WO2002050320A1 - Procede pour purifier du zinc et colonne de rectification pour purifier du zinc - Google Patents

Procede pour purifier du zinc et colonne de rectification pour purifier du zinc Download PDF

Info

Publication number
WO2002050320A1
WO2002050320A1 PCT/JP2001/010957 JP0110957W WO0250320A1 WO 2002050320 A1 WO2002050320 A1 WO 2002050320A1 JP 0110957 W JP0110957 W JP 0110957W WO 0250320 A1 WO0250320 A1 WO 0250320A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
tower
lead
cadmium
rectification
Prior art date
Application number
PCT/JP2001/010957
Other languages
English (en)
French (fr)
Inventor
Fumio Tanno
Kenji Matsuzaki
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to JP2002551198A priority Critical patent/JPWO2002050320A1/ja
Priority to AU2002222638A priority patent/AU2002222638A1/en
Priority to EP01271115A priority patent/EP1371739A4/en
Publication of WO2002050320A1 publication Critical patent/WO2002050320A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/04Obtaining zinc by distilling
    • C22B19/16Distilling vessels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B17/00Obtaining cadmium
    • C22B17/06Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/04Obtaining zinc by distilling
    • C22B19/14Obtaining zinc by distilling in vertical retorts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/32Refining zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for refining metals, particularly zinc, which can achieve energy saving, downsizing of equipment, cost reduction, and the like, and a rectification column usable for the method.
  • the electrolytic zinc sickle produces more than 99.99% pure zinc (pure zinc).
  • dry zinc production ISP, solid distillation, horizontal distillation, electrothermal distillation, etc.
  • ISP dry zinc production
  • PW distilled zinc
  • Such low-purity zinc hereinafter referred to as crude zinc when used in a Byone rectification column
  • SHG rectified zinc
  • To Distilled zinc obtained by dry sickle mainly contains metallic lead and metallized dome as impurity metals, and is used for hot-dip galvanizing of utility poles, bridges and guardrails.
  • FIG. 1 shows a rectification column used in a rectification process for zinc purification that has been conventionally used.
  • the rectification tower usually comprises a rectification tower for removing lead, iron, copper, etc. (lead tower) and a rectification tower for removing force dome (force dome tower).
  • Fig. 2a shows a partially exploded view of a lead tower
  • Fig. 2b shows a partially exploded view of a cadmium tower.
  • Lead tower 1 has multiple trays 2 (currently 24 stages only in the reflux section above the crude zinc supply port). Are stacked, and a supply port 3 for coarse zinc is installed at a substantially central side surface of the lead tower 1, and coarse zinc is supplied into the lead tower 1 through the supply port 3.
  • the crude zinc from the ore production contains about 98.5% zinc, with lead and cadmium as the main impurities.
  • Molten zinc 5 on c tray 2 the combustion chamber 4 are installed around a portion below the zinc supply port 3 of the lead column 1 to tray 2 immediately below overflows upward weir 6 trays 2 Moving.
  • the molten zinc 5 on the tray 2 inside the combustion chamber 4 is vaporized by heating, and the vaporized zinc vapor moves to the upper tray 2.
  • the zinc vapor that has moved upward in the tray direction is gradually cooled when it reaches above the combustion chamber 4, and partly condenses on the tray 2 again.
  • the condensed molten zinc 5 again overflows the upward weir 6 of the tray 2 and moves to the tray 2 immediately below, and reaches the tray 2 inside the combustion chamber 4 by this repetition, and is heated by the combustion chamber 4 Evaporate again.
  • lead which is the impurity
  • lead which is the vapor with the lowest vapor pressure
  • the zinc vapor including the power dome vapor that has reached the upper part of the tray 2 is taken out through the zinc vapor outlet 8 toward the upper end of the lead tower 1 and guided to the condenser 9.
  • the zinc vapor containing the power dome vapor is cooled and converted into molten zinc containing the power dome.
  • the molten zinc is supplied into a cadmium tower 11 on which 61 trays 10 are stacked through a molten zinc supply port 12 installed at a substantially central portion of the 61-stage tray 10 of the force dome tower 11. Is done.
  • a combustion chamber 13 is provided in the same manner as described above.
  • the molten zinc in the power dome tower 11 is heated by the combustion chamber 13 in the same manner as in the case of the lead tower, the molten zinc 14 is deposited on the lower tray 10
  • the other-directional dome becomes steam and reaches the uppermost tray 10 together with zinc vapor, and is cooled by a condenser 15 formed in a space above the uppermost tray 10 to be in a molten state. It is taken out of the cadmium tower 11 from the zinc-only dome outlet 16. Since the force dome is thus taken out of the tower, pure zinc containing almost no force dom is present on the tray 10 below the cadmium tower 11, and this pure zinc is deposited on the bottom of the force dom tower 11 It is removed from the installed zinc outlet 17.
  • the purity of pure zinc obtained by this method is more than 99.99%, which is a satisfactory level of purity.
  • the purification of crude zinc to rectified zinc is carried out at high temperatures (usually about goioioot) to improve purification efficiency, and thus requires a large amount of energy.
  • the number of trays in the reflux section of the lead tower is 24 and the number of trays in the power dome tower is 61, and the purity of pure zinc can be improved to 99.99% or more for the first time.
  • Such a large number of stages leads to an increase in the size of the equipment, and a rise in manufacturing costs is inevitable.
  • rectification towers manufactured by stacking trays need to be replaced by replacing the materials about once every three years because of deterioration due to heat.
  • the brick rectification tower has poor mechanical strength, and It has the disadvantage of being vulnerable to natural disasters such as
  • An object of the present invention is to provide a method for refining metals such as zinc, and a rectification column usable for the method.
  • the present invention relates to a method for conducting metal purification by introducing a metal such as zinc containing impurities to a rectification column having a plurality of stages of purification trays, wherein the metal is distilled while maintaining a reduced pressure in the rectification column. And a rectification column usable for the method.
  • zinc is purified by reducing the pressure of at least one of a rectification column for zinc purification, for example, a lead column and a cadmium column.
  • a rectification column for zinc purification for example, a lead column and a cadmium column.
  • the following effects can be obtained by performing metal purification, particularly zinc purification, under reduced pressure. '1 Under reduced pressure, the internal pressure of the rectification column decreases. Therefore, compared to refining under atmospheric pressure, even if the vapor pressure of metals such as zinc is low, the metal vaporizes and zinc can be purified. In other words, zinc can be purified even with low heating, and energy savings can be achieved.
  • the vacuum purification of the present invention a sufficient evaporation rate can be obtained without boiling, so that the distillation operation can be performed without boiling, so that the vaporized metal has no or no scattering. Since it is small, the entrainment of low-boiling metals is eliminated, and the separation efficiency is improved. In addition, under reduced pressure, the vapor pressure difference between the metals increases, and separation can be performed easily. These have fewer tray stages than the tray stages of conventional rectification columns. This means that the same level of purification can be achieved. Therefore, according to the method of the present invention, the rectification column can be downsized and the construction cost can be reduced.
  • the separation of impurities is possible without the need for heating the rectification column. That is, only the sensible heat of the heated zinc supplied to the rectification column can bear the evaporation heat necessary for the evaporation of zinc or impurities. Eliminating the need for heating the rectification tower not only saves fuel costs, but also eliminates the need to install heating equipment in the rectification tower, which is advantageous not only in cost but also in occupying area. .
