WO2002038497A1 - Verfahren zur entfernung von aluminium aus chlorsilanen - Google Patents

Verfahren zur entfernung von aluminium aus chlorsilanen Download PDF

Info

Publication number
WO2002038497A1
WO2002038497A1 PCT/EP2001/012677 EP0112677W WO0238497A1 WO 2002038497 A1 WO2002038497 A1 WO 2002038497A1 EP 0112677 W EP0112677 W EP 0112677W WO 0238497 A1 WO0238497 A1 WO 0238497A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation
chlorosilanes
aluminum
silicon tetrachloride
trichlorosilane
Prior art date
Application number
PCT/EP2001/012677
Other languages
English (en)
French (fr)
Inventor
Hans-Dieter Block
Rainer Weber
Günter OLF
Hans-Joachim LEIMKÜHLER
Johannes-Peter SCHÄFER
Original Assignee
Solarworld Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solarworld Aktiengesellschaft filed Critical Solarworld Aktiengesellschaft
Priority to AU2002220677A priority Critical patent/AU2002220677A1/en
Priority to AT01993581T priority patent/ATE294764T1/de
Priority to EP01993581A priority patent/EP1337464B1/de
Priority to US10/416,688 priority patent/US20040042949A1/en
Priority to DE50106142T priority patent/DE50106142D1/de
Publication of WO2002038497A1 publication Critical patent/WO2002038497A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • C01B33/043Monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10778Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/56Chlorides
    • C01F7/58Preparation of anhydrous aluminium chloride

Definitions

  • the invention relates to a process for the separation of aluminum from chlorosilanes, in particular for the separation of aluminum trichloride from silicon tetrachloride or trichlorosilane or mixtures of silicon tetrachloride and trichlorosilane.
  • Chlorosilanes are produced industrially by the reaction of silicon with hydrogen chloride or with silicon tetrachloride and hydrogen.
  • the metallic impurities contained in the metallurgical silicon are largely converted into metal chlorides.
  • Commercial metallurgical silicon generally has a degree of purity of 90 to 99.3%, the rest is mainly iron and aluminum in proportions of 0.01 to 0.5%.
  • chlorosilanes are used, among other things, to produce high-purity silicon, the metal chlorides must be removed as completely as possible.
  • the iron chloride formed is removed mechanically using a cyclone or a gas filter, but the removal of the aluminum trichloride is more difficult due to its high volatility (sublimation temperature of 178 ° C.).
  • the chlorosilanes can be distilled at reduced temperatures in vacuo. Under these conditions, the vapor pressure of the solid aluminum chloride is so low that its proportion in the gas phase can drop below the solubility limit, so that the problem of the deposition of solid aluminum chloride in the apparatus is avoided. However, it is not possible to reduce the proportion of aluminum chloride below the proportion of its vapor pressure to the total vapor pressure, so that on the one hand the removal of the aluminum is only possible to a limited extent, and on the other hand the problem of aluminum chloride precipitation occurs again when distillation occurs, even if in a reduced form.
  • a partial solution to the problem has also been achieved by the process described in DE-OS 21 61 641, in which the gas stream leaving the synthesis reactor is first cooled to about 250 to 300 ° C. in two stages by feeding in silicon tetrachloride and then in one Venturi scrubber is cooled down with additional silicon tetrachloride to approx. 53 ° C, iron chloride and aluminum chloride components precipitated by the chlorosilanes are precipitated and remain in the condensate, and the gas stream containing the major part of the chlorosilanes is washed again with condensed chlorosilanes and then condensed can. The remaining aluminum chloride content is then given by the vapor pressure of the aluminum chloride at approx. 53 ° C.
  • the invention is therefore based on the object of specifying a process for removing aluminum from chlorosilanes in which the removal of aluminum chloride from the chlorosilanes silicon tetrachloride and trichlorosilane to any desired low residual aluminum content is made possible in a continuous process without the addition of foreign substances.
  • This object is achieved in that the aluminum trichloride and the chlorosilanes are separated by distillation at a temperature above approximately 160 ° C.
  • the distillation temperature can be up to about 220 ° C, for example, but working temperatures of about 190 ° C to 200 ° C are preferred.
  • the distillation process is preferably carried out in a multi-stage column. To this
  • the aluminum trichloride can be removed in the form of a concentrated solution in the chlorosilanes as a liquid in a simple manner from the bottom of the column continuously, intermittently or discontinuously, preferably via a pressure release device.
  • the swamp contains between approx. 1% and approx. 98%
  • the degree of enrichment is freely selectable depending on the temperature.
  • the pressure in the distillation device is linked to the applied distillation temperature via the vapor pressures of the chlorosilane components; it is in the usual working range from approx. 25 to approx. 40 bar.
  • the method according to the invention can be used in particular in processes for the production of silane and in processes for the production of high-purity silicon from silane.
  • a particularly suitable method for producing silane consists of the
  • the process for producing high-purity silicon from silane consists in the thermal decomposition of the silane, usually above 500 ° C.
  • thermal decomposition in a fluidized bed made of high-purity silicon particles is suitable for this purpose, particularly if the production of solar-grade high-purity silicon is desired.
  • the silane can be mixed with hydrogen or with inert gases in a ratio of 1: 0 to 1:10.
  • the pressurized product gas stream P from 320 ° C. to 1000 ° C. from the chlorosilane reactor is freed of dust in one or more cyclones 1 connected in series and, if desired, subsequently in one
  • Cooler 2 cooled to approx. 180 to 300 ° C.
  • the cooling is preferably carried out by contact with heat exchange surfaces while transferring the energy content.
  • the gas stream is then condensed with the transfer of further energy, including the heat of condensation, either partially via a liquid phase, consisting essentially of silicon tetrachloride and high boilers, to heat exchange surfaces of a separating tank 3, or in gaseous form in the lower or middle part of a distillation column 4 or in the bottom of said distillation column 4 initiated, whereupon the separation of the aluminum chloride as high boiler from the chlorosilanes takes place in this very column 4.
  • the liquid chlorosilanes are removed and, if appropriate, subjected to further purification of other contaminating constituents or fed directly to their intended use.
  • the gas drawn off at the top of the column 4 is condensed on a condenser 5.
  • the two condensation steps in the preferred exemplary embodiment can also be combined into one step, for example by introducing the hot one Product gas flow directly into the distillation device, as indicated by the dash-dotted line.
  • the distillation column 4 in the exemplary embodiment preferably contains between 4 and 60 theoretical plates (designated in the single figure), either as packing, as a fabric packing or as distillation plates, 4 self-cleaning plates being preferred in the lower part of the column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

