WO2002042134A1 - Hydraulikaggregat für schlupfgeregelte bremsanlagen - Google Patents

Hydraulikaggregat für schlupfgeregelte bremsanlagen Download PDF

Info

Publication number
WO2002042134A1
WO2002042134A1 PCT/EP2001/012675 EP0112675W WO0242134A1 WO 2002042134 A1 WO2002042134 A1 WO 2002042134A1 EP 0112675 W EP0112675 W EP 0112675W WO 0242134 A1 WO0242134 A1 WO 0242134A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
receiving bore
valves
pump
receiving
Prior art date
Application number
PCT/EP2001/012675
Other languages
English (en)
French (fr)
Inventor
Dieter Dinkel
Albrecht Otto
Original Assignee
Continental Teves Ag & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10131757A external-priority patent/DE10131757A1/de
Application filed by Continental Teves Ag & Co. Ohg filed Critical Continental Teves Ag & Co. Ohg
Priority to JP2002544287A priority Critical patent/JP2004513840A/ja
Priority to EP01997427A priority patent/EP1339580A1/de
Priority to US10/432,321 priority patent/US6877822B2/en
Publication of WO2002042134A1 publication Critical patent/WO2002042134A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • B60T17/222Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems by filling or bleeding of hydraulic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
    • B60T8/368Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S303/00Fluid-pressure and analogous brake systems
    • Y10S303/10Valve block integrating pump, valves, solenoid, accumulator