  • the rectification tower In order to purify under reduced pressure, the rectification tower must be sealed to increase the degree of sealing, but in order to do so, the rectification tower must be manufactured using materials with high strength. However, the mechanical strength of the rectification tower is increased, and operation using the rectification tower with high durability against earthquakes and the like becomes possible.
  • the operation is performed while reducing the pressure of at least one of the rectification columns used for refining metals such as zinc.
  • metals such as zinc.
  • a lead tower and a power dome tower are used.
  • the line connecting the two towers may be reduced in pressure to indirectly reduce the pressure in at least one of the towers.
  • the degree of pressure reduction is not particularly limited. Even if the degree of pressure reduction is slight, an effect corresponding thereto can be obtained.
  • a preferable degree of reduced pressure is 0.1 to 5000 Pa, for example, 99.99% which is the same purity as the conventional one.
  • the number of tray stages required in the reflux section of the lead tower is 3 when the degree of pressure reduction is 20 Pa, which is greatly reduced from 24 at atmospheric pressure.
  • the total number of trays in the power dome tower required to obtain 99.99% purified zinc with the same purity as before is 26 at 1260 Pa and 18 at 190 Pa, all of which are 61 at atmospheric pressure. Greatly reduced.
  • the rectification tower can be made of any material that can withstand a high degree of vacuum and does not react with metals such as zinc or impurities contained therein, but metals and metal alloys such as stainless steel and graphite and SiC. It is preferred to use refractories.
  • Means for reducing the pressure inside the rectification column is not particularly limited, and conventional means such as suction by a pump may be used as it is. It is preferable to select a portion of the rectification column to which a suction means such as a pump is connected so that the metal in the rectification column is not sucked, and to use a trap or the like as necessary.
  • the zinc containing impurities which is one kind of metal to be purified in the method of the present invention, is not particularly limited.
  • zinc containing lead and cadmium as main impurities at the end of the melting step in a conventional zinc sickle It is preferably applicable to crude zinc having a content of about 98.5% by weight.
  • the zinc purification is performed under reduced pressure according to the method of the present invention, the following effects are produced as compared with the case where the zinc is purified under normal pressure.
  • (1) It is possible to operate at low temperatures and achieve energy savings.
  • (2) The purification efficiency, which is presumed to be caused by droplets, does not decrease, and the difference in vapor pressure between metals increases under reduced pressure, making separation easier. Therefore, the use of a rectification column having fewer tray stages than the conventional rectification column enables purification to be equal to or more than the conventional rectification column, and downsizing of the rectification column and reduction in construction cost can be achieved.
  • (3) By increasing the mechanical strength of the rectification tower for vacuum purification, the durability of the rectification tower is increased and the resistance to natural disasters is increased. ⁇ ⁇ Because the operating temperature is low, With little deterioration of the battery life.
  • This zinc purification may be performed using a rectification column including a lead column and a cadmium column, or may be performed using a rectification column including only a decadmium column.
  • Crude zinc containing lead and force dom as impurities is purified to obtain high purity (99.99% or more) rectified zinc (SHG) from which lead and force dom have been removed. In the latter case, force dom is reduced.
  • SHG rectified zinc
  • Zinc with the lead removed is obtained.
  • the lead in zinc obtained by the latter method may be desirable to be contained in zinc depending on the application, and it is not necessary to install a lead tower and burn and consume it in the lead tower. The following zinc is obtained.
  • the molten zinc supplied to the power dome tower and the depower dome tower maintained under reduced pressure according to the present invention is often at a high temperature of 700 ° C. or more, and this temperature is spontaneously reduced under reduced pressure.
  • the temperature is often sufficient to cause evaporation, so that rectification in a power dome tower or the like can be performed without heating. Eliminating heating not only saves fuel costs, but also eliminates the need to install heating equipment, which is advantageous not only in cost but also in occupying area.
  • FIG. 1 is a schematic diagram showing a rectification column in a rectification process for zinc purification that has been conventionally used.
  • Fig. 2 is a partially exploded view of the rectification tower in Fig. 1
  • Fig. 2a is a partially exploded view of the lead tower
  • Fig. 2b is a partially exploded view of the force dome tower.
  • FIG. 3 is a schematic view illustrating a rectification column usable in the method of the present invention.
  • FIG. 4a is an equilibrium diagram of the gas-liquid two-component system of zinc-free dome
  • Fig. 4b is an enlarged view of Fig. 4a under normal pressure and reduced pressure.
  • FIG. 5 is a cross-sectional view of a test device used in a vacuum refining test of a zinc alloy of an example.
  • FIG. 6 is a graph showing the temperature dependence of the evaporation rate of the zinc alloy in Example 2.
  • FIG. 7 is a graph showing the temperature dependence of the lead concentration in the gas phase.
  • FIG. 8 is a graph showing the temperature dependence of the cadmium concentration in the gas phase.
  • Fig. 9a is a graph showing the temperature dependence of the distillation efficiency of lead
  • Fig. 9b is a diagram showing the variables needed to calculate the temperature dependence.
  • FIG. 10a is a graph showing the temperature dependence of the distillation efficiency of the force dome
  • FIG. 10b is a diagram showing the variables required for calculating the temperature dependence.
  • FIG. 11 is a graph showing the number of tray stages in the reflux section and the combustion chamber section of the lead tower at a plurality of temperatures.
  • FIG. 12 is a graph showing the number of tray stages in the reflux section and the combustion chamber section of the power dome tower at a plurality of temperatures.
  • FIG. 13 is a graph showing the number of tray stages in the reflux section and the combustion chamber section of the degassing dome tower at a plurality of temperatures.
  • rectification columns that can be used in the method of the present invention will be described.
  • rectification columns that can be used in the method of the present invention are not limited thereto.
  • FIG. 3 is a schematic view illustrating a rectification column usable in the method of the present invention.
  • the lead tower 21 has a form in which trays 22 are stacked, and a supply port (not shown) for coarse zinc (feed metal) is installed at a substantially central portion of the plurality of trays 22. Is supplied into the lead tower 21. '
  • a combustion chamber 23 is provided around the portion of the lead tower 21 below the crude zinc supply port, The inside of the lead tower 21 is heated by the combustion chamber 23, and the inside of the lead tower 21 is kept at a reduced pressure by the lead tower pump 25 connected to the upper part of the condenser 27 of the lead tower through the lead tower conduit 24.
  • the supplied zinc is heated by the combustion chamber 23 and is heated on the tray and vaporized. Since the inside of the lead tower 21 is under reduced pressure during this vaporization, vaporization of the metal proceeds even with relatively weak heating.
  • Lead is removed in the same manner as in the case of the prior art shown in FIG. 1, and zinc vapor containing a small amount of power dominate vapor is led to a condenser 27 through a zinc vapor outlet 26 at the upper part of the lead tower 21 and the zinc vapor is removed.