Dargestellt und beschrieben ist ein Verfahren und eine Vorrichtung zur Abtrennung von Aluminium aus Chlorsilanen, insbesondere zur Abtrennung von Aluminium trichlorid aus Siliciumtetrachlorid oder Trichlorsilan oder Mischungen von Siliciumtetrachlorid und Trichlorsilan, bei denen in einem kontinuierlichen Prozess ohne Zusatz von Fremdstoffen die Entfernung von aluminiumchlorid aus den Chlorsilanen Siliciumtetrachlorid und Trichlorsilan auf beliebig niedrige Restgehalte an Aluminium ermöglicht wird, indem das Alumininiumtrichlorid und die Chlorsilane bei einer Temperatur oberhalb von ca.160°C destillativ getrennt werden.

Description

Verfahren zur Entfernung von Aluminium aus Chlorsilanen
Die Erfindung betrifft ein Verfahren zur Abtrennung von Aluminium aus Chlor- silanen, insbesondere zur Abtrennung von Alumimumtrichlorid aus Siliciumtetrachlorid oder Trichlorsilan oder Mischungen von Siliciumtetrachlorid und Trichlorsilan.
Die Herstellung von Chlorsilanen erfolgt technisch durch die Umsetzung von Silicium mit Chlorwasserstoff oder mit Siliciumtetrachlorid und Wasserstoff. Dabei werden die metallischen Verunreinigungen, die im metallurgischen Silicium enthalten sind, zu einem erheblichen Teil in Metallchloride überfuhrt. Handelsübliches metallurgisches Silicium hat im allgemeinen einen Reinheitsgrad von 90 bis 99,3 %, der Rest ist hauptsächlich Eisen sowie Aluminium in Anteilen von 0,01 bis 0,5 %.
Da Chlorsilane unter anderem zur Darstellung von hochreinem Silicium verwendet werden, müssen die Metallchloride möglichst vollständig abgetrennt werden. Die Abtrennung des entstandenen Eisenchlorids erfolgt mechanisch über einen Zyklon oder einen Gasfilter, die Abtrennung des Aluminiumtrichlorids gestaltet sich jedoch aufgrund seiner hohen Flüchtigkeit (Sublimationstemperatur von 178°C) schwieriger.
Das Problem der Abtrennung von Aluminium aus den Chlorsilanen Siliciumtetrachlorid (STC) und Trichlorsilan (TCS) und deren Mischungen, wobei das Aluminium in diesen Medien nahezu ausschließlich als Aluminiumtrichlorid vor- liegt, tritt bei allen Schritten zur Reinigung besagter Chlorsilane durch Destillation auf. Zurückzufuhren ist die Anwesesenheit von Aluminiumchlorid auf den Gehalt des für die Produktion der Chlorsilane eingesetzten Siliciums in Höhe von einigen hundert bis zu einigen tausend ppm. Beim Syntheseschritt der Chlorsilane Siliciumtetrachlorid und Trichlorsilan wird metallurgisches Silicium unterschiedlichen Siliciumgehaltes und ggf. enthaltend erhebliche Eisen-Anteile mit Chlorwasserstoff oder mit Siliciumtetrachlorid/Wasserstoff-Mischungen bei erhöhter Temperatur umgesetzt. Dabei wandelt sich das enthaltene Aluminium in Aluminiumtrichlorid um. Dieses letztere ist flüchtig gemeinsam mit den Chlorsilanen.