Definitions

  • the invention relates to a hydraulic unit for slip-controlled brake systems according to the preamble of claim 1.
  • a hydraulic unit for a slip-controlled brake system has already become known, with a block-shaped receiving body, which contains a total of eight valve receiving bores in a first and second row of valves, in which electromagnetically actuated inlet and outlet valves are used.
  • a pump mounting hole Outside the two rows of valves are a pump mounting hole and two parallel storage mounting holes.
  • the reservoir mounting holes are arranged axially parallel to the valve mounting holes and to the side of the two rows of valves, while the pump mounting hole extends parallel to the two rows of valves.
  • a motor mounting hole is arranged in the middle between the two storage mounting holes and extends into the pump mounting bore parallel to the axis of the storage mounting holes.
  • a third row of valves is provided, which opens away from the brake pressure transmitter connections and the first and second rows of valves at the other end of the receiving body in its housing surface.
  • the third which is thus arranged directly next to the two storage bores.
  • the valve series ensures a simple functional expansion of the hydraulic unit designed for blocking pressure control for the purpose of traction control or driving dynamics control, for which purpose closed solenoid valves in the basic position are used in the two outer valve receiving bores as electrical changeover valves.
  • open isolating valves in the form of solenoid valves are used in the two valve receiving holes between the third valve row.
  • the large distance between the brake pressure sensor connections and the electrical changeover valves has the disadvantage that for the purpose of supplying the pump with pressure medium via the changeover valves, correspondingly long suction channels from the brake pressure sensor via the electrical changeover valves to the pump receiving bore are necessary.
  • the intake ducts are inevitably difficult to evacuate due to the high volume absorption and to be filled with brake fluid. A correspondingly high hydraulic resistance can also be expected in pump operation.
  • the long suction ducts required can only be produced by complex drilling operations.
  • 1 is a three-dimensional representation of an overall view of the subject matter of the invention to illustrate all receiving bores and pressure medium channels
  • FIG. 2 shows a detailed view from FIG. 1 to explain the features essential to the invention
  • FIG. 3 shows a modification of the object according to FIG. 2 in the area of the suction duct
  • Fig. 4 shows another embodiment for designing the suction path between the brake pressure sensor connection and the pump receiving bore in the receiving body of the hydraulic unit.
  • valve 1 shows in a spatial representation all pressure medium channels, valve, pump and accumulator receiving bores within the receiving body 4.
  • valve receiving bores 2A, 2B, 2C, 2D of a first and second row of valves X, Y electromagnetically operable inlet and outlet valves are used, which extend perpendicularly from the direction of a first housing surface AI of the receiving body 4 into the valve receiving bores 2A, 2B, 2C, 2D.
  • the first housing surface AI is arranged at right angles to a second housing surface A2, into which two brake pressure transmitter connections B1, B2 open due to the dual circuit of the brake system in the vicinity of the outer edges of the receiving body 4.
  • a pump receiving bore 5 which extends transversely to the opening direction of the valve receiving bores 2A, 2B, 2C, 2D through the receiving body 4.
  • the receiving body 4 On the third housing surface A3 opposite the valve receiving bores 2A, 2B, 2C, 2D, the receiving body 4 has a motor receiving bore 14, which is directed into the pump receiving bore 5 perpendicularly and halfway along the length of the pump receiving bore 5.
  • a storage mounting bore 1 which is directed axially parallel to the valve mounting bores 2A, 2B, 2C, 2D into the first housing surface AI.
  • a plurality of valve receiving bores 2E, 2F of a third valve row Z open away from the pump receiving bore 5 directly between the second valve row Y and the brake pressure transducer connections B1, B2 into the first housing surface AI of the receiving body 4.
  • the third valve row Z has both electromagnetically actuated isolation valves which are open in the basic position and closed electrical changeover valves in the basic position.
  • the selected arrangement of the third valve row Z which has the electromagnetic switchover valve, enables an extremely short hydraulic connection of a brake pressure transmitter connection Bl or B2 with a suction-side connection of the pump receiving bore 5, for which purpose the suction path to the pump is essentially due to the center distance between the pump receiving bore 5 and the third valve row Z is determined.
  • a short suction duct 6 which opens directly into the pump receiving bore 5 is formed in the pump receiving bore 5 for supplying pressure medium to the pump , which is inexpensive to manufacture and can be flowed through with little resistance.
  • the pressure-side outlet of the pump receiving bore 5 opens into a noise damping chamber 10, which is arranged away from the second and third valve rows Y, Z perpendicular to the vertical plane of the first valve row X in the receiving body 4.
  • the arrangement of the required pressure medium channels in the receiving body 4 for one of the two brake circuits is explained below, specifically between the brake pressure transmitter connection B2 and the wheel brake connection R2, which opens into the narrow housing surface A2 parallel to the brake pressure transmitter connection B1.
  • the brake pressure transducer connection B2 leads in the lower housing reference plane El into the valve receiving bore 2E provided for an electrical changeover valve, which is directed from a first inlet channel 9A in the lower housing reference plane El in the direction of the valve receiving bore 2F arranged next to the valve receiving bore 2E and separating valve.
  • a second inlet channel section 9B designed as an angular channel, continues obliquely upward via the isolating valve which is open in the basic position, into the upper housing reference plane E2 in the direction of a noise damping chamber 10A.
  • the second inlet duct section 9B accordingly crosses the pump receiving bore 5 in the direction of the one with a plurality of inlet valves. len provided first valve row X.
  • an inlet branch 7 of the second inlet channel section 9B leads to the two valve receiving bores 2C, 2D, through which flow flows in the direction of the housing reference plane El.
  • a pressure medium connection continues in each case from the valve receiving bores 2C, 2D as wheel inlet channel 8A, 8B in the lower housing reference plane E1 in the direction of the second valve row Y receiving the outlet valves which are closed in the basic position.
  • the wheel inlet channels 8A, 8B accordingly pass under the pump receiving bore 5 and are aligned parallel to the second inlet channel section 9B up to the valve receiving bores 2A, 2B of the second valve row Y. From there, for example, the wheel inlet channel 8B continues as an angular channel (ie as an angled channel) in the direction of the housing plane E2 to the wheel brake connection R2.
  • the wheel inlet channel 8A extends vertically downward to a further wheel brake connection arranged on the underside of the receiving body 4, essentially hidden by the valve receiving bore 2E. Therefore, after crossing the first inlet duct section 9A, the wheel inlet duct 8A is angled downwards, while the wheel inlet duct 8B which laterally opens into the valve receiving bore 2B extends from the lower housing reference plane E1 to the upper housing reference plane E2 and from there the valve receiving bore 2F receiving the isolating valve in the direction of the wheel brake connection R2 crosses.
  • the pressure medium paths for the operation of the hydraulic unit in the pressure maintenance and pressure reduction phase are explained exclusively for the pressure medium supply to the wheel brake at the wheel brake connection R2.
  • the inlet valve in the valve receiving bore 2D switches into the blocking position, so that the hydraulic pressure in the second inlet channel section 9B cannot continue into the inlet branch 7 and thus not to the wheel brake connection R2.
  • the pressure in the wheel inlet duct 8B remains constant.
  • the pressure medium supply via the inlet branch 7 to the valve receiving bore 20 and the wheel inlet duct 8A is unaffected by this.
  • the outlet valve arranged in the valve receiving bore 2B switches to the open position, as a result of which the pressure medium present in the wheel inlet channel 8B reaches the return channel 11 connected to the bottom 3 of the valve receiving bore 2B, which returns the two valve receiving bores 2A, 2B connects the second row of valves Y together.
  • the return channel 11 leads as an inclined channel to a storage receiving bore 1, which is arranged below the pump receiving bore 5 and into which a low-pressure storage piston is inserted.
  • An inclined channel 12 continues spatially from the storage receiving bore 1 between the inlet branch 7 and the pump receiving bore 5 and in the present example opens into a pump pulsation damper integrated in the pump receiving bore 5.
  • the inlet branch 7 extends directly into the pump receiving bore 5.
  • the pressure medium conveyed by a pump passes from the pump receiving bore 5 via a pump pressure channel 13 crossing the inlet branch 7 to the noise damping chamber 10A.
  • the chamber floor of the noise damping chamber 10A is also connected to the second inlet duct section 9B at the same time, so that As a result of the valve switching position of the inlet valve used in the valve receiving bore 2D, the pressure medium discharged from the wheel brake R2 into the storage receiving bore 1 is conveyed back to the wheel brake connection 2 when required, the pressure present at the inlet valve passing through the second inlet channel section 9B, via the open isolating valve propagates in the valve receiving bore 2F and via the pressure supply channel 9 in the brake pressure transmitter connection B2.
  • FIG. 2 shows the features that are particularly important for the concept of the invention, which are necessary in order to ensure a ventilation, filling and suction-optimized design of the receiving body 4 without changing the state of the art according to DE 198 05 843 AI
  • Known connection diagram for the components of the brake system to be attached to the housing surfaces of the receiving body 4 eg engine, control unit, brake line.
  • the following description of the details according to FIG. 2 thus represents a partial view of the hydraulic unit known from FIG. 1.
  • FIG. 2 shows the block-shaped receiving body 4, the third valve row Z provided with the valve receiving bores 2E, 2F as well as the pump and motor receiving bores 5, 14 and the noise damping chamber 10A, 10B for the hydraulic unit of the type described at the beginning of the housing surface A2 facing away from the noise damping chambers 10A, 10B are the two brake pressure transmitter connections B1, B2 mentioned at the outset for screwing the brake line with a dual-circuit master brake cylinder, the brake fluid of which via the intake channel 6 of a pump for driving dynamics located in the pump receiving bore 5 Mik control is provided.
  • pressure medium reaches the valve receiving bore 2E, which has the electrical changeover valve, perpendicularly via a short channel section of the brake pressure transmitter connection B2.
  • the electrical changeover valve is in the open position, so that the pressure medium is deflected from the horizontal into the vertical according to the arrow marking within the valve receiving bore 2E, so that the pressure medium reaches the suction channel 6 arranged at the bottom 3 of the valve receiving bore 2E, which traverses the valve receiving bore 2E as an oblique bore from the direction of the second housing surface A2.
  • the opening of the oblique bore located on the second housing surface A2 is closed by means of a plug or a ball in a pressure-tight manner. The ball is pressed as close as possible to the valve receiving bore 2E in the intake duct 6 in order to keep the dead space volume of the intake duct 6 as low as possible.
  • the end of the intake duct 6 facing away from the valve receiving bore 2E opens into the pump receiving bore 5.
  • the selected position of the valve mounting hole 2E advantageously results in a particularly short, low-resistance suction path between the brake pressure transmitter connection B2 and the pump mounting hole 5.
  • the suction channel 6 can thus be vented and filled quickly and easily.
  • the pressure medium can be sucked in quickly and reliably via the brake pressure transmitter connection B2 in the shortest possible way from the pump in the pump receiving bore 5.
  • the pump receiving bore 5 has a pulsation damper chamber on the suction side and an additional noise damper chamber 15 which is designed as an annular chamber and is integrated as a stepped bore in the pump receiving bore 5 on the pump pressure side.
  • the pump pressure channel 13 is provided, which is also directed as an oblique bore into the bottom of the cylindrical noise damping chamber 10A, which is inserted into the receiving body 4 from the outside and has a lid closure.
  • the second inlet channel section 9B already known from FIG. 1 crosses the pump receiving bore 5 in the direction of the valve receiving bore 2F, which receives the electrical isolating valve, so that the pressure medium conveyed from the pump bore 5 to the noise damping chamber 10A escapes in the direction of the second inlet channel section 9B in the noise damping chamber 10A the second inlet channel section 9B, which opens into the bottom 3 of the valve receiving bore 2F, reaches the electromagnetically closed isolation valve.
  • FIG. 3 shows an alternative to the arrangement of the suction path between the brake pressure transmitter connection B2 and the pump receiving bore 5 in the receiving body 4.
  • the brake pressure transmitter connection B2 is now located at the level of the oblique bore penetrating the bottom 3 of the valve receiving bore 2E, into which a closure body 16 designed as a ball is inserted, as a result of which the section of the intake duct 6 which runs linearly in the oblique bore is divided into two sections 6A, 6D.
  • the brake pressure transmitter connection B2 is immediately followed by the horizontally running first section 6A of the intake duct 6, which is followed by a second section 6B which is directed vertically downwards to the housing surface AI and is connected to a third section 6C of the intake duct 6 , which at the level of the housing level El opens radially into the valve receiving bore 2E of the electrical changeover valve.
  • the open position of the electrical changeover valve there is accordingly a pressure medium connection to the fourth section 6D of the intake duct 6 via the valve receiving bore 2E, which extends from the bottom 3 of the valve receiving bore 2E to the pump receiving bore 5.
  • FIGS. 1 and 2 With regard to the further pressure medium paths recognizable from the drawing in FIG. 3, reference is made to the description of FIGS. 1 and 2. From FIG. 3 it can be seen that the closure body 16 is inserted in the section of the oblique bore which is located between the second section 6B of the intake duct 6 and the valve receiving bore 2E.
  • valve receiving bore 2E provided for the electrical changeover valve flows through in reverse, so that the brake pressure transmitter connection B2 opens into the bottom 3 of the valve receiving bore 2E and from there, with the electrical changeover valve open, flows vertically down to the housing level El through the valve mounting hole 2E.
  • an oblique bore in the function of the suction channel 6 from the direction of the housing surface A2 touches the valve receiving bore 2E in the direction of the pump receiving bore 5, as a result of which there is a short suction path for the pump between the valve receiving bore 2E and the pump receiving bore 5 analogously to FIGS. 1 to 3, the pump pressure channel 13 connects.
  • the shortest possible intake duct 6 results from the arrangement of the third valve row Z between the brake pressure transmitter connections B1, B2 and the pump receiving bore 5.

