WO2002083312A1 - Electrode pour appareil de broyage et appareil de broyage - Google Patents

Electrode pour appareil de broyage et appareil de broyage Download PDF

Info

Publication number
WO2002083312A1
WO2002083312A1 PCT/JP2002/003387 JP0203387W WO02083312A1 WO 2002083312 A1 WO2002083312 A1 WO 2002083312A1 JP 0203387 W JP0203387 W JP 0203387W WO 02083312 A1 WO02083312 A1 WO 02083312A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductor
crushing device
discharge
central axis
Prior art date
Application number
PCT/JP2002/003387
Other languages
English (en)
French (fr)
Inventor
Toru Okazaki
Koji Urano
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001108388A external-priority patent/JP3563363B2/ja
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP02714461A priority Critical patent/EP1375004A4/en
Priority to US10/333,076 priority patent/US6935702B2/en
Priority to CA002416034A priority patent/CA2416034A1/en
Priority to KR10-2002-7016565A priority patent/KR100512812B1/ko
Publication of WO2002083312A1 publication Critical patent/WO2002083312A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • E21C37/18Other methods or devices for dislodging with or without loading by electricity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • the present invention relates to a crushing device for breaking rock and the like and an electrode for the crushing device, and more particularly to a crushing device and a crushing device electrode capable of efficiently breaking a rock and the like.
  • FIG. 19 is a schematic diagram showing a conventional crusher.
  • FIG. 20 is a schematic diagram showing a basic configuration of the crushing device shown in FIG. 19, and
  • FIG. 21 is a partially enlarged schematic diagram showing a tip portion of the electrode shown in FIG. It is.
  • FIGS. 19 to 21 the structure and operation of a framing device for carrying out the crushing method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 4-222704 will be described. First, the structure of a conventional crusher will be briefly described with reference to FIGS.
  • the pulse power source 106 may be composed of a circuit including a capacitor 108 and a switch 107.
  • a power source 109 is connected to the pulse power source 106.
  • the circuit of the NORSPA source 106, the housing including this circuit, and the vehicle body on which the crushing device is mounted are grounded.
  • the coaxial electrode 101 serving as a breaking electrode for breaking rocks and the like is connected to a pulse power source 106 and a coaxial Cape Knore 105.
  • a center electrode 112 and an outer electrode 115 positioned on the outer side of the center electrode 112 via an insulator 113 are arranged.
  • One of the center electrode 1 1 2 and the outer electrode 1 1 5 is grounded, and the other is charged with the electric charge stored in the capacitor 1 08 when the switch 1 07 of the pulse power source 106 is closed.
  • Preliminary holes 110 are formed in advance in a rock to be destroyed using a drill or the like. Electricity such as water 1 1 1 Inject the solution. The coaxial electrode 101 is inserted into the prepared hole 110.
  • the conventional crusher described above has the following problems. That is, the electrolyte is in a plasma state in a region where an arc is formed by the discharge between the center electrode 112 and the outer electrode 115, and the temperature in this region is the current supplied to the coaxial electrode 101. It changes greatly depending on the value. In other words, the higher the current value, the higher the temperature of the region where the arc is formed. On the other hand, it is known that the discharge resistance decreases as the temperature of the region where the arc is formed increases.
  • the energy consumed by the discharge of the coaxial electrode 101 is proportional to the square of the current value supplied to the coaxial electrode 101 X discharge resistance.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electrode for a crushing device and a crushing device capable of increasing the energy used for crushing. To provide. Disclosure of the invention
  • An electrode for a crushing device surrounds a central conductor extending along a central axis and having an outer peripheral surface, an insulating member disposed on the outer peripheral surface of the central conductor, and an insulating member.
  • Peripheral conductors arranged as described above.
  • the outer conductor includes a first conductor, and a second conductor spaced from the first conductor in a direction in which the central axis extends.
  • the crusher electrode is supplied to the center conductor.
  • a first discharge is generated between a portion located at the end and one of the first and second conductors arranged at the end.
  • a second discharge also occurs between the first conductor and the second conductor. That is, in the conventional electrode, discharge occurs only at one end, whereas in the electrode according to the present invention, discharge occurs in at least two places.
  • the capacity of the crusher (crushing capacity) can be increased.
  • the discharge resistance is smaller than the resistance of the entire circuit, and the increase in the discharge resistance at several points is smaller than the resistance of the entire circuit, so the crushing force can be increased without changing the size of the power supply .
  • the central conductor includes an end that generates a discharge
  • the first conductor is disposed on an end side in a direction in which the central axis extends, and both ends in a direction in which the central axis extends. It is preferable to include a portion and an area sandwiched between both ends. It is preferable that both ends of the first conductor have relatively small diameter portions, and a region sandwiched between both ends of the first conductor has relatively large diameter portions. Is preferred. In this case, a first discharge occurs between the center conductor located at the end and the first conductor, and a second discharge occurs between the first conductor and the second conductor. Discharge will occur.
  • the first and second discharges are generated so as to sandwich the first conductor. Then, by relatively increasing the diameter of the region sandwiched between both ends of the first conductor, the region where the first discharge occurs and the region where the second discharge occurs can be defined as this relative region. Can be isolated by a large diameter portion. As a result, it is possible to prevent the first discharge and the second discharge from interfering with each other. For this reason, since the arcs of the first and second discharges are integrated, it is possible to prevent the number of discharge portions from being reduced, thereby preventing a reduction in discharge resistance. Therefore, the capacity of the crusher can be surely improved.
  • a projection is formed on at least one of the first and second conductors.
  • the protrusion includes a first protrusion formed on one of the first and second conductors, and at least one of the first and second conductors. Either one of them may include a second protrusion formed at a position different from the position of the first protrusion in the circumferential direction of the central axis.
  • the arc in the first discharge and the arc in the second discharge are connected. (Integration) may occur.
  • the arcs of the first and second discharges are integrated in this way, the result is similar to a state in which only one discharge is generated in the electrode for crushing equipment, and the energy used for crushing is reduced. I will.
  • the first projection and the second projection are formed at different positions in the circumferential direction of the central axis.
  • One discharge generated in the formed portion and another discharge generated in the portion in which the second protrusion is formed can be generated at different positions in the circumferential direction of the central axis. Therefore, for example, in the first or second conductor located on the end side of the crushing device electrode, a first protrusion is formed in a region facing the end side of the crushing device electrode, and the second conductive material is formed.
  • the first discharge generated on the end side of the crushing device electrode corresponds to the one discharge, and the first conductive
  • the second discharge generated between the body and the second conductor corresponds to the other discharge.
  • the first discharge and the second discharge can be generated at different positions in the circumferential direction of the central axis.
  • the inventor conducted experiments and studies on discharge phenomena in the electrode for the crusher, and obtained the following knowledge. That is, in the electrode for the crushing device according to the present invention, a plurality of discharges are generated in one electrode for the crushing device, thereby increasing the energy used for the fracture frame. It is necessary. Therefore, the inventor has observed in detail the discharge phenomenon in the electrode for the crushing device, and studied conditions for independently and stably generating a plurality of discharges. According to the experiments of the inventor, when a discharge is generated between the first and second conductors in the crushing device electrode, for example, the arc generated by the discharge immediately after the start of the discharge is relatively small. The size of the arc grows to some extent in the direction of the central axis with time.
  • the end of the arc having such a stable size is defined as having a length of about 1 O mm from the ends of the first and second conductors in the direction along the central axis. It had reached the position where it invaded the body.
  • the length of the arc extending from the ends of the first and second conductors onto the first and second conductors is the length of the first and second conductors. If the length in the direction of the central axis was sufficiently large, even if the voltage of the power source used for crushing and the shape and material of the electrodes for the crushing device were changed, there was almost no change.
  • the arc extension length is at most the length of the first and second conductors. Cannot grow enough. In such a state, the energy consumed by the discharge (the energy used for crushing) was smaller than when the power arc had grown sufficiently.
  • the length of the first and second conductors in the central axis direction is smaller than 10 mm, the arc caused by the first discharge and the arc caused by the second discharge in the circumferential direction of the central axis. These two arcs are easily connected if they are formed close to each other. As a result, the energy used for crushing was also reduced.
  • At least one of the first and second conductors has a length of 10 mm in a direction in which the central axis extends. It is preferable that it is above.
  • the arc of the discharge can be sufficiently large in the direction along the central axis, so that the energy used for crushing can be sufficiently large.
  • At least one of the first and second conductors has a length of 20 mm or more in a direction in which the central axis extends. ''
  • the length of the first conductor in the direction in which the central axis extends is 2 O mm or more, two arcs generated at both ends of the first conductor will be generated in the circumferential direction of the central axis. Even if they are formed at close positions, these two arcs can be grown sufficiently independently. That is, unification of the arcs of the first and second discharges can be surely prevented, and the energy used for crushing can be increased by sufficiently growing the arc.
  • the outer conductor may include one or more other conductors spaced apart from the second conductor in a direction in which a central axis extends. .
  • a third discharge can be generated between the second conductor and another conductor.
  • the other conductor includes a plurality of conductors formed at intervals. Then, the fourth and fifth discharges can be further generated. As a result, the discharge resistance can be further increased, and the energy used for crushing can be further increased.
  • the protrusion may be formed on at least one selected from the group consisting of a first conductor, a second conductor, and another conductor. .
  • the protrusion may protrude in a direction substantially parallel to the direction in which the central axis extends.
  • the distance in the direction in which the central axis extends between the first and second conductors, or the distance in the direction in which the central axis extends between the central conductor and one of the first and second conductors Can be locally reduced. Therefore, a discharge can be preferentially generated in the portion where the protrusion is formed. Therefore, by changing the position of the protrusion, the position of the region where the discharge occurs can be arbitrarily changed.
  • the protruding portion may protrude in the radial direction of the central axis.
  • the shape of the first or second conductor in the radial direction of the central axis can be made non-uniform due to the formation of the protruding portion.
  • the area can be changed arbitrarily.
  • the protrusion includes a first protrusion formed into one selected from the group consisting of a first conductor, a second conductor, and another conductor. At least one selected from the group consisting of the first conductor, the second conductor, and another conductor is formed at a position different from the position of the first protrusion in the circumferential direction of the central axis. And a second protrusion formed.
  • the first projection and the second projection are different from each other in the circumferential direction of the central axis. Since one discharge is generated in the portion where the first protrusion is formed and the other discharge is generated in the portion where the second protrusion is formed, the discharge is generated in the circumferential direction of the central axis. Can be generated at different locations. Therefore, it is possible to prevent an arc in one discharge from being connected (unified) with an arc in another discharge. As a result, ! It is possible to prevent the energy used for crushing from being reduced due to the connection between the arc in one discharge and the arc in another discharge.
  • At least one length selected from the group consisting of a first conductor, a second conductor, and another conductor is 1 in a direction in which the central axis extends. It is preferably 0 mm or more.
  • the arc of the discharge may be sufficiently large in the direction along the central axis. it can. Therefore, the energy used for crushing can be sufficiently increased.
  • At least one length selected from the group consisting of the first conductor, the second conductor, and another conductor in the direction in which the central axis extends Is more preferably 2 O mm or more.
  • the length of the second conductor in the direction in which the central axis extends is 2 O mm or more, two arcs generated at both ends of the second conductor are close in the circumferential direction of the central axis. Even if it is formed at the position, these two arcs can be grown sufficiently independently in the second conductor, and the resistance is not reduced by integration. That is, the two arcs generated at both ends of the second conductor or the like can be reliably prevented from being integrated, and the energy used for crushing can be increased by sufficiently growing the arc.
  • the center conductor may include a stranded conductor
  • the insulating member may include a flexible material
  • impacts may be applied to the electrodes from the lateral direction.
  • the electrode for the crushing device has a certain degree of flexibility with the above configuration, the impact from the lateral direction can be absorbed by the deformation of the electrode, and the electrode may be broken due to the impact. Occurrence can be prevented. Therefore, The life of the electrode can be extended. '
  • a crushing device includes the electrode for the crushing device according to the above aspect.
  • FIG. 1 is a schematic diagram for explaining a device configuration of a crushing device electrode according to a first embodiment of the present invention and a crushing device using the crushing device electrode according to the present invention.
  • FIG. 2 is a partially enlarged schematic view showing a tip portion of the crushing device electrode shown in FIG.
  • FIG. 3 is a schematic perspective enlarged view showing a tip portion of the electrode for the crushing device shown in FIG.
  • FIG. 4 is a schematic sectional view of the electrode for the crusher shown in FIG.
  • FIG. 5 is a partially enlarged schematic view showing a first modification of the crushing device electrode shown in FIGS.
  • FIG. 6 is a schematic cross-sectional view showing a second modification of the electrode for the crusher shown in FIGS.
  • FIG. 7 is a partially enlarged schematic view showing Embodiment 2 of the electrode for a crusher according to the present invention.
