JP3703014B2 - レーダ信号処理装置、及び距離・速度計測方法 - Google Patents

レーダ信号処理装置、及び距離・速度計測方法 Download PDF

Info

Publication number
JP3703014B2
JP3703014B2 JP2001141655A JP2001141655A JP3703014B2 JP 3703014 B2 JP3703014 B2 JP 3703014B2 JP 2001141655 A JP2001141655 A JP 2001141655A JP 2001141655 A JP2001141655 A JP 2001141655A JP 3703014 B2 JP3703014 B2 JP 3703014B2
Authority
JP
Japan
Prior art keywords
range gate
frequency
target
gate data
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001141655A
Other languages
English (en)
Other versions
JP2002341019A (ja
Inventor
雅 三本
貴彦 藤坂
幸一 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001141655A priority Critical patent/JP3703014B2/ja
Priority to US10/137,280 priority patent/US6611225B2/en
Priority to DE10220357A priority patent/DE10220357B4/de
Publication of JP2002341019A publication Critical patent/JP2002341019A/ja
Application granted granted Critical
Publication of JP3703014B2 publication Critical patent/JP3703014B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Description

【0001】
【発明の属する技術分野】
この発明は、たとえば車両等の移動体に搭載されるレーダ装置に係り、目標となる対象物を検出してその相対距離と相対速度を計測することができるレーダ信号処理装置、及び距離・速度計測方法に関するものである。
【0002】
【従来の技術】
車両等に搭載されるレーダは、対象とする目標の距離が数m〜数百m程度の範囲であり、また、アンテナは送信と受信を兼用にして1つにした方が装置が小型になり搭載には望ましい。このような要求を満たす公知な技術として、FMICW(Frequency Modulated Interrupted Continuous Wave)レーダがある。
【0003】
従来のレーダ装置について図面を参照しながら説明する。
【0004】
図10は、FMICWレーダの送受信装置の基本構成を示すブロック図である。
【0005】
図10において、1はレーダ送受信装置、2は送受信制御部、3は変調波形発生部、4はVCO(Voltage Controlled Oscillator)、5は第1のスイッチ、6は第2のスイッチ、7はアンテナ、8は目標、9a、9bは分配回路、10は移相回路、11a、11bはミクサである。
【0006】
また、図11は、図10で示した受信信号や制御信号を入力するレーダ信号処理装置の構成を示す図である。
【0007】
図11において、12はレーダ信号処理装置、13は信号処理制御部、14は第3のスイッチ、15a、15bはADC(Analog to Digital Converter)、16a、16bはメモリ、17a、17bはレンジゲート、18a、18bは周波数抽出部、19は距離・速度導出部である。
【0008】
つぎに、従来のレーダ装置の動作について図面を参照しながら説明する。
【0009】
図12は、FMICWレーダにおける各信号の時間に対する周波数を示す図である。以下では、時間の経過につれて周波数が高くなる変調区間をアップフェーズ、時間の経過につれて周波数が低くなる変調区間をダウンフェーズとする。
【0010】
図12において、20aはアップフェーズのVCO信号、20bはダウンフェーズのVCO信号、21aはアップフェーズの送信信号、21bはダウンフェーズの送信信号、22aはアップフェーズのローカル信号、22bはダウンフェーズのローカル信号、23aはアップフェーズの受信信号、23bはダウンフェーズの受信信号、24aはアップフェーズのビート信号、24bはダウンフェーズのビート信号である。
【0011】
図13は、図10の第1のスイッチ5、及び第2のスイッチ6における接続端子を時間に対して示す図である。
【0012】
図14は、図11のメモリ16a、16bにおける、アップフェーズとダウンフェーズのビート信号をサンプルして生成するデータマトリクスを示す図である。
【0013】
図15は、図11に示すレーダ信号処理装置の信号処理手順を示すフローチャートである。
【0014】
FMICWレーダの動作を説明する。FMICWレーダは、その名が示す通り周波数変調をかけた連続波を間欠的に用いる。
【0015】
図10において、レーダ送受信装置1内にある送受信制御部2の制御により、変調波形発生部3で生成されたアップフェーズとダウンフェーズから成る変調波形がVCO4へ入力され、図12に示すVCO信号20となり、第1のスイッチ5に入力される。
【0016】
第1のスイッチ5と第2のスイッチ6は、送受信制御部2によって制御され、図13に示すようにあらかじめ設定された時間τだけt端子へ、それ以外の時間T−τの間はr端子へそれぞれ同期して接続される動作を繰り返す。
【0017】
まず、アップフェーズの期間において、時間τだけt端子に接続されたVCO信号20aは送信信号21aとなり、第1のスイッチ5と第2のスイッチ6を経由してアンテナ7に入力され、アンテナ7からから空中へ放射される。
【0018】
空中へ放射された送信信号21aは、ある相対距離Rに存在し、ある相対速度Vで移動している目標8に照射され、その一部が反射される。その反射波は、相対速度Vに応じたドップラー周波数分Fvだけシフトし、送信信号21aからKτ=2R/c(cは電波の速度)だけ遅れた時間にアンテナ7で受信されて図12の受信信号23aとなり、時間T−τだけr端子に接続された第2のスイッチ6を経由して分配回路9aへ入力される。分配回路9aは、入力された信号を2分割し、それぞれミクサ11aとミクサ11bへ入力する。
【0019】
一方、時間T−τだけr端子に接続された第1のスイッチ5を経由したVCO信号20aは、ローカル信号22aとして分配回路9bへ入力される。分配回路9bは、入力された信号を2分割し、ミクサ11aと移相回路10へ入力する。
【0020】
移相回路10は、入力された信号をπ/2ラジアンだけ位相をシフトさせ、ミクサ11bへ出力する。
【0021】
各ミクサ11a、11bに入力された受信信号23aとローカル信号22aは、時間T−τ内のKτ〜(K+1)τの期間においてミキシングされ、受信信号23aとローカル信号22aの周波数差が周波数として表れるビート信号24aとなる。
【0022】
このとき、ミクサ11aによるビート信号24aは、複素信号の実部(I)に、ミクサ11bによるビート信号24aは、複素信号の虚部(Q)に相当するので、ビート信号24aは、複素信号として得られる。
【0023】
ダウンフェーズの期間においても、上記のアップフェーズの期間と同様にして、ビート信号24bが得られる。
【0024】
このとき、アップフェーズにおけるビート信号24aを示す、Sup(t)は式(1)で、ダウンフェーズにおけるビート信号24bを示す、Sdn(t)は式(2)で表される。
