WO2002075833A2 - Brennstoffzelle mit integriertem wärmetauscher - Google Patents

Brennstoffzelle mit integriertem wärmetauscher Download PDF

Info

Publication number
WO2002075833A2
WO2002075833A2 PCT/EP2002/002276 EP0202276W WO02075833A2 WO 2002075833 A2 WO2002075833 A2 WO 2002075833A2 EP 0202276 W EP0202276 W EP 0202276W WO 02075833 A2 WO02075833 A2 WO 02075833A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
flow
heat exchanger
cell according
section
Prior art date
Application number
PCT/EP2002/002276
Other languages
English (en)
French (fr)
Other versions
WO2002075833A3 (de
Inventor
Franz-Josef Wetzel
Joachim Tachtler
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to DE50204776T priority Critical patent/DE50204776D1/de
Priority to EP02722169A priority patent/EP1371104B1/de
Publication of WO2002075833A2 publication Critical patent/WO2002075833A2/de
Priority to US10/645,520 priority patent/US7226682B2/en
Publication of WO2002075833A3 publication Critical patent/WO2002075833A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell according to the preamble of claim 1.
  • the object of the present invention is to provide a fuel cell which, even without the disadvantages mentioned above, brings about the required heating of the gaseous reactant on the cathode side.
  • an end or intermediate plate which is arranged on or between the various electrolyte electrode units (single cell), is designed such that, in terms of flow, a heat exchanger area is formed in front of a feed area, in particular a cathode-side feed area, in which an A - Heat is removed from the node side and the gaseous reactant (eg air) is thereby warmed up to the required reaction temperature.
  • a heat exchanger area is formed in front of a feed area, in particular a cathode-side feed area, in which an A - Heat is removed from the node side and the gaseous reactant (eg air) is thereby warmed up to the required reaction temperature.
  • the core idea of the present invention thus includes the idea of integrating a heat exchanger in a bipolar plate, for example, and of guiding the reactant gas to be heated (e.g. the air) along the hot anode side. Only after this area, which acts as a heat exchanger, has flowed through, is the gaseous reactant supplied to the associated electrode (e.g. cathode) for electricity generation.
  • the reactant gas e.g. the air
  • the associated electrode e.g. cathode
  • the end or intermediate plate can be designed such that, for example, the flow direction of the reactant gas is reversed.
  • the reactant gas can thus be passed through the heat exchanger in a serpentine manner, in order to enable even better heat transfer in the heat exchanger.
  • the end or intermediate plate e.g. bipolar plate
  • the end or intermediate plate preferably contains three flow areas, namely an anode flow section between the end or intermediate plate and an adjacent anode of a single cell, a backflow heat exchanger section adjacent the anode flow section and a cathode flow section between the end or Intermediate plate and a cathode of another single cell.
  • the end or intermediate plate is constructed from at least two separate sub-elements to be joined, at least part of the heat exchanger section being formed between the two sub-elements and the heat exchanger section being connected in terms of flow to the region which will later form the cathode section. If a deflection plate is arranged between the two sub-elements, a flow carried out in a serpentine manner can easily be brought about, the direction of flow of the gaseous reactants in the two sub-sections being in opposite directions to one another.
  • knobs can be on the individual sides of the end or intermediate plates and between the sub-elements Spacer elements, for example in the form of knobs, which then either come into contact with one another or against the individual individual cells.
  • the knobs can be produced by embossing or application and their shape can be designed according to the needs.
  • the single figure shows a highly schematic partial section of a fuel cell with a first individual cell 12, consisting of cathode 40, electrolyte 42 and anode 44, and a second individual cell 14, consisting of cathode 46, electrolyte 48 and anode 50.
  • Both individual cells a ceramic electrolyte electrode unit, not described in detail, between which an intermediate plate, here a bipolar plate, is arranged.
  • the bipolar plate serves on the one hand to introduce the various gaseous reactants to the respective electrode sides (anode 44, cathode 46) of the respective individual cells 12, 14 and to produce an electrical conductivity.
  • the bipolar plate is formed in two parts, namely from a first knob plate 20 and a second knob plate 24, which is essentially mirror-inverted with respect to the line of symmetry of the present drawing.
  • Each of the knob plates 20 and 24 comprises a plate on the lower and upper surfaces of which a multiplicity of knobs (reference numerals 22 and 26) are formed.
  • a distance to the electrodes (anode, cathode) of the various individual cells 12 and 14 is produced, on the other hand, a distance between the two knob plates 20 and 24 itself.
  • knobs which in the present case resulted from being stamped into the plates, creates different flow areas in the free spaces formed therewith, on the one hand, a first flow area 16 between the knob plate 22 and the anode of the individual cell 12, in which a gaseous reactant, for example, H 2 , natural gas or gasoline / diesel reformate is introduced.
  • a gaseous reactant for example, H 2 , natural gas or gasoline / diesel reformate is introduced.
  • H 2 hydrogen
  • the gaseous reactants flow through the image plane, i.e. perpendicular to the image.
  • a deflection plate 36 Arranged between the two knob plates 20 and 24 of the bipolar plate is a deflection plate 36 which on the one hand separates the flow spaces formed between the two knob plates 20 and 24 and on the other hand creates a deflection region 32 in which the flow direction of the second gaseous reactant - here air - is reversed.
  • the air is introduced into the bipolar plate in the direction of the arrow and first moves past the anode or the anode-side flow region 16 in the flow region 30 produced by means of the knobs. In this case, heat is emitted from the hot anode side to the air which is initially still at room temperature or is preheated in a simple arrangement. The air warms up.
  • a heat exchanger is thus built into the bipolar plate, which comprises the heat exchanger chambers 30 and 34.
  • the air flows through these chambers before the reactant then enters the cathode flow region.
  • the fuel cell operated at high temperature heats the air sufficiently to the reaction temperature so that a separate, upstream, complex heat exchanger is not required.
  • This allows both the air flow to be reduced compared to today's requirements.
  • the gravimetric and volumetric power densities can be increased while reducing the manufacturing costs.
  • the host Degree of such a fuel cell can be reduced by reducing the parasitic power requirement of the reaction air blower via the possibility of a strong reduction in the air circulation requirement.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Eine Brennstoffzelle umfassend zumindest eine Einzelzelle (12, 14) mit einer Elektrolyt-Elektroden-Einheit sowie zumindest einer leitfähigen End- oder Zwischenplatte (20, 24, 36), über die in einem Zufuhrbereich (14, 18) ein gasförmiger Reaktand einer Elektrode zuführbar ist. Zur Verringerung von Leistungsverlusten sowie des Gas-Umwälzbedarfs wird vorgeschlagen, dass die End- oder Zwischenplatte derart ausgebildet ist, dass strömungsmässig vor dem Zufuhrbereich (18) ein Wärmetauscherbereich (30, 34) ausgebildet ist, in dem einer Anodenseite der Einzelzelle Wärme entzogen wird.

Description

Brennstoffzelle mit integriertem Wärmetauscher
Die Erfindung betrifft eine Brennstoffzelle gemäß dem Oberbegriff des Anspruchs 1.
Bei Brennstoffzellen, insbesondere Hochtemperatur-Brennstoffzellen (z.B. SOFC- Brennstoffzellen) ist es bekannt, das kathodenseitige Reaktandengas (z.B. die Reaktionsluft) vorzuwärmen, um sie auf die erforderliche Reaktionstemperatur zu bringen. Dies wird herkömmlicherweise in einem separaten Hochtemperatur- Wärmetauscher durchgeführt. Ein solcher Wärmetauscher ist jedoch voluminös, schwer und teuer. Außerdem erfordert ein solcher Wärmetauscher eine aufwendige Verrohrung sowie eine kostenintensive Regelungs- und Steuerungstechnik.
Aufgabe der vorliegenden Erfindung ist es, eine Brennstoffzelle anzugeben, die auch ohne die oben genannten Nachteile die erforderliche Anwärmung des katho- denseitigen gasförmigen Reaktanden bewirkt.
Diese Aufgabe wird durch die im Anspruch 1 genannten Merkmale gelöst.
Demgemäss ist eine End- oder Zwischenplatte, die an oder zwischen den verschiedenen Elektrolyt-Elektroden-Einheiten (Einzelzelle) angeordnet ist, derart ausgebildet, dass strömungsmäßig vor einem Zufuhrbereich, insbesondere einem kathoden- seitigen Zufuhrbereich, ein Wärmetauscherbereich ausgebildet ist, in dem einer A- nodenseite Wärme entzogen und dadurch der gasförmige Reaktand (z.B. Luft) auf die erforderliche Reaktionstemperatur aufgewärmt wird.
Der Kerngedanke der vorliegenden Erfindung umfasst somit den Gedanken, beispielsweise in einer bipolaren Platte einen Wärmetauscher zu integrieren und das zu erwärmende Reaktandengas (z. B. die Luft) an der heißen Anodenseite entlang zu führen. Erst nachdem dieser als Wärmetauscher wirkende Bereich durchströmt ist, wird der gasförmige Reaktand der zugehörigen Elektrode (z.B. Kathode) zur Stromerzeugung zugeführt.
Die End- oder Zwischenplatte kann so ausgeführt werden, dass beispielsweise eine Umkehr der Strömungsrichtung des Reaktandengases erreicht wird. So kann das Reaktandengas serpentinenartig durch den Wärmetauscher geführt werden, um so eine noch bessere Wärmeübertragung im Wärmetauscher zu ermöglichen.
Überdies enthält die End- oder Zwischenplatte (z.B. Bipolar-Platte) vorzugsweise drei Strömungsbereiche und zwar einen Anodenströmungsabschnitt zwischen der End- oder Zwischenplatte und einer benachbarten Anode einer Einzelzelle, einen Rückströmungs-Wärmetauscherabschnitt benachbart des Anodenströmungsab- Schnittes und einen Kathodenströmungsabschnitt zwischen der End- oder Zwischenplatte und einer Kathode einer anderen Einzelzelle.
Gemäss einer besonders bevorzugten Ausführungsform ist die End- oder Zwischenplatte aus zumindest zwei zusammenzufügenden separaten Teilelementen aufgebaut, wobei zwischen den beiden Teilelementen zumindest ein Teil des Wärmetauscherabschnittes gebildet ist und der Wärmetauscherabschnitt strömungsmäßig mit dem später den Kathodenabschnitt bildenden Bereich verbunden ist. Wird zwischen den beiden Teilelementen eine Umlenkplatte angeordnet, so kann ohne weiteres eine serpentinenartig durchgeführte Strömung herbeigeführt werden, wobei die Strömungsrichtung der gasförmigen Reaktanden in den beiden Teilabschnitten gegensinnig zueinander ist.
Um die einzelnen Strömungsbereiche konstruktiv auszubilden, können auf den einzelnen Seiten der End- oder Zwischenplatten sowie zwischen den Teilelementen Abstandselemente, beispielsweise in Form von Noppen, vorgesehen werden, die dann entweder gegeneinander oder gegen die einzelnen Einzelzellen zur Anlage gelangen. Die Noppen können durch Einprägen oder Aufbringen hergestellt werden und in ihrer Form je nach den Bedürfnissen ausgestaltet sein.
Eine einfache Ausführungsform der vorliegenden Erfindung ist nachfolgend und mit Bezug auf die einzige beiliegende Figur näher beschrieben.
Die einzige Figur zeigt einen stark schematisierten Teilausschnitt aus einer Brenn- stoffzelle mit einer ersten Einzelzelle 12, bestehend aus Kathode 40, Elektrolyt 42 und Anode 44, und einer zweiten Einzelzelle 14, bestehend aus Kathode 46, Elektrolyt 48 und Anode 50. Beide Einzelzellen stellen eine nicht näher beschriebene keramische Elektrolyt-Elektroden-Einheit dar, zwischen denen eine Zwischenplatte, hier eine Bipolar-Platte, angeordnet ist. Die Bipolar-Platte dient einerseits zum Ein- bringen der verschiedenen gasförmigen Reaktanden an die jeweiligen Elektrodenseiten (Anode 44, Kathode 46) der jeweiligen Einzelzellen 12, 14 sowie zur Herstellung einer elektrischen Leitfähigkeit.
Die Bipolar-Platte ist vorliegend zweiteilig ausgebildet und zwar aus einer ersten Noppenplatte 20 und einer zweiten Noppenplatte 24, die im wesentlichen gegenüber der Symmetrielinie der vorliegenden Zeichnung spiegelbildlich ausgestaltet ist.
Jede der Noppenplatte 20 und 24 umfasst eine Platte an deren unteren und oberen Oberflächen jeweils eine Vielzahl von Noppen (Bezugsziffern 22 und 26) ausgebil- det sind. Mit diesen Noppen 22, 26 wird einerseits ein Abstand zu den Elektroden (Anode, Kathode) der verschiedenen Einzelzellen 12 und 14 andererseits ein Abstand zwischen den beiden Noppenplatten 20 und 24 selbst hergestellt.
Durch die Ausbildung der Noppen, die vorliegend durch Einprägung in die Platten entstanden sind, entstehen verschiedene Strömungsbereiche in den damit ausgebildeten Freiräumen und zwar zum einen anodenseitig ein erster Strömungsbereich 16 zwischen der Noppenplatte 22 und der Anode der Einzelzelle 12, in dem ein gasförmiger Reaktand, beispielsweise H2, Erdgas oder Benzin-/Dieselreformat, eingebracht wird. Vorliegend ist dies schematisch durch die vierzackigen Sterne in dem Anodenströmungsraum 16 dargestellt. Dabei erfolgt die Durchströmung mit dem gasförmigen Reaktanden in die Bildebene hinein, also senkrecht zum Bild.
Zwischen den beiden Noppenplatten 20 und 24 der Bipolarplatte ist ein Umlenk- blech 36 angeordnet, das die zwischen den beiden Noppenplatten 20 und 24 gebildeten Strömungsräume einerseits voneinander abtrennt und andererseits einen Umlenkbereich 32 schafft, in dem die Strömungsrichtung des zweiten gasförmigen Reaktanden - hier Luft - umgekehrt wird. Die Luft wird in Pfeilrichtung in die Bipolar-Platte eingeführt und bewegt sich zunächst in dem mittels der Noppen herge- stellten Strömungsbereich 30 an der Anode bzw. dem anodenseitigen Strömungsbereich 16 vorbei. Dabei erfolgt eine Wärmeabgabe von der heißen Anodenseite an die zunächst noch auf Raumtemperatur befindliche oder in einer einfachen Anordnung vorgewärmte Luft. Die Luft erwärmt sich somit. Nach dem fast vollständigen Durchströmen über die Länge der Einzelzelle erfolgt am Ende des Umlenkbleches 36 eine Umkehr des Luftstromes, der sodann - ebenfalls in Pfeilrichtung - unterhalb des Umlenkbleches 36 gegensinnig zur oberen Strömungsrichtung die Bipolarplatte nochmals im wesentlichen über ihre Breite durchquert. Dabei wird die Luft wiederum aufgewärmt. Am in der Figur rechten Ende des zweiten Strömungsbereiches 34 erfolgt nochmals eine Umkehr der Strömungsrichtung und zwar hervorgerufen durch einen um 90 Grad umgebogenen Teil des Umlenkbleches 36, so dass die Luft in den Kathodenströmungsraum 18 geführt wird. Hier wird die mittlerweile auf Reaktionstemperatur gebrachte Luft dann der Kathode der Einzelzelle 14 zugeführt und zur Stromerzeugung verwendet.
Mit der vorliegenden Erfindung ist in die Bipolar-Platte somit ein Wärmetauscher eingebaut, der die Wärmetauscherkammern 30 und 34 umfasst. Diese Kammern werden von der Luft durchströmt, bevor der Reaktand dann in den Kathodenströmungsbereich gelangt. Die mit hoher Temperatur betriebene Brennstoffzelle erwärmt die Luft dabei ausreichend auf Reaktionstemperatur, so dass ein separater vorgeschalteter komplexer Wärmetauscher nicht benötigt wird. Damit kann sowohl die Luftströmung gegenüber heutigen Anorderungen reduziert werden. Überdies kann man die gravimetrischen und volumetrischen Leistungsdichten bei gleichzeitiger Verringerung der Herstellungskosten erhöhen. Nicht zuletzt ist es möglich, keramikunverträgliche Thermospannungen zu vermeiden. Schließlich kann der Wir- kungsgrad einer solchen Brennstoffzelle durch Verringerung des parasitären Leistungsbedarfes des Reaktionsluftgebläses über die Möglichkeit einer starken Verringerung des Luftumwälzbedarfes gesenkt werden.

Claims

Brennstoffzelle mit integriertem WärmetauscherPatentansprüche:
1. Brennstoffzelle umfassend zumindest eine Einzelzelle mit einer Elektrolyt- Elektroden-Einheit (12, 14) sowie zumindest einer leitfähigen End- oder
Zwischenplatte (20, 24, 36), über die in zumindest einem Zufuhrbereich (16, 18) ein gasförmiger Reaktand zumindest einer Elektrode der Einzelzelle zuführbar ist, dadurch gekennzeichnet dass die End- oder Zwischenplatte (20, 24, 36) derart ausgebildet ist, dass strömungsmäßig vor einem Zufuhrbereich (18) ein Wärmetauscherbereich ausgebildet ist (30, 34), in dem einer Anodenseite der Einzelzelle Wärme entzogen wird.
2. Brennstoffzelle nach Anspruch 1 , dadurch gekennzeichnet, dass die End- oder Zwischenplatte (20, 24, 36) Luftführungskanäle oder Luftführungsbereiche (30) aufweist, derart, dass der gasförmige Reaktand unmittelbar an den Anodenräumen vorbeiströmt, um anschließend in den Katho- den-Zufuhrraum (18) eingebracht zu werden.
3. Brennstoffzelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die End- oder Zwischenplatte (20, 24, 36) ausgeführt ist, um im Wärmetauscherbereich zumindest eine Strömungsumkehr des gasförmigen Reak- tanden zu erreichen.
4. Brennstoffzelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die End- oder Zwischenplatte (20, 24, 36) zumindest drei Strömungs- abschnitte enthält, nämlich einen Anodenströmungsabschitt (16), zumindest einen Wärmetauscherabschnitt (30, 34) und einen Kathodenströmungsabschnitt (18).
5. Brennstoffzellen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die End- oder Zwischenplatte (20, 24, 36) aus zumindest zwei Teilelementen (20, 24) zusammengesetzt ist, wobei zwischen den zumindest zwei Teilelementen (20, 24) zumindest ein Abschnitt des Wärmetauschers (30, 34) gebildet ist und dieser Abschnitt (30, 34) strömungsmäßig mit dem Ka- thodenabschnitt (18) strömungsmäßig verbunden, von dem Anodenabschnitt
(16) jedoch strömungsmäßig getrennt ist.
6. Brennstoffzellen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den beiden Teilelementen (20, 24) eine Umlenkplatte (36) derart eingebracht ist, dass im Wärmetauscherbereich zwei Strömungs- Teilbereiche (30 und 34) gebildet sind, die nacheinander durchströmt werden und in denen die Strömungsrichtung gegensinnig zueinander ist.
7. Brennstoffzellen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die einzelnen Teilelemente (20, 24) der End- oder Zwischenplatten Abstandselemente (22, 26) umfassen, so dass die einzelnen Teilelemente unter Ausbildung von Strömungsbereichen von der Anode und der Kathode der
Einzelzelle oder der Einzelzellen und/oder voneinander beabstandet sind.
8. Brennstoffzellen nach Anspruch 7, dadurch gekennzeichnet, dass die Abstandelemente (22, 26) in Form von Noppen gewählt sind.
9. Brennstoffzelle nach Anspruch 8, dadurch gekennzeichnet, dass die Noppen durch Einprägen oder Aufbringen hergestellt sind.
10. Brennstoffzelle nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die die Umlenkplatte (36) berührenden stirnseitigen Noppenflächen mit der Umlenkplatte (36) gut elektrische kontaktiert sind.
PCT/EP2002/002276 2001-03-17 2002-03-02 Brennstoffzelle mit integriertem wärmetauscher WO2002075833A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE50204776T DE50204776D1 (de) 2001-03-17 2002-03-02 Brennstoffzelle mit integriertem wärmetauscher
EP02722169A EP1371104B1 (de) 2001-03-17 2002-03-02 Brennstoffzelle mit integriertem wärmetauscher
US10/645,520 US7226682B2 (en) 2001-03-17 2003-08-22 Fuel cell with integrated heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10113002 2001-03-17
DE10113002.3 2001-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/645,520 Continuation US7226682B2 (en) 2001-03-17 2003-08-22 Fuel cell with integrated heat exchanger

Publications (2)

Publication Number Publication Date
WO2002075833A2 true WO2002075833A2 (de) 2002-09-26
WO2002075833A3 WO2002075833A3 (de) 2003-10-09

Family

ID=7677902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/002276 WO2002075833A2 (de) 2001-03-17 2002-03-02 Brennstoffzelle mit integriertem wärmetauscher

Country Status (4)

Country Link
US (1) US7226682B2 (de)
EP (1) EP1371104B1 (de)
DE (1) DE50204776D1 (de)
WO (1) WO2002075833A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378954A2 (de) * 2002-06-24 2004-01-07 Delphi Technologies, Inc. Wärmetauscher mit parallelem Anoden- und Kathoden-Zufluss für eine Festoxidbrennstoffzellenannordnung
EP1416559A2 (de) * 2002-10-28 2004-05-06 Hewlett-Packard Development Company, L.P. Brennstoffzellenstapel mit Wärmeaustauscher
WO2004107486A1 (de) * 2003-05-26 2004-12-09 Siemens Aktiengesellschaft Brennstoffzelle und heizeinrichtung einer brennstoffzelle
DE102004005044A1 (de) * 2004-01-30 2005-09-01 Siemens Ag Hochtemperatur-Brennstoffzellen-Anlage mit HPD-Brennstoffzellen, Verfahren zur Führung von fluiden Betriebsmitteln bei solchen HPD-Brennstoffzellen zwecks Aufheizung der Prozessluft und Herstellungsverfahren für solche HPD-Brennstoffzellen
WO2011026779A3 (de) * 2009-09-03 2011-07-07 Theodor Gräbener GmbH & Co. KG Verfahren zur temperierung von brennstoffzellen- oder elektrolyseurstacks
US8586373B2 (en) 2003-06-20 2013-11-19 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204796A1 (en) * 2005-03-08 2006-09-14 General Electric Company Systems and Methods for Minimizing Temperature Differences and Gradients in Solid Oxide Fuel Cells
KR101451456B1 (ko) 2007-02-27 2014-10-15 케레스 인텔렉츄얼 프로퍼티 컴퍼니 리미티드 유동 후드를 포함하는 연료전지 스택 조립체 및 그 제조 방법
US7923162B2 (en) 2008-03-19 2011-04-12 Dana Canada Corporation Fuel cell assemblies with integrated reactant-conditioning heat exchangers
US20110070507A1 (en) * 2008-05-30 2011-03-24 Longting He Solid Oxide Fuel Cell Systems with Heat Exchanges
US20110117466A1 (en) * 2008-05-30 2011-05-19 Michael Edward Badding Solid Oxide Fuel Cell Systems
JP5499033B2 (ja) 2008-08-21 2014-05-21 セレス インテレクチュアル プロパティー カンパニー リミテッド 空気分配装置を用いた改良型燃料電池スタックの流路フードの気流
WO2010080082A1 (en) 2009-01-09 2010-07-15 Utc Power Corporation Solid oxide fuel system
DE102012206054A1 (de) * 2012-04-13 2013-10-17 Elringklinger Ag Brennstoffzellenvorrichtung und Verfahren zum Betreiben einer Brennstoffzellenvorrichtung
CN105103358B (zh) * 2013-03-29 2017-06-09 日本特殊陶业株式会社 燃料电池
WO2014177336A1 (en) * 2013-05-01 2014-11-06 Haldor Topsøe A/S Solid oxide stack system with thermally matched stack integrated heat exchanger
DE102018201701B3 (de) 2018-02-05 2019-05-23 Audi Ag Brennstoffzellensystem und Kraftfahrzeug mit einem Brennstoffzellensystem

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919584A (en) * 1996-06-20 1999-07-06 Osaka Gas Co., Ltd. Fuel cell
EP1075033A1 (de) * 1999-07-28 2001-02-07 Sulzer Hexis AG Brennstoffzellenbatterie mit einem Stapel von planeren Zellen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068562A (ja) * 1983-09-22 1985-04-19 Mitsubishi Electric Corp 積層形燃料電池
JPH06105625B2 (ja) * 1984-12-21 1994-12-21 株式会社東芝 溶融炭酸塩型燃料電池
JPS61193370A (ja) * 1985-02-20 1986-08-27 Sanyo Electric Co Ltd 燃料電池の温度検出装置
JPS61233978A (ja) * 1985-04-10 1986-10-18 Fuji Electric Co Ltd 空冷形燃料電池
JPS6386270A (ja) * 1986-09-29 1988-04-16 Hitachi Ltd 積層構造型燃料電池
JP2569550B2 (ja) 1987-05-08 1997-01-08 石川島播磨重工業株式会社 燃料電池の温度分布改善方法
JPS63285873A (ja) * 1987-05-19 1988-11-22 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池
CH678775A5 (de) 1990-01-09 1991-10-31 Sulzer Ag
DE59108285D1 (de) * 1990-08-27 1996-11-21 Sulzer Innotec Ag Wärmehaushalt bei Feststoffelektrolyt-Brennstoffzellen
EP0749171B1 (de) 1995-06-13 1999-04-21 Sulzer Hexis AG Hochtemperatur-Brennstoffzelle
JP3483116B2 (ja) 1998-06-15 2004-01-06 松下電器産業株式会社 高分子電解質型燃料電池
DE19945715A1 (de) 1999-09-23 2001-04-05 Emitec Emissionstechnologie Direkt-Methanol-Brennstoffzellenanlage und Betriebsverfahren dazu

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919584A (en) * 1996-06-20 1999-07-06 Osaka Gas Co., Ltd. Fuel cell
EP1075033A1 (de) * 1999-07-28 2001-02-07 Sulzer Hexis AG Brennstoffzellenbatterie mit einem Stapel von planeren Zellen

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 204 (E-337), 21. August 1985 (1985-08-21) & JP 60 068562 A (MITSUBISHI DENKI KK), 19. April 1985 (1985-04-19) *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 347 (E-457), 21. November 1986 (1986-11-21) & JP 61 148768 A (TOSHIBA CORP), 7. Juli 1986 (1986-07-07) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 023 (E-473), 22. Januar 1987 (1987-01-22) & JP 61 193370 A (SANYO ELECTRIC CO LTD), 27. August 1986 (1986-08-27) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 077 (E-487), 7. März 1987 (1987-03-07) & JP 61 233978 A (FUJI ELECTRIC CO LTD), 18. Oktober 1986 (1986-10-18) *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 320 (E-651), 30. August 1988 (1988-08-30) & JP 63 086270 A (HITACHI LTD), 16. April 1988 (1988-04-16) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 114 (E-730), 20. März 1989 (1989-03-20) & JP 63 285873 A (ISHIKAWAJIMA HARIMA HEAVY IND CO LTD), 22. November 1988 (1988-11-22) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378954A2 (de) * 2002-06-24 2004-01-07 Delphi Technologies, Inc. Wärmetauscher mit parallelem Anoden- und Kathoden-Zufluss für eine Festoxidbrennstoffzellenannordnung
EP1378954A3 (de) * 2002-06-24 2007-08-29 Delphi Technologies, Inc. Wärmetauscher mit parallelem Anoden- und Kathoden-Zufluss für eine Festoxidbrennstoffzellenannordnung
EP1416559A2 (de) * 2002-10-28 2004-05-06 Hewlett-Packard Development Company, L.P. Brennstoffzellenstapel mit Wärmeaustauscher
EP1416559A3 (de) * 2002-10-28 2004-08-04 Hewlett-Packard Development Company, L.P. Brennstoffzellenstapel mit Wärmeaustauscher
WO2004107486A1 (de) * 2003-05-26 2004-12-09 Siemens Aktiengesellschaft Brennstoffzelle und heizeinrichtung einer brennstoffzelle
US8617755B2 (en) 2003-05-26 2013-12-31 Siemens Aktiengesellschaft Fuel cell and heating device of a fuel cell
US8586373B2 (en) 2003-06-20 2013-11-19 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
DE102004005044A1 (de) * 2004-01-30 2005-09-01 Siemens Ag Hochtemperatur-Brennstoffzellen-Anlage mit HPD-Brennstoffzellen, Verfahren zur Führung von fluiden Betriebsmitteln bei solchen HPD-Brennstoffzellen zwecks Aufheizung der Prozessluft und Herstellungsverfahren für solche HPD-Brennstoffzellen
WO2011026779A3 (de) * 2009-09-03 2011-07-07 Theodor Gräbener GmbH & Co. KG Verfahren zur temperierung von brennstoffzellen- oder elektrolyseurstacks