Abstract

Die Erfindung betrifft ein Hydraulikaggregat, dessen Einlassventile in den Ventilaufnahmebohrungen (2C, 2D) einer ersten Ventilreihe (X) angeordnet sind, die durch eine Pumpenaufnahmebohrung (5) von einer die Auslassventile aufnehmenden zweiten Ventilreihe (Y) räumlich getrennt ist, wobei mehrere Ventilaufnahmebohrungen (2E, 2F) einer dritten Ventilreihe (Z) entfernt von der Pumpenaufnahmebohrung (5) unmittelbar zwischen der zweiten Ventilreihe (Y) und den Bremsdruckgeberanschlüssen (B1, B2) in eine erste Gehäusefläche (A1) des Aufnahmekörpers (4) einmünden, und wobei zur hydraulischen Verbindung von wenigstens einem Bremsdruckgeberanschluss (B1 oder B2) mit einem saugseitigen Anschluss der Pumpenaufnahmebohrung (5) in wenigstens einer Ventilaufnahmebohrung (2E) der dritten Ventilreihe (Z) ein in Grundstellung geschlossenes elektrisches Umschaltventil vorgesehen ist, dessen hydraulische Verbindung mit der Pumpenaufnahmebohrung (5) über einen Abschnitt eines Ansaugkanals (6) erfolgt, dessen Länge durch den zwischen der Pumpenaufnahme-bohrung (5) und der dritten Ventilreihe (Z) bestehenden Abstand bestimmt ist.