【0025】
【数1】
Figure 0003703014
【0026】
ビート信号(IとQ)と送受信制御部2からの制御信号(x)は、レーダ送受信装置1からレーダ信号処理装置12へ入力される。
【0027】
送受信制御部2からの制御信号により、レーダ信号処理装置12の信号処理制御部13は、アップフェーズの期間では第3のスイッチ14をU端子へ接続し、ダウンフェーズの期間では第3のスイッチ14をD端子へ接続する。
【0028】
これにより、アップフェーズのビート信号は、τ〜Tの時間においてτ毎にADC15aによってサンプリングされ、メモリ16aに格納される。また、同様に、ダウンフェーズのビート信号は、τ〜Tの時間においてτ毎にADC15bによってサンプリングされ、メモリ16bに格納される。
【0029】
いずれのビート信号も格納の際には、信号処理制御部13によって図14に示されるように、送信信号21aあるいは21bであるP(1)に続くN個のサンプルを順に{P(1),R(1)}、{P(1),R(2)}、{P(1),R(3)}、…、{P(1),R(N)}として格納する。
【0030】
P2以降も同様に、{P(2),R(1)}、{P(2),R(2)}、{P(2),R(3)}、…、{P(2),R(N)}の様にして格納して、各フェーズ毎にデータマトリクスを生成する。このとき、R(k)(k=1〜N)の行には、式(5)で示される範囲の相対距離にある目標の信号が含まれている。
【0031】
【数2】
Figure 0003703014
【0032】
送受信制御部2からの制御信号により、最後の送信信号P(M)についてのサンプルが終了する時間を信号処理制御部13が判断し、以後の信号処理を進めるが、これより先の詳細な動作について、図15を用いて説明する。
【0033】
図15に示す手順において、まず、ST1で、信号処理制御部13が、自身に備わっているレンジゲート番号用カウンタ(内部変数)kをk=1とする。
【0034】
ST2では、信号処理制御部13の制御により、レンジゲート17aがk番目の端子に接続することでアップフェーズにおけるk番目のレンジゲートデータ列{P(1),R(k)}、{P(2),R(k)}、…、{P(M),R(k)}をメモリ16aから取り出し、周波数抽出部18aに入力する。周波数抽出部18aは、このレンジゲートデータ列について例えばFFT(Fast Fourier Transform)により周波数分析を行ない、目標に対応するビート周波数の抽出結果を信号処理制御部13へ送る。
【0035】
ST3では、信号処理制御部13が周波数抽出部18aからの結果を受け、ビート周波数が抽出されたならST4へすすみ、抽出されなければST7へすすむ。
【0036】
ST4では、ST2と同様に、信号処理制御部13の制御により、レンジゲート17bがk番目の端子に接続することでダウンフェーズにおけるk番目のレンジゲートデータ列{P(1),R(k)}、{P(2),R(k)}、…、{P(M),R(k)}をメモリ16bから取り出し、周波数抽出部18bに入力する。周波数抽出部18bは、このレンジゲートデータ列について例えばFFTにより周波数分析を行ない、目標に対応するビート周波数の抽出結果を信号処理制御部13へ送る。
【0037】
ST5では、信号処理制御部13が周波数抽出部18bからの結果を受け、ビート周波数が抽出されたならST6へすすみ、抽出されなければST7へすすむ。
【0038】
ST6では、距離・速度導出部19が、抽出されたアップフェーズにおけるビート周波数U1、U2、...AUpと、ダウンフェーズにおけるビート周波数D1、D2、...ADqについて総当たりで組合せ、式(6)で求めた相対距離Rが式(5)に示すRkの範囲となる周波数対Cij(Ui,Dj)を探索し、それが見つかった場合には、式(7)を用いて目標の相対速度Vを求める。
【0039】
【数3】
Figure 0003703014
【0040】
ST7では、信号処理制御部13がカウンタkの値をNと比較し、等しくなければST8にすすみ、等しければST9にすすむ。
【0041】
ST8では、信号処理制御部13がカウンタkの値をインクリメントしてST2にすすむ。
【0042】
またST9では、信号処理制御部13が動作終了の判断を行ない、終了でなければST1へ、終了であれば終了する。例えば、使用者からの命令が信号処理制御部13へ入力された場合に動作終了となる。
【0043】
上記のように構成された従来のFMICWレーダでは、各フェーズについてN個ある距離ビン全てに対して、周波数抽出を行わなければならず、実時間で処理しきれない場合があった。
【0044】
この課題に対するの解決手段として、特開2000−275333号公報では、異なる複数のレンジゲートデータ列を加算して処理すべきレンジゲート数を減らしている。
【0045】
図16は、これを実現するための他の従来のレーダ信号処理装置の構成を示す図である。
【0046】
図16において、25は加算レンジゲート設定部、26a、26bは複数レンジゲートデータ加算部である。
【0047】
図17は、他の従来のレーダ信号処理装置の信号処理手順を示すフローチャートである。
【0048】
FMICWレーダの動作を説明する。メモリ16a、16bにそれぞれアップフェーズ、ダウンフェーズのビート信号が格納され、データマトリクスが生成されるまでは、上記の従来のFMICWレーダと同様な動作である。
【0049】
まず、図17のST1で、信号処理制御部13が、自身に備わっているレンジゲート番号用カウンタkをk=1とする。
【0050】
ST10では、信号処理制御部13が最後の送信信号P(M)についてのサンプルが終了したことを加算レンジゲート設定部25に伝え、加算レンジゲート設定部25はこれをうけてから複数レンジゲート加算部26aに算術加算を行なうレンジゲート番号を出力する。例えば、i番目とi+j番目のレンジゲートデータを加算する場合には、複数レンジゲート加算部26aがアップフェーズのデータについて、{P(1),R(i)}+{P(1),R(i+j)}、{P(2),R(i)}+{P(2),R(i+j)}、…、{P(m),R(i)}+{P(m),R(i+j)}のように算術加算を行ない、この結果から新たに、{P(1),RR(h)}、{P(2),RR(h)}、…、{P(m),RR(h)}というデータ列を生成する。
【0051】
ST11では、周波数抽出部18aがST9で生成された新たなデータ列について、例えばFFTなどにより周波数分析を行ない、目標に対応するビート周波数の抽出結果を信号処理制御部13へ送る。
【0052】
ST3では、信号処理制御部13が周波数抽出部18aからの結果を受け、ビート周波数が抽出されたならST12へすすみ、抽出されなければST14へすすむ。
【0053】
ST12では、ST10と同様に、加算レンジゲート設定部25が複数レンジゲート加算部26bに算術加算を行なうレンジゲート番号を出力する。例えば、i番目とi+j番目のレンジゲートデータを加算する場合には、複数レンジゲート加算部26bがダウンフェーズのデータについて、{P(1),R(i)}+{P(1),R(i+j)}、{P(2),R(i)}+{P(2),R(i+j)}、…、{P(m),R(i)}+{P(m),R(i+j)}のように算術加算を行ない、この結果から新たに、{P(1),RR(h)}、{P(2),RR(h)}、…、{P(m),RR(h)}というデータ列を生成する。
【0054】
ST13では、ST11と同様に、周波数抽出部18bがST12で生成された新たなデータ列について、例えばFFTなどにより周波数分析を行ない、目標に対応するビート周波数の抽出結果を信号処理制御部13へ送る。
【0055】
ST5では、信号処理制御部13が周波数抽出部18bからの結果を受け、ビート周波数が抽出されたならST6へすすみ、抽出されなければST14へすすむ。
【0056】
ST6では、上記公知のFMICWレーダと同様にして、目標の相対距離と相対速度を求める。
【0057】
ST14では、信号処理制御部13がカウンタkの値をH(=N/2)と比較し、等しくなければST8にすすみ、等しければST9にすすむ。
【0058】
ST8では、信号処理制御部13がカウンタkの値をインクリメントしてST10にすすむ。
【0059】
また、ST9では、信号処理制御部13が動作終了の判断を行ない、終了でなければST1へ、終了であれば終了する。例えば、使用者からの命令が信号処理制御部13へ入力された場合に動作終了となる。
【0060】
【発明が解決しようとする課題】
上記のように構成された従来のFMICWレーダでは、異なるレンジゲートに存在する異なる目標に相当するビート周波数が誤って周波数対として選ばれる場合があり、その結果、本来存在しないはずの目標の距離・速度が現れ、計測結果の信頼性を低下させる要因となっていた。
【0061】
この発明は、前述した問題点を解決するためになされたもので、通常は処理量の少ない信号処理を行ない、目標が存在する可能性が高いレンジゲートデータ列にのみ、負荷の大きな高精度な信号処理を行なうことで、計測結果の信頼性を低下させることなく、実時間処理を可能にするレーダ信号処理装置を得ることを目的とする。
【0065】
【課題を解決するための手段】
この発明の請求項1に係るレーダ信号処理装置は、所定の時間毎にサンプリングされたビート信号を格納するメモリと、前記メモリからレンジゲートデータ列を取り出すレンジゲートと、現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるレンジゲート予測部と、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第1の周波数抽出部と、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第2の周波数抽出部と、前記第1又は第2の周波数抽出部により抽出されたビート周波数に基づいて、目標の相対距離及び相対速度を求める距離・速度導出部とを備えたものである。
【0066】
この発明の請求項2に係るレーダ信号処理装置は、前記第1の周波数抽出部が、サンプルデータM個のうち半分だけを用いるM/2点FFTを使用し、第2の周波数抽出部は、サンプルデータM個の全てを用いるM点FFTを使用するものである。
【0067】
この発明の請求項3に係るレーダ信号処理装置は、所定の時間毎にサンプリングされたビート信号を格納するメモリと、前記メモリからレンジゲートデータ列を取り出すレンジゲートと、現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるレンジゲート予測部と、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出された全レンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第1の周波数抽出部と、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、大きい演算負荷、かつ高い周波数計測精度で、前記第1の周波数抽出部によりビート周波数が抽出されたレンジゲートデータ列に対してのみFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出し、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第2の周波数抽出部と、前記第2の周波数抽出部により抽出されたビート周波数に基づいて、目標の相対距離及び相対速度を求める距離・速度導出部とを備えたものである。
【0068】
この発明の請求項4に係るレーダ信号処理装置は、前記第1の周波数抽出部が、サンプルデータM個のうち半分だけを用いるM/2点FFTを使用し、第2の周波数抽出部が、サンプルデータM個の全てを用いるM点FFTを使用するものである。
【0070】
この発明の請求項5に係る距離・速度計測方法は、FMICWによる距離・速度計測方法において、現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるステップと、処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第1のビート周波数を抽出するステップと、処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第2のビート周波数を抽出するステップと、前記抽出された第1又は第2のビート周波数に基づいて、目標の相対距離及び相対速度を求めるステップとを含むものである。
【0071】
この発明の請求項6に係る距離・速度計測方法は、FMICWによる距離・速度計測方法において、現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるステップと、処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出された全レンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第1のビート周波数を抽出するステップと、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、大きい演算負荷、かつ高い周波数計測精度で、前記第1のビート周波数が抽出されたレンジゲートデータ列に対してのみFFTにより周波数分析を行ない、目標に対応する第2のビート周波数を抽出し、処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第2のビート周波数を抽出するステップと、前記抽出された第2のビート周波数に基づいて、目標の相対距離及び相対速度を求めるステップとを含むものである。
【0072】
【発明の実施の形態】
実施の形態1.
この発明の実施の形態1に係るレーダ信号処理装置について図面を参照しながら説明する。図1は、この発明の実施の形態1に係るレーダ信号処理装置の構成を示す図である。なお、各図中、同一符号は同一又は相当部分を示す。
【0073】
図1において、101a、101bは第4のスイッチ、102a、102bは第1の周波数抽出部、103a、103bは第2の周波数抽出部である。なお、その他の構成要素は、図11で示した従来のレーダ信号処理装置と同等である。
【0074】
つぎに、この実施の形態1に係るレーダ信号処理装置の動作について図面を参照しながら説明する。
【0075】
図2は、この発明の実施の形態1に係るレーダ信号処理装置の動作(信号処理手順)を示すフローチャートである。
【0076】
まず、図10に示すレーダ送受信装置が上記従来例と同様に動作し、さらに、図1の信号処理制御部13、第3のスイッチ14、ADC15、メモリ16が上記従来例と同様に動作し、メモリ16上に図14に示すような各フェーズ毎のデータマトリクスが生成される。その後、図2の手順で信号処理がすすむ。
【0077】
図2に示す手順において、ST1では、上記従来例と同様に、信号処理制御部13が、自身に備わっているレンジゲート番号用カウンタkをk=1とする。
【0078】
続くST101では、信号処理制御部13の制御により、レンジゲート17aがk番目の端子に接続し、さらに第4のスイッチ101aがY端子に接続することで、アップフェーズにおけるk番目のレンジゲートデータ列{P(1),R(k)}、{P(2),R(k)}、…、{P(M),R(k)}がメモリ16aから第1の周波数抽出部102aへ入力される。第1の周波数抽出部102aは、このレンジゲートデータ列について演算負荷が小さく周波数計測精度が低い周波数分析手段を用いて目標に対応するビート周波数の抽出結果を信号処理制御部13へ送る。