Die Anwesenheit von Aluminiumtrichlorid, das einerseits in den genannten Chlor- silanen fast unlöslich ist (die Löslichkeit beträgt nur einige wenige ppm des umgebenden Chlorsilane-Mediums, bei Umgebungs-Temperatur)- andererseits einen erheblichen Dampfdruck (über dem festen, kristallinen Aluminiumchlorid als Sublimationsdruck zu bezeichnen) aufweist, führt dazu, dass sich das feste Aluminiumchlorid über den Gasraum in die gesamte Destillationsvorrichtung verteilt. Die Folgen sind zum einen das Mißlingen der destillativen Abtrennung des Aluminiums aus den Chlorsilanen, zum anderen die Belegung der Destillationsvorrichtung, also der Apparatur mit sublimiertem Aluminiumchlorid. Letzteres ist besonders störend bei der kontinuierlichen Destillation besagter Chlorsilane, weil die dauernde Nachführung von Aluminiumchlorid enthaltender Flüssigkeit zur zunehmenden Belegung mit festem Aluminiumchlorid führt und die Unterbrechung des Prozesses erzwingt.
Es hat nicht an Versuchen gefehlt, dieses Problem zu beseitigen, um eine störungsfreie Destillation besagter Chlorsilane zu erreichen.
Die Destillation besagter Chlorsilane kann bei herabgesetzten Temperaturen im Vakuum vorgenommen werden. Unter diesen Bedingungen ist der Dampfdruck des festen Aluminiumchlorids so gering, dass sein Anteil in der Gasphase bis unter die Löslichkeitsgrenze sinken kann, so dass also das Problem der Abscheidung von festem Aluminiumchlorid in der Apparatur vermieden wird. Allerdings ist es nicht möglich, dadurch den Aluminiumchloridanteil unter den Anteil seines Dampfdrucks am gesamten Dampfdruck zu senken, so dass einerseits die Abtrennung des Aluminiums nur in begrenztem Umfang möglich ist, andererseits das Problem der Aluminiumchlorid-Ausfällung bei erneuter Destillation dadurch erneut auftritt, wenn auch in mengenmäßig reduzierter Form. Eine Teillösung des Problems ist auch durch das in der DE-OS 21 61 641 beschriebene Verfahren erreicht worden, bei dem der den Synthesereaktor verlassende Gasstrom in zwei Stufen durch Zuspeisung von Siliciumtetrachlorid zunächst auf ca. 250 bis 300°C abgekühlt wird und danach in einem Venturi-Wäscher mit weiterem Siliciumtetrachlorid auf ca. 53 °C heruntergekühlt wird, wobei von den Chlorsilanen mitgeführte Bestandteile Eisenchlorid und Aluminiumchlorid ausgefällt werden und im Kondensat verbleiben, und der den wesentlichen Teil der Chlorsilane enthaltende Gasstrom nochmals mit kondensierten Chlorsilanen gewaschen wird und danach kondensiert werden kann. Der restliche Gehalt an Aluminiumchlorid ist dann gegeben durch den Dampfdruck des Aluminiumchlorids bei ca. 53°C. Bei der weiteren destillativen Reinigung der Chlorsilane tritt dann wieder das oben beschriebene Problem der Anreicherung des Aluminiumchlorids im Sumpf auf mit der Folge der Bildung einer festen Phase von Aluminiumchlorid und der unerwünschten Sublimation von Aluminiumchlorid.
Die bisher beschriebenen Verfahren sind aber nicht nur mit dem Nachteil behaftet, das aufgezeigte Problem gar nicht vollständig zu lösen, sie gestatten auch nicht, die in dem Gasstrom als Wärme enthaltene Energie auf hohem Temperaturniveau, z.B. zur Erzeugung von Wasser-Druckdampf zu nutzen. Allerdings ist mit den genannten Verfahren bereits eine kontinuierliche Reaktionsfuhrung zu realisieren.