  • FIG. 8 is a partially enlarged schematic view showing Embodiment 3 of the electrode for a crusher according to the present invention.
  • FIG. 9 is a partially enlarged schematic diagram showing Embodiment 4 of an electrode for a crusher according to the present invention.
  • FIG. 10 is a schematic sectional view of the electrode for the crushing device shown in FIG.
  • FIG. 11 is a schematic cross-sectional view showing a first modification of the crushing device electrode shown in FIGS. 9 and 10.
  • FIG. 12 is a schematic cross-sectional view showing a second modification of the electrode for the crushing device shown in FIGS.
  • FIG. 13 is a partially enlarged schematic view showing a third modification of the electrode for the crusher shown in FIGS. 9 and 10.
  • FIG. 14 is a schematic perspective view showing Embodiment 5 of the electrode for a crusher according to the present invention. You.
  • FIG. 15 is a schematic cross-sectional view of the electrode for the crusher shown in FIG.
  • FIG. 16 is a schematic diagram showing a modification of Embodiment 5 of the electrode for the crusher shown in FIGS. 14 and 15.
  • FIG. 17 is a schematic diagram showing the electrode for the crusher used in the experiment.
  • FIG. 18 is a schematic diagram showing a state where a discharge has occurred in the experiment.
  • FIG. 19 is a schematic diagram showing a conventional crusher.
  • FIG. 20 is a schematic diagram showing a basic configuration of the crusher shown in FIG.
  • FIG. 21 is a partially enlarged schematic view showing the tip of the electrode shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • Embodiment 1 of an electrode for a crusher and a crusher according to the present invention will be described with reference to FIGS.
  • the crushing device includes a coaxial electrode 1, a pulse power source 6, a power source 9, and a coaxial cable 5.
  • the pulse power source 6 is composed of a circuit including a capacitor 8, a switch 7, and the like.
  • the power source 9 is connected to the pulse power source 6.
  • the circuit of the pulse power source 6 is grounded.
  • the coaxial electrode 1, which is an electrode for the crusher, is connected to a pulse power source 6 by a coaxial cable 5.
  • the coaxial electrode 1 includes a center electrode 12 extending as a central conductor extending along the central axis, an insulator 13 disposed as an insulating member on the outer peripheral surface of the center electrode 12, 13 and an outer peripheral electrode 15 as an outer peripheral conductor arranged on the outer peripheral surface.
  • the coaxial electrode 1 is inserted into a pilot hole 10 formed in a crushed object 2 such as a rock. Inside the lower hole 10, water 11 as an electrolyte is disposed. At the tip 16 of the coaxial electrode 1, the end of the center electrode 12 protrudes.
  • the outer peripheral electrode 15 is composed of an outer peripheral electrode portion 14 a as a first conductor located on the tip end 16 side, and the outer peripheral electrode portion 14 a An outer peripheral electrode portion 14b as a second conductor arranged at intervals in the direction in which the central axis extends.
  • a coaxial electrode 1 which is an electrode for a crusher has basically the same structure as the coaxial electrode shown in FIGS.
  • the outer electrode 15 includes three outer electrode portions 14a to 14c.
  • the outer electrode portions 14a to 14c are arranged at intervals.
  • Discharge can be generated at three places, that is, between the outer electrode portion 14b and the outer electrode portion 14c.
  • the discharge resistance can be further increased, and the energy released by the discharge can be further increased.
  • the capacity of the crusher can be further improved.
  • the number of peripheral electrode portions may be further increased to increase the number of locations where discharge occurs. In this case, the capacity of the crusher is further improved.
  • a coaxial electrode 1 which is an electrode for a crusher, has basically the same structure as the coaxial electrode shown in FIGS.
  • a flexible stranded conductor 17 is used as the center electrode.
  • a flexible insulator 18 such as a rubber-based insulator or urethane is used as the insulator.
  • a shock may be applied to the coaxial electrode 1 from the lateral direction.
  • the coaxial electrode 1 having a certain degree of flexibility as described above is used, a lateral impact can be absorbed by the deformation of the coaxial electrode 1. Therefore, it is possible to prevent an accident such as breakage of the coaxial electrode 1 due to the impact. Therefore, the life of the coaxial electrode 1 can be extended.
  • the coaxial electrode 1 as the electrode for the crushing device basically has the same structure as the coaxial electrode shown in FIGS. 1 to 4, but is provided at the center of the outer electrode portion 14a.
  • a radial projection 19 is formed that protrudes in the outer peripheral direction and extends in the circumferential direction.
  • the first discharge occurs between the portion of the center electrode 12 located at the end of the coaxial electrode 1 and the outer electrode portion 14a as the first conductor.
  • a second discharge is generated between the outer peripheral electrode portion 14a and the outer peripheral electrode portion 14b as the second conductor.
  • a coaxial electrode 1 as an electrode for a crushing device basically has the same structure as the coaxial electrode shown in FIGS. 1 to 4, but has a central electrode 1
  • a projection 21 is formed as a projection projecting in a direction substantially parallel to the direction in which the central axis of the second 2 extends.
  • the outer electrode portion 14 a and the outer electrode portion 14 b Since the distance between them can be locally reduced, charges can be concentrated on the convex portions 21. Therefore, discharge can be preferentially generated in the portion where the convex portion 21 is formed. Therefore, by changing the position of the protrusion 21, the position of the region where the discharge occurs can be arbitrarily changed.
  • the protrusion 21 may be formed on the outer electrode portion 14a, or may be formed on both the outer electrode portions 14a and 14b. Further, the convex portions 21 may be formed at a plurality of positions in the circumferential direction. The shape of the convex portion 21 is not limited to the triangular shape as shown in the drawing as long as the distance between the outer peripheral electrode portions 14a and 14b can be locally reduced. You may.
  • a convex portion may be formed on the end side of the coaxial electrode 1 (the side where the center electrode 12 is exposed).
  • the position where the discharge occurs can be changed between the center electrode 12 and the outer electrode portion 14a. Further, the same effect can be obtained even if the protrusion is formed at the end of the center electrode 12.
  • FIGS. 9 and 10 a third embodiment of the electrode for a crusher according to the present invention will be described.
  • the coaxial electrode 1 as the electrode for the crusher basically has the same structure as the coaxial electrode shown in FIGS. 4b, the projections 2 2a, 2 projecting in the radial direction of the central axis of the center electrode 1 2 2 2b is installed respectively.
  • Screw holes 25a and 25b are formed in the protrusions 22a and 22b made of a conductor, respectively, as shown in FIG.
  • screw holes 24a and 24b are formed at portions where the projections 22a and 22b are installed, respectively.
  • the protrusion 23a is fixed to the outer electrode part 14a by inserting and fixing the screw 23a inserted in the screw hole 25a to the screw hole 24a of the outer electrode part 14a. ing.
  • the protrusion 22b becomes the outer electrode portion 1b. Fixed to 4b.
  • the shape of the outer peripheral electrode portions 14a and 14b in the radial direction of the central axis can be made non-circular by forming the projections 22a and 22b.
  • the positions of 22a and 22b By changing the positions of 22a and 22b, the position of the region where the discharge occurs (the region where the arc is formed) can be arbitrarily changed.
  • FIG. 11 corresponds to FIG.
  • the coaxial electrode 1 as the electrode for the crushing device basically has the same structure as the coaxial electrode 1 shown in FIGS.
  • the protrusions 22a and 26b of the outer electrode portions 14a and 14b provided on the outer electrode portions 14a and 14b correspond to the outer electrode portions 14a and 26b, respectively. So that it protrudes from the side walls 27a and 27b of the 14b (that is, the protruding part 2 2 is larger than the distance between the side walls 27a and 27b of the outer electrode portions 14a and 14b). a, 22b so that the distance between the side walls 26a, 26b is smaller).
  • FIG. 12 corresponds to FIG.
  • the coaxial electrode 1 as the electrode for the crushing device basically has the same structure as the coaxial electrode shown in FIGS. 9 and 10.]
  • the projections 28a and 28b are formed integrally with the outer peripheral electrode portions 14a and 14b, respectively. in this case, The same effect as the coaxial electrode shown in FIGS. 9 and 10 can be obtained.
  • FIG. 13 corresponds to FIG.
  • coaxial electrode 1 as an electrode for a crusher has basically the same structure as coaxial electrode 1 shown in FIGS. 9 and 10. However, in the coaxial electrode 1 shown in FIG. 13, both ends of the outer peripheral electrode portion 14 a and the outer peripheral electrode portion 14 Protrusions 21a to 21c are formed at one end of b.
  • the projections 21a to 21c are made of the same material as that of the outer electrode portions 14a and 14b, respectively.
  • the protrusions 2 lb and 21 c are formed at positions different from the positions of the protrusions 21 a in the circumferential direction of the central axis of the center electrode 12.
  • a discharge (first discharge) between the center electrode 12 and the outer peripheral electrode portion 14a is performed between the center electrode 12 and the protrusion 21a. Occurs in the region of
  • a discharge (second discharge) between the outer peripheral electrode portion 14a and the outer peripheral electrode portion 14b occurs in a region between the convex portions 21b and 21c. Therefore, the first discharge and the second discharge occur in different regions in the circumferential direction of the central axis.
  • the coaxial electrode 1 as the electrode for the crusher basically has the same structure as the coaxial electrode shown in FIGS.
  • the outer peripheral electrode 15 includes four outer peripheral electrode portions 14a to 14d.
  • the outer peripheral electrode portions 14a to 14d are arranged at intervals.
  • the widths of the outer electrodes 14a to 14c in the central axis direction are defined as widths L1 to L3, respectively.
  • the distance between the outer electrodes 14a, 14b is distance W1
  • the distance between the outer electrodes 14b, 14c is distance.
  • the distance W 2 and the distance between the outer electrodes 14 c and 14 d are distance W 3. In this case, the same effect as the coaxial electrode shown in FIGS.
  • coaxial electrode 1 as an electrode for a crushing device basically has the same structure as coaxial electrode 1 shown in FIGS. 14 and 15.
  • protrusions 21 a to 21 d are formed on each of the outer electrode portions 14 a to 14 c.
  • the projections 21a to 21d are formed so as to project in a direction substantially parallel to the direction in which the central axis of the center electrode 12 extends.
  • the protrusions 2 1 & to 2 1 (1 are formed at different positions in the circumferential direction of the central axis of the central electrode 12.
  • the discharge (first discharge) that occurs in the area occurs between the projection 21a and the center electrode 12.
  • the area between the outer electrode 14a and the outer electrode 14b Discharge (second discharge) is generated in a region between the convex portion 2 ⁇ b and the outer peripheral electrode 14b, and is generated between the outer peripheral electrode portion 14b and the outer peripheral electrode portion 14c.
  • Discharge (third discharge) occurs in the region between the convex portion 21c and the outer peripheral electrode 14c, and occurs between the outer peripheral electrode portion 14c and the outer peripheral electrode portion 14d.
  • the discharge (fourth discharge) occurs in a region between the protrusion 21 d and the outer peripheral electrode 14 d.
  • the charges can be concentrated on the protrusions 21 a to 21 d.
  • the first to fourth discharges can be generated in the vicinity of the portion where 21 d is formed. Therefore, by changing the positions of the protrusions 21a to 21d, the positions where the first to fourth discharges occur can be arbitrarily changed.
  • the first to fourth discharges generated at the electrodes are formed at different positions in the circumferential direction of the center axis of the center electrode 12. Therefore, it is possible to reliably prevent the arcs of adjacent discharges from being connected to each other.
  • the protrusions 21 a to 21 d are formed so as to protrude in a direction substantially parallel to the direction in which the center axis of the center electrode 12 extends.
  • the projections 21a to 21d may be formed so as to project in the radial direction of the central axis. In this case, the same effect as the coaxial electrode shown in FIG. 16 can be obtained.
  • the width (length in the direction in which the central axis of central electrode 12 extends) of outer peripheral electrodes 14 a to 14 d in Embodiments 1 to 5 of the present invention is preferably 1 Omni or more. No. In this way, the arc formed by the discharge can grow to a sufficient size without being limited by the width of the outer electrodes 14a to 14d. Therefore, the energy used for crushing can be increased.
  • To 5 may be 20 mm or more. In this way, even if two adjacent discharges occur near the center axis of the center electrode 12 in the circumferential direction, the arcs due to the two discharges are reliably prevented from being connected. it can.
  • the inventor conducted a discharge experiment using the electrode for a crusher according to the present invention to confirm the effect of the present invention. This experiment will be described with reference to FIGS. 17 and 18.
  • coaxial electrode 1 as a crushing device electrode prepared by the inventor has basically the same structure as the crushing device electrode according to the fifth embodiment of the present invention. That is, the coaxial electrode 1 includes a center electrode 12, an insulator 13 disposed on the outer peripheral surface of the center electrode 12, and an outer peripheral electrode disposed on the outer peripheral surface of the insulator 13. Parts 14a to 14d.
  • the center electrode 12 extends along the center axis and is made of copper. The diameter of the center electrode 12 is 2 O mm.
  • the insulator 13 is made of FRP (Fiber Reinforced P 1 astics) and its thickness is 10 mm.
  • the outer electrode portions 14a to 14d constituting the outer electrode 15 are made of copper, and have a thickness of 5 mm.
  • the outer diameter of the coaxial electrode 1 is 5 O mm.
  • the width L of the outer electrode 14 to 14 c is 27 mm, and the distance W between the outer electrodes 14 a to 14 d is 1 O mm.
  • the capacitor is connected to the coaxial electrode 1 using a cable with a circuit impedance of 3 ⁇ .
  • a discharge was generated.
  • an arc 20a having a relatively small size is generated in the area of the outer electrodes 14a to 14d.
  • the size of the arc increases with the passage of time, and an arc 20b having a relatively large size is finally formed.
  • the end of the arc 20 b in the direction along the central axis of the center electrode 12 extends from the end of the outer electrode portion 14 a to l 4 d. It was observed that only LA extended inward. The value of the length LA was about 10 mm.
  • the width L of the outer electrodes 14a to 14d is 1 Omm or more, a large arc 20b that has grown sufficiently during the discharge can be formed (while the outer electrodes 14a to 14d are formed). If the width L of ⁇ 14 d is less than 1 O mm, the arc cannot grow sufficiently, and as a result, the energy used for crushing is considered to be small. In some cases, adjacent arcs may be connected to each other (for example, an arc generated between the outer electrodes 14a and 14b and an arc generated between the outer electrodes 14b and 14c). In this case, too, the amount of energy used for crushing is also likely to be smaller). In the coaxial electrode 1, as shown in FIG.
  • the width L of the outer electrodes 14a to 14d is set to 2 By setting the length to 0 mm or more, even if the adjacent arcs 20 b are formed close to the center axis of the center electrode 12 in the circumferential direction, the arcs 20 b are reliably prevented from being connected to each other. it can.
  • the electrode for a crushing device according to the present invention can be applied to crushing of rocks and bedrocks, and further to crushing of artificial structures made of concrete.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Disintegrating Or Milling (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

明細書 破砕装置用電極および破砕装置 技術分野
この発明は、 岩石などを破壊する破砕装置およびその破砕装置用電極に関し、 より特定的には、 効率よく岩石などを破壊することが可能な破砕装置および破砕 装置用電極に関する。 背景技術
岩石などを破壌するための従来の破砕方法としては、 たとえば特開平 4一 2 2 2 7 9 4号公報に開示されているものがある。 図 1 9は、 従来の破砕装置を示す 模式図である。 また、 図 2 0は、 図 1 9に示した破'碎装置の基本的な構成を示す 模式図であり、 図 2 1は、 図 2 0に示した電極の先端部を示す部分拡大模式図で ある。 図 1 9〜2 1を参照して、 上記特開平 4— 2 2 2 7 9 4号公報に開示され た破砕方法を実施するための破枠装置の構造および動作について説明する。 図 1 9〜2 1を参照して、 まず、 従来の破砕装置の構造を簡単に説明する。 パ ルスパワー源 1 0 6は、 コンデンサ 1 0 8、 スィッチ 1 0 7などを含む回路から なっていろ。 このパルスパワー源 1 0 6には電源 1 0 9が接続されている。 ノ ル スパヮ一源 1 0 6の回路、 この回路を含む筐体および破砕装置を搭載する車体は 接地されている。
岩石などを破壊するための破壊電極としての同軸電極 1 0 1は、 パルスパワー 源 1 0 6と同軸ケープノレ 1 0 5によって接続されている。 同軸.電極 1 0 1の先端 には、 中心電極 1 1 2と、 この中心電極 1 1 2の外周側に絶縁体 1 1 3を介して 位置する外周電極 1 1 5とが配置されている。 中心電極 1 1 2と外周電極 1 1 5 との一方は接地され、 他方にはパルスパワー源 1 0 6のスィツチ 1 0 7が閉じら れたときにコンデンサ 1 0 8に蓄えられた電荷が導かれる。
次に従来の破砕方法を説明する。 破壊対象となる岩石などに、 ドリルなどを用 いてあらかじめ下孔 1 1 0を形成する。 この下孔 1 1 0の中に水 1 1 1などの電 解液を注入する。 この下孔 1 1 0に同軸電極 1 0 1を挿入する。
. そして、 電源:! 0 9で電荷を発生させ、 この電荷をコンデンサ 1 0 8に蓄積す る。 ただし、 コンデンサ 1 0 8の片側の極は接地されている。
コンデンサ 1 0 8に十分に電荷が蓄積ざれた後にスィツチ 1 0 7を閉じること によって、 同軸ケーブル 1 0 5を介して同軸電極 1 0 1に電荷が供給される。 そ して、 同軸電極 1 0 1の先端において、 中心電極 1 1 2と外周電極 1 1 5との間 に電位差が生じることにより放電が起こる。 このとき、 同軸電極 1 0 1の先端付 近の電解液が放電エネルギーによってプラズマ化することにより、 圧力波が発生 する。 この圧力波により、 同軸電極 1 0 1の周囲の岩石などを破壊する。
上記特開平 4 - 2 2 2 7 9 4号公報では、 岩石などの破砕の際には、 1マイク 口秒あたり少なくとも 1 0 0 MWの割合で、 少なくとも 3 GWのピークィ直のパヮ 一が破碎すべき物質の閉じ込めた領域の電解液の中に浸漬された同軸電極 1 0 1 の 2電極間 (中心電極 1 1 2と外周電極 1 1 5との間) を横切って得られるまで、 電気エネルギーを同軸電極丄 0 1に供給するとしている。
上述した従来の破砕装置においては、 以下のような問題があった。 すなわち、 中心電極 1 1 2と外周電極 1 1 5との間の放電によりアークが形成される領域で 電解液がプラズマ状態にあり、 この領域の温度は同軸電極 1 0 1に供給される電 流値により大きく変化する。 つまり、 電流値が大きくなればアークが形成されて いる領域の温度はより高温となる。 一方、 アークが形成されている領域の温度が 高温になるほど、 放電抵抗は低下することが知られている。 ここで、 同軸電極 1 0 1の放電により消費されるエネルギーは、 同軸電極 1 0 1に供給される電流値 の 2乗 X放電抵抗に比例する。
したがって、 同軸電極 1 0 1の放電により消費されるエネルギー (破砕に利用 されるエネルギー) を大きくするために、 同軸電極 !L 0 1に供給される電流値を 大きく しても、 電流値の増大に伴って放電抵抗が小さくなる。 したがって、 単純 に上記電流値を大きくするだけでは、 同軸電極 1 0 1の放電により消费されるェ ネルギーを十分大きくすることは難しかった。 このため、 従来の破砕装置では破 砕に利用されるエネルギーを大きく して効率よく破碎'を行なうことが困難であつ た。 この発明は、 上述のような課題を解決するためになされたものであり、 この発 明の目的は、 破砕に利用されるエネルギーを大きくする事が可能な破砕装匱用電 極および破砕装置を提供することである。 発明の開示
この発明の 1の局面における破砕装置用電極は、 中心軸に沿って延在し、 外周 面を有する中心導電体と、 中心導電体の外周面上に配置された絶縁部材と、 絶縁 部材を囲むように配置された外周導電体とを備える。 外周導電体は、 第 1の導電 体と、 この第 1の導電体とは中心軸の延びる方向において間隔を隔てて配置され た第 2の導電体とを含む。
このようにすれば、 破砕装置用電極に電流が供給され、 中心電極としての中心 導電体と外周電極としての外周導電体との間に当該電流が流れる場合、 中心導電 体において破砕装置用電極の端部に位置する部分と、 この端部側に配置された第 1および第 2の導電体のいずれかとの間にいおて第 1の放電が発生する。 そして、 第 1の導電体と第 2の導電体との間においても、 第 2の放電が発生する。 つまり、 従来の電極においては端部の 1箇所においてのみ放電が起きていたのに対して、 本発明による電極では少なくとも 2箇所において放電が起きる。 このように放電 が起きる個所の数を増加させることにより、 電流値を一定にした場合において、 従来より放電抵抗を放電個所の数に応じて増加させることができる。 よって、 破 砕に利用されるエネルギーを従来より確実に大きくできる。 したがって、 破砕装 置の能力 (破砕能力) を増大させる事ができる。 一般に、 回路全体の抵抗に比べ て放電抵抗は小さく、 数箇所での放電抵抗の増加は回路全体の抵抗に比べて小さ いため、 電源の大きさを変更することなく破砕力を増加することができる。
上記 1の局面における破砕装置用電極では、 中心導電体は放電を発生させる端 部を含み、 第 1の導電体は中心軸の延びる方向において端部側に配置され、 中心 軸の延びる方向における両端部と、 この両端部に挟まれた領域とを含むことが好 ましい。 第 1の導電体の両端部は、 相対的に径の小さい部分を有することが好ま しく、 第 1の導電体の両端部に挾まれた領域は、 相対的に径の大きい部分を有す ることが好ましい。 この場合、 端部に位置する中心導電体と第 1の導電体との間で第 1の放電が発 生し、 かつ、 第 1の導電体と第 2の導電体との間で第 2の放電が発生することに なる。 つまり、 第 1の導電体を挟むようにして第 1および第 2の放電が発生する。 そして、 第 1の導電体の両端部に挟まれた領域の径を相対的に大きくすることに より、 第 1の放電が発生する領域と第 2の放電が発生する領域とを、 この相対的 に径の大きい部分により隔離することができる。 この結果、 第 1の放電と第 2の 放電とが互いに干渉し合うことを防止できる。 このため、 第 1および第 2の放電 によるアークが一体化することにより、 放電部の数が減少することを防止できる ので、 放電抵抗の低下を防止できる。 したがって、 破砕装置の能力を確実に向上 させることができる。
上記 1の局面における破砕装置用電極では、 第 1および第 2の導電体の少なく ともレ、ずれか一方において突起部が形成されていることが好ましい。
この場合、 第 1および第 2の導電体において突起部を形成することにより、 電 極に電流を供給した際、 この突起部に電荷を集中させる事ができる。 このため、 この突起部が形成された部分において優先的に放電を発生させることができる。 したがって、 突起部の位置を変更することにより、 放電の発生する領域の位置を 任意に変更できる。
上記 1の局面における破砕装置用電極では、 突起部が、 第 1および第 2の導電 体のいずれか一方に形成された第 1の突起部と、 第 1および第 2の導電体の少な くともいずれか一方において、 中心軸の周方向における第 1の突起部の位置とは 異なる位置に形成された第 2の突起部とを含んでいてもよレ、。
ここで、 第 1の放電と第 2の放電とが、 中心軸の周方向においてほぼ同じ位置 に発生する場合、 第 1の放電におけるアークと第 2の放電におけるアークとがつ ながってしまう (一体化する) という現象が起きることがある。 このように第 1 および第 2の放電のアークが一体化すると、 結果的に破砕装匱用電極において 1 つの放電しか発生していない状態と同様になり、 破砕に利用されるエネルギーが 小さくなつてしまう。
しかし、 本発明による破砕装置用電極によれば、 第 1の突起部と第 2の突起部 とが中心軸の周方向において異なる位置に形成されているので、 第 1の突起部が 形成された部分で発生する 1つの放電と、 第 2の突起部が形成された部分で発生 する他の放電とを、 中心軸の周方向において異なる位置にて発生させることがで きる。 したがって、 たとえば、 破碎装置用電極の端部側に位置する第 1または第 2の導電体において破砕装置用電極の端部側に面する領域に第 1の突起部を形成 し、 第 2の導電体において第 1の導電体に面する領域に第 2の突起部を形成すれ ば、 破砕装置用電極の端部側で発生する第 1の放電が上記 1つの放電に対応し、 第 1の導電体と第 2の導電体との間で発生する第 2の放電が上記他の放電に対応 する。 この結果、 中心軸の周方向において異なる位置において、 第 1の放電と第 2の放電とをそれぞれ発生させることができる。 この結果、 第 1の放電における アークと第 2の放電におけるアークとがつながる (一体化する) ことを防止でき る。 したがって、 第 1および第 2の放電におけるアークがつながることに起因し て破砕に利用されるエネルギーが小さくなることを防止できる。
また、 発明者は、 破碎装置用電極における放電現象について実験,研究を行な レ、、 以下のような知見を得た。 すなわち、 本発明による破砕装置用電極では、 1 つの破砕装置用電極において複数の放電を発生させることにより、 破枠に利用さ れるエネルギーを大きく しているため、 複数の放電を独立して発生させることが 必要である。 そこで、 発明者は、 破砕装置用電極における放電現象を詳細に観察 して、 複数の放電を独立して安定的に発生させるための条件を検討した。 発明者 の実験によれば、 破砕装置用電極においてたとえば第 1および第 2の導電体間に て放電を発生させると、 放電開始直後は放電に伴って発生するアークは比較的小 さいが、 このアークの大きさは時間と共に中心軸方向にある程度成長する。 そし て、 ある程度アークの大きさが大きくなると、 その後はアークの大きさはほとん ど変化しなくなった。 このように大きさの安定したアークの端部は、 中心軸に沿 つた方向において、 第 1および第 2の導電体の端部から約 1 O mm程度の長さだ け第 1および第 2の導電体上に侵入した位置にまで到達していた。 この第 1およ び第 2の導電体の端部から第 1および第 2の導電体上にアークが伸びた長さ (ァ ーク延伸長さ) は、 第 1および第 2の導電体の中心軸方向の長さを充分大きく し ておけば、 破砕に用いる電源の電圧や、 破砕装置用電極の形状 ·材質などを変更 しても、 ほとんど変化しなかった。 一方、 第 1および第 2の導電体の中心軸方向の長さを 1 O mmより小さく した 場合、 アーク延伸長さは最大でも第 1および第 2の導電体の長さまでであり、 ァ —クは充分成長することができない。 そして、 このような状態では、 放電により 消費されるエネルギー (破砕に利用されるエネルギー) 力 アークが充分成長し た場合より小さくなつていた。
また、 このように第 1および第 2の導電体の中心軸方向の長さが 1 0 m mより 小さいと、 第 1の放電によるアークと第 2の放電によるアークとが、 中心軸の周 方向において近レ、位置に形成される場合、 これらの 2つのアークが容易につなが つてしまう。 この結果、 やはり破砕に利用されるエネルギーが小さくなるという 問題があった。
このような発明者の知見に基づいて、 上記 1の局面における破砕装置用電極で は、 中心軸が延びる方向において、 第 1および第 2の導電体の少なくともいずれ か一方の長さが 1 0 mm以上であることが好ましい。
この場合、 放電のアークは中心軸に沿った方向において充分大きくなることが できるので、 破砕に利用されるエネルギーを充分大きくできる。
また、 上記 1の局面における破砕装置用電極では、 中心軸が延びる方向におい て、 第 1および第 2の導電体の少なくともいずれか一方の長さが 2 O mm以上で あることがより好ましい。 ' この場合、 たとえば第 1の導電体の中心軸が延びる方向における長さを 2 O m m以上とすれば、 この第 1の導電体の両端部で発生する 2つのアークが中心軸の 周方向において近い位置に形成されても、 これらの 2つのァ一クを独立した状態 で十分成長させることができる。 すなわち、 第 1および第 2の放電のアークの一 体化を確実に防止できると共に、 アークを充分成長させることにより破砕に利用 されるエネルギーを大きくできる。
上記 1の局面における破碎装置用電極では、 外周導体が、 第 2の導電体とは中 心軸の延びる方向において間隔を隔てて配置された 1つ以上の他の導電体を含ん でいてもよい。
この場合、 第 2の導電体と他の導電体との間で第 3の放電を発生させることが できる。 また、 他の導電体が、 間隔を隔てて形成された複数の導電体を含んでい れば、 さらに第 4、 第 5の放電を発生させることができる。 この結果、 放電抵抗 をより高めることができるので、 破砕に利用されるエネルギーをより大きくする ことができる。
上記 1の局面における破砕装置用電極では、 第 1の導電体、 第 2の導電体およ び他の導電体からなる群から選択される少なくとも 1つにおいて突起部が形成さ れていてもよい。
この場合、 電極に電流を供給した際、 この突起部に電荷を集中させる事ができ る。 このため、 この突起部が形成された部分において優先的に放電を発生させる ことができる。 したがって、 突起部の位置を変更することにより、 放電の発生す る領域の位置を任意に変更できる。
上記 1の局面における破砕装置用電極では、 突起部が、 中心軸が延びる方向と ほぼ平行な方向に突出していてもよい。
この場合、 第 1および第 2の導電体間での中心軸が延びる方向における距離、 または中心導電体と第 1および第 2の導電体のいずれかとの間での中心軸が延び る方向における距離を、 局所的に小さくすることができる。 このため、 この突起 部が形成された部分において優先的に放電を発生させることができる。 したがつ て、 突起部の位置を変更することにより、 放電の発生する領域の位置を任意に変 更できる。
上記 1の局面における破砕装置用電極では、 突起部が、 中心軸の放射方向に突 出していてもよい。
この場合、 中心軸の放射方向における第 1または第 2の導電体の形状を、 突起 部の形成により不均一なものとすることができるので、 この突起部の位置を変更 することにより放電の発生領域を任意に変更できる。
上記 1の局面における破砕装置用電極では、 突起部が、 第 1の導電体、 第 2の 導電体および他の導電体からなる群から選択される 1つに形成された第 1の突起 部と、'第 1の導電体、 第 2の導電体および他の導電体からなる群から選択される 少なくとも 1つにおいて、 中心軸の周方向における第 1の突起部の位置とは異な る位置に形成された第 2の突起部とを含んでいてもよい。
この場合、 第 1の突起部と第 2の突起部とが中心軸の周方向において異なる位 置に形成されているので、 第 1の突起部が形成された部分で発生する 1つの放電 と、 第 2の突起部が形成された部分で発生する他の放電とを、 中心軸の周方向に おいて異なる位置にて発生させることができる。 したがって、 1つの放電におけ るアークと他の放電におけるアークとがつながる (一体化する) ことを防止でき る。 この結果、 !_つの放電におけるアークと他の放電におけるアークとがつなが ることに起因して破砕に利用されるエネルギーが小さくなることを防止できる。 上記 1の局面における破砕装置用電極では、 中心軸が延びる方向において、 第 1の導電体、 第 2の導電体および他の導電体からなる群から選択される少なくと も 1つの長さが 1 0 mm以上であることが好ましい。
この場合、 長さが 1 O mm以上とされた第 1の導電体、 第 2の導電体および他 の導電体のいずれかにおいて、 放電のアークは中心軸に沿った方向において充分 大きくなることができる。 このため、 破砕に利用されるエネルギーを充分大きく できる。
また、 上記 1の局面における破砕装置用電極では、 中心軸が延びる方向におい て、 第 1の導電体、 第 2の導電体および他の導電体からなる群から選択される少 なくとも 1つの長さが 2 O mm以上であることがより好ましい。
この場合、 たとえば中心軸が延びる方向における第 2の導電体の長さを 2 O m m以上とすれば、 この第 2の導電体の両端部で発生する 2つのアークが中心軸の 周方向において近い位置に形成されても、 第 2の導電体においてこれらの 2つの アークを独立した状態で十分成長させることができ、 かつ一体化による抵抗の減 少を伴わない。 すなわち、 第 2の導電体などの両端に発生する 2つのアークが一 体化することを確実に防止できると共に、 アークを充分成長させることにより破 砕に利用されるエネルギーを大きくできる。
上記 1の局面における破砕装置用電極では、 中心導電体が撚り線導体を含んで いてもよく、 絶緣部材は可撓性の材料を含んでいてもよい。 '
ここで、 岩石などの破砕作業においては、 電極に横方向からも衝繫が加えられ る場合がある。 このような場合、 上記のような構成によりある程度の柔軟性を備 えた破砕装置用電極であれば、 横方向からの衝撃を電極の変形により吸収できる ので、 衝搫により電極が折損するといった事故の発生を防止できる。 したがって、 電極の長寿命化を図ることができる。 '
この発明の別の局面における破砕装置は、 上記 ].の局面における破砕装置用電 極を備える。
このようにすれば、 破砕能力の高い破砕装置を容易に得ることができる。 図面の簡単な説明
図 1は、 本発明による破砕装置用電極およびその破砕装置用電極を用いた破砕 装置の実施の形態 1における装置構成を説明するための模式図である。
図 2は、 図 1に示した破砕装置用電極の先端部を示す部分拡大模式図である。 図 3は、 図 1に示した破砕装置用電極の先端部を示す斜視拡大模式図である。 図 4は、 図 2に示した破砕装置用電極の断面模式図である。
図 5は、 図 1〜 4に示した破砕装置用電極の第 1の変形例を示す部分拡大模式 図である。
図 6は、 図 1〜 4に示した破砕装置用電極の第 2の変形例を示す断面模式図で ある。
図 7は、 本発明による破砕装置用電極の実施の形態 2を示す部分拡大模式図で ある。
図 8は、 本発明による破砕装置用電極の実施の形態 3を示す部分拡大模式図で ある。
図 9は、 本発明による破砕装置用電極の実施の形態 4を示す部分拡大模式図で ある。
図 1 0は、 図 9に示した破碎装置用電極の断面模式図である。
図 1 1は、 図 9および 1 0に示した破砕装置用電極の第 1の変形例を示す断面 模式図である。
図 1 2は、 図 9および 1 0に示した破砕装置用電極の第 2の変形例を示す断面 模式図である。
図 1 3は、 図 9および 1 0に示した破砕装置用電極の第 3の変形例を示す部分 拡大模式図である。
図 1 4は、 本 明による破砕装置用電極の実施の形態 5を示す斜視模式図であ る。
図 1 5は、 図 1 4に示した破砕装置用電極の断面模式図である。
図 1 6は、 図 1 4および 1 5に示した破碎装置用電極の実施の形態 5の変形例 を示す模式図である。
図 1 7は、 実験に用いた破砕装置用電極を示す模式図である。
図 1 8は、 実験において放電が発生した状態を示す模式図である。
図 1 9は、 従来の破砕装置を示す模式図である。
図 2 0は、 図 1 9に示した破砕装置の基本的な構成を示す模式図である。 図 2 1は、 図 2 0に示した電極の先端部を示す部分拡大模式図である。 発明を実施するための最良の形態
以下、 図面に基づいて本発明の実施の形態を説明する。 なお、 以下の図面にお いて、 同一または相当する部分には同一の参照番号を付し、 その説明は繰り返さ なレ、。
(実施の形態 1 )
図丄〜 4を参照して、 本発明による破砕装置用電極および破砕装置の実施の形 態 1を説明する。
図 1〜4を参照して、 本発明による破砕装置は、 同軸電極 1とパルスパワー源 6と電源 9と同軸ケーブル 5とを備える。 パルスパワー源 6はコンデンサ 8、 ス ィツチ 7などを含む回路からなる。 パルスパワー源 6には電源 9が接続されてい る。 パルスパワー源 6の回路は接地されている。 破砕装置用電極である同軸電極 1はパルスパヮ --源 6と同軸ケーブル 5により接続されている。 同軸電極 1は、 中心軸にそって延在する中心導電体としての中心電極 1 2と、 この中心電極 1 2 の外周面上に配置された絶縁部材としての絶縁体 1 3と、 この絶縁体 1 3の外周 面上に配置された外周導電体としての外周電極 1 5とを備える。 同軸電極 1は、 岩石などの破砕対象物 2に形成された下孔 1 0の内部に挿入されている。 下孔 1 0の内部には電 ^液としての水 1 1が配置されている。 同軸電極 1の先端部 1 6 では、 中心電極 1 2の端部が突出している。 外周電極 1 5は、 先端部 1 6側に位 置する第 1の導電体としての外周電極部分 1 4 aと、 この外周電極部分 1 4 aと 中心軸の延びる方向において間隔を隔てて配置された第 2の導電体としての外周 電極部分 1 4 bとを含む。
そして、 ノ レスパワー源 6のスィッチ 7が閉じられたときにコンデンサ 8に蓄 えられた電荷が同軸電極 1に導入されると、 中心電極 1 2の端部と外周電極部分 1 4 a との間で第 1の放電が発生し、 アーク 2 0が形成される。 そして、 外周電 極部分 1 4 aと外周電極部分 1 4 bとの間においても放電が発生し、 もう一つの アーク 2 0が形成される。
このようにすれば、 破砕装置用電極としての同軸電極 1に電流が供給され、 中 心電極 1 2と外周電極 1 5との間に当該電流が流れる場合、 上述のように 2つの アーク 2 0を形成できる。 つまり、 従来の同軸電極においては端部の 1箇所にお いてのみ放電が起きていたのに対して、 本発明による同軸電極 1では少なくとも 2箇所において放電が起きる。 このように放電が起きる個所の数を増加させるこ とにより、 電流値を一定にした場合において、 従来より放電抵抗を増加させるこ とができる。 すでに述べたように、 放電により消費されるエネルギーは同軸電極 1に供給される電流値の 2乗 X放電抵抗に比例するので、 放電により消費される エネルギー (つまり、 破碎に利用されるエネルギー) を従来より確実に大きくで きる。 したがって、 破砕能力を増大させることが可能な破碎装置用電極としての 同軸電極 1および破砕装置を実現できる。
図 5を参照して、 図 1〜4に示した破砕装置用電極の第 1の変形例を説明する。 図 5を参照して、 破砕装置用電極である同軸電極 1は、 基本的には図 1〜4に 示した同軸電極と同様の構造を備える。 ただし、 図 5に示した同軸電極では、 外 周電極 1 5が 3つの外周電極部分 1 4 a〜 1 4 cを含む。 外周電極部分 1 4 a〜 1 4 cは、 それぞれ間隔を隔てて配置されている。 この場合、 図 1〜4に示した 同軸電極と同様の効果を得られると共に、 中心電極 1 2の端部と外周電極部分 1 4 aとの間、 外周電極部分 1 4 aと外周電極部分 1 4 bとの問、 外周電極部分 1 4 bと外周電極部分 1 4 cとの間という、 3箇所で放電を発生させることができ る。 このため、 放電抵抗をより高める事ができるので、 放電により放出されるェ ネルギーをより大きくする事ができる。 この結果、 破砕装置の能力をさらに向上 させることができる。 なお、 外周電極部分の数をさらに増やして、 放電の発生する個所の数を増加さ せてもよい。 この場合、 さらに破砕装置の能力が向上する。
図 6を参照して、 図 1〜4に示した破砕装置用電極の第 2の変形例を説明する。 図 6を参照して、 破砕装置用電極である同軸電極 1は、 基本的には図 1〜4に 示した同軸電極と同様の構造を備える。 ただし、 中心電極としてフレキシブルな 撚り線導体 1 7を用いる。 また、 絶縁体としてゴム系の絶縁体やウレタンなどの、 可撓性のある絶緣体 1 8を用いている。
ここで、 岩石などの破砕作業において、 本発明のように同軸電極 1の中心軸方 向の複数箇所において放電が発生すると、 同軸電極 1に横方向からも衝撃が加え られる場合がある。 このような場合、 上記のようにある程度の柔軟性を備える同 軸電極 1を用いれば、 横方向からの衝撃を同軸電極 1の変形により吸収できる。 このため、 この衝撃により同軸電極 1が折損するといった事故の発生を防止でき る。 したがって、 同軸電極 1の長寿命化を図ることができる。
' (実施の形態 2 )
図 7を参照して、 本発明による破 ¾ ^装置用電極の実施の形態 2を説明する。 図 7を参照して、 破砕装置用電極としての同軸電極 1は、 基本的には図 1〜4 に示した同軸電極と同様の構造を備えるが、 外周電極部分 1 4 aの中央部におい て、 外周方向に突出し、 円周方向に延在する径方向凸部 1 9が形成されている。 この場合、 すでに述べたように、 同軸電極 1の端部に位置する中心電極 1 2の 部分と第 1の導電体としての外周電極部分 1 4 aとの間で第 1の放電 (アーク 2 0 ) が発生し、 かつ、 外周電極部分 1 4 a と第 2の導電体としての外周電極部分 1 4 bとの間で第 2の放電 (アーク 2 0 ) が発生することになる。 つまり、 外周 電極部分 1 4 aを挟むようにして 2つのアーク 2 0が発生する。 そして、 外周電 極部分 1 4 aにおいて中心軸の延びる方向の両端部に挟まれた領域の径を相対的 に大きく して径方向凸部 1 9を形成することにより、 第 1の放電が発生する領域 と第 2の放電が発生する領域とをこの径方向凸部 1 9により隔離することができ る。 この結果、 第 1および第 2の放電によるアーク 2 0が一体化することを防止 できる。 これにより、 放電部の数が減少することを防止できるので、 放電抵抗の 低下を防止できる。 したがって、 破砕装置の能力を確実に向上させることができ る。
(実施の形態 3 )
図 8を参照して、 本発明による破砕装置用電極の実施の形態 3を説明する。 図 8を参照して、 破砕装置用電極としての同軸電極 1は、 基本的には図 1〜4 に示した同軸電極と同様の構造を備えるが、 外周電極部分 1 4 bにおいて、 中心 電極 1 2の中心軸が延びる方向とほぼ平行な方向に突出する突起部としての凸部 2 1が形成されている。
この場合、 外周電極部分 1 4 bにおいて突起部としての凸部 2 1を形成するこ とにより、 同軸電極 1に電流を供給した際、 外周電極部分 1 4 aと外周電極部分 1 4 bとの間の距離を局所的に小さくできるので、 この凸部 2 1に電荷を集中さ せる事ができる。 このため、 この凸部 2 1が形成された部分において優先的に放 電を発生させることができる。 したがって、 凸部 2 1の位置を変更することによ り、 放電の発生する領域の位置を任意に変更できる。
なお、 凸部 2 1は外周電極部分 1 4 aに形成してもよいし、 外周電極部分 1 4 a、 1 4 bの両方に形成してもよい。 さらに、 凸部 2 1は、 円周方向の複数箇所 に形成してもよレ、。 また、 凸部 2 1の形伏は、 外周電極部分 1 4 a、 1 4 bの間 の距離を局所的に小さくできるような形状であれば、 図示したような三角形状以 外の形状であってもよい。
さらに、 外周電極部分 1 4 aにおいて、 同軸電極 1の端部側 (中心電極 1 2が 露出する側) において、 凸部を形成してもよい。 この場合、 この凸部の位置を変 更する Γ—とにより、 中心電極 1 2と外周電極部分 1 4 aとの問において放電の発 生する位置を変更できる。 さらに、 凸部を中心電極 1 2の端部に形成しても、 同 様の効果を得ることができる。
(実施の形態 4 )
図 9および 1 0を参照して、 本発明による破砕装置用電極の実施の形態 3を説 明する。
図 9および 1 0を参照して、 破砕装置用電極としての同軸電極 1は、 基本的に は図 1〜4に示した同軸電極と同様の構造を備えるが、 外周電極部分 1 4 a、 1 4 bにおいて、 中心電極 1 2 2の中心軸の放射方向に突出する突起部 2 2 a、 2 2 bがそれぞれ設置されている。
導電体からなる突起部 2 2 a、 2 2 bには、 図 1 0に示すようにそれぞれねじ 穴 2 5 a、 2 5 bが形成されている。 また、 外周電極部分 1 4 a、 1 4 bにおい て突起部 2 2 a、 2 2 bが設置される部分にはそれぞれねじ穴 2 4 a、 2 4 b力 形成されている。 ねじ穴 2 5 aに挿入されたねじ 2 3 aが外周電極部分 1 4 aの ねじ穴 2 4 aに挿入 ·固定されることにより、 突起部 2 2 aは外周電極部分 1 4 aに固定されている。 また、 ねじ穴 2 5 bに揷入されたねじ 2 3 bが外周電極部 分 1 4 bのねじ穴 2 4 bに挿入 ·固定されることにより、 突起部 2 2 bは外周電 極部分 1 4 bに固定されている。
この場合、 中心軸の放射方向における外周電極部分 1 4 a、 1 4 bの形状を、 突起部 2 2 a、 2 2 bを形成することにより非円形とすることができるので、 こ の突起部 2 2 a、 2 2 bの位置を変更することにより放電の発生する領域 (ァ一 クが形成される領域) の位置を任意に変更できる。
図 1 1を参照して、 図 9および 1 0に示した破砕装置用電極の第 1の変形例を 説明する。 なお、 図 1 1は図 1 0に対応する。
図 1 1を参照して、 破砕装置用電極としての同軸電極 1は、 基本的には図 9お よび 1 0に示した同軸電極 1と同様の構造を備える。 しカゝし、 外周電極部分 1 4 a、 1 4 bに設置された突起部 2 2 a、 2 2 bの端部 2 6 a、 2 6 bが、 それぞ れ外周電極部分 1 4 a、 1 4 bの側壁 2 7 a、 2 7 bより突出するように (つま り、 外周電極部分 1 4 a、 1 4 bの側壁 2 7 a、 2 7 bの間の距離より、 突起部 2 2 a、 2 2 bの端部 2 6 a、 2 6 bの側壁の問の距離の方が小さくなるよう に) 設置されている。
このようにすれば、 図 9および 1 0に示した同軸電極による効果に加えて、 図 8に示した同軸電極による効果も同時に得ることができる。
図 1 2を参照して、 図 9および 1 0に示した破砕装置用電極の第 2の変形例を 説明する。 なお、 図 1 2は図 1 0に対応する。
図 1 2を参照して、 破砕装置用電極としての同軸電極 1は、 基本的には図 9お よび 1 0に示した同軸電極] と同様の構造を備える。 ただし、 突起部 2 8 a、 2 8 bは、 それぞれ外周電極部分 1 4 a、 1 4 bと一体成形されている。 この場合、 図 9および 1 0に示した同軸電極と同様の効果を得ることができる。
図 1 3を参照して、 図 9および 1 0に示した破碎装置用電極の第 3の変形例を 説明する。 なお、 図 1 3は図 9に対応する。
図 1 3を参照して、 破砕装置用電極としての同軸電極 1は、 基本的には図 9お よび 1 0に示した同軸電極 1と同様の構造を備える。 ただし、 図 1 3に示した同 軸電極 1で 、 中心電極 1 2の中心軸が延びる方向とほぼ平行な方向に突出する ように、 外周電極部分 1 4 aの両端部および外周電極部分 1 4 bの一方端部に凸 部 2 1 a〜 2 1 cが形成されている。 この凸部 2 1 a〜 2 1 cは、 それぞれ外周 電極部分 1 4 a、 1 4 bを構成する材料と同様の材料により構成されている。 そ して、 凸部 2 l b、 2 1 cは、 中心電極 1 2の中心軸の周方向における凸部 2 1 aの位置とは異なる位置に形成されている。 このため、 同軸電極に電流を供給し た場合、 中心電極 1 2と外周電極部分 1 4 aとの間における放電 (第 1の放電) は、 中心電極 1 2と凸部 2 1 aとの間の領域において発生する。 一方、 外周電極 部分 1 4 aと外周電極部分 1 4 bとの間の放電 (第 2の放電) は、 凸部 2 1 b、 2 1 cの間の領域で発生する。 したがって、 第 1の放電と第 2の放電とは、 中心 軸の周方向において異なる領域にて発生することになる。
このようにすれば、 第 1の放電におけるアークと第 2の放電におけるアークと がつながることを防止できる。 したがって、 第 1および第 2の放電におけるァ一 クがつながることに起因して破砕に利用されるエネルギーが小さくなることを防 止セ'きる。
(実施の形態 5 )
図 1 4および 1 5を参照して、 本発明による破砕装置用電極の実施の形態 5を 説明する。 ,
図 1 4および 1 5を参照して、 破砕装置用電極である同軸電極 1は、 基本的には 図 1〜4に示した同軸電極と同様の構造を備える。 ただし、 図 1 4および 1 5に 示した同軸電極 1では、 外周電極 1 5が 4つの外周電極部分 1 4 a〜1 4 dを含 む。 外周電極部分 1 4 a〜l 4 dは、 それぞれ間隔を隔てて配置されている。 外 周電極 1 4 a〜 1 4 cの中心軸方向での幅をそれぞれ幅 L 1〜L 3とする。 外周 電極 1 4 a、 1 4 b間の間隔を距離 W 1.、 外周電極 1 4 b、 1 4 c間の間隔を距 離 W 2、 外周電極 1 4 c、 1 4 d間の間隔を距離 W 3とする。 この場合、 図 1〜 4に示した同軸電極と同様の効果を得られると共に、 中心電極 1 2の端部と外周 電極部分 1 4 aとの間、 外周電極部分 1 4 aと外周電極部分 1 4 bとの間、 外周 電極部分 1 4 bと外周電極部分 1- 4 cとの間、 外周電極部分 1 4 cと外周電極部 分 1 4 dとの間という、 4箇所で放電を発生させることができる。 このため、 放 電抵抗をより高める事ができるので、 放電により放出されるエネルギーをより大 きくする事ができる。 この結果、 破砕装置の能力をさらに向上させることができ る。
図 1 6を参照して、 破^^装置用電極の実施の形態 5の変形例を説明する。 図 1 6を参照して、 破砕装置用電極としての同軸電極 1は、 基本的には図 1 4 および 1 5に示した同軸電極 1と同様の構造を備える。 し力、し、 図 1 6に示した 同軸電極 1では、 外周電極部分 1 4 a〜 1 4 cのそれぞれに凸部 2 1 a ~ 2 1 d が形成されている。 凸部 2 1 a〜2 1 dは、 中心電極 1 2の中 軸が延びる方向 とほぼ平行な方向に突出するように形成されている。 凸部2 1 &〜2 1 (1は、 中 心電極 1 2の中心軸の周方向において互いに異なる位置に形成されている。 中心電極 1 2の先端^と外周電極部分 1 4 aとの間に発生する放電 (第 1の放 電) は、 凸部 2 1 aと中心電極 1 2との間の領域に発生する。 外周電極部分 1 4 aと外周電極部分 1 4 bとの間に発生する放電 (第 2の放電) は、 凸部 2 丄 bと 外周電極 1 4 bとの間の領域にて発生する。 外周電極部分 1 4 bと外周電極部分 1 4 cとの間に発生する放電 (第 3の放電) は、 凸部 2 1 cと外周電極 1 4 cと の間の領域にて発生する。 外周電極部分 1 4 cと外周電極部分 1 4 dとの問に発 生する放電 (第 4の放電) は、 凸部 2 1 dと外周電極 1 4 dとの間の領域にて発 生する。
このように、 突起部としての凸部 2 1 a〜2 1 dを形成することにより、 この 凸部 2 1 a〜2 1 dに電荷を集中させることができるので、 この凸部 2 1 a〜2 1 dが形成された部分の近傍においてそれぞれ第 1〜第 4の放電を発生させるこ とができる。 このため、 凸部 2 1 a〜2 1 dの位置を変更することにより、 第 1 〜第 4の放電の発生位置を任意に変更できる。
また、 図 1 6に示したように凸部 2 1 a〜2 1 dを配置することにより、 同軸 電極において発生する第 1〜第 4の放電は、 中心電極 1 2の中心軸の周方向にお いて異なる位置に形成されることになる。 このため、 隣り合う放電のアーク同士 がつながることを確実に防止でぎる。
なお、 図 1 6では、 凸部 2 1 a〜 2 1 dは中心電極 1 2の中心軸が延びる方向 とほぼ平行な方向に突出するように形成されているが、 図 9〜 .1 2に示したよう に凸部 2 1 a〜2 1 dを中心軸の放射方向に突出するように形成してもよい。 こ の場合も、 図 1 6に示した同軸電極と同様の効果を得ることができる。
また、 本発明の実施の形態 1〜 5における外周電極 1 4 a〜 1 4 dの幅 (中心 電極 1 2の中心軸が延びる方向における長さ) は、 1 O mni以上であることが好 ましい。 このようにすれば、 外周電極 1 4 a〜l 4 dの幅に制約されること無く、 放電に伴つて形成されるアークが充分な大きさにまで成長できる。 したがって、 破砕に利用されるエネルギーを大きくできる。
また、 本発明の実施の形態 ].〜 5における外周電極 1 4 a〜 1 4 dの幅は 2 0 mm以上であってもよい。 このようにすれば、 中心電極 1 2の中心軸の周方向に おいて近い位置に 2つの隣接する放電が発生した場合であっても、 この 2つの放 電によるアークがつながることを確実に防止できる。
発明者は、 本発明の効果を確認するため、 本発明による破砕装置用電極を用い て放電実験を行なった。 この実験について、 図 1 7および 1 8を参照して説明す る。
図 1 7を参照して、 発明者が準備した破砕装置用電極としての同軸電極 1は、 基本的に本発明の実施の形態 5による破砕装置用電極と同様の構造を備える。 す なわち、 同軸電極 1は、 中心電極 1 2と、 この中心電極 1 2の外周面上に配置さ れた絶縁体 1 3と、 この絶縁体 1 3の外周面上に配置された外周電極部分 1 4 a 〜 1 4 dとを備える。 中心電極 1 2は中心軸に沿って延在し、 銅からなる。 中心 電極 1 2の直径は 2 O mmである。 絶縁体 1 3は F R P ( F i b e r R e i n f o r c e d P 1 a s t i c s ) からなり、 その厚みは 1 0 mmである。 外周 電極 1 5を構成する外周電極部分 1 4 a〜 l 4 dは銅からなり、 その厚みは 5 m mである。 したがって、 同軸電極 1の外径は 5 O mmとなる。 外周電極部分 1 4 a ~ 1 4 cの幅 Lは 2 7 mmであり、 外周電極 1 4 a〜 1 4 dの間の距離 Wは 1 O mmとした。 そして、 静電容量が 2 m Fのコンデンサを 1 5 k Vまで充電した 後、 回路ィンピーダンスが 3 μ Ηであるケーブルを用いてこのコンデンサと上記 同軸電極 1とを接続することにより、 同軸電極 1において放電を発生させた。 図 1 8に示すように、 放電開始直後は、 外周電極 1 4 a〜 1 4 dの問において 比較的サイズの小さなアーク 2 0 aが発生する。 そして、 時間の経過と共にァー クのサイズは大きくなり、 最終的に比較的サイズの大きなアーク 2 0 bが形成さ れる。 充分大きくなつた (成長した) アーク 2 O bでは、 中心電極 1 2の中心軸 に沿った方向におけるアーク 2 0 b端部が外周電極部分 1 4 a〜l 4 dの端部か ら長さ L Aだけ内側にまで伸びていることが観察された。 長さ L Aの値は約 1 0 mm程度であった。
そして、 コンデンサの充電電圧を 6〜 1 5 k Vの範囲で変化させた場合におい ても、 アークの形成状況はほとんど変化せず、 長さ L Aの値はほぼ 1 O mmであ つた。 また、 外周電極 1 4 a〜l 4 dの間の距離 Wを変化させた場合であっても、 この長さ L Aはほとんど変化しなかった。
このことから、 外周電極 1 4 a〜1 4 dの幅 Lが 1 O mm以上であれば、 放電 の際に充分成長した大きなアーク 2 0 bを形成できることがわかる (一方、 外周 電極 1 4 a〜 1 4 dの幅 Lを 1 O mm未満とした場合、 アークが充分成長するこ とができないので、 結果的に破砕に利用されるエネルギー量が小さくなると考え られる。 また、 隣接するアークの位置によっては、 隣接するアーク同士 (例えば、 外周電極 1 4 a、 1 4 bの間に発生したアークと外周電極 1 4 b、 1 4 cの間に 発生したアーク) がつながってしまうといった現象が起きる可能性もある。 この 場合も、 やはり破砕に利用されるエネルギー量が小さくなると考えられる) 。 なお、 同軸電極 1においては、 図 1 6に示したように中心電極 1 2の中心軸の 周方向において互いに異なる位置において、 外周電極 1 4 a ~ ]. 4 dに凸都 2 1 a〜2 1 dを形成してもよレ、。 このようにすれば、 中心電極 1 2の中心軸の周方 向において異なる位置にアークを発生させることができる。 したがって、 外周電 極 1 4 a〜 1 4 cの幅 Lが 1 0 mm程度である場合でも、 隣接するアーク 2 0 b 同士がつながることを確実に防止できる。
また、 実験で用いた同軸電極 1のように、 外周電極 1 4 a ~ 1 4 dの幅 Lを 2 0 mm以上の長さにしておけば、 たとえ隣り合うアーク 2 0 bが中心電極 1 2の 中心軸の周方向において近い位置に形成されても、 アーク 2 0 b同士がつながる ことを確実に防止できる。
なお、 今回開示された実施の形態および実施例はすべての点で例示であって制 限的なものではないと考えられるべきである。 本発明の範囲は上記した実施の形 態および実施例ではなくて特許請求の範囲によって示され、 特許請求の範囲と均 等の意味および範囲内でのすべての変更が含まれることが意図される。
以上のように、 本発明によれば、 一つの破砕装置用電極を用いて複数箇所にて 放電を発生させることができるので、 破砕に利用されるエネルギーを大きくする 事ができる。 産業上の利用可能性
以上のように、 本発明による破砕装置用電極は、 岩石や岩盤などの破砕、 さら にコンクリートとった人工構造物の破砕などに適用できる。

Claims

請求の範囲
1. 中心軸に沿って延在し、 外周面を有する中心導電体 (1 2、 1 7) と、 前記中心導電体 (]. 2、 1 7) の外周面上に配置された絶縁部材 ( 1 3、 1 δ 8) と、
前記絶緣部材 (1 3、 1 8) を囲むように配置された外周導電体 (1 5) とを 備え、
前記外周導電体 (1 5) は、
第 1の導電体 (1 4 a) と、
0 前記第 1の導電体 (14 a) とは前記中心軸の延びる方向において間隔を隔て て配置された第 2の導電体 (1 4 b ) とを含む、 破碎装置用電極 (1) 。
2. 前記中心導電体 (1 2、 1 7) は放電を発生させる端部を含み、
前記第 1の導電体 (14 a) は前記中心軸の延びる方向において前記端部側に 配置され、 前記中心軸の延びる方向における両端部と、 この両端部に挟まれた領5 域とを含み、
前記第 1の導電体の両端部は、 相対的に径の小さい部分を有し、
前記第 1の導電体の前記両端部に挟まれた領域は、 相対的に径の大きい部分 (1 9) を含む、 請求の範囲第 1項に記載の破砕装置用電極 (1) 。
3. 前記第 1および第 2の導電体 (14 a、 1 4 b) の少なくともいずれか一方0 において突起部 (2 1、 2 1 a〜 2 1 c、 2 2 a、 2 2 b、 28 a、 28 b) が 形成されている、 請求の範囲第 1項に記載の破砕装置用電極 (1) 。
4. 前記突起部 (2 1、 2 1 a〜 2 1 c、 22 a、 2 2 b) は、 前記中心軸が延 びる方向とほぼ平行な方向に突出する、 請求の範囲第 3項に記載の破砕装置用電 極 (1 ) 。
5 5. 前記突起部 (2 2 a、 2 2 b、 28 a、 28 b) は、 前記中心軸の放射方向 に突出する、 請求の範囲第 3項に記載の破砕装置用電極 (1) 。
6. 前記突起部 ( 2 1 a〜 2 1 c ) は、
前記第 1および第 2の導電体 (1 4 a、 1 4 b) のいずれか一方に形成された 第 1の突起部, (2 1 a ) と、 前記第 1および第 2の導電体 ( 1 4 a、 1 4 b) の少なくともレ、ずれか一方に おいて、 前記中心軸の周方向における前記第 1の突起部 (2 1 a ) の位置とは異 なる位置に形成された第 2の突起部 (2 1 b、 2 1 c) とを含む、 請求の範囲第 3項に記載の破砕装置用電極 (1) 。
7. 前記中心軸が延びる方向において、 前記第 1および第 2の導電体 (1 4 a、 1 4 b) の少なくともいずれか一方の長さが 1 Omm以上である、 請求の範囲第 1項に記載の破砕装置用電極 (1) 。
8. 前記外周導体 (1 5) は、 前記第 2の導電体 (1 4 b) とは前記中心軸の延 びる方向において間隔を隔てて配置された 1つ以上の他の導電体 ( 14 c、 1 4 d) を含む、 請求の範囲第 1項に記載の破砕装置用電極 (1) 。
9. 前記第 1の導電体 (1 4 a) 、 前記第 2の導電体 (1 4 b) および前記他の 導電体 (1 4 c、 1 4 d) からなる群から選択される少なくとも 1つにおいて突 起部 (2 1 a〜2 1 d) が形成されている、 請求の範囲第 8項に記載の破砕装置 用電極 (1) 。
1 0. 前記突起部 (2 1 a〜2 1 d) は、 前記中心軸が延びる方向とほぼ平行な 方向に突出する、 請求の範囲第 9項に記載の破碎装置用電極 (1) 。
1 1. 前記突起部は、 前記中心軸の放射方向に突出する、 請求の範囲第 9項に記 載の破碎装置用電極 (1) 。
1 2. 前記突起部 ( 2 1 a〜 2 1 d ) は、 .
前記第 1の導電体 (1 4 a) 、 第 2の導電体 (1 4 b) および他の導電体 ( 1 4 c、 1 4 d) からなる群から選択される 1つに形成された第 1の突起部 (2 1 a ) と、
前記第 1の導電体 (1 4 a) 、 第 2の導電体 (1 4 b) および他の導電体 (1 4 c、 1 4 d) からなる群から選択される少なくとも 1つにおいて、 前記中心軸 の周方向における前記第 1の突起部 (2 1 a) の位置とは異なる位置に形成され た第 2の突起部 (2 1 b〜2 1 d) とを含む、 請求の範囲項 9項に記載の破砕装 置用電極 (1) 。
1 3. 前記中心軸が延びる方向において、 前記第 1の導電体 (14 a) 、 第 2の 導電体 (1 4 b) および他の導電体 (1 4 c、 1 4 d) からなる群から選択され る少なくとも 1つの長さが 1 Omm以上である、 請求の範囲第 8項に記載の破砕 装置用電極 (1) 。
- 1 4. 前記中心導電体 (1 7) は撚り線導体を含み、
前記絶縁部材 (1 8) は可撓性の材料を含む、 請求の範囲第 1項に記載の破砕 装置用電極 (1) 。
1 5. 請求の範囲第 1項に記載の破砕装置用電極 (1) を備える破砕装置。
PCT/JP2002/003387 2001-04-06 2002-04-04 Electrode pour appareil de broyage et appareil de broyage WO2002083312A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02714461A EP1375004A4 (en) 2001-04-06 2002-04-04 ELECTRODE FOR MILLING APPARATUS AND MILLING APPARATUS
US10/333,076 US6935702B2 (en) 2001-04-06 2002-04-04 Crushing apparatus electrode and crushing apparatus
CA002416034A CA2416034A1 (en) 2001-04-06 2002-04-04 Crushing apparatus electrode and crushing apparatus
KR10-2002-7016565A KR100512812B1 (ko) 2001-04-06 2002-04-04 파쇄장치용 전극 및 파쇄장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-108388 2001-04-06
JP2001108388A JP3563363B2 (ja) 2000-12-08 2001-04-06 破砕装置用電極および破砕装置

Publications (1)

Publication Number Publication Date
WO2002083312A1 true WO2002083312A1 (fr) 2002-10-24

Family

ID=18960536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003387 WO2002083312A1 (fr) 2001-04-06 2002-04-04 Electrode pour appareil de broyage et appareil de broyage

Country Status (6)

Country Link
US (1) US6935702B2 (ja)
EP (1) EP1375004A4 (ja)
KR (1) KR100512812B1 (ja)
CN (1) CN1461239A (ja)
CA (1) CA2416034A1 (ja)
WO (1) WO2002083312A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384009B2 (en) 2004-08-20 2008-06-10 Tetra Corporation Virtual electrode mineral particle disintegrator
US8789772B2 (en) 2004-08-20 2014-07-29 Sdg, Llc Virtual electrode mineral particle disintegrator
US9190190B1 (en) 2004-08-20 2015-11-17 Sdg, Llc Method of providing a high permittivity fluid
US8172006B2 (en) 2004-08-20 2012-05-08 Sdg, Llc Pulsed electric rock drilling apparatus with non-rotating bit
US10060195B2 (en) 2006-06-29 2018-08-28 Sdg Llc Repetitive pulsed electric discharge apparatuses and methods of use
SK50872007A3 (sk) 2007-06-29 2009-01-07 Ivan Kočiš Zariadenie na exkaváciu hlbinných otvorov v geologickej formácii a spôsob prepravy energií a materiálu v týchto otvoroch
SK288264B6 (sk) 2009-02-05 2015-05-05 Ga Drilling, A. S. Zariadenie na vykonávanie hĺbkových vrtov a spôsob vykonávania hĺbkových vrtov
FR2942149B1 (fr) 2009-02-13 2012-07-06 Camille Cie D Assistance Miniere Et Ind Procede et systeme de valorisation de materiaux et/ou produits par puissance pulsee
US20100237850A1 (en) * 2009-03-19 2010-09-23 Ahmed Abdullah Salem Al-Ghamdi Device and method for testing food quality
FR2949356B1 (fr) 2009-08-26 2011-11-11 Camille Cie D Assistance Miniere Et Ind Procede et systeme de valorisation de materiaux et / ou produits par puissance pulsee
SK50622009A3 (sk) 2009-09-24 2011-05-06 Ivan Kočiš Spôsob rozrušovania materiálov a zariadenie na vykonávanie tohto spôsobu
US8628146B2 (en) * 2010-03-17 2014-01-14 Auburn University Method of and apparatus for plasma blasting
WO2012094676A2 (en) 2011-01-07 2012-07-12 Sdg, Llc Apparatus and method for supplying electrical power to an electrocrushing drill
US10407995B2 (en) 2012-07-05 2019-09-10 Sdg Llc Repetitive pulsed electric discharge drills including downhole formation evaluation
WO2015042608A1 (en) 2013-09-23 2015-03-26 Sdg Llc Method and apparatus for isolating and switching lower voltage pulses from high voltage pulses in electrocrushing and electrohydraulic drills
CN103753701B (zh) * 2013-12-30 2015-12-09 华中科技大学 一种脉冲放电回收混凝土系统
US10577767B2 (en) * 2018-02-20 2020-03-03 Petram Technologies, Inc. In-situ piling and anchor shaping using plasma blasting
US10866076B2 (en) * 2018-02-20 2020-12-15 Petram Technologies, Inc. Apparatus for plasma blasting
US11268796B2 (en) * 2018-02-20 2022-03-08 Petram Technologies, Inc Apparatus for plasma blasting
US10844702B2 (en) * 2018-03-20 2020-11-24 Petram Technologies, Inc. Precision utility mapping and excavating using plasma blasting
CN108871130B (zh) * 2018-06-29 2024-05-17 中国地质大学(北京) 一种可实现孔壁密封的等离子体爆破岩石机械装置
CN110215985B (zh) * 2019-07-05 2021-06-01 东北大学 一种用于矿石粉碎预处理的高压电脉冲装置
CN111910952A (zh) * 2020-06-11 2020-11-10 哈尔滨理工大学 一种采用高压脉冲技术的环保型混凝土结构破碎装置及破碎方法
US11536124B2 (en) * 2020-09-03 2022-12-27 Petram Technologies, Inc. Sliced and elliptical head probe for plasma blast applications
CN112483086B (zh) * 2020-10-30 2022-02-08 北京科技大学 一种瞬间电脉冲致使金属矿层碎裂的系统及使用方法
CN114869399A (zh) * 2021-02-05 2022-08-09 沛嘉医疗科技(苏州)有限公司 电极组件和使用该电极组件的冲击波装置
US11203400B1 (en) 2021-06-17 2021-12-21 General Technologies Corp. Support system having shaped pile-anchor foundations and a method of forming same
CN115337076A (zh) * 2022-07-15 2022-11-15 深圳英美达医疗技术有限公司 一种冲击波球囊导管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221857A (ja) * 1987-03-10 1988-09-14 桜井 誠也 破砕装置
EP0777102A2 (en) * 1995-10-30 1997-06-04 Soosan Special Purpose Vehicle, Co., Ltd. Rock fragmentation system using Gold-Schmidt method
EP1033551A2 (en) * 1999-03-02 2000-09-06 Korea Accelerator and Plasma Research Association (KAPRA) Electro-power impact cell for plasma blasting

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713166A (en) * 1970-12-18 1973-01-23 Ball Brothers Res Corp Flush mounted antenna and receiver tank circuit assembly
US4115783A (en) * 1977-06-14 1978-09-19 The United States Of America As Represented By The Secretary Of The Army Broadband hybrid monopole antenna
US4653697A (en) * 1985-05-03 1987-03-31 Ceee Corporation Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
ZA91612B (en) 1990-04-20 1991-10-30 Noranda Inc Plasma blasting method
US5425570A (en) * 1994-01-21 1995-06-20 Maxwell Laboratories, Inc. Method and apparatus for plasma blasting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221857A (ja) * 1987-03-10 1988-09-14 桜井 誠也 破砕装置
EP0777102A2 (en) * 1995-10-30 1997-06-04 Soosan Special Purpose Vehicle, Co., Ltd. Rock fragmentation system using Gold-Schmidt method
EP1033551A2 (en) * 1999-03-02 2000-09-06 Korea Accelerator and Plasma Research Association (KAPRA) Electro-power impact cell for plasma blasting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1375004A4 *

Also Published As

Publication number Publication date
KR100512812B1 (ko) 2005-09-13
US6935702B2 (en) 2005-08-30
EP1375004A1 (en) 2004-01-02
KR20030007874A (ko) 2003-01-23
US20040026548A1 (en) 2004-02-12
EP1375004A4 (en) 2005-03-16
CN1461239A (zh) 2003-12-10
CA2416034A1 (en) 2003-01-13

Similar Documents

Publication Publication Date Title
WO2002083312A1 (fr) Electrode pour appareil de broyage et appareil de broyage
US8174814B2 (en) Wire electrode type ionizer
US8743524B2 (en) Lightning arrester and a power transmission line provided with such an arrester
US6457778B1 (en) Electro-power impact cell for plasma blasting
WO1997003797A1 (fr) Appareil et procede de destruction par decharges electriques
JP3563363B2 (ja) 破砕装置用電極および破砕装置
JP4783936B2 (ja) 破砕装置用電極および破砕装置
JP2004181423A (ja) 破砕装置用電極および破砕装置
JP4887574B2 (ja) 破砕装置用電極および破砕装置
JP3563367B2 (ja) 破砕装置用電極、破砕装置および破砕方法
JP4783937B2 (ja) 破砕装置用電極の製造方法
JP3563369B2 (ja) 破砕方法
JP3103016B2 (ja) 被破壊物の破壊装置および破壊方法
EP1069589B1 (en) Electrical discharge tube
JP2003121099A (ja) 破砕装置用電極および破砕装置
JP5193699B2 (ja) イオン発生装置
JPH0697628B2 (ja) シリーズギャップ付点火装置
JP3192928B2 (ja) 放電衝撃破壊方法および放電衝撃破壊装置
JP2003126723A (ja) 破砕装置用電極および破砕装置
JPH1088957A (ja) 破砕装置及び破砕方法
KR970065961A (ko) 플라즈마 파암용 전극봉
JP3169529B2 (ja) 放電衝撃破壊装置
JP4602105B2 (ja) 放電破砕装置の電極
JP2002201888A (ja) 破砕方法
JP3514658B2 (ja) 放電衝撃破壊装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027016565

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028011147

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002714461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2416034

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10333076

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027016565

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002714461

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002714461

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027016565

Country of ref document: KR