (主波) のレベルが、 この送信信号についての遅延 波のレベルに比べて急激に落ち込むことがあったとしても、 相関値における先 行波の正確な位置を検出することができる。第 2に、 回線品質によって、 送信 側装置により送信された送信信号についての先行波のレベルが、 この送信信号 についての遅延波のレベルに比べて急激に落ち込むだけでなく、 この先行波と 遅延波とが時間的に密接して受信されることがあったとしても、相関値におけ る先行波の正確な位置を検出することができる。 第 3に、 回線品質によって、 より詳細にはマルチパス等の影響によって、 先行波に対応する相互相関値が現 れる位置にずれが生ずることがあったとしても、 相関値における先行波の正確 な位置を検出することができる。 この結果、 本実施の形態によれば、 正確に同 期捕捉および同期追跡を行うことが可能となる。
なお、 本発明者らは、 上述したフレーム同期方法以外に、 上述した問題点を 解決する別の方法も発明している。 すなわち、 別の方法では、 まず、 上述した 同期方法と同様に、 所定時間だけ時間軸上でずらした理想相関値と、 所定の倍 率を乗算した相関値との間における二乗誤差が、 上記理想相関値の立ち上がり 部分に対応する時間的な範囲について算出される。 さらに、 理想相関値との間 における二乗誤差が最小となる相関値に乗算されている倍率が検出される。 こ の後、 この検出された倍率が乗算された相関値において、 最初に所定のしきい 値を超えた時刻が最終的な同期時刻として検出される。 この別の方法によって も、 従来方式に比べて正確な同期捕捉および同期追跡を行うことができる。 ところが、 この別の方法を採用した場合には、 しきい値の設け方によって、 検出される同期時刻に多少のずれが生ずることがある。具体例について図 1 0 (A)および図 1 0 (B )を参照して説明する。図 1 0 (A)および図 1 0 (B ) は、 しきい値の設け方により検出される同期時刻にずれが生ずる様子を示す模 式図である。相関値は、 図 1 0 (A) および図 1 0 (B ) に示すように、 1 Z XMH zにより表現される各点が集まって形成されている。 したがって、 しき い値をどのように設けるかによつて、 検出される同期時刻にずれが生ずること になる。 具体的には、 図 1 0 (A) に示すように、 しきい値 Aを用いた場合に は、 最初にしきい値 Aを超えた 7番目の点に対応する時刻が最終的な同期時刻 として検出される。 これに対して、 図 1 0 (B ) に示すように、 しきい値; Bを 用いた場合には、 最初にしきい値を超えた 8番目の点に対応する時刻が最終的 な同期時刻として検出される。
一方、 本実施の形態によれば、 上述したようにしきい値を用いることなく同 期時刻を検出している。 すなわち、 しきい値に依存することなく正確に同期時 刻を検出することができる。加えて、 本実施の形態によれば、 検出した倍率を 再度相関値に乗算するというような処理を行う必要がないので、 必要となる演 算量を削減することもできる。
(実施の形態 2 )
本実施の形態では、 実施の形態 1において、 複数ブランチについての相関値 を用いて同期時刻を検出する場合について、 図 1 1を参照して説明する。 図 1 1は、 本発明の実施の形態 2にかかるフレーム同期装置により得られる各ブラ ンチについての相関値の様子を示す模式図である。 なお、 図 1 1には、 複数ブ ランチとして 3ブランチを用いた場合の様子が示されている。
図 1 1において、 相関値 5 0 1は、 ブランチ 1についての受信信号と、 この 受信信号に挿入された既知信号と、を用いて算出された相関値である。同様に、 相関値 5 0 2 (相関値 5 0 3 ) は、 ブランチ 2 (ブランチ 3 ) についての受信 信号と、 この受信信号に挿入された既知信号と、 を用いて算出された相関値で ある。
まず、 ブランチ 1についての相関値 5 0 1〜ブランチ 3についての相関値 5 0 3のそれそれにおいて大きさが最大となる相関値 (最大相関値) が検出され た後、 最大相関値に対応する時刻が検出される。 具体的には、 ブランチ 1につ いての相関値 5 0 1では、 最大相関値 5 0 1— 1が検出されるとともに、 この 最大相関値 5 0 1 - 1に対応する時刻 Aが検出される。同様に、ブランチ 2 (ブ ランチ 3 ) についての相関値 5 0 2 (相関値 5 0 3 ) では、 最大相関値 5 0 2 - 1 (最大相関値 5 0 3 - 1 ) が検出されるとともに、 この最大相関値 5 0 2 — 1 (最大相関値 5 0 3— 1 ) に対応する時刻 B (時刻 C ) が検出される。 次に、 検出された各ブランチについての最大相関値のうち、 最も時間的に先 頭に位置している最大相関値が検出される。 ここでは、 最大相関値 5 0 2— 1 が検出される。 この後、 検出された最大相関値に対応するブランチについての 相関値を用いて、実施の形態 1で説明したフレーム同期がなされる。ここでは、 最大相関値 5 0 2— 1に対応するブランチについての相関値、 すなわち、 ブラ ンチ 2についての相関値 5 0 2を用いて、 上述したフレーム同期がなされる。 次いで、 本実施の形態にかかるフレーム同期を実現するためのフレーム同期 装置の構成について、 さらに図 1 2を参照して説明する。 図 1 2は、 本発明の 実施の形態 2にかかるフレーム同期装置の構成を示すブロック図である。 なお、 図 1 2におおける実施の形態 1 (図 7 ) と同様の構成については、 図 7におけ るものと同一の符号を付して、 詳しい説明を省略する。
相関値算出部 6 0 2— 1は、 アンテナ 6 0 1—1により受信された信号 (プ ランチ 1についての受信信号) に対して既知信号を用いて、 ブランチ 1につい ての相関値を算出する。相関値算出部 6 0 2— 2は、 アンテナ 6 0 1— 2によ り受信された信号 (ブランチ 2についての受信信号) に対して既知信号を用い て、 ブランチ 2についての相関値を算出する。 同様に、 相関値算出部 6 0 2— 3は、 アンテナ 6 0 1—3により受信された信号 (ブランチ 3についての受信 信号) に対して既知信号を用いて、 ブランチ 3についての相関値を算出する。 最大値検出部 6 0 3— 1は、 ブランチ 1についての相関値における最大相関 値を検出するとともに、 検出した最大相関値に対応する時刻を検出する。 この 最大値検出部 6 0 3— 1は、 ブランチ 1についての相関値および検出した時刻 を選択部 6 0 4に出力する。 同様に、 最大値検出部 6 0 3— 2 ( 6 0 3 - 3 ) は、 ブランチ 2 (ブランチ 3 ) についての相関値における最大相関値を検出す るとともに、 検出した最大相関値に対応する時刻を検出する。 この最大値検出 部 6 0 3— 2 ( 6 0 3— 3 ) は、 ブランチ 2 (ブランチ 3 ) についての相関値 および検出した時刻を選択部 6 0 4に出力する。