Für eine weitergehende Entfernung des Aluminiumchlorids sind nach dem Stand der Technik physikalische Operationen nicht ausreichend, vielmehr sind dazu chemische Umsetzungen erforderlich. Dazu gehören die Zusätze von bindungsfähigen Addi- tiven, beispielsweise von sauerstoffhaltigen Silicium-Spezies, allgemein als Siloxane zu bezeichnen, zumeist durch Zusatz von Wasser, Sauerstoff, Ketalen u. a. in situ erzeugt, von Aminen und anderen bindungbefahigten Monomeren und Polymeren, die das Aluminiumchlorid und z. T. auch andere Verunreininigungen so binden, dass es an einer mechanisch abtrennbaren festen Phase gebunden bleibt oder ohne Störungen in der Gasphase. Ebenso ist vorgeschlagen worden, die selektive Abtrennung des Aluminiumchlorids durch Über- oder Durchleiten des Gasstrom über bzw. durch festes Natriumchlorid vorzunehmen destillativ leicht abtrennbar wird.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Entfernung von Aluminium aus Chlorsilanen anzugeben, bei dem in einem kontinuierlichen Prozess ohne Zusatz von Fremdstoffen die Entfernung von Aluminiumchlorid aus den Chlorsilanen Siliciumtetrachlorid und Trichlorsilan auf beliebig niedrige Restgehalte an Aluminium ermöglicht wird.
Diese Aufgabe wird dadurch gelöst, dass das Aluminiumtrichlorid und die Chlorsilane bei einer Temperatur oberhalb ca. 160°C destillativ getrennt werden. Die Destillationstemperatur kann nach oben beispielsweise bis ca. 220°C betragen, doch werden Arbeitstemperaturen von ca. 190°C bis 200°C bevorzugt.
Bevorzugt erfolgt der Destillationsprozess in einer mehrstufigen Kolonne. Auf diese
Weise gelingt es, am Kopf der Kolonne Aluminiumtrichlorid-freie Chlorsilane, also Siliciumtetrachlorid, Trichlorsilan oder ihre Gemische abzunehmen, das Aluminiumtrichlorid in nicht fester Form im Sumpf der Kolonne anzusammeln und die Destilla- tionsvorrichtung, insbesondere also die Kolonne ohne Störung durch Verbackungen dauerhaft und kontinuierlich zu betreiben.
Das Aluminiumtrichlorid kann in Form einer konzentrierten Lösung in den Chlorsilanen als Flüssigkeit in einfacher Weise dem Sumpf der Kolonne kontinuierlich, intermittierend oder diskontinuierlich entnommen werden, vorzugsweise über eine Druckentspannungsvorrichtung. Der Sumpf enthält zwischen ca. 1 % und ca. 98 %
Aluminiumchlorid, der Anreicherungsgrad ist abhängig von der Temperatur frei wählbar. Der Druck in der Destillationsvorrichtung ist über die Dampfdrücke der Chlorsilan-Komponenten mit der angewandten Destillationstemperatur verknüpft, er liegt im üblichen Arbeitsbereich von ca. 25 bis ca. 40 bar. Das erfindungsgemäße Verfahren kann insbesondere eingesetzt werden in Prozessen zur Herstellung von Silan und in Prozessen zur Herstellung von Reinst-Silicium aus Silan.
Ein besonders geeignetes Verfahren zur Herstellung von Silan besteht aus den
Schritten
1. Trichlorsilan-Synthese aus Silicium, Siliciumtetrachlorid, Wasserstoff und ggf. einer weiteren Chlorquelle in einem Wirbelschicht-Reaktor unter Druck mit anschließender destillativer Isolierung des erzeugten Trichlorsilans und
Rückführung des nicht umgesetzten Siliciumtetrachlorids und gewünschten- falls des nicht umgesetzten Wasserstoffs.
2. Disproportionierung des Trichlorsilans zu Silan und Siliciumtetrachlorid über die Zwischenstufen Dichlorsilan und Monochlorsilan an basischen Katalysatoren, vorzugsweise Amingrappen enthaltenden Katalysatoren, in apparativ zweistufiger oder einstufiger Ausführung und Rückführung des erzeugten, als Schwersieder anfallenden Siliciumtetrachlorids in die erste Verfahrensstufe.
