WO2002031960A1 - Output control device of synchronous generator - Google Patents

Output control device of synchronous generator Download PDF

Info

Publication number
WO2002031960A1
WO2002031960A1 PCT/JP2001/008873 JP0108873W WO0231960A1 WO 2002031960 A1 WO2002031960 A1 WO 2002031960A1 JP 0108873 W JP0108873 W JP 0108873W WO 0231960 A1 WO0231960 A1 WO 0231960A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
energization
rotor
output
generator
Prior art date
Application number
PCT/JP2001/008873
Other languages
French (fr)
Japanese (ja)
Inventor
Atsuo Ota
Satoshi Honda
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to BR0114398-0A priority Critical patent/BR0114398A/en
Priority to IL15449101A priority patent/IL154491A0/en
Priority to KR10-2003-7004908A priority patent/KR100526715B1/en
Publication of WO2002031960A1 publication Critical patent/WO2002031960A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1484Regulation of the charging current or voltage otherwise than by variation of field by commutation of the output windings of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present invention relates to an output control device for a synchronous generator, and more particularly, to an output control device for a synchronous generator suitable for increasing the amount of power generation in a low rotation range.
  • a three-phase synchronous generator is used as a vehicle power generator.
  • the generated alternating current is rectified by a three-phase full-wave rectifier and used to charge the battery.
  • a leading phase current is supplied to the stator coil, and the field flux is generated by the magnetizing action of the armature reaction caused by the leading phase current. To increase the output (power generation voltage and output current). .
  • a generator is provided with a regulator that limits the output voltage so that the generated power does not exceed a predetermined value, and power generation is stopped by the function of the regulator.
  • the engine fluctuates in load, so engine rotation becomes unstable, especially in the low engine speed range. If the power generation is excessive, the increase in friction at low engine speeds has a large effect on engine speed.
  • An object of the present invention is to provide an output control device for a synchronous generator that can increase the generated power without making the engine rotation unstable in a low rotation range. Disclosure of the invention
  • the present invention provides a detecting means for detecting the number of revolutions of a rotor of a generator, and an energizing means for increasing a power generation amount of the generator by applying a retarded current to a stator winding.
  • a regulator for limiting the output voltage of the generator to a predetermined regulator voltage, wherein the retarding energization is performed when the rotation speed of the rotor is in a predetermined low rotation speed range.
  • the first characteristic is that the power supply is controlled so that the output voltage is controlled to a predetermined voltage control value lower than the regulated voltage.
  • the power generation output is increased by conducting the retarded current to the stator winding.
  • This retarding energization is performed so that the output voltage is controlled to a voltage control value set lower than the regulation voltage of the regulator, so that the power generation amount can be increased stably without operating the regulator in the low rotation speed range. Can be planned.
  • the present invention is directed to a second aspect of the present invention in that in the retarding energization, the output voltage is controlled to the predetermined voltage control value by changing the energization duty while maintaining the energization delay amount at a predetermined value.
  • the voltage control value has a predetermined width, and the energization duty is slightly reduced when the output voltage reaches the maximum value of the width, and the output voltage is reduced to the minimum value of the width.
  • a third feature is that the value is slightly increased when the value falls below, and a fourth feature is that the energization duty is determined according to the rotation speed of the generator.
  • FIG. 1 is a block diagram showing main functions of an output control device according to an embodiment of the present invention.
  • FIG. 2 is a sectional view of a starter / generator according to one embodiment of the present invention.
  • FIG. 3 is a main part electrical system diagram of a motorcycle having the output control device of the present invention.
  • FIG. 4 is a diagram showing the relationship between the engine speed and the generated current during ACG energization control.
  • FIG. 5 is a diagram showing a change in battery voltage in a retarded power generation region.
  • FIG. 6 is a flowchart showing the processing of the output control device.
  • FIG. 7 is a diagram showing the timing of the phase current of the stator coil and the output of the rotor angle sensor during ACG energization control.
  • Fig. 8 shows the energization duty tape with the engine speed as a parameter.
  • FIG. 2 is a cross-sectional view of a starter / generator according to one embodiment of the present invention.
  • This starter / generator (hereinafter referred to as “ACG”) 1 is mounted on, for example, a scooter-type motorcycle engine.
  • the ACG 1 includes a stator 50 on which a three-phase winding (stator coil) is wound, and an outer rotor 60 connected to an end of an engine crankshaft 201 and rotating around the outer periphery of the stator 50.
  • the outer rotor 60 has a power-up rotor case 63 connected to the crankshaft 201 and a magnet 62 housed on the inner peripheral surface of the rotor case 63.
  • the magnet 62 is arranged on the rotor yoke along the circumferential direction.
  • the outer rotor 60 is mounted by fitting the inner periphery of the hub portion 60a to the tapered end of the crankshaft 201, and penetrating through the center of the hub portion 60a. It is fixed with bolts 25 3 that are screwed into the end screws of the rank shaft 201.
  • the stator 50 disposed on the inner peripheral side of the outer rotor 60 is fixed to the crankcase 202 by the port 279.
  • a rotor 280 is provided with a fan 280 fixed by a bonolet 246.
  • a radiator 282 is provided adjacent to the fan 280, and the radiator 282 is covered by a fan cover 281.
  • a sensor case 28 is fitted in the inner periphery of the stator 50, and the sensor case 28 has a rotor angle sensor (magnetic pole sensor) 29 and a magnetic pole sensor 29 at equal intervals along the outer periphery of the boss of the rotor rotor 60.
  • a pulsar sensor (ignition pulsar) 30 is provided.
  • the rotor angle sensor 29 is for controlling the energization of the stator coil of ACG 1, and one rotor angle sensor is provided for each of the U, V, and W phases of ACG 1.
  • the ignition pulser 30 is for controlling the ignition of the engine, and only one ignition pulser is provided.
  • Each of the rotor angle sensor 29 and the ignition pulser 30 can be constituted by a Hall IC or a magnetoresistive (MR) element.
  • the lead wires of the rotor angle sensor 29 and the ignition pulser 30 are connected to the board 31, and a wire harness 32 is connected to the board 31.
  • a magnet ring 33 magnetized in two stages so as to exert a magnetic action on each of the rotor angle sensor 29 and the ignition pulsar 30 is fitted around the outer periphery of the boss 60 a of the filter rotor 60.
  • One magnetized band of the magnet ring 33 corresponding to the rotor angle sensor 29 has N poles arranged alternately at a 30 ° width interval in the circumferential direction corresponding to the magnetic poles of the stator 50.
  • An S pole is formed, and the other magnetized band of the magnet ring 33 corresponding to the ignition pulsar 30 has a magnetized portion at one place in the circumferential direction within a range of 15 ° or 40 °. It is formed.
  • ACG 1 with the above configuration functions as a synchronous motor at start-up,
  • the engine is started by rotating the crankshaft 201 driven by the current supplied from the motor, and after starting, it functions as a synchronous generator, charges the battery with the generated current, and Supply current to the electrical components.
  • FIG. 3 is a main part electrical system diagram of a motorcycle having an ACG 1 output control device.
  • ECU 3 has a full-wave rectifier 4 for rectifying the three-phase alternating current generated by ACG 1 and a regulated voltage (regulator operating voltage: for example, 14. 5 V) is provided.
  • the ECU 3 further includes a power generation control unit 6 that performs control to increase the amount of power generation when the engine speed is in a predetermined low rotation range (hereinafter, referred to as a “power generation control area”).
  • the power generation control unit 6 is realized as a CPU function.
  • the rotor angle sensor 29 and the ignition pulser 30 are also connected to the ECU 3, and the detection signals are input to the ECU 3.
  • the ECU 3 is connected to an ignition coil 21, and a secondary side of the ignition coil 21 is connected to a spark plug 22.
  • the ECU 3 is connected to the throttle sensor 23, fuel sensor 24, seat switch 25, idle / restart switch 26, and coolant temperature sensor 27, and the detection signal from each part is sent to the ECU 3. Is entered.
  • the ECU 3 has a starter relay 34, starter switch 3 5.
  • stop switch 36, 37, standby indicator 38, fuel indicator 39, speed sensor 40, smart vista 41, And head light 42 are connected.
  • the headlight 42 is provided with a dimmer switch 43.
  • a current is supplied to the above components from the battery 2 via a main fuse 44 and a main switch 45.
  • the nottery 2 is directly connected to the ECU 3 by the starter relay 34 while the main switch 45 And a circuit connected to the ECU 3 only through the main fuse 44 without passing through.
  • the power generation control unit 6 increases the amount of power generation by retarding electricity from the battery 2 to the stator coils of each phase of the power generation ACG 1 according to the present invention.
  • ACG energization control means that the stator coil is energized with a delay corresponding to a predetermined electrical angle from a detection signal at the time of change of the magnetic pole of the magnetization band 33 detected by the rotor angle sensor 29.
  • the output voltage (battery voltage) of the full-wave rectifier 4 is controlled in order to prevent the engine rotation from becoming unstable due to the sudden change in the engine load caused by the operation of the regulator 5 in the low rotation range. It is controlled to be within the expected voltage range below the rate voltage.
  • Fig. 4 is a diagram showing the relationship between the engine speed and the generated current when ACG energization control is performed.
  • the engine speed is l O O O r p n!
  • the region of ⁇ 3500 rpm is set as the power generation control region.
  • the generated current (ACG output) of ACG 1 by the conventional control method is extremely small. Therefore, in the power generation control region, the generated current is increased by ACG conduction control.
  • the increment is indicated by the dotted line as “when the retard is energized”.
  • FIG. 5 is a diagram showing a change in battery voltage in the retarded power generation region.
  • the battery voltage Vb is controlled within the ACG control voltage range defined by the control voltage maximum value V Max and the control voltage minimum value VMin set below the regulated voltage (14.5 V).
  • the amount of retardation of energization to the stator coil is set to a fixed value (for example, an electrical angle of 60 °), and the energization duty of the full-wave rectifier 4 is increased or decreased to control the battery voltage Vb within the ACG control voltage range.
  • the power duty is reduced by a predetermined minute value (for example, 1%). Increase by a small value.
  • FIG. 1 is a block diagram showing the main functions of the ACG energization control device.
  • a full-wave rectifier 4 is a FET (generally a solid-state switching element) 4a, 4b, 4c, 4d, connected to a stator coil 1U, IV, 1W of AC G1.
  • the driver 4 switches the FETs 4a to 4f, drives the ACG 1 as a synchronous motor, and rotates the crankshaft 201.
  • the aota rotor is driven by the engine and functions as a synchronous generator. Therefore, the generated AC is rectified by the FETs 4a to 4f and supplied to the battery 2 and the electrical load 47.
  • the driver 46 controls the FETs 4a to 4f so that the retard coil is energized to the stator coil. Increase volume.
  • the retardation energization control will be described later with reference to FIG.
  • the engine speed discriminating unit 48 detects the engine speed based on, for example, a detection signal of the ignition pulser 30 and a frequency signal of the generated voltage, and if the detected engine speed is in a predetermined power generation control area. Supply the retard command to driver 46.
  • the driver 46 reads a preset energization delay amount from the retard amount setting section 49 in response to the retard command, and energizes the retard.
  • the energization duty is read from the duty setting section 51 and supplied to the driver 46.
  • the driver 46 is turned on when the sensor 29 detects the magnetic pole detection signal from the rotor angle sensor 29, that is, the magnetized band of the magnet ring 33 formed corresponding to the magnetic pole of the rotor 60. Detect signal. Then, from the rise of the signal, the amount of delay of the energization Outputs PWM control signals for ET 4a to 4f.
  • the battery voltage determination unit 52 compares the battery voltage Vb with the control voltage maximum value VMax and the control voltage minimum value VMin that define the voltage control range, and sets the duty in the duty setting unit 51 based on the comparison result.
  • the energization duty is increased or decreased so that the battery voltage Vb falls within the control range.
  • FIG. 6 is a flowchart showing the processing of the output control device. In the figure, in step S1, it is determined whether or not the engine speed is in the power generation control region. As described above, the power generation control area is set, for example, to 100 to rm or more and 350 to rpm or less.
  • the predetermined value ACGAGL can be appropriately set in advance. In the present embodiment, for example, the electrical angle is 60 °.
  • step S5 the initial value ACDUTY is set to the energization duty acduty.
  • the initial value ACDUTY can also be appropriately set in advance, but in the present embodiment, it is, for example, 40%.
  • step S9 If the battery voltage Vb is not equal to or lower than the control voltage minimum value V Min in step S9, it is determined that the battery voltage is within the ACG energizing voltage range set to a value lower than the regulator regulated voltage, and step S10 is performed.
  • the ACG energization control is performed according to the energization delay amount acgagl and the energization duty acduty.
  • step S8 When it is determined in step S8 that the battery voltage Vb is equal to or higher than the control voltage maximum value VMax, the process proceeds to step SI1, where the energization duty acduty is reduced by the minute value DDUTY.
  • the minute value DDUTY is, for example, 1%. If it is determined in step S9 that the battery voltage Vb is equal to or lower than the control voltage minimum value VMin, the process proceeds to step S12, where the energization duty acduty is increased by the minute value DDUTY. After the processes in steps S11 and S12, the process proceeds to step S10.
  • the minute value DDUTY when increasing and decreasing the energization duty acduty does not necessarily have to be the same, and is proportional to the difference between the control voltage maximum value V Max or the control voltage minimum value V Min and the current value.
  • the minute value DDUTY may be changed.
  • FIG. 7 is a diagram showing the timing between the current (phase current) flowing through each phase of the stator coil and the output of the rotor angle sensor 29 during the ACG energization control.
  • the retarding energization control is not performed.
  • the stator coil responds to the change of the positive or negative (NS) of the detection output of the rotor angle sensor 29.
  • the current is supplied to each of the U, V, and w phases.
  • V, and W are supplied with current.
  • the energization angle T due to duty chabbing is 180 °, but it can be determined within 180 ° by the energization duty supplied from the duty setting unit 51 to the driver 46.
  • Fig. 8 is a table of the energization duty in which the engine speed, that is, the generator speed, is set as a parameter. Detect the engine speed and determine the energization duty according to the engine speed with reference to Fig.8.
  • the permanent magnet is arranged as the field flux generating magnet means in the rotor rotor by the rotor rotor Z-inner rotor system.
  • the present invention can be similarly applied to a generator having an inner rotor provided with field magnets for generating field magnetic flux, and a generator using electromagnets as magnet means for generating field magnetic flux.
  • the energization delay amount acgagl instead of setting the energization delay amount acgagl to a fixed value, it is possible to perform proportional, differential, integral and a composite control of these in accordance with a general negative feedback control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A generated energy is increased in a low-rotation region with an engine rotation kept stabilized. An engine rotating speed judging unit (48) detects the rotating speed of a rotor, and, when an engine's rotating speed is in a low-rotation region, a driver (46) subjects a rectifier (4) to delay angle energizing control to intensify a field magnetic flux and increase a generated energy. The driver (46) responses to a change in the polarity of a magnetic pole detected by a rotor angle sensor (29), and reads a delay amount stored in a delay angle amount setting unit (49) to subject a stator winding to delay angle energizing. The output voltage of the generator is so controlled as to converge to a value between voltage control values Vmax and Vmin lower than the regulated voltage of a regulator.

Description

明 細 書 同期発電機の出力制御装置 技術分野  Description Synchronous generator output control device Technical field
本発明は、 同期発電機の出力制御装置に関し、 特に、 低回転域での発 電量を増大させるのに好適な同期発電機の出力制御装置に関する。 背景技術  The present invention relates to an output control device for a synchronous generator, and more particularly, to an output control device for a synchronous generator suitable for increasing the amount of power generation in a low rotation range. Background art
車両用発電装置として三相同期発電機が用いられ、 発電された交流を、 三相全波整流器で整流してバッテリの充電に使用している。 特開平 9一 1 9 1 9 4号公報に開示された三相同期発電機では、 ステータコイルに 進相電流を流して、 この進相電流に起因する電機子反作用の増磁作用に より界磁束を増加させて出力 (発電電圧および出力電流) を増大させて いる。 .  A three-phase synchronous generator is used as a vehicle power generator. The generated alternating current is rectified by a three-phase full-wave rectifier and used to charge the battery. In the three-phase synchronous generator disclosed in Japanese Patent Application Laid-Open No. 9-19194, a leading phase current is supplied to the stator coil, and the field flux is generated by the magnetizing action of the armature reaction caused by the leading phase current. To increase the output (power generation voltage and output current). .
一般に発電機には発電電力が所定値を超えないように出力電圧を制限 するレギュレータが設けられ、 このレギユレータが機能することにより 発電が停止される。 発電が停止するとエンジンに負荷変動が起こるため、 特に、 低回転域ではエンジン回転が不安定になってしまう。 また、 発電 力が過大であると、 低回転域ではそのためのフリクションの増大による エンジン回転への影響が大きい。  Generally, a generator is provided with a regulator that limits the output voltage so that the generated power does not exceed a predetermined value, and power generation is stopped by the function of the regulator. When power generation stops, the engine fluctuates in load, so engine rotation becomes unstable, especially in the low engine speed range. If the power generation is excessive, the increase in friction at low engine speeds has a large effect on engine speed.
本発明は、 低回転域においてエンジン回転を不安定にさせずに発電電 力を増大させることができる同期発電機の出力制御装置を提供すること を目的とする。 発明の開示 前記目的を達成するために、 本発明は、 発電機の回転子の回転数を検 出する検出手段と、 固定子巻線に遅角通電させて前記発電機の発電量を 増大させる通電手段と、 前記発電機の出力電圧を所定のレギユレ一ト電 圧に制限するレギユレ一タとを具備し、 前記遅角通電が、 前記回転子の 回転数が予定の低回転数域にあるときに行われるとともに、 前記出力電 圧を前記レギュレート電圧よりも低い予定の電圧制御値に制御するよう 通電制御される点に第 1の特徴がある。 An object of the present invention is to provide an output control device for a synchronous generator that can increase the generated power without making the engine rotation unstable in a low rotation range. Disclosure of the invention In order to achieve the above object, the present invention provides a detecting means for detecting the number of revolutions of a rotor of a generator, and an energizing means for increasing a power generation amount of the generator by applying a retarded current to a stator winding. A regulator for limiting the output voltage of the generator to a predetermined regulator voltage, wherein the retarding energization is performed when the rotation speed of the rotor is in a predetermined low rotation speed range. In addition, the first characteristic is that the power supply is controlled so that the output voltage is controlled to a predetermined voltage control value lower than the regulated voltage.
第 1の特徴によれば、 固定子巻線に遅角通電することにより発電出力 が増大する。 そして、 この遅角通電が、 出力電圧をレギユレータのレギ ュレート電圧より低く設定される電圧制御値に制御するように行われる ので、 低回転域でレギュレータを作動させずに安定的に発電量の増大を 図ることができる。  According to the first feature, the power generation output is increased by conducting the retarded current to the stator winding. This retarding energization is performed so that the output voltage is controlled to a voltage control value set lower than the regulation voltage of the regulator, so that the power generation amount can be increased stably without operating the regulator in the low rotation speed range. Can be planned.
また、 本発明は、 前記遅角通電では、 通電遅角量を予定値に維持した まま通電デューティを変化させることにより、 前記出力電圧が前記予定 の電圧制御値に制御される点に第 2の特徴がある。  Further, the present invention is directed to a second aspect of the present invention in that in the retarding energization, the output voltage is controlled to the predetermined voltage control value by changing the energization duty while maintaining the energization delay amount at a predetermined value. There are features.
さらに、 本発明は、 前記電圧制御値が予定の幅を有し、 前記通電デュ 一ティを、 前記出力電圧が該幅の最大値に達したときに微減させ、 前記 出力電圧が該幅の最小値に以下に下がつたときに微増させる点に第 3の 特徴があり、 前記通電デューティが、 前記発電機の回転数に応じて決定 される点に第 4の特徴がある。  Further, in the present invention, the voltage control value has a predetermined width, and the energization duty is slightly reduced when the output voltage reaches the maximum value of the width, and the output voltage is reduced to the minimum value of the width. A third feature is that the value is slightly increased when the value falls below, and a fourth feature is that the energization duty is determined according to the rotation speed of the generator.
第 2〜第 4の特徴によれば、 遅角のタイミングが固定されるので、 発 電量の調整が容易であり、 調整の精度を上げることができる。 図面の簡単な説明  According to the second to fourth features, since the timing of the retardation is fixed, the amount of power generation can be easily adjusted, and the accuracy of the adjustment can be increased. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の一実施形態に係る出力制御装置の要部機能を示す プロック図である。 第 2図は、 本発明の一実施形態に係るスタータ兼発電機の断面図であ る。 FIG. 1 is a block diagram showing main functions of an output control device according to an embodiment of the present invention. FIG. 2 is a sectional view of a starter / generator according to one embodiment of the present invention.
第 3図は、 本発明の出力制御装置を有する自動二輪車の要部電装系統 図である。  FIG. 3 is a main part electrical system diagram of a motorcycle having the output control device of the present invention.
第 4図は、 ACG 通電制御時のエンジン回転数と発電電流との闋係を示 す図である。  FIG. 4 is a diagram showing the relationship between the engine speed and the generated current during ACG energization control.
第 5図は、 遅角発電領域におけるバッテリ電圧の変化を示す図である。 第 6図は、 出力制御装置の処理を示すフローチヤ一トである。  FIG. 5 is a diagram showing a change in battery voltage in a retarded power generation region. FIG. 6 is a flowchart showing the processing of the output control device.
第 7図は、 ACG 通電制御時のステータコイルの相電流とロータ角度セ ンサの出力とのタイミングを示す図である。  FIG. 7 is a diagram showing the timing of the phase current of the stator coil and the output of the rotor angle sensor during ACG energization control.
第 8図は、 エンジン回転数をパラメータとする通電デューティのテー プルである。 発明を実施するための最良の形態  Fig. 8 shows the energization duty tape with the engine speed as a parameter. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の一実施形態を説明する。 図 2は、 本発 明の一実施形態に係るスタータ兼発電機の断面図である。 このスタータ 兼発電機 (以下、 「A C G」 という) 1は、 例えば、 スクータ型自動二 輪車エンジンに搭載される。 A C G 1は、 三相卷線 (ステータコイル) が卷回されたステータ 5 0と、 エンジンのクランク軸 2 0 1の端部に結 合されてステータ 5 0の外周を回転するァウタロータ 6 0とを有する。 ァウタロータ 6 0はクランク軸 2 0 1に連結される力ップ状のロータケ ース 6 3と、 ロータケース 6 3の内周面に収容されるマグネッ ト 6 2と を有する。 マグネッ ト 6 2はロータヨークに円周方向に沿って配置され る。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a cross-sectional view of a starter / generator according to one embodiment of the present invention. This starter / generator (hereinafter referred to as “ACG”) 1 is mounted on, for example, a scooter-type motorcycle engine. The ACG 1 includes a stator 50 on which a three-phase winding (stator coil) is wound, and an outer rotor 60 connected to an end of an engine crankshaft 201 and rotating around the outer periphery of the stator 50. Have. The outer rotor 60 has a power-up rotor case 63 connected to the crankshaft 201 and a magnet 62 housed on the inner peripheral surface of the rotor case 63. The magnet 62 is arranged on the rotor yoke along the circumferential direction.
ァウタロータ 6 0は、 ハブ部 6 0 aの内周をクランク軸 2 0 1 の先端 テーパ部に嵌合させて取り付けられ、 ハブ部 6 0 aの中心を貫通してク ランク軸 2 0 1の端部ネジに螺挿されるボルト 2 5 3で固定される。 ァ ウタロータ 6 0の内周側に配設されるステータ 5 0はポルト 2 7 9によ つてクランクケース 2 0 2に固定される。 ァウタロータ 6 0にはボノレト 2 4 6によって固定されたファン 2 8 0が設けられる。 ファン 2 8 0に 隣接してラジェータ 2 8 2が設けられ、 ラジェータ 2 8 2はファンカバ 一 2 8 1によって覆われる。 The outer rotor 60 is mounted by fitting the inner periphery of the hub portion 60a to the tapered end of the crankshaft 201, and penetrating through the center of the hub portion 60a. It is fixed with bolts 25 3 that are screwed into the end screws of the rank shaft 201. The stator 50 disposed on the inner peripheral side of the outer rotor 60 is fixed to the crankcase 202 by the port 279. A rotor 280 is provided with a fan 280 fixed by a bonolet 246. A radiator 282 is provided adjacent to the fan 280, and the radiator 282 is covered by a fan cover 281.
ステータ 5 0の内周にはセンサケース 2 8が嵌め込められ、 このセン サケース 2 8内にはァウタロータ 6 0のボスの外周に沿って等間隔で口 ータ角度センサ (磁極センサ) 2 9およびパルサセンサ (点火パルサ) 3 0が設けられる。 ロータ角度センサ 2 9は A C G 1のステータコイル に対する通電制御を行うためのものであり、 A C G 1 の U相、 V相、 W 相のそれぞれに対応して 1つずつ設けられる。 一方、 点火パルサ 3 0は エンジンの点火制御のためのものであり、 1つだけ設けられる。 ロータ 角度センサ 2 9および点火パルサ 3 0はいずれもホール I Cまたは磁気 抵抗 (M R ) 素子で構成することができる。  A sensor case 28 is fitted in the inner periphery of the stator 50, and the sensor case 28 has a rotor angle sensor (magnetic pole sensor) 29 and a magnetic pole sensor 29 at equal intervals along the outer periphery of the boss of the rotor rotor 60. A pulsar sensor (ignition pulsar) 30 is provided. The rotor angle sensor 29 is for controlling the energization of the stator coil of ACG 1, and one rotor angle sensor is provided for each of the U, V, and W phases of ACG 1. On the other hand, the ignition pulser 30 is for controlling the ignition of the engine, and only one ignition pulser is provided. Each of the rotor angle sensor 29 and the ignition pulser 30 can be constituted by a Hall IC or a magnetoresistive (MR) element.
ロータ角度センサ 2 9および点火パルサ 3 0のリード線は基板 3 1に 接続され、 さらに基板 3 1にはワイヤハーネス 3 2が結合される。 ァゥ タロータ 6 0のボス 6 0 aの外周には、 ロータ角度センサ 2 9およぴ点 火パルサ 3 0のそれぞれに磁気作用を及ぼすよう 2段着磁されたマグネ ットリング 3 3が嵌め込まれる。  The lead wires of the rotor angle sensor 29 and the ignition pulser 30 are connected to the board 31, and a wire harness 32 is connected to the board 31. A magnet ring 33 magnetized in two stages so as to exert a magnetic action on each of the rotor angle sensor 29 and the ignition pulsar 30 is fitted around the outer periphery of the boss 60 a of the filter rotor 60.
ロータ角度センサ 2 9に対応するマグネットリング 3 3の一方の着磁 帯には、 ステータ 5 0の磁極に対応して、 円周方向に 3 0 ° 幅間隔で交 互に配列された N極と S極が形成され、 点火パルサ 3 0に対応するマグ ネットリング 3 3の他方の着磁帯には、 円周方向の 1か所に 1 5 ° ない し 4 0 ° の範囲で着磁部が形成される。  One magnetized band of the magnet ring 33 corresponding to the rotor angle sensor 29 has N poles arranged alternately at a 30 ° width interval in the circumferential direction corresponding to the magnetic poles of the stator 50. An S pole is formed, and the other magnetized band of the magnet ring 33 corresponding to the ignition pulsar 30 has a magnetized portion at one place in the circumferential direction within a range of 15 ° or 40 °. It is formed.
上記構成の A C G 1は、 始動時には同期モータとして機能し、 バッテ リから供給される電流で駆動されてクランク軸 2 0 1を回動させてェン ジンを始動させるとともに、 始動後は同期発電機として機能し、 発電し た電流でバッテリを充電し、 かつ各電装部に電流を供給する。 ACG 1 with the above configuration functions as a synchronous motor at start-up, The engine is started by rotating the crankshaft 201 driven by the current supplied from the motor, and after starting, it functions as a synchronous generator, charges the battery with the generated current, and Supply current to the electrical components.
図 3は、 ACG 1の出力制御装置を有する自動二輪車の要部電装系統 図である。 同図において、 E CU 3には ACG 1で発生した三相交流を 整流する全波整流器 4と、 全波整流器 4の出力を予定のレギユレ一ト電 圧 (レギユレータ作動電圧:例えば、 1 4. 5 V) に制限するためのレ ギユレータ 5とが設けられる。 さらに、 E CU 3は、 エンジン回転数が 予定の低回転域 (以下、 「発電制御領域」 という) であるとき、 発電量 を増加させる制御を行う発電制御部 6を有する。 なお、 発電制御部 6は C PUの機能として実現される。 前記ロータ角度センサ 2 9および点火 パルサ 3 0も E CU 3に接続されて、 その検出信号は E CU 3に入力さ れる。  FIG. 3 is a main part electrical system diagram of a motorcycle having an ACG 1 output control device. In the figure, ECU 3 has a full-wave rectifier 4 for rectifying the three-phase alternating current generated by ACG 1 and a regulated voltage (regulator operating voltage: for example, 14. 5 V) is provided. The ECU 3 further includes a power generation control unit 6 that performs control to increase the amount of power generation when the engine speed is in a predetermined low rotation range (hereinafter, referred to as a “power generation control area”). The power generation control unit 6 is realized as a CPU function. The rotor angle sensor 29 and the ignition pulser 30 are also connected to the ECU 3, and the detection signals are input to the ECU 3.
E CU 3には、 点火コイル 2 1が接続され、 点火コイル 2 1の二次側 には点火プラグ 2 2が接続される。 また、 E CU 3にはスロッ トルセン サ 2 3、 フューェノレセンサ 24、 シートスィッチ 2 5、 アイ ド/レスイツ チ 2 6、 冷却水温センサ 2 7が接続され、 各部から検出信号が E CU 3 に入力される。  The ECU 3 is connected to an ignition coil 21, and a secondary side of the ignition coil 21 is connected to a spark plug 22. The ECU 3 is connected to the throttle sensor 23, fuel sensor 24, seat switch 25, idle / restart switch 26, and coolant temperature sensor 27, and the detection signal from each part is sent to the ECU 3. Is entered.
さらに、 E CU 3には、 スタータリ レー 34、 スタータスイッチ 3 5. ス トップスィツチ 3 6 , 3 7、 スタンバイインジケータ 3 8、 フユ一ェ ルインジケータ 3 9、 スピードセンサ 4 0、 才ートバイスタ 4 1、 およ びへッ ドライ ト 4 2が接続される。 へッドライ ト 4 2には、 ディマース イッチ 4 3が設けられる。  In addition, the ECU 3 has a starter relay 34, starter switch 3 5. stop switch 36, 37, standby indicator 38, fuel indicator 39, speed sensor 40, smart vista 41, And head light 42 are connected. The headlight 42 is provided with a dimmer switch 43.
上記の各部にはメインヒューズ 44およびメインスィツチ 45を介し てパッテリ 2から電流が供給される。 なお、 ノ ッテリ 2は、 スタータリ レー 34によって E CU 3に直接接続される一方、 メインスィッチ 4 5 を介さず、 メインヒューズ 44だけを介して E CU 3に接続される回路 を有する。 A current is supplied to the above components from the battery 2 via a main fuse 44 and a main switch 45. Note that the nottery 2 is directly connected to the ECU 3 by the starter relay 34 while the main switch 45 And a circuit connected to the ECU 3 only through the main fuse 44 without passing through.
上記発電制御部 6は、 通常に発電量 (電圧) を制御する機能に加え、 本発明に従って前記発電 ACG 1の各相のステータコイルに対してバッ テリ 2から遅角通電して発電量を増加させる (以下、 「ACG 通電制御」 という) 機能を有する。 ここで、 遅角通電とは、 前記ロータ角度センサ 2 9で検出される前記着磁帯 3 3の磁極の変化時の検出信号から予定の 電気角相当分を遅延させてステータコイルに通電することをいう。 伹し、 低回転域で前記レギュレータ 5が作動することによって生じるエンジン 負荷の急変に起因するエンジン回転の不安定化を防止するため、 全波整 流器 4の出力電圧 (バッテリ電圧) 力 、 レギュレート電圧以下の予定電 圧範囲内に収まるよう制御される。  In addition to the function of normally controlling the amount of power generation (voltage), the power generation control unit 6 increases the amount of power generation by retarding electricity from the battery 2 to the stator coils of each phase of the power generation ACG 1 according to the present invention. (Hereinafter referred to as “ACG energization control”). Here, the retard angle energization means that the stator coil is energized with a delay corresponding to a predetermined electrical angle from a detection signal at the time of change of the magnetic pole of the magnetization band 33 detected by the rotor angle sensor 29. Say. However, the output voltage (battery voltage) of the full-wave rectifier 4 is controlled in order to prevent the engine rotation from becoming unstable due to the sudden change in the engine load caused by the operation of the regulator 5 in the low rotation range. It is controlled to be within the expected voltage range below the rate voltage.
図 4は ACG 通電制御をしたときのエンジン回転数と発電電流との関係 を示す図である。 同図において、 エンジン回転数が l O O O r p n!〜 3 5 00 r p mの領域が発電制御領域として設定されており、 このような 低回転領域では、 従来の制御手法による ACG 1の発電電流 (ACG出 力) は極めて小さい。 そこで、 発電制御領域において ACG 通電制御によ り発電電流を増加させる。 増加分は 「遅角通電時」 として点線で示す。 発電量が常用負荷電流に相当するように制御することにより、 低回転領 域においても、 消費電流量に相当する発電量を確保できる。  Fig. 4 is a diagram showing the relationship between the engine speed and the generated current when ACG energization control is performed. In the figure, the engine speed is l O O O r p n! The region of ~ 3500 rpm is set as the power generation control region. In such a low rotation region, the generated current (ACG output) of ACG 1 by the conventional control method is extremely small. Therefore, in the power generation control region, the generated current is increased by ACG conduction control. The increment is indicated by the dotted line as “when the retard is energized”. By controlling the amount of power generation to correspond to the normal load current, it is possible to secure the amount of power generation corresponding to the amount of current consumed even in a low rotation region.
図 5は、 遅角発電領域におけるバッテリ電圧の変化を示す図である。 同図において、 レギュレート電圧 ( 1 4. 5 V) 以下に設定された制御 電圧最大値 V Maxおよび制御電圧最小値 VMin で規定される ACG制御電圧 範囲でパッテリ電圧 Vbが制御される。 具体的には、 ステータコイルに 対する通電遅角量は固定値 (例えば電気角 6 0° ) とし、 全波整流器 4 の通電デューティを増減してバッテリ電圧 Vb を ACG 制御電圧範囲に制 御する。 すなわち、 バッテリ電圧 Vb が制御電圧最大値 VMax に達した ら逋電デューティを予定の微小値 (例えば 1 %) だけ低減させ、 バッテ リ電圧 Vb が制御電圧最小値 VMin に下がったら通電デューティを同微 小値だけ増大させる。 FIG. 5 is a diagram showing a change in battery voltage in the retarded power generation region. In this figure, the battery voltage Vb is controlled within the ACG control voltage range defined by the control voltage maximum value V Max and the control voltage minimum value VMin set below the regulated voltage (14.5 V). Specifically, the amount of retardation of energization to the stator coil is set to a fixed value (for example, an electrical angle of 60 °), and the energization duty of the full-wave rectifier 4 is increased or decreased to control the battery voltage Vb within the ACG control voltage range. I will. That is, when the battery voltage Vb reaches the control voltage maximum value VMax, the power duty is reduced by a predetermined minute value (for example, 1%). Increase by a small value.
図 1は、 ACG 通電制御装置の要部機能を示すプロック図である。 同図 において、 全波整流器 4は AC G 1のステータコイル 1 U, I V, 1 W に接続された F ET (—般的には固体スイッチング素子) 4 a, 4 b , 4 c , 4 d , 4 e, 4 f を有し、 エンジン始動時は、 ドライバ 4 6によ り F ET 4 a〜4 f をスイッチングし、 ACG 1を同期電動機として駆 動し、 前記クランク軸 2 0 1を回転させる一方、 エンジン始動後は、 逆 にァウタロータがエンジンによって駆動して同期発電機として機能する ので、 F ET 4 a〜4 f で発電交流を整流してバッテリ 2ゃ電装負荷 4 7に給電する。 また、 エンジン駆動による発電中においても、 特に、 ェ ンジンの低回転時には本発明に従い、 ステータコイルへの遅角通電が行 われるようにドライバ 4 6で F ET 4 a〜4 f を制御して発電量を増大 させる。 なお、 遅角通電制御については図 7を参照して後述する。  FIG. 1 is a block diagram showing the main functions of the ACG energization control device. In the figure, a full-wave rectifier 4 is a FET (generally a solid-state switching element) 4a, 4b, 4c, 4d, connected to a stator coil 1U, IV, 1W of AC G1. When the engine is started, the driver 4 switches the FETs 4a to 4f, drives the ACG 1 as a synchronous motor, and rotates the crankshaft 201. On the other hand, after the engine is started, on the contrary, the aota rotor is driven by the engine and functions as a synchronous generator. Therefore, the generated AC is rectified by the FETs 4a to 4f and supplied to the battery 2 and the electrical load 47. Also, according to the present invention, during power generation by the engine drive, particularly when the engine is running at a low speed, the driver 46 controls the FETs 4a to 4f so that the retard coil is energized to the stator coil. Increase volume. The retardation energization control will be described later with reference to FIG.
エンジン回転数判別部 48は、 例えば、 点火パルサ 3 0の検出信号や 発電電圧の周波数信号などをもとにエンジン回転数を検出し、 検出ェン ジン回転数が予定の発電制御領域にあれば遅角指令をドライバ 4 6に供 給する。 ドライバ 4 6は遅角指令に応答して遅角量設定部 4 9から予め 設定されている通電遅角量を読み出して遅角通電させる。 通電デューテ ィはデューティ設定部 5 1から読み出してドライバ 4 6に供給される。 ドライバ 4 6はロータ角度センサ 2 9による磁極検出信号、 すなわちァ ウタロータ 6 0の磁極に対応して形成されているマグネットリング 3 3 の着磁帯をセンサ 2 9が検出するたぴにオンに立ち上がる信号を検出す る。 そして、 その信号の立上がりから通電遅角量相当分を遅角させて F E T 4 a〜4 f に対する PWM制御信号を出力する。 The engine speed discriminating unit 48 detects the engine speed based on, for example, a detection signal of the ignition pulser 30 and a frequency signal of the generated voltage, and if the detected engine speed is in a predetermined power generation control area. Supply the retard command to driver 46. The driver 46 reads a preset energization delay amount from the retard amount setting section 49 in response to the retard command, and energizes the retard. The energization duty is read from the duty setting section 51 and supplied to the driver 46. The driver 46 is turned on when the sensor 29 detects the magnetic pole detection signal from the rotor angle sensor 29, that is, the magnetized band of the magnet ring 33 formed corresponding to the magnetic pole of the rotor 60. Detect signal. Then, from the rise of the signal, the amount of delay of the energization Outputs PWM control signals for ET 4a to 4f.
バッテリ電圧判別部 5 2ではバッテリ電圧 Vb を、 電圧制御範囲を規 定する前記制御電圧最大値 VMax および制御電圧最小値 VMin と比較し、 その比較結果に基づいて、 デューティ設定部 5 1に設定される通電デュ 一ティを増減し、 バッテリ電圧 Vb が前記制御範囲に収まるようにする。 図 6は、 上記の出力制御装置の処理を示すフローチャートである。 同 図において、 ステップ S 1ではエンジン回転数が発電制御領域に存在し ているか否かを判断する。 発電制御領域は、 上述のように、 例えば 1 0 0 0 r m以上 3 5 00 r p m以下に設定される。 エンジン回転数が発 電制御領域に存在していれば、 ステップ S 2に進み、 エンジン回転数が 発電制御領域に存在していることを示すフラグ FACG がセットされてい る (= 1 ) か否かを判別する。 フラグ FACG がセッ トされていなければ ステップ S 3に進んでフラグ FACG をセッ トする (「 1」 にする)。 フラ グ FACG をセットしたならば、 ステップ S 4に進んで通電遅角量 acgagl に予定値 ACGAGLをセッ トする。 予定値 ACGAGLは、 予め適当に設定してお くことができるが、 本実施形態では、 例えば、 電気角 6 0° である。 続 くステップ S 5では通電デューティ acdutyに初期値 ACDUTYをセッ トする。 前記初期値 ACDUTYも予め適当に設定しておくことができるが、 本実施形 態では、 例えば 40%である。 ステップ S 3〜 S 5が終わったならばス テツプ S 7に進む。 前記ステップ S 2が肯定ならばステップ S 3〜 S 5 はスキップしてステップ S 7に進む。 また、 エンジン回転数が前記発電 制御領域に存在しないときは、 ステップ S 6でフラグ F ACG をリセット (= 0) した後、 ステップ S 7に進む。  The battery voltage determination unit 52 compares the battery voltage Vb with the control voltage maximum value VMax and the control voltage minimum value VMin that define the voltage control range, and sets the duty in the duty setting unit 51 based on the comparison result. The energization duty is increased or decreased so that the battery voltage Vb falls within the control range. FIG. 6 is a flowchart showing the processing of the output control device. In the figure, in step S1, it is determined whether or not the engine speed is in the power generation control region. As described above, the power generation control area is set, for example, to 100 to rm or more and 350 to rpm or less. If the engine speed is in the power generation control region, the process proceeds to step S2, and whether the flag FACG indicating that the engine speed is in the power generation control region is set (= 1) or not is determined. Is determined. If the flag FACG has not been set, proceed to step S3 to set the flag FACG (set it to "1"). After setting the flag FACG, the process proceeds to step S4 to set the expected value ACGAGL to the energization delay amount acgagl. The predetermined value ACGAGL can be appropriately set in advance. In the present embodiment, for example, the electrical angle is 60 °. In the following step S5, the initial value ACDUTY is set to the energization duty acduty. The initial value ACDUTY can also be appropriately set in advance, but in the present embodiment, it is, for example, 40%. When steps S3 to S5 are completed, the process proceeds to step S7. If step S2 is affirmative, steps S3 to S5 are skipped and the process proceeds to step S7. If the engine speed does not exist in the power generation control region, the flag FACG is reset (= 0) in step S6, and then the process proceeds to step S7.
ステップ S 7では、 フラグ FACG がセッ トされているか否かを判別す る。 フラグ FACG がセッ トされていた (= 1 ) ならば、 ステップ S 8で バッテリ電圧 Vbが制御電圧最大値 VMax 以上か否かを判断する。 制御 電圧最大値 V Max は、 レギュレート電圧より低い値、 例えば 1 3 . 5ボ ルトに設定される。 バッテリ電圧 V b が制御電圧最大値 VMax 以上でな いときは、 ステップ S 9に進んでバッテリ電圧 V b が制御電圧最小値 V Min 以下か否かを判断する。 制御電圧最小値 V Min.は、 例えば 1 3 . 0 ボルトに設定される。 ステップ S 9でバッテリ電圧 V b が制御電圧最小 値 V Min 以下でないときは、 レギュレータのレギュレート電圧よりも低 い値に設定された ACG 通電電圧範囲に入っていると判断され、 ステップ S 1 0に進んで、 上記通電遅角量 acgaglと通電デューティ acdutyとに従 つて ACG 通電制御を行う。 In step S7, it is determined whether the flag FACG is set. If the flag FACG has been set (= 1), it is determined in step S8 whether the battery voltage Vb is equal to or higher than the control voltage maximum value VMax. control The voltage maximum value V Max is set to a value lower than the regulation voltage, for example, 13.5 volts. If the battery voltage Vb is not equal to or higher than the control voltage maximum value VMax, the process proceeds to step S9, and it is determined whether the battery voltage Vb is equal to or lower than the control voltage minimum value Vmin. The control voltage minimum value V Min. Is set to, for example, 13.0 volts. If the battery voltage Vb is not equal to or lower than the control voltage minimum value V Min in step S9, it is determined that the battery voltage is within the ACG energizing voltage range set to a value lower than the regulator regulated voltage, and step S10 is performed. The ACG energization control is performed according to the energization delay amount acgagl and the energization duty acduty.
ステップ S 8でバッテリ電圧 V b が制御電圧最大値 V Max 以上である と判断されたときは、 ステップ S I 1に進んで通電デューティ acdutyを 微小値 DDUTY 低減する。 微小値 DDUTY は例えば 1 %である。 また、 ステ ップ S 9でバッテリ電圧 V b が制御電圧最小値 VMin 以下であると判断 されたときはステップ S 1 2に進んで通電デューティ acdutyを微小値 DDUTY 増大する。 ステップ S 1 1 , S 1 2の処理後はステップ S 1 0に 進む。 なお、 通電デューティ acdutyを増大させる時と低減させるときの 前記微小値 DDUTY は必ずしも同一でなくてもよいし、 制御電圧最大値 V Max または制御電圧最小値 V Min と現在値との差に比例して微小値 DDUTYを変化させてもよい。  When it is determined in step S8 that the battery voltage Vb is equal to or higher than the control voltage maximum value VMax, the process proceeds to step SI1, where the energization duty acduty is reduced by the minute value DDUTY. The minute value DDUTY is, for example, 1%. If it is determined in step S9 that the battery voltage Vb is equal to or lower than the control voltage minimum value VMin, the process proceeds to step S12, where the energization duty acduty is increased by the minute value DDUTY. After the processes in steps S11 and S12, the process proceeds to step S10. Note that the minute value DDUTY when increasing and decreasing the energization duty acduty does not necessarily have to be the same, and is proportional to the difference between the control voltage maximum value V Max or the control voltage minimum value V Min and the current value. The minute value DDUTY may be changed.
一方、 ステップ S 7でフラグ F ACG がセッ トされていなかった ( = 0 ) ならば、 発電制御領域でないのでステップ S 1 3に進んで ACG 通電 制御を停止する。  On the other hand, if the flag F ACG is not set (= 0) in step S7, the flow is not in the power generation control area, and the flow advances to step S13 to stop the ACG energization control.
図 7は、 ACG 通電制御時にステータコイルの各相に流れる電流 (相電 流) とロータ角度センサ 2 9の出力とのタイミングを示す図である。 図 に示すように、 遅角通電制御が行われない、 通常の場合にはロータ角度 センサ 2 9の検出出力の正負 (N S ) の変化に応答してステータコイル の U, V , w各相に電流が供給される。 一方、 遅角通電制御を行った場 合には、 ロータ角度センサ 2 9の検出出力の正負 (N S ) の変化時から 予定の遅角量 d ( = 6 0 ° ) だけ遅れてステータコイルの U , V , W各 相に電流が供給される。 図 7において、 デューティチヨッビングによる 通電角 Tは 1 8 0 ° であるが、 デューティ設定部 5 1からドライバ 4 6 へ供給される通電デューティによって 1 8 0 ° 以内で決定することがで さる。 FIG. 7 is a diagram showing the timing between the current (phase current) flowing through each phase of the stator coil and the output of the rotor angle sensor 29 during the ACG energization control. As shown in the figure, the retarding energization control is not performed. In the normal case, the stator coil responds to the change of the positive or negative (NS) of the detection output of the rotor angle sensor 29. The current is supplied to each of the U, V, and w phases. On the other hand, when the retarding energization control is performed, the stator coil U is delayed by a predetermined delay amount d (= 60 °) from the change of the sign (NS) of the detection output of the rotor angle sensor 29. , V, and W are supplied with current. In FIG. 7, the energization angle T due to duty chabbing is 180 °, but it can be determined within 180 ° by the energization duty supplied from the duty setting unit 51 to the driver 46.
図 8はエンジン回転数つまり発電機の回転数をパラメータとして設定 した通電デューティのテーブルである。 エンジン回転数を検出し、 図 8 を参照してエンジン回転数に応じた通電デューティを決定する。  Fig. 8 is a table of the energization duty in which the engine speed, that is, the generator speed, is set as a parameter. Detect the engine speed and determine the energization duty according to the engine speed with reference to Fig.8.
上記実施形態では、 ァウタロータ Zィンナロータ方式で、 ァゥタロー タに界磁束発生用磁石手段として永久磁石を配置した。 しかし、 本発明 は、 インナロータに界磁束発生用磁石手段を設けた発電機や、 界磁束発 生用磁石手段として電磁石を採用した発電機にも同様に適用できる。 ま た、 通電遅角量 acgaglを、 固定値とするのではなく、 一般的な負帰還制 御手法に従い、 比例、 微分、 積分およびこれらの複合制御をすることが できる。  In the above embodiment, the permanent magnet is arranged as the field flux generating magnet means in the rotor rotor by the rotor rotor Z-inner rotor system. However, the present invention can be similarly applied to a generator having an inner rotor provided with field magnets for generating field magnetic flux, and a generator using electromagnets as magnet means for generating field magnetic flux. Also, instead of setting the energization delay amount acgagl to a fixed value, it is possible to perform proportional, differential, integral and a composite control of these in accordance with a general negative feedback control method.
産業上の利用可能性 Industrial applicability
以上の説明から明らかなとおり、 請求項 1〜請求項 4の発明によれば、 低回転域で通常の電圧レギュレータを作動させずに安定的に発電量の増 大を図ることができる。 したがって、 回転子がエンジンで駆動される車 載の発電機に適用した場合、 アイ ドル運転時などにエンジン負荷の変動 を少なく してエンジン回転の変動を極力小さく し、 アイ ドル運転を安定 にすることができる。 また、 請求項 2〜 4の発明によれば、 遅角のタイ ミングが予め設定した値に固定されるので、 簡易な構成で容易に発電量 の調整ができるとともに、 調整の精度を上げることができる。  As is clear from the above description, according to the inventions of claims 1 to 4, it is possible to stably increase the power generation amount without operating a normal voltage regulator in a low rotation speed range. Therefore, when applied to a generator mounted on a vehicle whose rotor is driven by an engine, fluctuations in the engine load are minimized during idling, etc., and fluctuations in the engine rotation are minimized, thus stabilizing the idling operation. be able to. Further, according to the inventions of claims 2 to 4, the timing of the retard is fixed to a preset value, so that the power generation amount can be easily adjusted with a simple configuration and the accuracy of the adjustment can be increased. it can.

Claims

請 求 の 範 囲 The scope of the claims
1. 界磁束発生用磁石手段 (6 2) を有する回転子 ( 1 )、 および発電 出力発生用の固定子卷線が卷回された固定子 (5 0) を有する同期発電 機 ( 1 ) の出力制御装置において、 1. A synchronous generator (1) having a rotor (1) having magnet means (62) for generating a field flux and a stator (50) wound with a stator winding for generating power generation output. In the output control device,
前記回転子の回転数を検出する検出手段 (3 0) と、  Detecting means (30) for detecting the number of rotations of the rotor;
前記固定子卷線に遅角通電させて前記発電機の発電量を増大させる通 電手段 (4 6) と、  Conducting means (46) for increasing the amount of power generated by the generator by retarding current to the stator winding;
前記発電機の出力電圧を所定のレギュレート電圧に制限するレギュレ ータ (5) とを具備し、  A regulator (5) for limiting the output voltage of the generator to a predetermined regulated voltage,
前記遅角通電が、 前記回転子の回転数が予定の低回転数域にあるとき に行われるとともに、 前記出力電圧を前記レギュレート電圧よりも低い. 予定の電圧制御値に制御するよぅ通電制御されることを特徴とする同期 発電機の出力制御装置。  The retarding energization is performed when the rotation speed of the rotor is in a predetermined low rotation speed range, and the output voltage is lower than the regulated voltage. An output control device for a synchronous generator.
2. 前記遅角通電では、 通電遅角量を予定値に維持したまま通電デュー ティを変化させることにより、 前記出力電圧が前記予定の電圧制御値に 制御されることを特徴とする請求項 1記載の同期発電機 (1) の出力制  2. In the retard energization, the output voltage is controlled to the predetermined voltage control value by changing the energization duty while maintaining the energization delay amount at a predetermined value. Output control of synchronous generator (1) described
3. 前記電圧制御値が予定の幅を有し、 前記通電デューティを、 前記出 力電圧が該幅の最大値に達したときに微減させ、 前記出力電圧が該幅の 最小値に以下に下がったときに微増させることを特徴とする請求項 2記 載の同期発電機 (1) の出力制御装置。 3. The voltage control value has a predetermined width, and the energization duty is slightly reduced when the output voltage reaches the maximum value of the width, and the output voltage falls below the minimum value of the width. The output control device for a synchronous generator (1) according to claim 2, wherein the output is slightly increased when the power is supplied.
4. 前記通電デューティが、 前記発電機 ( 1 ) の回転数に応じで決定さ れることを特徴とする請求項 2または 3記載の同期発電機の出力制御装 置。  4. The output control device for a synchronous generator according to claim 2, wherein the energization duty is determined according to a rotation speed of the generator (1).
PCT/JP2001/008873 2000-10-11 2001-10-10 Output control device of synchronous generator WO2002031960A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR0114398-0A BR0114398A (en) 2000-10-11 2001-10-10 Output Control Unit for a Synchronous Generator
IL15449101A IL154491A0 (en) 2000-10-11 2001-10-10 Ouptut control device of synchronous generator
KR10-2003-7004908A KR100526715B1 (en) 2000-10-11 2001-10-10 Output control device of synchronous generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000310769A JP3778342B2 (en) 2000-10-11 2000-10-11 Output generator for synchronous generator
JP2000-310769 2000-10-11

Publications (1)

Publication Number Publication Date
WO2002031960A1 true WO2002031960A1 (en) 2002-04-18

Family

ID=18790663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008873 WO2002031960A1 (en) 2000-10-11 2001-10-10 Output control device of synchronous generator

Country Status (14)

Country Link
JP (1) JP3778342B2 (en)
KR (1) KR100526715B1 (en)
CN (1) CN1196249C (en)
AR (1) AR030872A1 (en)
BR (1) BR0114398A (en)
ES (1) ES2215483B1 (en)
IL (1) IL154491A0 (en)
IT (1) ITTO20010961A1 (en)
MY (1) MY128621A (en)
PE (1) PE20020700A1 (en)
TR (1) TR200300471T2 (en)
TW (1) TWI244255B (en)
WO (1) WO2002031960A1 (en)
ZA (1) ZA200301242B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4270445B2 (en) * 2003-10-17 2009-06-03 本田技研工業株式会社 Output generator for synchronous generator
JP5005271B2 (en) * 2006-06-23 2012-08-22 アイシン精機株式会社 Power supply
JP4961252B2 (en) * 2007-04-20 2012-06-27 ヤマハモーターエレクトロニクス株式会社 Power generation control device and saddle riding type vehicle
JP5158682B2 (en) * 2007-09-25 2013-03-06 本田技研工業株式会社 Power generation control device
JP5279603B2 (en) * 2008-05-14 2013-09-04 ヤマハモーターエレクトロニクス株式会社 Theft deterrent device and transport equipment
JP2010163879A (en) * 2009-01-13 2010-07-29 Honda Motor Co Ltd Idle stop control device
JP2010275926A (en) * 2009-05-28 2010-12-09 Zephyr Corp Wind power generation control device and wind power generation control method
CN101917049A (en) * 2010-08-20 2010-12-15 广州三业科技有限公司 Accumulator charger for internal combustion engine
JP5921921B2 (en) * 2012-03-21 2016-05-24 本田技研工業株式会社 Power generation control device for idle stop vehicle
JP6068192B2 (en) * 2013-02-28 2017-01-25 本田技研工業株式会社 Battery state estimation device and vehicle control system
TWI492518B (en) 2013-12-10 2015-07-11 Ind Tech Res Inst Apparatus of control of a motor and method of a controller thereof
WO2016157386A1 (en) * 2015-03-30 2016-10-06 新電元工業株式会社 Starting power generation device and starting power generation method
WO2016157381A1 (en) * 2015-03-30 2016-10-06 新電元工業株式会社 Starting power generation device and starting power generation method
EP3533995B1 (en) 2018-03-02 2021-03-31 Yamaha Hatsudoki Kabushiki Kaisha Method for controlling an engine unit for a straddled vehicle, engine unit and straddled vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740394A2 (en) * 1995-04-24 1996-10-30 Nippondenso Co., Ltd. Vehicle power generating system
US5642021A (en) * 1995-12-04 1997-06-24 Ford Motor Company Method and system for controlling an alternator to optimize direct current output
US5648705A (en) * 1995-09-05 1997-07-15 Ford Motor Company Motor vehicle alternator and methods of operation
JP2000102279A (en) * 1998-09-24 2000-04-07 Kokusan Denki Co Ltd Generator functioning as motor in combination for starting internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177677A (en) * 1989-03-08 1993-01-05 Hitachi, Ltd. Power conversion system
JP3710602B2 (en) * 1997-07-25 2005-10-26 国産電機株式会社 Power generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740394A2 (en) * 1995-04-24 1996-10-30 Nippondenso Co., Ltd. Vehicle power generating system
US5648705A (en) * 1995-09-05 1997-07-15 Ford Motor Company Motor vehicle alternator and methods of operation
US5642021A (en) * 1995-12-04 1997-06-24 Ford Motor Company Method and system for controlling an alternator to optimize direct current output
JP2000102279A (en) * 1998-09-24 2000-04-07 Kokusan Denki Co Ltd Generator functioning as motor in combination for starting internal combustion engine

Also Published As

Publication number Publication date
CN1349302A (en) 2002-05-15
JP2002119095A (en) 2002-04-19
ZA200301242B (en) 2004-02-04
TWI244255B (en) 2005-11-21
KR100526715B1 (en) 2005-11-08
PE20020700A1 (en) 2002-09-09
AR030872A1 (en) 2003-09-03
ES2215483A1 (en) 2004-10-01
MY128621A (en) 2007-02-28
JP3778342B2 (en) 2006-05-24
BR0114398A (en) 2004-02-03
KR20030040521A (en) 2003-05-22
CN1196249C (en) 2005-04-06
ES2215483B1 (en) 2005-11-01
TR200300471T2 (en) 2003-09-22
IL154491A0 (en) 2003-09-17
ITTO20010961A1 (en) 2003-04-10

Similar Documents

Publication Publication Date Title
US7081738B2 (en) Generating device having magneto generator
CA2252842C (en) Generator motor for internal combustion engine
US6894402B2 (en) Method for controlling a polyphase and reversible rotating electrical machine for heat engine motor vehicle
JP3797972B2 (en) Generator motor system for vehicles
JP3778342B2 (en) Output generator for synchronous generator
CA2248619C (en) Generator for internal combustion engine
WO2015093574A1 (en) Engine unit and vehicle
JP2004350358A (en) Rotary electric machine for vehicle and its controller
JP2008017556A (en) Output voltage controller of engine-driven generator
JP2009165232A (en) Controller for rotating electrical machine and rotating electrical machine device
JP3614174B2 (en) Control device for vehicle alternator
JP3736011B2 (en) Vehicle power generation control device
JP3938747B2 (en) Output generator for synchronous generator
JPH08116699A (en) Electric power generator for vehicle
JP2001069797A (en) Current-adjusting device of starter generator
JP2793303B2 (en) Alternator control method
JP3326977B2 (en) Power supply for internal combustion engine
JPH10299533A (en) Generator-motor device for internal combustion engine
JP2000308317A (en) Starting generator
JP2683653B2 (en) Engine torque control device
JPH0633746B2 (en) Engine start charging device
JP2001016900A (en) Starter generator
JPH0880095A (en) Internal combustion engine driven power generation system
JPS61256042A (en) Reducing device for vibration in engine
JPH02266882A (en) Generator/motor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200300421

Country of ref document: VN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CO ES ID IL IN KR PH TR VN ZA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003/01242

Country of ref document: ZA

Ref document number: 200301242

Country of ref document: ZA

Ref document number: 228/MUMNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 154491

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1-2003-500156

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 200350021

Country of ref document: ES

Ref document number: P200350021

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 1020037004908

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 03029529

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2003/00471

Country of ref document: TR

WWP Wipo information: published in national office

Ref document number: 1020037004908

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 200350021

Country of ref document: ES

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1020037004908

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 200350021

Country of ref document: ES

Kind code of ref document: A