選択部 6 0 4は、 まず、 最大値検出部 6 0 3 _ 1〜6 0 3 _ 3からの各時刻 のうち、 大きさが最も小さい時刻を検出する。 さらに、 選択部 6 0 4は、 最大 値検出部 6 0 3— 1〜6 0 3— 3からの各相関値のうち、 検出された時刻に対 応する相関値を平均化部 1 0 1に出力する。
別言すれば、 選択部 6 0 4は、 各ブランチについての最大相関値のうち、 最 も時間的に先頭に位置している最大相関値を検出し、 検出した最大相関値に対 応するブランチについての相関値を平均化部 1 0 1に出力する。平均化部 1 0 1〜移動時間検出部 1 0 7の構成については、 実施の形態 1で説明したものと 同様であるので、 詳しい説明を省略する。
以上のように、 本実施の形態では、 複数ブランチについての相関値のうち、 最大相関値が最も時間的に先頭に位置している相関値を検出し、検出した相関 値のみを用いて同期時刻を検出している。 この結果、 フエージング等の影響に より先行波が落ち込んだブランチについての相関値を用いることなく、 同期時 刻を検出することができる。 これにより、 実施の形態 1に比べて、 同期捕捉お よび同期追跡の精度を向上させることができる。
(実施の形態 3 )
本実施の形態では、 実施の形態 1において、 複数ブランチについての相関値 を加算した結果を用いて同期時刻を検出する場合について、 先に用いた図 1 1 を参照して説明する。 なお、 ここでは、 複数ブランチとして 3ブランチを用い た場合を例にとり説明する。
本実施の形態では、 ブランチ 1についての相関値 5 0 1〜ブランチ 3につい ての相関値 5 0 3を加算した結果を用いて、 実施の形態 1で説明したフレーム 同期がなされる。 これにより、 相関値に対する平均化に必要な時間を削減する ことができるので、 実施の形態 1および実施の形態 2に比べて、 より高速な同 期捕捉および同期追跡を行うことが可能となる。
次いで、 本実施の形態にかかるフレーム同期を実現するためのフレーム同期 装置の構成について、 さらに図 1 3を参照して説明する。 図 1 3は、 本発明の 実施の形態 3にかかるフレーム同期装置の構成を示すプロヅク図である。 なお、 図 1 3における実施の形態 1 (図 7 ) および実施の形態 2 (図 1 2 ) と同様の 構成については、 それぞれ図 7および図 1 2におけるものと同一の符号を付し て、 詳しい説明を省略する。 加算部 7 0 1は、 ブランチ 1についての相関値〜 ブランチ 3についての相関値を加算した結果を、 新たな相関値として平均化部 1 0 1に出力する。
以上のように、 本実施の形態では、 複数ブランチについての相関値を加算し た結果を用いて、 同期時刻を検出している。 この結果、 相関値に対する平均化 に必要な時間を削減することができるので、 実施の形態 1および実施の形態 2 に比べて、 より高速な同期捕捉および同期追跡を行うことが可能となる。
(実施の形態 4 )
本実施の形態では、 実施の形態 1〜実施の形態 3において、 高速にかつ正確 に同期時刻を検出する場合について説明する。 本実施の形態では、 実施の形態 1〜実施の形態 3により検出された先行波の位置を用いて、 推定同期時刻をず らす。 ここで、 推定同期時刻とは、 従来方式を用いて初期同期により事前に推 定された同期時刻である。 具体例について、 図 1 4および図 1 5を参照して説 明する。
図 1 4は、 本発明の実施の形態 4にかかるフレーム同期装置によりフレーム 同期の様子 (第 1例) を示す模式図である。 図 1 5は、 本発明の実施の形態 4 にかかるフレーム同期装置によりフレーム同期の様子 (第 2例) を示す模式図 である。
図 1 4 (B ) を参照するに、 検出された先行波の位置が推定同期時刻に対し て大幅 (例えば、 1シンボルに対応する時刻以上) にずれていた場合には、 推 定同期時刻はずれている方向 (図中 X方向) にずらされる。
一方、 図 1 4 (A) を参照するに、 検出された先行波の位置が推定同期時刻 (図 1 5 ( B ) ) に対してわずかに (例えば、 1シンボルに対応する時刻以内) にずれていた場合には、 推定同期時刻のずれている方向が検出される。 具体的 には、 図 1 5 (A) に示すような場合には、 推定同期時刻が先行波の位置に対 して Y 2方向にずれていることが検出され、 図 1 5 ( C ) に示すような場合に は、 推定同期時刻が先行波の位置に対して Y 1方向にずれていることが検出さ れ 。
さらに、 推定同期時刻がずれていることが検出される度に、 この推定同期時 刻がずれている方向に対応するカウン夕が増加される。すなわち、図 1 5 (A) の場合には、 Y 2方向に対応するカウン夕が増加され、 図 1 5 ( C) の場合に は、 Y 1方向に対応するカウン夕が増加される。
この後、 上記カウン夕が一定の値を超えた場合には、 推定同期時刻は、 上記 カウンタに対応する方向と逆の方向に微小時間 (例えば 1サンプルに対応する 時間) だけずらされる。例えば、 Y 2 (Y 1 ) 方向に対応するカウン夕が一定 の値を超えた場合には、 推定同期時刻は Y l (Y 2 ) 方向に微小時間だけずら される。
以後、 推定同期時刻と先行波の位置との間のずれが零になるまで、 上述した 処理が継続して行われる。 これにより、 同期ずれが大幅に生じていても高速に 同期追跡を行うことができるとともに、 同期ずれがわずかに生じていても高精 度に同期追跡を行うことができる。
次いで、 本実施の形態にかかるフレーム同期を実現するためのフレーム同期 装置の構成について、 さらに図 1 6を参照して説明する。 図 1 6は、 本発明の 実施の形態 4にかかるフレーム同期装置の構成を示すブロック図である。図 1 6には、 実施の形態 1を用いて先行波の位置を検出する場合の例が示されてい るが、 実際には実施の形態 2または実施の形態 3を用いて先行波の位置を検出 することも可能である。 なお、 図 1 6における実施の形態 1 (図 7 ) と同様の 構成については、 図 7におけるものと同一の符号を付して、 詳しい説明を省略 する。
推定同期時刻検出部 1 0 0 1は、 初期同期により同期時刻を検出し、 この同 期時刻を推定同期時刻として比較部 1 0 0 2およびずらし部 1 0 0 5に出力 する。比較部 1 0 0 2は、移動時間検出部 1 0 7により検出された同期時刻(す なわち先行波の位置) と、 推定同期時刻検出部 1 0 0 1からの推定同期時刻と を比較する。 この比較部 1 0 0 2は、 先行波の位置と推定同期時刻との間にず れが生じている場合には、 ずれが生じている旨を示すずれ情報をずれ方向検出 部 1 0 0 3に出力する。先行波の位置と推定同期時刻との間にずれが生じてい ない場合には、 この推定同期時刻が最終的な同期時刻として検出される。
ずれ方向検出部 1 0 0 3は、 比較部 1 0 0 2からずれ情報を受け取つた場合 には、 推定同期時刻が先行波の位置に対してどの方向にずれているかを検出し、 検出の結果をカウント部 1 0 0 4に出力する。 カウント部 1 0 0 4は、 推定同 期時刻がずれている方向に対応するカウン夕 (例えば、 図 1 5では Y 1方向に 対応するカウン夕および Y 2方向に対応するカウン夕) を増加させ、 このカウ ン夕の値をずらし部 1 0 0 5に出力する。
ずらし部 1 0 0 5は、 カウン夕の値が一定の値を超えた場合には、 このカウ ン夕に対応する方向と逆の方向に、 推定同期時刻を微小時間だけずらす。 この ように微小時間だけずらされた推定同期時刻が最終的な同期時刻として検出 される。
(実施の形態 5 )
図 1 7は、 本発明の実施の形態 5にかかるフレーム同期装置の構成を示すプ 口ヅク図である。
このフレーム同期装置は、 図 1 7に示すように、 相関出力検出部 1 1 1 0、 しきい値判定部 1 1 2 0、 時刻データ蓄積部 1 1 3 0、 度数分布作成部 1 1 4 0、 最大度数検出部 1 1 5 0、 および初期同期時刻検出部 1 1 6 0を有する。 相関出力検出部 1 1 1 0は、 所定時間の受信信号と同期ワードとの相関出力 を検出する。
しきい値判定部 1 1 2 0は、 相関出力検出部 1 1 1 0によって検出された相 関出力をあらかじめ設定された固定のしきい値と比較して、 検出された相関出 力がしきい値を超えているか否かを判定する。
時刻データ蓄積部 1 1 3 0は、 しきい値判定部 1 1 2 0の判定結果としてし きい値を超えていると判定された相関出力に対応する時刻のデ一夕を、 たとえ ば、 R AMに蓄積する。
度数分布作成部 1 1 4 0は、 時刻デ一夕蓄積部 1 1 3 0によって蓄積された 時刻デ一夕を用いて度数分布を作成する。
最大度数検出部 1 1 5 0は、 度数分布作成部 1 1 4 0によって作成された度 数分布における最大度数を検出する。
初期同期時刻検出部 1 1 6 0は、 最大度数検出部 1 1 5 0によって検出され た最大度数に対応する時刻を初期同期時刻とする。
次いで、 上記構成を有するフレーム同期装置の動作について説明する。 まず、 相関出力検出部 1 1 1 0で、 図示しないアンテナからの所定時間の受 信信号を入力し、 入力した所定時間の受信信号と同期ワードとの相関出力を検 出する。 そして、 しきい値判定部 1 1 2 0で、 検出した相関出力をしきい値と 比較して、 検出した相関出力がしきい値を超えているか否かを判定する。 そし て、 この判定結果としてしきい値を超えていると判定された相関出力に対応す る時刻のデータを、 時刻デ一夕蓄積部 1 1 3 0で、 R AMに蓄積する。
そして、 度数分布作成部 1 1 4 0で、 蓄積した時刻データを用いて度数分布 を作成する。 そして、 最大度数検出部 1 1 5 0で、 作成した度数分布における 最大度数を検出し、 初期同期時刻検出部 1 1 6 0で、 検出した最大度数に対応 する時刻を初期同期時刻とする。
このように、 本実施の形態のフレーム同期装置によれば、 検出された相関出 力がしきい値を超えているか否かを判定し、 しきい値を超えていると判定され た相関出力に対応する時刻デ一夕のみを蓄積するため、 しきい値を超えている と判定された相関出力に対応する時刻データを蓄積するだけの記憶容量があ ればよく、 ハードウエアの規模を小さくすることができる。
しかも、 蓄積された時刻データを用いて度数分布を作成し、 この度数分布に おける最大度数の時刻を初期同期時刻とするため、 そもそもウィンドウ自体を 設定する必要がなく、 所望波のレベルに対して干渉波のレベルが高い場合であ つても、 干渉波位置での初期同期時刻の誤検出を防く、ことができ、 初期同期時 刻を正確に検出することができる。
なお、 本実施の形態では、 しきい値判定部 1 1 2 0において、 しきい値を超 えているか否かを比較の判定基準にしているが、 これに限定されるわけではな く、 しきい値以上であるか否かを比較の判定基準にしてもよい。
(実施の形態 6 )
図 1 8は、 本発明の実施の形態 6にかかるフレーム同期装置の構成を示すブ ロック図である。 なお、 このフレーム同期装置は、 図 1 7に示すフレーム同期 装置と同様の基本的構成を有しており、 同一の構成要素には同一の符号を付し、 その説明を省略する。
本実施の形態の特徴は、 検出された最大度数が基準値 (理想値であって、 た とえば、 所定時間内のフレーム数など) 以下であるか否かを判定する基準値判 定部 1 1 5 2を有することである。 このとき、 検出された最大度数が基準値以 下であると判定された場合は、 初期同期処理を最初から再度実行するように制 御される。
次いで、 上記構成を有するフレーム同期装置の動作について説明する。
まず、 相関出力検出部 1 1 1 0で、 アンテナからの所定時間の受信信号を入 力し、 入力した所定時間の受信信号と同期ワードとの相関出力を検出する。 そ して、 しきい値判定部 1 1 2 0で、 検出した相関出力をしきい値と比較して、 検出した相関出力がしきい値を超えているか否かを判定する。 そして、 この判 定結果としてしきい値を超えていると判定された相関出力に対応する時刻の データを、 時刻データ蓄積部 1 1 3 0で、 R AMに蓄積する。
そして、 度数分布作成部 1 1 4 0で、 蓄積した時刻データを用いて度数分布 を作成する。 そして、 最大度数検出部 1 1 5 0で、 作成した度数分布における 最大度数を検出し、 基準値判定部 1 1 5 2で、 検出した最大度数が基準値以下 であるか否かを判定する。
そして、 この判定の結果として、 検出した最大度数が基準値以下である場合 は、 検出される初期同期時刻が誤っていると判断して、 最初から再度初期同期 処理を行う。
これに対し、 検出した最大度数が基準値を超えている場合は、 初期同期時刻 検出部 1 1 6 0で、 検出した最大度数に対応する時刻を初期同期時刻とする。 このように、 本実施の形態のフレーム同期装置によれば、 初期同期時刻を検 出する際に、 最大度数を基準値と比較して検出される初期同期時刻が誤ってい るか否かを判定し、 誤っていると判定される場合は最初から再度初期同期処理 を行うため、 より正確な初期同期時刻を得ることができ、 トラッキング時の処 理時間を削減することができる。
なお、 本実施の形態では、 基準値判定部 1 1 5 2において、 基準値以下であ るか否かを比較の判定基準にしているが、 これに限定されるわけではなく、 基 準値未満であるか否かを比較の判定基準にしてもよい。
(実施の形態 7 )
図 1 9は、 本発明の実施の形態 7にかかるフレーム同期装置の構成を示すブ ロック図である。 なお、 このフレーム同期装置は、 図 1 8に示すフレーム同期 装置と同様の基本的構成を有しており、 同一の構成要素には同一の符号を付し、 その説明を省略する。
本実施の形態の特徴は、相関出力との比較に用いるしきい値を固定ではなく 可変にするとともに (以下、 可変のしきい値を用いるしきい値判定部を 「1 1 2 0 a」で示す) 、 検出された最大度数が基準値以下であると判定された場合 にしきい値を修正するしきい値修正部 1 1 5 4を有することである。 このとき、 検出された最大度数が基準値以下であると判定された場合は、修正されたしき い値を用いて初期同期位置を最初から実行するように制御される。
ここでは、 しきい値の修正方法として、 しきい値の初期値を低い値に設定す るとともに、 あらかじめ最大度数に応じた倍率を設定しておき、 しきい値が 正される度に最大度数を検出し、 しきい値を修正する場合には、 その検出した 最大度数に応じた倍率をしきい値に乗算して、 しきい値をたとえば数 d B上げ る。
次いで、 上記構成を有するフレーム同期装置の動作について説明する。
まず、 相関出力検出部 1 1 1 0で、 アンテナからの所定時間の受信信号を入 力し、 入力した所定時間の受信信号と同期ワードとの相関出力を検出する。 そ して、 しきい値判定部 1 1 2 0 aで、 検出した相関出力をしきい値 (修正され た場合は修正後のしきい値) と比較して、 検出した相関出力がしきい値を超え ているか否かを判定する。 そして、 この判定結果としてしきい値を超えている と判定された相関出力に対応する時刻のデータを、 時刻データ蓄積部 1 1 3 0 で、 R AMに蓄積する。
そして、 度数分布作成部 1 1 4 0で、 蓄積した時刻デ一夕を用いて度数分布 を作成する。 そして、 最大度数検出部 1 1 5 0で、 作成した度数分布における 最大度数を検出し、 基準値判定部 1 1 5 2で、 検出した最大度数が基準値以下 であるか否かを判定する。
そして、 この判定の結果として、 検出した最大度数が基準値以下である場合 は、 検出される初期同期時刻が誤っていると判断して、 しきい値修正部 1 1 5 4で、 検出した最大度数に応じた倍率をしきい値に乗算して、 しきい値を数 d B上げた後、 この修正後のしきい値を用いて最初から再度初期同期処理を行う。 これに対し、 検出した最大度数が基準値を超えている場合は、 初期同期時刻 検出部 1 1 6 0で、 検出した最大度数に対応する時刻を初期同期時刻とする。 このように、 本実施の形態のフレーム同期装置によれば、 初期同期時刻を検 出する際に、 最大度数を基準値と比較して検出される初期同期時刻が誤ってい るか否かを判定し、 誤っていると判定される場合はしきい値を修正して最初か ら再度初期同期処理を行うため、 伝搬路の状況に応じて最適なしきい値を設定 することができ、 しきい値を用いた判定処理の精度を向上することができる。 また、 C I比が低い場合においても、 最適なしきい値が設定されるため、 より 正確に初期同期時刻を検出することができる。
(実施の形態 8 )
図 2 0は、 本発明の実施の形態 8にかかるフレーム同期装置の構成を示すブ ロヅク図である。 なお、 このフレーム同期装置は、 図 1 8に示すフレーム同期 装置と同様の基本的構成を有しており、 同一の構成要素には同一の符号を付し、 その説明を省略する。
本実施の形態の特徴は、 相関出力との比較に用いるしきい値を固定ではなく 可変にするとともに (しきい値判定部 1 1 2 0 a ) 、 所定時間内に蓄積された 時刻デ一夕の数が設定値以下であるか否かを判定する設定値判定部 1 1 3 2 と、 所定時間内に蓄積された時刻データの数が設定値以下であると判定された 場合にしきい値を修正するしきい値修正部 1 1 3 4とを有することである。 こ のとき、 蓄積された時刻データの数が設定値以下であると判定された場合は、 修正されたしきい値を用いて初期同期位置を最初から実行するように制御さ れる。
ここでは、 しきい値の修正方法として、 しきい値の初期値を高い値に設定し ておき、 しきい値が修正される度に、 所定時間内に蓄積された時刻データの数 が設定値以下であるか否かを判定し、 設定値以下である場合に、 あらかじめ決 められた倍率をしきい値に乗算して、 しきい値をたとえば数 d B下げる。
次いで、 上記構成を有するフレーム同期装置の動作について説明する。