3. Verwendung des Silans in der im vorangehenden Schritt anfallenden Reinheit oder Reinigung des Silans auf die vom weiteren Verwendungszweck geforderte Reinheit vorzugsweise durch Destillation, besonders bevorzugt durch Destillation unter Druck.
Das Verfahren zur Herstellung von Reinst-Silicium aus Silan, vorzugsweise hergestellt auf dem voranstehend beschriebenen Weg, besteht in der thermischen Zersetzung des Silans, üblicherweise oberhalb 500°C. Neben der thermischen Zersetzung an elektrisch beheizten Reinst-Silicium-Stäben ist dazu die thermische Zersetzung in einem Wirbelbett aus Reinst-Silicium-Partikeln geeignet, besonders wenn die Herstellung von solar grade Reinst-Silicium angestrebt ist. Zu diesem Zweck kann das Silan mit Wasserstoff oder mit Inertgasen im Verhält- nis 1 :0 bis 1 : 10 gemischt werden.
Die Erfindung wird nachfolgend anhand einer ein bevorzugtes Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Die Erfindung ist jedoch in keiner Weise auf das in der Zeichnung dargestellte Ausführungsbeispiel beschränkt. In der einzigen Figur ist schematisch eine erfindungsgemäße Vorrichtung sowie der Ablauf des erfindungsgemäßen Verfahrens dargestellt.
Dabei wird der unter Druck befindliche, von 320°C bis 1000°C heiße Produktgasstrom P aus dem Chlorsilane-Reaktor in einem oder in mehreren in Reihe geschal- teten Zyklonen 1 von Staub befreit und gewünschtenfalls anschließend in einem
Kühler 2 auf ca. 180 bis 300°C gekühlt. Die Kühlung erfolgt bevorzugt durch Kontakt mit Wärmeaustauschflächen unter Übertragung des Energieinhaltes. Danach wird der Gasstrom unter Übertragung weiterer Energie einschließlich der Kondensationswärme entweder teilweise über eine Flüssigkeitsphase, bestehend aus im wesentlichen Siliciumtetrachlorid und Hochsiedern, an Wärmeaustauschflächen eines Abscheidebehälters 3 kondensiert oder aber gasförmig in den unteren oder mittleren Teil einer Destillationskolonne 4 oder in den Sumpf besagter Destillationskolonne 4 eingeleitet, worauf dann die Abtrennung des Aluminium- chlorids als Hochsieder von den Chlorsilanen in eben dieser Kolonne 4 erfolgt. Am Kopf der Kolonne 4 werden die flüssigen Chlorsilane entnommen und gegebenenfalls einer weiteren Reinigung von anderen verunreinigenden Bestandteilen unterworfen oder direkt seinem Bestimmungszweck zugeführt. Das am Kopf der Kolonne 4 abgezogene Gas wird an einem Kondensator 5 kondensiert.
Die beiden Kondensationsschritte im bevorzugten Ausführungsbeispiel können auch zu einem Schritt zusammengefasst werden, beispielsweise durch Einleiten des heißen Produktgasstroms unmittelbar in die Destillationsvorrichtung, wie mit der strichpunktierten Linie angedeutet ist.
Die Destillationskolonne 4 im Ausfuhrungsbeispiel enthält bevorzugt zwischen 4 und 60 (in der einzigen Figur bezeichneten) theoretische Böden, entweder als Füllkörper, als Gewebepackung oder als Destillationsböden, wobei im unteren Teil der Kolonne 4 selbstreinigende Böden bevorzugt werden.