  • the zinc vapor containing the power dome vapor is cooled and converted into molten zinc containing the power dome.
  • This molten zinc has a tray 28 stacked inside and a cadmium tower tube at the top.
  • a power dome tower pump 30 is fed through 29 into a connected power dome tower 31 to separate zinc from cadmium as in the prior art. Also in this case, since the pressure in the force dome tower 31 is under reduced pressure, vaporization of the metal proceeds even with relatively weak heating, and zinc purification proceeds easily to obtain rectified zinc (SHHG).
  • the crude zinc may be supplied to the (de) cadmium tower 31 without installing the lead tower 21, so that distilled zinc having a low cadmium concentration (de Cd PW) can be obtained.
  • de Cd PW distilled zinc having a low cadmium concentration
  • Fig. 4a is an equilibrium diagram of the gas-liquid two-component system of zinc single-phase dome
  • Fig. 4b is an enlarged view of a part of Fig. 4a
  • the gas and liquid phase lines under normal pressure are J. Lumsden's "Thermodynami csof The vapor and liquidus lines under reduced pressure were calculated from the relationship between total pressure, temperature and composition using thermodynamic data.
  • the interval between the liquidus and gas phase lines at high temperature for example, 891 ° C at normal pressure
  • the low temperature line for example, at 453 with the same cadmium concentration at about 190 Pa and at 453 cadmium concentration Comparing the spacing of the phase lines, the spacing at low temperatures is wider, which means that the concentration of force dome in the vapor phase evaporating from the liquid phase will be higher, thus increasing the distillation efficiency.
  • the energy supplied to the lead tower includes direct heating of the lead tower by the combustion chamber and preheating of zinc and air supplied to the lead tower.
  • crude zinc is preheated to 590 ° C and then supplied to the lead tower, and the energy required for the preheating is 8.27xi03 ⁇ 4cal / day.
  • example crude zinc case of operating the inventive method at 500 ° C may be preheated to 500 ° C, the energy required for preheating - is 7.25xl0 6 kcal / day.
  • the energy required to heat the lead tower in the combustion chamber in the conventional operation is 6.59 X 10 cal / day, and the energy required to operate at 500 ° C is 4.67 x 10 7 kcal / day. is there.
  • Converting the energy required for heating the lead tower by the combustion chamber into LPG is 6000 kg / day for the former and 4250 kg / day for the latter.By performing vacuum purification, it is possible to reduce the energy of the lead tower by about 30%. I understand.
  • the excess energy conventionally used is used to heat the metal, and then extracted from the lead tower as radiant heat, high-temperature exhaust gas, high-temperature zinc-cadmium vapor, and high-temperature molten lead.
  • the method of the present invention reduces the energy supplied from the lead tower, reduces the energy released from the lead column, and simplifies the post-treatment because the supplied energy is small.
  • a zinc alloy was subjected to a vacuum purification test using the test apparatus shown in FIG.
  • a zinc alloy (1.2% by weight of zinc and lead—0.084% by weight of cadmium) is placed in a bottomed cylindrical graphite truss housed in a cylindrical stainless steel vacuum vessel, and the lower periphery of the vacuum vessel is placed.
  • a thermocouple is installed so as to reach the zinc alloy from the upper surface of the decompression vessel, and another thermocouple to be paired is installed so as to reach the heating element so that the temperature of the zinc alloy can be measured by both thermocouples. did.
  • a flat capacitor having an opening in the center was placed on the upper edge of the truss, a thin cylinder was placed on top of it, and then the same capacitor, cylinder, and capacitor were placed on top of it.
  • Three donut-shaped water-cooled jackets were installed around the decompression vessel corresponding to the upper and lower sides of the central condenser and above the upper condenser.
  • the zinc alloy in the decompression vessel can be heat-treated at a predetermined temperature and a predetermined pressure reduction degree. did.
  • the temperature and the degree of pressure reduction are changed as shown in Table 1 and captured by the capacitor.
  • the lead concentration in the condensed zinc that was trapped was investigated. The results are shown in Table 1.
  • the lead concentration was estimated from the operation results of the rectification column as follows.
  • Table 1 shows the concentrations of lead in steam zinc at 907 ° C, normal pressure (l OOOOOPa) and under the same conditions as in the other examples. .
  • Example 2 The same experiment as in Example 1 was repeated at a plurality of temperatures, and the composition of the condensed zinc (gas phase) captured in the condenser 1 and the residual zinc (liquid phase) remaining in the rutupo was analyzed.
  • Evaporation rate (kg / m 2 hr) (Evaporation amount) (Evaporation area X Evaporation time) 1 Calculate the temperature dependence of the lead concentration and cadmium concentration in the evaporated zinc from the composition values of the condensed zinc and residual zinc, respectively. This is shown in the graphs of FIGS. 7 and 8.
  • the gas-liquid composition of each stage was determined from the zinc-lead gas-liquid phase diagram captured by mass balance and distillation efficiency.
  • the required number of fuel tanks and the number of stages in the combustion chamber and reflux section of the lead tower at 620 ° C, 660 ° C, 700 "C and 740 ° C, respectively, required to make the amount 20 ppm were calculated.
  • the required number of stages was 56 in order to make the lead content at the top of the lead tower 20 ppm, but the required number of stages in this example is as shown in Figure 11
  • the order of the temperatures was 34, 23, 19, and 27, indicating that the operation at 700 ° C could minimize the number of stages.
  • the fuel reduction rate at each temperature is shown in Table 2. From the viewpoint of fuel reduction, it was found that operation at 620 is preferable.
  • Table 2 ' (2) Determine the gas-liquid composition of each stage from the zinc-cadmium gas-liquid phase diagram corrected for the number of cadmium tower reflux and combustion chamber sections and the fuel reduction rate, material balance and distillation efficiency, and use the Ponce-Savari method and the required evaporation area. The required number of stages was calculated.
  • the number of stages required to reduce the cadmium content to 20 ppm was 64, but in this example, as shown in FIG. It was understood that the number of stages could be reduced, and the number of stages could be reduced to less than 1/3.
  • the temperature of the molten zinc supplied to the cadmium tower was set to about 700 ° C., and despite the fact that the combustion chamber was not heated, the pure zinc of about 500 containing 20 ppm of cadmium was used.
  • Zinc (SHG) was extracted at a rate of 69.3 tons / day from the zinc outlet located at the bottom of the cadmium tower.
  • the temperature difference (700 and 500) between the supplied molten zinc and the molten zinc in the rectification tower was able to cover all the latent heat of evaporation required for evaporation. Operation was possible without heating, and 100% fuel reduction was achieved by operating under reduced pressure.
  • the gas-liquid composition of each stage was determined from the zinc-assisted dome gas-liquid phase diagram corrected by the mass balance and distillation efficiency, and the required number of stages was calculated from the Bonson-Savari method and the required evaporation area.
  • the molten zinc heated at 700, including 700 ppm force dome, was supplied to the molten zinc supply port of the force dome tower with a decompression degree of 190 Pa at 100 tons / day and the cadmium content in the resulting SHG was 100
  • the number of stages required to reduce the cadmium content to 100 ppm was found to be 14 and 13 in the order of the temperature.
  • the temperature of the molten zinc supplied to the power dome tower was set to about 700 ° C., and even though the combustion chamber was not heated, about 100 ppm of power dome was included. 540 ° C de-aerated domium-distilled zinc was obtained in 99.4 tonnes / day from a zinc outlet located at the bottom of the cadmium tower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