【0079】
ST3では、信号処理制御部13が第1の周波数抽出部102aからの結果を受け、ビート周波数が抽出されたならST102へすすみ、抽出されなければST7へすすむ。
【0080】
ST102では、信号処理制御部13の制御により、レンジゲート17aがk番目の端子に接続し、さらに第4のスイッチ101aがZ端子に接続することで、アップフェーズにおけるk番目のレンジゲートデータ列{P(1),R(k)}、{P(2),R(k)}、…、{P(M),R(k)}がメモリ16aから第2の周波数抽出部103aへ入力される。第2の周波数抽出部103aは、このレンジゲートデータ列について演算負荷が大きく周波数計測精度が高い周波数分析手段を用いて目標に対応するビート周波数の抽出結果を距離・速度導出部19へ送る。
【0081】
続くST103では、ST101と同様に、信号処理制御部13の制御により、レンジゲート17bがk番目の端子に接続し、さらに第4のスイッチ101bがY端子に接続することで、ダウンフェーズにおけるk番目のレンジゲートデータ列{P(1),R(k)}、{P(2),R(k)}、…、{P(M),R(k)}がメモリ16bから第1の周波数抽出部102bへ入力される。第1の周波数抽出部102bは、このレンジゲートデータ列について演算負荷が小さく周波数計測精度が低い周波数分析手段を用いて目標に対応するビート周波数の抽出結果を信号処理制御部13へ送る。
【0082】
ST5では、信号処理制御部13が第1の周波数抽出部102bからの結果を受け、ビート周波数が抽出されたならST104へすすみ、抽出されなければST7へすすむ。
【0083】
ST104では、ST102と同様に、信号処理制御部13の制御により、レンジゲート17bがk番目の端子に接続し、さらに第4のスイッチ102bがZ端子に接続することで、ダウンフェーズにおけるk番目のレンジゲートデータ列{P(1),R(k)}、{P(2),R(k)}、…、{P(M),R(k)}がメモリ16bから第2の周波数抽出部103bへ入力される。第2の周波数抽出部103bは、このレンジゲートデータ列について演算負荷が大きく周波数計測精度が高い周波数分析手段を用いて目標に対応するビート周波数の抽出結果を距離・速度導出部19へ送る。
【0084】
続くST6では、距離・速度導出部19が抽出されたアップフェーズにおけるビート周波数U1、U2、...AUpと、ダウンフェーズにおけるビート周波数D1、D2、...ADqについて総当たりで組合せ、式(6)で求めた相対距離Rが式(5)に示すRkの範囲となる周波数対Cij(Ui,Dj)を探索し、それが見つかった場合には、式(7)を用いて目標の相対速度Vを求める。
【0085】
続くST7、ST8、ST9では、上記従来例と同様に、信号処理制御部13が動作する。
【0086】
第2の周波数抽出部103による離散周波数スペクトルが図3に示すスペクトルであるのに対して、第1の周波数抽出部102による離散周波数スペクトルが図4に示すスペクトルのように、離散周波数間隔が大きければ周波数の計測精度は低くなる。このような結果は、例えば、あるレンジゲートでサンプルされたデータがM個であるとして、第1の周波数抽出部102における演算負荷が小さく周波数計測精度が低い周波数分析手段としてサンプルされたデータのうち半分だけを用いるM/2点FFTを使用し、第2の周波数抽出部103における演算負荷が大きく周波数計測精度が高い周波数分析手段としてサンプルされたデータすべてを用いるM点のFFTを使用することで得られる。
【0087】
このとき、周波数分析に必要な演算量は、従来例の場合、
×(M点FFT)
であるのに対し、本発明の場合、目標数をNtとすると
×(M/2点FFT)+Nt×(M点FFT)
となる。
【0088】
ここで、
(M点FFT)>2×(M/2点FFT)
とすると、
N/2×(M点FFT)>N×(M/2点FFT)
であり、
(N/2+Nt)×(M点FFT)>N×(M/2点FFT)+Nt×(M点FFT)
となる。
【0089】
さらに、
N/2>Nt
であれば、
×(M点FFT)>(N/2+Nt)×(M点FFT)>N×(M/2点FFT)+Nt×(M点FFT)
となり、必ず本発明における演算量の方が小さい。
【0090】
例えば、M点FFTにおける演算量の目安として乗算回数を考えるとそれは、
(M/2)log2(M)
で表され、
(M点FFT)>2×(M/2点FFT)
の関係式を満足する。
【0091】
N/2>Nmax
であるNmaxを処理可能な最大の目標数に設定することで、
N/2>Nt=Nmax
を実現できる。この結果、従来例に比べ本発明では演算量が小さく、実時間処理の実現が容易となる。
【0092】
また、あるレンジゲートでサンプルされたデータがM個であるとして、第1の周波数抽出部102における演算負荷が小さく周波数計測精度が低い周波数分析手段としてサンプルされたデータすべて用いるM点FFTを使用し、第2の周波数抽出部103における演算負荷が大きく周波数計測精度が高い周波数分析手段としてサンプルされたデータにM個の0(零)を付加した2M点のFFTを使用したとする。この場合、M点FFTの結果が図3であれば、上記の2M点FFTの結果は図5のようになり、より小さい離散間隔で周波数を得ることができ、例えば、ピークサーチを行なうことで、図5による周波数抽出結果は、図3のものより精度が高くなる。
【0093】
このとき、周波数分析に必要な演算量は、従来例の場合、
×(M点FFT)
であるのに対し、本発明の場合、
×(M点FFT)+Nt×(2M点FFT)
となる。ここで、やはり、
(2M点FFT)>2×(M点FFT)かつN/2>Nt
であれば、従来例に比べ演算量が2倍未満で2倍の周波数精度を得ることができる。
【0094】
実施の形態2.
この発明の実施の形態2に係るレーダ信号処理装置について図面を参照しながら説明する。図6は、この発明の実施の形態2に係るレーダ信号処理装置の構成を示す図である。
【0095】
図6において、201a、201bは第5のスイッチ、202はレンジゲート予測部である。なお、その他の構成要素は、上記実施の形態1の図1で示したものと同等である。
【0096】
つぎに、この実施の形態2に係るレーダ信号処理装置の動作について図面を参照しながら説明する。
【0097】
図7は、この発明の実施の形態2に係るレーダ信号処理装置の動作(信号処理手順)を示すフローチャートである。
【0098】
まず、図10に示すレーダ送受信装置が上記従来例と同様に動作し、さらに、図6の信号処理制御部13、第3のスイッチ14、ADC15、メモリ16が上記従来例と同様に動作し、メモリ16上に図14に示すような各フェーズ毎のデータマトリクスが生成される。その後、図7の手順で信号処理がすすむ。
【0099】
図7に示す手順において、ST201では、信号処理制御部13が、自身に備わっている過去の目標数用カウンタGをG=0とする。
【0100】
ST202では、信号処理制御部13が、自身に備わっている現在の目標数用カウンタG0をG0=0とし、さらにレンジゲート番号用カウンタkをk=1とする。
【0101】
続いてST203では、信号処理制御部13が現時点で処理対象のレンジゲート番号kがG個のw(g){g=1〜G}のいずれかと等しいかどうかを判定し、等しいw(g)がない場合はST204へ、ある場合はST206へすすむ。
【0102】
ST204では、信号処理制御部13の制御によりレンジゲート17aがk番目の端子に接続し、さらに第4のスイッチ101aがY端子に接続することでアップフェーズにおける、k番目のレンジゲートデータ列{P(1),R(k)}、{P(2),R(k)}、…、{P(M),R(k)}が、メモリ16aから第1の周波数抽出部102aへ入力される。第1の周波数抽出部102aは、このレンジゲートデータ列について、演算負荷が小さく周波数計測精度が低い周波数分析手段を用いて、目標に対応するビート周波数の抽出結果を求め、信号処理制御部13の制御によりY端子に接続された第5のスイッチ201aを経由してアップフェーズのビート信号に対する周波数抽出結果を信号処理制御部13へ送る。
【0103】
続くST3aでは、信号処理制御部13が第1の周波数抽出部102aからの結果を受け、アップフェーズのビート周波数が抽出されたならST205へすすみ、抽出されなければST7へすすむ。
【0104】
ST205では、信号処理制御部13の制御によりレンジゲート17bがk番目の端子に接続し、さらに第4のスイッチ101bがY端子に接続することでダウンフェーズにおける、k番目のレンジゲートデータ列{P(1),R(k)}、{P(2),R(k)}、…、{P(M),R(k)}が、メモリ16bから第1の周波数抽出部102bへ入力される。第1の周波数抽出部102bは、このレンジゲートデータ列について演算負荷が小さく周波数計測精度が低い周波数分析手段を用いて、目標に対応するビート周波数の抽出結果を求め、信号処理制御部13の制御によりY端子に接続された第5のスイッチ201bを経由してダウンフェーズのビート信号に対する周波数抽出結果を信号処理制御部13へ送る。
【0105】
ST5aでは、信号処理制御部13が第1の周波数抽出部102bからの結果を受け、ダウンフェーズのビート周波数が抽出されたならST6へすすみ、抽出されなければST7へすすむ。
【0106】
また、ST203で、等しいw(g)があるとされた場合にすすむST206では、信号処理制御部13の制御によりレンジゲート17aがk番目の端子に接続し、さらに第4のスイッチ101aがZ端子に接続することでアップフェーズにおける、k番目のレンジゲートデータ列{P(1),R(k)}、{P(2),R(k)}、…、{P(M),R(k)}が、メモリ16aから第2の周波数抽出部103aへ入力される。第2の周波数抽出部103aは、このレンジゲートデータ列について演算負荷が大きく周波数計測精度が高い周波数分析手段を用いて目標に対応するビート周波数の抽出結果を求め、信号処理制御部13の制御によりZ端子に接続された第5のスイッチ201aを経由してアップフェーズのビート信号に対する周波数抽出結果を信号処理制御部13へ送る。
【0107】
続くST3bでは、信号処理制御部13が第2の周波数抽出部103aからの結果を受け、アップフェーズのビート周波数が抽出されたならST207へすすみ、抽出されなければST7へすすむ。
【0108】
ST207では、信号処理制御部13の制御によりレンジゲート17bがk番目の端子に接続し、さらに第4のスイッチ101bがZ端子に接続することでダウンフェーズにおける、k番目のレンジゲートデータ列{P(1),R(k)}、{P(2),R(k)}、…、{P(M),R(k)}が、メモリ16bから第2の周波数抽出部103bへ入力される。第2の周波数抽出部103bは、このレンジゲートデータ列について演算負荷が大きく周波数計測精度が高い周波数分析手段を用いて目標に対応するビート周波数の抽出結果を求め、信号処理制御部13の制御によりZ端子に接続された第5のスイッチ201bを経由してダウンフェーズのビート信号に対する周波数抽出結果を信号処理制御部13へ送る。
【0109】
ST5bでは、信号処理制御部13が第1の周波数抽出部102bからの結果を受け、ダウンフェーズのビート周波数が抽出されたならST6へすすみ、抽出されなければST7へすすむ。
【0110】
ST6では、上記従来例と同様に、距離・速度導出部19が目標の相対距離と相対速度を求める。
【0111】
ST208では、信号処理制御部13がカウンタG0の値をインクリメントする。
【0112】
ST209では、レンジゲート予測部202が、ST6で距離・速度導出部19により求められた目標の相対距離と相対速度を入力して、次回観測時における目標の相対距離を予測し、さらにその距離に対応するレンジゲート番号wを求め、信号処理制御部13へ出力する。例えば、目標が等速直線運動をしていると仮定した場合、wは、次式で得られる。
w=(R+ΔT×v)/(cτ)
信号処理制御部13は、入力したレンジゲート番号を、w(G0)に格納する。
【0113】
ST7では、信号処理制御部13がカウンタkの値をNと比較し、等しくなければST8にすすみ、等しければST210にすすむ。
【0114】
ST8では、信号処理制御部13がカウンタkの値をインクリメントしてST203にすすむ。
【0115】
ST210では、現時点の目標数を過去の目標数とするため、カウンタGにカウンタG0の値を格納する。
【0116】
ST9では、信号処理制御部13が動作終了の判断を行ない、終了でなければST202へ、終了であれば終了する。
【0117】
例えば、あるレンジゲートでサンプルされたデータがM個であるとして、第1の周波数抽出部102における演算負荷が小さく周波数計測精度が低い周波数分析手段としてサンプルされたデータのうち半分だけを用いるM/2点FFTを使用し、第2の周波数抽出部103における演算負荷が大きく周波数計測精度が高い周波数分析手段としてサンプルされたデータすべてを用いるM点のFFTを使用した場合、2回目以降の観測において周波数分析に必要な演算量は、
(N−Nt)×(M/2点FFT)+Nt×(M点FFT)
となり、さらに演算量が少なくなる。
【0118】
実施の形態3.
この発明の実施の形態3に係るレーダ信号処理装置について図面を参照しながら説明する。図8は、この発明の実施の形態3に係るレーダ信号処理装置の構成を示す図である。
【0119】
図8において、第5のスイッチ201a、201bが無いことを除いて、構成要素は、上記実施の形態2の図6で示したものと同等である。
【0120】
つぎに、この実施の形態3に係るレーダ信号処理装置の動作について図面を参照しながら説明する。
【0121】
図9は、この発明の実施の形態3に係るレーダ信号処理装置の動作(信号処理手順)を示すフローチャートである。
【0122】
まず、図10に示すレーダ送受信装置が上記従来例と同様に動作し、さらに、図8の信号処理制御部13、第3のスイッチ14、ADC15、メモリ16が上記従来例と同様に動作し、メモリ16上に図14に示すような各フェーズ毎のデータマトリクスが生成される。その後、図9の手順で信号処理がすすむ。
【0123】
図9に示す手順において、ST301では、信号処理制御部13が現時点で処理対象のレンジゲート番号kがG個のw(g){g=1〜G}のいずれかと等しいかどうかを判定し、等しいw(g)がない場合はST101へ、ある場合はST102へすすむ。
【0124】
ST302では、信号処理制御部13が第2の周波数抽出部103aからの結果を受け、アップフェーズのビート周波数が抽出されたならST303へすすみ、抽出されなければST7へすすむ。
【0125】
ST303では、信号処理制御部13が現時点で処理対象のレンジゲート番号kがG個のw(g){g=1〜G}のいずれかと等しいかどうかを判定し、等しいw(g)がない場合はST103へ、ある場合はST104へすすむ。
【0126】
ST304では、信号処理制御部13が第2の周波数抽出部103bからの結果を受け、ダウンフェーズのビート周波数が抽出されたならST6へすすみ、抽出されなければST7へすすむ。
【0127】
その他は、上記実施の形態1及び2と同様な処理であり、1回目に検出する目標についても高精度な計測結果が得られる。
【0131】
【発明の効果】
この発明の請求項1に係るレーダ信号処理装置は、以上説明したとおり、所定の時間毎にサンプリングされたビート信号を格納するメモリと、前記メモリからレンジゲートデータ列を取り出すレンジゲートと、現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるレンジゲート予測部と、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第1の周波数抽出部と、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第2の周波数抽出部と、前記第1又は第2の周波数抽出部により抽出されたビート周波数に基づいて、目標の相対距離及び相対速度を求める距離・速度導出部とを備えたので、通常は処理量の少ない信号処理を行ない、目標が存在する可能性が高いレンジゲートデータ列にのみ負荷の大きな高精度な信号処理を行なうことで、計測結果の信頼性を低下させることなく、実時間処理を可能にするという効果を奏する。
【0132】
この発明の請求項2に係るレーダ信号処理装置は、以上説明したとおり、前記第1の周波数抽出部が、サンプルデータM個のうち半分だけを用いるM/2点FFTを使用し、第2の周波数抽出部は、サンプルデータM個の全てを用いるM点FFTを使用するので、通常は処理量の少ない信号処理を行ない、目標が存在する可能性が高いレンジゲートデータ列にのみ負荷の大きな高精度な信号処理を行なうことで、計測結果の信頼性を低下させることなく、実時間処理を可能にするという効果を奏する。
【0133】
この発明の請求項3に係るレーダ信号処理装置は、以上説明したとおり、所定の時間毎にサンプリングされたビート信号を格納するメモリと、前記メモリからレンジゲートデータ列を取り出すレンジゲートと、現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるレンジゲート予測部と、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出された全レンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第1の周波数抽出部と、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、大きい演算負荷、かつ高い周波数計測精度で、前記第1の周波数抽出部によりビート周波数が抽出されたレンジゲートデータ列に対してのみFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出し、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第2の周波数抽出部と、前記第2の周波数抽出部により抽出されたビート周波数に基づいて、目標の相対距離及び相対速度を求める距離・速度導出部とを備えたので、通常は処理量の少ない信号処理を行ない、目標が存在する可能性が高いレンジゲートデータ列にのみ負荷の大きな高精度な信号処理を行なうことで、計測結果の信頼性を低下させることなく、実時間処理を可能にするという効果を奏する。
【0134】
この発明の請求項4に係るレーダ信号処理装置は、以上説明したとおり、前記第1の周波数抽出部が、サンプルデータM個のうち半分だけを用いるM/2点FFTを使用し、第2の周波数抽出部が、サンプルデータM個の全てを用いるM点FFTを使用するので、通常は処理量の少ない信号処理を行ない、目標が存在する可能性が高いレンジゲートデータ列にのみ負荷の大きな高精度な信号処理を行なうことで、計測結果の信頼性を低下させることなく、実時間処理を可能にするという効果を奏する。
【0136】
この発明の請求項5に係る距離・速度計測方法は、以上説明したとおり、FMICWによる距離・速度計測方法において、現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるステップと、処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第1のビート周波数を抽出するステップと、処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第2のビート周波数を抽出するステップと、前記抽出された第1又は第2のビート周波数に基づいて、目標の相対距離及び相対速度を求めるステップとを含むので、通常は処理量の少ない信号処理を行ない、目標が存在する可能性が高いレンジゲートデータ列にのみ負荷の大きな高精度な信号処理を行なうことで、計測結果の信頼性を低下させることなく、実時間処理を可能にするという効果を奏する。
【0137】
この発明の請求項6に係る距離・速度計測方法は、以上説明したとおり、FMICWによる距離・速度計測方法において、現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるステップと、処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出された全レンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第1のビート周波数を抽出するステップと、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、大きい演算負荷、かつ高い周波数計測精度で、前記第1のビート周波数が抽出されたレンジゲートデータ列に対してのみFFTにより周波数分析を行ない、目標に対応する第2のビート周波数を抽出し、処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第2のビート周波数を抽出するステップと、前記抽出された第2のビート周波数に基づいて、目標の相対距離及び相対速度を求めるステップとを含むので、通常は処理量の少ない信号処理を行ない、目標が存在する可能性が高いレンジゲートデータ列にのみ負荷の大きな高精度な信号処理を行なうことで、計測結果の信頼性を低下させることなく、実時間処理を可能にするという効果を奏する。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係るレーダ信号処理装置の構成を示す図である。
【図2】 この発明の実施の形態1に係るレーダ信号処理装置の動作を示すフローチャートである。
【図3】 この発明の実施の形態1に係るレーダ信号処理装置の第2の周波数抽出部による離散周波数スペクトルを示す図である。
【図4】 この発明の実施の形態1に係るレーダ信号処理装置の第1の周波数抽出部による離散周波数スペクトルを示す図である。
【図5】 この発明の実施の形態1に係るレーダ信号処理装置の2M点FFTの結果である離散周波数スペクトルを示す図である。
【図6】 この発明の実施の形態2に係るレーダ信号処理装置の構成を示す図である。
【図7】 この発明の実施の形態2に係るレーダ信号処理装置の動作を示すフローチャートである。
【図8】 この発明の実施の形態3に係るレーダ信号処理装置の構成を示す図である。
【図9】 この発明の実施の形態3に係るレーダ信号処理装置の動作を示すフローチャートである。
【図10】 従来のFMICWレーダの送受信装置の基本構成を示すブロック図である。
【図11】 従来のレーダ信号処理装置の構成を示す図である。
【図12】 従来のFMICWレーダにおける各信号の時間に対する周波数を示す図である。
【図13】 図10の第1及び第2のスイッチにおける接続端子を時間に対して示す図である。
【図14】 図11のメモリにおける、アップフェーズとダウンフェーズのビート信号をサンプルして生成するデータマトリクスを示す図である。
【図15】 図11に示すレーダ信号処理装置の信号処理手順を示すフローチャートである。
【図16】 他の従来のレーダ信号処理装置の構成を示す図である。
【図17】 他の従来のレーダ信号処理装置の信号処理手順を示すフローチャートである。
【符号の説明】
12 レーダ信号処理装置、13 信号処理制御部、14 第3のスイッチ、15a、15b ADC、16a、16b メモリ、17a、17b レンジゲート、19 距離・速度導出部、101a、101b 第4のスイッチ、102a、102b 第1の周波数抽出部、103a、103b 第2の周波数抽出部、201a、201b 第5のスイッチ、202 レンジゲート予測部。

Claims (6)

  1. 所定の時間毎にサンプリングされたビート信号を格納するメモリと、
    前記メモリからレンジゲートデータ列を取り出すレンジゲートと、
    現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるレンジゲート予測部と、
    前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第1の周波数抽出部と、
    前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第2の周波数抽出部と、
    前記第1又は第2の周波数抽出部により抽出されたビート周波数に基づいて、目標の相対距離及び相対速度を求める距離・速度導出部と
    を備えたことを特徴とするレーダ信号処理装置。
  2. 前記第1の周波数抽出部は、サンプルデータM個のうち半分だけを用いるM/2点FFTを使用し、
    第2の周波数抽出部は、サンプルデータM個の全てを用いるM点FFTを使用する
    ことを特徴とする請求項1記載のレーダ信号処理装置。
  3. 所定の時間毎にサンプリングされたビート信号を格納するメモリと、
    前記メモリからレンジゲートデータ列を取り出すレンジゲートと、
    現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるレンジゲート予測部と、
    前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出された全レンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第1の周波数抽出部と、
    前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、大きい演算負荷、かつ高い周波数計測精度で、前記第1の周波数抽出部によりビート周波数が抽出されたレンジゲートデータ列に対してのみFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出し、前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応するビート周波数を抽出する第2の周波数抽出部と、
    前記第2の周波数抽出部により抽出されたビート周波数に基づいて、目標の相対距離及び相対速度を求める距離・速度導出部と
    を備えたことを特徴とするレーダ信号処理装置。
  4. 前記第1の周波数抽出部は、サンプルデータM個のうち半分だけを用いるM/2点FFTを使用し、
    第2の周波数抽出部は、サンプルデータM個の全てを用いるM点FFTを使用する
    ことを特徴とする請求項3記載のレーダ信号処理装置。
  5. FMICWによる距離・速度計測方法において、
    現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるステップと、
    処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第1のビート周波数を抽出するステップと、
    処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第2のビート周波数を抽出するステップと、
    前記抽出された第1又は第2のビート周波数に基づいて、目標の相対距離及び相対速度を求めるステップと
    を含むことを特徴とする距離・速度計測方法
  6. FMICWによる距離・速度計測方法において、
    現観測時点で導出された目標の相対距離及び相対速度から次回観測時点の目標の相対距離を予測しその距離に対応するレンジゲートデータ列を求めるステップと、
    処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、小さい演算負荷、かつ低い周波数計測精度で、前記レンジゲートにより取り出された全レンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第1のビート周波数を抽出するステップと、
    前記レンジゲート予測部により処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列でない場合は、大きい演算負荷、かつ高い周波数計測精度で、前記第1のビート周波数が抽出されたレンジゲートデータ列に対してのみFFTにより周波数分析を行ない、目標に対応する第2のビート周波数を抽出し、処理対象であるレンジゲートデータ列が予測されたレンジゲートデータ列である場合には、大きい演算負荷、かつ高い周波数計測精度で、前記レンジゲートにより取り出されたレンジゲートデータ列についてFFTにより周波数分析を行ない、目標に対応する第2のビート周波数を抽出するステップと、
    前記抽出された第2のビート周波数に基づいて、目標の相対距離及び相対速度を求めるステップと
    を含むことを特徴とする距離・速度計測方法
JP2001141655A 2001-05-11 2001-05-11 レーダ信号処理装置、及び距離・速度計測方法 Expired - Fee Related JP3703014B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001141655A JP3703014B2 (ja) 2001-05-11 2001-05-11 レーダ信号処理装置、及び距離・速度計測方法
US10/137,280 US6611225B2 (en) 2001-05-11 2002-05-03 Radar signal processing apparatus, and method of measuring distance and speed
DE10220357A DE10220357B4 (de) 2001-05-11 2002-05-07 Radarsignal-Verarbeitungsvorrichtung und Verfahren zum Messen von Abstand und Geschwindigkeit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001141655A JP3703014B2 (ja) 2001-05-11 2001-05-11 レーダ信号処理装置、及び距離・速度計測方法

Publications (2)

Publication Number Publication Date
JP2002341019A JP2002341019A (ja) 2002-11-27
JP3703014B2 true JP3703014B2 (ja) 2005-10-05

Family

ID=18988074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001141655A Expired - Fee Related JP3703014B2 (ja) 2001-05-11 2001-05-11 レーダ信号処理装置、及び距離・速度計測方法

Country Status (3)

Country Link
US (1) US6611225B2 (ja)
JP (1) JP3703014B2 (ja)
DE (1) DE10220357B4 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131464B2 (ja) * 2001-02-21 2008-08-13 三菱電機株式会社 距離・速度計測方法およびレーダ信号処理装置
JP2003222672A (ja) * 2002-01-30 2003-08-08 Toyota Central Res & Dev Lab Inc レーダ装置
JP3649704B2 (ja) * 2002-05-13 2005-05-18 株式会社日立製作所 レーダ装置
US7064810B2 (en) * 2003-09-15 2006-06-20 Deere & Company Optical range finder with directed attention
JP4420743B2 (ja) * 2004-05-31 2010-02-24 富士通テン株式会社 Fm−cwレーダ装置
WO2006085352A1 (ja) * 2005-02-08 2006-08-17 Mitsubishi Denki Kabushiki Kaisha 目標物検出装置
JP2006266907A (ja) * 2005-03-24 2006-10-05 Mitsubishi Electric Corp レーダ装置およびそのレーダ信号処理方法
EP1777549B1 (en) * 2005-10-24 2012-10-03 Mitsubishi Electric Information Technology Centre Europe B.V. Object ranging
JP4724694B2 (ja) * 2007-08-08 2011-07-13 日立オートモティブシステムズ株式会社 電波レーダ装置
JP2009150707A (ja) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp レーダ装置
JP2011149871A (ja) * 2010-01-22 2011-08-04 Toshiba Corp 周波数検出器、この周波数検出器を備える合成帯域レーダ、及び飛翔体誘導装置
JP5183661B2 (ja) * 2010-03-29 2013-04-17 三菱電機株式会社 車載レーダ装置
KR20190016254A (ko) 2017-08-08 2019-02-18 삼성전자주식회사 거리 측정 방법 및 장치
JP7111455B2 (ja) * 2017-09-29 2022-08-02 株式会社デンソーテン レーダ装置およびレーダ装置の制御方法
US11047956B2 (en) * 2018-06-14 2021-06-29 Semiconductor Components Industries, Llc Reconfigurable MIMO radar
DE102021208627B4 (de) 2021-08-09 2023-10-12 Volkswagen Aktiengesellschaft Verfahren und Prozessorschaltung zum Betreiben eines Radarsystems mit mehreren Antennen sowie Radarsystem und Kraftfahrzeug

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2935420B2 (ja) * 1996-11-19 1999-08-16 本田技研工業株式会社 Fmレーダ装置
DE29723245U1 (de) * 1997-08-11 1998-10-22 Mikrowellen Technologie Und Se Radar-Entfernungsmeßeinrichtung
JP3946852B2 (ja) 1998-02-20 2007-07-18 三菱電機株式会社 レーダ装置およびこのレーダ装置における目標相対距離・相対速度探索方法
JP2000275333A (ja) 1999-03-24 2000-10-06 Mitsubishi Electric Corp Fmicwによるレーダ信号処理装置およびfmicwによる距離・速度計測方法
JP3622565B2 (ja) * 1999-03-31 2005-02-23 株式会社デンソー レーダ装置
JP2000321352A (ja) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp 車載用レーダ装置
JP3672778B2 (ja) * 1999-11-02 2005-07-20 三菱電機株式会社 レーダ装置及びそのコヒーレント積分方法
JP3720662B2 (ja) * 2000-01-19 2005-11-30 三菱電機株式会社 車載用レーダ装置

Also Published As

Publication number Publication date
DE10220357B4 (de) 2010-10-14
US6611225B2 (en) 2003-08-26
DE10220357A1 (de) 2003-01-16
JP2002341019A (ja) 2002-11-27
US20020190894A1 (en) 2002-12-19

Similar Documents

Publication Publication Date Title
JP3703014B2 (ja) レーダ信号処理装置、及び距離・速度計測方法
JP5468304B2 (ja) レーダ装置
JP3946852B2 (ja) レーダ装置およびこのレーダ装置における目標相対距離・相対速度探索方法
JP3672778B2 (ja) レーダ装置及びそのコヒーレント積分方法
CN110031805B (zh) 雷达装置
JP4665962B2 (ja) 目標物検出装置
US4992797A (en) Method of detection and identification of one or more remote objects
US5757308A (en) Radar process for the measurement of distances and relative speeds between a vehicle and one or more obstructions
US11885905B2 (en) Radar apparatus and method for determining range side lobe
JP3595220B2 (ja) 合成開口レーダ装置及び目標散乱点検出方法
Kim et al. Extrapolation-RELAX estimator based on spectrum partitioning for DOA estimation of FMCW radar
US20220260702A1 (en) Radar-Based Target Tracker
JP2000275333A (ja) Fmicwによるレーダ信号処理装置およびfmicwによる距離・速度計測方法
JP3944130B2 (ja) 移動体のレ−ダ方式、レ−ダ装置、レーダ信号処理方法、及びレーダ信号処理装置
JP2993779B2 (ja) Fm−cwレーダ装置
JP4038420B2 (ja) レーダデータ処理装置および距離・速度測定方法
JP7299601B2 (ja) 目標検知装置、目標推定方法およびプログラム
JP2004333269A (ja) レーダ装置
JPH11237475A (ja) レーダ装置及びこのレーダ装置における目標散乱点検出方法
JP3779282B2 (ja) 電波レーダ装置及びビート信号周波数検出方法
JP6688977B2 (ja) レーダ装置
JPH11352213A (ja) パルスレーダ装置
US20230066386A1 (en) Tdm fmcw radar apparatus and signal processing method of apparatus
CN109870712B (zh) 一种对扩频码多普勒效应的消除方法
JP2000356675A (ja) Fm−cwレーダ装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees