PINCE A COMMANDE ELECTRIQUE POUR LA MANIPULATION, LE SERRAGE, LE BRIDAGE OU ANALOGUE DE PIECES.
La présente invention concerne une pince de manipulation de pièces à commande électrique.
On connaît déjà des pinces du type précité qui comportent généralement un moteur électrique entraînant en rotation un arbre fileté sur lequel est vissé un écrou bloqué en rotation. Cet écrou est relié, par un mécanisme de liaison approprié, aux mors de la pince de telle façon que, lorsque le moteur électrique tourne dans un sens ou dans l'autre, 1 ' écrou se déplace axialement sur l'arbre fileté et provoque, par l'intermédiaire du mécanisme de liaison, les mouvements d'ouverture et de fermeture des mors, en fonction du sens de rotation du moteur et par conséquent de l'arbre fileté.
La présente invention concerne des perfectionnements apportés à une pince de manipulation du type précité dans le but de faciliter le réglage d'un effort de serrage de chaque pièce, après la fermeture des mors, tout en utilisant un moteur de faible puissance afin d'économiser de l'énergie et de réduire l'encombrement de la pince. A cet effet, cette pince à commande électrique pour la manipulation , le serrage, le bridage ou analogue de pièces, comportant des mors mobiles pendant des phases d'ouverture, de fermeture et de serrage des pièces, un moteur électrique entraînant en rotation un arbre fileté, et un ensemble de guidage et de pilotage des mors mobiles comprenant un écrou vissé sur l'arbre en étant bloqué en rotation et des moyens de liaison entre 1 ' écrou et les mors de la pince, est remarquable en ce que l'ensemble de guidage et de pilotage des mors comprend en outre un transducteur produisant, lorsqu'il est excité par un courant électrique, un champ magnétique ou électrique temporaire pendant chaque phase de serrage, ce transducteur étant solidaires de l' écrou et accouplés à l'un au moins des mors afin de les attirer ou respectivement de les repousser de telle façon que lesdits mors de la pince soient serrés sur une pièce située entre eux lorsque ledit
transducteur produit son champ magnétique ou respectivement électrique temporaire.
On décrira ci-après, à titre d'exemples non limitatifs, diverses formes d'exécution de la présente invention en référence aux dessins annexés sur lesquels :
- la figure 1 est une vue schématique d'une pince de manipulation suivant la présente invention et de son circuit de commande électrique,
- les figures 2A,2B,2C sont des schémas illustrant les mouvements de diverses parties mobiles de la pince, respectivement pendant les phases d'ouverture, de fermeture et de serrage,
- la figure 3 est une vue schématique d'une forme d'exécution d'une pince à commande électrique suivant l'invention, en position d'ouverture des mors,
- la figure 4 est une vue schématique semblable à celle de la figure 3, après la fermeture des mors et pendant un serrage d'une pièce,
- les figures 5,6,7 et 8 sont des vues schématiques de diverses variantes d'exécution de la pince de manipulation suivant l'invention.