Claims

Patentansprtiche
1. Verfahren zur Abtrennung von Aluminium aus Chlorsilanen, insbesondere zur Abtrennung von Aluminiumtrichlorid aus Siliciumtetrachlorid oder Tri- chlorsilan oder Mischungen von Siliciumtetrachlorid und Trichlorsilan, dadurch gekennzeichnet, dass das Aluminiumtrichlorid und die Chlorsilane bei einer Temperatur oberhalb von ca. 160°C destillativ getrennt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur beim Destillationsprozess zwischen ca. 190°C und ca. 200°C beträgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Druck beim Destillationsprozess ca. 25 bis ca. 40 bar beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verfahren in Prozessen zur Herstellung von Silan bzw. Reinst-Silicium aus Silan eingesetzt wird.
5. Vorrichtung zur Durchführung des Verfahrens nach wenigstens einem der Ansprüche 1 bis 4, dass die Destillation in einer mehrstufigen Kolonne (4) erfolgt.
6. Vorrichtung nach Anspruch 5, dass die Destillationskolonne zwischen 4 und 60 theoretische Böden enthält.
7. Vorrichtung nach Anspruch 6, dass die theoretischen Böden als Füllkörper, als Gewebepackung oder als Destillationsböden ausgebildet sind.
8. Vorrichtung nach Anspruch 6 oder 7, dass zumindest die unteren theore- tischen Böden als selbstreinigende Destillationsböden ausgeführt sind.
PCT/EP2001/012677 2000-11-13 2001-11-02 Verfahren zur entfernung von aluminium aus chlorsilanen WO2002038497A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2002220677A AU2002220677A1 (en) 2000-11-13 2001-11-02 Method for removing aluminium from chlorosilanes
AT01993581T ATE294764T1 (de) 2000-11-13 2001-11-02 Verfahren zur entfernung von aluminium aus chlorsilanen
EP01993581A EP1337464B1 (de) 2000-11-13 2001-11-02 Verfahren zur entfernung von aluminium aus chlorsilanen
US10/416,688 US20040042949A1 (en) 2000-11-13 2001-11-02 Method for removing aluminum from chlorosilanes
DE50106142T DE50106142D1 (de) 2000-11-13 2001-11-02 Verfahren zur entfernung von aluminium aus chlorsilanen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10056194.2 2000-11-13
DE10056194A DE10056194A1 (de) 2000-11-13 2000-11-13 Verfahren zur Entfernung von Aluminium aus Chlorsilanen

Publications (1)

Publication Number Publication Date
WO2002038497A1 true WO2002038497A1 (de) 2002-05-16

Family

ID=7663125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/012677 WO2002038497A1 (de) 2000-11-13 2001-11-02 Verfahren zur entfernung von aluminium aus chlorsilanen

Country Status (6)

Country Link
US (1) US20040042949A1 (de)
EP (1) EP1337464B1 (de)
AT (1) ATE294764T1 (de)
AU (1) AU2002220677A1 (de)
DE (2) DE10056194A1 (de)
WO (1) WO2002038497A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153090A1 (de) * 2008-06-19 2009-12-23 Evonik Degussa Gmbh Verfahren zur entfernung von bor enthaltenden verunreinigungen aus halogensilanen sowie anlage zur durchführung des verfahrens
EP2540666A1 (de) * 2011-06-28 2013-01-02 Mitsubishi Materials Corporation Verfahren zur Herstellung von Trichlorsilan
EP3530621A4 (de) * 2016-10-19 2020-04-22 Tokuyama Corporation Verfahren zur steuerung der konzentration von feststoffgehalt und verfahren zur herstellung von trichlorsilan