Description

Hydraulikaggregat für schlupfgeregelte Bremsanlagen
Die Erfindung betrifft ein Hydraulikaggregat für schlupfgeregelte Bremsanlagen nach dem Oberbegriff des Patentanspruchs 1.
Aus der DE 198 05 843 AI ist bereits ein Hydraulikaggregat für eine schlupfgeregelte Bremsanlage bekannt geworden, mit einem blockför igen Aufnahmekörper, der nebeneinander in einer ersten und zweiten Ventilreihe insgesamt acht Ventilaufnahmebohrungen beinhaltet, in denen elektromagnetisch betätigbare Einlass- und Auslassventile eingesetzt werden. Außerhalb zu den beiden Ventilreihen befinden sich eine Pumpenaufnahmebohrung und zwei parallele Speicheraufnahmebohrungen. Die Speicheraufnahmebohrungen sind achsparallel zu den Ventilaufnahmebohrungen sowie seitlich der beiden Ventilreihen angeordnet, während sich die Pumpenaufnahmebohrung parallel zu den beiden Ventilreihen erstreckt. Zwischen den beiden Speicheraufnahmebohrungen ist mittig eine Motoraufnahmebohrung angeordnet, die sich achsparallel zu den Speicheraufnahmebohrungen in die Pumpenaufnahmebohrung erstreckt. Ferner ist eine dritte Ventilreihe vorgesehen, die entfernt von den Bremsdruckgeberanschlüssen und den ersten und zweiten Ventilreihen am anderen Ende des Aufnahmekörpers in dessen Gehäusefläche einmündet. Die somit unmittelbar neben den beiden Speicheraufnahmebohrungen angeordnete dritte Ventilreihe gewährleistet eine einfache funktioneile Erweiterung des für Blockierdruckregelung ausgelegten Hydraulikaggregats zum Zwecke einer Antriebsschlupf- bzw. Fahrdynamikregelung, wozu in den beiden äußeren Ventilaufnahmebohrungen als elektrische Umschaltventile ausgeführte, in Grundstellung geschlossene Magnetventile eingesetzt werden. In den beiden dazwischenliegenden Ventilaufnahmebohrungen der dritten Ventilreihe werden in Grundstellung geöffnete Trennventile in Form von Magnetventilen eingesetzt.
Die große Entfernung zwischen den Bremsdruckgeberanschlüssen und den elektrischen Umschaltventilen hat allerdings den Nachteil, dass zwecks Druckmittelversorgung der Pumpe über die Umschaltventile entsprechend lange Ansaugkanäle vom Bremsdruckgeber über die elektrischen Umschaltventile zur Pumpenaufnahmebohrung notwendig sind. Die Ansaugkanäle sind zwangsläufig auch aufgrund der hohen Volumenaufnahme aufwendig zu evakuieren und mit Bremsflüssigkeit zu befüllen. Im Pumpenbetrieb ist überdies mit einem entsprechend hohen hydraulischen Widerstand zu rechnen. Die erforderlichen langen Ansaugkanäle sind fertigungstechnisch nur durch aufwendige Bohroperationen herzustellen.
Daher ist es die Aufgabe der vorliegenden Erfindung, ein Hydraulikaggregat der angegebenen Art derart zu verbessern, dass vorgenannte Nachteile vermieden werden.
Diese Aufgabe wird erfindungsgemäß für ein Hydraulikaggregat der eingangs genannten Gattung durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.
Weitere Merkmale, Vorteile und Anwendungsmöglichkeiten der Erfindung gehen im nachfolgenden aus der Beschreibung mehre- rer Ausführungsbeispiele anhand von Zeichnungen hervor.
Es zeigen:
Fig. 1 eine dreidimensionale Darstellung einer Gesamtansicht des Erfindungsgegenstandes zur Verdeutlichung aller Aufnahmebohrungen und Druckmittelkanäle,
Fig. 2 eine Detailansicht aus Fig. 1 zur Erläuterung der erfindungswesentlichen Merkmale,
Fig. 3 eine Abwandlung des Gegenstandes nach Fig. 2 im Bereich des Ansaügkanals,
Fig. 4 ein weiteres Ausführungsbeispiel zur Gestaltung des Ansaugweges zwischen dem Bremsdruckgeberanschluss und der Pumpenaufnahmebohrung im Aufnahme körper des Hydraulikaggregates.
Die Fig. 1 zeigt in räumlicher Darstellung sämtliche Druckmittelkanäle, Ventil-, Pumpen- und Speicheraufnahmebohrungen innerhalb des Aufnahmekörpers 4. In mehreren Ventilaufnahmebohrungen 2A, 2B, 2C, 2D einer ersten und zweiten Ventilreihe X, Y werden elektromagnetisch betätigbare Einlass- und Auslassventile eingesetzt, die sich aus Richtung einer ersten Gehäusefläche AI des Aufnahmekörpers 4 lotrecht in die Ventilaufnahmebohrungen 2A, 2B, 2C, 2D erstrecken. Die erste Gehäusefläche AI ist rechtwinklig zu einer zweiten Gehäusefläche A2 angeordnet, in die aufgrund der Zweikreisigkeit der Bremsanlage in der Nähe der Außenkanten des Aufnahmekörpers 4 zwei Bremsdruckgeberanschlüsse Bl, B2 einmünden. Zwischen den beiden Ventilreihen X, Y befindet sich im Aufnah- mekörper 4 eine Pumpenaufnahmebohrung 5, die sich quer zur Einmündungsrichtung der Ventilaufnahmebohrungen 2A, 2B, 2C, 2D durch den Aufnahmekörper 4 erstreckt. Auf der zu den Ventilaufnahmebohrungen 2A, 2B, 2C, 2D entgegen gelegenen dritten Gehäusefläche A3 weist der Aufnahmekörper 4 eine Motoraufnahmebohrung 14 auf, die senkrecht und auf halber Länge der Pumpenaufnahmebohrung 5 in die Pumpenaufnahmebohrung 5 gerichtet ist. Zwischen der ersten und zweiten Ventilreihe X, Y befindet sich ferner beiderseits der Motoraufnahmebohrung 14 eine Speicheraufnahmebohrung 1, die achsparallel zu den Ventilaufnahmebohrungen 2A, 2B, 2C, 2D in die erste Gehäusefläche AI gerichtet ist. Mehrere Ventilaufnahmebohrungen 2E, 2F einer dritten Ventilreihe Z münden entfernt von der Pumpenaufnahmebohrung 5 unmittelbar zwischen der zweiten Ventilreihe Y und den Bremsdruckgeberanschlüssen Bl, B2 lotrecht in die erste Gehäusefläche AI des Aufnahmekörpers 4 ein. Die dritte Ventilreihe Z weist sowohl elektromagnetisch betätigbare, in Grundstellung offene Trennventile als auch in Grundstellung geschlossene elektrische Umschaltventile auf. Die gewählte Anordnung der das elektromagnetische Umschaltventil aufweisenden dritten Ventilreihe Z ermöglicht eine äußerst kurze hydraulische Verbindung von jeweils einem Bremsdruckgeberanschluss Bl oder B2 mit einem saugseitigen Anschluss der Pumpenaufnahmebohrung 5, wozu der Ansaugweg zur Pumpe im wesentlichen durch den Achsabstand zwischen der Pumpenaufnahmebohrung 5 und der dritten Ventilreihe Z bestimmt wird. Dies hat den Vorteil, dass infolge der kurzen Abstände und Abmessungen zwischen dem Bremsdruckgeberanschluss Bl bzw. B2 zur Ventilaufnahmebohrung 2E, die das elektrische Umschaltventil trägt, zur Druckmittelversorgung der Pumpe in der Pumpenaufnahmebohrung 5 ein kurzer, unmittelbar in die Pumpenaufnahmebohrung 5 einmündender Ansaugkanal 6 zustande kommt, der kostengünstig hergestellt und wi- derstandsarm durchströmt werden kann. Der druckseitige Ausgang der Pumpenaufnahmebohrung 5 mündet in eine Geräuschdämpfungskammer 10 ein, die entfernt von der zweiten und dritten Ventilreihe Y, Z lotrecht zur Vertikalebene der ersten Ventilreihe X im Aufnahmekörper 4 angeordnet ist.