Also Published As

Publication number Publication date
US7226682B2 (en) 2007-06-05
DE50204776D1 (de) 2005-12-08
US20050014046A1 (en) 2005-01-20
EP1371104B1 (de) 2005-11-02
EP1371104A2 (de) 2003-12-17
WO2002075833A3 (de) 2003-10-09

Similar Documents

Publication Publication Date Title
EP1371104A2 (de) Brennstoffzelle mit integriertem wärmetauscher
DE10392693B4 (de) Verfahren zur Kühlung einer Brennstoffzelle sowie Brennstoffzelle und Kühlsystem
DE69908811T2 (de) Bipolarplatten-entwurf aus metallblechen für polymerelektrolytmembran-brennstoffzellen
DE112007000054B4 (de) Brennstoffzelle
DE10226962B4 (de) Brennstoffzelle
DE102006017943B4 (de) Brennstoffzellenanordnung mit einer Strömungsverteilungsanordnung
EP1080511B1 (de) Brennstoffzellen-modul
EP2356714B1 (de) Brennstoffzelle ohne bipolarplatten
DE102005038928B4 (de) Brennstoffzelle vom Pakettyp
DE60301189T2 (de) Brennstoffzellenstapel mit beheizten Endplatten
DE102006020097A1 (de) Brennstoffzellensystem und Verfahren zum Betreiben
DE102006009844A1 (de) Bipolarplatte, insbesondere für einen Brennstoffzellenstapel eines Fahrzeugs
WO2010054744A1 (de) Bipolarplatte für eine brennstoffzellenanordnung, insbesondere zur anordnung zwischen zwei benachbarten membran-elektroden-anordnungen in einem brennstoffzellenstapel
EP0704109B1 (de) Hochtemperaturbrennstoffzellenanlage
DE10211354A1 (de) Brennstoffreformer für eine Brennstoffzelle
DE102005031081A1 (de) Bipolarplatte, Verfahren zur Herstellung einer Bipolarplatte und Brennstoffzellenblock-Anordnung
DE10297193T5 (de) Fluidströmungssteuerung für kühlen, effizienten Brennstoffzellenbetrieb
DE10244410A1 (de) Elastomerer Verbinder für eine Zellenspannungsüberwachungseinheit eines Brennstoffzellenstapels
DE69013785T2 (de) Brennstoffzellengenerator.
EP1352439B1 (de) Pem-brennstoffzellenstapel mit kühlmediumverteilerstruktur
DE10023036A1 (de) Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage und zugehörige Brennstoffzellenanlage
DE102019208893B4 (de) Brennstoffzellensystem
EP1336214B1 (de) Brennstoffzellenanordnung
EP1205000A1 (de) Kühlsystem für brennstoffzellen
WO2003090301A2 (de) Elektrodenplatte mit befeuchtungsbereich

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002722169

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10645520

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002722169

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002722169

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP