WO2002067010A1 - Procede de mesure de distance/vitesse et dispositif de traitement de signaux radar - Google Patents

Procede de mesure de distance/vitesse et dispositif de traitement de signaux radar Download PDF

Info

Publication number
WO2002067010A1
WO2002067010A1 PCT/JP2001/001264 JP0101264W WO02067010A1 WO 2002067010 A1 WO2002067010 A1 WO 2002067010A1 JP 0101264 W JP0101264 W JP 0101264W WO 02067010 A1 WO02067010 A1 WO 02067010A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
distance
speed
phase
beat
Prior art date
Application number
PCT/JP2001/001264
Other languages
English (en)
French (fr)
Inventor
Masashi Mitsumoto
Takamitsu Okada
Takahiko Fujisaka
Yoshio Kosuge
Koichi Kai
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US10/258,279 priority Critical patent/US6788247B2/en
Priority to DE60140734T priority patent/DE60140734D1/de
Priority to PCT/JP2001/001264 priority patent/WO2002067010A1/ja
Priority to EP01906178A priority patent/EP1275977B1/en
Priority to JP2002566681A priority patent/JP4131464B2/ja
Publication of WO2002067010A1 publication Critical patent/WO2002067010A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Definitions

  • the present invention relates to a signal processing device of a radar mounted on a moving body such as a vehicle, and more particularly to a distance / speed measuring method for detecting a target object and measuring a relative distance and a relative speed thereof.
  • the present invention relates to a radar signal processing device using the method. Background art
  • the radar mounted on vehicles, etc. has a target distance to be measured within a range of several !!! to 200 m.
  • a radar method for detecting a measurement target within such a range "Introduction to Radar Systems” M.I. SKOLNIK, McGRAW-HILL BOOK COMPANY, INC. (1962), "RADAR HANDBOOK” M.I. SKOLNIK, McGRA-HILL BOOK COMPANY, INC. (1970) "Radar technology", edited by Takashi Yoshida, edited by the Institute of Electronics, Information and Communication Engineers (1989), etc., and it is known that FMCW (Frequency Modulated Continuous Wave) ⁇ it is ffl; ⁇ ⁇ .
  • Fig. 3 shows the frequency characteristics of each signal with respect to time in the FM CW radar.
  • the transmission signal is a continuous wave transmission signal that has been subjected to frequency modulation of the triangular wave transmitted to the target, and the reception signal is reflected from the target.
  • the relationship between the signal and the time when the relative distance and the relative speed of the target are obtained from the beat signal of FIG.
  • the modulation section in which the carrier frequency increases as time elapses is defined as the up phase (modulation frequency rise period), while the modulation section in which the carrier frequency decreases as time elapses is defined as the down phase (modulation frequency fall period).
  • 1 is a transmission signal
  • 2 is a reception signal
  • 3 is a beat signal
  • the frequency U of the beat signal 3 in the application phase and the frequency D of the beat signal in the down phase represent the frequency sweep width.
  • B when the frequency sweep time is T, the light speed is c, the wavelength is entered, the relative distance to the target is r, and the target relative speed is V, expressed,
  • the relative distance of the target; r and the relative velocity ⁇ can be calculated by using the results of subtraction and addition of the beat frequencies U and D shown in Eqs. (3) and (4). Obtained from (6).
  • Such a relative distance and a relative speed of the target are generally measured repeatedly at a predetermined time interval.
  • the frequency of the beat signal fluctuates in the time-series measurement due to the state of reflection from the target vehicle and the characteristics of the components of the transceiver. And the measurement results of distance and speed become unstable.
  • Japanese Patent Application Laid-Open No. 5-142338, Japanese Patent Application Laid-Open No. 5-150035 and Japanese Patent Application Laid-Open No. 5-249233 disclose information on the frequency of a beat signal in the time-series direction. It is disclosed to use the
  • FIG. 4 is a diagram showing a configuration of a signal processing unit of a millimeter wave radar device disclosed in Japanese Patent Application Laid-Open No. 5-249233.
  • the illustrated signal processing unit 10 includes an A / D (Analog to Digital) conversion unit 11, a frequency analysis unit 12, a switch unit 13, a comparison unit 14 and 18, a reference value formation units 15 and 19, a storage unit 16 and 20, Variation removing units 17 and 21 and distance / speed deriving unit 22 are provided.
  • a / D Analog to Digital
  • a beat signal 3 for a target is input as an analog signal, and this beat signal is converted into a digital signal by an A / D conversion unit 11.
  • the frequency analysis unit 12 performs frequency analysis by FFT (Fast Fourier Transform) or the like, and extracts the frequency U of the beat signal in the up phase and the frequency D of the beat signal in the down phase.
  • FFT Fast Fourier Transform
  • the reference value forming unit 15 sets the reference value Ur ef (t) using the past data stored in the storage unit 16. For example, assuming that the measurement interval is At, a reference value U ref (t) is set by equation (7).
  • the reference value forming unit 19 stores the The reference value D ref (t) is set using the stored past data.
  • the reference value D ref (t) is set by equation (8).
  • Dref (t) D (t-At) + D (t-2-At) +-+ D (t-5-At) ( g)
  • the comparing unit 14 compares the frequency U (t) of the beat signal in the up phase input via the switch unit 13 with the reference value U ref (t) set by the reference value forming unit 15. Then, it is determined whether or not the frequency U (t) of the beat signal in the up phase is uniform without variation. For example, the criterion is to determine whether or not the relationship of Expression (9) is satisfied with respect to a predetermined allowable width Wu.
  • the comparing section 18 compares the frequency D (t) of the beat signal in the down phase input via the switch section 13 with the reference value Dref (t) set by the reference value forming section 19. Then, it is determined whether or not the frequency D (t) of the beat signal in the down phase is consistent with no variation.
  • the criterion is to determine whether or not the relationship of Eq. (10) is satisfied with respect to a predetermined allowable width Wd.
  • the frequency U (t) of the beat signal in the ape phase for which the presence / absence of variation has been determined by the comparing unit 14 is removed by the variation removing unit 17 when there is variation, and stored in the storage unit 16 when there is no variation. At the same time, it is input to the distance-speed deriving unit 22.
  • the frequency D (t) of the beat signal in the down phase in which the presence or absence of the variation is determined by the comparing unit 18, is removed by the variation removing unit 21 when there is variation, and is stored when there is no variation.
  • the information is stored in the unit 20 and input to the distance / speed deriving unit 22.
  • the frequency of the beat signal is removed by the variation removing unit assuming that there is variation, instead of the beat signal frequencies U (t) and D (t), the frequency data of the previous bit signal is used. (t- ⁇ ) and D (t- ⁇ ) may be used.
  • the distance / speed deriving unit 22 calculates the frequency U (t) and D (t
  • the distance and the velocity are calculated from Eqs. (5) and (6).
  • the signal processing unit of the conventional radar device is configured as described above, and can suppress the variation of the beat frequency in the time series direction.
  • the beat frequency in the up phase is required to obtain the target distance and speed.
  • a frequency pair of number and beat frequency in the down phase was needed.