Sur la figure 1 est représentée schématiquement une pince de manipulation d'axe vertical comportant deux mors 1,2 symétriques par rapport à un plan diamétral, montés respectivement à pivotement autour d'axes parallèles horizontaux 3,4 solidaires d'un châssis 10 de la pince. La pince comporte un moteur électrique 5 monté à la partie supérieure du châssis 10 et dont le rotor entraîne en rotation un arbre fileté vertical 6, s ' étendant vers le bas, sur lequel est vissé un écrou 7 bloqué en rotation. Cet écrou 7 est solidaire, à sa partie inférieure, de la culasse d'un élément électromagnétique générateur d'un champ magnétique temporaire 8 comportant une face polaire transversale inférieure 8a opposée à 1 ' écrou 7. L'élément électromagnétique précité est constitué par tout dispositif comportant un circuit magnétique et un bobinage d'excitation qui produit un champ magnétique lorsque le bobinage est parcouru par un courant. Un tel dispositif
peut être constitué par un électroaimant et dans ce cas le champ magnétique temporaire est produit lorsque le bobinage est excité, ou bien encore par une ventouse magnétique à aimant permanent dont le champ magnétique permanent est annulé par celui produit par le bobinage de la ventouse lorsque ce bobinage est excité. Dans la description qui va suivre, on considérera que le générateur de champ magnétique temporaire 8 est constitué en fait par un électroaimant . L ' électroaimant 8 est solidaire d'une tige axiale 9 qui s'étend vers le bas à partir de sa face polaire 8a et qui comporte une butée 11 à son extrémité inférieure. Sur la tige axiale 9 et entre la face polaire 8a. de 1 ' électroaimant 8 et la butée 11 est monté à coulissement libre un noyau 12 en matériau ferromagnétique. Ce noyau 12 constitue une armature mobile pour électroaimant 8 et il est accouplé aux mors 1 et 2 de manière que son mouvement de coulissement sur la tige axiale 9 provoque un pivotement des mors 1,2, autour de leurs axes respectifs 3,4, dans des sens opposés. L'accouplement entre le noyau ferromagnétique 12 et les mors 1,2 est représenté schématiquement par des tétons 13, solidaires du noyau 12 et engagés dans des chapes prévues dans les parties extrêmes des branches supérieures des mors 1,2 qui sont réalisés sous la forme de leviers à deux branches inclinées entre elles en formant un angle obtus, leurs deux branches inférieures constituant les deux mors 1,2 proprement dits.
Le circuit de commande électrique de la pince suivant l'invention qui est représenté sous une forme schématique sur la figure 1, comporte une unité centrale de traitement 14 qui est connectée à un circuit 15 de commande de la puissance de 1 ' électroaimant 8 et à un circuit 16 de commande du moteur électrique 5. Le circuit 15 de commande de la puissance de 1 ' électroaimant 8 comporte un moyen 17, tel qu'un potentiomètre par exemple, permettant de régler aisément et finement l'effort de serrage des mors 1 et 2 comme il sera précisé plus loin.
Le circuit 16 commande, en fonction des informations
fournies par l'unité de traitement 14, le sens de rotation du moteur et sa vitesse ainsi que sa mise en marche.
Le circuit de commande électrique comprend également un détecteur 18 de blocage du moteur 5, en fin de phase de fermeture des mors 1,2, ce détecteur 18 étant connecté à l'unité de traitement 14 d'une part directement, d'autre part par l'intermédiaire d'un circuit de temporisation 19.
On décrira maintenant, en se référant plus particulièrement aux figures 2A,2B, 2C le fonctionnement de la pince à commande électrique décrite ci-dessus qui exerce son effort de serrage après la fermeture des mors 1,2. Initialement, les mors 1,2 doivent être placés dans la position d'ouverture représentés schématiquement sur la figure 1, position dans laquelle ils sont situés l'un et l'autre à une certaine distance d'une pièce A devant être saisie par la pince. La position d'ouverture des mors 1,2 est atteinte en faisant tourner le moteur 5 et l'arbre 6 dans le sens indiqué par la flèche SI sur la figure 2A. Par suite de cette rotation, 1 ' écrou 7, 1 ' électroaimant 8, le noyau ferromagnétique 12 accolé à 1 ' électroaimant 8 et la tige 9 sont tous déplacés conjointement vers la droite et ce mouvement provoque l'ouverture des mors 1,2.
Lorsque les mors 1,2, précédemment ouverts, doivent être refermés pour saisir une pièce A disposée entre eux, on fait tourner le moteur 5 et l'arbre fileté 6, en sens inverse du précédent, c'est-à-dire dans le sens indiqué par la flèche S2 sur la figure 2B. A la suite de ce mouvement, 1 ' écrou 7, 1 ' électroaimant 8 et la tige 9 sont déplacés vers la gauche, et le noyau ferromagnétique 12 l'est également du fait qu'il se trouve être entraîné par la butée extrême 11 appliquée contre lui. Par suite de ce mouvement du noyau ferromagnétique 12, les mors 1,2 pivotent autour de leurs axes respectifs 3,4, dans le sens de la fermeture et ils viennent s'appliquer contre les faces en regard de la pièce A à manipuler.
Après la phase de fermeture a lieu une phase de serrage des mors 1,2. Au cours de cette phase, ainsi qu'il est illustré sur la figure 2C, le moteur 5 et l'arbre 6
sont maintenus à l'arrêt et 1 ' électroaimant 8 est alimenté en courant de manière qu'il produit un champ magnétique provoquant l'attraction du noyau ferromagnétique 12 vers la face polaire 8a de 1 ' électroaimant 8. Ceci est rendu possible du fait que le noyau ferromagnétique 12 coulisse librement sur la tige 9. Cette attraction du noyau ferromagnétique 12 se traduit par un effort de serrage exercé par les mors 1,2 sur les faces en regard de la pièce A, cet effort de serrage pouvant être réglé à volonté en agissant sur le moyen de réglage 17. L'effort de serrage est maintenu, sous le contrôle de l'unité de traitement 14, pendant toute la durée du déplacement de la pièce A par la pince .
Le début de l'excitation de 1 ' électroaimant 8, pour chaque phase de serrage, est commandé par le détecteur 18 du blocage du moteur 5. Autrement dit, lorsqu'en fin d'opération de fermeture, les mors 1,2 viennent en contact avec la pièce A, l'ensemble mobile 7,8,9,13 est bloqué et l'arbre 6 et le moteur 5 ne peuvent plus tourner. L'arrêt du moteur est signalé par le détecteur 18 à l'unité de traitement 14 qui agit alors sur le circuit 15 pour provoquer l'excitation de 1 ' électroaimant 8 et le serrage de la pièce A.
Les figures 3 à 8 représentent diverses variantes d'exécution de la pince de manutention suivant l'invention. Sur ces diverses figures, des éléments constitutifs de la pince sont affectés des mêmes numéros de référence que ceux utilisés sur la figure 1.
Dans la variante d'exécution représentée sur les figures 3 et 4 , la pince est toujours du type exerçant son effort de serrage après la fermeture des mors 1,2, mais ses mors 1,2 ne sont pas montés pivotants et ils se déplacent en translation en restant parallèle l'un à l'autre, en étant montés à coulissement sur une tige horizontale commune 21 fixée à la partie inférieure du châssis 10. Pour provoquer ce mouvement de coulissement des mors 1,2, le noyau ferromagné ique est accouplé aux extrémités de deux premières branches de deux leviers coudés 22,23,
symétriques par rapport à un plan diamétral, pivotant autour d'axes respectifs 24,25 et dont les secondes branches sont accouplées respectivement aux mors 1 et 2. Les liaisons entre les leviers coudés 22,23 et le noyau ferromagnétique 12 d'une part et les mors 1,2 d'autre part peuvent être réalisés de toute façon appropriée, par exemple aux moyens de tétons coulissant dans des chapes ou lumières prévues aux extrémités des branches des leviers comme représenté sur les figures 3 et 4. La figure 3 représente les mors 1,2 écartés en position d'ouverture, dans laquelle ils se trouvent appliqués contre des butées de fin de course respectives 26,27. Dans la position d'ouverture, l'ensemble mobile verticalement, constitué de 1 ' écrou 7, de 1 ' électroaimant 8, de la tige 9 et du noyau ferromagnétique 12, se trouve dans sa position extrême inférieure. Sur la figure 4, les mors 1 et 2 sont représentés en position de fermeture et en train d'être serrés contre la pièce A. Dans cette position l'ensemble mobile des pièces 7,8,9,12 est remonté dans une position. supérieure. L ' électroaimant 8 est alors excité, le noyau ferromagnétique est attiré vers la face polaire 8a de 1 ' électroaimant 8, ainsi qu'il est indiqué par les flèches a, et les mors 1,2 exercent, sur la pièce A, des efforts de serrage indiqués par les flèches b. La pince représentée sur la figure 5 est semblable à celle représentée sur les figures 3 et 4 mais les positions du noyau ferromagnétique 12 et de 1 ' électroaimant 8 ont été permutées. Plus particulièrement, 1 ' écrou 7 est solidaire, vers le bas, d'une tige de grand diamètre, constituant, à son extrémité inférieure, la butée 11 précédemment décrite et qui est prolongée vers le bas par la tige 9 de plus petit diamètre sur laquelle coulisse librement le noyau ferromagnétique 12, et 1 ' électroaimant 8 est solidaire de l'extrémité inférieure de la tige 9. Sa face polaire 8a est en position supérieure, en regard du noyau ferromagnétique 12. La pince représentée sur la figure 5 permet d'obtenir un serrage des mors 1,2 à la suite du mouvement d'ouverture de ceux-ci, cette disposition étant
utile pour la manipulation de pièces par une surface intérieure telle que celle d'un tube.