明細書 亜鉛の精製方法及び亜鉛精製用精留塔 技術分野
本発明は、 省エネルギー化、 設備の小型化、 低コスト化等を達成できる金属、 特に亜鉛の精製方法、 及び該方法に使用可能な精留塔に関する。 背景技術
亜鉛の電解製鎌では、 純度 99. 99 %以上の電気亜鉛 (最純亜鉛) を生成する。 一方、 亜鉛の乾式製鍊 ( I S P、 堅型蒸留、 水平蒸留、 電熱蒸留等) では、 純度 98. 5 %以上の蒸留亜鉛 (P W) を生成する。 こうした純度の低い亜鉛 (以卞精留 塔に供用する場合に粗亜鉛と呼ぶ) を電気亜鉛並のグレードにするために精留塔 で精製し、 99. 99 %以上の精留亜鉛 (S H G ) にする。 乾式製鎌により得られる蒸 留亜鉛中には主に金属鉛や金属力ドミゥムが不純物金属として含有され、 電柱、 橋及びガードレール等の溶融亜鉛めつき用として使用される。 この蒸留亜鉛を精 製して得られる精留亜鉛は更に高純度であるため、 用途が幅広くかつ需要が高く (例えば電気めつき、 自動車の車体用連続めつき)、 市場規模が大きくなつている 図 1に従来から使用されている亜鉛精製用の精留工程における精留塔を示す。 該精留塔は通常鉛,鉄、銅等の除去用精留塔(鉛塔)と力ドミゥム除去用精留塔(力 ドミゥム塔) から成る。 又図 2 aに鉛塔の部分分解拡大図、 図 2 bにカドミウム 塔の部分分解拡大図を示す。
鉛塔 1は複数(現状では粗亜鉛供給口より上の還流部のみで 24段) のトレイ 2 が積み重ねられた形態を有し、 鉛塔 1のほぼ中央部側面に粗亜鉛用の供給口 3が 設置され、 この供給口 3を通して粗亜鉛が鉛塔 1内に供給される。 粗鉱の製鍊で 得られるこの粗亜鉛は約 98. 5 %の亜鉛と、 主な不純物としての鉛とカドミウムを 含有している。
前記鉛塔 1の亜鉛供給口 3より下の部分の周囲には燃焼室 4が設置されている c トレイ 2上の溶融亜鉛 5はトレイ 2の上向き堰 6をオーバーフローして直下のト レイ 2に移動する。 その一方、 燃焼室 4内方のトレイ 2上の溶融亜鉛 5は加熱に より気化し、 気化した亜鉛蒸気が上方のトレイ 2に移動する。 上方のトレィ方向 に移動した亜鉛蒸気は燃焼室 4より上方に達すると徐々に冷却されて一部が再度 トレィ 2上へ凝縮する。 凝縮した溶融亜鉛 5は再度トレィ 2の上向き堰 6をォー バーフローして直下のトレイ 2に移動し、 この繰り返しにより燃焼室 4内方のト レイ 2上に達し、 燃焼室 4による加熱により再度気化する。
主成分である亜鉛と不純物である鉛と力ドミゥムのうち蒸気圧が最も低い金属 は鉛であり、.亜鉛及び力ドミゥムより気化しにくいため、 燃焼室 4内方のトレイ 2上に残りやすくなる。 従ってこの気化—凝縮の繰り返しにより比較的多量の鉛 を含む亜鉛が最下段のトレイ 2に達し、 鉛取出口 7から取出される。
最上段の卜レイ 2上方に達した力ドミゥム蒸気を含む亜鉛蒸気は鉛塔 1の上端 部側方に向かう亜鉛蒸気取出口 8を通して取出され、コンデンサー 9に導かれる。 該亜鉛蒸気取出口 8内及びコンデンサー 9内で力ドミゥム蒸気を含む亜鉛蒸気は 冷却されて力ドミゥムを含む溶融亜鉛に変換される。
この溶融亜鉛は、 61段の卜レイ 10が積み重ねられたカドミウム塔 1 1内に、 該 力ドミゥム塔 1 1 の 61 段の卜レイ 10のほぼ中央部に設置された溶融亜鉛供給口 12を通して供給される。
前記力ドミゥム塔 1 1の溶融亜鉛供給口 12より下の部分の周囲には鉛塔の場合 と同様に燃焼室 13が設置されている。 鉛塔の場合と同様にして燃焼室 13により ' 力ドミゥム塔 11内の溶融亜鉛を加熱すると、亜鉛の蒸気圧が力ドミゥムの蒸気圧 より低く気化しにくいため、 溶融亜鉛 14は下方のトレイ 10に移動しやすく、 他 方力ドミゥムは蒸気となり亜鉛蒸気とともに最上段のトレィ 10に達し、該最上段 のトレイ 10の上方空間内に形成されるコンデンサー 15 により冷却されて溶融状 態になって、 亜鉛一力ドミゥム取出口 16からカドミウム塔 11外に取出される。 力ドミゥムがこのようにして塔外に取出されるため、カドミウム塔 11の下方側 のトレイ 10上には殆ど力ドミゥムを含まない純亜鉛が存在し、この純亜鉛が力ド ミゥム塔 11底面に設置された亜鉛取出口 17から取出される。
この方法で得られる純亜鉛の純度は 99. 99%以上であり、 純度的には満足でき るレベルである。
しかし粗亜鉛から精留亜鉛への精製は精製効率を向上させるために高温 (通常 は約 goo i ioot ) で実施され、 そのため大量のエネルギーを必要とする。 前述 した通り現在の亜鉛精製では鉛塔の還流部のトレイ数を 24段、力ドミゥム塔のト レイ数を 61段として初めて純亜鉛の純度を 99. 99%以上にまで向上させることが できる。 これらの段数の多さは設備の大型化を招き、 製造コストの高騰が不可避 になる。
更にトレイを積み重ねて製造される精留塔は熱に依る劣化のため 3年に 1回程 度材料を交換して積み替える必要があり、 レンガ製の前記精留塔は機械的強度が 劣り、 地震等の自然災害に弱いといった欠点を有している。
又亜鉛以外の金属の精留塔を使用する精製においても、 同様の欠点は指摘され ている。 発明の開示 本発明は、 このような従来技術の欠点を解消し、 低エネルギーで操業が実施で き、 かつ小型で機械的強度も高い精留塔を使用することにより、 低コスト及び高 操業効率で実施できる亜鉛等の金属精製方法、 及び該方法に使用可能な精留塔を 提供することを目的とする。
^ 本発明は、 不純物を含む亜鉛等の金属を複数段の精製トレィを有する精留塔に 導いて金属精製を行う方法において、 精留塔内を減圧に維持しながら前記金属の 蒸留を行うことにより不純物を除去し高純度金属を得ることを特徴とする金属の 精製方法、 及び該方法に使用可能な精留塔である。
本発明の金属の精製方法、 特に亜鉛の精製方法では、 亜鉛精製用精留塔、 例え ば鉛塔及びカドミウム塔の少なく-とも一方を減圧にして亜鉛の精製を行う。 金属 精製、 特に亜鉛精製を減圧下で行うことにより次のような効果が得られる。 ' ① 減圧下では精留塔の内圧が低下するため、 大気圧下の精製と比較して、 亜 鉛等の金属の蒸気圧が低くても金属が気化して亜鉛精製が実施できる。 換言する と加熱が弱くても亜鉛精製が行えることになり、 省エネルギー化が達成できる。 ② 従来の大気圧下での溶融金属の気化は沸騰状態にあり、 溶融金属内部から 激しく気泡が発生している状態である。 従って気化する金属が飛沫になって溶融 金属表面から飛散し、 この時に本来気化しない低沸点金属も同伴して表面から離 れやすくなる(飛沫随伴)。 そのため分離効率つまり精製効率が低くなる。 この欠 点を解消するためにはトレイの段数を増加させる必要が生じる。