Aus der räumlichen Darstellung des erfindungsgemäßen Hydraulikaggregats geht hervor, dass zwischen den einzelnen Ventilreihen X, Y, Z mittels Gerad- und Schrägbohrungen ein Druckmittelkanalsystem geschaffen ist, das einerseits funktionsgerechte Druckmittelanschlüsse zwischen den einzelnen Ventil-, Pumpen- und Speicheraufnahmebohrungen ermöglicht und andererseits herstelltechnisch möglichst einfach zu realisieren ist.
Nachfolgend wird die Anordnung der erforderlichen Druckmittelkanäle im Aufnahmekörper 4 für einen der beiden Bremskreise erläutert, und zwar zwischen dem Bremsdruckgeberanschluss B2 und dem Radbremsanschluss R2, der parallel zum Bremsdruckgeberanschluss Bl in die schmale Gehäusefläche A2 einmündet. Der Bremsdruckgeberanschluss B2 führt in der unteren Gehäusebezugsebene El in die für ein elektrisches Umschaltventil vorgesehene Ventilaufnahmebohrung 2E, die von einem ersten Zulaufkanal 9A in der unteren Gehäusebezugsebene El in Richtung auf die neben der Ventilaufnahmebohrung 2E angeordneten, ein Trennventil aufnehmenden Ventilaufnahmebohrung 2F gerichtet ist. Von der Ventilaufnahmebohrung 2F setzt sich ein als Winkelkanal ausgeführter zweiter Zulaufkanalabschnitt 9B über das in Grundstellung offene Trennventil schräg nach oben in die obere Gehäusebezugsebene E2 in Richtung auf eine Geräuschdämpfungskammer 10A fort. Der zweite Zulaufkanalabschnitt 9B überquert demnach die Pumpenaufnahmebohrung 5 in Richtung der mit mehreren Einlassventi- len versehenen ersten Ventilreihe X. Kurz vor der Geräuschdämpfungskammer 10A führt eine Zulaufverzweigung 7 des zweiten Zulaufkanalabschnitts 9B zu den beiden Ventilaufnahmebohrungen 2C, 2D, die in Richtung der Gehäusebezugsebene El durchströmt werden. Von den Ventilaufnahmebohrungen 2C, 2D setzt sich im einzelnen als Radzulaufkanal 8A, 8B in der unteren Gehäusebezugsebene El jeweils eine Druckmittelverbindung in Richtung der die in Grundstellung geschlossenen Auslassventile aufnehmenden zweiten Ventilreihe Y fort. Die Radzulaufkanäle 8A, 8B unterqueren demnach die Pumpenaufnahmebohrung 5 und sind parallel zum zweiten Zulaufkanalabschnitt 9B bis zu den Ventilaufnahmebohrungen 2A, 2B der zweiten Ventilreihe Y ausgerichtet. Von dort setzt sich beispielsweise die Radzulaufkanal 8B als Winkelkanal (d.h. als abgekröpfter Kanal) in Richtung der Gehäuseebene E2 zu dem Radbremsanschluß R2 fort. Der Radzulaufkanal 8A erstreckt sich vertikal nach unten zu einem auf der Unterseite des Aufnahmekörpers 4 angeordnet, im wesentlichen von der Ventilaufnahmebohrung 2E verdeckten weiteren Radbremsanschluss. Deshalb ist der Radzulaufkanal 8A nach dem Überqueren des ersten Zulaufkanalabschnitts 9A nach unten abgewinkelt, während der seitlich in die Ventilaufnahmebohrung 2B einmündende Radzulaufkanal 8B sich aus der unteren Gehäusebezugsebene El zur oberen Gehäusebezugsebene E2 erstreckt und von dort die das Trennventil aufnehmende Ventilaufnahmebohrung 2F in Richtung des Radbremsanschlusses R2 überquert.
Für den bisher beschriebenen Druckkanalverlauf zwischen dem Bremsdruckgeberanschluss B2 und beispielsweise dem Radbremsanschluss R2 werden nachfolgend die Druckmittelwege für den Betrieb des Hydraulikaggregates in der Druckhalte- und Druckabbauphase ausschließlich für die Druckmittelversorgung der Radbremse am Radbremsanschluss R2 erläutert. In der Druckhaltephase schaltet das Einlassventil in der Ventilaufnahmebohrung 2D in Sperrstellung, so dass sich der hydraulische Druck im zweiten Zulaufkanalabschnitt 9B nicht in die Zulaufverzweigung 7 und damit nicht zum Radbremsanschluss R2 fortsetzen kann. Folglich bleibt der Druck im Radzulaufkanal 8B konstant. Die Druckmittelversorgung über die Zulaufverzweigung 7 zur Ventilaufnahmebohrung 20 und dem Radzulaufkanal 8A hiervon unbeeinträchtigt .
Soll der am Radbremsanschluss R2 anstehende Druck reduziert werden, so schaltet das in der Ventilaufnahmebohrung 2B angeordnete Auslassventil in Offenstellung, wodurch das im Radzulaufkanal 8B anstehende Druckmittel in den am Boden 3 der Ventilaufnahmebohrung 2B angeschlossenen Rücklaufkanal 11 gelangt, der die beiden Ventilaufnahmebohrungen 2A, 2B der zweiten Ventilreihe Y miteinander verbindet. Von dort führt der Rücklaufkanal 11 als Schrägkanal zu einem unterhalb der Pumpenaufnahmebohrung 5 angeordneten Speicheraufnahmebohrung 1, in die ein Niederdruckspeicherkolben eingesetzt ist. Ein Schrägkanal 12 setzt sich von der Speicheraufnahmebohrung 1 kommend räumlich zwischen der Zulaufverzweigung 7 und der Pumpenaufnahmebohrung 5 fort und mündet in vorliegendem Beispiel in einen in der Pumpenaufnahmebohrung 5 integrierten Pumpenpulsationsdämpfer. Entfällt die Verwendung des Pumpenpulsationsdämpfers, so erstreckt sich die Zulaufverzweigung 7 unmittelbar in die Pumpenaufnahmebohrung 5. Von der Pumpenaufnahmebohrung 5 gelangt das von einer Pumpe geförderte Druckmittel über einen die Zulaufverzweigung 7 schräg überquerenden Pumpendruckkanal 13 zur Geräuschdämpfungskammer 10A. Die Geräuschdämpfungskammer 10A ist mit ihrem Kammerboden aber auch gleichzeitig am zweiten Zulaufkanalabschnitt 9B angeschlossen, so dass in Abhängig- keit von der Ventilschaltstellung des in der Ventilaufnahmebohrung 2D eingesetzten Einlassventils das von der Radbremse R2 in die Speicheraufnahmebohrung 1 abgelassene Druckmittel bei Bedarf wieder zu dem Radbremsanschluss 2 gefördert wird, wobei sich der an dem Einlassventil anstehende Druck über den zweiten Zulaufkanalabschnitt 9B, über das offene Trennventil in der Ventilaufnahmebohrung 2F und über den Druckzufuhrkanal 9 in den Bremsdruckgeberanschluss B2 fortpflanzt.
Die Perspektivdarstellung nach Fig. 2 zeigt die für den Erfindungsgedanken besonders bedeutsamen Merkmale, die erforderlich sind, um eine entlüftungs-, befüll- und ansaugoptimierte Gestaltung des Aufnahmekörpers 4 zu gewährleisten, ohne eine Veränderung des aus dem Stand der Technik nach DE 198 05 843 AI bekannten Anschlussbildes für die an den Gehäuseflächen des Aufnahmekörpers 4 zu befestigenden Komponenten der Bremsanlage (z.B. Motor, Steuergerät, Bremsleitung) vornehmen zu müssen. Die folgende Beschreibung der Einzelheiten nach Figur 2 stellt somit eine Teilbetrachtung des aus der Figur 1 bekannten Hydraulikaggregats dar.