La figure 6 représente une variante d'exécution de la pince dans laquelle il n'y a pas de transformation de mouvement pour la commande des mors 1,2. Dans ce cas, l'un des mors, à savoir le mors 1, est fixé au carter du moteur 5 et il est traversé par l'arbre fileté 6. Par ailleurs le noyau ferromagnétique 12, situé entre la face polaire 8a de 1 ' électroaimant 8 et la butée 11 située à l'extrémité de la tige 9 forme une seule pièce avec le second mors 2 en étant, à cet effet prolongé transversalement d'un côté pour former, avec le mors 2, un bras parallèle au mors 1. Le mors 2 coulisse sur la tige 21 qui est fixée perpendiculairement au premier mors 1 lui- même solidaire du carter du moteur 5. Dans cette forme d'exécution, le mors 1 est fixe et seul le mors 2 se déplace en translation, en restant parallèle au mors 1.
Dans la variante d'exécution représentée sur la figure 7, la pince est du type illustré sur les figures 3 et 4. Dans cette variante d'exécution, l'ensemble du mécanisme de guidage et de pilotage des mors 1,2, c'est-à- dire essentiellement 1 ' écrou 7, 1 ' électroaimant 8, la tige 9 et le noyau ferromagnétique 12, est monté sur un support 28 qui peut tourner, par l'intermédiaire d'un roulement 29, à l'intérieur du châssis 10 de la pince, lequel porte le moteur électrique 5 à sa partie supérieure. La rotation du support 28 de l'ensemble du mécanisme de guidage et de pilotage des mors 1 et 2 peut être bloqué par un électroaimant 30 dont la bobine est solidaire du châssis 10 et dont un plongeur 31 pénètre dans l'un de plusieurs trous d'indexation 32 ménagés dans le support 28 des mors 1,2. Lorsque la pince est en serrage et qu'une information d'orientation de la pièce A parvient à l'unité centrale de traitement 14 (figure 1) . Cette dernière commande l'excitation de 1 ' électroaimant 30 pour provoquer le retrait du plongeur 31 et débloquer l'ensemble du mécanisme de guidage et de pilotage des mors 1,2. Le moteur 5 en rotation peut alors faire tourner le support 28
débloqué et l'ensemble des mors 1,2.Dès que la pièce A est placée dans la position appropriée, l'unité centrale 14 coupe l'excitation de 1 ' électroaimant 30, le plongeur 31 de cet électroaimant peut alors descendre dans l'un des trous d'indexation 32 et verrouiller l'ensemble de guidage des mors 1,2 et de la pièce A dans une nouvelle position angulaire autour de l'axe vertical. Après libération de la pièce A, une opération inverse permet de ramener les mors 1 dans leur position d'origine. Dans le cas illustré sur la figure 7, les trous 32 sont diamétralement opposés ce qui permet une orientation angulaire de 180° et on peut envisager un système mécanique ajustable pour cet angle.
Enfin, dans une dernière variante d'exécution représentée sur la figure 8, la pince est du type comportant un moteur électrique 5 monté à la partie supérieure du châssis 10 et dont le rotor entraîne en rotation un arbre fileté vertical 6, s ' étendant vers le bas, sur lequel est vissé un écrou 7 bloqué en rotation. Cet écrou 7 est solidaire, à sa partie inférieure, d'un élément piézo-électrique 33, tel que du quartz ou une céramique anisotrope par exemple, connecté au circuit de commande électrique de la pince qui comporte de la même manière que précédemment une unité centrale de traitement 14 connectée à un circuit 15 de commande de l'intensité du champ électrique de l'élément piézoélectrique 33 et un circuit 16 de commande du moteur électrique 5, ledit circuit 15 de commande de l'intensité du champ électrique comporte un moyen 17, tel qu'un potentiomètre par exemple, permettant de régler aisément et finement l'effort de serrage des mors 1,2 comme il sera précisé plus loin. L'accouplement entre l'élément piézoélectrique 33 et les mors 1,2 est obtenu comme précédemment par des tétons 13 solidaires dudit élément piézoélectrique 33 positionné à proximité de sa face inférieure et engagé dans des chapes prévues dans les parties extrêmes des branches supérieures des mors 1,2 qui sont réalisés sous la forme de leviers à deux branches inclinées entre- elles en formant un angle obtus, leurs deux branches
inférieures constituant les deux mors 1,2 proprement dit.
On décrira maintenant, en se référant à la figure 8, le fonctionnement de la pince à commande électrique décrite ci-dessus qui exerce son effort de serrage après la fermeture des mors 1,2. Après la phase de fermeture des mors 1,2 obtenue par la rotation du moteur 5, le moteur 5 et l'arbre 6 sont maintenus à l'arrêt et l'élément piézoélectrique 33 est alimenté en courant électrique de telle manière que ses faces soient polarisées, créant ainsi un champ électrique entre ses faces polarisées qui provoque la déformation dudit élément 33 suivant l'axe vertical, comme l'indique la flèche g. La déformation de l'élément piézoélectrique 33 se traduit alors par un effort de serrage exercé par les mors 1,2 sur les faces en regard de la pièce A. En effet, la déformation de l'élément 33 provoque le déplacement vers le bas des tétons 13 entraînant en rotation autour de leurs axes respectifs 3 et 4 les mors 1 et 2 qui sert la pièce A.
Il est bien évident que l'effort de serrage peut être réglé de la même manière que précédemment, en agissant sur le moyen de réglage 17 qui fait varier l'intensité du courant électrique alimentant l'élément piézo-électrique 33 afin de faire varier, de manière proportionnelle, la déformation dudit élément 33 et, par conséquent, la force de serrage exercée sur la pièce A.
Par ailleurs, la pince électrique munie d'un élément piézo-électrique 33 peut être adaptée à la variante d'exécution de la pince représentée sur la figure 6 sans pour autant sortir du cadre de l'invention. Dans ce cas, l'un des mors, le mors 1 par exemple, est fixé au carter du moteur 5 et il est traversé par l'arbre fileté 6. L'élément piézo-électrique 33, solidaire de 1 ' écrou 7, forme alors une seule pièce avec le second mors 2 en étant prolongé transversalement d'un côté pour former avec ledit mors 2 un bras parallèle au mors 1. De plus, le mors 2 coulisse sur une tige qui est fixée perpendiculairement au premier mors 1 lui-même solidaire du carter du moteur 5.
De plus, il va de soi que la pince électrique munie
d'un élément piézo-électrique 33 peut être montée sur un support 28, tel que représenté sur la figure 7, qui peut tourner par l'intermédiaire d'un roulement 29 à l'intérieur du châssis 10 de la pince, sans sortir du cadre' de 1 ' invention.
Il est bien entendu que le moyen électromagnétique ou l'élément piézo-électrique peut être remplacé par tout type de transducteur tel qu'un magnéto-strictif, par exemple, c'est-à-dire par tout moyen transformant une énergie électrique en une énergie mécanique.
Enfin, il va de soi que la pince à commande électrique suivant 1 ' invention trouvera de nombreuses applications dans des domaines industriels variés telles que les vérins dit de bridage et plus particulièrement les systèmes de "clamping" de ferrage automobile par exemple, et que les exemples que l'on vient de donner ne sont que des illustrations particulières en aucun cas limitatives des domaines d'applications de l'invention.