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044794A1 (de) * 2000-09-11 2002-04-04 Bayer Ag Verfahren zur Herstellung von Trichlorsilan
US7736614B2 (en) * 2008-04-07 2010-06-15 Lord Ltd., Lp Process for removing aluminum and other metal chlorides from chlorosilanes
US8298490B2 (en) * 2009-11-06 2012-10-30 Gtat Corporation Systems and methods of producing trichlorosilane
DE102010061814A1 (de) * 2010-11-23 2012-05-24 Wacker Chemie Ag Verfahren zum Aufarbeiten von flüssigen Rückständen der Direktsynthese von Organochlorsilanen
DE102012103756A1 (de) * 2012-04-27 2013-10-31 Centrotherm Sitec Gmbh Verfahren zur Absenkung einer in einem Trichlorsilansynthesereaktor vorherrschenden Temperatur sowie Vorrichtung zur Durchführung dieses Verfahrens
DE102012103755A1 (de) * 2012-04-27 2013-10-31 Centrotherm Sitec Gmbh Verfahren zur Synthese von Trichlorsilan und Vorrichtung zur Durchführung dieses Verfahrens
CN108862347B (zh) * 2018-08-01 2021-03-16 湖南恒光科技股份有限公司 一种工业生产三氯化铝的系统装置及工艺
CN109908621A (zh) * 2019-04-12 2019-06-21 四川永祥多晶硅有限公司 渣浆分离前置输送系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136601A (en) * 1980-03-27 1981-10-26 Koujiyundo Silicon Kk Evaporator type separator
US4385964A (en) * 1979-05-21 1983-05-31 Aluminum Company Of America Method for preventing the undesirable condensation of aluminum chloride in a fractional distillation column
FR2596301A1 (fr) * 1986-03-26 1987-10-02 Union Carbide Corp Procede de traitement de residus de production de silicium de grande purete

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380995A (en) * 1941-09-26 1945-08-07 Gen Electric Preparation of organosilicon halides
US3938969A (en) * 1973-12-07 1976-02-17 Toth Aluminum Corporation Purification of aluminum chloride
US4083923A (en) * 1976-01-22 1978-04-11 Toth Aluminum Corporation Process for the production of aluminum chloride and related products
US4286066A (en) * 1980-06-24 1981-08-25 Butler Robert S Continuous fermentation and distillation apparatus
US4349420A (en) * 1981-01-12 1982-09-14 Aluminum Company Of America Fractional distillation process for the production of aluminum chloride
DE3410644A1 (de) * 1984-03-23 1985-09-26 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von dimethyldichlorsilan
US4520130A (en) * 1984-05-08 1985-05-28 Scm Corporation Halosilane catalyst and process for making same
US6057469A (en) * 1997-07-24 2000-05-02 Pechiney Electrometallurgie Process for manufacturing active silicon powder for the preparation of alkyl- or aryl-halosilanes
DE10039172C1 (de) * 2000-08-10 2001-09-13 Wacker Chemie Gmbh Verfahren zum Aufarbeiten von Rückständen der Direktsynthese von Organochlorsilanen
DE10061682A1 (de) * 2000-12-11 2002-07-04 Solarworld Ag Verfahren zur Herstellung von Reinstsilicium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385964A (en) * 1979-05-21 1983-05-31 Aluminum Company Of America Method for preventing the undesirable condensation of aluminum chloride in a fractional distillation column
JPS56136601A (en) * 1980-03-27 1981-10-26 Koujiyundo Silicon Kk Evaporator type separator
FR2596301A1 (fr) * 1986-03-26 1987-10-02 Union Carbide Corp Procede de traitement de residus de production de silicium de grande purete