Im einzelnen zeigt die Fig. 2 den blockförmigen Aufnahmekör- per 4, die mit den Ventilaufnahmebohrungen 2E, 2F versehen dritte Ventilreihe Z als auch die Pumpen- und Motoraufnahmebohrungen 5, 14 sowie die Geräuschdämpfungskammer 10A, 10B für das Hydraulikaggregat der eingangs beschriebenen Art. Auf der von den Geräuschdämpfungskammern 10A, 10B abgewandten Gehäusefläche A2 befinden sich die eingangs erwähnten beiden Bremsdruckgeberanschlüsse Bl, B2 für die Bremslei- tungsverschraubung mit einem Zweikreishauptbremszylinder, dessen Bremsflüssigkeit über den beispielhaft für einen Bremskreisabschnitt skizzierten Ansaugkanal 6 einer in der Pumpenaufnahmebohrung 5 befindlichen Pumpe zur Fahrdyna- mikregelung bereitgestellt wird. Hierzu gelangt Druckmittel über einen kurzen Kanalabschnitt des Bremsdruckgeberanschlusses B2 lotrecht in die das elektrische Umschaltventil aufweisende Ventilaufnahmebohrung 2E. In einer Fahrdynamikregelung befindet sich das elektrische Umschaltventil in Offenstellung, so dass entsprechend der Pfeilmarkierung innerhalb der Ventilaufnahmebohrung 2E eine Umlenkung des Druckmittels aus der Horizontalen in die Vertikale erfolgt, so dass das Druckmittel in Richtung des am Boden 3 der Ventilaufnahmebohrung 2E angeordneten Ansaugkanal 6 gelangt, der als Schrägbohrung aus Richtung der zweiten Gehäusefläche A2 die Ventilaufnahmebohrung 2E durchquert. Die an der zweiten Gehäusefläche A2 gelegene Öffnung der Schrägbohrung ist mittels eines Stopfens oder einer Kugel druckmitteldicht verschlossen. Die Kugel ist möglichst nahe bis zur Ventilaufnahmebohrung 2E in den Ansaugkanal 6 eingepresst, um das Totraumvolumen des Ansaugkanals 6 möglichst gering zu halten. Das von der Ventilaufnahmebohrung 2E abgewandte Ende des Ansaugkanals 6 mündet in die Pumpenaufnahmebohrung 5.
Durch die gewählte Lage der Ventilaufnahmebohrung 2E ergibt sich vorteilhaft ein besonders kurzer, widerstandsarmer Ansaugweg zwischen dem Bremsdruckgeberanschluss B2 und der Pumpenaufnahmebohrung 5. Der Ansaugkanal 6 ist damit schnell und einfach zu entlüften sowie zu befüllen. Schnell und zuverlässig kann überdies das Druckmittel über den Bremsdruckgeberanschluss B2 auf kürzestem Weg von der Pumpe in der Pumpenaufnahmebohrung 5 angesaugt werden. Entsprechend der Fig. 2 verfügt die Pumpenaufnahmebohrung 5 saugseitig über einen Pulsationsdämpferraum und pumpendruckseitig über eine zusätzliche als Ringraum ausgeführte Geräuschdämpferkammer 15, die als Stufenbohrung in der Pumpenaufnahmebohrung 5 integriert ist. Für die druckseitige Verbindung der Pumpenauf- nah ebohrung 5 mit der Geräuschdämpfungskammer 10A ist der Pumpendruckkanal 13 vorgesehen, der gleichfalls als Schrägbohrung in den Boden der zylinderförmigen Geräuschdämpfungskammer 10A gerichtet ist, die von außen in den Aufnahmekörper 4 eingesetzt, einen Deckelverschluss aufweist. Der bereits aus Figur 1 bekannte zweite Zulaufkanalabschnitt 9B überquert die Pumpenaufnahmebohrung 5 in Richtung der Ventilaufnahmebohrung 2F, die das elektrische Trennventil aufnimmt, so dass das von der Pumpenbohrung 5 zur Geräuschdämpfungskammer 10A geförderte Druckmittel in der Geräuschdämpfungskammer 10A in Richtung des zweiten Zulaufkanalabschnitts 9B entweicht und über den in den Boden 3 der Ventilaufnahmebohrung 2F einmündenden zweiten Zulaufkanalabschnitt 9B bis zu dem elektromagnetisch geschlossenen Trennventil gelangt.
Abweichend von Fig. 2 zeigt die Fig. 3 eine Alternative zur Anordnung des Ansaugweges zwischen dem Bremsdruckgeberanschluss B2 und der Pumpenaufnahmebohrung 5 im Aufnahmekörper 4. Hierzu ist nunmehr der Bremsdruckgeberanschluss B2 auf der Höhe der den Boden 3 der Ventilaufnahmebohrung 2E durchdringenden Schrägbohrung gelegen, in die ein als Kugel ausgeführter Verschlusskörper 16 eingesetzt ist, wodurch der in der Schrägbohrung linear verlaufende Abschnitt des Ansaugkanals 6 in zwei Abschnitte 6A, 6D unterteilt ist. An den Bremsdruckgeberanschluss B2 schließt sich demnach auf Höhe der der Gehäuseebene El unmittelbar der horizontal verlaufende erste Abschnitt 6A des Ansaugkanals 6 an, dem ein vertikal nach unten zur Gehäusefläche AI gerichteter zweiter Abschnitt 6B folgt, der an einem dritten Abschnitt 6C des Ansaugkanals 6 angeschlossen ist, welcher auf der Höhe der Gehäuseebebene El radial in die Ventilaufnahmebohrung 2E des elektrischen Umschaltventils einmündet. In der Offenstellung des elektrischen Umschaltventils besteht demnach über die Ventilaufnahmebohrung 2E eine Druckmittelverbindung zum vierten Abschnitt 6D des Ansaugkanals 6, der sich vom Boden 3 der Ventilaufnahmebohrung 2E zur Pumpenaufnahmebohrung 5 erstreckt. Bezüglich den aus der Zeichnung in Fig. 3 erkennbaren weiteren Druckmittelwegen wird auf die Beschreibung der Figuren 1 und 2 verwiesen. Aus der Figur 3 geht hervor, dass der Verschlußkörper 16 im Abschnitt der Schrägbohrung eingesetzt ist, der zwischen dem zweiten Abschnitt 6B des Ansaugkanals 6 und der ventilaufnahmebohrung 2E gelegen ist.
In einer weiteren Ausführungsform des Erfindungsgegenstandes nach Fig. 4 ist die für das elektrische Umschaltventil vorgesehene Ventilaufnahmebohrung 2E im Gegensatz zu den Darstellungen nach Fig. 1, 2 und 3 umgekehrt durchströmt, so dass der Bremsdruckgeberanschluss B2 in den Boden 3 der Ventilaufnahmebohrung 2E einmündet und von dort bei geöffnetem elektrischen Umschaltventil vertikal nach unten zur Gehäuseebene El die Ventilaufnahmebohrung 2E durchströmt. In diesem unteren Bereich der Ventilaufnahmebohrung 2E tangiert eine Schrägbohrung in der Funktion des Ansaugkanals 6 aus Richtung der Gehäusefläche A2 die Ventilaufnahmebohrung 2E in Richtung der Pumpenaufnahmebohrung 5, wodurch ein kurzer Ansaugweg für die Pumpe zwischen der Ventilaufnahmebohrung 2E und der Pumpenaufnahmebohrung 5 besteht, an die sich analog zu den Fig. 1 bis 3 der Pumpendruckkanal 13 anschließt.
Damit kommt durch die anhand den Fig. 1 bis 4 vorgestellte Kanalanordnung (Blockverbohrung) des Aufnahmekörpers 4 ein besonders einfaches, funktionsverbessertes Hydraulikaggregat zustande, das optimale Voraussetzungen hinsichtlich der Ent- lüftbarkeit, Befüllung mit Bremsflüssigkeit und der Druckmittelversorgung für die Pumpe schafft, ohne das aus dem Stand der Technik nach DE 198 05 843 AI bestehende Anschlussbild für die Ventile, den Motor und für die Druckmittelanschlüsse am Aufnahmekörper 4 ändern zu müssen. Ein möglichst kurzer Ansaugkanal 6 ergibt sich durch die Anordnung der dritten Ventilreihe Z zwischen den Bremsdruckgeberanschlüssen Bl, B2 und der Pumpenaufnahmebohrung 5.
Bezugszeichenliste
I Speicheraufnahmebohrung 2A Ventilaufnahmebohrung 2B Ventilaufnahmebohrung 2C Ventilaufnahmebohrung 2D Ventilaufnahmebohrung 2E Ventilaufnahmebohrung 2F Ventilaufnahmebohrung
3 Boden
4 Aufnahmekörper
5 Pumpenaufnahmebohrung
6 Ansaugkanal
6A Abschnitt des Ansaugkanals
6B Abschnitt des Ansaugkanals
60 Abschnitt des Ansaugkanals
6D Abschnitt des Ansaugkanals
7 Zulaufverzweigung 8A Radzulaufkanal
8B Radzulaufkanal
9A Erster Zulaufkanalabschnitt
9B Zweiter Zulaufkanalabschnitt
10A Geräuschdämpfungskammer
10B Geräuschdämpfungskammer
II Rücklaufkanal
12 Schrägkanal
13 Pumpendruckkanal
14 Motoraufnahmebohrung
15 Geräuschdämpfungskammer
16 Verschlusskörper
Bl Bremsdruckgeberanschluss
B2 Bremsdruckgeberanschluss
Rl Radbremsanschlüsse R2 Radbremsanschlüsse
El Untere Gehäusebezugsebene
E2 Obere Gehäusebezugsebene

Claims

Patentansprüche
1. Hydraulikaggregat für schlupfgeregelte Bremsanlagen, mit einem Aufnahmekörper, der in mehreren Ventilaufnahmebohrungen einer ersten und zweiten Ventilreihe Ein- und Auslassventile aufnimmt, die in eine erste Gehäusefläche des Aufnahmekörpers einmünden, die rechtwinklig zu einer zweiten Gehäusefläche gelegen ist, in die mehrere Bremsdruckgeberanschlüsse einmünden, mit einer im Aufnahmekörper angeordneten Pumpenaufnahmebohrung, die quer zur Einmündungsrichtung der Ventilaufnahmebohrungen in den Aufnahmekörper gerichtet ist, wobei die Ventilaufnahmebohrungen für die Auslassventile in der zweiten Ventilreihe angeordnet sind, die unmittelbar neben der Pumpenaufnahmebohrung gelegen ist, mit einer im Aufnahmekörper angeordneten Motoraufnahmebohrung, die senkrecht auf die Pumpenaufnahmebohrung gerichtet ist, mit einer in den Aufnahmekörper einmündenden Speicheraufnahmebohrung, mit mehreren die Ventil-, Pumpen- und Speicheraufnahmebohrungen verbindenden Druckmittelkanälen, die eine hydraulische Verbindung zwischen einem Bremsdruckgeber und mehreren Radbremsen herzustellen vermögen, dadurch gekennzeichnet, dass die Einlassventile in den Ventilaufnahmebohrungen (20, 2D) der ersten Ventilreihe (X) angeordnet sind, die durch die Pumpenaufnahmebohrung (5) von der die Auslassventile aufnehmenden zweiten Ventilreihe (Y) räumlich getrennt ist, dass mehrere Ventilaufnahmebohrungen (2E, 2F) einer dritten Ventilreihe (Z) entfernt von der Pumpenaufnahmebohrung (5) unmittelbar zwischen der zweiten Ventilreihe (Y) und den Bremsdruckgeberanschlüssen (Bl, B2) in die erste Gehäusefläche (AI) des Aufnahmekörpers (4) einmünden, und dass zur hydraulischen Verbindung von wenigstens einem Bremsdruckgeberanschluss
(Bl oder B2) mit einem saugseitigen Anschluss der Pumpenaufnahmebohrung (5) in wenigstens einer Ventilaufnahmebohrung (2E) der dritten Ventilreihe (Z) ein in Grundstellung geschlossenes elektrisches Umschaltventil vorgesehen ist, dessen hydraulische Verbindung mit der Pumpenaufnahmebohrung (5) über einen Abschnitt eines Ansaugka- nals (6) erfolgt, dessen Länge durch den zwischen der Pumpenaufnahmebohrung (5) und der dritten Ventilreihe (Z) bestehenden Abstand bestimmt ist.
Hydraulikaggregat nach Anspruch 1, dadurch gekennzeichnet, dass ein druckseitiger Ausgang der Pumpenaufnahmebohrung (5) in eine Geräuschdämpfungskammer (10) einmündet, die entfernt von der zweiten und dritten Ventilreihe (Y,Z) neben der ersten Ventilreihe (X) im Aufnahmekörper (4) angeordnet ist.
Hydraulikaggregat nach Anspruch 1, dadurch gekennzeichnet, dass die Ventilaufnahmebohrung (2E) der das elektrische Umschaltventil aufnehmenden dritten Ventilreihe
(Z) als Sacklochbohrung ausgeführt ist, die sich aus Richtung der ersten Gehäusefläche (AI) bis zum Boden
(3) der Sacklochbohrung erstreckt, die im Bereich des Bodens (3) vom Ansaugkanal (6) durchquert oder von diesem tangiert ist, und dass in einem Vertikalabstand vom Boden (3) in die Ventilaufnahmebohrung (2E) der dritten Ventilreihe (Z) einer der Bremsdruckgeberanschlüsse (Bl oder B2) derart einmündet, dass abhängig von der Ventilschaltstellung des der Ventilaufnahmebohrung (2) zugeordneten elektrischen Umschaltventils eine direkte Druckmittelverbindung des Ansaugkanals (6) vom Bremsdruckgeberanschluss (Bl oder B2) über die Venti- laufnahmebohrung (2E) zur Pumpenaufnahmebohrung (5) besteht.
4. Hydraulikaggregat nach Anspruch 1, dadurch gekennzeichnet, dass die für das elektrische Umschaltventil vorgesehene Ventilaufnahmebohrung (2E) als Sacklochbohrung ausgeführt ist, die sich aus Richtung der ersten Gehäusefläche (AI) bis zum Boden (3) der Sacklochbohrung erstreckt, und dass im Bereich des Bodens (3) sich der Ansaugkanal (6) linear bis zum Bremsdruckgeberanschluss
(Bl oder B2) fortsetzt.
5. Hydraulikaggregat nach Anspruch 4, dadurch gekennzeichnet, dass ein erster sowie ein vierter Abschnitt (6A, 6D) des Ansaugkanals (6) durch eine in die zweite Gehäusefläche (A2) gerichtete Bohroperation hergestellt ist, die sich bis zur Pumpenaufnahmebohrung (5) erstreckt, dass durch eine in eine der ersten Gehäusefläche (AI) entgegen gelegene dritte Gehäusefläche (A3) gerichtete weitere Bohroperation ein zweiter Abschnitt des Ansaugkanals (6B) hergestellt ist, der in den durch die erste Bohroperation hergestellten ersten Abschnitt des Ansaugkanals (6A) einmündet, und dass der zweite Kanalabschnitt (6B) des Ansaugkanals (6) unmittelbar zwischen der Ventilaufnahmebohrung (2E) des elektrischen Umschaltventils und dem Bremsdruckgeberanschluss (Bl, B2) angeordnet ist.
6. Hydraulikaggregat nach Anspruch 5, dadurch gekennzeichnet, dass ein aus Richtung der zweiten Gehäusefläche
(A2) in die Ventilaufnahmebohrung (2E) des elektrischen Umschaltventils parallel zum Bremsdruckgeberanschluss (Bl oder B2) einmündender dritter Kanalabschnitt (60) in die Ventilaufnahmebohrung (2E) des elektrischen Umschaltventils eingeführt ist, der von dort über einen koaxial zum ersten Abschnitt (6A) des ersten Ansaugkanals (6) fortgesetzten vierten Kanalabschnitt (6D) zur Pumpenaufnahmebohrung (5) geführt ist.
7. Hydraulikaggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Verhinderung eines Kurzschlussstroms zwischen dem ersten und vierten Abschnitt (6A, 6D) des Ansaugkanals (6) ein Verschlusskörper (16) in den aus Richtung der zweiten Gehäusefläche (A2) als Schrägbohrung einmündenden Gehäusekanal eingesetzt ist.
8. Hydraulikaggregat nach Anspruch 7, dadurch gekennzeichnet, dass der Verschlusskörper (16) in der zwischen der Ventilaufnahmebohrung (2E) und dem zweiten Kanalabschnitt (6B) des Ansaugkanals gelegenen Abschnitt der Schrägbohrung positioniert ist.
9. Hydraulikaggregat nach Anspruch 8, dadurch gekennzeichnet, dass der Verschlusskörper (16) als Kugel ausgebildet ist, die aus Richtung des Bremsdruckgeberanschlusses (Bl oder B2) in die Kanalbohrung eingepresst ist.
PCT/EP2001/012675 2000-11-21 2001-11-02 Hydraulikaggregat für schlupfgeregelte bremsanlagen WO2002042134A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002544287A JP2004513840A (ja) 2000-11-21 2001-11-02 調整されたアンチスリップブレーキシステム用の液圧装置
EP01997427A EP1339580A1 (de) 2000-11-21 2001-11-02 Hydraulikaggregat für schlupfgeregelte bremsanlagen
US10/432,321 US6877822B2 (en) 2000-11-21 2001-11-02 Hydraulic unit for anti-slip regulated braking systems

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10057821.7 2000-11-21
DE10057821 2000-11-21
DE10100742.6 2001-01-10
DE10100742 2001-01-10
DE10131757A DE10131757A1 (de) 2000-11-21 2001-06-30 Hydraulikaggregat für schlupfgeregelte Bremsanlagen
DE10131757.3 2001-06-30

Publications (1)

Publication Number Publication Date
WO2002042134A1 true WO2002042134A1 (de) 2002-05-30

Family

ID=27214162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/012675 WO2002042134A1 (de) 2000-11-21 2001-11-02 Hydraulikaggregat für schlupfgeregelte bremsanlagen

Country Status (4)

Country Link
US (1) US6877822B2 (de)
EP (1) EP1339580A1 (de)
JP (1) JP2004513840A (de)
WO (1) WO2002042134A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707463A2 (de) * 2005-04-01 2006-10-04 Nissin Kogyo Co., Ltd. Hydraulische Drucksteuereinheit für Fahrzeugbremsen
WO2014072266A1 (de) * 2012-11-07 2014-05-15 Continental Teves Ag & Co. Ohg Hydraulikaggregat

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1472125A1 (de) * 2002-01-30 2004-11-03 Continental Teves AG & Co. oHG Hydraulikaggregat für schlupfgeregelte bremsanlagen
JP4680509B2 (ja) * 2002-02-08 2011-05-11 コンチネンタル・テベス・アーゲー・ウント・コンパニー・オーハーゲー スリップ制御ブレーキシステムのための液圧ユニット
US20030216817A1 (en) * 2002-05-16 2003-11-20 Richard Pudney Vehicle access system with sensor
DE10236390B4 (de) * 2002-08-08 2014-02-13 Robert Bosch Gmbh Hydraulikaggregat für eine Fahrzeugbremsanlage mit Blockierschutzeinrichtung
DE10339882A1 (de) * 2003-06-26 2005-01-13 Continental Teves Ag & Co. Ohg Hydraulikaggregat für schlupfgeregelte Bremsanlagen
US7187210B2 (en) 2003-08-13 2007-03-06 Via Technologies, Inc. P-domino register
DE102005005390A1 (de) * 2004-10-13 2006-05-24 Continental Teves Ag & Co. Ohg Kraftradbremsanlage
JP4805174B2 (ja) * 2006-02-27 2011-11-02 本田技研工業株式会社 自動二輪車のブレーキ装置
JP4760595B2 (ja) * 2006-07-27 2011-08-31 株式会社アドヴィックス ブレーキ液圧制御装置
JP4413219B2 (ja) * 2006-12-06 2010-02-10 日信工業株式会社 車両用ブレーキ制御装置
KR100808482B1 (ko) * 2007-01-26 2008-03-03 주식회사 만도 전자제어식 브레이크시스템의 유압유닛
DE102009027827A1 (de) * 2009-07-20 2011-01-27 Robert Bosch Gmbh Pumpengehäuse eines Kraftfahrzeug-Hydroaggregats mit mindestens einer Hauptzylinderanschlussöffnung
US8814280B2 (en) * 2011-12-07 2014-08-26 Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense Proportionally controllable hydraulic brake system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016220A1 (de) * 1990-04-25 1991-10-31 Robert Bosch Gmbh Gehäuseblock für ein hydraulisches bremssystem
DE19712211A1 (de) * 1997-03-24 1998-10-01 Itt Mfg Enterprises Inc Elektrohydraulisches Aggregat zur Druckregelung in Bremsanlagen für Kraftfahrzeuge
DE19805843A1 (de) * 1997-11-14 1999-05-20 Itt Mfg Enterprises Inc Hydraulikaggregat für schlupfgeregelte Bremsanlagen
DE19958194A1 (de) * 1999-06-29 2001-01-04 Continental Teves Ag & Co Ohg Hydraulikaggregat

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364990B2 (ja) * 1992-08-28 2003-01-08 株式会社デンソー アンチスキッド装置
WO1999025594A1 (de) * 1997-11-14 1999-05-27 Continental Teves Ag & Co. Ohg Hydraulikaggregat für schlupfgeregelte bremsanlagen
US6428121B1 (en) * 1999-02-01 2002-08-06 Continental Teves Ag & Co., Ohg Pressure control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016220A1 (de) * 1990-04-25 1991-10-31 Robert Bosch Gmbh Gehäuseblock für ein hydraulisches bremssystem
DE19712211A1 (de) * 1997-03-24 1998-10-01 Itt Mfg Enterprises Inc Elektrohydraulisches Aggregat zur Druckregelung in Bremsanlagen für Kraftfahrzeuge
DE19805843A1 (de) * 1997-11-14 1999-05-20 Itt Mfg Enterprises Inc Hydraulikaggregat für schlupfgeregelte Bremsanlagen
DE19958194A1 (de) * 1999-06-29 2001-01-04 Continental Teves Ag & Co Ohg Hydraulikaggregat

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707463A2 (de) * 2005-04-01 2006-10-04 Nissin Kogyo Co., Ltd. Hydraulische Drucksteuereinheit für Fahrzeugbremsen
EP1707463A3 (de) * 2005-04-01 2008-05-21 Nissin Kogyo Co., Ltd. Hydraulische Drucksteuereinheit für Fahrzeugbremsen
US7753456B2 (en) 2005-04-01 2010-07-13 Nissin Kogyo Co., Ltd. Vehicle brake hydraulic pressure control unit
WO2014072266A1 (de) * 2012-11-07 2014-05-15 Continental Teves Ag & Co. Ohg Hydraulikaggregat

Also Published As

Publication number Publication date
US6877822B2 (en) 2005-04-12
EP1339580A1 (de) 2003-09-03
JP2004513840A (ja) 2004-05-13
US20040046446A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
EP2279106B1 (de) Hydraulikaggregat
WO2002042134A1 (de) Hydraulikaggregat für schlupfgeregelte bremsanlagen
EP1819565A1 (de) Hydraulikaggregat
WO2001000471A1 (de) Hydraulikaggregat
EP1641666B1 (de) Hydraulikaggregat für schlupfgeregelte bremsanlagen
EP1802502B1 (de) Kraftradbremsanlage
WO2021164917A1 (de) Hydraulikblock für ein hydraulikaggregat einer hydraulischen fremdkraft-fahrzeugbremsanlage
WO2012072319A1 (de) Pumpengehäuse für kraftfahrzeug-hydroaggregate und deren verwendung
DE10339882A1 (de) Hydraulikaggregat für schlupfgeregelte Bremsanlagen
WO2003064229A1 (de) Hydraulikaggregat für schlupfgeregelte bremsanlagen
EP1673267B1 (de) Hydraulikaggregat
EP1349758A1 (de) Hydraulikaggregat für schlupfgeregelte bremsanlagen
WO2022012788A1 (de) Hydraulikblock für ein hydraulikaggregat für eine schlupfregelung einer hydraulischen fahrzeugbremsanlage
DE10131757A1 (de) Hydraulikaggregat für schlupfgeregelte Bremsanlagen
DE10228424A1 (de) Hydraulikaggregat für schlupfgeregelte Bremsanlagen
DE102005010743A1 (de) Hydraulikaggregat
EP1638828B1 (de) Hydraulikaggregat
DE102004060079B4 (de) Hydraulikaggregat für schlupfgeregelte Bremsanlagen
EP2158113B1 (de) Hydraulikaggregat für schlupfgeregelte bremsanlagen
DE102005046619B4 (de) Hydraulikblock für eine eine Schlupfregelung aufweisende, hydraulische Fahrzeugbremsanlage
DE102021206074A1 (de) Hydraulikblock für ein Bremsaggregat einer hydraulischen Fremdkraftbremsanlage
DE102004030625A1 (de) Hydraulikaggregat
DE10355910A1 (de) Hydraulikaggregat
DE102006044509A1 (de) Hydraulikaggregat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001997427

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002544287

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10432321

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001997427

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001997427

Country of ref document: EP