WO2002034957A1 - Roue dentee sinterisee - Google Patents

Roue dentee sinterisee Download PDF

Info

Publication number
WO2002034957A1
WO2002034957A1 PCT/JP2001/005210 JP0105210W WO0234957A1 WO 2002034957 A1 WO2002034957 A1 WO 2002034957A1 JP 0105210 W JP0105210 W JP 0105210W WO 0234957 A1 WO0234957 A1 WO 0234957A1
Authority
WO
WIPO (PCT)
Prior art keywords
sprocket
ferrite
sintered
density
base layer
Prior art date
Application number
PCT/JP2001/005210
Other languages
English (en)
French (fr)
Inventor
Akira Fujiwara
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to US10/130,287 priority Critical patent/US6670048B2/en
Priority to DE60116760T priority patent/DE60116760T2/de
Priority to CA002390254A priority patent/CA2390254C/en
Priority to EP01938742A priority patent/EP1344840B1/en
Priority to BRPI0107374-5A priority patent/BR0107374B1/pt
Publication of WO2002034957A1 publication Critical patent/WO2002034957A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/30Chain-wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/902Metal treatment having portions of differing metallurgical properties or characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49462Gear making
    • Y10T29/49467Gear shaping
    • Y10T29/4948Gear shaping with specific gear material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12229Intermediate article [e.g., blank, etc.]
    • Y10T428/12264Intermediate article [e.g., blank, etc.] having outward flange, gripping means or interlocking feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a sintered sprocket suitable for use as, for example, a sprocket for a camshaft timing chain of an automobile and a method of manufacturing the same.
  • sprocket for example, a sprocket which is roughly formed by forging, then finished by machining, and then carburized and quenched is known.
  • Such sprockets are excellent in tooth surface accuracy and surface pressure resistance, but have the disadvantage that the forging process requires a high production cost.
  • Inexpensive sprockets are also known, which are stamped from a sheet material with a press and carburized and quenched. Although such sprockets can be said to have sufficient surface pressure resistance, the machining cost of the press fracture surface does not reduce the manufacturing cost much. Is reduced.
  • sprockets that have been carburized and quenched after sizing the sintered material are also known. Such sprockets are superior in terms of tooth surface accuracy and manufacturing cost, but have the problem of inferior surface pressure resistance.
  • the problem is the surface pressure resistance, as described above, which is reduced by unavoidable porosity inside the material. Therefore, the first thing that can be considered to improve the surface pressure resistance is to increase the density, and the following methods can be considered.
  • the compact is pre-sintered and then sizing.
  • the pre-sintered material is press-formed, sintered, and then sized.
  • press forming and sizing are performed twice each, Rocket density can be increased.
  • Rocket density can be increased.
  • forging a sintered material increases the density and improves the surface pressure resistance, but has the same problem as described above in that the production cost is relatively high.
  • an object of the present invention is to provide a sintered sprocket capable of improving the surface pressure resistance without using a costly forging process, and a method of manufacturing the same. Disclosure of the invention
  • the sintered sprocket according to the present invention is an iron-based sintered material containing C: 0.2 to 0.5%, Mo: 0.2 to 1.0%, and Ni: 0.2 to 1.0% by weight. It is made of bonded gold, the inner base layer contains ferrite and bainite, and the ferrite has a metal structure adjacent to the vacancy.
  • the ferrite is adjacent to the holes, the ferrite is plastically deformed by performing plastic processing such as rolling on the tooth surface, and the holes inside the tooth surface are crushed. Is done. As a result, the volume of the pores is reduced and the density near the tooth surface is increased, so that it is possible to improve the surface pressure resistance while maintaining a highly accurate tooth surface by powder metallurgy and low production costs. . In addition, the strength and hardness of the matrix increase because bainite is contained in the inner matrix.
  • the above component composition is essential for obtaining the above metal composition.
  • % means “% by weight”.
  • the content of C is less than 0.2%, the formation of bainite is small and the strength and hardness of the matrix become insufficient.
  • the C content exceeds 0.5%, the density of the tooth surface is not sufficiently increased when the tooth surface is plastically worked due to an insufficient amount of the fluoride. From this viewpoint, it is desirable that the ferrite of the base layer be present in an area ratio of 40% or more.
  • Ni and Mo strengthen the matrix of the matrix and improve the hardenability, thereby contributing to the formation of payinite. If the contents of Ni and Mo are each less than 0.2%, such effects become insufficient. On the other hand, if the contents of Ni and Mo each exceed 1.0%, martensite tends to precipitate and lowers the strength. In the present invention, the case where martensite coexists with bainite is not excluded.
  • the ferrite of the base layer be present in an area ratio of 40% or more, whereby the density after rolling can be further increased and the surface pressure resistance can be improved.
  • This carbide layer can be formed by carburizing.
  • the manufacturing method of the sintered sprocket of the present invention is as follows: C: 0.2 to 0.5%, Mo: 0.2 to: 1.0%, Ni: 0.2 to; It is characterized by containing an iron-based sintered alloy containing 0, an inner base layer containing ferrite and bainite, and a ferrite exhibiting a metal structure adjacent to the vacancies, followed by carburizing and quenching.
  • FIG. 1 (A) and 1 (B) are photographs showing the metal structure of a sintered sprocket according to the present invention
  • (C) is a photograph showing the metal structure of a conventional sintered sprocket.
  • FIG. 2 (A) is a photograph showing the metal structure of the sprocket after rolling, (B) is a photograph showing the metal structure after carburizing and quenching, and (C) is a photograph showing the metal structure after resintering. .
  • FIG. 3 is a diagram showing a rolling device.
  • FIG. 4 is a diagram showing the relationship between the distance from the surface of the sprocket of the present invention and the density.
  • FIG. 5 is a diagram showing the relationship between the ferrite ratio and the density of the sprocket of the present invention.
  • FIG. 6 is a diagram showing the relationship between the ferrite ratio and the critical surface pressure of the sprocket of the present invention.
  • FIG. 7 is a diagram showing the relationship between the amount of graphite added to the sprocket of the present invention and the ferrite ratio.
  • FIG. 8 is a diagram showing the relationship between the rolling allowance and the density of the sprocket of the present invention.
  • FIG. 1 (A) to 1 (C) are photographs showing the metallographic structure of the base layer after sintering of the sprocket.
  • Fig. 1 (A) and (B) when the content of C is 0.3% by weight and 0.4% by weight, ferrite (white part in the figure) has voids (black in the figure). Part).
  • bainite portion where thin lines are mixed in the figure exists in the parent layer.
  • FIG. 1 (C) when the C content becomes 0.6% by weight, bainite increases and ferrite decreases.
  • the reasons for the formation of the metal structures in Figs. 1 (A) and (B) are presumed as follows.
  • the melting point of the iron powder decreases first due to the local increase in the carbon concentration of the iron powder in the vicinity of the graphite powder, which penetrates into the gaps between the particles together with the graphite powder.
  • the portion where the graphite particles were present becomes a hole.
  • the carbon diffuses into the iron powder (fluorite) where the graphite has infiltrated, and as the carbon content increases, bainite precipitates after cooling.
  • iron powder or a part of it that was originally adjacent to graphite powder is estimated to remain as ferrite without undergoing carbon diffusion.
  • the ferrite is plastically deformed by the rolling, which causes the pores to be crushed and the density to increase.
  • iron atoms are diffused by carburizing and quenching, and the pores are further shrunk. Therefore, the density of the surface portion of the sintered sprocket is increased, and the surface pressure resistance can be further improved. It is desirable that the carburizing heat treatment be carried out at a high concentration of carburization at a CO concentration of 1% or more, whereby the surface pressure resistance can be further improved.
  • Fig. 2 (A) is a photograph showing the metal structure of the surface of the sprocket after rolling, and it can be clearly seen that the pores are crushed.
  • Fig. 2 (B) is a photograph showing the metal structure of the surface of the sprocket that was carburized and quenched at 900 ° C after rolling. Compared to the metal structure shown in Fig. (A), it can be seen that the center of the elongated hole is almost completely closed by carburizing and quenching.
  • the same figure (C) is a photograph showing the metal structure of the sprocket re-sintered at 110 ° C instead of carburizing and quenching, which is almost the same as that of carburizing and quenching. ing. This shows that carburizing and quenching at a lower temperature than resintering is sufficient for densification of the structure.
  • the ferrite of the base layer be present in an area ratio of 40% or more.
  • the rolling allowance is preferably in the range of 0.09 to 0.15 mm, which makes it possible to maximize the density of the surface portion.
  • Ni powder 0.5% by volume
  • Mo powder 0.5% by volume
  • graphite powder 0.3 to 0.6% by volume
  • Iron powder Powder consisting of the remainder is formed into sprockets, and Sintering was performed for 60 minutes in an atmosphere of ⁇ 20.
  • the sprocket was rolled with a rolling allowance of 0.09 mm using the rolling device shown in FIG.
  • reference numeral 1 denotes a sprocket
  • 2 denotes a die
  • the outer periphery of the die 2 is formed with teeth equivalent to those of the sprocket.
  • the rolling allowance refers to the amount of compression of the sprocket in the direction perpendicular to the tooth surface.
  • Table 1 shows the amount of graphite added (volume%), carbon content (% by weight), molding density, surface hardness, matrix hardness, and ferrite area ratio of each sprocket. The density of each sprocket after rolling was measured at various distances from the surface. The results are shown in Table 2 and FIG. Sword ⁇ . , Shigeji / J-cho fi £ C base hardness HV0.1 Noef 1 ("IMJ TM ash thread mass% g / cm HRB average mm max% weight%
  • Fig. 4 shows the density at a portion 0.2 mm from the surface. From this figure, it can be seen that if the ferrite ratio is 40% or more, a density of 7.5 g / cm 3 or more can be obtained in the surface layer.
  • the sprocket was carburized and quenched.
  • Carburizing and quenching consist of two methods: normal carburizing in which the sprocket is held for 60 minutes in an atmosphere with a CO concentration of 0.8% and a temperature of 900 ° C, and high-concentration carburizing in which the C C concentration is increased to 1.2%. Performed under different conditions.
  • the relationship between the density of each sprocket and the critical surface pressure was examined, and the results are shown in FIG.
  • the critical surface pressure is a value obtained by substituting the pressure when a predetermined deformation occurs by applying pressure to the tooth surface of the sprocket into the Hertz equation. This indicates the surface pressure at which occurs.
  • the critical surface pressure reaches 180 kgf / mm 2 in a sprinket that has been subjected to normal carburizing and quenching, and the high-concentration carburizing is performed.
  • Figure 7 shows the relationship between the amount of added graphite and the ferrite rate. As shown in Fig. 7, when the amount (volume%) of the added graphite powder is 0.38% or less, the ferrite ratio becomes 40% or more. Therefore, it is desirable that the amount of the added graphite powder is 0.38% by volume or less.
  • the addition amount of the graphite powder is more desirably not more than 0.3% by volume, so that the ferrite ratio can be increased to 50% or more.
  • Fig. 8 shows the relationship between the rolling allowance and the density of the sprocket.
  • the surface density of the sprocket reaches its maximum when the rolling allowance is in the range of 0.09 to 0.15 mm. It has been confirmed that even if the rolling allowance exceeds 0.15 mm, no further increase in density can be expected, and the life of the die is shortened due to the large load on the dies.
  • the inner base layer contains ferrite and penite, and the ferrite has a metal structure adjacent to the pores, the surface resistance can be improved without using a costly forging process. The effect that the pressure characteristics can be improved is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gears, Cams (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

明 細 書 焼結スプロケット 技術分野
本発明は、 たとえば自動車のカムシャフトタイミングチェ一ン用スプロケット などに用いて好適な焼結スプロケットおよびその製造方法に関する。 背景技術
上記のようなスプロケットとしては、 たとえば鍛造によってスプロケットの粗 成形をした後に機械加工で形状を仕上げ、 その後、 浸炭焼入れを施したものが知 られている。 このようなスプロケットでは、 歯面の精度および耐面圧特性に優れ ているが、 鍛造工程を行うために製造コストが割高であるという欠点がある。 ま た、 板材からプレスで打ち抜いて浸炭焼入れを施した廉価なスプロケットも知ら れている。 このようなスプロケットでは、 耐面圧特性については充分と言えるも のの、 プレス破面の機械加工を要するため製造コストはさほど低減されないばか りでなく、プレス加工による歪のために歯面の精度が低下するという問題がある。 さらに、 焼結材をサイジングした後に浸炭焼入れを行なったスプロケットも知ら れている。 このようなスプロケットでは、 歯面の精度および製造コストの面で優 れているが、 耐面圧特性が劣るという問題がある。
以上のように、 従来のスプロケットではそれぞれに一長一短があり、 耐面圧特 性、 歯面の精度および製造コストの全てにおいて優れたスプロケットが強く要望 されていた。
焼結材によってスプロケットを製造する場合に問題となるのは、 前述のように 耐面圧特性であり、 これは材料の内部に不可避的に存在する空孔によって低下す る。 したがって、 耐面圧特性を向上させるために先ず考え付くのが密度の増加で あり、 それには以下の方法が考えられる。 まず、 圧粉体を仮焼結した後にサイジ ングする。 次いで、 この仮焼結材をプレス成形し、 本焼結した後にサイジングす る。 そして、 その際のプレス成形とサイジングを 2回づっ行うことにより、 スプ ロケットの密度を増加させることができる。 しかしながら、 このような工数の多 い製造方法をもってしても密度の増加には限界があり、 歯面の耐面圧特性は充分 とは言えなかった。 また、 焼結材を鍛造することにより密度が増加して耐面圧特 性は向上するが、 製造コストが割高になるという上記と同じ問題がある。
したがって、 本発明は、 コストの高い鍛造工程を用いることなく耐面圧特性を 向上させることができる焼結スプロケットおよびその製造方法を提供することを 目的としている。 発明の開示
本発明の焼結スプロケットは、 重量比で C : 0 . 2〜0 . 5 %、 M o : 0 . 2 〜 1 . 0 %、 N i : 0 . 2〜 1 . 0を含有する鉄基焼結合金からなり、 内部の母 層がフェライトとべイナィ卜とを含み、 フェライトが空孔に隣接した金属組織を 呈することを特徴としている。
上記構成の焼結スプロケットにあっては、 フェライトが空孔に隣接しているか ら、 歯面に転造などの塑性加工を施すことによりフェライトが塑性変形して歯面 の内側の空孔が圧壊される。 これにより、 空孔の体積が減少して歯面付近の密度 が増加するので、 粉末冶金法による高精度な歯面と低廉な製造コストを維持しな がら耐面圧特性を向上させることができる。 また、 内部の母層にベイナイトを含 むから基地の強度及び硬さが増加する。
上記成分組成は、 上記のような金属組成を得るために必須である。 以下、 上記 成分の限定理由について説明する。 なお、 以下の説明において 「%」 は「重量%」 をい 。
C : 0 . 2〜 0 . 5 %
Cの含有量が 0 . 2 %未満ではべイナィトの生成が少ないため基地の強度及び 硬さが不充分となる。 また、 Cの含有量が 0 . 5 %を超えると、 フヱライト量が 不充分なために、 歯面を塑性加工した際の密度増加が不充分となる。 この観点か ら、 母層のフェライトは面積比で 4 0 %以上存在することが望ましい。 Mo, N i : 0. 2〜1. 0%
N iおよび Moは、 母層の基地を強化するとともに焼入れ性を向上させてペイ ナイトの生成に寄与する。 N iおよび Moの含有量がそれぞれ 0. 2 %未満であ ると、 そのような効果が不充分となる。 一方、 N iおよび Moの含有量がそれぞ れ 1. 0 %を超えると、 マルテンサイトが析出し易くなつて強度を低下させる。 なお、 本発明では、 ベイナイトとともにマルテンサイトが共存する場合を排除す るものではない。
母層のフェライトは、 面積比で 40 %以上存在することが望ましく、 これによ り転造後の密度をさらに増加させて耐面圧特性を向上させることができる。また、 母層よりも外側の最表面部に炭化物層を備えることが望ましく、 これにより耐摩 耗性を向上させることができる。 この炭化物層は、 浸炭処理によって形成するこ とができる。
次に、 本発明の焼結スプロケットの製造方法は、 重量比で C : 0. 2〜0. 5 %、 Mo : 0. 2〜: 1. 0%、 N i : 0. 2〜; L. 0を含有し、 内部の母層がフ ェライトとべイナィトとを含み、 フェライトが空孔に隣接した金属組織を呈する 鉄基焼結合金を転造し、 その後浸炭焼入れを行なうことを特徴としている。 図面の簡単な説明
第 1図 (A) および (B) は本発明に係る焼結スプロケットの金属組織を示す 写真、 (C) は従来の焼結スプロケットの金属組織を示す写真である。
第 2図 (A) は転造後のスプロケットの金属組織を示す写真、 (B) は浸炭焼 入れ後の金属組織を示す写真、 (C) は再焼結後の金属組織を示す写真である。 第 3図は、 転造装置を示す図である。
第 4図は、 本発明のスプロケッ卜の表面からの距離と密度との関係を示す線図 である。
第 5図は、 本発明のスプロケットのフェライト率と密度との関係を示す線図で ある。
第 6図は、 本発明のスプロケットのフェライト率と限界面圧との関係を示す線 図である。 第 7図は、 本発明のスプロケッ卜の添加黒鉛量とフェライト率との関係を示す 線図である。
第 8図は、 本発明のスプロケットの転造代と密度との関係を示す線図である。 発明を実施するための最良の形態
第 1図 (A) 〜 (C ) はスプロケットの焼結後における母層の金属組織を示す 写真である。 第 1図 (A) および (B ) に示すように、 Cの含有量が 0 . 3重量 %と 0 . 4重量%の場合には、 フェライト (図中白い部分) が空孔 (図中黒い部 分) に隣接している。 また、母層にはべイナィト (図中細線の入り交じった部分) が存在している。 第 1図 (C ) に示すように、 Cの含有量が 0 . 6重量%になる とべイナイトが増加しフェライトが減少している。 第 1図 (A) および (B ) の 金属組織が形成される理由は以下のように推定される。
すなわち、 圧粉体を焼結すると、 黒鉛粉近傍の鉄粉の炭素濃度が局所的に増加 することにより鉄粉の融点が低下して最初に溶融し、 これが黒鉛粉と共に粒子の 隙間に浸入して黒鉛粒子が存在していた箇所が空孔となる。 そして、 黒鉛が浸入 した所で鉄粉 (フヱライト) に炭素が拡散し、 そこの炭素含有量が増加すること で冷却後にベイナイトが析出する。 一方、 元々黒鉛粉と隣接していた鉄粉または その一部は、 炭素の拡散を受けずにそのままフェライトとして残存するものと推 測される。 ただし、 これはあくまでも推測であって、 このような作用の有無によ つて本発明が制限されないことは言うまでもない。
上記した焼結スプロケッ卜の製造方法では、 転造によってフェライ卜が塑性変 形し、 これによつて空孔が圧壊されて密度が増加する。 また、 浸炭焼入れによつ て鉄原子の拡散がおこり、 空孔がさらに収縮させられる。 したがって、 焼結スプ ロケットの表面部の密度が増加し、耐面圧特性をさらに向上させることができる。 なお、 浸炭熱処理は、 C O濃度を 1 %以上にして行う高濃度浸炭を行うのが望ま しく、 これにより耐面圧特性をより一層向上させることができる。
第 2図 (A) は転造した後のスプロケットの表面部の金属組織を示す写真であ り、 空孔が圧壊されている状態が良く判る。 第 2図 (B ) は、 転造の後に 9 0 0 °Cで浸炭焼入れを行ったスプロケットの表面部の金属組織を示す写真であり、 同 図 (A) の金属組織と比較すると、 浸炭焼入れによって細長い空孔の中央部がほ ぼ完全に塞がっていることが判る。 同図 (C ) は浸炭焼入れの代わりに 1 1 3 0 °Cで再焼結したスプロケットの金属組織を示す写真であるが、 浸炭焼入れと大差 なく、 やはり空孔の中央部はほぼ完全に塞がっている。 このことから、 組織の緻 密化は再焼結より温度が低い浸炭焼入れで十分であることが判る。
なお、 本発明の焼結スプロケットの製造方法においても母層のフェライトを面 積比で 4 0 %以上存在させることが望ましい。 また、 転造代は 0 . 0 9〜0 . 1 5 mmであることが望ましく、 これにより表面部の密度を最大限まで高めること が可能となる。 実施例
以下、 本発明の実施例を参照して本発明をさらに詳細に説明する。
N i粉: 0 . 5体積%、 M o粉: 0 . 5体積%、 黒鉛粉: 0 . 3〜0 . 6体積 %、 鉄粉:残部からなる粉末をスプロケットに成形し、 1 1 5 0 ± 2 0 の大気 中で 6 0分間焼結した。 次いで、 スプロケットを第 3図に示す転造装置を用いて 0 . 0 9 mmの転造代で転造した。 図中符号 1はスプロケット、 2はダイスであ り、 ダイス 2の外周には、 スプロケットと同等の歯が形成されている。 そして、 2つのダイス 2間でスプロケッ卜 1を挟み込み、 ダイス 2を回転させることでス プロケットの歯面を圧縮して所定の歯形に形成する。 なお、 転造代とは、 スプロ ケットの歯面と直交する方向への圧縮量を言う。各スプロケットの添加黒鉛量(体 積%)、 炭素含有量 (重量%)、 成形密度、 表面部硬さ、 基地硬さ、 およびフエ ライトの面積率を表 1に示す。 また、 各スプロケットの転造後の密度を表面から の距離を種々設定して測定した。 その結果を表 2および第 4図に示す。 添刀卩黑 '。、重 兒 /J 丁 fi£C基地硬さ HV0.1 ノエフ1 (" IMJ TM灰糸息 mass% g/ cm HRB 平均 mm max % 重量%
0.3 7.05 51 151 139 172 50 0.23
0.4 7.04 58 197 164 229 39 0.32
0.5 7.06 71 204 179 223 20 0.41
0.6 7.07 74 218 208 228 17 0.48
Figure imgf000008_0001
第 4図から判るように、 転造によって密度が増加し、 フェライトの面積率 (フ -エライト率) が大きければ大きい程転造後の密度が大きくなる。 これは、 空孔に 隣接するフェライトが塑性変形して空孔が圧壊されたためである。 第 5図は、 フ ェライト率と表面から 0 . 2 mmの部分における密度との関係を示したものであ る。 この図から、 フェライト率が 4 0 %以上であれば、 表層部で 7 . 5 g / c m 3以上の密度が得られることが判る。
次に、上記スプロケッ卜に浸炭焼入れを行った。浸炭焼入れは、 C O濃度が 0 . 8 %、 温度 9 0 0 °Cの雰囲気にスプロケットを 6 0分間保持する通常浸炭と、 C 〇濃度を 1 . 2 %に上げて行う高濃度浸炭との 2種類の条件で行った。 次いで、 各スプロケッ卜の密度と限界面圧との関係を調べ、 その結果を第 6図に示した。 ここで、 限界面圧とは、 スプロケットの歯面に圧力をかけて所定の変形が生じた ときの圧力をへルツの式に代入して得た値であって、 ピッチングゃ座屈といった 疲労破壊が生じる面圧を示すものである。 つまり、 限界面圧で使用すると、 ピッ チングゃ座屈が生じることを意味し、限界面圧が高い程耐面圧特性が良い。なお、 ピッチングとは、 スプロケットの歯面が剥離する疲労破壊であり、 座屈とは歯面 が窪む疲労破壊である。 第 6図に示すように、 スプロケットの密度が増加するに 従って限界面圧が増加している。 また、 第 6図に示すように、 密度が 7 . 5 g / cm3以上になると限界面圧が急激に増加する。 特に、 この実施例のスプロケッ トでは密度が最大で 7. 8 g/cm3であるため、 通常の浸炭焼入れを行ったス プロケットで限界面圧が 1 80 k g f /mm2に達し、 高濃度浸炭焼入れを行つ たスプロケットでは 220 k g f /mm2にも達する。
前述のように、 フェライト率が 40 %以上であれば密度が 7. 5 gZcm3以 上となって限界面圧が大幅に増加する。 第 7図に添加黒鉛量とフェライト率との 関係を示す。 第 7図に示すように、 添加黒鉛粉の量 (体積%) が 0. 38%以下 であると、 フェライト率が 40 %以上となる。 したがって、 添加黒鉛粉末の量は 0. 38体積%以下であることが望ましい。 黒鉛粉末の添加量はより望ましくは 0. 3体積%以下が良く、 これによりフェライト率を 50%以上とすることがで さる。
次に、 第 8図はスプロケットの転造代と密度との関係を示すものである。 第 8 図に示すように、 スプロケットの表面部の密度は、 転造代が 0. 09〜0. 1 5 mmの範囲のときに最大となる。 なお、 転造代が 0. 15mmを超えても密度の 増加はそれ以上に望めず、 また、 ダイスの負荷が大きいために寿命が低下するこ とが確認されている。
以上説明したように、 本発明においては、 内部の母層がフェライトとペイナイ 卜とを含み、 フェライトが空孔に隣接した金属組織を呈しているから、 コストの 高い鍛造工程を用いることなく耐面圧特性を向上させることができるという効果 が得られる。

Claims

請 求 の 範 囲
1. 重量比で C : 0. 2〜0. 5%、 Mo : 0. 2〜1. 0 %、 N i : 0. 2
〜1. 0を含有する鉄基焼結合金からなり、 内部の母層がフェライトとペイナイ トとを含み、 フェライトが空孔に隣接した金属組織を呈することを特徴とする焼 結スプロケット。
2. 前記母層のフェライトは、 面積比で 40%以上存在することを特徴とする 請求項 1に記載の焼結スプロケット。
3. 前記母層よりも外側の最表面部に炭化物層を備えていることを特徴とする 請求項 1または 2に記載の焼結スプロケッ卜。
4. 重量比で C : 0. 2〜0. 5%、 Mo : 0. 2〜1. 0%、 N i : 0. 2 ~1. 0を含有し、 内部の母層がフェライトとベイナイトとを含み、 フェライト が空孔に隣接した金属組織を呈する鉄基焼結合金を転造し、 その後浸炭焼入れを 行なうことを特徴とする焼結スプロケットの製造方法。
5. 前記母層のフェライトは、 面積比で 40%以上存在することを特徴とする 請求項 4に記載の焼結スプロケットの製造方法。
6. 前記転造の転造代が 0. 09〜0. 1 5mmであることを特徴とする請求 項 4または 5に記載の焼結スプロケットの製造方法。
PCT/JP2001/005210 2000-10-25 2001-06-19 Roue dentee sinterisee WO2002034957A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/130,287 US6670048B2 (en) 2000-10-25 2001-06-19 Sintered sprocket
DE60116760T DE60116760T2 (de) 2000-10-25 2001-06-19 Gesintertes zahnrad
CA002390254A CA2390254C (en) 2000-10-25 2001-06-19 Sintered sprocket
EP01938742A EP1344840B1 (en) 2000-10-25 2001-06-19 Sintered sprocket
BRPI0107374-5A BR0107374B1 (pt) 2000-10-25 2001-06-19 roda dentada sinterizada e mÉtodo para sua produÇço.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-326149 2000-10-25
JP2000326149A JP3698409B2 (ja) 2000-10-25 2000-10-25 焼結スプロケット

Publications (1)

Publication Number Publication Date
WO2002034957A1 true WO2002034957A1 (fr) 2002-05-02

Family

ID=18803389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005210 WO2002034957A1 (fr) 2000-10-25 2001-06-19 Roue dentee sinterisee

Country Status (9)

Country Link
US (1) US6670048B2 (ja)
EP (1) EP1344840B1 (ja)
JP (1) JP3698409B2 (ja)
CN (1) CN1143006C (ja)
BR (1) BR0107374B1 (ja)
CA (1) CA2390254C (ja)
DE (1) DE60116760T2 (ja)
TW (1) TW499375B (ja)
WO (1) WO2002034957A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160351B2 (en) * 2002-10-01 2007-01-09 Pmg Ohio Corp. Powder metal clutch races for one-way clutches and method of manufacture
JP2005344126A (ja) * 2002-10-04 2005-12-15 Hitachi Powdered Metals Co Ltd 焼結歯車
US20070081913A1 (en) * 2003-06-27 2007-04-12 Mitsubishi Materials Corporation Iron base sintered alloy having highly densified and hardened surface, and producing method thereof
JP4301507B2 (ja) 2003-07-22 2009-07-22 日産自動車株式会社 サイレントチェーン用焼結スプロケットおよびその製造方法
JP4570066B2 (ja) * 2003-07-22 2010-10-27 日産自動車株式会社 サイレントチェーン用焼結スプロケットの製造方法
US7025928B2 (en) * 2003-07-24 2006-04-11 The Gates Corporation Method of flow forming a metal part
JP4213060B2 (ja) * 2004-03-03 2009-01-21 日本ピストンリング株式会社 バルブシート用鉄基焼結合金材
JP2007071302A (ja) * 2005-09-07 2007-03-22 Tsubakimoto Chain Co 突起を有する焼結製スプロケット
JP6010015B2 (ja) 2012-12-28 2016-10-19 株式会社神戸製鋼所 浸炭焼入れ材の製造方法
CN105215273B (zh) * 2014-05-27 2017-07-11 遵义然泰科技有限公司 一种凸轮的制备方法
JP2016172931A (ja) * 2016-05-12 2016-09-29 Ntn株式会社 機械部品およびその製造方法
CN109930089A (zh) * 2017-12-17 2019-06-25 宜兴安纳西智能机械设备有限公司 一种电池输送装置用链轮材料
CN109930092A (zh) * 2017-12-17 2019-06-25 宜兴安纳西智能机械设备有限公司 一种电池输送装置用链轮隔套材料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157806A (ja) * 1995-12-04 1997-06-17 Mitsubishi Materials Corp 高強度鉄基焼結合金

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897618A (en) * 1972-03-27 1975-08-05 Int Nickel Co Powder metallurgy forging
US4049429A (en) * 1973-03-29 1977-09-20 The International Nickel Company, Inc. Ferritic alloys of low flow stress for P/M forgings
WO1989002802A1 (en) * 1987-09-30 1989-04-06 Kawasaki Steel Corporation Composite alloy steel powder and sintered alloy steel
JP2648519B2 (ja) * 1989-10-03 1997-09-03 日立粉末冶金株式会社 シンクロナイザーハブの製造方法
DE69314438T2 (de) * 1992-11-30 1998-05-14 Sumitomo Electric Industries Niedrig legierter Sinterstahl und Verfahren zu dessen Herstellung
DE19521941C1 (de) * 1995-06-07 1996-10-02 Mannesmann Ag Verfahren und Vorrichtung zur Herstellung von Sinterteilen
CA2240426C (en) * 1995-12-15 2005-05-10 Zenith Sintered Products, Inc. Duplex sprocket/gear construction and method of making same
AU723317B2 (en) * 1996-05-13 2000-08-24 Gkn Sinter Metals Inc. Method for preparing high performance ferrous materials
US5729822A (en) * 1996-05-24 1998-03-17 Stackpole Limited Gears
US5997805A (en) * 1997-06-19 1999-12-07 Stackpole Limited High carbon, high density forming
JPH11124603A (ja) * 1997-10-21 1999-05-11 Jatco Corp 焼結金属合金、該焼結金属合金の製造方法及び該焼結金属合金を用いた焼結合金歯車
DE60030063T2 (de) * 1999-04-16 2007-01-04 Jfe Steel Corp. Pulvermetallurgisches verfahren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157806A (ja) * 1995-12-04 1997-06-17 Mitsubishi Materials Corp 高強度鉄基焼結合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1344840A4 *

Also Published As

Publication number Publication date
CA2390254A1 (en) 2002-05-02
TW499375B (en) 2002-08-21
EP1344840A4 (en) 2004-08-25
EP1344840B1 (en) 2006-01-18
JP2002129295A (ja) 2002-05-09
CA2390254C (en) 2005-08-02
BR0107374A (pt) 2002-09-24
DE60116760T2 (de) 2006-07-13
EP1344840A1 (en) 2003-09-17
CN1394238A (zh) 2003-01-29
US6670048B2 (en) 2003-12-30
JP3698409B2 (ja) 2005-09-21
BR0107374B1 (pt) 2009-01-13
US20030061904A1 (en) 2003-04-03
DE60116760D1 (de) 2006-04-06
CN1143006C (zh) 2004-03-24

Similar Documents

Publication Publication Date Title
JP5671526B2 (ja) 高強度低合金焼結鋼
US5613180A (en) High density ferrous power metal alloy
JP3651420B2 (ja) 粉末冶金用合金鋼粉
WO2002034957A1 (fr) Roue dentee sinterisee
JP3741654B2 (ja) 高密度鉄基鍛造部品の製造方法
WO2013146217A1 (ja) 焼結部材およびスタータ用ピニオンギヤ並びにそれらの製造方法
EP1097770B1 (en) Powder metallurgy process
JP2007262536A (ja) 焼結歯車およびその製造方法
JP4570066B2 (ja) サイレントチェーン用焼結スプロケットの製造方法
US20090129964A1 (en) Method of forming powder metal components having surface densification
US7722803B2 (en) High carbon surface densified sintered steel products and method of production therefor
JP3869620B2 (ja) 合金鋼粉成形素材と合金鋼粉加工体及び合金鋼粉成形素材の製造方法
JP2001295915A (ja) サイレントチェーン用焼結スプロケットおよびその製造方法
JP4301507B2 (ja) サイレントチェーン用焼結スプロケットおよびその製造方法
JP2003073796A (ja) チタン系材料の表面処理方法
JP4060092B2 (ja) 粉末冶金用合金鋼粉およびその焼結体
WO1988000505A1 (en) Alloy steel powder for powder metallurgy
WO2018142778A1 (ja) 粉末冶金用混合粉、焼結体、および焼結体の製造方法
JPH03130349A (ja) 疲労強度に優れた鉄系焼結部品材料及びその製造法
JPS6345306A (ja) 焼結部材の製造方法
JP2016145418A (ja) 鉄基焼結合金およびその製造方法
JP4093070B2 (ja) 合金鋼粉
WO2014103999A1 (ja) 高疲労強度焼結体用プレアロイ型鋼粉および浸炭焼入れ材
WO2018143088A1 (ja) 粉末冶金用混合粉、焼結体、および焼結体の製造方法
WO2023157386A1 (ja) 粉末冶金用鉄基混合粉および鉄基焼結体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2390254

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10130287

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001938742

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018033040

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001938742

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001938742

Country of ref document: EP