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 011 (C - 088) 22 January 1982 (1982-01-22) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153090A1 (de) * 2008-06-19 2009-12-23 Evonik Degussa Gmbh Verfahren zur entfernung von bor enthaltenden verunreinigungen aus halogensilanen sowie anlage zur durchführung des verfahrens
EP2540666A1 (de) * 2011-06-28 2013-01-02 Mitsubishi Materials Corporation Verfahren zur Herstellung von Trichlorsilan
US8828345B2 (en) 2011-06-28 2014-09-09 Mitsubishi Materials Corporation Method for manufacturing trichlorosilane
EP3530621A4 (de) * 2016-10-19 2020-04-22 Tokuyama Corporation Verfahren zur steuerung der konzentration von feststoffgehalt und verfahren zur herstellung von trichlorsilan
US11034585B2 (en) 2016-10-19 2021-06-15 Tokuyama Corporation Method for controlling concentration of solid content and method for producing trichlorosilane

Also Published As

Publication number Publication date
DE10056194A1 (de) 2002-05-29
US20040042949A1 (en) 2004-03-04
EP1337464A1 (de) 2003-08-27
EP1337464B1 (de) 2005-05-04
ATE294764T1 (de) 2005-05-15
DE50106142D1 (de) 2005-06-09
AU2002220677A1 (en) 2002-05-21

Similar Documents

Publication Publication Date Title
EP1341720B1 (de) Verfahren zur herstellung von reinstsilicium
EP2265546B1 (de) Verfahren und anlage zur herstellung von reinstsilizium
EP2294006A1 (de) Verfahren zur entfernung von bor enthaltenden verunreinigungen aus halogensilanen sowie anlage zur durchführung des verfahrens
EP1337464B1 (de) Verfahren zur entfernung von aluminium aus chlorsilanen
DE3024319A1 (de) Kontinuierliches verfahren zur herstellung von trichlorsilan
WO2000039027A1 (de) Verfahren und anlage zur herstellung von silan
EP0180925B1 (de) Verfahren zur Herstellung von Vinylchlorid durch thermische Spaltung von gereingtem 1,2-Dichlorethan
DE2421768A1 (de) Verfahren zur entfernung von schwefeloxyden und feststoffteilchen aus abgasen und anlage zu seiner durchfuehrung
WO2002048035A1 (de) Verfahren zur herstellung von silan
DE10030252A1 (de) Abtrennung von Metallchloriden aus deren Suspensionen in Chlorsilanen
DE3709577A1 (de) Behandlungsverfahren fuer abfaelle bei der herstellung von hochreinem silicium
DE2755824B2 (de) Verfahren zum Reinigen von Silan
EP0216292B1 (de) Verfahren zur Aufarbeitung von chlorwasserstoffhaltigen Abgasen
CA1152285A (en) Process and apparatus for regenerating sulphuric acid
DE3203743A1 (de) Verfahren zur aufbereitung von bei der siliciumherstellung anfallenden abgasen
DE10057483B4 (de) Verfahren zur Entfernung von Aluminiumtrichlorid aus Chlorsilanen
DE3805282A1 (de) Verfahren zur entfernung von n-dotierenden verunreinigungen aus bei der gasphasenabscheidung von silicium anfallenden fluessigen oder gasfoermigen stoffen
DE3500318A1 (de) Disproportionierungskatalysator fuer silanverbindungen und verfahren zur kontinuierlichen herstellung von silanverbindungen
DE102011110040A1 (de) Verfahren zur Herstellung von Chlorsilanen mittels hoch-siedender Chlorsilane oder chlorsilanhaltiger Gemische
WO2018141805A1 (de) Verfahren zur herstellung von elementarem silizium
EP1534630B1 (de) Verfahren zur herstellung einer wässrigen lösung von hydroxylamin
EP1318101B1 (de) Verfahren zur Herstellung von weitgehend HBr-freiem HCI-Gas und weitgehend HBr-freier wässriger HCI-Lösung
DE3207065A1 (de) Verfahren zur regenerierung von nichtumgesetzten chlorsilanen und nichtumgesetztem wasserstoff bei der herstellung von polykristallinem halbleitersilizium
DE10057521A1 (de) Verfahren zur Herstellung von Silanen
EP0532857A1 (de) Verfahren zur Aufarbeitung von Rückständen einer Chlorsilandestillation mit Wasserdampf

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001993581

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10416688

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001993581

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001993581

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP