WO2002070713A2 - Dna-sequenz aus kluyveromyces marxianus mit regulatorischen bereichen zur expression von proteinen - Google Patents

Dna-sequenz aus kluyveromyces marxianus mit regulatorischen bereichen zur expression von proteinen Download PDF

Info

Publication number
WO2002070713A2
WO2002070713A2 PCT/EP2002/000400 EP0200400W WO02070713A2 WO 2002070713 A2 WO2002070713 A2 WO 2002070713A2 EP 0200400 W EP0200400 W EP 0200400W WO 02070713 A2 WO02070713 A2 WO 02070713A2
Authority
WO
WIPO (PCT)
Prior art keywords
promoter
sequence
expression
protein
dna
Prior art date
Application number
PCT/EP2002/000400
Other languages
English (en)
French (fr)
Other versions
WO2002070713A3 (de
Inventor
Leopold DÖHNER
Dietmar Becher
Salah Salim
Rimantas Siekstele
Kestutis Sasnauskas
Original Assignee
Tad Pharma Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tad Pharma Gmbh filed Critical Tad Pharma Gmbh
Priority to CA002436815A priority Critical patent/CA2436815A1/en
Priority to EP02748300A priority patent/EP1354052A2/de
Priority to JP2002570738A priority patent/JP2004519239A/ja
Priority to US10/466,758 priority patent/US20040161841A1/en
Publication of WO2002070713A2 publication Critical patent/WO2002070713A2/de
Publication of WO2002070713A3 publication Critical patent/WO2002070713A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Definitions

  • the invention relates to a DNA sequence which comprises the triose phosphate isomerase gene including its regulatory sequences, a DNA sequence which is active as a promoter, expression and secretion systems containing this sequence, host cells transformed with this DNA, the use of the sequences for in Yeast cells active expression and secretion systems and methods for the production of polypeptides and RNA using such systems.
  • yeasts are also considered, in particular the widespread yeast Saccharomyces cerevisiae, the genome of which is now known and for which some vectors and expression systems are available.
  • K.marxianus can use a variety of carbon and energy sources for growth and is not very temperature sensitive.
  • Kluyveromyces marxianus can grow at temperatures up to 45 ° C and therefore offers advantages in this respect compared to the more temperature-sensitive Saccharomyces strains in breeding.
  • the cells of fast growing K.marxianus btammen can divide every b minutes under optimal conditions.
  • the object of the invention was therefore to provide promoters with improved effectiveness which can control the expression of proteins and peptides in yeast cells. Another task was to provide vectors with which polypeptides and proteins can be expressed and the expressed products can be removed from the cell.
  • the invention therefore relates to the provision of a new DNA sequence, new regulatory elements, a method for removing proteins from the cell and the provision of suitable expression cassettes, plasmids and microorganisms.
  • a DNA with a sequence according to SEQ ID No. 1 or a partial sequence thereof, preferably with at least 10, more preferably at least 100 nucleotides is provided:
  • the DNA sequence according to SEQ ID No. 1 is a nucleic acid sequence that encompasses the regulatory regions and the open reading frame for the enzyme triosephosphate lawn coded. In the range of nucleotides 1 to 1 1 1 2 there are active regulatory regions of this gene as a promoter.
  • triose phosphate isomerase (hereinafter also referred to as TPI) is a glycolytic enzyme that is involved in the breakdown of glucose and fructose, which takes place in cells for energy, and is therefore widespread.
  • the triose phosphate isomerase also serves to isomerize the dihydroxyacetone phosphate formed in the cleavage of fructose-1,6-biphosphate in addition to the glyceraldehyde-3-phosphate to glyceraldehyde-3-phosphate, which is then converted into pyruvate over several stages with energy generation.
  • the enzyme is also involved in the metabolism of complex lipids. It is a homodimer, the subunits of which consist of approximately 250 amino acids.
  • triosephosphate isomerase (EC 5.3.1 .1) from the yeast type Kluyveromyces marxianus var. Marxianus was elucidated by the inventors and the latter is given in SEQ ID No. 1. Sequences of the TPI enzyme in other organisms are known; the sequence for TPI in S.cerevisiae has been elucidated and given the number YDR050CCDS. In a sequence comparison, it was found that the agreement of the DNA sequences encoding TPI in different microorganisms is high with regard to the open reading frame, but low with regard to the regulatory sequences.
  • a further aspect of the invention therefore relates to the provision of a new promoter which has the nucleotides 1 to 1 1 1 2 of SEQ ID No. 1 or parts thereof which are active as a promoter.
  • the promoter according to the invention can be used in a manner known per se in a functional connection with foreign genes.
  • a DNA sequence with nucleotides 1 to 1 1 1 2 of SEQ ID No. 1 is also referred to below as a promoter sequence.
  • a promoter which is active in yeasts and which provides an expression system which is very variable. It is suitable for Kluyveromyces and other types of yeast, among others, and can e.g. for yeast types such as Saccharomyces cerevisiae and Kluyveromyces lactis. Experiments, which are described in the experimental part, have shown that under the control of the promoter according to the invention, a highly effective expression of foreign protein takes place. , ⁇ i
  • the new constitutive promoter provided according to the invention is suitable for the expression of recombinant proteins in yeast cells.
  • a promoter is understood here to mean a DNA sequence from which the transcription of a gene is controlled.
  • the term “part active as promoter” means a partial sequence of the promoter which, in conjunction with an open reading frame, leads to expression of the polypeptide encoded by the reading frame.
  • the promoter which regulates the expression of TPI in K.marxianus also referred to below as the KmTPI promoter, has seven possible transcription start sites. These are designated in the sequence from SEQ ID No. 1 as transcription start # 1 to # 7. It was also found that different microorganisms use different sequence motifs as the starting point for transcription for expression. The performance of the promoter depends, among other things, on which of the transcription start points are available for the expression, and therefore the strength of the promoter can be adjusted by selecting the sequence sections for the microorganism in which the expression is to take place.
  • the KmTPI promoter in Kluyveromyces marxianus acts so strongly that a portion of the promoter DNA with only one transcription start site leads to the expression of a polypeptide.
  • a sequence is preferably used as the promoter which comprises at least five transcription start sites, for example a sequence with at least nucleotides 352 to 1112 of SEQ ID No. 1.
  • the KmTPI promoter provided according to the invention is also functional in Saccharomyces. In order to achieve satisfactory expression, however, it is recommended to use the KmTPI maximal promoter with nucleotides 1 to 1 1 1 2 of SEQ ID No. 1 in organisms of this genus.
  • nucleic acid sequences with promoter activity include those sequences which have arisen by modification, substitution, deletion or insertion or combinations thereof.
  • the promoter sequence can also be provided with further regulatory upstream sequences with enhancer, activator and / or repressor functions.
  • Sequences with promoter activity are those sequences which comprise part of the claimed sequence or a derivative thereof which still acts as a promoter for the expression of proteins
  • sequences are also considered which are associated with the claimed nucleotide sequence or the parts thereof, e.g. of the promoter sequence have a homology of at least 70%, more preferably at least 90% and in particular at least 95%, as long as the respective sequences also have a comparable biological function.
  • the homology is determined in the usual way using the usual algorithms.
  • the invention also includes those sequences which hybridize to the sequences according to the invention under stringent conditions.
  • those nucleic acids which encode polypeptides homologous to TPI are also considered, in particular those with at least 80% homology.
  • the term "homologous polypeptide” includes herein Description A polypeptide that has essentially the same amino acid sequence and essentially the same biological activity as the claimed polypeptide. A homolog can differ from the starting polypeptide in that it has more, fewer or different amino acids, but the function is retained. Those skilled in the art are familiar with methods for producing appropriately modified polypeptides.
  • the promoter according to the invention is provided in a manner known per se, either by isolating the naturally occurring sequence, which is preferred, or by producing the sequence by genetic engineering or synthesizing it chemically. Methods for obtaining or synthesizing are known to the person skilled in the art and do not require any further explanation here. It is only essential that the promoter of the triose phosphate isomerase from K. marxianus, with the nucleotides up to and including 1 1 1 2 from SEQ ID No. 1, or an active part thereof is used.
  • an expression system or an expression cassette which contains the promoter sequence as defined above or a part thereof which is active as a promoter, a terminator and optionally further regulatory sequences such as cer, and has an insertion cloning site.
  • the desired gene to be expressed or the DNA for a foreign protein to be expressed can be inserted into the insertion cloning site and can be transcribed under the control of the promoter according to the invention.
  • the expression cassette according to the invention comprises a promoter sequence or a part thereof which is active as a promoter, an insertion cloning site into which the polynucleotide for the protein to be expressed can be cloned, and a nucleotide sequence which acts as a terminator.
  • Sequences suitable as an insertion cloning site are known to the person skilled in the art and do not require any further explanation here.
  • the sequence which acts as a terminator when expressing TPI can be used as the terminator, for example.
  • the latter comprises nucleotides 1860 to 21 63 of SEQ ID No. 1 or parts thereof active as terminator. Good results have also been achieved when using the terminator region of the endopolygalacturonase gene from Kluyveromyces marxianus.
  • the expression cassette according to the invention can be used in a variety of ways.
  • the insertion cloning site is an interface where the sequence can be cut open and the polynucleotide for the desired protein or peptide can be ligated in.
  • the protein is produced intracellularly during expression and is not removed from the cell. After disruption of the cell, it can then be obtained in a manner known per se.
  • This embodiment is suitable both for small peptides and proteins that are unstable outside the cell and for proteins that are generally located intracellularly.
  • the expression cassettes according to the invention can be used for the expression of DNA sequences in cells, in particular yeast cells.
  • the expression cassettes according to the invention are particularly suitable for expression in yeast cells of the genera Saccharomyces and Kluyveromyces, e.g. S. cerevisieae, K. lactis, K. marxianus and others.
  • the expression cassette according to the invention is suitable both for incorporation into autonomously replicating plasmids and for incorporation into yeast chromosomes via integrative vectors.
  • an expression cassette into which the desired polynucleotide for expressing a peptide or protein has been ligated in an E. coli plasmid and then to obtain the E. coli plasmids, the expression cassette with suitable restriction endonucleases for which Interfaces at the edges of the expression cassette are provided to be cut out and the expression cassette inserted into a yeast vector.
  • the vectors usually contain selection markers in order to be able to select successfully transformed cells in a manner known per se.
  • the plasmids can optionally be propagated in E. coli and then used in Kluyveromyces marxianus or another K / uyveromyces stavn or also another yeast strain.
  • known plasmids based on the Kluyveromyces drosophi / arum-P ⁇ asm ⁇ of pKD1 can be used as the transformation system.
  • Descendants of this plasmid are suitable for use in Kluyveromyces marxianus and, when using the expression system according to the invention, lead to an effective expression of foreign proteins in the corresponding host.
  • the expression cassette including the polynucleotide to be expressed, can be cut out of the plasmids according to the invention, prepared above, and brought into direct contact with yeast cells as linear or circularized DNA as an integration cassette in order to be taken up by them. Stable incorporation into the host cell can then take place via homologous recombination, provided that some of the nucleic acids are homologous to the host cell. Due to homology of parts of the expression cassette, e.g. of the TPI gene or the regulatory sequences thereof, with the genome of the yeast, the DNA is then taken up in a part of the treated cells into the corresponding chromosomes by exchange with the corresponding sequences.
  • the expression cassette according to the invention is stably built into chromosomes and, if the cells are grown under optimal conditions, leads to a good yield of the desired protein.
  • the number of copies of the system can be adjusted depending on the type of protein or peptide to be expressed. If a higher number of copies is desired, sequences of a gene which is present in a larger number of copies in the chromosome set, e.g. for rDNA, ligated to cause a higher number of exchange events.
  • a marker gene can also be incorporated into the sequence so that the successfully transformed cells can be selected. NEN. Methods and markers suitable for this are known to the person skilled in the art and do not require any further explanation here.
  • the expression system according to the invention is suitable for the expression of various heterologous and homologous proteins.
  • the expression of homologous proteins is advantageous when the expression of a protein present in the organism used is to be increased, since the promoter according to the invention can greatly improve the amount of protein produced.
  • the system is preferably used for the expression of hormones, e.g. Growth hormones and growth factors, immunomodulating factors, e.g. Interferons and interleukins, enzymes e.g. Endopolygalacturonase, reporter genes, e.g. EGFP, or antigens, e.g. Surface antigens from viruses, including S antigens from hepatitis B virus or virus protein 1 from polyoma virus. The latter proteins can be used particularly advantageously as vaccines.
  • hormones e.g. Growth hormones and growth factors
  • immunomodulating factors e.g. Interferons and interleukins
  • enzymes e.g. Endopolygalacturonas
  • the expression cassette according to the invention is suitable, inter alia, for yeasts of the strains Kluyveromyces and Saccharomyces and is preferably used in yeast strains of the species Kluyveromyces marxianus var. Marxianus.
  • TPI is an intracellular enzyme and catalyzes metabolic processes that normally take place inside the cell. TPI is therefore usually not expected and not found in the medium surrounding the cell. As is to be expected with an enzyme with an intracellular effect, no signal sequence was therefore found.
  • TPI has now been detected in a special microorganism, namely Kluyveromyces marxianus, in the cell supernatant.
  • signal sequences were searched in the open reading frame, which codes for TPI, but no typical sequences could be found.
  • the present invention takes advantage of the property of the KmTPI enzyme to leave the cell.
  • Peptides and proteins are naturally removed from the cell if they have a signal sequence. During the translation, this signal sequence creates a section which ensures membrane contact and the passage of the protein to be removed. This mechanism is obviously not available at KmTPI, but the special triose phosphate isomerase from K. marxianus has properties that enable the cell membranes to penetrate. In addition, it was found that a fusion-attached peptide or protein is also released from the cell together with the triose phosphate isomerase.
  • KmTPI is not only released from the cell in K. marxianus after expression, but that after transformation of other yeast strains with autonomously replicating plasmids which can express the KmTPI gene, it overexpresses and release of TPI into the culture medium, and that on the other hand it is possible to transfer fusion proteins with TPI, foreign proteins after transcription and translation as fusion proteins into the surrounding cell medium.
  • the invention therefore furthermore relates to a process for removing a foreign protein in the form of a fusion product with triose phosphate isomerase, in which a sequence, the at least regulatory sequences and a fusion DNA which codes for triose phosphate isomerase and the desired peptide or protein, are expressed , the fusion protein formed is isolated and the foreign protein is separated.
  • the fusion product can be both a hybrid molecule, ie consist of a homologous and a heterologous portion, as well as a fusion protein consisting of two, or possibly more, heterologous parts.
  • the TPI part on the foreign protein can be both N-terminal and C-terminal.
  • the TPI part at the N-terminal end of the foreign protein is preferred for the removal from the cell.
  • the fusion product can then be separated in a manner known per se.
  • a DNA sequence coding for a spacer is preferably inserted in a manner known per se between the two DNA sequences coding for the proteins.
  • the spacer between the two parts of the molecule should be large enough to enable easy separation and, in a particularly preferred embodiment, provides an interface for enzymes.
  • triosephosphate isomerase even removes hydrophobic peptides or proteins from cells which cannot be found in the supernatant or can only be found to a small extent when using conventional signal sequences. This has been shown for the surface antigen of hepatitis B, (Hbs), which cannot be removed from the cell with the usual methods.
  • the removal of proteins via the fusion with TPI is therefore particularly suitable for those proteins which, owing to their hydrophobicity or lack of signal peptides, are normally not removed from the cell.
  • a fusion product of KmTPI and the desired foreign protein This can be done in the insertion cloning site of the expression cassette described above, e.g. B. a a fusion protein co- dier polynucleotide with N-terminal or C-terminal TPI.
  • a DNA sequence coding for a linker is preferably provided between the sequences for the two proteins, in order later to facilitate the cleavage of the fusion product.
  • the foreign protein is then carried out of the cell together with it as a fusion product due to the "ability to remove" of KmTPI and can then be obtained in an elegant manner after separation from the cell medium and by cleavage of KmTPI.
  • a signal sequence known per se can also be used to remove an expressed protein. This is ligated between the promoter and the foreign gene to be expressed in a manner known per se.
  • a signal sequence which is homologous to the organism used is preferably used. Particularly good results were achieved with a combination of the promoter of triose phosphate isomerase, or a part thereof which acts as a promoter, and the signal sequence of the endopolygalacturonase gene from Kluyveromyces marxianus.
  • a further improvement in expression and secretion is obtained if the discharging action of TPI is enhanced by the provision of a signal sequence.
  • the embodiment described above in which a DNA sequence encoding a fusion product of KmTPI with the desired foreign protein, can therefore also be used in combination with a known signal sequence, as described in the previous section. This combination is also part of the present invention.
  • an expression and secretion system which, in operative connection, has the promoter sequence defined above or a part thereof active as a promoter, a sequence active as a terminator, and, between these two sequences, a signal sequence.
  • a known sequence is preferably used as the signal sequence. This is the signal sequence of the enzyme endopolygalacturonase (EPG) from K. marxia- nus. The signal sequence of the enzyme EPG from K. marxianus is therefore preferably used.
  • the cultivation is carried out in a manner known per se, either the protein is continuously released into the medium in a continuous process and can be continuously obtained from the fermentation broth or the cells are cultivated, harvested and then the protein extracted in a batch process the broth can be obtained.
  • the system according to the invention is very variable. For example, only the promoter sequence according to the invention defined above or a part thereof active as a promoter together with other nucleic acid sequences which provide further regulatory sequences and are combined with a heterologous nucleotide sequence.
  • the promoter sequence defined according to the invention or a part thereof active as a promoter can be combined with a terminator sequence, for example the one defined above, in order to provide a system which is homologous to Kluyveromyces marxianus and in which the polynucleotide for the protein to be expressed is used , or a system comprising the promoter according to the invention, a signal sequence and a terminator can be combined together with a gene to be expressed, which encodes a desired protein, in order to produce a protein to be released into the culture.
  • the promoter sequence according to the invention or a part thereof active as a promoter can be combined with a terminator sequence and a nucleic acid from KmTPI and the desired foreign gene.
  • the invention further relates to plasmids which contain expression systems according to the invention, in particular plasmids which contain the promoter, the TPI gene and the terminator of TPI from K. marxianus.
  • plasmids which contain the promoter, the TPI gene and the terminator of TPI from K. marxianus.
  • Examples are the plasmids R64, R53, R48 and R1 1 which are explained in more detail in FIGS. 1 to 4.
  • These plasmids are recombinant plasmids and can be used in the present form for amplifying the expression cassettes and for generating the proteins encoded by the ligated DNA in yeasts.
  • the plasmid pD1 which contains the sequence according to SEQ ID No. 1, was in E.coli DH5 ⁇ as the host cell at the German Collection of Microorganisms (DSMZ) on January 4, 2001 with the deposit no. DSM 13973 deposited.
  • a system which allows the promising yeast type Kluyveromyces marxianus to be used as a host due to its exceptional physiological performance.
  • the system according to the invention is suitable for the expression of RNA, peptides, polypeptides, proteins and hybrid molecules including glycosylated proteins.
  • An "expression vector” is a DNA molecule that can be linear or circular and contains a segment that encodes a sequence for a protein or peptide of interest that is operatively linked to regulatory sequences. These regulatory sequences include at least promoter and terminator sequences.
  • the expression vector can additionally contain selectable markers and other regulatory elements and must enable the transfer and multiplication in host cells.
  • the expression vectors can be replicated autonomously or by integration into the host genome.
  • DNA or "polynucleotide” includes polymeric forms of deoxyribonucleotides of any length and any modification in single and double-stranded form.
  • secretion vector denotes an expression vector which, in addition to the expression of a polypeptide, also causes the polypeptide to be discharged in the form of a fusion protein or through the signal sequence.
  • operatively connected means that the individual segments are arranged in such a way that they serve the intended purpose, i.e. can initiate and terminate transcription and can promote expression or enable expression and secretion.
  • the claimed sequences can have further short sequences that do not interfere with the biological activity of the molecule.
  • the claimed sequences also include allelic variants of the sequence, i.e. alternative forms of the gene that were created by mutation.
  • protein or peptide refers to a molecular chain of amino acids with biological activity.
  • polypeptide usually refers to amino acid sequences with up to 200 amino acids, while longer chains are usually referred to as proteins.
  • polypeptide is also intended to include proteins or, conversely, the term proteins is also intended to include polypeptides.
  • the proteins and / or polypeptides can be modified in vivo or in vitro, e.g. through glycosylation and phosphorylation.
  • Foreign DNA is any DNA that is not normally expressed under the control of the TPI promoter.
  • Foreign DNA can include genes, parts of genes, fused genes, cDNA or other DNA sequences, as well as DNA, the polypeptides or proteins or also RNA or encoded anti-sense RNA.
  • Foreign DNA can also be a reporter gene.
  • the foreign DNA can be a naturally occurring, genetically engineered or chemically synthesized sequence or a combination thereof. The nucleotide sequence used and the method of its preparation are not critical.
  • the invention further relates to a method for producing a recombinant protein, which is characterized in that a yeast cell is transformed with an autonomously replicating plasmid which comprises an expression cassette according to the invention and a polynucleotide which encodes a foreign protein, the yeast cell under conditions suitable for the expression of the foreign protein, and the protein wins.
  • the invention also relates to a method for producing a recombinant protein, which is characterized in that an expression cassette according to the invention is placed in a yeast cell, where the expression cassette is incorporated into the genome of the host cell, the cell is grown and the protein is subsequently obtained.
  • the expression cassette according to the invention is particularly preferably used as a module which enables the construction of episomal or integrative expression vectors which contain the regulatory sequences and possibly signal sequences according to the invention.
  • the use of the promoter according to the invention in combination with a sequence for a desired protein and with a terminator leads to the expression of the desired protein, in particular in yeast cells.
  • the expression of the gene EGFP (enhanced green fluorescent protein) under the control of the CMV (cytomegalovirus) promoter was compared with that of the EGFP gene under the control of the TPI promoter , It was found that the expression under the TPI promoter according to the invention effects about 50 times the expression of the CMV promoter, which shows that the promoter according to the invention leads to an increase in the expression of foreign proteins.
  • EGFP enhanced green fluorescent protein
  • CMV cytomegalovirus
  • Fig. 1. is a schematic representation of an expression cassette (R64) according to the invention, in which a functional part of the Km-TPI maximum promoter (position 21 to 1 1 1 5 corresponding to SEQ ID No. 1), the reading frame of the EGFP gene and a functional part of the Km- TPI terminators (positions 1860 to 21 27 according to SEQ ID No. 1) are operatively connected to one another.
  • Fig. 2 the expression cassette R53 according to the invention, in which a functional part of the Km-TPl maximum promoter (position 21 to 1115 corresponding to SEQ ID No. 1), the reading frame of the hepatitis B virus S antigen and a functional part of the Km-TPI terminator (positions 1860 to 21 27 according to SEQ ID No. 1) are operatively connected to one another.
  • Fig. 3 the expression cassette R48 according to the invention, in which a functional part of the Km-TPl maximum promoter (position 21 to 1 1 1 5 corresponding to SEQ ID No. 1), the reading frame of the hepatitis B virus S antigen, the reading frame for triose phosphate isomerase without start methionine (position 1 1 1 6 to 1859 according to SEQ ID No. 1) and a functional part of the Km-TPI terminator (positions 1860 to 2127 according to SEQ ID No. 1) are operatively linked.
  • a functional part of the Km-TPl maximum promoter position 21 to 1 1 1 5 corresponding to SEQ ID No. 1
  • the reading frame of the hepatitis B virus S antigen the reading frame for triose phosphate isomerase without start methionine
  • a functional part of the Km-TPI terminator positions 1860 to 2127 according to SEQ ID No. 1
  • Fig. 4 the expression cassette R1 1 according to the invention, in which a functional part of the Km-TPl maximum promoter (position 21 to 1 1 12 according to SEQ ID No. 1), the reading frame for triose phosphate isomerase (position 1 1 13 to 1856 according to SEQ ID No. 1) the reading frame of the hepatitis B virus S antigen, and a functional part of the Km-TPI terminator (positions 1857 to 2037 according to SEQ ID No. 1) are operatively linked.
  • 5 shows the comparison of the expression of the TPI gene in the K. marxianus parent strain and after transformation with the plasmid pKmarTI, which consists of the sequence corresponding to SEQ ID No. 1 ' and the K.
  • a DNA fragment is amplified by PCR using the primers P23 and P36, which consists of the promoter, coding region and terminator of the KmTPI gene and is limited at the ends by artificial restriction enzyme recognition sites for Mlu ⁇
  • This fragment is cloned into the Mlu ⁇ Site of the plasmid pSL1 180.
  • a restriction recognition site for the restriction enzyme Acl (AACGTT).
  • PCR introduces a silent mutation that destroys the Acl site, but does not change the amino acid valine encoded by GTT (AACGTT to AACGTC).
  • a site for Acl ⁇ can now be generated by PCR immediately before the start codon, since this is where the nucleotide sequence AAC ATG (AACgtt ATG) is located.
  • AACgtt ATG nucleotide sequence AAC ATG
  • GTC TAA stop codon of the TPI coding region
  • acGTt TAA aacGTt TAA
  • the cassettes can be installed in a known manner via M / u ⁇ in corresponding integrative or autonomously replicating vectors and introduced into recipient cells with these.
  • Expression units can also be generated on the basis of the regulatory sequences of the KmTPI generally by overlapping PCR reactions using hybrid primers, without Acft interfaces having to be generated in the sequence. Appropriate techniques and PCR regimes are known to the person skilled in the art. The system described in Example 1 is therefore not to be seen exclusively, but only as an example.
  • Example 3
  • R64, R 53, R48 and R1 1 have been generated by PCR techniques. These cassettes are characterized in more detail by schemes and restriction maps in FIGS. 1 to 4.
  • the cassette contains the KmTPI maximal promoter with nucleotides 21 to 1 1 15 of SEQ ID No. 1, the EGFP reading frame and the KmTPI terminator with nucleotides 1860 to 21 27 according to SEQ ID No. 1 (TPIpr-MetEGFP- TPItr).
  • the cassette contains the KmTPI maximal promoter with nucleotides 21 to 1 1 1 5 of SEQ ID No. 1 (including Met), the reading frame for hepatitis B virus S antigen and the KmTPI terminator with nucleotides 1860 to 21 27 accordingly Sequence SEQ ID No. 1 (TPIpr-HBS-TPItr)
  • the cassette contains the KmTPI maximal promoter with nucleotides 21 to 1 1 1 5 of SEQ ID No. 1 (including Met), the reading frame for hepatitis B virus S antigen at whose C-terminus the reading frame for TPI without methionine is fused and the KmTPI terminator with nucleotides 1860 to 2127 according to sequence SEQ ID NO.1 (TPIpr-HBS-TPI-TPItr).
  • Plasmid R1 1 ( Figure 4)
  • the cassette contains the KmTPI maximal promoter and the entire reading frame for KmTPI at whose C-terminus is fused with methionine starting with the reading frame for hepatitis B virus S antigen. This ends with its own stop codon (UAG).
  • the functional part of the KmTPI terminator used here overlaps with the stop codon of the HBs sequence (TAA ATT AA ATT AGG) and begins with the stop codon UAA at position 1857 in accordance with SEQ ID No. 1. It only comprises 180 base pairs.
  • This cassette was clipped over blunt ends in the Sma ⁇ site of corresponding plasmids (TPIpr-TPI-HBS-TPItr).
  • This international depository accepts the microorganism referred to under I, which it received on 2 001 - 0 1 - 04 (date of first deposit) '.
  • microorganism referred to under I was received by this international depository on (date of first deposit) and an application for the conversion of this first deposit into a deposit under the Budapest Treaty was received on (date of receipt of the request for conversion).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Es werden eine DNA-Sequenz die ds Triosephosphatisomerasegen einschließlich seiner regulatorischen Sequenzan umfaßt, eine DNA-Sequenz, die als Promotor aktiv ist, diese Sequenz enthaltende Expressions- und Sekretions-Systeme und deren Verwendung und Verfahren zur Herstellung von Proteinen beschrieben.

Description

DNA-Sequenz mit regulatorischen Bereichen zur Expression von Proteinen
B e s c h r e i b u n g
Die Erfindung betrifft eine DNA-Sequenz, die das Triosephosphatisomerasegen einschließlich seiner regulatorischen Sequenzen umfaßt, eine DNA-Sequenz, die als Promotor aktiv ist, diese Sequenz enthaltende Expressions- und Sekretions-Systeme, mit dieser DNA transformierte Wirtszellen, die Verwendung der Sequenzen für in Hefezellen aktive Expression- und Sekretionssysteme sowie Verfahren zur Herstellung von Polypeptiden und RNA mit Hilfe solcher Systeme.
Zur gentechnischen Herstellung von Proteinen stehen verschiedene Systeme zur Verfügung, z. B. rekombinante Mikroorganismen, die Expressionsplasmide tragen, bei denen unter der Kontrolle von regulatorischen Sequenzen die Expression von Fremdgenen gesteuert wird. Häufig werden Bakteriensysteme verwendet, da sie leicht zu vermehren sind. Sie haben aber den Nachteil, dass sie pyrogene Substanzen erzeugen, die bei der Gewinnung von Medikamenten oder Impfstoffen vor der Verwendung entfernt werden müssen. Außerdem können in Bakterien keine glykosylierten Poly- peptide hergestellt werden. Es wurden daher auch eine Reihe anderer Systeme für die Expression von Polypeptiden oder Proteinen in eukaryontischen Zellen entwickelt. Außer Zellkulturen werden hierfür Hefen inbetracht gezogen, insbesondere die weitverbreitete Hefe Saccharomyces cerevisiae, deren Genom inzwischen bekannt ist und für die einige Vektoren und Expressionssysteme erhältlich sind.
Eine weitere Hefe-Gattung, die aufgrund günstiger Eigenschaften für biotechnologische Verfahren inbetracht gezogen wird, ist Kluyveromyces. Die Arten K.lactis und K. marxianus werden als GRAS {Generally Recognized As Save) eingestuft und können daher mit derselben Sicherheit wie Saccharomyces verwendet werden. Darüberhinaus kann K.marxianus eine Vielzahl von Kohlenstoffquellen und Energiequellen für das Wachstum nutzen und ist nicht sehr temperaturempfindlich. Kluyveromyces marxianus kann bei Temperaturen bis zu 45 °C wachsen und bietet daher in dieser Hinsicht gegenüber den temperaturempfindlicheren Saccharomyces- Stämmen Vorteile bei der Züchtung. Die Zellen von schnell wachsenden K.marxianus- btammen können sicn bei optimalen Bedingungen alle b Minuten teilen. Allerdings konnten diese guten Eigenschaften bisher nicht optimal ausgenutzt werden, da für diese Hefeart kaum Expressionssysteme zur Verfügung stehen, mit denen Proteine in guter Effektivität hergestellt werden können, und es an klonierten und zuverlässigen, getesteten, expressionsstarken Promotoren mangelt.
Bei der Herstellung von Proteinen und Polypeptiden auf gentechnischem Weg ist es darüberhinaus wünschenswert, dass die entstehenden Produkte nicht in der Zelle verbleiben, sondern in das umgebende Medium ausgeschieden werden, da sie sich dann leichter gewinnen lassen.
Aufgabe der Erfindung war es daher, Promotoren mit verbesserter Effektivität bereitzustellen, die die Expression von Proteinen und Peptiden in Hefezellen steuern können. Eine weitere Aufgabe war es, Vektoren zur Verfügung zu stellen, mit denen Po- lypeptide und Proteine exprimiert und die exprimierten Produkte aus der Zelle ausgeschleust werden können.
Diese Aufgaben Werden mit den erfindungsgemäß bereitgestellten DNA-Sequenzen, Expressionskassetten und -Vektoren, Plasmiden und Verfahren, die in den Ansprüchen definiert sind, gelöst.
Gegenstand der Erfindung ist daher die Bereitstellung einer neuen DNA-Sequenz, neuer regulatorischer Elemente, eines Verfahrens zum Ausschleusen von Proteinen aus der Zelle sowie die Bereitstellung geeigneter Expressionskassetten, Plasmide und Mikroorganismen.
Gemäß einem ersten Aspekt der Erfindung werden eine DNA mit einer Sequenz gemäß SEQ ID Nr. 1 oder einer Teilsequenz davon, bevorzugt mit mindestens 10, bevorzugter mindestens 100 Nucleotiden zur Verfügung gestellt:
Die DNA-Sequenz gemäß SEQ ID Nr. 1 ist eine Nucleinsäuresequenz, die die regulatorischen Regionen und den offenen Leserahmen für das Enzym Triosephosphatisome- rase codiert. Im Bereich der Nucleotide 1 bis 1 1 1 2 finden sich als Promotor aktive regulatorische Regionen dieses Gens.
Das Enzym Triosephosphatisomerase (im Folgenden auch als TPI bezeichnet) ist ein glycolytisches Enzym, das an dem Abbau von Glucose und Fructose, der zur Energiegewinnung in Zellen stattfindet, beteiligt und daher weit verbreitet ist. Die Triosephosphatisomerase dient dazu, das bei der Spaltung von Fructose-1 ,6-biphosphat neben dem Glycerinaldehyd-3-phosphat entstehende Dihydroxyacetonphosphat ebenfalls zu Glycerinaldehyd-3-phosphat zu isomerisieren, das dann schließlich über mehrere Stufen unter Energiegewinnung in Pyruvat umgewandelt wird. Das Enzym ist auch am Metabolismus komplexer Lipide beteiligt. Es ist ein Homodimer, dessen Untereinheiten aus etwa 250 Aminosäuren bestehen.
Die Aminosäure- und Nucleotidsequenz des Enzyms Triosephosphatisomerase (EC 5.3.1 .1 ) aus der Hefeart Kluyveromyces marxianus var. marxianus wurde von den Erfindern aufgeklärt und letztere ist in SEQ ID Nr. 1 angegeben. Sequenzen des Enzyms TPI in anderen Organismen sind bekannt; die Sequenz für TPI in S.cerevisiae wurde aufgeklärt und mit der Nummer YDR050CCDS bezeichnet. Bei einem Sequenzvergleich wurde gefunden, dass die Übereinstimmung der TPI codierenden DNA- Sequenzen in verschiedenen Mikroorganismen im Hinblick auf den offenen Leserahmen hoch ist, im Hinblick auf die regulatorischen Sequenzen jedoch gering.
Bei der Untersuchung der Expression dieses Enzyms in dem speziellen Organismus K. marxianus wurde gefunden, dass der die Expression von TPI steuernde Promotor ein sehr starker Promotor ist und sowohl in funktioneller Verbindung mit Fremdproteinen als auch in Zellen von anderen Hefearten und -stammen effizient ist.
Ein weiterer Aspekt der Erfindung betrifft daher die Bereitstellung eines neuen Promotors, der die Nucleotide 1 bis 1 1 1 2 von SEQ ID Nr. 1 oder Teile davon, die als Promotor aktiv sind, aufweist. Der erfindungsgemäße Promotor kann in an sich bekannter Weise in funktioneller Verbindung mit Fremdgenen eingesetzt werden. Eine DNA-Sequenz mit den Nucleotiden 1 bis 1 1 1 2 von SEQ ID Nr. 1 wird im folgenden auch als Promotor-Sequenz bezeichnet.
Erfindungsgemäß wird ein Promoter zur Verfügung gestellt, der in Hefen aktiv ist und ein Expressionssystem liefert, das sehr variabel ist. Es ist unter anderem für Kluyveromyces und andere Hefearten geeignet und kann z.B. für Hefearten wie Saccharomyces cerevisiae und Kluyveromyces lactis eingesetzt werden. Versuche, die im experimentellen Teil beschrieben werden, haben gezeigt, dass unter der Kontrolle des erfindungsgemäßen Promotors eine hocheffektive Expression von Fremdprotein erfolgt. , ι i Der neue erfindungsgemäß bereitgestellte konstitutive Promotor ist für die Expression von rekombinanten Proteinen in Hefezellen geeignet. Unter Promotor wird hier eine DNA-Sequenz verstanden, von der aus die Transkription eines Genes gesteuert wird. Die Bezeichnung "als Promotor aktiver Teil" bedeutet eine Teilsequenz des Promotors, die in Verbindung mit einem offenen Leserahmen zur Expression des von dem Leserahmen codierten Polypeptids führt.
Es wurde festgestellt, dass der Promotor, der in K.marxianus die Expression von TPI reguliert, im Folgenden auch als KmTPI-Promotor bezeichnet, sieben mögliche Transkriptionsstartstellen aufweist. Diese sind in der Sequenz von SEQ ID Nr. 1 als Transkriptionsstart #1 bis #7 bezeichnet. Es wurde auch gefunden, dass zur Expression verschiedene Mikroorganismen verschiedene Sequenzmotive als Transkriptionsstartpunkt nutzen. Die Leistung des Promotors hängt unter anderem davon ab, welche der Transkriptionsstartpunkte bei der Expression verfügbar sind und daher läßt sich die Stärke des Promotors durch Auswahl der Sequenzteilstücke jeweils maßgenau für den Mikroorganismus, in dem die Expression erfolgen soll, einstellen.
Zum Beispiel wirkt der KmTPI-Promotor in Kluyveromyces marxianus so stark, dass schon ein Teilbereich der Promotor-DNA mit nur einer Transkriptionsstartstelle zur Expression eines Polypeptides führt. In anderen Kluyveromyces- Arten, wie z.B. K. lactis, ist es vorteilhaft, wenn mindestens drei, bevorzugter mindestens fünf Tran- skriptionsstartpunkte in der Sequenz enthalten sind. Daher wird für die Expression in Kluyveromyces- Arten, wie K. lactis bevorzugt als Promotor eine Sequenz verwendet, die mindestens fünf Transkriptionsstartstellen umfasst, z.B. eine Sequenz mindestens mit den Nukleotiden 352 bis 1 1 12 von SEQ ID Nr. 1 .
Der erfindungsgemäß bereitgestellte KmTPI-Promotor ist auch in Saccharomyces funktioneil. Um eine zufriedenstellende Expression zu erreichen, wird allerdings empfohlen, in Organismen dieser Gattung den KmTPI-Maximalpromotor mit den Nucleoti- den 1 bis 1 1 1 2 von SEQ ID Nr. 1 zu verwenden.
Die beschriebenen Nucleinsäuresequenzen mit Promotor-Aktivität schließen solche Sequenzen ein, die durch Modifikation, Substitution, Deletion oder Insertion oder Kombinationen hiervon entstanden sind. Hierzu kann auch die Promotor-Sequenz mit weiteren regulatorischen Upstream-Sequenzen mit Enhancer-, Aktivator- und/oder Repressorfunktionen versehen sein. Als Sequenz mit Promotor-Aktivität werden solche Sequenzen angesehen, die einen Teil der beanspruchten Sequenz oder ein Derivat davon umfassen, das noch als Promotor für die Expression von Proteinen wirkt
Erfindungsgemäß werden weiterhin auch solche Sequenzen inbetracht gezogen, die mit der beanspruchten Nucleotidsequenz bzw. den beanspruchten Teilen davon, z.B. der Promotorsequenz, eine Homologie von mindestens 70%, bevorzugter mindestens 90% und insbesondere mindestens 95% aufweisen, solange die jeweiligen Sequenzen auch eine vergleichbare biologische Funktion haben. Für die Zwecke der vorliegenden Erfindung wird die Homologie dabei in üblicher Weise unter Verwendung der üblichen Algorithmen bestimmt. Teil der Erfindung sind auch solche Sequenzen, die unter stringenten Bedingungen mit den erfindungsgemäßen Sequenzen hybridisieren.
Erfindungsgemäß werden darüberhinaus auch solche Nucleinsäuren inbetracht gezogen, die zu TPI homologe Polypeptide codieren, insbesondere solche mit mindestens 80% Homologie. Der Ausdruck "homologes Polypeptid" umfasst in der vorliegenden Beschreibung ein Polypeptid, das im wesentlichen die gleiche Aminosäuresequenz und im wesentlichen die gleiche biologische Aktivität aufweist, wie das beanspruchte Polypeptid. Ein Homolog kann sich von dem Ausgangspolypeptid dadurch unterscheiden, dass es mehr, weniger oder andere Aminosäuren aufweist, wobei die Funktion aber erhalten bleibt. Der Fachmann kennt Verfahren, um entsprechend modifizierte Polypeptide zu erzeugen.
Die Bereitstellung des erfindungsgemäßen Promotors erfolgt in an sich bekannter Weise, indem entweder die natürlich vorkommende Sequenz isoliert wird, was bevorzugt ist, oder die Sequenz gentechnisch hergestellt oder chemisch synthetisiert wird. Verfahren zur Gewinnung oder Synthese sind dem Fachmann bekannt und bedürfen hier keiner näheren Erläuterung. Wesentlich ist nur, dass der Promotor der Triosephosphatisomerase aus K. marxianus, mit den Nucleotiden bis einschließlich 1 1 1 2 von SEQ ID Nr. 1 , oder ein aktiver Teil davon verwendet wird.
Um die Verwendung des erfindungsgemäßen Promotors zu erleichtern, wird weiterhin ein Expressionssystem bzw. eine Expressionskassette zur Verfügung gestellt, die die Promotor-Sequenz, wie oben definiert, oder einen als Promotor aktiven Teil davon, einen Terminator und gegebenenfalls weitere regulatorische Sequenzen, wie Enhan- cer, und einen Insertionsklonierungsort aufweist. In den Insertionsklonierungsort kann das gewünschte zu exprimierende Gen oder die DNA für ein zu exprimierendes Fremdprotein eingesetzt werden, die unter der Kontrolle des erfindungsgemäßen Promotors transkribiert werden kann.
Die erfindungsgemäße Expressionskassette umfaßt in ihrer einfachsten Form eine Promotorsequenz oder einen als Promotor aktiven Teil davon, einen Insertionsklonierungsort, in den das Polynucleotid für das zu exprimierende Protein einkloniert werden kann, und eine als Terminator wirksame Nucleotidsequenz. Als Insertionsklonierungsort geeignete Sequenzen sind dem Fachmann bekannt und bedürfen hier keiner näheren Erläuterung. Als Terminator kann z.B. die bei der Expression von TPI als Terminator wirkende Sequenz verwendet werden. Letzere umfasst die Nucleotide 1860 bis 21 63 von SEQ ID Nr. 1 oder als Terminator aktive Teile davon. Gute Ergebnisse wurden auch erzielt bei Verwendung der Terminatorregion des Endopolygalacturonase- gens aus Kluyveromyces marxianus.
Die erfindungsgemäße Expressionskassette kann vielfältig verwendet werden. Der Insertionsklonierungsort ist eine Schnittstelle, an der die Sequenz aufgeschnitten werden kann und das Polynucleotid für das gewünschte Protein oder Peptid einligiert werden kann. In dieser einfachsten Form wird bei der Expression das Protein intrazellulär produziert und nicht aus der Zelle ausgeschleust. Es kann dann nach Aufschluß der Zelle in an sich bekannter Weise gewonnen werden. Diese Ausführungsform eignet sich sowohl für kleine Peptide und Proteine, die außerhalb der Zelle instabil sind als auch für Proteine, die generell intrazellulär lokalisiert sind.
Die erfindungsgemäßen Expressionskassetten können zur Expression von DNA- Sequenzen in Zellen, insbesondere Hefezellen, verwendet werden. Besonders geeignet sind die erfindungsgemäßen Expressionskassetten zur Expression in Hefezellen der Gattungen Saccharomyces und Kluyveromyces, z.B. S. cerevisieae, K. lactis, K. marxianus und andere.
Die erfindungsgemäße Expressionskassette eignet sich sowohl zum Einbau in sich autonom replizierende Plasmide als auch zum Einbau in Hefechromosomen über inte- grative Vektoren.
Es ist jedoch bevorzugt, eine Expressionskassette, in die das gewünschte Polynucleotid zur Expression eines Peptids oder Proteins einligiert wurde, in einem E.coli-Plasmid zu amplifizieren und dann die E.coli-Plasmide zu gewinnen, die Expressionskassette mit geeigneten Restriktionsendonucleasen, für die Schnittstellen an den Rändern der Expressionskassette vorgesehen sind, auszuschneiden und die Expressionskassette in einen Hefevektor einzuligieren. Die Vektoren enthalten üblicherweise Selek- tionsmarker, um erfolgreich transformierte Zellen in an sich bekannter Weise selektieren zu können. Die Plasmide können gegebenenfalls in E. coli vermehrt und dann in Kluyveromyces marxianus oder einen anderen K/uyveromyces-Stavn oder auch einen anderen Hefestamm eingesetzt werden. Als Transformationssystem können beispielsweise bekannte Plasmide auf Basis des Kluyveromyces drosophi/arum-P\asm\des pKD1 verwendet werden. Abkömmlinge dieses Plasmids eignen sich zur Verwendung in Kluyveromyces marxianus und führen bei Verwendung des erfindungsgemäßen Expressionssystems zu einer effektiven Expression von Fremdproteinen im entsprechenden Wirt.
In einer anderen Ausführungsform kann aus den erfindungsgemäßen, wie oben vorbereiteten Plasmiden die Expressionskassette einschließlich des zu exprimierenden Po- lynucleotids herausgeschnitten und als lineare oder zirkularisierte DNA als Integrationskassette direkt mit Hefezellen in Kontakt gebracht werden, um von diesen aufgenommen zu werden. Ein stabiler Einbau in die Wirtszelle kann dann über homologe Rekombination erfolgen, sofern ein Teil der Nucleinsäuren für die Wirtszelle homolog ist. Aufgrund einer Homologie von Teilen der Expressionskassette, z.B. des TPI-Gens oder der regulatorischen Sequenzen davon, mit dem Genom der Hefe wird dann in einem Teil der behandelten Zellen die DNA in die entsprechenden Chromosomen durch Austausch mit den entsprechenden Sequenzen aufgenommen.
Die erfindungsgemäße Expressionskassette wird stabil in Chromosomen eingebaut und führt, wenn die Zellen unter optimalen Bedingungen gezüchtet werden, zu einer guten Ausbeute des gewünschten Proteins. Abhängig von der Art des zu exprimierenden Proteins oder Peptids kann die Kopienzahl des Systems eingestellt werden. Falls eine höhere Kopienzahl erwünscht ist, werden in an sich bekannter Weise an die Enden der Expressionskassette Sequenzen eines in größerer Kopienzahl in dem Chromosomensatz vorliegenden Gens, z.B. für rDNA, anligiert, um eine höhere Anzahl an Austauschereignissen zu bewirken.
In an sich bekannter Weise kann zusätzlich noch ein Markergen in die Sequenz miteingebaut werden, damit die erfolgreich transformierten Zellen selektiert werden kön- nen. Verfahren und hierzu geeignete Marker sind dem Fachmann bekannt und bedürfen hier keiner näheren Erläuterung.
Das erfindungsgemäße Expressionssystem ist geeignet zur Expression verschiedener heterologer und homologer Proteine. Vorteilhaft ist die Expression homologer Proteine dann, wenn die Expression eines in dem verwendeten Organismus vorhandenen Proteins verstärkt werden soll, da der erfindungsgemäße Promotor die Menge an produziertem Protein stark verbessern kann. Bevorzugt wird das System verwendet zur Expression von Hormonen, z.B. Wachstumshormonen und Wachstumsfaktoren, immunmodulierenden Faktoren, z.B. Interferonen und Interleukinen, Enzymen, z.B. Endopolygalacturonase, Reportergenen, z.B. EGFP, oder Antigenen, z.B. Oberflächen- antigenen von Viren, unter anderem S-Antigene von Hepatitis-B-Virus oder Virusprotein 1 aus Polyoma-Virus. Letztere Proteine können besonders vorteilhaft als Impfstoffe eingesetzt werden.
Die erfindungsgemäße Expressionskassette ist unter anderem für Hefen der Stämme Kluyveromyces und Saccharomyces geeignet und wird bevorzugt in Hefestämmen der Art Kluyveromyces marxianus var. marxianus verwendet.
TPI ist ein intrazellulär wirkendes Enzym und katalysiert Stoffwechselvorgänge, die normalerweise innerhalb der Zelle ablaufen. TPI wird daher üblicherweise nicht in dem die Zelle umgebenden Medium erwartet und auch nicht gefunden. Wie nicht anders bei einem Enzym mit intrazellulärer Wirkung zu erwarten, wurde daher auch keine Signalsequenz gefunden.
Überraschenderweise wurde nun bei einem speziellen Mikroorganismus, nämlich Kluyveromyces marxianus, TPI im Zellüberstand nachgewiesen. Daraufhin wurde im offenen Leserahmen, der TPI codiert, nach Signalsequenzen gesucht, es konnten aber keine typischen Sequenzen gefunden werden. Die Ausschleusung dieses Enzyms, das im folgenden auch als KmTPI bezeichnet wird, scheint daher auf anderen, Golgi- unabhängigen Mechanismen zu beruhen. Die Eigenschaft des Enzyms KmTPI, die Zelle zu verlassen, macht sich die vorliegende Erfindung zunutze.
Natürlicherweise werden Peptide und Proteine dann aus der Zelle ausgeschleust, wenn sie über eine Signalsequenz verfügen. Diese Signalsequenz erzeugt bei der Translation einen Abschnitt, der für den Membranenkontakt und den Durchtritt des auszuschleusenden Proteins sorgt. Dieser Mechanismus liegt bei KmTPI aber offensichtlich nicht vor, sondern die spezielle Triosephosphatisomerase aus K. marxianus weist Eigenschaften auf, die ein Durchdringen der Zellmembranen ermöglichen. Darüberhinaus wurde festgestellt, dass auch ein durch Fusion angehängtes Peptid oder Protein zusammen mit der Triosephosphatisomerase aus der Zelle ausgebracht wird.
Die Erfinder der vorliegenden Erfindung haben festgestellt, dass einerseits KmTPI nicht nur in K. marxianus nach der Expression aus der Zelle ausgeschleust wird, sondern dass es nach Transformation von anderen Hefestämmen mit autonom replizierenden Plasmiden, die das KmTPI-Gen exprimieren können, zu einer Überexpression und Ausschüttung von TPI in das Kulturmedium kommt, und dass es andererseits möglich ist, durch Bildung von Fusionsproteinen mit TPI, Fremdproteine nach der Transkription und Translation als Fusionsproteine in das umgebende Zellmedium auszuschleusen.
Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zum Ausschleusen eines Fremdproteins in Form eines Fusionsproduktes mit Triosephosphatisomerase, bei dem man eine Sequenz, die mindestens regulatorische Sequenzen und eine Fusions- DNA, die für Triosephosphatisomerase und das gewünschte Peptid oder Protein codiert, zur Expression bringt, das gebildete Fusionsprotein isoliert und das Fremdprotein abtrennt.
Auf diese Weise ist es möglich, ein Fusionsprodukt im Zellüberstand zu erhalten. Das Fusionsprodukt kann sowohl ein Hybridmolekül sein, d.h. aus einem homologen und einem heterologen Anteil bestehen, als auch ein Fusionsprotein sein, das aus zwei, oder gegebenenfalls mehr, heterologen Teilen besteht. Bei dem Fusionsprotein kann der TPI-Teil an dem Fremdprotein sowohl N-terminal als auch C-terminal vorhanden sein. Für die Ausschleusung aus der Zelle ist der TPI-Teil am N-terminalen Ende des Fremdproteins bevorzugt. Das Fusionsprodukt kann anschließend in an sich bekannter Weise getrennt werden.
Um die Trennung des Fusions Produktes zu erleichtern, wird bevorzugt zwischen die beiden die Proteine codierenden DNA-Sequenzen noch eine DNA-Sequenz, die einen Abstandshalter codiert, in an sich bekannter Weise eingefügt. Der Abstandshalter zwischen beiden Molekülteilen sollte groß genug sein, um ein leichtes Auftrennen zu ermöglichen und stellt in einer besonders bevorzugten Ausführungsform eine Schnittstelle für Enzyme bereit.
Es wurde überraschenderweise festgestellt, dass durch Ankopplung an Triosephosphatisomerase sogar hydrophobe Peptide oder Proteine aus Zellen ausgeschleust werden, die bei Verwendung üblicher Signalsequenzen nicht oder nur in geringem Maße im Überstand zu finden sind. Dies wurde gezeigt für das Oberflächenantigen von Hepatitis B, (Hbs), das mit den üblichen Verfahren nicht aus der Zelle ausgebracht werden kann.
Das Ausschleusen von Proteinen über die Fusion mit TPI ist daher besonders geeignet für solche Proteine, die aufgrund ihrer Hydrophobizität oder fehlender Signalpeptide normalerweise nicht aus der Zelle ausgeschleust werden.
Im experimentellen Teil werden Expressionsversuche gezeigt, die bei Verwendung dieser erfindungsgemäßen Kombinationen zu hohen Ausbeuten führen.
Wenn es erwünscht ist, ein Polypeptid oder Protein nach der Expression aus der Zelle auszuschleusen, wird dies daher bewirkt, indem ein Fusionsprodukt aus KmTPI und dem gewünschten Fremdprotein erzeugt wird. Dazu kann in den Insertionsklonierungsort der oben beschriebenen Expressionskassette z. B. ein ein Fusionsprotein co- dierendes Polynucleotid mit N-terminaler oder C-terminaler TPI, einligiert werden. Bevorzugt wird zwischen den Sequenzen für die beiden Proteine noch eine einen Linker codierende DNA-Sequenz vorgesehen, um später die Spaltung des Fusionsproduktes zu erleichtern. Das Fremdprotein wird dann nach der Expression aufgrund der "Ausschleusungsfähigkeit" von KmTPI zusammen mit diesem als Fusionsprodukt aus der Zelle ausgetragen und kann dann nach Abtrennung aus dem Zellmedium und durch Abspaltung von KmTPI in eleganter Weise gewonnen werden.
Natürlich kann zum Ausschleusen eines exprimierten Proteins auch eine an sich bekannte Signalsequenz eingesetzt werden. Diese wird zwischen den Promotor und das zu exprimierende Fremdgen in an sich bekannter Weise einligiert. Bevorzugt wird als Signalsequenz eine solche, die für den verwendeten Organismus homolog ist, verwendet. Besonders gute Ergebnisse wurden erzielt mit einer Kombination aus dem Promotor der Triosephosphatisomerase, bzw. einem als Promotor wirksamen Teil davon, und der Signalsequenz des Endopolygalacturonase-Gens aus Kluyveromyces marxianus.
Eine weitere Verbesserung der Expression und Sekretion wird erhalten, wenn die ausschleusende Wirkung von TPI durch die Bereitstellung einer Signalsequenz verstärkt wird. Erfindungsgemäß kann daher auch die oben beschriebene Ausführungsform, in der eine DNA-Sequenz, die ein Fusionsprodukt aus KmTPI mit dem gewünschten Fremdprotein codiert, in Kombination mit einer bekannten Signalsequenz, wie im vorhergehenden Abschnitt beschrieben, verwendet werden. Auch diese Kombination ist Teil der vorliegenden Erfindung.
In einer weiteren Ausführungsform der Erfindung wird daher ein Expressions- und Sekretionssystem bereitgestellt, das in operativer Verbindung die oben definierte Promotorsequenz oder einen als Promotor aktiven Teil davon, eine als Terminator aktive Sequenz, und, zwischen diesen beiden Sequenzen eine Signalsequenz aufweist. Bevorzugt wird als Signalsequenz eine bekannte Sequenz eingesetzt. Dabei handelt es sich um die Signalsequenz des Enzyms Endopolygalacturonase (EPG) aus K. marxia- nus. Bevorzugt wird daher die Signalsequenz des Enzyms EPG aus K. marxianus verwendet.
Bei beiden eben erwähnten Ausführungsformen erfolgt die Züchtung in an sich bekannter Weise, wobei entweder in einem kontinuierlichen Verfahren das Protein ständig ins Medium abgegeben wird und aus der Fermentationsbrühe kontinuierlich gewonnen werden kann oder in einem diskontinuierlichen Verfahren die Zellen gezüchtet, geerntet und dann das Protein aus der Brühe gewonnen werden kann.
Das erfindungsgemäße System ist sehr variabel. So kann z.B. nur die oben definierte erfindungsgemäße Promotor-Sequenz oder ein als Promotor aktiver Teil davon zusammen mit anderen Nucleinsäuresequenzen, die weitere regulatorische Sequenzen bereitstellen, und mit einer heterologen Nucleotidsequenz kombiniert werden. Es kann die erfindungsgemäß definierte Promotor-Sequenz oder ein als Promotor aktiver Teil davon mit einer Terminator-Sequenz, zum Beispiel der oben definierten, kombiniert werden, um ein für Kluyveromyces marxianus homologes System bereitzustellen, in das das Polynucleotid für das zu exprimierende Protein eingesetzt wird, oder aber es kann ein System aus dem erfindungsgemäßen Promotor, einer Signalsequenz und einem Terminator zusammen mit einem zu exprimierenden Gen, das ein gewünschtes Protein codiert, kombiniert werden, um ein in die Kultur abzugebendes Protein zu erzeugen. Schließlich kann die erfindungsgemäße Promotorsequenz oder ein als Promotor aktiver Teil davon mit einer Terminator-Sequenz und einer Nucleinsäure aus KmTPI und dem gewünschten Fremdgen kombiniert werden.
Ein weiterer Gegenstand der Erfindung sind Plasmide, die erfindungsgemäße Expressionssysteme enthalten, insbesondere Plasmide, die den Promotor, das TPI-Gen und den Terminator von TPI aus K. marxianus enthalten. Beispiele sind die in den Figuren 1 bis 4 näher erläuterten Plasmide R64, R53, R48 und R1 1 . Diese Plasmide sind re- kombinante Plasmide und können in der vorliegenden Form zur Amplifikation der Expressionskassetten und zur Erzeugung der von der einligierten DNA codierten Proteine in Hefen verwendet werden. Das Plasmid pD1 , das die Sequenz gemäß SEQ ID Nr. 1 enthält, wurde in E.coli DH5α als Wirtszelle bei der Deutschen Sammlung von Mikroorganismen (DSMZ) am 4. Januar 2001 mit der Hinterlegungsnr. DSM 13973 hinterlegt.
Da Kluyveromyces marxianus-ZeWen mit vielen verschiedenen C-Quellen wachsen können und bezüglich weiterer Nährstoffe nicht sehr anspruchsvoll sind, darüber hinaus temperaturunempfindlich sind, wird hier ein sehr effektives System bereitgestellt. Die zuverlässige Expression der Fremdproteine wird durch die erfindungsgemäß bereitgestellte regulatorische Sequenz der Erfindung erreicht.
Erfindungsgemäß wird ein System bereitgestellt, das es zuläßt, die aufgrund ihrer außergewöhnlichen physiologischen Leistungen als Wirt vielversprechende Hefeart Kluyveromyces marxianus zu nutzen.
Das erfindungsgemäße System eignet sich zur Expression von RNA, Peptiden, Polypeptiden, Proteinen und Hybridmolekülen einschließlich glycosylierter Proteine.
Im folgenden werden einige Definitionen für Begriffe angegeben, die in der Beschreibung verwendet werden.
Als "Expressionsvektor" wird ein DNA-Molekül bezeichnet, das linear oder ringförmig sein kann und ein Segment enthält, das eine Sequenz für ein interessierendes Protein oder Peptid codiert, das operativ verbunden ist mit regulatorischen Sequenzen. Diese regulatorischen Sequenzen schließen mindestens Promotor- und Terminatorsequenzen ein. Der Expressionsvektor kann zusätzlich selektierbare Marker und weitere regulatorische Elemente enthalten und muß die Übertragung und Vermehrung in Wirtszellen ermöglichen. Die Replikation der Expressionsvektoren kann autonom oder durch Integration in das Wirtsgenom erfolgen. Der Ausdruck "DNA" oder "Polynucleotid" schließt polymere Formen von Desoxyri- bonucleotiden beliebiger Länge und beliebiger Modifikation in einzel- und doppel- strängiger Form ein.
"Sekretionsvektor" bezeichnet in dieser Beschreibung einen Expressionsvektor der zusätzlich zur Expression eines Polypeptids auch die Ausschleusung des Polypeptids in Form eines Fusionsproteins bzw. durch die Signalsequenz bewirkt.
Der Ausdruck "operativ verbunden" bedeutet, dass die einzelnen Segmente so angeordnet sind, dass sie dem vorgesehenen Zweck dienen, d.h. die Transkription initiieren und terminieren können und die Expression fördern können bzw. die Expression und Sekretion ermöglichen.
Die beanspruchten Sequenzen können weitere kurze Sequenzen aufweisen, die die biologische Aktivität des Moleküls nicht stören. Weiterhin umfassen die beanspruchten Sequenzen auch allelische Varianten der Sequenz, d.h. alternative Formen des Gens, die durch Mutation entstanden sind.
Der Begriff "Protein oder Peptid" bezieht sich auf eine molekulare Kette von Aminosäuren mit biologischer Aktivität. Der Ausdruck Polypeptid bezeichnet üblicherweise Aminosäuresequenzen mit bis zu 200 Aminosäuren, während längere Ketten in der Regel als Proteine bezeichnet werden. In der vorliegenden Beschreibung soll der Ausdruck Polypeptid auch Proteine umfassen bzw. umgekehrt der Ausdruck Proteine auch Polypeptide mitumfassen. Die Proteine und/oder Polypeptide können in vivo oder in vitro modifiziert werden, z.B. durch Glycosylierung und Phosphorylierung.
Als unter der Kontrolle des erfindungsgemäßen Promotors zu exprimierendes Gen wird jede DNA verstanden, deren Expression gewünscht wird. "Fremd-DNA" ist dabei jede DNA, die normalerweise nicht unter der Kontrolle des TPI-Promotors exprimiert wird. Fremd-DNA kann Gene, Teile von Genen, fusionierte Gene, cDNA oder andere DNA-Sequenzen umfassen, sowie DNA, die Polypeptide oder Proteine oder auch RNA oder anti-sense-RNA codiert. Fremd-DNA kann auch ein Reportergen sein. Die Fremd- DNA kann eine natürlich vorkommende, gentechnisch hergestellte oder chemisch synthetisierte Sequenz oder eine Kombination davon sein. Die verwendete Nucleotidse- quenz und das Verfahren ihrer Herstellung sind nicht kritisch.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines rekom- binanten Proteins, das dadurch gekennzeichnet ist, dass man eine Hefezelle mit einem sich autonom replizierenden Plasmid transformiert, das eine erfindungsgemäße Expressionskassette und ein Polynucleotid, das ein Fremdprotein kodiert, umfaßt, die Hefezelle unter Bedingungen, die zur Expression des Fremdproteins geeignet sind, züchtet und das Protein gewinnt.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung eines rekombinanten Proteins, das dadurch gekennzeichnet ist, dass man eine erfindungsgemäße Expressionskassette in eine Hefezelle bringt, wo die Expressionskassette in das Genom der Wirtszelie eingebaut wird, die Zelle züchtet und anschließend das Protein gewinnt. Besonders bevorzugt wird die erfindungsgemäße Expressionskassette als Modul eingesetzt das die Konstruktion von episomalen oder integrativen Expressionsvektoren, die die erfindungsgemäßen regulatorischen Sequenzen und ggf. Signalsequenzen enthalten, ermöglicht.
Wie in den Figuren und den Beispielen gezeigt, führt die Verwendung des erfindungsgemäßen Promotors in Kombination mit einer Sequenz für ein gewünschtes Protein und mit einem Terminator zur Expression des gewünschten Proteins, insbesondere in Hefezellen. Um zu prüfen, wie stark der erfindungsgemäß bereitgestellte Promotor ist, wurde die Expression des Gens EGFP (enhanced green fluorescent protein) unter Kontrolle des CMV-(Cytomegalie-Virus)-Promotors mit der des EGFP-Gens unter der Steuerung des TPI-Promotors verglichen. Dabei wurde gefunden, dass die Expression unter dem erfindungsgemäßen TPI-Promotor etwa das 50-fache der Expression des CMV-Promotors bewirkt, was zeigt, dass der erfindungsgemäße Promotor zu einer Verstärkung der Expression von Fremdproteinen führt. Die Erfindung wird durch die folgenden Figuren und Beispiele näher erläutert.
In den Figuren zeigt
Fig. 1 . eine schematische Darstellung einer erfindungsgemäßen Expressionskassette (R64), in der ein funktioneller Teil des Km-TPI-Maximalpromotors (Position 21 bis 1 1 1 5 entsprechend SEQ ID Nr.1 ), der Leserahmen des EGFP-Gens und ein funktioneller Teil des Km-TPI-Terminators (Position 1860 bis 21 27 entsprechend SEQ ID Nr.1 ) operativ miteinander verbunden sind.
Fig. 2. die erfindungsgemäße Expressionskassette R53, in der ein funktioneller Teil des Km-TPl-Maximalpromotors (Position 21 bis 1 1 15 entsprechend SEQ ID Nr.1 ), der Leserahmen des Hepatitis-B-Virus S-Antigens und ein funktioneller Teil des Km-TPI- Terminators (Position 1860 bis 21 27 entsprechend SEQ ID Nr.1 ) operativ miteinander verbunden sind.
Fig. 3. die erfindungsgemäße Expressionskassette R48, in der ein funktioneller Teil des Km-TPl-Maximalpromotors (Position 21 bis 1 1 1 5 entsprechend SEQ ID Nr.1 ), der Leserahmen des Hepatitis-B-Virus S-Antigens, der Leserahmen für Triosephosphatisomerase ohne Start-Methionin (Position 1 1 1 6 bis 1859 entsprechend SEQ ID Nr.1 ) und ein funktioneller Teil des Km-TPI-Terminators (Position 1860 bis 2127 entsprechend SEQ ID Nr.1 ) operativ miteinander verbunden sind.
Fig. 4. die erfindungsgemäße Expressionskassette R1 1 , in der ein funktioneller Teil des Km-TPl-Maximalpromotors (Position 21 bis 1 1 12 entsprechend SEQ ID Nr.1 ), der Leserahmen für Triosephosphatisomerase (Position 1 1 13 bis 1856 entsprechend SEQ ID Nr.1 ) der Leserahmen des Hepatitis-B-Virus S-Antigens, und ein funktioneller Teil des Km-TPI-Terminators (Position 1857 bis 2037 entsprechend SEQ ID Nr.1 ) operativ miteinander verbunden sind. Fig. 5 den Vergleich der Expression des TPI-Gens im K. marxianus Ausgangsstamm und nach Transformation mit dem Plasmid pKmarTI, das aus der Sequenz entsprechend SEQ ID Nr.1' und dem K. marxianus-Vek or pKDU8 besteht. Neben den Kulturüberständen der K. marxianus Stämme wurden Kulturüberstände nicht transformierter Stämme von K. lactis und S. cerevisiae in gleicher Menge aufgetragen.
Fig. 6. den Vergleich der Sekretierbarkeit von HBs Antigen nach Expression mittels verschiedener Expressionskassetten.
Fig. 7. den Vergleich der Expression von HBs-Antigen mit Hilfe verschiedener Expressionskassetten.
Ausführunαsbeispiele
Beispiel 1
Aufbau allgemeiner Expressionskassetten
Um eine Expressionskassette mit dem erfindungsgemäßen Promotor bereitzustellen, wird durch PCR mittels der Primer P23 und P36 ein DNA-Fragment amplifiziert, das aus Promotor, codierendem Bereich und Terminator des KmTPI-Gens besteht und an den Enden durch künstliche Restriktionsenzymerkennungsstellen für Mlu\ begrenzt wird. Dieses Fragment wird in den Mlu\ Site des Plasmides pSL1 180 kloniert. Im codierenden Bereich des KmTPI-Gens befindet sich eine Restriktionserkennungsstelle für das Restriktionsenzym Acl (AACGTT). Durch PCR wird an dieser Stelle eine stumme Mutation eingeführt, die den Acl Site zerstört, jedoch die durch GTT codierte Aminosäure Valin nicht verändert (AACGTT zu AACGTC). Ein Site für Acl\ kann nun durch PCR unmittelbar vor dem Startcodon generiert werden, da sich hier die Nucleo- tidsequenz AAC ATG befindet (AACgtt ATG). Unmittelbar vor dem Stopcodon des TPI codierenden Bereiches (GTC TAA) kann ebenfalls mittels PCR ein künstlicher Ach Ort generiert werden (aacGTt TAA). Durch Verbindung des M/u\/Ac/\ Promoterfragmentes mit dem Acl\IMIu\ Terminatorfragment entsteht eine leere Expressionskassette mit einem unikalen Acl\ Ort für die Insertion von fremden Leserahmen (Kassette = pTIMex).
Die KmTPI Kassetten mit unikalem AcΛ Ort vor dem Startcodon bzw. vor dem Stopcodon stellen die Sekretionskassetten dar, die eine Expression von Fremdproteinen als Fusionsproteine mit TPI am N- oder C-terminalen Ende ermöglichen und zu einer Sekretion der entsprechenden Fusionsproteine führen (Kassetten = pTIMfusN und pTIMfusC).
Die Kassetten können in bekannter Weise über M/u\ in entsprechende integrative- oder sich autonom replizierende Vektoren eingebaut und mit diesen in Rezipientenzel- len eingebracht werden.
Beispiel 2
Generierung von Expressionseinheiten
Die Generierung von Expressionseinheiten kann auf der Basis der regulatorischen Sequenzen des KmTPI auch generell durch sich überlappende PCR Reaktionen mittels Hybridprimern erfolgen, ohne dass Acft Schnittstellen in der Sequenz generiert werden müssen. Dem Fachmann sind entsprechende Techniken und PCR-Regimes bekannt. Das in Beispiel 1 beschriebene System ist deshalb nicht ausschließlich, sondern nur beispielhaft zu sehen. Beispiet 3
Spezielle Expressionskassetten
Es wurden einige spezielle Expressionskassetten, die als R64, R 53, R48 und R1 1 bezeichnet werden, durch PCR-Techniken generiert. Diese Kassetten sind durch Schemata und Restriktionskarten in den Figuren 1 bis 4 näher charakterisiert.
Plasmid R64 (Figur 1 )
Die Kassette enthält den KmTPI-Maximal-Promoter mit den Nucleotiden 21 bis 1 1 15 von SEQ ID Nr. 1 , den EGFP Leserahmen und den KmTPI-Terminator mit den Nucleotiden 1860 bis 21 27 entsprechend SEQ ID Nr. 1 (TPIpr-MetEGFP-TPItr).
Plasmid R53 (Figur 2)
Die Kassette enthält den KmTPI Maximal-Promoter mit den Nucleotiden 21 bis 1 1 1 5 von SEQ ID Nr. 1 (einschließlich Met), den Leserahmen für Hepatitis B Virus S- Antigen und den KmTPI-Terminator mit den Nucleotiden 1860 bis 21 27 entsprechend Sequenz SEQ ID Nr. 1 (TPIpr-HBS-TPItr)
Plasmid R48 (Figur 3)
Die Kassette enthält den KmTPI Maximal-Promoter mit den Nucleotiden 21 bis 1 1 1 5 von SEQ ID Nr. 1 (einschließlich Met), den Leserahmen für Hepatitis B Virus S- Antigen an dessen C-Terminus der Leserahmen für TPI ohne Methionin fusioniert ist und den KmTPI-Terminator mit den Nucleotiden 1860 bis 2127 entsprechend Sequenz SEQ ID NR.1 (TPIpr-HBS-TPI-TPItr). Plasmid R1 1 (Figur 4)
Die Kassette enthält den KmTPI Maximal-Promoter und den gesamten .Leserahmen für KmTPI an dessen C-Terminus mit Methionin beginnend der Leserahmen für Hepatitis B Virus S-Antigen fusioniert ist. Dieser endet mit eigenem Stopcodon (UAG). Der hier verwendete funktionelle Teil des KmTPI-Terminators überlappt mit dem Stopcodon der HBs-Sequenz (T A A ATT A A ATT A G G ) und beginnt mit dem Stopcodon UAA bei Position 1857 entsprechend SEQ ID Nr. 1 . Er umfaßt lediglich 180 Basenpaare. Diese Kassette wurde über stumpfe Enden in den Sma\ Ort entsprechender Plasmide Moniert (TPIpr-TPI-HBS-TPItr).
BUDAPESTER VERTRAG ÜBER DIE INTERNATIONALE
ANERKENNUNG DER HINTERLEGUNG VON MIKROORGANISMEN
FÜR DIE ZWECKE VON PATENTVERFAHREN
INTERNATIONALES FORMBLATT
MICRO UN GmbH Walther-Rathenau-Str. 49a
17489 Greifswald
EMPFANGSBESTÄTIGUNG BEI ERSTHINTERLEGUNG, ausgestellt gemäß Regel 7.1 von der unten angegebenen INTERNATIONALEN HINTERLEGUNGSSTELLE
I. KENNZEICHNUNG DES MIKROORGANISMUS
Vom HINTERLEGER zugeteiltes Bezugszeichen: Von der INTERNATIONALEN HINTERLEGUNGSSTELLE zugeteilte EINGANGSNUMMER: pDl
DSM 13 973
II. WISSENSCHAFTLICHE BESCHREIBUNG UND/ODER VORGESCHLAGENE TAXONOMISCHE BEZEICHNUNG
Mit dem unter l. bezeichneten Mikroorganismus wurde
(X ) eine wissenschaftliche Beschreibung
(X ) eine vorgeschlagene taxonomische Bezeichnung eingereicht. (Zutreffendes ankreuzen).
III. EINGANG UND ANNAHME
Diese internationale Hinterlegungsstelle nimmt den unter I bezeichneten Mikroorganismus an, der bei ihr am 2 001 - 0 1 - 04 (Datum der Ersthinteriegung)' eingegangen ist.
IV. EINGANG DES ANTRAGS AUF UMWANDLUNG
Der unter I bezeichnete Mikroorganismus ist bei dieser Internationalen Hinterlegungsstelle am eingegangen (Datum der Ersthinterlegung) und ein Antrag auf Umwandlung dieser Ersthinterlegung in eine Hinterlegung gemäß Budapester Vertrag ist am eingegangen (Datum des Eingangs des Antrags auf Umwandlung).
V. INTERNATIONALE HINTERLEGUNGSSTELLE
Name: DSMZ-DEUTSCHE SAMMLUNG VON Uπterschrift(en) der zur Vertretung der internationalen Hinterlegungsstelle MIKROORGANISMEN UND ZELLKULTUREN GmbH befugten Persoπ(en) oder des (der) von ihr ermächtigten Bediensteten:
Anschrift: Mascheroder Weg lb D-381 4 Braunschweig cx. Sc
Figure imgf000023_0001
Datum: 2001 - 01 - 10
1 Falls Regel 6.4 Buchstabe d zutrifft, ist dies der Zeitpunkt, zu dem der Status einer internationalen Hinterlegungsstelle erworben worden ist. Formblatt DSMZ-BP/4 (einzige Seite) 0196

Claims

Patentansprüche
1 . DNA, die die Nucleotide 1 bis 2163 von SEQ ID Nr. 1 oder eine Teiisequenz davon umfasst.
2. DNA enthaltend die Nucleotide 1 bis 1 1 1 2 von SEQ ID Nr. 1 oder Teilsequenzen davon, die als Promotor aktiv sind.
3. Promotor-Sequenz nach Anspruch 2 umfassend mindestens die Nucleotide 352 bis 1 1 1 2 von SEQ ID Nr. 1 .
4. Promotor-Sequenz nach Anspruch 2 oder ein als Promotor wirksamer Teil davon zur Verwendung als regulatorische Region zur Steuerung der Transkription eines Fremdgens.
5. Promotor-Sequenz nach einem der vorhergehenden Ansprüche oder ein als Promotor wirksamer Teil davon in operativer Verbindung mit der DNA-Sequenz für ein zu exprimierendes Protein.
6. Promotor-Sequenz nach Anspruch 2 oder ein Derivat davon in operativer Verbindung mit der Signalsequenz des EPG-Gens aus K. marxianus.
1. DNA gemäß SEQ ID Nr. 1 umfassend regulatorische Sequenzen und den offenen Leserahmen des Enzyms Triosephosphatisomerase aus K. marxianus.
8. DNA enthaltend die Nucleotide 1860 bis 21 63 von SEQ ID Nr. 1 oder einen als Terminator aktiven Teil davon.
9. Hefeexpressionskassette enthaltend in operativer Verbindung die Promotor- Sequenz nach einem der Ansprüche 2 bis 6, eine Insertionsklonierungsstelle und die Nucleotide 1860 bis 2163 von SEQ ID Nr. 1 oder einen als Terminator aktiven Teil davon.
10. Hefeexpressions- und Sekretionskassette umfassend in operativer Verbindung eine Promotor-Sequenz nach einem der Ansprüche 2 bis 6 oder einen als Promotor aktiven Teil davon, eine Signalsequenz, eine Insertionsklonierungsstelle und die Terminator-Sequenz, wie in Anspruch 8 definiert.
1 1 . Plasmid pD1 enthaltend die DNA-Sequenz gemäß SEQ ID Nr. 1 hinterlegt mit der Hinterlegungsnr. DSM 1 3973.
1 2. Expressionsvektor enthaltend in operativer Verbindung einen Promotor gemäß einem der Ansprüche 2 bis 6, ein Polynucleotid, das ein Fremdprotein kodiert, und eine Terminatorsequenz.
1 3. Expressionsvektor nach Anspruch 1 2, der zusätzlich noch eine Signalsequenz zwischen Promotor und Polynucleotid enthält.
14. Expressionsvektor nach Anspruch 13, dadurch gekennzeichnet, dass als Signalsequenz die Signalsequenz des EPG-Gens von K.marxianus enthalten ist.
1 5. Expressionsvektor nach einem der Ansprüche 1 2 bis 14, dadurch gekennzeichnet, dass das Polynucleotid ein Wachstumshormon, einen Wachstumsfaktor, ein Interferon oder ein antigenes Protein oder Peptid kodiert.
16. Expressionsvektor nach Anspruch 1 5, dadurch gekennzeichnet, dass das Polynucleotid ein Hepatitis-B-Oberflächen-Antigen kodiert.
17. Expressionsvektor nach einem der Ansprüche 1 2 bis 1 6, dadurch gekennzeichnet, dass der Vektor ein integrativer oder episomaler Vektor ist.
18. Expressionsvektor nach einem der Ansprüche 1 2 bis 1 6, dadurch gekennzeichnet, dass der Vektor ein in Hefe replizierbares Plasmid ist.
19. Expressions- und Sekretionsvektor umfassend in operativer Verbindung eine Promotor-Sequenz gemäß einem der Ansprüche 2 bis 6, eine KmTPI codierende DNA 3' oder 5' benachbart zu einem Fremdgen und eine Terminator- Sequenz gemäß Anspruch 8.
20. Expressions- und Sekretionsvektor nach Anspruch 19, dadurch gekennzeichnet, dass zwischen KmTPI-DNA und Fremdgen noch eine DNA-Sequenz ist, die einen Abstandshalter codiert.
21 . Wirtszelle transformiert mit einem Plasmid gemäß Anspruch 1 1 oder einem Expressionsvektor nach einem der Ansprüche 1 2 bis 20.
22. Wirtszelle nach Anspruch 17, dadurch gekennzeichnet, dass es eine Zelle der' Art Kluyveromyces marxianus ist.
23. Verfahren zur Herstellung eines rekombinanten Proteins, dadurch gekennzeichnet, dass man eine Hefezelle mit einem Plasmid transformiert, das einen Expressionsvektor nach einem der Ansprüche 1 2 bis 20 mit einem Polynucleotid, das ein Fremdprotein oder ein Fusionsprotein codiert, enthält, die Hefezelle unter Bedingungen, die zur Expression des Fremd- oder Fusionsproteins geeignet sind, züchtet und das Protein gewinnt.
24. Verfahren zur Herstellung eines rekombinanten Proteins, dadurch gekennzeichnet, dass man eine Hefezelle mit einem Expressionsvektor nach einem der Ansprüche 12 bis 20 transformiert, die Zellen, die den Expressionsvektor in das Genom eingebaut haben, selektiert, und die transformierten Zellen züchtet und anschließend das Protein gewinnt.
25. Verfahren zur Gewinnung eines rekombinanten Proteins, wobei man Hefezellen mit einem Sekretionsvektor nach Anspruch 19 oder 20 transformiert, das bei der Expression entstehende Fusionsprodukt aus dem Überstand gewinnt und TPI in an sich bekannter Weise von dem Fremdprotein abtrennt.
26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass in dem Sekretionsvektor als regulatorische Sequenzen Promotor und Terminator von TPI verwendet werden.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass als Promotor eine Sequenz gemäß einem der Ansprüche 2 bis 6 und als Terminator eine Sequenz gemäß Anspruch 8 verwendet wird.
28. Verfahren zum Ausschleusen eines Fremdproteins in Form eines Fusionsproduktes mit Triosephosphatisomerase, bei dem man eine Sequenz, die mindestens regulatorische Sequenzen und eine Fusions-DNA, die für Triosephosphatisomerase und das gewünschte Peptid oder Protein codiert, zur Expression bringt, das gebildete Fusionsprotein isoliert und das Fremdprotein abtrennt.
29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, dass die ausschleusende Wirkung von TPI durch Kombination mit einer Signalsequenz verstärkt wird.
30. Verwendung einer DNA-Sequenz mit den Nucleotiden 1 bis 1 1 1 2 gemäß SEQ ID Nr. 1 oder einem Teil davon als Promotor zur Expression von homologen oder heterologen Polypeptiden in Hefezellen.
31 . Verwendung einer KmTPI-codierenden DNA-Sequenz gemäß SEQ ID Nr. 1 in operativer Verbindung mit regulatorischen Bereichen und in Kombination mit einem Fremdgen zur Erzeugung eines Fusionsproduktes aus TPI und einem Polypeptid, das nach Expression aus der Zelle ausgeschleust wird.
32. Verwendung einer Promotor-Sequenz gemäß einem der Ansprüche 2 bis 6 oder eines Teils davon als regulatorische Sequenz für die Expression eines Polypeptids in Kombination mit einer Signalsequenz, um ein Polypeptid zu exprimieren und aus der Zelle auszuschleusen.
PCT/EP2002/000400 2001-01-17 2002-01-16 Dna-sequenz aus kluyveromyces marxianus mit regulatorischen bereichen zur expression von proteinen WO2002070713A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002436815A CA2436815A1 (en) 2001-01-17 2002-01-16 Dna sequence from kluyveromyces marxianus comprising regulatory regions for expressing proteins
EP02748300A EP1354052A2 (de) 2001-01-17 2002-01-16 Dna-sequenz aus kluyveromyces marxianus mit regulatorischen bereichen zur expression von proteinen
JP2002570738A JP2004519239A (ja) 2001-01-17 2002-01-16 タンパク質発現のための調節領域を含むdna配列
US10/466,758 US20040161841A1 (en) 2001-01-17 2002-01-16 Dna sequence comprising regulatory regions for expressing proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10101962.9 2001-01-17
DE10101962A DE10101962B4 (de) 2001-01-17 2001-01-17 DNA-Sequenz mit regulatorischen Bereichen zur Expression von Proteinen

Publications (2)

Publication Number Publication Date
WO2002070713A2 true WO2002070713A2 (de) 2002-09-12
WO2002070713A3 WO2002070713A3 (de) 2003-03-13

Family

ID=7670860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/000400 WO2002070713A2 (de) 2001-01-17 2002-01-16 Dna-sequenz aus kluyveromyces marxianus mit regulatorischen bereichen zur expression von proteinen

Country Status (6)

Country Link
US (1) US20040161841A1 (de)
EP (1) EP1354052A2 (de)
JP (1) JP2004519239A (de)
CA (1) CA2436815A1 (de)
DE (1) DE10101962B4 (de)
WO (1) WO2002070713A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242108A (zh) * 2010-05-14 2011-11-16 浙江大学 一种提高亚油酸异构酶活性的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429480B2 (en) * 2005-01-10 2008-09-30 National Taiwan University Promoter sequences from WSSV immediate early genes and their uses in recombinant DNA techniques
CN102782130B (zh) * 2010-02-09 2015-04-01 国立大学法人山口大学 马克斯克鲁维酵母来源的高表达启动子
CN117777275B (zh) * 2024-02-23 2024-05-31 北京国科星联科技有限公司 一种促进人乳铁蛋白在马克斯克鲁维酵母中分泌表达的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0103409A2 (de) * 1982-08-13 1984-03-21 Zymogenetics, Inc. Glycolytische Promotoren für regulierte Proteinexpression: Protease-Inhibitor
EP0268772A2 (de) * 1986-09-19 1988-06-01 ZymoGenetics, Inc. Expression des biologisch aktiven Faktors XIII
FR2635115A1 (fr) * 1988-08-05 1990-02-09 Rhone Poulenc Sante Procede de preparation de la serum albumine humaine a partir d'une levure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599311A (en) * 1982-08-13 1986-07-08 Kawasaki Glenn H Glycolytic promotersfor regulated protein expression: protease inhibitor
FR2679920A1 (fr) * 1991-08-02 1993-02-05 Rhone Poulenc Rorer Sa Levures recombinantes hautement stables pour la production de proteines recombinantes, leur preparation et leur utilisation.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0103409A2 (de) * 1982-08-13 1984-03-21 Zymogenetics, Inc. Glycolytische Promotoren für regulierte Proteinexpression: Protease-Inhibitor
EP0268772A2 (de) * 1986-09-19 1988-06-01 ZymoGenetics, Inc. Expression des biologisch aktiven Faktors XIII
FR2635115A1 (fr) * 1988-08-05 1990-02-09 Rhone Poulenc Sante Procede de preparation de la serum albumine humaine a partir d'une levure

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARTKEVICIUTE D ET AL: "HETEROLOGOUS EXPRESSION OF THE KLUYVEROMYCES MARXIANUS ENDOPOLYGALACTURONASE GENE (EPG1) USING VERSATILE AUTONOMOUSLY REPLICATING VECTOR FOR A WIDE RANGE OF HOST" ENZYME AND MICROBIAL TECHNOLOGY, STONEHAM, MA, US, Bd. 26, Juni 2000 (2000-06), Seiten 653-656, XP000981517 ISSN: 0141-0229 *
COMPAGNO CONCETTA ET AL: "Isolation, nucleotide sequence, and physiological relevance of the gene encoding triose phosphate isomerase from Kluyveromyces lactis." APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Bd. 65, Nr. 9, 1999, Seiten 4216-4219, XP002222527 ISSN: 0099-2240 *
SIEKSTELE R ET AL: "CLONING, TARGETED DISRUPTION AND HETEROLOGOUS EXPRESSION OF THE KLUYVEROMYCES MARXIANUS ENDOPOLYGALACTURONASE GENE (EPG1)" YEAST, CHICHESTER, SUSSEX, GB, Bd. 15, Nr. 4, 15. M{rz 1999 (1999-03-15), Seiten 311-322, XP000981653 ISSN: 0749-503X *
SUMMERS R G ET AL: "ILLICIT SECRETION OF A CYTOPLASMIC PROTEIN INTO THE PERIPLASM OF ESCHERICHIA-COLI REQUIRES A SIGNAL PEPTIDE PLUS A PORTION OF THE COGNATE SECRETED PROTEIN DEMARCATION OF THE CRITICAL REGION OF THE MATURE PROTEIN" JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 264, Nr. 33, 1989, Seiten 20074-20081, XP002222528 ISSN: 0021-9258 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242108A (zh) * 2010-05-14 2011-11-16 浙江大学 一种提高亚油酸异构酶活性的方法

Also Published As

Publication number Publication date
DE10101962A1 (de) 2002-08-01
DE10101962B4 (de) 2006-07-27
CA2436815A1 (en) 2002-09-12
JP2004519239A (ja) 2004-07-02
EP1354052A2 (de) 2003-10-22
US20040161841A1 (en) 2004-08-19
WO2002070713A3 (de) 2003-03-13

Similar Documents

Publication Publication Date Title
DE3280422T2 (de) Verfahren und produkte zur leichten mikrobiologischen expression von dns-sequenzen.
DE3111405C2 (de)
DE3486431T3 (de) Expressionssysteme für Hefe mit Vektoren, die einen GAPDH-Promotor enthalten und Oberflächenantigensynthese von Hepatitis B
DE3486216T2 (de) Hybrid-DNS-Synthesis von reifen insulinähnlichen Wachstumsfaktoren.
DE3650664T2 (de) Verwendung von promotoren von filamentösen pilzen
DE3689411T2 (de) Methode zur erhöten Expression von Polypeptiden in Hefe des Gattung Pichia.
DE3689802T2 (de) "Hervorrufung somatischer Veränderungen in Pflanzen durch Verwendung von minussträngigen RNAs".
DE3586858T2 (de) Transformation von aspergillus niger und dabei zu verwendende plasmide.
DE69325794T2 (de) Humanes serum albumin, herstellung und verwendung
DE69519856T2 (de) Expression von albumin in hefe
DE4009676A1 (de) Dna-sequenz, umfassend ein fuer xylosereduktase und/oder xylitoldehydrogenase codierendes strukturgen
DE3023627A1 (de) Mikrobielle expression von quasi- synthetischen genen
EP0513073A1 (de) VERFAHREN ZUR ENZYMATISCHEN SPALTUNG REKOMBINANTER PROTEINE UNTER VERWENDUNG VON IgA-PROTEASEN.
DD283837A5 (de) Verfahren zur herstellung eines rekombinanten dna-molekuels
DE60209883T2 (de) Übersekretierte peptide, deren herstellung, und gleichzeitige verbesserung der sekretierten form eines oder mehrerer anderer polypeptide
DE3786771T2 (de) Für inaktivierte IMP-Dehydrogenase kodierende DNS.
DE69131015T2 (de) Rekombinante zellen, die stark chromosomal-integrierte heterologe gene exprimieren
EP0882129B1 (de) Rekombinante expression von s-layer-proteinen
EP1354052A2 (de) Dna-sequenz aus kluyveromyces marxianus mit regulatorischen bereichen zur expression von proteinen
DE3320339A1 (de) Expressionsvektor, verfahren zu seiner herstellung und verwendung des expressionsvektors zur herstellung eines polypeptids
DE19943383B4 (de) Regulatorische Sequenzen und Expressionskassetten für Hefen
DE69023474T2 (de) Expressionssysteme in Pilzen.
AT394209B (de) Verfahren zur herstellung neuer mikroorganismen zur produktion von hybriden human-leukozyten-interferonen
EP1282715B1 (de) Verfahren zur mikrobiellen herstellung von difructoseanhydrid-iii, dafür einsetzbarer mikroorganismus sowie enzym mit inulase-ii-aktivität und dafür kodierende dna-sequenzen
DE69403464T2 (de) Herstellung von glycolate-oxydase in methylotrophen hefen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2002748300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002308271

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002570738

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2436815

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2002748300

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10466758

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2002748300

Country of ref document: EP