  • the target is not detected because the frequency pair is not selected even though it actually exists (not detected).
  • the wrong frequency pair was selected because the past beat frequency was used, and a target (false target) that should not exist originally occurred, causing the reliability of the measurement results to decrease.
  • the present invention has been made in order to solve the above-mentioned problems, and uses an up (or down) phase beat signal by using time-series information of a frequency of an up (or down) phase beat signal.
  • an up (or down) phase beat signal by using time-series information of a frequency of an up (or down) phase beat signal.
  • a distance and velocity measurement method provides a target relative distance and a target distance based on a beat signal between a transmission signal and a reception signal of a continuous wave radar that has been subjected to triangular wave frequency modulation.
  • Relative speed measurement distance ⁇ In the speed measurement method, the beat frequency is extracted from the beat signal in the up phase (modulation frequency rise period) and down phase (modulation frequency fall period), and the target frequency is extracted from the extracted frequencies.
  • the priority is given to processing only at the beat frequency in either the up phase or the down phase, and only when the target is not detected in the one phase.
  • processing is performed only at the beat frequency.
  • the observation value, the prediction value, and the observation value are obtained. It is characterized by using a smoothed value obtained from a value and a predicted value.
  • the predicted value of the distance at the next observation time t + At is Rp (t + ⁇ )
  • the predicted value of the speed is Vp (t-HAt)
  • the beat frequency in the up phase is predicted.
  • the value is Up (t + ⁇ ) ⁇
  • the predicted beat frequency in down phase is Dp (t + ⁇ t) x
  • the observed beat frequency in the up phase is U (t + m t) x
  • the down phase When the observed value of the beat frequency at is assumed to be D (t + ⁇ t) x, the smoothed value of the distance Rs (t + ⁇ t) and the smoothed value of the speed Vs (t + At) can be expressed by the following equation.
  • Vs (t + At) Vp (t + ⁇ ) + / 3 x pp (t + At) x-U (t + ⁇ ⁇ )
  • Vs (t + At) Vp (t + ⁇ ) + ⁇ ⁇ Dp (t + At) x -D (i + ⁇ ) ⁇
  • the radar signal processing device is a radar signal processing device for measuring a relative distance and a relative velocity of a target based on a beat signal between a transmission signal and a reception signal of a continuous wave radar on which triangular wave frequency modulation has been performed.
  • Frequency analysis means for inputting beat signals in the up phase and the down phase and extracting the frequency of each beat signal; and a frequency corresponding to a target from the beat signal frequencies in the up phase and the down phase extracted by the frequency analysis means.
  • a frequency pair selecting means for selecting a pair, a distance / speed deriving means for inputting the frequency pair selected by the frequency selecting means to obtain a current relative distance and a relative speed, and a distance / speed deriving means.
  • Frequency predicting means for inputting a predicted value and calculating a predicted value of the frequency of the beat signal in the up phase or the down phase; and a predicted value of the frequency of the bit signal predicted by the frequency predicting means and a bit rate after a predetermined time.
  • Frequency comparing means for comparing the frequency of the first signal with the frequency of the first signal and determining whether there is a beat frequency whose difference is within a range of a predetermined allowable frequency width, and the distance and speed from the distance / speed predicting means.
  • Speed smoothing means and is provided in one of the up phase and the down phase obtained by the frequency predicting means. The characteristic feature is that the relative distance and relative speed of the target at the time of the next and subsequent observations are obtained from the above distance / speed smoothing means using only the beat frequency in the following.
  • a pair of the frequency predicting means, the frequency comparing means, and the distance and speed smoothing means is provided for each phase of the up phase or the down phase, and at the time of the next and subsequent measurements, either the up phase or the down phase is performed.
  • Priority is given to the processing by the frequency prediction means, the frequency comparison means, and the distance-speed smoothing means in one phase, and the frequency prediction in the other phase is performed only when the target is not detected in the one phase.
  • the processing is performed only by the means, the frequency comparing means, and the distance / speed smoothing means.
  • the distance / speed smoothing means calculates the predicted value of the distance at the next observation time t + At: Rp (t + At), the predicted value of the speed Vp (t + m t), and the predicted value of the beat frequency in the up-phase.
  • Rp (t + At) x the predicted beat frequency in the down phase is Dp (t + At) x
  • the observed beat frequency in the up phase is U (t + At) x
  • the down phase The observed value of the beat frequency at is: D (t + ⁇ ) X
  • the distance smoothed value Rs (t + ⁇ ) and the velocity smoothed value Vs (t + At) are calculated by the following equation.
  • FIG. 1 is a configuration diagram of a radar signal processing device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a processing procedure for measuring a relative distance and a relative speed of a target in the radar signal processing device of FIG. One,
  • FIG. 3 is a diagram showing the frequency characteristic of each signal with respect to time in the FM CW radar.
  • FIG. 4 is a diagram showing the signal processing section of the millimeter wave radar device disclosed in Japanese Patent Application Laid-Open No. H5-249233.
  • FIG. 3 is a diagram illustrating a configuration. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram illustrating a radar signal processing device according to an embodiment of the present invention.
  • the same parts as those in the conventional example shown in FIG. As new codes, 101, 102, and 104 correspond to the target from the beat signal frequencies in the up phase and down phase extracted by the frequency analysis section 12 and the switch section, respectively.
  • a frequency pair selection unit for selecting a frequency pair to perform, 105 is a distance / speed derivation unit 22
  • the current relative distance and relative speed of the target are input from 22 and the distance is predicted after a predetermined time assuming the target motion Value / speed prediction This is a distance / speed prediction unit that predicts and calculates values.
  • 106 and 107 are frequency prediction units for inputting predicted values of distance and speed from the distance / speed prediction unit 105 and predicting and calculating the predicted values of the bit signal frequency in up phase and down phase, respectively.
  • 10 8 and 10 9 are frequency prediction units 1 6
  • the predicted value of the frequency of the beat signal is compared with the frequency of the beat signal after a predetermined time, and the difference is set to a predetermined allowable frequency width.
  • Frequency comparison unit that determines the presence or absence of a beat frequency existing within the range of 110, 1
  • Reference numeral 11 denotes a distance / speed smoothing unit that obtains a smoothed value of the distance and the speed based on the predicted value of the distance and the speed from the distance / speed predicting units 106 and 107 and the observed value of the frequency of the beat signal from the frequency prediction unit. .
  • FIG. 2 is a flowchart showing a processing procedure for measuring a target relative distance and a relative speed in the radar signal processing device shown in FIG.
  • step P1 The time when the measurement operation is started corresponds to step P 0, and the time t inside the signal processing device is set to 0.
  • the switch unit 101 and the switch unit 102 are both connected to the A1 terminal, and the switch unit 104 is connected to the B0 terminal.
  • the frequency analysis unit 12 inputs the beat signal in the up phase converted to the digital signal by the A / D conversion unit 11,
  • the frequency U (t) i of the beat signal is extracted by frequency analysis using T.
  • the frequency U (t) i of the bit signal is input to the frequency pair selection unit 103 via the switch unit 13 and the switch unit 101.
  • step P3 the frequency analysis unit 12 inputs the beat signal in the down phase converted into the digital signal by the A / D conversion unit 11,
  • the frequency D (t) j of the beat signal is extracted by frequency analysis using T.
  • the frequency D (t) j of the beat signal is input to the frequency pair selection unit 103 via the switch unit 13 and the switch unit 101.
  • step P5 the frequency pair selection unit 103 converts the frequency U (t) i and D (t) j of the input bit signal into a frequency pair ⁇ U (t) x, D (t ) ⁇ .
  • step P6 the distance / velocity deriving unit 22 inputs the frequency pair ⁇ U (t) x, D (t) ⁇ , and calculates the relative distance r (t) of the current target by using equations (5) and (6). And the relative velocity v (t) are obtained and output as a measurement result via the switch 104.
  • step P7 the distance / velocity prediction unit 105 inputs the relative distance r (t) and the relative velocity V (t) of the target at the present time, and assuming the target motion, the distance at the next observation time t + m t Calculate the predicted value Rp (t + At) and the predicted value Vp (t + m t) of the speed. For example, assuming that the target is moving at a constant speed, it is calculated by the following equation (1 1) s (12).
  • the frequency prediction unit 106 inputs the predicted value Rp (t + ⁇ t) of the distance and the predicted value Vp (t + ⁇ t) of the velocity, and inputs the predicted value Up (t + ⁇ t) of the frequency of the beat signal in the ap phase.
  • x is calculated from equation (1)
  • the frequency prediction unit 107 inputs the predicted value Rp (t + ⁇ t) of the distance and the predicted value Vp (t + ⁇ ) of the speed, and calculates the frequency of the beat signal in the down phase.
  • the predicted value Dp (t + At) x is calculated from equation (2).
  • step P8 time t is added to time t inside the signal processing device, and the process returns to step P1 to perform measurement at t + ⁇ .
  • step P1 the beat frequency U (t + ⁇ t) i is extracted in the same manner as described above.
  • Step P2 the process proceeds to Step P9 as t ⁇ 0.
  • step P9 the frequency comparing unit 108 determines whether or not there is a bit frequency U (t + At) i that satisfies the equation (13) based on the preset allowable frequency width Fu. That is, it is determined whether or not the target is detected in the up phase.
  • step PI 1 if there is a beat frequency U (t + At) i, it is U (t + ⁇ t) x Go to Step: P11, otherwise go to Step P3. This Here, first, it is assumed that U (t + At) X exists, and the process proceeds to step P11.
  • step P 1 the distance / velocity smoothing unit 1 10 calculates predicted values R p (t + ⁇ t), Vp (t + ⁇ t), Up (t + ⁇ ) x and observed value U (t + At) x
  • the smoothed value R s (t + At) and the smoothed value Vs (t + At) of the distance from are calculated by the following equations (14) and (15).
  • step P 1 2 as in step P 7, the distance / velocity prediction unit 105 calculates the distance smoothed value Rs (t + At) and the speed smoothed value Vs (t + A t) in equations (14) and (15). As the current distance and speed, and assuming the target motion, calculate the predicted distance Rp (t + 2At) and the predicted speed Vp (t + 2 ⁇ 1) at the next observation time t + 2At .
  • the frequency prediction unit 106 inputs the predicted value Rp (t + 2 ⁇ t) of the distance and the predicted value Vp (t + 2At) of the speed, and predicts the beat frequency Up (t + 2At) in the up phase.
  • x is calculated from equation (1)
  • the frequency predictor 10 ⁇ inputs the predicted values Rp (t + At) and Vp (t + m t) and inputs the predicted beat frequency Dp (t + 2 ⁇ t) x is calculated from equation (2).
  • step P8 ⁇ t is added to the time t inside the signal processing device, and the process returns to step P1 to perform measurement at t + 2 ⁇ t, and the above operation is repeated.
  • step P3 D (t + ⁇ ) j is extracted in the same manner as described above.
  • Step P4 the process proceeds to Step P13 as t ⁇ 0.
  • step P 13 the frequency comparison unit 109 determines whether D (t + A t) j that satisfies the expression (16) based on the preset allowable frequency width Fd. ⁇ Dp (t + At) y-D (t + At) j ⁇ ⁇ Fd (16) In step PI4, if there is no D (t + At) j, the process proceeds to step P5 to perform the above operation.
  • step P15 as in step P11, the distance / velocity smoothing unit 1 1 1 calculates the predicted values Rp (t + m t), Vp (t + At), Dp ( ⁇ + ⁇ t) y and the observed value D (Calculate the smoothed value Rs (t + ⁇ ) of the distance from ty and the smoothed value Vs (t + ⁇ t) of the velocity by the following formula.
  • Vs (t + At) Vp (t + ⁇ + ⁇ ⁇ Dp (t + At) x-D (t + At) x ⁇ (18) At this time, the switch 104 is connected to the Bd terminal, and the equation (17) ), (1
  • step P16 as in step P12, the distance / velocity predicting unit 105 calculates the distance smoothed value Rs (t + ⁇ t) and the speed smoothed value Vs (t +) in equations (17) and (18). ⁇ ) as the current distance and speed, and assuming the target motion, the predicted distance Rp (t + 2At) and the predicted speed V at the next observation time t + 2At
  • the frequency prediction unit 106 inputs Hp (t + 2 ⁇ t) and Vp (t + 2 ⁇ ), calculates a predicted value of the beat frequency Up (t + 2 ⁇ ) x in the up phase from Expression (1), and calculates the frequency
  • the prediction unit 107 inputs (t + ⁇ ) and Vp (t + At) and predicts the beat frequency Dp (t + 2
  • step P8 the time t is added to the time t inside the signal processing device, and the process returns to step P1 to perform measurement at t + 2At, and the above operation is repeated.
  • Each component in FIG. 1 may be realized by a dedicated arithmetic circuit, It may be realized by a program incorporated in a CPU (Central Processing Unit) or a DSP (Digital Signal Proces sor).
  • steps P0 to P7 constitute the current measurement stage
  • steps P8 ⁇ P1-P2 P9 to P12 use only the beat frequency in the up phase.
  • the next and subsequent measurement stages consist of measuring the relative distance and relative speed of the target during the next and subsequent observations.However, only the beat frequency in the down phase is used instead of the up phase.
  • steps P 3 P 4 P 13 to P 16 are performed, and only the beat frequency in the up phase is set. The measurement step to be used may be replaced.
  • the relative distance and the relative speed of the target are obtained only by the frequency of one phase, so that the number of undetected targets and false targets is reduced to achieve highly reliable measurement. The result can be obtained.
  • measurement processing using only the frequency of one phase is prioritized, and measurement processing using the other frequency is performed only when the target is not detected. A certain measurement result can be obtained.
  • the observed value, the predicted value, and the smoothed value are used in the measurement processing using only the frequency of one phase, false targets can be reduced and a highly reliable measurement result can be obtained.
  • the up (or down) phase As described above, according to the present invention, the up (or down) phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

明 細 距離 ·速度計測方法およびレーダ信号処理装置 技術分野
この発明は、 たとえば車両等の移動体に搭載されるレーダの信号処理装置に 係り、 特に、 目標となる対象物を検出してその相対距離と相対速度を計測する ための距離 ·速度計測方法とその方法を用いたレーダ信号処理装置に関するも のである。 背景技術
車両等に搭載されるレーダは、 計測対象とする目標の距離が数!!!〜 2 0 0 m 程度の範囲であり、 このような範囲内にある計測対象を検出するためのレーダ 方式として、 "Introduction to Radar Systems" M. I . SKOLNIK, McGRAW-HI LL BOOK COMPANY, INC. (1962) をはじめとして、 "RADAR HANDBOOK" M. I . SKOLNIK, McGRA -HILL BOOK COMPANY, INC. (1970) や "レーダ技術" 吉田 孝監修、 電子情報通信学会編 (1989) などに記載され、 公知な F M C W (Fre quency Modulated Continuous Wave) ^itを fflレ、ること;^乡 、。
図 3は、 F M CWレ一ダにおける各信号の時間に対する周波数特性を示した ものであり、 目標に対し送信される三角波の周波数変調を施した連続波の送信 信号と目標から反射される受信信号とのビート信号から目標の相対距離及び相 対速度を求める際の信号対時間の関係を示している。 ここで、 時間の経過につ れて搬送波周波数が高くなる変調区間をアップフェーズ (変調周波数上昇期間 ) とし、 他方、 時間の経過につれて搬送波周波数が低くなる変調区間をダウン フェーズ (変調周波数下降期間) とする。
図 3において、 1は送信信号、 2は受信信号、 3はビート信号で^り、 ァヅ プフエーズにおけるビート信号 3の周波数 Uとダウンフヱ一ズにおけるビ一ト 信号の周波数 Dは、 周波数掃引幅を B、 周波数掃引時間を T、 光速を c、 波長 を入、 目標までの相対距離を r、 目標の相対速度を Vとするとき、 下記の式で 表される,
U = r +—v (1)
cT λ
IB 2
D —— r +— (2)
cT λ これらの関係により、 目標の相対距離; rと相対速度 νは、 式 (3)、 (4) に示すビート周波数 Uと Dの減算と加算による結果を利用して、 式 (5)、 ( 6) から得られる。
4B
D-U (3)
cT
4
U+D=-v (4)
λ cT
r =—(D-U) (5)
4B 》 v = -(U + D) (6) また、 目標が複数 (N) の場合には、 アップフェーズにおけるビート信号の 周波数 Ui {i=Nu, Nu≤N} とダウンフヱ一ズにおけるビート信号の周 波数 Dj { j =Nd, Nd≤N} が得られるので、 あらかじめ設定された基準 により周波数対 (Ux, Dy) が選ばれ、 その周波数対を式 (5)、 (6) に 代入して各目標の相対距離と相対速度が得られる。
この選定基準として、 例えばビート信号の周波数スぺクトルにおけるピーク 強度を利用するものがあり、 曰本国特開平 5— 1 2337号公報では強度の 大きさ順に対を決めている。 また、 日本国特開平 11一 337635号公報で はビームを走査して得られる複数方向の強度パターンを利用している。
このような目標の相対距離と相対速度は、 一般にはあらかじめ設定された時 間間隔で繰返し計測される。
しかし、 現実には目標である車両からの反射状態や、 送受信装置の構成要素 の特性などにより、 時系列上の計測において、 ビート信号の周波数にばらつき が生じ、 距離 ·速度の計測結果が不安定になるという問題があった。
このような問題に対して、 日本国特開平 5— 142338号公報、 日本国特 開平 5— 150035号公報や日本国特開平 5— 249233号公報などでは 、 ビート信号の周波数に関して時系列方向の情報を利用することが開示されて いる。
例えば、 図 4は、 日本国特開平 5— 249233号公報に開示されたミリ波 レーダ装置の信号処理部の構成を示す図である。 図示する信号処理部 10は、 A/D (Analog to Digital) 変換部 11、 周波数分析部 12、 スィツチ部 1 3、 比較部 14と 18、 基準値形成部 15と 19、 記憶部 16と 20、 ばらつ き除去部 17と 21、 距離 ·速度導出部 22を備えている。
次に動作について説明する。 図 4に示す信号処理部 10において、 目標に対 するビート信号 3がアナ口グ信号として入力され、 このビート信号は A/D変 換部 11でディジタル信号に変換される。 周波数分析部 12では F FT (Fast Four i er Transform) などによって周波数分析が行われ、 アップフェーズにお けるビート信号の周波数 Uとダウンフエーズにおけるビート信号の周波数 Dが 抽出される。
これら周波数は、 スィッチ部 13を介して、 計測時の時刻 tと関連づけられ 、 周波数 Uは U (t) として記憶部 16に記憶され、 周波数 Dは D (t ) とし て記憶部 20に記憶される。
時刻 tにおいて、 基準値形成部 15は、 記憶部 16に記憶された過去のデ一 夕を利用して基準値 Ur ef (t) を設定する。 例えば計測間隔が Atである として、 式 (7) により基準値 U re f (t ) を設定する。
Ur f(t)_ U(t-At) + U(t-2-At) + -- + U(t-5- t) ( 7 ) 同様に、 基準値形成部 19は、 記憶部 20に記憶された過去のデ一夕を利用 して基準値 D r e f ( t ) を設定する。 例えば式 ( 8 ) により基準値 D r e f (t) を設定する。
Dref(t) = D(t-At) + D(t-2-At) + -- + D(t-5-At) ( g ) 比較部 14は、 スィツチ部 13を経由して入力されるアップフエ一ズにおけ るビート信号の周波数 U (t) を基準値形成部 15で設定された基準値 U re f (t) と比較して、 アップフェーズにおけるビート信号の周波数 U (t) が ばらつきのないデ一夕であるかを判定する。 例えばあらかじめ設定した許容幅 Wuに対して式 (9)の関係を満足するかどうかを判定基準とする。
Figure imgf000006_0001
同様に、 比較部 18は、 スイッチ部 13を経由して入力されるダウンフエ一 ズにおけるビート信号の周波数 D (t) を基準値形成部 19で設定された基準 値 Dref (t) と比較して、 ダウンフェーズにおけるビート信号の周波数 D (t ) がばらつきのないデ一夕であるかを判定する。 例えばあらかじめ設定し た許容幅 Wdに対して式 (10) の関係を満足するかどうかを判定基準とする o
Figure imgf000006_0002
比較部 14によりばらつきの有無が判定されたァヅプフヱーズにおけるビー ト信号の周波数 U (t) は、 ばらつき有りの場合にはばらつき除去部 17で除 去され、 ばらつき無しの場合には記憶部 16に記憶されるとともに、 距離 -速 度導出部 22へ入力される。
同様に、 比較部 18によりばらつきの有無を判定されたダウンフェーズにお けるビート信号の周波数 D (t ) は、 ばらつき有りの場合にはばらつき除去部 21で除去され、 ばらつき無しの場合には記憶部 20に記憶されるとともに、 距離 ·速度導出部 22へ入力される。
なお、 ビー卜信号の周波数がばらつき有りとしてばらつき除去部で除去され た場合、 ビート信号の周波数 U (t)、 D (t ) の代わりに、 前回のビ一ト信 号の周波数デ一夕 U (t-Δΐ)、 D (t-Δΐ) を使用してもよい。
距離 ·速度導出部 22は、 入力されたビート信号の周波数 U (t) と D (t
) について式 (5)、 (6) により距離と速度を求める。
従来のレーダ装置の信号処理部は以上のように構成され、 時系列方向のビー ト周波数のばらつきを抑えることができる。 しかし、 上記例をはじめとする従 来技術では、 目標の距離と速度を得るにはアップフェーズにおけるビート周波 数とダウンフエ一ズにおけるビート周波数の周波数対が必要であった。
そのため、 もし、 一方の周波数が得られない場合には、 実際には存在するに も関わらず周波数対が選択されなかったために検知されない (不検知) 目標や 、 得られなかったビート周波数の代わりに過去のビート周波数を用いたために 誤った周波数対を選択してしまい、 本来存在しないはずの目標 (偽目標) が発 生し計測結果の信頼性を低下させる要因となっていた。
この発明は上記の問題点を解消するためになされたもので、 アップ (あるい はダウン) フェーズのビート信号の周波数の時系列方向の情報を利用してアツ プ (あるいはダウン) フェーズのビート信号の周波数のみで目標の距離と速度 を求めるようにすることで、 偽目標や不検知目標を減らして信頼性の高い計測 結果を得ることができる距離 ·速度計測方法とその方法を用いたレーダ信号処 理装置を得ることを目的とする。 発明の開示
上記目的を達成するために、 この発明に係る距離,速度計測方法は、 三角波 の周波数変調を施した連続波レ一ダの送信信号と受信信号とのビート信号に基 づいて目標の相対距離及び相対速度を計測する距離 ·速度計測方法において、 アップフェーズ (変調周波数上昇期間) とダウンフェーズ (変調周波数下降期 間) とにおけるビート信号からビート周波数を抽出し、 抽出された周波数のう ち、 目標に対する対応するビート周波数の周波数対を選択し、 選択された周波 数対に基づいて観測値として目標の相対距離と相対速度を求め、 さらに観測値 から次回観測時の予測値として相対距離と相対速度及びビ一ト周波数を求める 現在の計測段階と、 次回以降の観測時に、 アップフェーズまたはダウンフエ一 ズのいずれか一方のフェーズにおけるビート周波数のみを利用して次回以降の 観測時における目標の相対距離及び相対速度を計測する次回以降の計測段階と を備えたことを特徴とするものである。
また、 上記次回以降の計測段階は、 アップフヱ一ズまたはダウンフェーズの いずれか一方のフェーズにおけるビート周波数のみで処理することを優先し、 当該一方のフェ一ズで目標が検知されなかった場合にのみ、 他方のフェーズに おけるビート周波数のみで処理することを特徴とするものである。
また、 上記次回以降の計測段階は、 アップフェーズまたはダウンフェーズの いずれか一方のフヱ一ズにおけるビート周波数のみで目標の相対距離と相対速 度を得る際に、 観測値、 予測値、 及び観測値と予測値とから得られる平滑値を 用いることを特徴とするものである。
また、 上記次回以降の計測段階は、 次回観測時刻 t +Atにおける距離の予 測値を Rp (t +Δΐ)、 速度の予測値を Vp (t-HAt)、 アップフエ一ズ におけるビート周波数の予測値を Up (t +Δΐ) χ、 ダウンフエ一ズにおけ るビート周波数の予測値を Dp (t +Δ t) x、 ァヅプフェーズにおけるビー ト周波数の観測値を U (t+厶 t) x、 ダウンフェーズにおけるビート周波数 の観測値を D (t +Δ t) xとしたとき、 距離の平滑値 Rs (t +Δ t) と速 度の平滑値 Vs (t+At) を、 下記の式
Rs(t + At) = Rp(t + Δί) + a x pp(t + At)x -ひ + At)x}
Vs(t + At) = Vp(t + Δί) + /3 x pp(t + At)x - U(t + Α χ)
Rs(t + At) = Rp(t + Δί) + x {Dp(t + At)x一 D(t + At)x)
Vs(t + At) = Vp(t + Μ) + βχ {Dp(t + At)x -D(i + Δί) }
なお、 α、 ?は定数
を用いて求めることを特徴とするものである。
また、 この発明に係るレーダ信号処理装置は、 三角波の周波数変調を施した 連続波レーダの送信信号と受信信号とのビート信号に基づいて目標の相対距離 及び相対速度を計測するレーダ信号処理装置において、 アツプフヱーズとダウ ンフェーズにおけるビート信号を入力し、 各ビート信号の周波数を抽出する周 波数分析手段と、 上記周波数分析手段により抽出されたアップフェーズとダウ ンフェーズにおけるビート信号の周波数から目標に対応する周波数対を選択す る周波数対選択手段と、 上記周波数選択手段により選択された周波数対を入力 して現時点の目標の相対距離と相対速度を求める距離 ·速度導出手段と、 上記 距離 ·速度導出手段からの現時点の目標の相対距離と相対速度を入力し、 目標 の運動を想定して所定時刻後における距離の予測値と速度の予測値を計算する 距離 ·速度予測手段と、 上記距離 ·速度予測手段からの距離の予測値と速度の 予測値を入力してアップフェーズまたはダウンフェーズにおけるビート信号の 周波数の予測値を計算する周波数予測手段と、 上記周波数予測手段により予測 されたビ一ト信号の周波数の予測値と所定時刻後におけるビ一ト信号の周波数 とを比較してその差があらかじめ設定された許容周波数幅の範囲内に存在する ビート周波数の有無を判定する周波数比較手段と、 上記距離 ·速度予測手段か らの距離と速度の予測値及び上記周波数予測手段からのビート周波数の予測値 と、 上記周波数分析手段により得られる所定時刻後におけるビート信号の周波 数の観測値とに基づいて距離と速度の平滑値を求める距離 ·速度平滑手段とを 備え、 上記周波数予測手段により得られるアップフェ一ズまたはダウンフエ一 ズのいずれか一方のフェーズにおけるビート周波数のみを利用して次回以降の 観測時における目標の相対距離及び相対速度を上記距離 ·速度平滑手段から得 ることを特徴とするものである。
また、 上記周波数予測手段と上記周波数比較手段及び上記距離,速度平滑手 段として、 ァヅプフェーズまたはダウンフェーズのフエ一ズ毎に一対備え、 上 記次回以降の計測時に、 アップフェーズまたはダウンフェーズのいずれか一方 のフェーズにおける上記周波数予測手段と上記周波数比較手段及び上記距離 - 速度平滑手段による処理を優先し、 当該一方のフエ一ズで目標が検知されなか つた場合にのみ、 他方のフェーズにおける上記周波数予測手段と上記周波数比 較手段及び上記距離 ·速度平滑手段のみで処理を行うことを特徴とするもので ある。
さらに、 上記距離 ·速度平滑手段は、 次回観測時刻 t+Atにおける距離の 予測値を: Rp (t +At)、 速度の予測値を Vp (t+厶 t)、 アップフヱー ズにおけるビート周波数の予測値を Up (t +A t ) x、 ダウンフェーズにお けるビート周波数の予測値を Dp (t+At) x、 アップフェーズにおけるビ —ト周波数の観測値を U (t+At) x、 ダウンフェーズにおけるビート周波 数の観測値を: D (t+Δΐ) Xとしたとき、 距離の平滑値 Rs (t+Δΐ) と 速度の平滑値 Vs (t+At) を、 下記の式
Rs(t + At) = Rp(t + Δί) + a x pp(t + Δί)χ - U(t + M)x)
Vs(t + At) = Vp(t + At) + βχ \Uv(t + Δί)χ - U(t + M)x} Rs(t + At) = Rp(t + At) + a x {Dp(t + At)x - D(t + Δί) }
(t + At) = Vp(i + Αή + β χ {Dp(t + Δί)χ - D(t + Δί)χ}
なお、 、 ^は定数
を用いて求めることを特徴とするものである。 図面の簡単な説明
図 1は、 この発明の実施の形態に係るレーダ信号処理装置の構成図、 図 2は、 図 1のレーダ信号処理装置における目標の相対距離と相対速度を計 測するための処理手順を示すフローチヤ一ト、
図 3は、 F M CWレーダにおける各信号の時間に対する周波数特性を示す図 図 4は、 日本国特開平 5— 2 4 9 2 3 3号公報に開示されたミリ波レーダ装 置の信号処理部の構成を示す図である。 発明を実施するための最良の形態
以下、 この発明の実施の形態について図を参照して説明する。
図 1は、 この発明の実施の形態に係るレーダ信号処理装置を示す構成図であ る。 図 iにおいて、 図 4に示す従来例と同一部分は同一符号を付してその説明 は省略する。 新たな符号として、 1 0 1、 1 0 2、 1 0 4はスイッチ部、 1 0 3は周波数分析部 1 2により抽出されたアップフェーズとダウンフエ一ズにお けるビート信号の周波数から目標に対応する周波数対を選択する周波数対選択 部、 1 0 5は距離 ·速度導出部 2 2からの現時点の目標の相対距離と相対速度 を入力し目標の運動を想定して所定時刻後における距離の予測値と速度の予測 値を予測計算する距離 ·速度予測部である。
また、 1 0 6、 1 0 7は距離 ·速度予測部 1 0 5から距離と速度の予測値を 入力しァップフエーズとダウンフエーズにおけるビ一ト信号の周波数の予測値 をそれぞれ予測計算する周波数予測部、 1 0 8、 1 0 9は周波数予測部 1 0 6
, 1 0 7により予測されたビート信号の周波数の予測値と所定時刻後における ビ一ト信号の周波数とを比較してその差があらかじめ設定された許容周波数幅 の範囲内に存在するビート周波数の有無を判定する周波数比較部、 110、 1
11は距離■速度予測部 106, 107からの距離と速度の予測値及び周波数 予測手段からのビート信号の周波数の観測値とに基づいて距離と速度の平滑値 を求める距離 ·速度平滑部である。
また、 図 2は、 図 1に示すレーダ信号処理装置における目標の相対距離と相 対速度を計測するための処理手順を示すフローチャートである。
図 2に示すフローチャートの手順に従って、 図 1に示すレーダ信号処理装置 によるり標の相対距離と相対速度を計測する動作を説明する。
計測動作が開始された時点がステツプ P 0に対応し、 信号処理装置内部の時 刻 tが 0に設定される。 このとき、 スィヅチ部 101およびスイッチ部 102 はともに A 1端子に接続され、 スィツチ部 104は B 0端子に接続される。 ステップ P 1では、 周波数分析部 12が、 A/D変換部 11によりディジ夕 ル信号に変換されたアップフェーズにおけるビート信号を入力し、 例えば FF
Tを用いた周波数分析によりビート信号の周波数 U (t) iを抽出する。 ビ一 ト信号の周波数 U (t) iは、 スイッチ部 13およびスイッチ部 101を経由 して、 周波数対選択部 103へ入力される。
ステップ P 2では、 現時点の時刻 tを参照し、 t = 0であればステツプ P 3 へ進み、 t≠ 0であればステヅプ P 9へ進む。 ここでは、 まず、 t = 0として ステップ P 3へ進む。
ステップ P3では、 周波数分析部 12が、 A/D変換部 11によりディジ夕 ル信号に変換されたダウンフェーズにおけるビート信号を入力し、 例えば FF
Tを用いた周波数分析によりビート信号の周波数 D (t) jを抽出する。
ビート信号の周波数 D (t) jは、 スイッチ部 13およびスイッチ部 101 を経由して、 周波数対選択部 103へ入力される。
ステヅプ P 4では、 現時点の時刻 tを参照し、 t = 0であればステヅプ: P 5 へ進み、 t≠ 0であればステップ P 13へ進む。 ここでは、 まず、 t = 0とし てステツプ P 5へ進む。
ステツプ P 5では、 周波数対選択部 103が、 入力されたビ一ト信号の周波 数 U (t) iと D (t) jから目標に対応する周波数対 {U (t) x,D (t ) } を選択する。
ステップ P 6では、 距離 ·速度導出部 22が周波数対 {U (t) x,D (t ) } を入力して、 式 (5)、 (6) により現時点の目標の相対距離 r (t ) と相対速度 v (t ) を求め、 スィッチ部 104を介して計測結果として出力す る。
ステップ P 7では、 距離 ·速度予測部 105が現時点の目標の相対距離 r ( t) と相対速度 V (t) を入力し、 目標の運動を想定して次回観測時刻 t +厶 tにおける距離の予測値 Rp (t +At) と速度の予測値 Vp (t+厶 t) を 計算する。 例えば、 目標が等速運動をしていると想定した場合、 以下の式 (1 1) s (12) により計算される。
Rp (t + At) = r(t) + Δί x v(t) (11)
Figure imgf000012_0001
さらに、 周波数予測部 106が距離の予測値 R p ( t +△ t ) と速度の予測 値 Vp (t +Δ t ) を入力してァヅプフェーズにおけるビート信号の周波数の 予測値 Up ( t + Δ t ) xを式 ( 1 ) から計算し、 周波数予測部 107が距離 の予測値 Rp (t +Δ t ) と速度の予測値 Vp (t+Δΐ) を入力してダウン フェーズにおけるビート信号の周波数の予測値 Dp (t +At) xを式 (2) から計算する。
ステヅプ P8では、 信号処理装置内部の時刻 tに厶 tが加えられ、 t+Δΐ における計測を行うため、 ステップ P 1へ戻る。
ステップ P 1では、 上記と同様にしてビート周波数 U (t +Δ t) iが抽出 される。
ステップ P 2では、 t≠ 0としてステップ P 9へ進む。
ステップ P 9では、 周波数比較部 108があらかじめ設定された許容周波数 幅 Fuに基づき、 式 (13) を満たすビ一ト周波数 U (t +At) iの有無を 判定する。 すなわち、 アップフェーズで目標が検知されるか否かを判定する。
I Up(t + At)x - U(t + At)i I≤ Fu (13) ステップ P I 0では、 ビート周波数 U (t+At) iがあれば、 それを U ( t +Δ t ) xとしてステップ: P 11へ進み、 なければステップ P 3に進む。 こ こでは、 まず、 U (t +At) Xがあるとしてステップ P 1 1へ進む。
ステップ P 1 1では、 距離 ·速度平滑部 1 10が予測値 R p ( t + Δ t )、 Vp (t +Δ t )、 Up (t+Δΐ) xと観測値 U (t +At) xから距離の 平滑値 R s (t +At) と速度の平滑値 Vs (t +At) を以下の式 ( 14) 、 ( 15) で計算する。
Rs(t + Δ = Rp(t + Δί) + αχ pp(t + At)x -U(t + At)x] ( 1 ) Vs(t + At) = Vp(t + Αή + βχ pp(t + Αήχ一 U(t + Αήχ) ( 1 5) このとき、 スィヅチ部 1◦ 4では、 Bu端子に接続となり、 式 (14)、 ( 1 5 ) の距離の平滑値 R s ( t +Δ t ) と速度の平滑値 V s ( t +Δ t ) が計 測結果として出力される。 すなわち、 アップフェーズのビート周波数のみで目 標の距離と速度が得られるようになる。
ステップ P 1 2ではステップ P 7と同様に、 距離 ·速度予測部 105が式 ( 14) 、 ( 15) の距離の平滑値 Rs (t +At) と速度の平滑値 Vs (t + A t) を現時点の距離と速度として入力し、 目標の運動を想定して次回観測時 刻 t + 2 Atにおける距離の予測値 Rp (t + 2At) と速度の予測値 Vp ( t + 2Δ1 ) を計算する。
さらに、 周波数予測部 106が距離の予測値 R p ( t + 2 Δ t ) と速度の予 測値 Vp (t +2At) を入力してアップフェーズにおけるビート周波数の予 測値 Up (t + 2At) xを式 (1) から計算し、 周波数予測部 10 Ίが予測 値 Rp (t +A t) と Vp (t+厶 t) を入力してダウンフェーズにおけるビ ート周波数の予測値 Dp (t +2Δ t) xを式 (2) から計算する。
ステヅプ P 8では、 信号処理装置内部の時刻 tに Δ tが加えられ、 t + 2 Δ tにおける計測を行うため、 ステップ P 1へ戻り、 上記の動作を繰り返す。 次に、 ステップ P 10において、 U (t +At) Xがなく、 すなわち、 目標 が検知されなく、 ステップ P 3へ進む場合を以下に説明する。 ステップ P 3で は、 上記と同様にして D (t +Δΐ) jが抽出される。
ステップ P 4では、 t≠0としてステップ P 1 3へ進む。
ステップ P 1 3では、 周波数比較部 1 09があらかじめ設定された許容周波 数幅 Fdに基づき、 式 (1 6) を満たす D (t +A t) jの有無が判定される \Dp(t + At)y - D(t + At)j\≤Fd (16) ステップ P I 4では、 D (t+At) jがなければステップ P 5へ進み、 上 記の動作を行う。
一方、 D (t +Δ t ) jがあればそれを D (t +厶 t ) yとしてステップ P 15に進む。
ステップ P 15では、 ステップ P 1 1と同様に距離 ·速度平滑部 1 1 1が予 測値 Rp (t+厶 t) 、 Vp (t +At) 、 Dp (ΐ +Δ t ) yと観測値 D ( t yから距離の平滑値 Rs (t +Δΐ) と速度の平滑値 Vs (t +Δ t) を以下の式で計算する。
Rs(t + At) = Rp(t + At) + x {Dp(t + At)x - D(t + At)x} (17)
Vs(t + At) = Vp(t + Αή + βχ {Dp(t + At)x一 D(t + At)x} (18) このとき、 スィツチ部 104では Bd端子に接続となり、 式 ( 17)、 (1
8) の距離の平滑値 Rs (t +Δΐ) と速度の平滑値 Vs (t -f Δ t ) が計測 結果として出力される。 すなわち、 ダウンフェーズのビート周波数のみで目標 の距離と速度が得られるようになる。
ステヅプ P 16では、 ステップ P 12と同様に、 距離 ·速度予測部 105が 式 ( 17 )、 ( 18) の距離の平滑値 R s ( t +△ t ) と速度の平滑値 V s ( t +Δΐ) を現時点の距離と速度として入力し、 目標の運動を想定して次回観 測時刻 t + 2 Atにおける距離の予測値 Rp (t + 2At) と速度の予測値 V
P (t + 2At) を計算する。
さらに、 周波数予測部 106が Hp (t + 2Δ t ) と Vp (t + 2Δΐ) を 入力してアップフェーズにおけるビート周波数の予測値 Up (t + 2Δΐ) x を式 (1) から計算し、 周波数予測部 107が (t+Δΐ) と Vp (t + At) を入力してダウンフェーズにおけるビート周波数の予測値 Dp (t +2
At) xを式 (2) から計算する。
ステップ P 8では、 信号処理装置内部の時刻 tに厶 tが加えられ、 t + 2A tにおける計測を行うため、 ステップ P 1へ戻り、 上記の動作を繰り返す。 なお、 図 1の各構成要素は、 それぞれ専用の演算回路で実現してもよいし、 C P U (Central Processing Unit) あるいは D S P (Digital Signal Proces sor) に組み込まれたプログラムで実現してもよい。
また、 図 2において、 ステップ P 0から P 7は、 現在の計測段階を構成し、 ステップ P 8→P 1 - P 2 P 9〜P 1 2は、 アップフエ一ズにおけるビ一ト 周波数のみを利用して次回以降の観測時における目標の相対距離と相対速度を 計測する次回以降の計測段階を構成するものであるが、 アップフエ一ズに代え てダウンフエ一ズにおけるビート周波数のみを利用するようにしてもよく、 ダ ゥンフェ一ズにおけるビート周波数のみを利用して計測する計測段階を構成す る場合には、 ステップ P 3 P 4 P 1 3〜P 1 6を、 アップフェーズにおけ るビート周波数のみを利用する計測段階として入れ換えても良い。
したがって、 上述した実施の形態によれば、 一方のフエ一ズの周波数のみで 目標の相対距離と相対速度を得るようにしたので、 不検知目標や偽目標を減ら して高い信頼性のある計測結果を得ることができる。
また、 一方のフェーズの周波数のみによる計測処理を優先して行い、 目標が 検知されなかった場合にのみ他方の周波数による計測処理を行うようにしたの で、 不検知目標を減らして高い信頼性のある計測結果を得ることができる。 また、 一方のフェ一ズの周波数のみによる計測処理において観測値と予測値 と平滑値を用いるようにしたので、 偽目標を減らして高い信頼性のある計測結 果を得ることができる。
さらに、 一方のフェーズの周波数のみによる計測処理において、 式 (1 4 )
、 ( 1 5 ) 、 ( 1 7 ) 、 ( 1 8 ) を用いるようにしたので、 精度の良い計測結 果を得ることができる。 産業上の利用の可能†生
以上のように、 この発明によれば、 アップ(あるいはダウン) フェーズのビ
—ト信号の周波数の時系列方向の情報を利用してアップ (あるいはダウン) フ エーズのビート信号の周波数のみで目標の相対距離と相対速度を求めるように することで、 偽目標や不検知目標を減らして信頼性の高い計測結果を得ること ができる距離 ·速度計測方法とその方法を用いたレーダ信号処理装置を得るこ

Claims

請 求 の 範 囲
1 . 三角波の周波数変調を施した連続波レーダの送信信号と受信信号と のビ一ト信号に基づいて目標の相対距離及び相対速度を計測する距離 ·速度計 測方法において、
アップフェーズ (変調周波数上昇期間) とダウンフエ一ズ (変調周波数下降 期間) とにおけるビート信号からビート周波数を抽出し、 抽出された周波数の うち、 目標に対する対応するビ一ト周波数の周波数対を選択し、 選択された周 波数対に基づいて観測値として目標の相対距離と相対速度を求め、 さらに観測 値から次回観測時の予測値として相対距離と相対速度及びビート周波数を求め る現在の計測段階と、
次回以降の観測時に、 アップフェ一ズまたはダウンフェーズのいずれか一方 のフェーズにおけるビート周波数のみを利用して次回以降の観測時における目 標の相対距離及び相対速度を計測する次回以降の計測段階と
を備えたことを特徴とする距離 ·速度計測方法。
2 . 請求項 1に記載の距離 ·速度計測方法において、
上記次回以降の計測段階は、 アップフェーズまたはダウンフェーズのいずれ か一方のフェーズにおけるビート周波数のみで処理することを優先し、 当該一 方のフエ一ズで目標が検知されなかった場合にのみ、 他方のフェーズにおける ビート周波数のみで処理する
ことを特徴とする距離 ·速度計測方法。
3 . 請求項 2に記載の距離 ·速度計測方法において、
上記次回以降の計測段階は、 ァップフェーズまたはダウンフェーズのいずれ か一方のフェーズにおけるビート周波数のみで目標の相対距離と相対速度を得 る際に、 観測値、 予測値、 及び観測値と予測値とから得られる平滑値を用いる ことを特徴とする距離 ·速度計測方法。
4. 請求項 3に記載の距離 ·速度計測方法において、
上記次回以降の計測段階は、 次回観測時刻 t +Δ tにおける距離の予測値を Rp (t+At) 、 速度の予測値を Vp (t +Δΐ) 、 ァヅプフェーズにおけ るビート周波数の予測値を Up (t+At) x、 ダウンフェーズにおけるビー ト周波数の予測値を Dp (t +厶 t) x、 アップフェーズにおけるビート周波 数の観測値を U (t +Δΐ) χ、 ダウンフェーズにおけるビート周波数の観測 値を D (t +Δΐ) Xとしたとき、 距離の平滑値 Rs (t +厶 t) と速度の平 滑値 Vs (t +Δΐ) を、 下記の式
Rs(t + At) = Rp(t + At) + ax pp(t + At)x ~U(t + At)x)
Vs(t + Δί) = Vp(t + Αί) + βχ pp(t + Δί)χ一 U(t + Δί) }
Rs(t + At) == Rp(t + At) + « x {D?(t + At)x -D(t + At)x}
Vs(t + At) = Vp(t + ht) + β {Dp(t + M)x -D(t + Δί)χ}
なお、 ひ、 ?は定数
を用いて求める
ことを特徴とする距離 ·速度計測方法。
5. 三角波の周波数変調を施した連続波レーダの送信信号と受信信号と のビ一ト信号に基づいて目標の相対距離及び相対速度を計測するレーダ信号処 理装置において、
ァヅプフェーズとダウンフェーズにおけるビー卜信号を入力し、 各ビート信 号の周波数を抽出する周波数分析手段と、
上記周波数分析手段により抽出されたアップフェーズとダウンフエ一ズにお けるビート信号の周波数から目標に対応する周波数対を選択する周波数対選択 手段と、
上記周波数選択手段により選択された周波数対を入力して現時点の目標の相 対距離と相対速度を求める距離 ·速度導出手段と、
上記距離 ·速度導出手段からの現時点の目標の相対距離と相対速度を入力し 、 目標の運動を想定して所定時刻後における距離の予測値と速度の予測値を計 算する距離 ·速度予測手段と、 上記距離 ·速度予測手段からの距離の予測値と速度の予測値を入力してアツ プフヱ一ズまたはダウンフェーズにおけるビート信号の周波数の予測値を計算 する周波数予測手段と、
上記周波数予測手段により予測されたビート信号の周波数の予測値と所定時 刻後におけるビート信号の周波数とを比較してその差があらかじめ設定された 許容周波数幅の範囲内に存在するビート周波数の有無を判定する周波数比較手 段と、
上記距離 ·速度予測手段からの距離と速度の予測値及び上記周波数予測手段 からのビ一ト周波数の予測値と、 上記周波数分析手段により得られる所定時刻 後におけるビート信号の周波数の観測値とに基づいて距離と速度の平滑値を求 める距離 ·速度平滑手段と
を備え、 上記周波数予測手段により得られるアップフ工一ズまたはダウンフ ェーズのいずれか一方のフエ一ズにおけるビ一ト周波数のみを利用して次回以 降の観測時における目標の相対距離及び相対速度を上記距離 ·速度平滑手段か ら得ることを特徴とするレ一ダ信号処理装置。
6 . 請求項 5に記載のレ一ダ信号処理装置において、
上記周波数予測手段と上記周波数比較手段及び上記距離 ·速度平滑手段とし て、 アップフエ一ズまたはダウンフェーズのフヱ一ズ每に一対備え、 上記次回 以降の計測時に、 アップフェーズまたはダウンフェーズのいずれか一方のフエ ーズにおける上記周波数予測手段と上記周波数比較手段及び上記距離 ·速度平 滑手段による処理を優先し、 当該一方のフェーズで目標が検知されなかった場 合にのみ、 他方のフェーズにおける上記周波数予測手段と上記周波数比較手段 及び上記距離■速度平滑手段のみで処理を行う
ことを特徴とするレーダ信号処理装置。
7 . 請求項 5に記載のレーダ信号処理装置において、
上記距離 ·速度平滑手段は、 次回観測時刻 t + Δ tにおける距離の予測値を
R p ( t + Δ t ) 、 速度の予測値を V p ( t + A t ) 、 アップフエ一ズにおけ るビート周波数の予測値を Up (t+At) x、 ダウンフェーズにおけるビー ト周波数の予測値を Dp (t +Δΐ) χ、 アップフェーズにおけるビート周波 数の観測値を U (t +At ) x、 ダウンフヱ一ズにおけるビート周波数の観測 値を D (t +Δ t ) xとしたとき、 距離の平滑値 Rs (t +Δ t) と速度の平 滑値 Vs (t +Δΐ) を、 下記の式
Rs(t + ΔΛ = Rp(t + At) + ax pp(t + Α χ -U(t + At)x}
Vs(t + Δί) = Vp(t + Αί) + βχ pp(t + Δί) 一 U(t + At)x}
Rs(t + Δί、 = Rp{t + Δί) + α χ ^)p(t + t)x - D(t + At)x]
Vs(t + At) = Vp(t + Αί) + βχ lDp(t + At)x -D(t + Α χ]
なお、 ひ、 ?は定数
を用いて求める
ことを特徴とするレーダ信号処理装置。
PCT/JP2001/001264 2001-02-21 2001-02-21 Procede de mesure de distance/vitesse et dispositif de traitement de signaux radar WO2002067010A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/258,279 US6788247B2 (en) 2001-02-21 2001-02-21 Distance/velocity measuring method and radar signal processing device
DE60140734T DE60140734D1 (de) 2001-02-21 2001-02-21 Abstands-/geschwindigkeitsmessverfahren und radarsignalverarbeitungseinrichtung
PCT/JP2001/001264 WO2002067010A1 (fr) 2001-02-21 2001-02-21 Procede de mesure de distance/vitesse et dispositif de traitement de signaux radar
EP01906178A EP1275977B1 (en) 2001-02-21 2001-02-21 Distance/velocity measuring method and radar signal processing device
JP2002566681A JP4131464B2 (ja) 2001-02-21 2001-02-21 距離・速度計測方法およびレーダ信号処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/001264 WO2002067010A1 (fr) 2001-02-21 2001-02-21 Procede de mesure de distance/vitesse et dispositif de traitement de signaux radar

Publications (1)

Publication Number Publication Date
WO2002067010A1 true WO2002067010A1 (fr) 2002-08-29

Family

ID=11737042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001264 WO2002067010A1 (fr) 2001-02-21 2001-02-21 Procede de mesure de distance/vitesse et dispositif de traitement de signaux radar

Country Status (5)

Country Link
US (1) US6788247B2 (ja)
EP (1) EP1275977B1 (ja)
JP (1) JP4131464B2 (ja)
DE (1) DE60140734D1 (ja)
WO (1) WO2002067010A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144665A (ja) * 2002-10-25 2004-05-20 Denso Corp 距離予測方法、及びレーダ装置
WO2005066654A1 (ja) * 2004-01-07 2005-07-21 Murata Manufacturing Co., Ltd. レーダ
JP2010019824A (ja) * 2008-06-12 2010-01-28 Mitsubishi Electric Corp レーダ装置
JP2014153182A (ja) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp レーダ装置及び目標検出方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801068B2 (ja) * 2002-02-19 2006-07-26 株式会社デンソー Fmcwレーダ装置,プログラム
US7136753B2 (en) * 2002-12-05 2006-11-14 Denso Corporation Object recognition apparatus for vehicle, inter-vehicle control apparatus, and distance measurement apparatus
JP2006266907A (ja) * 2005-03-24 2006-10-05 Mitsubishi Electric Corp レーダ装置およびそのレーダ信号処理方法
JP4843003B2 (ja) * 2008-08-05 2011-12-21 富士通テン株式会社 信号処理装置、レーダ装置、及び信号処理方法
US8149160B2 (en) * 2009-10-27 2012-04-03 Systems And Materials Research Corporation Method and apparatus using non-contact measuring device to determine rail distance traveled
CN111025254A (zh) * 2019-12-25 2020-04-17 惠州市德赛西威智能交通技术研究院有限公司 基于数字滤波器的车载毫米波雷达近距虚假目标消除方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142338A (ja) * 1991-11-26 1993-06-08 Fujitsu Ten Ltd ミリ波レーダ距離速度測定装置
JPH05150035A (ja) * 1991-12-02 1993-06-18 Fujitsu Ten Ltd ミリ波レーダ距離速度測定装置
JPH05249233A (ja) * 1992-03-09 1993-09-28 Fujitsu Ten Ltd ミリ波レーダ装置
US5619208A (en) 1995-01-24 1997-04-08 Nippondenso Co., Ltd. FM-CW radar system
US5905458A (en) * 1996-11-19 1999-05-18 Honda Giken Kogyo Kabushiki Kaisha FM radar apparatus
US5963162A (en) * 1997-07-16 1999-10-05 Honda Giken Kogyo Kabushiki Kaisha Object detecting system
JPH11271429A (ja) * 1998-03-24 1999-10-08 Toyota Central Res & Dev Lab Inc Fmcwレーダ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138129A (ja) 1987-11-24 1989-05-31 Neos Co Ltd 酸化物超伝導体薄膜の製造方法
JP2778864B2 (ja) 1991-11-22 1998-07-23 富士通テン株式会社 ミリ波レーダ距離速度測定装置
JP3946852B2 (ja) 1998-02-20 2007-07-18 三菱電機株式会社 レーダ装置およびこのレーダ装置における目標相対距離・相対速度探索方法
JP3565713B2 (ja) 1998-05-27 2004-09-15 富士通テン株式会社 Fm−cw方式スキャンレーダ用信号処理装置
DE19942665B4 (de) * 1998-09-07 2014-02-13 Denso Corporation FM-CW-Radarvorrichtung zum Messen der Entfernung zu einem Target und der relativen Geschwindigkeit des Targets
JP4038291B2 (ja) 1998-12-11 2008-01-23 三菱電機株式会社 レーダ装置
JP3703014B2 (ja) * 2001-05-11 2005-10-05 三菱電機株式会社 レーダ信号処理装置、及び距離・速度計測方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142338A (ja) * 1991-11-26 1993-06-08 Fujitsu Ten Ltd ミリ波レーダ距離速度測定装置
JPH05150035A (ja) * 1991-12-02 1993-06-18 Fujitsu Ten Ltd ミリ波レーダ距離速度測定装置
JPH05249233A (ja) * 1992-03-09 1993-09-28 Fujitsu Ten Ltd ミリ波レーダ装置
US5619208A (en) 1995-01-24 1997-04-08 Nippondenso Co., Ltd. FM-CW radar system
US5905458A (en) * 1996-11-19 1999-05-18 Honda Giken Kogyo Kabushiki Kaisha FM radar apparatus
US5963162A (en) * 1997-07-16 1999-10-05 Honda Giken Kogyo Kabushiki Kaisha Object detecting system
JPH11271429A (ja) * 1998-03-24 1999-10-08 Toyota Central Res & Dev Lab Inc Fmcwレーダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1275977A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144665A (ja) * 2002-10-25 2004-05-20 Denso Corp 距離予測方法、及びレーダ装置
US7271761B2 (en) 2002-10-25 2007-09-18 Denso Corporation Distance calculating method and system
WO2005066654A1 (ja) * 2004-01-07 2005-07-21 Murata Manufacturing Co., Ltd. レーダ
JP2010019824A (ja) * 2008-06-12 2010-01-28 Mitsubishi Electric Corp レーダ装置
JP2014153182A (ja) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp レーダ装置及び目標検出方法

Also Published As

Publication number Publication date
US20030142009A1 (en) 2003-07-31
EP1275977A4 (en) 2004-06-02
JPWO2002067010A1 (ja) 2004-06-24
EP1275977B1 (en) 2009-12-09
EP1275977A1 (en) 2003-01-15
DE60140734D1 (de) 2010-01-21
JP4131464B2 (ja) 2008-08-13
US6788247B2 (en) 2004-09-07

Similar Documents

Publication Publication Date Title
US7567204B2 (en) Method for determining noise floor level and radar using the same
US7187321B2 (en) Interference determination method and FMCW radar using the same
US6795012B2 (en) Radar for detecting a target based on a frequency component
RU2419813C2 (ru) Устройство измерения расстояния и способ измерения расстояния
US10649074B2 (en) Target detector and target detection method for detecting target using radar waves
WO2002067010A1 (fr) Procede de mesure de distance/vitesse et dispositif de traitement de signaux radar
JP2010019824A (ja) レーダ装置
JP4038291B2 (ja) レーダ装置
US9372260B2 (en) Object detecting device, object detecting method, object detecting program, and motion control system
JP4566572B2 (ja) 車載レーダ装置
US6825799B2 (en) Radar apparatus equipped with abnormality detection function
US7312745B2 (en) Radar
JP2006266907A (ja) レーダ装置およびそのレーダ信号処理方法
JPH07151852A (ja) Fm−cwレーダ装置
KR102610917B1 (ko) Cw 레이더 및 cw 레이더를 이용한 거리 측정 방법
JP2017194379A (ja) レーダ装置、位相差折返判定方法
JP6874686B2 (ja) ターゲット情報検出システム及びターゲット情報検出方法
JP4831810B2 (ja) 定在波レーダおよび距離測定方法
JP3853642B2 (ja) 自動車用レーダ装置
KR100643939B1 (ko) 레이더 장치 및 레이더의 거리측정 방법
JP3902738B2 (ja) レーダのデータ処理装置
JPH11352213A (ja) パルスレーダ装置
JP2002311131A (ja) 車両の物体検知装置
JP2011069638A (ja) レーダ装置
JP2003161775A (ja) 目標検知方法およびレーダ装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 566681

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001906178

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001906178

Country of ref document: EP