まず、 相関出力検出部 1 1 1 0で、 アンテナからの所定時間の受信信号を入 力し、 入力した所定時間の受信信号と同期ワードとの相関出力を検出する。 そ して、 しきい値判定部 1 1 2 0 aで、 検出した相関出力をしきい値 (修正され た場合は修正後のしきい値) と比較して、 検出した相関出力がしきい値を超え ているか否かを判定する。 そして、 この判定結果としてしきい値を超えている と判定された相関出力に対応する時刻のデ一夕を、 時刻データ蓄積部 1 1 3 0 で、 R AMに蓄積する。
そして、 設定値判定部 1 1 3 2で、 所定時間内に蓄積された時刻デ一夕の数 が設定値以下であるか否かを判定する。
そして、 この判定の結果として、 所定時間内に蓄積された時刻デ一夕の数が 設定値以下である場合は、 時刻デ一夕の蓄積数が少ないと判断して、 しきい値 修正部 1 1 3 4で、 あらかじめ決められた倍率をしきい値に乗算して、 しきい 値をたとえば数 d B下げた後、 この修正後のしきい値を用いて最初から再度初 期同期処理を行う。
これに対し、 所定時間内に蓄積された時刻デ一夕の数が設定値を超えている 場合は、 時刻デ一夕の蓄積数が十分であると判断して、 度数分布作成部 1 1 4 0で、 蓄積した時刻デ一夕を用いて度数分布を作成する。 そして、 最大度数検 出部 1 1 5 0で、 作成した度数分布における最大度数を検出し、 基準値判定部 1 1 5 2で、 検出した最大度数が基準値以下であるか否かを判定する。
そして、 この判定の結果として、 検出した最大度数が基準値以下である場合 は、 検出される初期同期時刻が誤っていると判断して、 最初から再度初期同期 処理を行う。
これに対し、 検出した最大度数が基準値を超えている場合は、 初期同期時刻 検出部 1 1 6 0で、 検出した最大度数に対応する時刻を初期同期時刻とする。 このように、 本実施の形態のフレーム同期装置によれば、 初期同期時刻を検 出する際に、 時刻デ一夕の蓄積数を設定値と比較して時刻データの蓄積具合を 判定し、 蓄積具合が良くない場合はしきい値を修正して最初から再度初期同期 処理を行うため、 伝搬路の状況に応じて最適なしきい値を設定することができ、 しきい値を用いた判定処理の精度を向上することができる。 また、 C I比が低 い場合においても、 最適なしきい値が設定されるため、 より正確に初期同期時 刻を検出することができる。 なお、 本実施の形態では、 設定値判定部 1 1 3 2において、 設定値以下であ るか否かを比較の判定基準にしているが、 これに限定されるわけではなく、 基 準値未満であるか否かを比較の判定基準にしてもよい。
(実施の形態 9 )
図 2 1は、 本発明の実施の形態 9にかかるフレーム同期装置の構成を示すブ ロック図である。 なお、 このフレーム同期装置は、 図 1 8に示すフレーム同期 装置と同様の基本的構成を有しており、 同一の構成要素には同一の符号を付し、 その説明を省略する。
本実施の形態の特徴は、 相関出力との比較に用いるしきい値をあらかじめ設 定しておいたりその都度修正したりするのではなく、 測定された: R S S I信号 を用いて相関出力のレベルを推定して、 最適なしきい値を設定することである。 具体的には、 R S S I信号を測定する R S S I信号測定部 1 1 1 2と、 測定さ れた R S S I信号から相関出力のレベルを推定する相関出力推定部 1 1 1 4 と、 推定された相関出力レベルから最適なしきい値を設定するしきい値設定部 1 1 1 6とを有することである。
次いで、 上記構成を有するフレーム同期装置の動作について説明する。
まず、 相関出力検出部 1 1 1 0で、 アンテナからの所定時間の受信信号を入 力し、 入力した所定時間の受信信号と同期ワードとの相関出力を検出する。 そして、 R S S I信号測定部 1 1 1 2で、 : R S S I信号を測定し、 相関出力 推定部 1 1 1 4で、 測定した R S S I信号から相関出力のレベルを推定する。 そして、 しきい値設定部 1 1 1 6で、 推定した相関出力レベルから最適なしき い値を設定する。
そして、 しきい値判定部 1 1 2 O bで、 検出した相関出力を設定したしきい 値と比較して、 検出した相関出力がしきい値を超えているか否かを判定する。 そして、 この判定結果としてしきい値を超えていると判定された相関出力に対 応する時刻のデ一夕を、 時刻デ一夕蓄積部 1 1 3 0で、 R AMに蓄積する。 そして、 度数分布作成部 1 1 4 0で、 蓄積した時刻データを用いて度数分布 を作成する。 そして、 最大度数検出部 1 1 5 0で、 作成した度数分布における 最大度数を検出し、 基準値判定部 1 1 5 2で、 検出した最大度数が基準値以下 であるか否かを判定する。
そして、 この判定の結果として、 検出した最大度数が基準値以下である場合 は、 検出される初期同期時刻が誤っていると判断して、 最初から再度初期同期 処理を行う。
これに対し、 検出した最大度数が基準値を超えている場合は、 初期同期時刻 検出部 1 1 6 0で、 検出した最大度数に対応する時刻を初期同期時刻とする。 このように、 本実施の形態のフレーム同期装置によれば、 測定された R S S I信号を用いて相関出力のレベルを推定して、 最適なしきい値を設定するため、 伝搬路の状況に応じて最適なしきい値を設定することができ、 しきい値を用い た判定処理の精度を向上することができる。 また、 測定された R S S I信号か ら最適なしきい値を 1回の処理で決定するため、 しきい値決定の処理時間を削 減することができる。
本発明にかかるフレーム同期装置は、 ディジ夕ル移動体通信システムにおけ る通信端末装置 (移動局装置) や基地局装置に搭載することが可能なものであ る。これにより、正確に同期捕捉および同期追跡を行うことが可能となるので、 良好な通信を行う通信端末装置および基地局装置を提供することができる。 本発明は、 上述した実施の形態に限定されず、 種々変更して実施することが 可能である。
以上説明したように、 本発明のフレーム同期装置は、 正確に同期捕捉および 同期追跡を行うことができる。 また本発明のフレーム同期装置は、 ハードゥエ ァの規模を小さくすることができる。
本明細書は、 2 0 0 1年 4月 1 6日出願の特願 2 0 0 1 - 1 1 7 3 0 4およ び 2 0 0 1年 4月 2 5日出願の特願 2 0 0 1 - 1 2 7 4 8 4に基づく。 この内 容はすべてここに含めておく。 産業上の利用可能性
本発明は、 相関法を用いて同期捕捉および同期追跡を行う場合に適用できる,

Claims

請求の範囲
1 . 受信信号に対して既知信号を用いて相関値を算出する相関値算出手段と、 所定のずらし時間だけ時間軸上でずらされた理想相関値と所定の倍率が乗算 された前記相関値との間における二乗誤差を算出する二乗誤差算出手段と、 算 出された二乗誤差が最小である際の理想相関値に対応するずらし時間を同期 時刻として検出する検出手段と、 を具備するフレーム同期装置。
2 . 相関値算出手段は、 各ブランチについての受信信号を用いて各ブランチに ついての相関値を算出し、 二乗誤差算出手段は、 前記各ブランチについての相 関値のうち、 最大相関値に対応する時刻が最も先頭に位置している相関値のみ を用いて、 二乗誤差を算出する請求項 1に記載のフレーム同期装置。
3 . 相関値算出手段は、 各ブランチについての受信信号を用いて各ブランチに ついての相関値を算出し、 二乗誤差算出手段は、 前記各ブランチについての相 関値を加算した結果を用いて、 二乗誤差を算出する請求項 1に記載のフレーム
4 . 所定時間の受信信号と既知信号との相関出力を検出する相関出力検出部と、 検出された相関出力がしきい値以上であるか否かを判定するしきい値判定部 と、 しきい値以上であると判定された相関出力に対応する時刻のデータを蓄積 する時刻データ蓄積部と、 蓄積された時刻デ一夕を用いて度数分布を作成する 度数分布作成部と、 作成された度数分布における最大度数を検出する最大度数 検出部と、 検出された最大度数の時刻を初期同期時刻とする初期同期時刻検出 部と、 を具備するフレーム同期装置。
5 . 検出された最大度数が基準値以下であるか否かを判定する基準値判定部と、 検出された最大度数が基準値以下であると判定された場合、 初期同期処理を最 初から再度実行させる制御部と、 をさらに具備する請求項 4に記載のフレーム 同期装置。
6 .検出された最大度数が基準値以下であるか否かを判定する基準値判定部と、 検出された最大度数が基準値以下であると判定された場合、 しきい値を修正す るしきい値修正部と、 修正されたしきい値を用いて初期同期処理を最初から再 度実行させる制御部と、 をさらに具備する請求項 4に記載のフレーム同期装置。
7 . 蓄積された時刻デ一夕の数が設定値以下であるか否かを判定する設定値判 定部と、 蓄積された時刻デ一夕の数が設定値以下であると判定された場合、 し きい値を修正するしきい値修正部と、 修正されたしきい値を用いて初期同期処 理を最初から再度実行させる制御部と、 をさらに具備する請求項 4に記載のフ レーム同期装置。
8 . R S S I信号を測定する R S S I信号測定部と、 測定された R S S I信号 から相関出力のレベルを推定する相関出力推定部と、 推定された相関出カレべ ルから最適なしきい値を設定するしきい値設定部と、 をさらに具備し、 前記し きい値判定部は、 設定されたしきい値を用いて判定処理を行う、 請求項 4に記 載のフレーム同期装置。
9 . 請求項 1に記載のフレーム同期装置を備えた通信端末装置。
1 0 . 請求項 4に記載のフレーム同期装置を備えた通信端末装置。
1 1 . 請求項 1に記載のフレーム同期装置を備えた基地局装置。
1 2 . 請求項 4に記載のフレーム同期装置を備えた基地局装置。
1 3 . 受信信号に対して既知信号を用いて相関値を算出する相関値算出工程と、 所定のずらし時間だけ時間軸上でずらされた理想相関値と所定の倍率が乗算 された前記相関値との間における二乗誤差を算出する二乗誤差算出工程と、 算 出された二乗誤差が最小である際の理想相関値に対応するずらし時間を同期 時刻として検出する検出工程と、 を具備するフレーム同期方法。
1 4 . 所定時間の受信信号と既知信号との相関出力を検出する相関出力検出ェ 程と、 検出された相関出力がしきい値以上であるか否かを判定するしきい値判 定工程と、 しきい値以上であると判定された相関出力に対応する時刻のデ一夕 を蓄積する時刻データ蓄積工程と、蓄積された時刻データを用いて度数分布を 作成する度数分布作成工程と、作成された度数分布における最大度数を検出す る最大度数検出工程と、 検出された最大度数の時刻を初期同期時刻とする初期 同期時刻検出工程と、 を具備するフレーム同期方法。
1 5 . 検出された最大度数が基準値以下であるか否かを判定する基準値判定ェ 程、 をさらに具備し、 検出された最大度数が基準値以下であると判定された場 合、 初期同期処理を最初から再度実行させる、 請求項 1 4に記載のフレーム同 期方法。
1 6 . 検出された最大度数が基準値以下であるか否かを判定する基準値判定ェ 程と、 検出された最大度数が基準値以下であると判定された場合、 しきい値を 修正するしきい値修正工程と、 をさらに具備し、 検出された最大度数が基準値 以下であると判定された場合、修正されたしきい値を用いて初期同期処理を最 初から再度実行させる、 請求項 1 4に記載のフレーム同期方法。
1 7 . 蓄積された時刻デ一夕の数が設定値以下であるか否かを判定する設定値 判定工程と、 蓄積された時刻デ一夕の数が設定値以下であると判定された場合、 しきい値を修正するしきい値修正工程と、 をさらに具備し、 蓄積された時刻デ 一夕の数が設定値以下であると判定された場合、 修正されたしきい値を用いて 初期同期処理を最初から再度実行させる、 請求項 1 4に記載のフレーム同期方 法。
1 8 . R S S I信号を測定する R S S I信号測定工程と、 測定された R S S I 信号から相関出力のレベルを推定する相関出力推定工程と、 推定された相関出 カレベルから最適なしきい値を設定するしきい値設定工程と、 をさらに具備し、 前記しきい値判定工程は、 設定されたしきい値を用いて判定処理を行う、 請求 項 1 4に記載のフレーム同期方法。 1/19
Figure imgf000034_0001
図 1 2/19
相互相関値
Figure imgf000035_0001
a P2 P1 図 2
しきい値
Figure imgf000035_0002
a1 a2
図 3 しきい値
Figure imgf000035_0003
図 4
しきい値 理想相関値
CO
マルチ八。スぁリ
CD しきい値
d c2
図 5
受信 ί ι¾1 入判定信号
A/D変換器 τ νタル
マッチ フィルタ s»
CD
PNコ-ド発生器
図 6
相関値-
Figure imgf000038_0001
106 107
204
相関値倍率乗算
CD
時間 (t)
図 8
7/19
Figure imgf000040_0001
ST309
N
Figure imgf000040_0002
8/19
Figure imgf000041_0001
図 10A
Figure imgf000041_0002
図 10B 9/19
フ 'ランチ 1
Figure imgf000042_0001
フ'ランチ 2
Figure imgf000042_0002
フ *ランチ 3
Figure imgf000042_0003
図 11
Figure imgf000043_0001
図 12
Figure imgf000044_0002
Figure imgf000044_0003
Figure imgf000044_0001
図 13
12/19
301
推定同期時刻 先行波の位置 図 14A
Figure imgf000045_0001
図 14B 13/19
401 先行波の位置- 推定同期時刻 図 15Α
Figure imgf000046_0001
図 15B
Figure imgf000046_0002
図 15C 14/19
同期時刻
Figure imgf000047_0001
図 16
1110 1120 1130 1140 1150 1160 相関出力 しきい値 時刻亍"-タ 度数分布 最大度数 初期同期
受信信号 検出信号
検出部 判定部 作成部 検出部 時刻検出部 ι
O
図 17
基準値以上
受信信号
05
CO
Figure imgf000049_0001
図 18
基準値以上
Figure imgf000050_0002
Figure imgf000050_0001
1154
図 19
00
CD
Figure imgf000051_0001
1160
図 20
1110 1112 1114 1116 1120b 1130 受信信号
Figure imgf000052_0001
基準値以上 116,0
O
検出信号 O
Figure imgf000052_0002
1140 1150 1152 基準値以下
図 21
PCT/JP2002/003648 2001-04-16 2002-04-12 Procede et appareil de synchronisation de trames WO2002087141A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02718552A EP1292063A4 (en) 2001-04-16 2002-04-12 METHOD AND APPARATUS FOR SYNCHRONIZING FRAMES

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001117304A JP3497484B2 (ja) 2001-04-16 2001-04-16 フレーム同期装置およびフレーム同期方法
JP2001-117304 2001-04-16
JP2001-127484 2001-04-25
JP2001127484A JP3532531B2 (ja) 2001-04-25 2001-04-25 初期同期装置および方法

Publications (1)

Publication Number Publication Date
WO2002087141A1 true WO2002087141A1 (fr) 2002-10-31

Family

ID=26613662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003648 WO2002087141A1 (fr) 2001-04-16 2002-04-12 Procede et appareil de synchronisation de trames

Country Status (5)

Country Link
US (1) US20030179813A1 (ja)
EP (1) EP1292063A4 (ja)
KR (1) KR20030011896A (ja)
CN (1) CN1461543A (ja)
WO (1) WO2002087141A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3946087B2 (ja) * 2002-05-23 2007-07-18 三菱電機株式会社 通信システム、受信機および通信方法
US7356074B2 (en) * 2003-05-08 2008-04-08 Rf Micro Devices, Inc. Estimation of multipath channel with sub-chip resolution
TWI244277B (en) * 2003-06-17 2005-11-21 Benq Corp Method for WCDMA frame synchronization and related device
US20050147191A1 (en) * 2004-01-02 2005-07-07 Geier George J. Extended frequency error correction in a wireless communication receiver
US7298806B1 (en) * 2004-01-15 2007-11-20 Hellosoft Inc. Method and system for data-aided timing offset estimation for frequency selective fading channels
US7924952B2 (en) * 2004-05-20 2011-04-12 Panasonic Corporation Signal detection device, signal detection circuit, signal detection method, and program
KR100630196B1 (ko) * 2004-11-15 2006-09-29 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 이동 통신시스템에서 동기 획득 장치 및 방법
KR100848139B1 (ko) * 2006-12-08 2008-07-23 한국전자통신연구원 근접한 무선 단말 간의 네트워크 자동 설정 장치 및 그 방법
CN101145863B (zh) * 2007-03-21 2012-07-18 中兴通讯股份有限公司 检测系统帧头偏移的装置和方法
JP5499435B2 (ja) * 2007-11-20 2014-05-21 セイコーエプソン株式会社 相互相関判定方法、測位装置及び電子機器
JP5781748B2 (ja) * 2010-10-13 2015-09-24 シロキ工業株式会社 長尺部材の曲げ加工方法及び装置
CN102510494B (zh) * 2011-10-09 2014-02-05 杭州华三通信技术有限公司 对i帧进行同步的方法及设备
KR101779539B1 (ko) * 2015-06-18 2017-09-19 주식회사 사운들리 훈련열 동기화 위치 추정방법 및 이를 이용한 수신기
JP2019165377A (ja) * 2018-03-20 2019-09-26 株式会社東芝 フレーム同期方法
US10992452B2 (en) * 2019-03-28 2021-04-27 Silicon Laboratories Inc. System and method of adaptive correlation threshold for bandlimited signals
CN110505175B (zh) * 2019-06-05 2022-02-18 暨南大学 一种快速帧同步方法及帧同步装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787075A (ja) * 1993-06-30 1995-03-31 Nippon Motorola Ltd デジタル無線通信の同期方法
JPH09247230A (ja) * 1996-03-07 1997-09-19 Matsushita Commun Ind Co Ltd 同期装置
JPH11112489A (ja) * 1997-09-30 1999-04-23 Kokusai Electric Co Ltd フレーム同期回路
JP2000201100A (ja) * 1999-01-07 2000-07-18 Matsushita Electric Ind Co Ltd スペクトラム拡散通信装置
JP2000236314A (ja) * 1999-02-15 2000-08-29 Mitsubishi Electric Corp Ofdm通信システム用受信装置
JP2001267966A (ja) * 2000-03-17 2001-09-28 Matsushita Electric Ind Co Ltd 同期捕捉装置及び同期捕捉方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4449102A (en) * 1982-03-15 1984-05-15 Bell Telephone Laboratories, Incorporated Adaptive threshold circuit
IT1217229B (it) * 1988-04-29 1990-03-14 Telettra Lab Telefon Sistema e circuiti per la combinazione cosiddetta m.m.s.e. applicata alla trasmissione di segnali numerici
US5363412A (en) * 1992-12-28 1994-11-08 Motorola, Inc. Method and apparatus of adaptive maximum likelihood sequence estimation using filtered correlation synchronization
US6839378B1 (en) * 1998-01-12 2005-01-04 Ericsson, Inc. Method and apparatus for multipath delay estimation in direct sequence spread spectrum communication systems
US5973642A (en) * 1998-04-01 1999-10-26 At&T Corp. Adaptive antenna arrays for orthogonal frequency division multiplexing systems with co-channel interference
JP2001022729A (ja) * 1999-07-09 2001-01-26 Hitachi Ltd 予測モデルの選択方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787075A (ja) * 1993-06-30 1995-03-31 Nippon Motorola Ltd デジタル無線通信の同期方法
JPH09247230A (ja) * 1996-03-07 1997-09-19 Matsushita Commun Ind Co Ltd 同期装置
JPH11112489A (ja) * 1997-09-30 1999-04-23 Kokusai Electric Co Ltd フレーム同期回路
JP2000201100A (ja) * 1999-01-07 2000-07-18 Matsushita Electric Ind Co Ltd スペクトラム拡散通信装置
JP2000236314A (ja) * 1999-02-15 2000-08-29 Mitsubishi Electric Corp Ofdm通信システム用受信装置
JP2001267966A (ja) * 2000-03-17 2001-09-28 Matsushita Electric Ind Co Ltd 同期捕捉装置及び同期捕捉方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1292063A4 *

Also Published As

Publication number Publication date
EP1292063A1 (en) 2003-03-12
KR20030011896A (ko) 2003-02-11
EP1292063A4 (en) 2006-08-02
CN1461543A (zh) 2003-12-10
US20030179813A1 (en) 2003-09-25

Similar Documents

Publication Publication Date Title
WO2002087141A1 (fr) Procede et appareil de synchronisation de trames
US7756225B2 (en) Device and method for preamble detection and frame synchronization in data packet transmission
US20060203944A1 (en) Apparatus to detect a sync signal, a VSB receiver using the same, and a method thereof
CN109005137A (zh) Ofdm系统接收机的帧同步方法及系统
CN101366220B (zh) 无线接收装置和无线接收方法
US7298806B1 (en) Method and system for data-aided timing offset estimation for frequency selective fading channels
US7139333B2 (en) Frequency error estimating receiver, and frequency error estimating method
US10073169B1 (en) Apparatus and methods for generating an accurate estimate of a time of receipt of a packet
JPH08307408A (ja) タイミング回復と周波数推定のための受信機およびその方法
US7035350B2 (en) Bluetooth access code assisted initial DC estimation and frame synchronization
KR100723566B1 (ko) 파일럿 신호 동기화 검증기의 방법 및 장치
JP2008523748A (ja) 相関値を決定するための装置および方法
US20070047630A1 (en) Synchronous control apparatus for initial synchronization when receiving a wireless signal
JP3497484B2 (ja) フレーム同期装置およびフレーム同期方法
JP2002101019A (ja) 受信機の同期方法および同期装置
CN1925470B (zh) 一种时分双工移动通信系统的多径判决方法
US7440528B2 (en) Timing recovery apparatus and method
CN110445740A (zh) 基于重复序列的频偏估计方法及系统
US20050111530A1 (en) Communication receiver
WO2006093331A1 (ja) 移動無線通信装置、及びチャネル推定値演算方法
CN114465691A (zh) 一种低复杂度的恒包络相位调制信号采样偏差估计和补偿方法及系统
EP1195914B1 (en) Timing correcting device and timing correcting method
JPH09246917A (ja) 周波数誤差推定装置
US20050047537A1 (en) Method and system of signal path tracking
JPH11112489A (ja) フレーム同期回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/1479/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002718552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027017006

Country of ref document: KR

Ref document number: 10311098

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 028012348

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027017006

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002718552

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWR Wipo information: refused in national office

Ref document number: 1020027017006

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2002718552

Country of ref document: EP