これに対し本発明の減圧精製では、 沸騰させなくても十分な蒸発速度が得られ るので、 沸騰させないで蒸留操作を行えるため、 気化する金属の飛沫飛散がない か、 又はあるとしても非常に少ないため、 低沸点金属の同伴がなくなり分離効率 が向上する。 しかも減圧下では金属間の蒸気圧差が大きくなり分離を容易に行う ことが可能になる。 これらは従来の精留塔のトレィ段数より少ない卜レイ段数で 同程度の精製が可能になることを意味し、 従って本発明方法によれば精留塔の小 型化及び建設コス卜の低減が達成できる。
更に条件に依っては、精留塔の加熱を必要とせずに不純物の分離が可能になる。 つまり精留塔に供給される加熱された亜鉛の顕熱のみで亜鉛又は不純物の蒸発に 必要な蒸発熱を担うことができる。 精留塔の加熱が不要になると燃料費が節約で きるだけでなく、 精留塔に加熱設備を設置する必要がなくなり、 コスト面で有利 になるだけでなく、 占有面積の低下にも寄与できる。
③ 減圧精製を行うためには精留塔をシールして密閉度を高くしなければなら ないが、 そのためには必然的に強度の高い材料を使用して精留塔を製造しなけれ ばならず、 精留塔の機械的強度が増大して地震等に対して耐久性の高い精留塔に よる操業が可能になる。
④ 操業温度が低いため、 トレイの劣化が少なく長寿命となる。
本発明方法では、 亜鉛等の金属精製に使用される精留塔の少なくとも 1塔を減 圧にして操業を行う。亜鉛精製では、 一般的には鉛塔と力ドミゥム塔が使用され、 本発明では両塔を減圧にして操業を行うことが望ましく、 鉛塔とカドミウム塔の いずれか一方でも上述した効果が達成できる。 又両塔の代わりに又は両塔に加え て両塔を接続するラインを減圧にして間接的に少なくとも一方の塔を減圧にする ようにしても良い。
又亜鉛の精製の場合、 カドミウムと鉛を主たる不純物として含有するが、 カド ミゥム濃度の低い蒸気亜鉛を作るため、 亜鉛精製における鉛塔を設置せずに、 力 ドミゥム塔のみで精製を行うようにしても良い (この力ドミゥム塔を脱力ドミゥ ム塔ともいう)。
減圧度は特に限定されず、 減圧度が僅かであってもそれに応じた効果が得られ る。好ましい減圧度は 0. l〜5000Paであり、例えば従来と同じ純度である 99. 99 % の精製亜鉛を得るために鉛塔の還流部の必要なトレィ段数は減圧度が 20Pa の場 合 3段であり、 大気圧下の 24 段から大きく減少する。 更に従来と同じ純度の 99. 99 %の精製亜鉛を得るために必要な力ドミゥム塔の全トレイ段数は減圧度が 1260Paで 26段、 190Paで 18段であり、 いずれも大気圧下の 61段から大きく減少 する。
精留塔を構成する材料は高減圧度に耐えることができかつ亜鉛等の金属や含有 不純物と反応しない任意の材料を使用できるが、 ステンレス等の金属や金属合金 及び黒鉛や S i Cなどの耐火物を使用することが好ましい。
精留塔内を減圧にする手段は特に限定されず、 ポンプによる吸引等の従来手段 をそのまま使用すれば良い。 ポンプ等の吸引手段を接続する精留塔の個所は精留 塔内の金属が吸引されないように選択し、 必要に応じてトラップ等を使用するこ とが好ましい。
本発明方法における精製対象となる金属の 1種である不純物を含む亜鉛は特に 限定されないが、 例えば従来の亜鉛製鎌における熔鍊工程終了時の、 鉛とカドミ ゥムを主たる不純物として含有する亜鉛含有量が約 98. 5 重量%の粗亜鉛に対し て好ましく適用できる。
本発明方法に従って亜鉛精製を減圧下で行うと、 常圧下で行う場合と比較して、 次のような効果が生じる。 ①低温での操業が可能になり省エネルギー化が達成で きる。 ②飛沫随伴によると推測される精製効率の低下がなくなり、 しかも減圧下 では金属間の蒸気圧差が大きくなり分離を容易に行うことが可能になる。 従って 従来の精留塔より トレイ段数より少ない精留塔の使用で従来と同等又はそれ以 上の精製が可能になり、 精留塔の小型化及び建設コストの低減が達成できる。 ③ 減圧精製を行うために精留塔の機械的強度を上昇させることにより精留塔の耐 久性が増し、 又自然災害に対して耐性が高くなる。 ④操業温度が低いため、 トレ ィの劣化が少なく、 長寿命となる。
この亜鉛精製は、 鉛塔とカドミウム塔を含む精留塔を使用して行っても、 又脱 カドミウム塔のみを含む精留塔を使用して行っても良く、 前者'の場合は、 原料の 鉛及び力ドミゥムを不純物として含む粗亜鉛が精製されて鉛及び力ドミゥムが除 去された高純度 (99. 99 %以上) の精留亜鉛 (S H G ) が得られ、 後者の場合は力 ドミゥムが除去された鉛を含む亜鉛が得られる。 後者の方法で得られる亜鉛中の 鉛は用途によっては亜鉛に含まれることが望ましい場合があり、 鉛塔の設置及び 鉛塔での燃焼消費が不要になるため、 低コスト及び高操業効率で目的とする亜鉛 が得られる。
又本発明の減圧下に維持された力ドミゥム塔ゃ脱力ドミゥム塔に供給される溶 融亜鉛は 700°C又は れ以上の高温であることが多く、 この温度は減圧下での自 発的な蒸発を起こさせるために十分な温度であることが多く、 従って力ドミゥム 塔等での精留を加熱なしで行えることになる。 加熱が不要になると燃料費が節約 できるだけでなく、 加熱設備を設置する必要がなくなり、 コスト面で有利になる だけでなく、 占有面積の低下にも寄与できる。 図面の簡単な説明
図 1は、 従来から使用されている亜鉛精製用の精留工程における精留塔を示す 概略図である。
図 2は、 図 1の精留塔の部分分解拡大図で、 図 2 aは鉛塔の部分分解拡大図、 図 2 bは力 ドミゥム塔の部分分解拡大図である。
図 3は、 本発明方法に使用可能な精留塔を例示する概略図である。
図 4 aは亜鉛一力ドミゥムの気液 2成分系平衡状態図、 図 4 bは図 4 aの常圧 下及び減圧下の拡大図である。 図 5は、実施例の亜鉛合金の減圧精製試験で使用した試験装置の断面図である。 図 6は、 実施例 2における亜鉛合金の蒸発速度の温度依存性を示すグラフであ る。
図 7は、 気相中の鉛濃度の温度依存性を示すグラフである。
図 8は、 気相中のカドミウム濃度の温度依存性を示すグラフである。
図 9 aは鉛の蒸留効率の温度依存性を示すグラフ、 図 9 bは温度依存性を算出 する際に必要な変数を示す図である。
図 10 aは力ドミゥムの蒸留効率の温度依存性を示すグラフ、図 10 bは温度依存 性を算出する際に必要な変数を示す図である。
図 1 1は、複数の温度における鉛塔の還流部と燃焼室部のトレィ段数を示すダラ フである。
図 12は、複数の温度における力ドミゥム塔の還流部と燃焼室部のトレィ段数を 示すグラフである。
図 13は、複数の温度における脱力ドミゥム塔の還流部と燃焼室部のトレィ段数 を示すグラフである。 発明を実施するための最良の形態
次に本発明方法に使用可能な精留塔の例を説明するが、 本発明方法に使用可能 な精留塔はこれに限定されるものではない。
図 3は本発明方法に使用可能な精留塔を例示する概略図である。
鉛塔 21はトレイ 22が積み重ねられた形態を有し、複数のトレイ 22のほぼ中央 部に粗亜鉛 (フィードメタル) 用の供給口 (図示略) が設置され、 この供給口を 通して粗亜鉛が鉛塔 21内に供給される。 '
前記鉛塔 21の粗亜鉛供給口より下の部分の周囲には燃焼室 23が設置されて該 燃焼室 23により鉛塔 21内が加熱されるとともに、 鉛塔のコンデンサー 27の上部 に鉛塔用導管 24を通して接続された鉛塔用ポンプ 25により鉛塔 21内が減圧に保 持される。
供給された亜鉛は燃焼室 23により加熱されてトレイ 上で加熱されて気化す る。 この気化の際に鉛塔 21内が減圧下にあるために、 比較的弱い加熱でも金属の 気化が進行する。 図 1に示した従来技術の場合と同様にして鉛が除去され、 微量 の力ドミゥム蒸気を含む亜鉛蒸気が鉛塔 21上側部の亜鉛蒸気取出口 26を通して コンデンサー 27に導かれ、 該亜鉛蒸気取出口 26内及びコンデンサー 27内で力 ド ミゥム蒸気を含む亜鉛蒸気は冷却されて力ドミゥムを含む溶融亜鉛に変換される この溶融亜鉛は、内部にトレイ 28が積み重ねられかつ上部にカドミウム塔用導 管 29を通して力ドミゥム塔用ポンプ 30が接続された力ドミゥム塔 31内に供給さ れ、 従来技術の場合と同様にして亜鉛がカ ドミウムから分離される。 この際にも 力ドミゥム塔 3 1内が減圧下にあるために、比較的弱い加熱でも金属の気化が進行 し、 容易に亜鉛精製が進行して精留亜鉛 (S H G ) が得られる。
なお本発明の他の態様では、 鉛塔 21を設置せずに、 粗亜鉛を(脱)カドミウム塔 31 に供給するようにしても良く、 カドミウム濃度の低い蒸留亜鉛 (脱 C d P W) が得られる。
次に状態図を使用して本発明方法を説明する。
図 4 aは亜鉛一力ドミゥムの気液 2成分系平衡状態図、 図 4 bは図 4 aの部分 拡大図であり、 常圧下の気相線及び液相線は J . ルムスデンの " Thermodynami c s o f Al l oys " より引用したもので、 減圧下の気相線及ぴ液相線は熱力学データを 用い全圧、 温度、 組成間の関係式より算出したものである。
図 4 aに示すように亜鉛と力ドミゥムは常圧下では 800〜900で付近で気液平 衡に達し、 常圧から圧力が減少するにつれて平衡温度も徐々に低下し、 約 190 P aでは 400〜470°C付近で気液平衡に達する。つまり減圧に維持することにより低 温で蒸留し亜鉛一力ドミゥム混合物から力 ドミゥムを除去して亜鉛の精製が可 能になることを意味している。
更に図 4 bから明らかなように、 高温例えば常圧下で 891°Cでの液相線と気相 線の間隔と低温例えば、 約 190P aでカドミウム濃度の等しい 453ででの液相線 と気相線の間隔を比較すると、 低温での間隔が広くなり、 これは液相から蒸発す る気相中の力ドミゥム濃度が高くなることを意味し、 従って蒸留効率が上昇する ことになる。
次に亜鉛精製の鉛塔におけるエネルギー収支に関し説明する。 鉛塔へ供給され るエネルギーは燃焼室による鉛塔の直接的な加熱と、 鉛塔へ供給される亜鉛及び 空気の予熱がある。
従来の大気圧下での操業では粗亜鉛は 590 °Cに予熱してから鉛塔に供給され該 予熱に必要なエネルギーは 8.27xi0¾cal/dayである。 一方例えば本発明方法を 500°Cで操業する場合粗亜鉛は 500°Cに予熱すれば良く、 該予熱に必要なエネルギ —は 7.25xl06kcal/dayである。
従来の大気圧下での操業では空気は 790°Cに予熱してから鉛塔に供給され該予 熱に必要なエネルギーは 1.49xl07kcal/dayである。 一方 500°Cで操業する場合 は空気は 2001:に予熱すれば良く、 該予熱に必要なエネルギーは 2.57X 106kcal/dayである。
更に従来の操業で燃焼室で鉛塔を加'熱するために必要なエネルギーは 6.59X 10 cal/dayであり、 500°Cで操業する際に必要なエネルギーは 4.67x 107kcal/day である。 燃焼室による鉛塔加熱に必要なエネルギーを L P Gに換算すると、 前者 は 6000kg/dayで、 後者では 4250kg/dayあり、 減圧精製を行うことにより鉛塔で は約 30%のエネルギー削減が行えることが分かる。 従来使用された過剰エネルギーは金属の加熱に使用された後、 放射熱、 高温排 ガス、 高温の亜鉛一カドミウム蒸気、 高温溶融鉛として鉛塔から取出され、 供給 エネルギーが多いだけでなく、 取出された金属の冷却という煩雑な操作が必要で あつたが、 本発明方法では供給エネルギーが少ない分、 鉛塔からの放出エネルギ —も少なく、 後処理も簡単になる。
(実施例)
本発明に係わる亜鉛の精製方法に関する実施例を記載するが、 本発明は該実施 例に限定されるものではない。
実施例 1
図 5に示す試験装置を用いて亜鉛合金の減圧精製試験を行った。
円筒形のステンレス製減圧容器内に収容した有底円筒形の黒鉛製ルツポ内に亜 鉛合金 (亜鉛一鉛 1. 2重量%—カドミウム 0. 084重量%) を入れ、 該減圧容器の 下部周縁を炭化珪素製の発熱体で包み込み、 電気炉内に設置した。 減圧容器の上 面から前記亜鉛合金に達するように熱電対を設置し、 ペアとなる他の熱電対を発 熱体に達するように設置して両熱電対により亜鉛合金の温度を測定できるように した。
ルツポの上縁部に中央に開口を有する平板状のコンデンサ一を載置し、 その上 に薄肉の円筒体を載せ、 更にその上に同じコンデンサ一、 円筒体、コンデンサ一の 順に載せた。 中央のコンデンサーの上下及び上側のコンデンサ一の上方に相当す る減圧容器の周囲に 3個のドーナツ状の水冷ジャケッ トを設置した。
減圧容器上面の開孔にポンプ用導管を介して接続した真空ポンプを駆動し、 か つ前記電気伊に通電することにより減圧容器内の亜鉛合金を所定温度及び所定の 減圧度で熱処理できるようにした。
本実施例では温度及び減圧度を表 1に示すように変化させてコンデンサ一に捕 捉される凝縮亜鉛中の鉛濃度を調べた。 その結果を表 1に示した-。
比較例
精留塔の操業成績より次のようにして鉛濃度を推算した。
907°C , 常圧 (l OOOOOPa) でその他は実施例と同条件で蒸気亜鉛中の.鉛濃度を表 1に示す。 .
表 1の結果から低温になるほど凝縮亜鉛中の鉛濃度が低くなることが分かる。 これは低温になるほど鉛と亜鉛の蒸留圧差が大きくなり、 亜鉛が鉛より多く蒸発 するためであると推測できる。
表 1
Figure imgf000013_0001
実施例 2
複数の温度で実施例 1 と同じ実験を繰り返し、 コンデンサ一に捕捉された凝縮 亜鉛 (気相) とルツポ中に残留する残留亜鉛 (液相) の組成を分析した。
次いで①式を使用して蒸発速度を算出し、 図 6に示す蒸発速度の温度依存性を 得た。
蒸発速度 (kg/m 2 hr) = (蒸発量) (蒸発面積 X蒸発時間) ① 前記凝縮亜鉛と残留亜鉛の組成値から蒸発亜鉛中の鉛濃度及びカドミウム濃度 の温度依存性を算出し、 それぞれ図 7及び図 8のグラフに示した。
これらのグラフから分かるように、 気相中の鉛濃度は温度上昇と共に増加し、 気相中の力ドミゥム濃度は温度上昇と共に減少した。
更に鉛に関する複数の温度における蒸留効率を②式を使用して算出し、 その結 果を図 9 aのグラフに示した。 ここで a i及び b は図 9 bに示す通りである。 鉛の蒸留効率 = (気液平衡時の気相中の鉛濃度) Z (実験での気相中の鉛濃 度) = a i / b! ②
次いで力ドミゥムに関する複数の温度における蒸留効率を③式を使用して算出 し、 その結果を図 10 aのグラフに示した。 ここで a 2及び b 2は図 10 bに示す通 りである。
カドミウムの蒸留効率 = (実験での気相中のカドミウム濃度) / (気液平衡 時の気相中のカドミウム濃度) = a 2 Z b 2
鉛塔及び力ドミゥム塔の解析
次に実施例で得られたデータを基に減圧下の鉛塔及び力ドミゥム塔(図 3参照) の解析 (段数計算及び熱計算) を行った。
① 鉛塔還流部及び燃焼室部段数及び燃料削減率
物質収支及び蒸留効率で捕正した亜鉛一鉛気液状態図より各段の気液組成を決 定した。
減圧度を 190 P aとした鉛塔の亜鉛蒸気供給口に 1: 3 %の鉛を含む 590°Cに加熱 された粗亜鉛を 50 トン/日で供給し、鉛塔塔頂での鉛含有量を 20ppmにするため に必要な、 620Ϊ:、 660°C、 700"C及び 740°Cの各温度における鉛塔の燃焼室部及び 還流部の段数と燃料量を算出した。
現行 (常圧下) の条件では、 鉛塔塔頂での鉛含有量を 20ppmにするために必要 な段数は 56段であつたが、 本実施例での必要段数は、 図 1 1 に示す通り、 前記温 度の順に 34段、 23段、 19段及び 27段であり、 700°Cにおける操業で段数を最小 にできることが分かった。 又各温度における燃料削減率は表 2に示す通りで、 燃 料削減の面からは 620ででの操業が好ましいことが分かった。
この条件で鉛塔の鉛取出口から 4. 5 %の鉛を含有するランノフメタルが 15 トン 日の割合で流出し、 鉛塔の亜鉛蒸気取出口から 20ppmの鉛を含む亜鉛—カドミ ゥム蒸気が 35 トンノ日の割合で取り出された。
表 2 '
Figure imgf000015_0001
② カドミウム塔還流部及び燃焼室部段数及び燃料削減率 , 物質収支及び蒸留効率で補正した亜鉛一カドミウム気液状態図より各段の気液 組成を決定し、 ポンシヨン ·サバリ法及び必要蒸発面積から必要段数を算出した。 減圧度を 190 P aとした力ドミゥム塔の溶融亜鉛供給口に lOOOppmの力ドミゥ ムを含む 700でに加熱された溶融亜鉛を 70 トンノ日で供給し、 得られる S H G中 の力ドミゥム含有量を 20ppmにするために必要な、 460°C及び 500°Cの各温度にお ける力ドミゥム塔の燃焼室部及び還流部の段数と燃料量を算出した。
現行 (常圧下) の条件では、 カドミウム含有量を 20ppmにするために必要な段 数は 64段であつたが、 本実施例では、 図 12に示す通り、 前記温度の順に 20段及 び 18段にできることが分かり、 段数を 1 / 3未満にすることができた。
又本実施例では前述の通り、 カ ドミウム塔に供給される溶融亜鉛の温度を約 700°Cにし、 燃焼室部の加熱を行わなかったにもかかわらず、 20ppmのカドミウム を含む約 500 の純亜鉛 (S H G ) がカドミウム塔底面に設置された亜鉛取出口 から 69. 3 トン/日の割合で取出された。
つまり供給する溶融亜鉛と精留塔内の溶融亜鉛との間の温度差 ( 700でと 500 ) で、 蒸発に必要中の蒸発潜熱を全て賄うことができたことを意味し、 カド ミゥム塔の加熱を行うことなく操業ができ、 減圧下で操業することにより、 100 % の燃料削減が達成できた。
脱力ドミゥム塔の解析 本例では、 図 3に示すように、 粗亜鉛を鉛塔を通し次いでカドミウム塔を通す という処理は行わず、 亜鉛をカドミウム塔 (本解析では脱カドミウム塔という) のみを通して力ドミゥム量を減少させた亜鉛を得ることを試みた。 '
物質収支及び蒸留効率で補正した亜鉛一力ドミゥム気液状態図より各段の気液 組成を決定し、 ボンション ·.サバリ法及び必要蒸発面積から必要段数を算出した。 減圧度を 190 P aとした力ドミゥム塔の溶融亜鉛供給口に 700ppmの力ドミゥム を含む 700でに加熱された溶融亜鉛を 100 トン Z日で供給し、 得られる S H G中 のカドミウム含有量を l OOppmにするために必要な、 500°C及び 540°Cの各温度に おける力ドミゥム塔の燃焼室部及び還流部の段数と燃料 fiを算出した。
カドミウム含有量を l OOppmにするために必要な段数は、 図 13に示す通り、 前 記温度の順に 14段及び 13段であることが分かった。
又本実施例では前述の通り、 力 ドミゥム塔に供給される溶融亜鉛の温度を約 700°Cにし、 燃焼室部の加熱を行わなかったにもかかわらず、 l OOppm の力ドミゥ ムを含む約 540°Cの脱力ドミゥム蒸留亜鉛が力ドミゥム塔底面に設置された亜鉛 取出口から 99. 4 トンノ日で得られた。

Claims

請求の範囲
1 . '不純物を含む亜鉛を複数段の精製段を有する精留塔に導いて亜鉛の精製を行 う方法において、 精留塔内を減圧に維持しながら亜鉛の蒸留を行うことにより不 純物を除去し高純度亜鉛を得ることを特徴とする亜鉛の精製方法。
2 . 減圧度が 0. l〜5000Paである請求項 1に記載の亜鉛の精製方法。
3 . 精留塔が鉛塔とカドミウム塔を含み、 鉛及びカ ドミウムを不純物として含む 亜鉛を鉛塔に導いて脱鉛を行った後、 力ドミゥムを含む亜鉛を力ドミゥム塔に導 いて脱力ドミゥムを行うようにした請求項 1に記載の亜鉛の精製方法。
4 . 精留塔が脱カドミウム塔を含み、 鉛及びカドミウムを不純物として含む亜鉛 を脱力 ドミゥム塔に導いて脱力 ドミゥムを行い、 鉛を含む亜鉛を得るようにした 請求項 1に記載の亜鉛の精製方法。
5 . 力ドミゥム塔又は脱力ドミゥム塔における精留を加熱なしで行うようにした 請求項 3に記載の亜鉛の精製方法。 ,
6 . 金属、 金属合金及び樹脂から成る群から選択される材料を使用して成形され ることを特徴とする亜鉛の減圧精製用精留塔。
7 . 不純物を含む、 アルミニウム、 銅、 銀、 金、 銅及びカドミウムから成る群か ら選択される 1種類の金属を複数段の精製段を有する精留塔に導いて前記金属の 精製を行う方法において、 精留塔内を減圧に維持しながら前記金属の蒸留を行う ことにより不純物を除去し高純度金属を得ることを特徴とする金属の精製方法。
PCT/JP2001/010957 2000-12-18 2001-12-13 Procede pour purifier du zinc et colonne de rectification pour purifier du zinc WO2002050320A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002551198A JPWO2002050320A1 (ja) 2000-12-18 2001-12-13 亜鉛の精製方法及び亜鉛精製用精留塔
AU2002222638A AU2002222638A1 (en) 2000-12-18 2001-12-13 Process for purifying zinc and rectifying column for purifying zinc
EP01271115A EP1371739A4 (en) 2000-12-18 2001-12-13 METHOD FOR CLEANING ZINC AND RECTIFICATION COLUMN FOR CLEANING ZINC

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-384143 2000-12-18
JP2000384143 2000-12-18
JP2001342329 2001-11-07
JP2001-342329 2001-11-07

Publications (1)

Publication Number Publication Date
WO2002050320A1 true WO2002050320A1 (fr) 2002-06-27

Family

ID=26606032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010957 WO2002050320A1 (fr) 2000-12-18 2001-12-13 Procede pour purifier du zinc et colonne de rectification pour purifier du zinc

Country Status (4)

Country Link
EP (1) EP1371739A4 (ja)
JP (1) JPWO2002050320A1 (ja)
AU (1) AU2002222638A1 (ja)
WO (1) WO2002050320A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148707B (zh) * 2006-09-20 2010-12-08 徐建成 一种锌精馏方法及锌精馏炉
CN102277504B (zh) * 2011-08-19 2016-02-10 赵志强 硬锌常压精馏提取锌、铟工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS369157B1 (ja) * 1959-10-08 1961-06-30
JPS3614110B1 (ja) * 1958-10-06 1961-08-23
JPS54107422A (en) * 1978-02-10 1979-08-23 Nippon Mining Co Ltd Purification of distilied zinc
JPH06108175A (ja) * 1992-09-30 1994-04-19 Aichi Steel Works Ltd 粗亜鉛の精製方法およびその装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE642687A (ja) * 1963-08-31 1900-01-01
DE1234395B (de) * 1965-04-30 1967-02-16 Hans Grothe Dr Ing Verfahren zur Trennung von Metallgemischen aus leicht- und schwerfluechtigen Komponenten, insbesondere zur Raffination von Rohzinken
GB1145688A (en) * 1967-06-16 1969-03-19 Cie Metaux Doverpelt Lommel Improvements in and relating to the purification of zinc by fractional distillation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3614110B1 (ja) * 1958-10-06 1961-08-23
JPS369157B1 (ja) * 1959-10-08 1961-06-30
JPS54107422A (en) * 1978-02-10 1979-08-23 Nippon Mining Co Ltd Purification of distilied zinc
JPH06108175A (ja) * 1992-09-30 1994-04-19 Aichi Steel Works Ltd 粗亜鉛の精製方法およびその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1371739A4 *

Also Published As

Publication number Publication date
JPWO2002050320A1 (ja) 2004-04-22
AU2002222638A1 (en) 2002-07-01
EP1371739A4 (en) 2006-09-06
EP1371739A1 (en) 2003-12-17

Similar Documents

Publication Publication Date Title
JP4620694B2 (ja) 高純度トリクロロシランの製造方法
JP5811410B2 (ja) 高純度のアクリル酸生産のための分離壁型蒸留塔及びこれを利用した分別蒸留方法
CN103282336B (zh) 用于生产高纯度新戊二醇的隔壁塔以及使用其的制造方法
CN1295365C (zh) 金属锑真空精馏提纯方法及其装置
US6805833B2 (en) Apparatus for enhanced purification of high-purity metals
KR20110075464A (ko) 트리클로로실란의 정제 방법 및 정제 장치
CN1209282C (zh) 生产浓硝酸的方法和设备
WO2002050320A1 (fr) Procede pour purifier du zinc et colonne de rectification pour purifier du zinc
JP3935503B2 (ja) アルゴンの分離方法およびその装置
CN103466549B (zh) 一种高纯氯气精馏工艺及其设备
US3484233A (en) Process and apparatus for separating metals by distillation
RU2329951C2 (ru) Способ разделения тетрахлоридов циркония и гафния ректификацией
JPH06108175A (ja) 粗亜鉛の精製方法およびその装置
CN106276799B (zh) 一种电子级高纯氯气的制备方法及装置
EP0045270A1 (en) Process for separation of zirconium- and hafnium tetrachlorides from a mixture comprising such chlorides and apparatus therefor
US1994349A (en) Purifying zinc metal
CN213159445U (zh) 六氟化硫和六氟乙烷精馏控制系统
FI60036C (fi) Foerfarande och anordning foer raffinering av raokadmium
JP6391389B2 (ja) オクタクロロトリシランの製造方法並びに該方法により製造されるオクタクロロトリシラン
WO2016047736A1 (ja) ペンタクロロジシランの製造方法並びに該方法により製造されるペンタクロロジシラン
US2267698A (en) Method of recovering and refining metal
CN1020382C (zh) 锌镉合金真空蒸馏分离方法
CN207102640U (zh) 带满液控制模块和防腐蚀涂层支架的全沸蒸馏酸纯化装置
US4077799A (en) Method and apparatus of refining crude cadmium
CN2804120Y (zh) 一种金属锑的真空精馏提纯装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001271115

Country of ref document: EP

Ref document number: 2002551198

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002222638

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2001271115

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001271115

Country of ref document: EP